
Ada 9X Project Report
<31

Character Set Issues for Ada 9X

October 1989

DTIC

Office of the Under Secretary of Defense for Acquisition

Washington, D.C. 20301

Approved for public release: distribution is unlimited.



REPORT DOCUMENTATION PAGE C "
' jm wqt moUw am f d V, m n n 14 a g e 1OWNM N " m mma , no dL , q to & ow Mwer ". N do W a

W, UI A*. , -M "s Wq V O 0 V 3104d- C . T slS
aiw i.wr AiI. OVIC d ManqumWa a. @u*qLi *ftWp= 2C M

1. AGENCY uSE Oo&Y j~v 2.w L RPORT OATE R PCAT TYPE AM OATES COVEMD

. October 1989 Final Report
A. MET AND' SUBTmE s. r N00 , NUBERS

Ada 9X Project Report, Character Set Issues for Ada 9X,
October 1989 C = MDA-903-87D-001

O.AUTHORS1

Ronald F. Brender
John B. Goodenough, editor

7. PERFCRMING CRGANIZATCN NAME(S) AND AOORESS4ES) L PERFOAPM CPGAMIZATXD
REPORT NMBER

Software Engineering Institute
Carnegie Mellon University SEI-89-SR-17
Pittsburgh, PA 15213

9. 5PCM S1W-AC frMgWr AffV U10.5 Ai SPNSCRMlWU rItCR0NGA
Ada Joint Program Office Ada 9X Project Office R T KcBr

1211 South Fern St., 3E1 13 AF Armament Lab/FXG
The Pentagon Eglin AFB, Florida 32542-5434
Washington, DC 20301-3080
11. S JPPLENTARY NOTES

This report has been produced under the sponsorship of the Ada 9X Project Office.
It is one in a series that addresses special issues relevant to the Ada revision effort.

:2. 4STR93UTCVIAVA&LABjLf'Y STATEA.ENT 'm. OLSTROUBCTI

Approved for public release; distribution is unlimited.

13. ABSTRACT (IAzimum wwo chi

Issues and design considerations relevant to the introduction of large and/or multiple
coded character sets in the Ada language definition are presented. Emphasis is on
identifying and understanding design and implementation consideration.

14. S.L.ECT TERMS iS. NMER OF PAGE

Ada 9X, ANSI/MIL-STD-1815A, Ada Joint Program Office, 50
Ada 9X Project Office is. PRICE COM

17. ScuRri-f CLS*: .s ~CN Ia.-SECUJiWmtcLASSICr"~ I v. SE%4 kW;CU~TaAT'- - 20. L1mITATIKiN OF ASS'
OEPORT O CA8STRACT UL

UNCLASSIFIED
NSN ,54-4-280-5500 2L9n8 -orT ZJS..:

A~MSt 31.



Ada 9X Project Report

Character Set Issues for Ada 9X

October 1989

DTIC
S E L E C T E "

A Y 111990=

Office of the Under Secretary of Defense for Acquisition

Washington, D.C. 20301

Approved for public release; distribution is unlimited



SEI-89-SR- 17
October 1989

Character Set Issues for Ada 9X

Ronald F. Brender
Digital Equipment Corporation

This report has been produced under the sponsorship of the Ada 9X
Project Office. It is one in a series that addresses special issues relevant
to the Ada revision effort. John B. Goodenough, of the Software Engi-
neering Institute, has served as the editor and coordinator for each report.

Acoession For

NTIS GRA&I -

DTIC TAB 0
Uuannounced 03

usTtifcatto Approved for public release.
- -Distribution unlimited.

8-
1),t %r.ibut on1 "I-
AvallabilitY Codes

T 1avnj.rnd/ or

Dist SPOc lS Software Engineering Institute
Camnegie Mellon Uiversity

Pittsburgh, Pennsylvania 15213



This work is sponsored by the U.S. Department of Defense. The views and
conclusions contained in this document are solely those of the author(s) and
should not be interpreted as representing official policies, either expressed or
implied, of Carnegie Mellon University, the U.S. Air Force, the Department of
Defense, or the U.S. Government.

Copyright © 1990 by Carnegie Mellon University.



Table of Contents

1. Character Set Issues for Ada 9X 1
1.1. Representation, Not Linguistics 1
1.2. Some Terminology 2

2. Coded Character Set Standards 3
2.1.7-Bit Coded Character Sets 3

2.1.1. ISO 646 and ASCII 3
2.1.2. Other 7-Bit Coded Character Sets 4
2.1.3. ISO 2022: Combinations of Coded Character Sets 4

2.2. 8-Bit Coded Character Sets 6
2.3. 16-Bit Coded Character Sets 7

2.3.1. ISO 2022-Based Representations 7
2.3.2. Shift Code Based Representations 9
2.3.3. Shift Range Based Representations 9
2.3.4. A Perspective 10

2.4. Multiple-Octet Coded Character Set 10

3. Ada Issues 13
3.1. Character Data Type(s) 14

3.1.1. Streams Versus Vectors of Typed Components 14
3.1.2. Binding Character Types to Coded Character Sets 15
3.1.3. The Number of Builtin Character Types 16

3.1.3.1. Multiple Implementation-Dependent Sets 16
3.1.3.2. ISO MOCS Based Character Sets 17

3.1.4. Lexicographic Ordering 18
3.1.5. Type CHARACTER as an Explicit Enumeration Type 18
3.1.6. Type Conversion 18
3.1.7. The Input/Output Packages 19

3.2. Source Representation 22
3.3. Extended Character Usage in Source Programs 23

3.3.1. Referring to Extended Characters in Literals 23
3.3.2. Extended Name Characters in Identifiers 23
3.3.3. Overloading Resolution Issues 24
3.3.4. Extended Name Characters in Reserved Words 25

CMU-SEI-SR-89-17 I



3.3.5. Extended Name Characters in Implementation-Defined Entities 25
3.3.6. Bidirectional Names 25

3.4. Input/Output 26
3.4.1. File Representations Versus Processing Representations 26

3.4.1.1. Names for Coded Character Sets and Coding Structures 27
3.4.1.2. File Attributes 27

3.4.2. Character Count Versus Byte Count Versus Column Position 28
3.4.3. Input Methods 29

3.5. Conclusion 29

References 31

Appendix A. Summary of Some Coded Character Set Standards 33
A.1. Corresponding ECMA and ISO Coded Character Sets 33
A.2. Asian Coded Character Sets 34

A.2.1. Chinese (PRC) Coded Character Sets 34
A.2.2. Chinese (ROC) Coded Character Sets 34
A.2.3. Japanese Coded Character Sets 34
A.2.4. South Korean Coded Character Sets 35
A.2.5. Thai Coded Character Sets 35

Appendix B. Summary of Recommendations 37

Index 39

CMU-SEI-SR-89-17



List of Figures

Figure 2-1: ISO 2022 Code Structure 5
Figure 2-2: Mixed One-Byte/Two-Byte Representation 7
Figure 2-3: Mixed One-Byte/Two-Byte Code Plane 8
Figure 2-4: Multilingual Plane from ISO DP 10646 11
Figure 3-1: Declaration of the Extended Character Types in STANDARD 19
Figure 3-2: Sketch of generic TEXTI package 21

CMU-SEI-SR-89-17 iii



1. Character Set Issues for Ada 9X

Abstract: Issues and design considerations relevant to the introduction of large and/.)r multiple
coded character sets in the Ada language definition are presented. Emphasis is on identifying and
understanding design and implementation considerations. Some recommendations are made.

During balloting on the ISO draft international standard for Ada (ISO DIS 8652) conducted in
1986, two comments (neither part of a negative vote) indicated that Ada should be adapted to
allow use of coded character sets other than 4SCII. Both Japan and Czechoslovakia urged that
Ada be adapted to allow the use of so-called "national replacement character sets"as part of the
next revision of Ada. ISO JTC1/SC22/WG9 agreed that this proposal should be considered in
the next revision. 9The draft standard was approved without modification, and became known as
ISO 8652-1987 Programming Language Ada.' - -

Now that the revision process for the ANSI, and thereby the ISO, standards is in progress under
the leadership of the US Department of Defense, it is appropriate to explore the issues involved in
adapting the Ada language definition to deal with coded character sets other than ASCII.-

This report is organized in two main parts. Section 2 provides a brief overview of the world of
coded character sets. This material provides background for the following main part. Section 3
provides a survey of the various design issues that must be considered for the Ada language.
Where possible, approaches that are promising as a basis for incorporation in Ada 9X are recom-
mended. ,<" I_--

1.1. Representation, Not Linguistics
This report does not deal at all with any number of linguistic issues that arise in the creation of
multilingual or international applications. Such issues include time, date, and monetary formatting,
capitalization rules, comparison, and sorting, and on and on. This report focuses solely on under-
lying text representational issues. Linguistic and representational issues are sometimes confused
because one generally can not address solutions for linguistic problems without solving represen-
tational problems as well. A premise of this report is that first one can and should solve the

'This standard is the same as the US ANSI standard, and perhaps better known by its designation in the United Statesi
ANSI/MIL-STD-1 815A-1983

CMU-SEI-SR-89-17 1



problems of representing text from around the world and only then work on linguistic issues in the
context of a known representational approach.

1.2. Some Terminology
Within the character set standards community, the term "character set" generally means a set of

characters independent of any particular encoding, while "coded character set" means a charac-
ter set together with a specified encoding of those characters. Within the programming language
standards community, practitioners are not used to carefully distinguishing between a character
set and a coded character set; in particular, the term "character set" is often used when "coded
character set" would be more accurate. The unfortunate consequence is that the term "character
set" is at best ambiguous and at worst can be a source of confusion and miscommunication
between practitioners from the two communities. In an effort to avoid confusion, this report avoids
the term "character set" altogether. The terms used here are "character repertoire" for a set of
characters independent of encoding and "coded character set" for a character repertoire together
with an encoding. (Even this use of the word "repertoire" is not completely comfortable to coded
character set experts, who use it only in a very specific fashion in the context of a particular
standard - ISO 6937. However, the compatible though slightly broader usage found here should
not cause any confusion.)

2 CMU-SEI-SR-89-17



2. Coded Character Set Standards

The world is awash with coded character set standards. There are international standards, na-
tional standards, and a vast array of corporabe, institutional, and other private standards. Often,
multiple overlapping coded character sets exist for different application domains (newspaper
publishing, bibliographic services such as libraries, and on and on) even within a single country.
An excellent overview of many important international and national standards can be found in
[Clews 1988].

This report will deal almost comple 31y with (some of) the international standards for coded
character sets together with a small number of national coded character sets, especially for Asian
countries.

2.1. 7-Bit Coded Character Sets

2.1.1. ISO 646 and ASCII
Perhaps the best known coded character set is ASCII, which is the US variant of ISO 646. ISO
646 is a seven bit coded character set, with two main variations.

The first variation is the "International Reference Version" (IRV). The IRV is currently the same
as ASCII except that the international currency symbol (0) is used instead of the dollar sign ($).
However, because the dollar sign does dominate in actual practice, this variation is being revised
to (return to) using dollar sign.

The second variation is not so much a particular coded character set, but rather a framework for
allowing national variations that are closely related to the IRV. In particular, ten characters are
considered freely replaceable by other (local) characters,2 while two characters allow a choice of
two alternatives.3 So-called National Replacement Character (NRC) sets, that is, coded charac-
ter sets defined according to ISO 646, have been defined for most if not all of the countries of

2The replaceable characters are commercial at (@). left square bracket (I), reverse solidus (\ (back slash)), right
square bracket (1). circumflex accent (A), grave accent ('), left curly bracket (I). vertical line (1). nght curly bracket ()), and
tWlde/overline (-)

3 Pound sign (Bntish currency, £) can replace number sign (#) and/or international currency sign (0) can replace dollar
sign ($)

CMU-SEI-SR-89o17 3



Western Europe ar well as many other parts of the world. (Over 30 such national sets are listed
in [Clews 1988].)

While there is some advantage to a family of closely related coded character sets, there are
obvious disadvantages as well. The most obvious is that because text is rarely accompanied by
identification of the coded character set used, a text composed in one country will generally
display or print improperly in another. A second disadvantage is that there are not enough
replaceable characters for some countries even in Western Euope (a long standing sore point for
the French, for one example).

2.1.2. Other 7-Bit Coded Character Sets
In addition to the NRC 7-bit coded character sets related to ISO 646, there are a wide variety of
other 7-bit coded character sets. Many of these are intended to support the languages of a
particular geograph:,, area, while others are intended to serve particular application domains or
subject matters.

2.1.3. ISO 2022: Combinations of Coded Character Sets
ISO 2022 is the ISO standard that provides a framework for combining and switching among
coded character sets. We will briefly sketch the major characteristics of ISO 2022 that are impor-
tant for the following material. See Figure 2-1.

An 8-bit coded character set is viewed as a combination of two 7-bit coded character sets, where
the 8th (high-order) bit distinguishes the two sets. If the high bit is 0, then the GL ("graphics left")
set is used, while if the high bit is 1, then the GR ("graphics right") set is used. 4

The term "graphics" is in contrast with "controls" - since ISO 646, more modern coded charac-
ter sets are generally concerned only with graphics, while the possible controls (return, tab, and
so on) are the domain of a separate standard (ISO 6429). The "left" versUs "right" distinction
reflects the conventional manner of presenting a pair of 7-bit code tables. Following the division
first established in ISO 646, the first 32 codes of each 7-bit code set are reserved for controls.
These are known as the CO and C1 control areas, respectively.5

The two 7-bit coded character sets currently "active" are but two of four sets, known as G-sets
(GO, G1, G2, G3) that have been designated. Escape sequences of three, four, or possibly more
bytes are used to name an arbitrary coded character set from a registry operated under the terms
of ISO 2375 and administered by ECMA (the European Computer Manufacturers Association).
Any particular device may not support the designated set, in which case the effect of the desig-
nation is implementation-defined.

Once a coded character set has been designated into a G-set, that G-set can then be invoked

"GL" and "GR" are informal names given to the groups of codes from 32 to 127 and 160 to 255, respectively. These
names are not used/defined in the relevant ISO standards, they are introduced here because they are convenient names
to have available.

5The Cl controls thus include the codes from 128 to 159. inclusive

4 CMU-SEI-SR-89-17



0..1 2 ...... 7 8_9 10 .... 15

II 8-bit code
C7] GL Cj] GR in use

Invocation

GO G1 G2 G3

Designation

Repertoire of graphic sets

Notes:

1. LSn and LSnR lock the G-set Cn into GL or CR, respectively

2. SS2 and SS3 (single shift) shift the G-set G2 or G3, respectively, into GL
for one character

Figure 2-1: ISO 2022 Code Structure

into either GL or CR (except that GO can only be invoked into GL). One or two byte controls are
defined for performing these invocations and there are both locking and non-locking (single shift)

forms. The invocation controls can be thought of as a short alia3 for an arbitrary coded character

set, so long as that coded character set has been designated into a G-set. The G-sets and which

ones are invoked thus constitute important state necessary to properly interpret incoming charac-

ters.

An analogy may be useful in understanding these ideas. Consider the the 256 combined codes of

CO, GL, Cl and CR taken together to be a virtual address space, where the contents (meaning)

of each GL or GR "address" is a glyph to be displayed. Invoking a On set into GL or CR is like

mapping a physical block of memory into the active virtual address space, thereby changing the

meaning (contents) of the virtual addresses. Designating a coded character set is like reading

new contents into one of the G-sets (whether from an I/O device or other physical memory).

There are further aspects of ISO 2022 that will be introduced later.

CMU-SEI-SR-89-17 5



2.2. 8-Bit Coded Character Sets

In recent years, emphasis has shifted from 7-bit to 8-bit coded character sets, and from loosely

coordinated variations to more closely coordinated variations. The ISO 8859 family of coded

character sets is the primary example of this, but it will be helpful to first look briefly at ISO 6937

and even revisit ISO 646.

Within ISO 646, characters that required accents were generally formed as a sequence consist-
ing of the base character, a backspace, and the accent (the order of the base character and

accent can be exchanged as well). This scheme has several disadvantages:

o While suitable for hardcopy devices that can "overstrike," the scheme is much less
well suited for CRT-based display devices.

o The use of varying length representations for characters is awkward for software.

o Look ahead is generally needed to determine whether a complete logical character
has been found.

e The ambiguity in the order of the base character and its accent adds further com-
plexity.

ISO 6937 attempted to ameliorate some of these difficulties by defining a coded character set in

which the accents were non-spacing; that is, did not advance the imaging position. The following

base character completed the character. (Free standing accents can be imaged as the accent

followed by space.) This reduced the size of accented characters from three to two bytes and

eliminated ambiguity and look ahead problems, however, varying character size and imaging
problems remained. This code found significant application in European telematic services, but

very limited support among major computer vendors.6

ISO 8859, formulated in multiple parts, defines a series of coded character sets, which are sum-

marized as follows:

Part Informal Name Geographic Area Served

1 Latin-1 Western Europe
2 Latin-2 Eastern Europe
3 Latin-3 Southern Europe
4 Latin-4 Northern Europe
5 Latin/Cyrillic
6 Latin/Arabic
7 Latin/Greek
8 Latin/Hebrew
9 Latin-5 Western Europe (variation)

Each part defines an independent, complete 8-bit coded character set in its own right. However,

these sets have a great deal in common. Most importantly, all of them define the first 128 codes

(the equivalent of GL in the ISO 2022 description given earlier) as equivalent to the new ISO 646

International Reference Version (IRV), that is, as equivalent to ASCII. In addition, where the

6This description of ISO 6937 intentionally omits discussion of the registration of subsets (repertoires) as not important
to the purposes of this report.

6 CMU-SEI-SR-89-17



same non-ASCII character occurs in more than one part, that character is coded with the same
value as much as possible. Finally, the groupings are designed to match regions that are
economically closely related, as well as geographically.

The main technical characteristic of importance here is that all characters in ISO 8859 are coded
ab a single 8-bit byte - accented characters are considered distinct characters and are coded
separately from their related non-accented characters.

2.3.16-Bit Coded Character Sets

2.3.1. ISO 2022-Based Representations
In addition to 7-bit sets, ISO 2022 also allows a designated coded character set to consist of two,
three or even four (7-bit) bytes. When this alternative is used, it is required that all of the bytes of
a character have the same high-order bit setting (all zero or all one).

In the Asian countries, the most common application of this capability is illustrated in Figure 2-2.

S ! I I I I I I0

Seven-bit ASCII

S I I i II I I I I I I I

1.
I I I I I I I _____________ I____I___I _____

Fourteen-bit JIS/GB/KS

Figure 2-2: Mixed One-Byte/Two-Byte Representation

Typically, ASCII (or a closely related NRC set) is designated and invoked into GL and a local
two-byte set is designated and invoked into GR. The resulting combination can be thought of as a
variable length coded character set, but this is really a bit of a misnomer.

The two-byte character set is more properly thought of as a 14-bit set, rather than a 16-bit set. In
particular, the same character set can just as well be invoked into GL as into GR; if invoked into
GL, characters would then be represented with both high order bits set to zero. The point is that,
under ISO 2022, the high order bit of each 8-bit byte is really control information that is part of the
overall coding structure and not part of any particular coded character set.

A second rea'3on that it is not appropriate to consider the combination as a coded character set
proper, is because the two component sets have many characters in common. Good coded
character set design dictates that a "proper" character set does not code the same character in
more than one way. Each of the major two-byte sets (China, Japan, and Korea) includes a
complete set of both upper case letters duplicating those of ASCII (but no accented characters).

CMU-SEI-SR-89-17 7



An alternative view of the coding space used by this mixed one-byte/two-byte representation can

be formed by looking at a two-dimensional code plane where the first byte is one axis and the
second byte is the other axis. In order to include the one-byte characters in this two-dimensional
space, we will assume that that byte is prefixed by some fixed value, 7 thereby obtaining a uniform
two-byte virtual code. See Figure 2-3.

Second byte -

0 0 1 1 2
0 . .3 . . . . . . . . ... 2 . 6 . . . . . . . . . 5
0 2 7 0 5

F 000
i 001 C o n t r o I s . . . . . . ..
r 032 o

t 047 n
048

b t N/A N/A
Yt

y
t r C
e 127 0 1

0 n
So I........ Controls ........

160 I r
AI0 0 AllIF 175 s 1 I

176 s
110 "11

(Ideographics 2) (Ideographics 1)

255

Figure 2-3: Mixed One-Byte/Two-Byte Code Plane

In this view, the one-byte characters consist of just a half row of characters in the row with the
assumed first byte value of 32. This half row is shown using asterisks (*) in Figure 2-3. The
requirement that both bytes of a two-byte code have the same high-order bit value means that
two-byte codes are limited to the lower-right quarter of the plane. That is, characters are limited to
the area labeled A II and I 1I in Figure 2-3.

There is no real technical advantage served by the ISO 2022 requirement that all characters have

the same high order bit setting. In some systems, this requirement is dropped with the result that
a second quarter, the lower-left, of the code plane can be used. This area is labeled A 10 and
1 10 in Figure 2-3.

Note that in any case, the entire upper half of the code plane, with the exception of the single half
row, is not available in this coding scheme.

7 The choice is arbitrary, we will use 32 because it is the first non-control code and for other reasons that will become
clear later.

8 CMU-SEI-SR-89-17



This mixed length representation has the "nice" property that if all of the characters of a string or
record consist of just the ASCII characters, then the string or record has the form of a simple
ASCII string or record. This is frequently exploited to achieve a measure of upward compatibility
with systems of American or European origin.

Many systems in Asia restrict support to just two statically determined coded character sets:
ASCII in the GL area and one of the Chinese, Japanese or Korean sets (as appropriate to the
system location) in the GR set. The so-called Extended Unix Code adds statically determined G2
and G3 sets, which are conventionally used only by means of the SS2 or SS3 single shifts (never
the locking shifts). In Japan, the JIS X0201 one-byte Kana code is assumed designated into G2,
with G3 left available for user definition. In other areas, both G2 and G3 are available for user
definition.

Typical software is not designed to handle designation of other coded character sets into any of
the G-sets. Note, in particular, that in the absence of the support for coded character set desig-
nation, simultaneous support for Chinese, Japanese and Korean is not possible.

The effect of these conventions is very much analogous to the national replacement set situation,
wherein the GL/GO characters are common but the GR/G1 (as well as the G2 and G3) character
codes get interpreted differently from system to system.

2.3.2. Shift Code Based Representations
ISO 2022 is not the only basis for handling large coded character sets, of course. In the
mainframe world, one very common scheme consists of combining two separate code sets, one a
one-byte code that includes roughly the same characters as ASCII and the other a two-byte code
for the local script. A one-byte "shift out" control code changes the mode from one- to two-bytes,
while a one-byte "shift in" control changes the mode back to one-byte characters.8

2.3.3. Shift Range Based Representations
A kind of halfway scheme between the high-bit convention and shift control scheme is the so-
called "Shift JIS Code" used in Japan, especially on personal computers. In this scheme, bytes
with codes 0 to 127 are interpreted as one-byte ASCII, codes 160-191 and 192-223 are inter-
preted as one-byte Katakana (according to Japanese standard JIS X0201), and codes 128-159
and 224-255 are combined with the following byte to form a two-byte code that is interpreted as a
Kanji character from JIS X0208.9 The two-byte codes of shift JIS encode the same set of charac-
ters as JIS X0208, as well as encoding them in the same order as JIS X0208; the individual
character codes are not the same, of course.

8"Shift Out" and "Shift In" controls are also defined as part of the older 7-bit mode of ISO 2022

9For those familiar with the typical 8-bit code table, codes 128-159 are the C1 controls from the 8/x and 9/x columns,
while codes 192-223 are the 1,"Jx and 13/x columns (which are not used by JIS X0201).

CMU-SEI-SR-89-17 9



2.3.4. A Perspective
While the variety of schemes for combining coded character sets may seem extensive and com-
plicated, there are really but a small number of variations involved. In general, any given code
can be considered to have both a graphic effect and a control effect.

The pure shift code schemes, where each code is either a graphic or a control, seem concep-
tually simplest. But, such schemes are actually quite complicated to use because implicit state or
context (what was the most recently encountered shift?) must be known or determined to cor-
rectly interpret any given code.

The ISO 2022 scheme, where every code is both a graphic (or part of one) and a control is
actually cleaner in most ways, at least when limited to two coded character sets, because it
avoids the need for implicit state or context.

The shift JIS scheme is a non-standard variation on the ISO 2022 scheme that allows more single
byte characters to be represented at the expense of reducing the number of two-byte characters
than can be represented.

2.4. Multiple-Octet Coded Character Set

ISO/IEC JTC1/SC2/WG2 is currently developing a worldwide coded character set, called the
Multiple-Octet Coded Character Set. ISO DP 10646 was published in early 1989. A second draft
proposal (DP) is planned for late 1989. The WG2 committee is working toward publication of a
DIS (Draft International Standard) document in early 1990 and the final standard in late 1991 or
early 1992. Only a few characteristics of this code are important to this presentation and these
are discussed below. See Figure 2-4.

The complete code is considered to consist of four octets. 10 This code is regarded as a single
entity, consisting of 65,536 "planes" of characters, divided into 256 "groups" of 256 planes each.
Only the first group is being standardized at this time, leaving extensive room for expansion.
Each plane consists of 256 "rows," with each row containing 256 "cells."

For compatibility with existing 8-bit facilities, character codes wherein any octet has a value in the
range 0 to 31 or 127 to 159 is not used. This allows the common CO, DEL (delete), and C1
control codes and related sequences to be used in combination with the multiple-octet code
without needing to know that it is a multiple-octet code. It follows that graphic characters are
restricted to four quadrants within any given plane.

The first usable plane, plane 32 of group 32, is termed the multilingual plane. It generally in-
cludes the characters of all of the alphabetic scripts of the world (including Eastern and Western
European, Greek, Cyrillic, Arabic, Hebrew, Maldivian, Syriac, Indian, etc.), as well as up to 7680
characters (ideograms) each for Japanese Kanji, Chinese Hanzi, and South Korean Hangul and

1°An "octet" is an eight-bit byte. The term octet is used because the term byte is sometimes used with various numbers
of bits. This standard defines a coded character set specifically in an eight-bit environment

10 CMU-SEI-SR-89-17



Second byte.

0 0 1 1 2
0 - .3 . . . . . . . . . . 2 6 . . . . . . . . . 5
0 2 7 0 5-

F 000
i 001 C o n t r o s .......... .

r 032 o
S A 00 A01
t 047 n

048
b 100 101
y (Japanese) (other)

t rC
e 127 o 0 1

0 n
. ........ Controls ........

160 1 r

A10 0 All1 1 5 s I .."

176 s etc
110 111 e

(Chinese) (Korean) 0032
034

255 - 1 032

Group & 032 033

Plane 032

Multilingual plane is Group 032, Plane 032

A xx = 16*96 character alphabetic zone
I xx = 80*96 character ideographic zone
Q xx = a quadrant (A xx + I xx)

ISO Latin-1 is contained in Group 32, Plane 032, Row 032
Example: Latin (uppercase) A has code 032 032 032 065

Figure 2-4: Multilingual Plane from ISO DP 10646

Hanja. In addition, up to 7680 "restricted use"' characters are included that are used for alter-
native presentation forms 1 (such as ligatures), or for dynamically redefinable (DRCS) or private
use characters.

A one-octet subset, row 32, of the multilingual plane is (by design) identical to the ISO Latin-1

character set.

'1 SC2/WG2 has decided on some changes in terminology for use in the second DP, as follows:
Old (from first OP) New (for second DP)

Discernibly Different Zone Restricted Use Zone
Presentation Variant Presentation Form
Form-of-use Compaction Method

CMU-SEI-SR-89-17 11



Several "compaction methods"" are envisioned:

" Four octets per character

* Three octets per character

" Two octets per character from the multilingual plane
" One octet per character from the first graphic row of the multilingual plane, which is

the same as the ISO Latin-1 character set

All but the first may also be used in variant forms that allow use of a proposed new control
character, SGCI (Select Graphic Character Introducer), that precedes a single four-octet charac-
ter.

The compaction method is intended to be persistent, i.e., not subject to frequent adjustment. For
transmission-related contexts, persistence means that the compaction method is negotiated once
at the time a connection is established and not changed thereafter. For programming language
contexts, persistence means that the compaction method is fixed throughout and for the lifetime
of a given string object or text file.

For applications where dynamic compaction is warranted, a fifth compaction method is defined
that allows operating temporarily in specified one-, two-, or three-octet subsets (the assumed
high-order octets of each character are dynamically specified by control sequences), as well as
switching amongst subsets.

While the one-octet Latin-1 and two-octet multilingual subsets will be suitable for many purposes,
it should also be clear that the full four-octet code will be needed for others, especially (but not

only) in the Asian countries.

Terminology

A note of caution about terminology is in order. In the context of the Asian two-byte standards, the
term "plane" is generally used to refer to a 14-bit set of characters. In the context of the ISO
MOCS standard, the term "plane" is used to refer to a 16-bit set of characters, of which each
14-bit subset is called a "quadrant."

12 CMU-SEI-SR-89-17



3. Ada Issues

This section provides a survey of design issues that must be addressed as part of incorporating
increased coded character set support in the Ada language.

It is often hard to chose a preferred order of topic presentation because of the many interactions
of different issues - the reader's patience is assumed. Following is a summary of the design
issues discussed in this section.

" Character data types:

" Choice of stream versus typed vector model
" Binding of predefined data type(s) to specific coded character sets
" Number of predefined character types

* Implementation-defined
* Based on the ISO MOCS (draft proposed) standard

" Lexicographic ordering
• Type conversion

" Effect on TEXT_10, SEQUENTIAL_10, and DIRECT_10

" Source program independence of underlying coded character set representation
" Allowed usage of extended characters

" In identifiers
" In literals and the effect on 'IMAGE and 'VALUE

* Universal character and string types with implicit conversion
* Overloaded on all character or string types (in scope)

" In reserved words
" In implementation-defined pragmas and attributes

" Bi-directional text

" Input/output representation

* File representation versus processing representation
* Names for coded character sets and coding structures
* File attributes

9 Character counts versus byte counts versus display positions

- Input methods

CMU-SEI-SR-89-17 13



3.1. Character Data Type(s)
The following sections address a number of related issues having to do with the nature and
number of character data types.

3.1.1. Streams Versus Vectors of Typed Components
There are generally two models for defining an encoding of strings in high level languages: a
stream model and a vector of typed components model. In the stream model, the character
represented by a given sequence of bits depends on the interpretation given to preceding charac-
ters. For example, if one character signals a shift to two-byte codes, then subsequent bytes are
interpreted two at a time, until a character specifies a shift to a different coding. Alternatively, a
code may indicate a shift to a different coded character set, in which case, a following string of
bits may represent a different character than it did before the shift.

In the vector model, every character occupies the same number of bits and the meaning of a
given bit representation is the same wherever it appears in the string. Ada, of course, models
strings as vectors.

When reviewing these alternative ways of representing strings, representatives at an ISO SC22 12

Ad Hoc Meeting on Character Handling Requirements in Programming Languages concluded
that neither could be uniformly recommended over the other; rather, programming languages may
provide functionality from either or both models as appropriate to their intended application
domains 0SC22 Ad Hoc 1989-B].

The stream model deals directly and explicitly with the real representation in the form
defined by relevant coded character set standards. Its advantages are flexibility and
efficiency for some kinds of operations. However, applications exploiting these charac-
teristics may be difficult to construct and may not be portable to other representations
(because details of escape sequences or other coded character set characteristics tend
to be incorporated into the application code). The stream model complicates some
traditional string processing operations (indexing, substringing, concatenation).

The typed vector model views character information as a sequence of same-sized
character objects. This facilitates many string processing operations.

Support of more than one coded character set in the typed vector model requires both
conversions (usually at the I/0 boundary) and sufficient size of character objects for the
domain of characters to be processed. Its advantages are simplicity of use (details of
coded character set standards, escape sequences, etc. are hidden) and portability
(execution is with a consistent character representation with conversion to "real"
representations at the I/0 boundary). Disadvantages are efficiency and space
(conversion and manipulation of larger objects).

12SC22 is the subcommittee of ISO/IEC JTC1 concerned with programming languages. SC2 is the subcommittee of
ISO/IEC JTC 1 concerned with coded character sets

Representatives of the several working groups of SC22 (including this author as the representative of WG9, Ada) met
in March 1989 to discuss common character set issues and to prepare recommendations and requests to SC2 based on
programming language requirements Some of the same SC22 representatives (again including this author) then met
with representatives of SC2 (as well as SC21 concerning data bases) in April 1989 to present and discuss those
recommendations and requests. ISC2/SC22 Ad Hoc 1989-A and -B present the results of those meetings

14 CMU-SEI-SR-89-17



The space/time trade-offs that lead to distinguishing integer vs. floating point, and even
several kinds of floating point, are seen to also apply to large character sets. The
choice of model is then dependent on the intended use of a programming language
and, as is the case with numerics, no single model can be recommended.

Ada, of course, is clearly in the group of languages that model a string as an array (vector) of

characters. Moreover, Ada's language-defined abilities to index, to substring, and to rename com-

ponents and substrings preclude any practical extension of the existing model to include stream-
like characteristics. For example, Ada allows components of strings to be renamed. Such a

capability is incompatible with the stream model since an assignment to an earlier component of

the same string might change the size of the renamed component or shift the memory location of

the component (e.g., when a large component is replaced by a smaller one), or change the

character set associated with the component.

If a stream-oriented model were desired, it must be introduced through new language features

rather than as a modification and/or reinterpretation of the existing model. The balance of this
report does not consider the stream alternative further.

Recommendation 1: Continue the "array of typed components" approach to strings as already
established in Ada. Do not pursue any stream-oriented alternative.

3.1.2. Binding Character Types to Coded Character Sets
Ada currently defines its single character type in a manner that is equivalent to ASCII. While an

implementation might manage to use a different encoding than ASCII during execution, the need
to preserve the user semantics of the ASCII encoding for type CHARACTER makes this ap-

proach unlikely.13 For example, if an array is indexed by type CHARACTER, the Ath element of
the array must be the element following CHARACTER'PRED('A') and preceding

CHARACTER'SUCC('A'). String comparison operations similarly must use the ASCII collating

sequence.

A key Ada language strategy question is whether to maintain this intimate association with the
ASCII character set. Recall that Ada is, in fact, unique among the standardized programming

languages in having such a close association. FORTRAN, COBOL, LISP, and so on, have all

been effective vehicles for portable programs even though they limit their requirements to listing a

set of characters that must be representable while avoiding any association with any particular

coded character set.

On the other hand, changing the definition of type CHARACTER to be coded character set inde-

pendent does not, of itself, do much to address how to deal with large and/or multiple character

sets in Ada. It seems unlikely that type CHARACTER could be so flexibly defined that an imple-

mentation could use, say, the ISO MOCS (four-octet) character set without affecting the seman-

tics of existing programs in subtle ways. For example, the value of CHARACTER'LAST would

become implementation-dependent, so the number of loop iterations dependent on this value

13This author is not aware of any implementation that uses a run-time character set other than ASCII as the encoding

for type CHARACTER

CMU-SEI-SR-89-17 15



would change. In addition, selection of the others choice in a case statement over values of type
CHARACTER would become implementation-dependent. Finally, the implicit dependence on the
size of CHARACTERs as 7- or 8-bit entities, both internally in programs and externally in data
files, probably could not be changed without unacceptable re-engineering cost. In short, any
change in the number of literals of the predefined type CHARACTER would probably require
some kind of modification to most Ada programs that do any kind of non-trivial text manipulation.
As a rough guess, for example, this would include a significant number of the programs currently
held in the Ada repository.

If extending type CHARACTER from 7-bits to 8-bits were sufficient to deal with the variety of
character set needs worldwide, then the resulting incompatibilities might be considered war-
ranted. However, given that a single character type (even associated with a coded character set
other than ASCII) is not viable, it is necessary to consider approaches involving multiple character
types.

Recommendation 2: Do not change the predefined types CHARACTER and STRING.

3.1.3. The Number of Builtin Character Types
With so many coded character sets of interest in different parts of the world, it seems impossible
to both serve the inherent needs reflected by these sets as well as maintain a language design
that employs a reasonably small number of character types. Two approaches are of interest,
however.

3.1.3.1. Multiple Implementation-Dependent Sets
One approach is to allow each implementation to introduce any number of additional character
data types, with each type corresponding to a coded character set of local interest. These data
types might be named according to some scheme, say, CHARACTERn, where n is a number.

The main disadvantage of this approach is that any use of such extended character types would
seriously compromise the portability of the program. Without some means for selecting the right
character type based on the coded character set supported (for example, a character type able to
represent Greek), a program would easily become non-portable between two implementations
that support the same coded character set but happen to use different type names for those sets.

A variation might be to specify a repertoire of character set names, each with a specific associ-
ated coded character set. The repertoire must be extensible over time, so some kind of registra-
tion mechanism would be needed. Possibly the naming scheme could be based on the codes
that are already defined for the escape sequences used to designate character sets in the ISO
2022 model, in which case the registration process administered by ECMA in accordance with
ISO 2375 would automatically serve Ada as well.

While this general approach might be built into a viable model, it would do little to simplify the
already considerable problems of operating in an exceedingly rich coded character set world.

16 CMU-SEI-SR-89-17



3.1.3.2. ISO MOCS Based Character Sets
A second approach is to define three additional character types based on the ISO MOCS stan-
dard as follows:

LATINI _CHARACTER One-octet subset (same as ISO Latin-1)
MULTICHARACTER Two-octet subset (multiiingual plane)
MOCSCHARACTER Full code

This gives a sequence of increasingly general character types, where CHARACTER is a subset
of LATINICHARACTER, which is a subset of MULTICHARACTER, which is a subset of
MOCSCHARACTER. Further, ISO SC2 intends to maintain the MOCS code as the universal
character set. Thus, this approach will serve the needs of any geographic area as rapidly as the
needed script is incorporated in the ISO standard. Note that the initial multilingual plane will
already achieve this for a very large fraction of the world, whether measured in terms of popula-
tion, geographic area or economic activity.

Complementing these character types would be corresponding string types (LATINISTRING,
MULTISTRING, and MOCSSTRING) having the above character types as their respective
component types.

The main disadvantage of this approach is that the two-octet subset will be required for some
regions where existing one-octet sets are already in use (for example, Israel, Greece, the Arabic
countries, and others). Only Western Europe retains the "advantage" of a one-byte code. Of
course, Ada does not provide any kind of capability for these regions at the moment. Thus this
disadvantage is only relative to some other hypothetical proposal that might allow for multiple
8-bit character types.

Recommendation 3: Add the LATINtCHARACTER, MULTICHARACTER, MOCSCHARAC-
TER, LATIN1_STRING, MUL TISTRING, and MOCSSTRING types as described above in the
predefined package STANDARD. Require these types to be present in all implementations. (It is
a separate matter whether an implementation allows source text to include characters other than
those of ASCII in source programs [see below].)

Compatibility Issues: Adding a new data type to package STANDARD as proposed above intro-
duces a small potential incompatibility with existing Ada programs, namely, if these identifiers are
declared in other packages in existing programs, then a use clause will no longer make them
visible. For example:

package CHARSETS is
type MOCSCHARACTER is (...);

type MOCSSTRING is array (POSITIVE range <>) of MOCS_CHARACTER;
end CHARSETS;

with CHAR SETS; use CHARSETS;
package P is

A : MOCS CHARACTER; -- 1

end P;

Given the existing definition of package STANDARD, the variable A is of type CHAR_
SETS.MOCSCHARACTER. If Recommendation 3 is followed, the variable A will be of type

CMU-SEI-SR-89-17 17



STANDARD.MOCSCHARACTER, because as RM 8.4(6) notes, a directly visible declaration

cannot be hidden by the effect of a use clause. Since STANDARD.MOCSCHARACTER is

directly visible, CHARSETS.MOCSCHARACTER is not made directly visible, so the program
has a different meaning. Such programs are unlikely to exist in practice, and even so, any use of

these new identifiers can be easily discovered with a preprocessor.

Another minor incompatibility is that expressions such as

"ABC" = "DEF" and 'C' = ID'

will be illegal, because there is no way to resolve the types of the string literals and character
literals, or the equality operators. (This issue is discussed further in Section 3.3.3.) Expressions
comparing the values of two string literals or two character literals are, however, unlikely to be
written by human programmers; they are more likely to appear only in machine-generated code,
and such generators can usually be modified to cope with this difference.

3.1.4. Lexicographic Ordering
Ada defines the ordering operators for arrays as follows [RM 4.5.2(9)]:

The ordering operators <, <=, >, and >= that are detined for discrete array types cor-
respond to lexicographic order using the predefined order relation of the component
type. A null array is lexicographically less than any array having at least one compo-
nent. In the case of nonnull arrays, the left operand is lexicographically less than the
right operand if the first component of the left operand is less than that of the right;
otherwise the left operand is lexicographically less than the right operand only if their
first components are equal and the tail of the left operand is lexicographically less than
that of the right (the tail consists of the remaining components beyond the first and can
be null).

Although this definition is satisfactory for the predefined CHARACTER type, it is unlikely to be
satisfactory for any of the new character types. For example, in the Latin-1 character set, it would
be inconsistent with standard practice to consider the accented characters to be greater than 'z'
simply because they appear later in the enumeration type declaration. Consequently, any pro-
grams using the extended string types will undoubtedly want to redefine the ordering operators

for these types. However, the subject of sorting and collating sequences is a big and complicated
problem in its own right. The Ada community should look to SC22 to develop a common
framework that can apply across programming languages.

3.1.5. Type CHARACTER as an Explicit Enumeration Type
Appendix C of the Ada standard defines the type CHARACTER by means of an explicit enumera-

tion declaration. This is unlikely to be feasible for future multiple, large character sets, no matter
how they are formulated. However, this is believed to be more of a presentation problem than a
problem of any real semantic significance.

3.1.6. Type Conversion
The ability to use the names of numeric types to perform type conversions should be extended to
the character and string types. If a character to be converted is not representable in the target
type, then an exception should be raised.

18 CMU-SEI-SR-89-17



For the character types specifically, type conversions can be made available without other lan-
guage enhancement by ensuring each of the types is related by derivation (see Figure 3-1). In
this Figure, MOCSCHARACTER is declared as the basic type, and each of the other types is
derived using appropriate range constraints. Type conversions are then freely available among
all of these types in accordance with RM 4.6(8-9).

type MOCS CHARACTER is
(... first 128 literals as in Appendix C.
... second 128 as for Latin-1 ....
... literals for the two-octet set ....
. . . the remaining literals for ISO 2022);

for MOCSCHARACTER' SIZE use 32;

type MULTICHARACTER is new MOCSCHARACTER range
MOCS CHARACTER'VAL(O) .. MOCSCHARACTER'VAL(2**16-1);

for MULTICHARACTER' SIZE use 16;

type LATINI_CHARACTER is new MULTICHARACTER range
MULTICHARACTER'VAL(O) .. MULTICHARACTER'VAL(255);

for LATIN1CHARACTER' SIZE use 8;

type CHARACTER is new LATIN1 CHARACTER range
LATIN1 CHARACTER'VAL(o) .. LATIN1CHARACTER'VAL(127);

Figure 3-1: Declaration of the Extended Character Types in STANDARD

Unfortunately, corresponding type conversions among the proposed string types does not quite
come for free. Such type conversions would be available according to LRM 4.6(10-11) for array
types except that the several string types do not have the same component type. A minimal
generalization to the rules for array types is to allow conversions where the component types are
convertible because they are related by derivation. Such a conversion is just a change of repre-
sentation when converting from a component type with reduced range (such as CHARACTER) to
a target string type whose component type has an extended range (such as MOCS_
CHARACTER). Of course, the reverse conversions are more costly, because each string compo-
nent must be checked to be sure it belongs to the range of the target component type. Although
such checks would be costly, the ability to convert between at least the predefined string types is
so important that it should be provided in one way or another.

Recommendation 4: Provide the ability to perform type conversions among the predefined string
types.

3.1.7. The Input/Output Packages
However many predefined character types are defined in Ada and/or allowed to be added as an
implementation-defined option, ideally all of them ought to be considered co-equal and inter-
operable with respect to the input/output packages. For example, the NAME function ought be
able to return the file name in any of the predefined string types, for any file object, independent
of the character set used to name the file in the OPEN or CREATE operation, and independent of
the character set of the data stored in the file.

CMU-SEI-SR-89-17 19



However, for those subprograms that take more than one parameter of a string type (OPEN and

CREATE), it seems extravagant to cater to the cross-product of possible type combinations. It

seems sufficient that there should be one subprogram for each distinct string type, e.g., OPEN

should accept NAME and FORM parameters that are both of type STRING, LATINI_STRING,
MULTISTRING, or MOCSSTRING. Should an application need to call OPEN or CREATE using

different string types for the NAME and FORM parameters, it should suffice to require that the

arguments be converted to a common string type.

Overloading input/output services in this manner will bring to string-oriented callable services the
same kind of ambiguity issues that exist for numerically-oriented callable services. For example,

suppose there are several subprograms for PUT in package TEXT_10, one for each of the sev-

eral character types. Then, a simple call such as PUT('A'); would be ambiguous. For numeric
services such as the mathematical packages defined by the Ada Numerics Working Group, the

typical approach is to define the service as a generic package that is instantiated by each appli-

cation as needed. Where qualification is still required, selected component notation can be used

to resolve ambiguities.

In order to create a generic TEXT 10 package, it will be necessary to add a "generic formal
character type" to the language. A generic formal character type is needed to allow strings to be
written within the generic TEXT_10 package, e.g., the default expressions for the FORM and
NAME parameters of the CREATE and OPEN operations. It would also ensure that text-oriented

generic units are only instantiated with a character type (rather than with any discrete type).

Recommendation 5: Introduce a generic version of TEXT_10 named, say, GENERICTEXT_10
with two generic formal character type parameters named, say, NAMECHARACTER and
DATACHARACTER (see Figure 3-2). Default generic formal string parameters named, say,
NAMESTRING and DATASTRING are defined using these component types, respectively. Use
the formal type NAME STRING in place of type STRING in the CREATE, OPEN, NAME and
FORM procedures, and use the formal type DATASTRING in place of STRING in the GET,
GETLINE, PUT and PUT_LINE procedures. Use the DATACHARACTER type in place of
CHARACTER in the PUT and GET procedures.

Similar generic packages should be provided for SEQUENTIAL_10 and DIRECT_10, to provide
uniform capabilities for the OPEN and CREATE procedures.

With this formulation, the existing predefined package TEXT_1O will then be provided as an in-

stantiation:

with GENERICTEXTIO;
pragma ELABORATE (GENERICTEXT_10);
package TEXT_10 is new GENERICTEXTIO(

CHARACTER, CHARACTER,
STRING, STRING);

In a similar manner, provide additional predefined packages as follows:

with GENERICTEXTIO;
pragma ELABORATE (GENERICTEXT_10);
package LATIN1TEXTIO is new GENERICTEXTIO(

LATINICHARACTER, LATINi CHARACTER,
LATIN1_STRING, LATINISTRING);

20 CMU-SEI-SR-89-17



with 10_EXCEPTIONS;
generic

type NAME CHARACTER is (''); -- a character type is required
type DATACHARACTER is C'); -- a character type is required
type NAME_STRING is array (POSITIVE range <>) of NAMECHARACTER;
type DATA STRING is array (POSITIVE range <>) of DATACHARACTER;

package GENERICTEXT_10 is

procedure CREATE (FILE in out FILE TYPE;
MODE in FILEMODE : OUTFILE;
NAME in NAME STRING
FORM in NAMESTRING =..;

function NAME (FILE in FILETYPE) return NAMESTRING;

procedure GET (FILE in FILETYPE; ITEM : out DATACHARACTER);
procedure GET (ITEM out DATACHARACTER);

procedure PUT (FILE in FILE TYPE; ITEM : in DATASTRING);
procedure PUT (ITEM in DATASTRING);

end GENERICTEXT_10;

Figure 3-2: Sketch of generic TEXT_10 package

The notation (' ' ) is introduced to signify a formal generic character type,
i.e., the corresponding actual parameter must be a character type.

with GENERIC TEXT 10;
pragma ELABORATE (GENERIC TEXT_10);
package MULTI TEXT 10 is new GENERICTEXT_I0(

MULTI._CHAACTER, MULTICHARACTER,
MULTISTRING, MULTISTRING);

with GENERIC TEXT_10;
pragma ELABORATE (GENERICTEXT_10);
package MOCS TEXT_10 is new GENERICTEXTIO(

MOCSCHARACTER, MOCS_CHARACTER,
MOCSSTRING, MOCSSTRING);

Note that the potential for different name and data types is not exploited for the predefined
character and string types in the above instantiations. For example, the NAME and FORM
parameters for LATINI _TEXTIOOPEN are both of type LATINI _STRING, and so is the input
parameter for PUTLINE. However, a different instantiation could create a PUTLINE with a
different string type, while OPEN and CREATE require parameters of type LATINISTRING.

CMU-SEI-SR-89-17 21



Of course, such a generic package can be instantiated with user-defined character and string
types such as ROMANCHARACTER and ROMANSTRING:

type ROMANCHARACTER is ('I', 'V', 'X', 'L1, 'D', 'M');
type ROMAN-STRING is array (POSITIVE range <>) of ROMAN CHARACTER;

Instantiating the generic TEXT_10 package with these types for NAMECHARACTER and
NAMESTRING would undoubtedly lead to peculiar effects. If the generic approach is adopted,
probably the specification should state that the effect of the instantiation is not defined by the
language if the instantiation is performed with any types other than the predefined character and
string types.

3.2. Source Representation

Section 2 highlighted the variety of representation schemes currently in use; moreover, as the
newer character set standards, most particularly the ISO MOCS standard, come into use and the
needs of non-Western Europe begin to be addressed within programming language and other
standards, it is likely that the variety will actually increase, at least for a while.

In the midst of such diversity, it is important for the portability of (Ada) programs that the meaning
of a program not be dependent on the underlying coded character set used to represent that
program. Historically, there has been a tendency to formulate programming language extensions
for Asia, in particular, in ways that reflect and incorporate the current mixed one-byte/two-byte
representations into the language design. It is strongly recommended that this tendency be
avoided.

The following model has been recommended to other programming language groups (COBOL
1988] [SC22 Ad Hoc 1989-A]. It is repeated here for Ada as well:

A character may be represented physically in one or more forms. The different forms of
a character, whether associated with different character sets, whether associated with
different compression mechanisms, or whether physically of the same size or not, are
considered to be logically equivalent and representing the same character. If different
character sets are used. then the means for distinguishing (including shifting) between
them is implementation-defined. (Any shift characters or other such control information
embedded in the source program, if used, are relevant only to identifying the characters
making up the source program and are not themselves among the (logical) characters
of the source program.)

Traditional lexical and syntactic specifications are then expressed in terms of the resulting logical
character set. It remains an implementation matter whether the conceptual mapping from phys-
ical to logical character set occurs as a distinct prepass or whether it occurs only implicitly and
on-the-fly.

Note that this recommendation does not preclude, of itself, implementation-defined extensions
that do reflect properties of an implementation's particular local representation conventions. An
example might be a pseudo-string constant, perhaps expressed using an attribute notation, that
yields a value using mixed size characters. However, it helps make clear that such constructs are
not encouraged by the programming language standard and are not likely to be portable in any
useful manner.

22 CMU-SEI-SR-89-17



This recommendation is in many ways a compile-time version of the run-time recommendations

for separation of processing and file representations during input/output. See Section 3.4,
Input/Output, for further discussion.

Recommendation 6: Adopt the statement on source program representation given above.

3.3. Extended Character Usage in Source Programs
The whole purpose of extending the Ada string and character types is to allow source programs
to use these extended codes in character literals and string literals. Given such usage, it is
natural to consider the use of extended characters in program identifiers as well. Both topics are
considered in this section.

For the purposes of this section, it is convenient to have a term for characters other than charac-
ters defined in ASCII that are suitable for use in identifiers, that is, excluding special characters
such as punctuation or (free standing) accents. 14 We will call these "extended name characters."

3.3.1. Referring to Extended Characters in Literals
If the source program is written using characters outside the ASCII set, say, in Latin-1 characters,
it is a simple matter to write string literals and character literals using these characters:

E_ACCENT: LATINICHARACTER := '6';
SLOGAN : constant STRING := "Libert6, Egalit6, Fraternitd";

However, suppose the source program representation has no way to express such characters,
e.g., suppose only the ASCII character set is supported. It would be rather inconvenient and
error-prone to write:

EACCENT constant LATINICHARACTER := LATIN1_CHARACTER'VAL(2#1110_1001#);

SLOGAN constant STRING := "Libert" & E ACCENT & ...;

Ada currently provides standard names for otherwise unrepresentable ASCII characters. While it
might be possible to continue this approach for Latin-l, the approach breaks down completely for
the two-octet and four-octet sets. Perhaps alternate notations should be explored for writing
literals that fall outside the set that can be used in the source code representation supported by a

particular compiler.

3.3.2. Extended Name Characters in Identifiers
It is desired and desirable that identifiers used in a program should be able to include characters
from any script representable in the underlying source representation. The SC22 Ad Hoc meeting
in March 1989 made a recommendation to SC22 that it direct its working groups to proceed to
allow this capability in each of their respective standardized languages. (SC22 will consider this
recommendation at its plenary meeting in September 1989.) It would be preferable, however, if

14This definition conveys the general idea but definitety needs refinement. The goal is to generally allow any locally
meaningful nouns or phrases to be used as or in identifiers. (No requirement that identifiers must be linguistically
meaningful is intended, of course)

CMU-SEI-SR-89-17 23



there were a common set of identifier characters allowed across standardized programming lan-

guages.

Recommendation 7: Allow extended characters in source program identifiers. Look to SC22 to
develop a common set of such characters for use across programming languages, if possible.

3.3.3. Overloading Resolution Issues
Given the possibility of extended characters in identifiers, the question of overloading resolution
for character and string literals bears revisiting. For concreteness, the following example il-
lustrates some interesting issues:

type ENUM is (ENGLISH, FRANCAISE, KANJI);
OE ENUM := ENUM'LAST;
OB BOOLEAN;

B ENUM'IMAGE(OE) = "KANJI";

where, let us suppose, KANJI (two occurrences, including inside the string literal) is in fact the
Japanese word for Kanji as written using the Japanese script.

As Ada is defined today, the IMAGE attribute returns a value of type STRING. But given that the
attribute is supposed to produce a string representing the corresponding enumeration literal, and
given that an extended character is used in writing such an enumeration literal, it is clear that the
attribute can no longer satisfy its intent if it is limited to returning just a STRING value.

There are several options for resolving this problem:

(a) Redefine the IMAGE attribute to return a value of type MOCS_STRING. Such a
return type is sufficient to represent any enumeration literal given using extended
characters in a source program. (Similarly, the VALUE attribute would be redefined
to take an argument of type MOCS_STRING.)

(b) Overload the IMAGE attribute to return values of type STRING, MULTI_STRING,
and MOCS_STRING, and redefine the VALUE attribute to accept arguments of any
of these types. The IMAGE attribute will raise CONSTRAINTERROR if the
enumeration literal cannot be represented in the selected return type.

(c) Redefine the IMAGE attribute to return a type universalstring, which could be im-
plicitly converted to any predefined string type.

Solution (a) suffices to allow the representation of any possible enumeration literal given in
source code using extended characters. But this solution would not be very satisfactory for
current Ada users, since existing programs that use the IMAGE or VALUE attributes would have
to convert the result or argument to type MOCS_STRING. This would undoubtedly be unaccept-
able to most current Ada users.

Solution (b) has a few disadvantages also. The expression ENUM'IMAGE(OE) = "KANJI" will be
ambiguous since there is insufficient information to select from among the visible equality
operators. Of course, this expression is currently legal, 15 although probably such expressions

51lMAGE's return type, STRING. suffices to resolve both the string literal and the equality operator

24 CMU-SEI-SR-89-17



occur in few, if any, real application programs. In any event, it is likely that most uses of the

IMAGE attribute will occur in contexts that suffice to determine a unique resolution. So although it

may seem obvious that ENUM'IMAGE(OE) = "KANJI" should always be legal, it is unclear how

much language change is worthwhile to achieve this effect.

The third solution is analogous to the existing solution for attributes like LENGTH - instead of

overloading the attribute LENGTH on all integer types in scope, LENGTH is defined to return the

type universal integer. Hence an expression such as ARR'LENGTH = 6 is always legal, because

it uses the equality operator for type universalinteger. If an analogous universal string type

were introduced and string literals were considered to be of this type, then ENUM'IMAGE(OE) =

"KANJI" would similarly always be legal because "=" would resolve to the universalstnng

equality operator. Given the existence of a universal string type, it would probably also be

reasonable to provide the corresponding universal-character type, and to introduce the notion of

named constants of types universalcharacter and universalstring.

Recommendation 8: The concept of universal character and string types is attractive [to this
author] but may be considered a more extensive change than necessary. The Design Notes and
dialogues leading to the introduction of the universal numeric types should be reviewed as a
source for additional insight. In any case, the particular solution chosen is believed to be less
critical than some other issues in terms of overall impact and capability.

3.3.4. Extended Name Characters in Reserved Words
There appears to be no interest in allowing extended name characters in language-defined

reserved words. That is, not even "local language" aliases seem to be of interest. (It is reported

that there was once a French standard for a version of FORTRAN that had French keywords -

allez for goto, and so on. It was never popular and was soon dropped as a failure.)

Recommendation 9: Do not provide or allow local language aliases for language-defined reserved
words.

3.3.5. Extended Name Characters in Implementation-Defined Entities
There appears to be little point to allowing extended name characters in implementation-defined

names, such as attributes and pragmas, unless those entities provide a function that is specific to

a particular language. (No plausible example comes to mind, though someone will surely suggest

one.) There seems no way to rigorously state such a "reasonableness" rule regarding the usage

of extended name characters in implementation-defined entities, so the suggested strategy is

simply to disallow it.

Recommendation 10: Do not allow extended characters in reserved words or in the names of
implementation-defined constructs such as pragmas and attributes.

3.3.6. Bidirectional Names
A number of coded character sets support languages in which text is rendered and read from

right-to-left, notably Hebrew and Arabic. However, numeric quantities are generally presented

and read from left-to-right (as in Latin languages). Thus, the date

May 21

might be rendered (using English letters in the Semitic order) as in

CMU-SEI-SR-89-17 25



21 yaM

Nonetheless, the proper internal order of the characters for computer processing is that of the first
form, because that is the logical order for reading and writing. The transformation in presentation
order for purposes of listing, for example, is an issue that should be separate from and outside of
the Ada language.

Good quality transformations are, however, complicated and subtle to infer from simple streams
of characters. As a result, specialized control functions have been introduced in ISO 6429 to
allow text to contain within itself information on how it should be rendered.16 Some kind of
accommodation of the needs of right-to-left scripts and, more generally, mixed right-to-left and
left-to-right text needs to be developed. Preferably a common approach should be developed that
applies to all ISO standardized languages. However, this author lacks the expertise to make a
concrete recommendation.

Recommendation 11: Provide no language-defined features or constructs for dealing with or sup-
porting right-to-left or bi-directional text. Look to SC22 to develop common strategies suitable for
use across programming languages.

3.4. Input/Output
The following sections address a number of related issues having to do with input/output.

3.4.1. File Representations Versus Processing Representations
In any system that admits of more than one coded character set and/or text representation in
simultaneous use, the issue of character set conversion will surely arise in one form or another. In
particular if a common text representation in the external environment is a variable sized one and
the programming language supports (only) same-sized characters, then some form of conversion
must occur between the two - the key question is where and how it should be invoked.

The SC22 Ad Hoc meeting in March considered this issue at some length and concluded that for
languages supporting the typed vector model, coded character set and/or representation conver-
sion should occur as part of input/output as needed. For example, a program written to use the
full (four-octet) MOCS code internally can read files containing data written using ASCII, mixed
sized ASCII and Kanji, or whatever. On output, conversion from internal processing form to a
specified file representation applies as well.

There are a number of advantages to this kind of approach:

* The external representation used in files and the internal representation used during
processing need not be the same. This provides flexibility that is very desirable as
part of any kind of evolutionary approach for introducing support for large character
sets.

" External file representations can be chosen to suit the needs of individual localities

16These controls are called Select Presentation Direction (SPD), which sets an overall default presentation direction,
and Start Reversed String (SRS). which specifies the points of text reversal including nested reversals,

26 CMU-SEI-SR-89-117



without needing to change applications (assuming those applications employ a
suitably general representation internally). This can ameliorate the disadvantages,
for example, of not supporting a large number of character data types for multiple
one-byte coded character sets.

This approach complements the use of the ISO MOCS code as the basis for charac-
ter data types.

The obvious means to specify this information is by means of either the FORM parameter or a
new optional parameter on the Ada OPEN and CREATE subprograms. When this information is
omitted, then implementation-defined defaults would apply.

3.4.1.1. Names for Coded Character Sets and Coding Structures
To make this work, there needs to be a means to name coded character sets and coded charac-
ter set representations. Preferably, naming standards of this kind should come from the relevant
ISO SC2 committees and be usable across programming languages rather than something de-
signed by and specific to Ada. In this regard, the SC22 Ad Hoc committee made this recommen-
dation as a request to SC2:

Programming languages require a portable way to refer to [i.e., to name] coded charac-
ter sets and coding structure.

* a name must be provided for every coded character set and coding structure;
" this name shall be constructed from the [upper case] letters A-Z and digits 0-9;
" these names shall be unique and indicate the edition of the coded character

sets and coding structure, for example IS08859P 1 R 198 7.

SC2 has yet to act on this recommendation. However, SC2 is aware of similar needs arising in
the ASN.1 (Abstract Syntax Notation No. 1) domain as defined in the ISO 8824 and 8825 stan-
dards; SC2 is cooperating with other ISO groups to develop suitable naming conventions.

3.4.1.2. File Attributes
When an existing file is open, the most valuable default coding structure and coded character set
to assume is what was actually used in creating and writing the file. The SC22 Ad Hoc group
concluded that:

Programming languages need to know the encoding scheme names and coded charac-
ter set names associated with existing files.

File systems should maintain this information as an attribute of each file.

Since there are as yet no standardized names for coded character sets or file representations,
Ada need not attempt to provide language-defined support for these concepts.

Recommendation 12: In the absence of standardized names for coded character sets and file
representations and, in the absence of generally available file attributes that record file represen-
tations, provide no language-defined means to specify or query this information. Enhanced
implementation-defined capabilities can be provided by means of the existing FORM parameter
of CREATE and OPEN procedures and the FORM function.

CMU-SEI-SR-89-17 27



3.4.2. Character Count Versus Byte Count Versus Column Position
In Asian countries, it is common practice today for text to be represented in a combination of two
(sometimes more than two) character sets. Section 2.3 discusses several such examples and
variations.

While the combinations of character sets vary, it is nevertheless typical for the normal output
presentation on a display or printer of the characters of the two-byte character set to occupy twice
the width of the characters of the one-byte character set. (For convenience, these shall be
referred to as wide and narrow presentation widths in the following.)

This disparity in presentation width resulted historically from the greater intricacy and complexity
of ideographic characters, which simply require more resolution (pixels) to present legibly than
Latin characters. However, there are certain convenient aspects to this coupling of character
code size and character presentation width. In particular, it can simplify some output report for-
matting tasks: the number of bytes may not equal the number of characters but it does equal the
number of print positions. Even where this programming advantage does not obtain, there is still
something of a human factors advantage. Latin characters are presented in a manner and density
typical of usage in Western countries and ideographic characters are presented in a manner and
density typical of usage in the Asian countries. (Actually, in Asian typography, ideographic
characters have a width more on the order of one and half times the width of Latin characters.
This "odd" ratio has been made available only rarely in computer devices.)

Assuming that there is good reason for users and applications to move from the current combi-
nation of character codes to the MOCS code, it would appear that users may be forced to give up
the narrow versus wide presentation distinction. (In any case it is clear that the coupling between
character width and presentation width is gone.)

One might argue that the loss of differing presentation widths is quite acceptable. While there
may be some short term awkwardness associated with continued use of old devices, modern
technology (for example, bit-mapped displays and laser printers) is rapidly making a common
width for Latin and ideographic characters feasible in a way that is sufficiently pleasing for routine
use. Further, the simplification from returning to a programming regime where character count is
proportional to presentation width is too valuable to give up lightly. Finally, if any complexity is
introduced to handle different presentation widths then fully general proportional font issues
should be addressed, not just two widths.

Recommendation 13: In the absence of cross-language conventions for dealing with variable
sized fonts (whether associated with one or more character sets), interpret all "column" or
"position" specifications in the input/output packages as referring to character count (a "logical
character position") independent of the coded character set and/or amount of storage used to
represent characters, and independent of the presentation of those characters on the output
device. Look to SC22 to develop additional capabilities and conventions in a manner suitable for
use across programming languages.

28 CMU-SEI-SR-89-17



3.4.3. Input Methods
The large number of characters in the Asian character sets creates interesting problems concern-
ing how to input (type) text consisting of such characters. The days of experimenting with
keyboards with thousands of keys are long gone - today virtually all Asian systems use some
kind of software mediated scheme where the user makes multiple key strokes which are then
translated into the appropriate character code. Some methods are based on phonetic translitera-
tion, while others are based on the strokes and shapes making up a character. A few even
involve direct entry of the character code as a number! Some even adapt to the content of the
text being entered and use artificial intelligence and computational linguistics concepts to in-
crease accuracy. There are literally hundreds of such methods and many of them are highly
proprietary.

There seems no need for the Ada language to recognize the use of input methods in any manner.
It is the output of the input method that constitutes the Ada program.

Recommendation 14: The existence and operation of input methods, if any, should be trans-
parent to an Ada program.

3.5. Conclusion

This report has discussed various issues concerned with extending the Ada language to handle
coded character sets other than ASCII. Although there are numerous design issues to be consid-
ered, the necessary changes do not appear to be very extensive or to impose much difficulty on
implementers. Hence, it appears quite possible to meet requirements of non-U.S. Ada users
without having a significantly negative impact on existing Ada code or on Ada users in the United
States.

CMU-SEI-SR-89-17 29



30 CMU-SEI-SR-89-1 7



References

[Clews 19881 John Clews. Language Automation Worldwide: The Development of
Character Set Standards. (British Library Reports, 5962). SESAME
Computer Projects, North Yorkshire, 1988.

[COBOL 1988] CODASYL COBOL Committee Working Paper, DEC-WP88001. "Issues
Regarding Multiple-Octet Character Sets." (Ron Brender) 7 Oct 1988.

[SC2/SC22 Ad Hoc 1989-A]
Requirements for Characters in Programming Languages: A Report from
the Ada Hoc Joint Meeting of SC2, SC22, and SC21/WG3, ISO/IEC
JTC1/SC22 N622R. 26-28 April 1989.

[SC2/SC22 Ad Hoc 1989-B]
SC22 Requirements for Character Handling in Programming Languages:
A Report from the Ada Hoc Joint Meeting of SC2, SC22, and
SC21/WG3, ISO/I EC JTC 1/SC22 N623R. 26-28 April 1989.

[SC22 Ad Hoc 1989-A] SC22 Ad Hoc Meeting on Character Handling Requirements in Program-
ming Languages, ISO/IEC JTC1/SC22 N611. "Source Representation
Independence of Character Sets." (Ron Brender) 24 Feb 1989.

[SC22 Ad Hoc 1989-B] SC22 Ad Hoc Meeting on Character Handling Requirements in Program-
ming Languages, ISO/IEC JTC1/SC22 N623.8 March 1989.

See also the ISO and national standards listed in Appendix A.

CMU-SEI-SR-89-17 31



32 CMU-SEI-SR-89-1 7



Appendix A: Summary of Some Coded Character Set
Standards

A. Corresponding ECMA and ISO Coded Character Sets
ECMA-6 ISO 646 7-Bit Coded Character Set

ECMA-35 ISO 2022 Code Extension Techniques

ECMA-43 ISO 4873 8-Bit Coded Character Set Structure and Rules

ECMA-48 ISO 6429 Control Functions for Coded Character Sets

ECMA-94 ISO 8859 8-Bit Single-Byte Coded Character Sets
Part 1 Latin Alphabet No. 1 (Western Europe)
Part 2 Latin Alphabet No. 2 (Eastern Europe)
Part 3 Latin Alphabet No. 3 (Southern Europe)
Part 4 Latin Alphabet No. 4 (Northern Europe)

ECMA-1 13 ISO 8859 8-Bit Single-Byte Coded Character Set
Part 5 Latin/Cyrillic Alphabet

ECMA-1 14 ISO 8859 8-Bit Single-Byte Coded Character Sets
Part 6 Latin/Arabic Alphabet

ECMA-1 18 ISO 8859 8-Bit Single-byte Coded Character Sets
Part 7 Latin/Greek Alphabet

ECMA-121 ISO 8859 8-Bit Single-Byte Coded Character Sets
Part 8 Latin/Hebrew Alphabet

ECMA-128 ISO 8859 8-Bit Single-Byte Coded Character Sets
Part 9 Latin Alphabet No. 5 (Western Europe variation)

n/a ISO 10646 Multiple-Octet Coded Character Set (DP)

CMU-SEI-SR-89-17 33



A.2. Asian Coded Character Sets

A.2.1. Chinese (PRC) Coded Character Sets
GB 2312-1980 Chinese Character Coded Character Set for Information Inter-

change - Basic Set

GB 7589-1987 Chinese Character Coded Character Set for Information Inter-
change - 2nd Supplementary Set (see note 2)

GB 7590-1987 Chinese Character Coded Character Set for Information Inter-
change - 4th Supplementary Set (see note 2)

Notes:

1. The above character .sets include simplified characters. Additional sets (at least
three) for traditional forms are also planned.

2. GB 7589 and 7590 are approved but have not yet been published
3. Each of the above is a 14-bit (two-byte) character set.
4. GB 2312 includes not only the characters of ASCII, but also complete sets of

characters for the Greek and Russian scripts, as well as Japanese Kana charac-
ters.

A.2.2. Chinese (ROC) Coded Character Sets
CNS 11643-1986 Standard Interchange Code for Generally-Used Chinese Charac-

ters

CCCII Chinese Character Code for Information Interchange

CISCll Chinese Industry Standard Code for Information Interchange
Notes:

1. The above are 14-bit (two-byte) character sets.
2. The above include traditional characters. Up to sixteen sets are planned.
3. CCCII and CISCII are de facto standards without official sanction; however, both

have significant following. CISCII is an early draft of CNS 11643.

A.2.3. Japanese Coded Character Sets
JIS X0201-1976 Code for Information Interchange (JIS-Roman and JIS-

Katakana)

JIS X0208-1983 Code of the Japanese Graphic Character Set for Information In-
terchange

Notes:

1. JIS X0201, formerly known as JIS C6220, defines two 7-bit set character sets.
JIS-Roman is the same as the ASCII character set except that the yen sign re-
places the reverse solidus (backslash) and overline replaces tilde. (Note that over-
line is an allowed alternative rendition for tilde in ISO 646.)

2. JIS X0208, formerly known as JIS C6226, is a 14-bit (two-byte) character set.
X0208 includes not only the characters of X0201 as well as ASCII, but also com-
plete sets of characters for the Greek and Russian scripts as well. This standard
has "Level 1" and "Level 2" subsets (Level 2 is the complete set).

3. A supplementary set, consisting of an additional quadrant, is under development
and expected to be published in late 1989 or early 1990.

34 CMU-SEI-SR-89-17



A.2.4. South Korean Coded Character Sets

C 5601-1987 Korean National Standard Graphic Character Set for Information
Interchange

Notes:

1. The above is a 14-bit (two-byte) character set.

A.2.5. Thai Coded Character Sets

TIS 620-1986 Thai Character .ode for Computer

KU Code Kasetsart University Character Set
Notes:

1. KU code is a de facto code which has a significant following.

CMU-SEI-SR-89-17 35



36 CMU-SEI-SR-89-1 7



Appendix B: Summary of Recommendations

Recommendation 1: Continue the "array of typed components" approach to strings as already
established in Ada. Do not pursue any stream-oriented alternative.

Recommendation 2: Do not change the predefined types CHARACTER and STRING.

Recommendation 3: Add the LATINI_CHARACTER, MULTICHARACTER, MOCSCHARAC-
TER, LATINI_STRING, MULTI_STRING, and MOCSSTRING types to the predefined package
STANDARD. Require these types to be present in all implementations.

Recommendation 4: Provide the ability to perform type conversions among the predefined string
types.

Recommendation 5: Introduce a generic versions of TEXT 10, SEQUENTIAL_10, and
DIRECT_10 that allow instantiations with any of the extended set of character and string types.

Recommendation 6: The Standard should not specify how source code is represented.

Recommendation 7: Allow extended characters in source program identifiers. Look to SC22 to
develop a common set of such characters for use across programming languages, if possible.

Recommendation 8: The concept of universal character and string types is attractive but may be
considered a more extensive change than necessary. The Design Notes and dialogues leading to
the introduction of the universal numeric types should be reviewed as a source for additional
insight. In any case, the particular solution chosen is believed to be less critical than some other
issues in terms of overall impact and capability.

Recommendation 9: Do not provide or allow local language aliases for language-defined reserved
words.

Recommendation 10: Do not allow extended characters in reserved words or in the names of
implementation-defined constructs such as pragmas and attributes.

Recommendation 11: Provide no language-defined features or constructs for dealing with or sup-
porting right-to-left or bi-directional text. Look to SC22 to develop common strategies suitable for
use across programming languages.

Recommendation 12: Provide no language-defined means to determine the encoding of text files.

CMU-SEI-SR-89-17 37



Recommendation 13: Interpret all "column" or "position" specifications in the input/output
packages as referring to character count (a "logical character position') independent of the coded
character set and/or amount of storage used to represent characters, and independent of the
presentation of those characters on the output device. Look to SC22 to develop additional capa-
bilities and conventions in a manner suitable for use across programming languages.

Recommendation 14: The method used to create the representation of an Ada source program
should not have any effect on the meaning of the program.

38 CMU-SEI-SR-89-17



Index

Arabic 6, 10 NRC 3,7
ASCII 7, 9, 15
ASN.1 domain 27 Octet 10

Compaction methods 12 Persistent 12
Cyrillic 6, 10 Plane 12

ECMA 4,16 Quadrant 12
European Computer Manufacturers Association 4
Extended Unix Code 9 Select Graphic Character Introducer 12

SGCI 12
GL/GR 4 Shift Code 9, 10
Greek 6, 10 ShiftJIS Code 9

Syriac 10
Hangul 10
Hanja 11
Hanzi 10
Hebrew 6, 10

Indian 10
International Reference Version 3, 6
IRV 3, 6
IS02022 4,6,7,9,10,16
IS02375 4,16
ISO 6429 26
ISO 646 3, 4, 6
ISO 6937 2,6
ISO 8652-1987: Programming Language Ada 1
ISO 8824 27
ISO 8825 27
ISO 8859 6

JIS X0201 9
JIS X0208 9

Kanji 9, 10
Katakana 9

Latin-1 6, 11, 12, 17

Maldivian 10
MOCS 10, 12,17
Multiple-Octet Coded Character Set 10

National Replacement Character 3

CMU-SEI-SR-89-17 39


