Dats Entered) (/j

'I‘)" "“(;E: BREAD i’i?lﬂ!ﬂfsss

BETOBE TOVMP_ETE NG FOPM
. AD—A221 449 12. GOV ACCESSION NO. [3. RECIPIENT 'S CATALOGC NUNZ(R

4. TILE (anc Subtitie)

5. TYPL OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report:prupPP ATLAB24 Nov. 1989 to 24 Nov. 1990
ELEKTRONIK GMBH, DRUPP ATLAS ELEKTRONIK Ada Compiler VVME

. PERFORMING DRG. REPORT
.81, VAX 6310 (Host) to RRUPP ATLAS ELEKTRONIK GMBH MPR ¢ (ORG. REPORT MUMELR
‘ £ 8611527121093¢% '
7. AUTHORG)

8. CONTRACT OR GRANT MUMEER(s)
IABGy

Ottobrunn, Federal Republic of Germany.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGAAM FLEMENT, PRCJECT, TASK
AREA & WORK UNIT MUMEERS
IABG,

Ottobrunn, Federal Republic of Germany.

13. CONTRO.LING OFFICE NAME AND ADDAESS 12. RCPORT DATE
adgtagzgt l:rogéam Offxcg ¢ Def
nited States Department of Defense o
Washington, DC 20301-3081 - ROReER BT FRLES
14. WONITORING AGENCY WAML & ADDRLSS(Foifferent from Controling Office) 15. SECURITY CLASS (of thi report)
1ABC UNCLASSIFIED
” . - - -
Ottobrunn, Federal Republic of Germany. 190 BECEOSEETICATION DOMIRATING

18. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17, DISTRIBUTION STATEMINT (of the abstractentered inBiock 20 H d.Herent from Report)
UNCLASSIFIED D l I‘

18. SUPP.EMINTARY NOTES

D%

10. KEYWOADS (Continue onreverse side if netessary and entify by block number)

Ada Programting language, Ada Compiler Validation Summary Repcrt, Ala
Corpiler Validation Capability, ACVC, Validation Testing, Ada

Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRALT (Continue On reverse side if necessary and «gent:fy by block Anumber)

DRUPP ATLAS ELETRONIK Ada Compiler VVME 1.81, Ottobrunn.West Germany, VAX 6310 under

VMS; Version 5.1 (Host_)_" to KRUPP ATLAS ELEKTRONIK GMBH MPR 2300 under EOS 2300,
Version 1.4 (Target), 89112411.10235

\
DD ‘tumn 1473 017108 OF 3 MOV 65 1S OBSOLETE
1373 $/N 0102-LF-014-8601 UNCLASSIFIED

90 04 24 092 SICURITY CLASSITICATION OF THIS PAGL (whenDate Entered)

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: #89112411.10235
KRUPP ATLAS ELEKTRONIK GMBH
KRUPP ATLAS ELEKTRONIK Ada Conmpiler VVME 1.81
VAX 6310 Host
KRUPP ATLAS ELEKTRONIK GMBH MPR 2300 target

Completion of On-Site Testing:
24th November 1989

Prepared By:
IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn
West Germany

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

AVF Control Number:

AVF-IABG-034

Ada Compiler validation Summary Report:

RS Y

Compiler Name: KRUPP ATLAS ELEKTRONIK Ada Compiler VVME 1.81
Certificate Number: 889112411.10235

Host: VAX 6310 under yMs, Version 5.1

KRUPP ATLAS ELEKTRONIK GMBH

Target:
MPR 2300 under EOS 2300, VYersion 1.4

Testing Completed Friday 24th November 1989 Using ACVC 1.10

This report has been reviewed and is approved.

o L

IABG mbH, Abt SZT
pr S. Heilbrunner
Einsteinstr 20
p8012 Ottobrunn
West Germany

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

-

o P01 Ca2Q |

Dist¥ibution |

boey

Availability Codes

% Avad and/or
t Special

™ |

ORDER OF PAGINATION
CORRECT AND N
MISSING PAGES(PAGES INSERTED AND gOT
gfgg?EERED) per Michele Key, ADA Info
ceea ing House, c/o ITT Research Inst.
Forbes Blvd., Lanham, MD 20706 o

TELECON 4/27/90 Ve

Dist

Ada validation Organization
pr. John F. Kramer

Institute for pefense Analyses
Alexandria VA 22311

, =7 P, C/
i+ f}/‘zé //// a .,//c"/'c\(‘{L»
., Xda Joint Program Office
pr John solomond

Director

Department
washington

of Defense
pC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT . 1
1.2 USE OF THIS VALIDATION SUMMARY REPORT . 2
1.3 REFERENCES . . . 3
1.4 DEFINITION OF TERMS . 3
1.5 ACVC TEST CLASSES . 4

CHAPTER 2 CONFIGURATION INFORMATION 1
2.1 CONFIGURATION TESTED . . . S |
2.2 IMPLEMENTATION CHARACTERISTICS O -

CHAPTER 3 TEST INFORMATION ¢ v v ¢« ¢« « « . . 13
3.1 TEST RESULTS . . . O A
3.2 SUMMARY OF TEST RESULTS BY CLASS S
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 14
3.4 WITHDRAWN TESTS . & & & v v v v v v v o o o« « « « 14
3.5 INAPPLICABLE TESTS 14
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 17
3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation < 18
3.7.2 Test Methed ¢ ¢ ¢ « o .« . . 18
3.7.3 Test Site v v ¢ ¢ v v o 4 v 4 e e e e e e e . .19

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER AND LINKER OPTIONS

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report *{VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler wusing the Ada Compiler
Validation Capability, (ACVC) .= An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard. .

Even though all validatad Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements 1lcgal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

INTRODUCTION

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by the AVF according to procedures
established by the Ada Joint Program Office and administered by the Ada
Validation Organization (AVO). On-site testing was completed Friday 24th
November 1989 at KRUPP ATLAS ELEKTRONIK GmbH, Bremen, Germany.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"”
(5 U.S.C. #552). The results of this wvalidation apply only to the
computers, operating systems, and compiler versions identified in this
raport.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081
or from
IABG mbH, Abt. SZT
Einsteinstr 20
D8012 Ottobrunn

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

- INTRODUCTION

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1587.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4, Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVYC The Ada Compiler Validation <Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the

Commentary point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.
Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF 1is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

aAvo The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler 1is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

~

INTRODUCTION

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer which executes the c¢ode generated by the
compiler.

Test A program that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not wused to check
test conformity to the Ada Standard. A test may be 1incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erronecus use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
axecution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and execution of lagal Ada
programs with certain language constructs which cannot be verified at run
time. There are no axplicit program compcnents in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language {(other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects 1illegal language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error 1in the test is detected. A Class B test is passed if
avery illegal construct that it contains is detected by the compiler.

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted 1in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, 1if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test 1is self-checking and produces a NoT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an 1implementation to reject ‘programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it 1is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or 1illegal Ada programs involving
multiple, separately compiled wunits are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time~-that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and

v}

INTRODUCTION

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A 1list of the wvalues used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation 1s validated. A test that 1is
inapplicable for one validation 1is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACYC and, therefore, is not wused in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested

following configuration:

Compiler:
ACVC Version: 1.10
Certificate Number:
Host Computer:
Machine:

Operating System:

Memory Size:

Target Computer:

Machine:
Operating System:

Memory Size:

Communications Network:

under the

KRUPP ATLAS ELEKTRONIK Ada Compiler VVME Version 1.81

#89112411.10235

VAX 6310
VMS Version 5.1

32 MB

KRUPP ATLAS ELEKTRONIK GMBH MPR 2300
EOS 2300 Version 1.4

4 MB

Sthernet

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler .n those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests 1in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

1) The compiler correctly processes a compilation containing
723 variables in the same declarative part. {See test
D29002K.)

2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H
(8 tests).)

3) The compiler corractly processas tests containing
block statements nested to 65 levels. (See test D56001B.)

4) The compiler correctly processes tests containing
recursive procedures separately compiled as subunits nested to
17 levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

1) This implementation supports the additional predefined types
SHORT_INTEGER, SHORT_FLOAT, and LONG_FLOAT in the package
STANDARD. (See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated anu the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

1) None of the default initialization expressions
for record components are evaluated before any value is
checked for membership in a component's subtype. (See test
C32117A.)

2) Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test
€35903A.)

s

CONFIGURATION INFORMATION

4) No exception 1s raised when an integer literal operand in a
comparison or membership test is outside the range of the
base type. (See test C45232A.)

5) No Gexception is raised when a literal operand in a fixed-
point comparison or membership test is outside the range
of the base type. (See test C45252A.)

6) Underflow is gradual. (See tests C45524A..N (14 tests).)

Rounding.

The method by which values are rounded in tvpe conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

1) The method used for rounding to integer 1is round to even.
(See tests C46012A..N (14 tests).)

2) The method used for rounding to longest integer is round
to even. (See tests C46012A..N (14 tests).)

3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test
C4A014A.)

Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX_INT. For this
implementation:

This implementation evaluates the 'LENGTH of each constrained
array subtype during elaboration of the type declaration. This
causes the declaration of a constrained array subtype with more
than INTEGER'LAST (which 1is equal to SYSTEM.MAX_INT for this
implementation) components to raise CONSTRAINT_ERROR. However, the
optimisation mechanism of this implementation suppresses the
evaluation of 'LENGTH if no object of the array type is declared
depending on whether the bounds of the array are static, the
visibility of the array type, and the presence of local
subprograms. These general remarks apply to points (1) to (5), and
(8).

2)

3)

4)

6)

T)

8)

CONFIGURATION INFORMATION

Declaration of an array type or subtype declaration with more
than SYSTEM.MAX_INT components raises no exception if the
bounds of the array are static. {(See test C36003A.)

CONSTRAINT_ERROR is raised when 'LENGTH is applied to an
array type with INTEGER'LAST + 2 components if the bounds of
the array are not static and if the subprogram declaring the
array type contains no local subprograms. {(See test C36202A.)

CONSTRAINT_ERROR is raised when 'LENGTH is applied to an
array type with SYSTEM.MAX_INT + 2 components if the bounds of
the array are not static and i1f the subprogram declaring the
array type contains a local subprogram. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises CONSTRAINT_ERROR when the array type is declared if the
bounds of the array are not static and if there are objects of
the array type. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER 'LAST components raises CONSTRAINT_ERROR when the
array type 1is declared if the bounds of the array are not
static and if there are objects of the array type. (See test
€52104Y.)

In assigning one-dimensional array types, the expression 1is
not evaluated in its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression's subtype 1is
compatible with the target's subtype. (See test C52013A.)

In assigning two-dimensional array types, the expression 1is
not evaluated 1in its entirety before CONSTRAINT_ERROR 1is
raised when checking whether the expression's subtype 1is
compatible with the target's subtype. (See test C52013A.)

A null array with one dimension of length greater
than INTEGER 'LAST may raise NUMERIC_ERROR or
CONSTRAINT_ERROR either when declared or assigned.
Alternatively, an implementation may accept the
declaration. However, 1lengths must match in array slice
assignments. This implementation raises CONSTRAINT_ERROR
when the array type is declared if the bounds of the
array are not static and if there are objects of the array
type. (See test E52103Y.)

CONFIGURATION INFORMATION

Discriminated tvpes.

1) In assigning record types with discriminants, the expression
is not evaluated in its entirety before
CONSTRAINT_ERROR 1is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test CS52013A.)

Aggregates.

1) In the evaluation of a multi-dimensional aggregate, the test
results indicate that all choices are -evaluated Dbefore
checking against the index type. (See tests (4320732 and
C432078B.)

2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

3) CONSTRAINT_ERROR is raised after all choices are
evaluated when a bound in a non-null range of a non-null
aggregate does not belong to an index subtype. (See test
E43211B.)

Pragmas.

1) The pragma INLINE is supported for functions and procedures.
(See tests LA3004A..B (2 tests), EA3004C..D (2 tests), and
CA3004E..F (2 tests).)

Generics.

1) Generic specifications and bodies can be compiled in
separate compilations. {See tests CAl1012aA, CA2009C,
CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be compiled
in separate compilations. {See tests CA1012A and CA20069F.)

3) Generic library subprogram specifications and bodies can be

compiled in separate compilations. (See test CAlO12A.)

1!

5)

6)

7)

8)

9)

CONFIGURATION INFORMATION

Generic non-library package bodies as sukbunits can be compiled
in separate compilations. (See test CA2009C.)

Generic non-library subprogram bodies can be compiled 1in
separate compilations from their stubs. (See test Ca2009F.)

Generic unit bodies and their subunits can be compiled 1in
separate compilations. (See test CA3011A.)

Generic package declarations and bodies can be compiled in
separate compilations. {See tests CA2009C, BC3204C, and
BC3205D.)

Generic library package specifications and bodies can be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

Input and output.

1)

2)

3)

The package SEQUENTIAL_IO can be instantiated with
unconstrained array types and record tvpes with
discriminants without defaults. (See tests AE2101C, EE2201D,
and EE2201E.)

The package DIRECT_IO can be instantiated with
unconstrained array types - and record types with
discriminants without defaults. However this implementation
raises USE_ERROR wupon creation of a file for unconstrained
array types.(See tests AE21014, EE2401D, and EE2401G.)

The director, AJPO, has determined (AI-00332) that every call
to OPEN and CREATE must raise USE_ERROR or NAME_ERROR if file
input/output is not supported. This implementation exhibits
this behavior for SEQUENTIAL_IO, DIRECT_IO, and TEXT_IO.

[N
i

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Yersion 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 481 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 159
executable tests that use floating-point precision exceeding that supported
by the implementation and 238 tests containing £file operations not
supported by the implementation. Modifications to the code, processing, or
grading for 14 tests were required to successfully demonstrate the test
objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B c D E L
Passed 129 1132 1852 17 16 46 3192
Inapplicable 0 6 463 0 12 0 481
Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14
Passed 202 591 366 245 172 99 161 331 137 36 252 325 75 319
N/A 11 58 114 3 0 0 5 1 0 0 0 44 245 481
Wdrn 0 1 0 0 0 0 0 2 0 0 1 35 5 44
TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

E28005C A390056G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2AT76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A836
CD2A84N CD2A84M CD50110 CD2B15C CD7205C CD2D11B
CD5007B ED7004B ED7005C ED7005D ED7006C ED7006D
CD7105A CD72038B CD7204B CD7205D CE21071 CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 1INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that 1is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt 1is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 481 tests were inapplicable for
the reasons indicated:

a.

TEST INFORMATION

The following 159 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX_DIGITS:

€241130..Y (11 tests) €357050..Y (11 tests)
€357060..Y (11 tests) €357070..Y (11 tests)
€357080..Y (11 tests) C358020..2 (12 tests)
€452410..Y (11 tests) €453210..Y (11 tests)
C454210..Y (11 tests) €455210..Z (12 tests)
€455240..Z (12 tests) C456210..2 (12 tests)
C456410..Y (11 tests) C460120..2Z (12 tests)

C34007P and C34007S are expected to raise CONSTRAINT_ERROR. This
implementation optimizes the code at compile time on lines 205 and
221 respectively, thus avoiding the operation which would raise
CONSTRAINT_ERROR and so no exception is raised.

C41401A 1is expected to raise CONSTRAINT_ERROR for the evaluation
of certain attributes, however this implementation derives the
values from the subtypes of the prefix at compile time as allowed
by 11.6 (7) LRM. Therefore elaboration of the prefix is not
involved and CONSTRAINT_ERROR is not raised.

The following 16 tests are not applicable because this
implementation does not support a predefined type LONG_INTEGER:

€45231¢C €45304C €45502C €45503C €45504C
C45504F C45611C C45613C €45614C C45631C
€45632C B52004D C55B07A B55B09C B86001VW
CD7101F

C45531M..P (4 tests) and C45532M..P (4 tests) are inapplicable
because the value of SYSTEM.MAX_MANTISSA is less than 48.

C47004A 1is expected to raise CONSTRAINT_ERROR whilst evaluating
the comparison on line 51, but this compiler evaluates the result
without invoking the basic operation qualification (as allowed by
11.6 (7) LRM) which would raise CONSTRAINT_ERROR and so no
exception is raised.

C86001F 1is not applicable because, for this implementation, the
package TEXT_IO is dependent upon package SYSTEM. These tests
recompile package SYSTEM, making package TEXT_IO, and hence
package REPORT, obsolete.

B86001X, C€45231D, and CD7101G ara not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONG_INTEGER, or SHORT_INTEGER.

(1]

TEST INFORMATION

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

CD1009C, <CD2A41A, CD2A41B, CD2A41E and CD2A42A..J (10 tests) are
not applicable because this implementation imposes restrictions on
‘SIZE length clauses for floating point types.

CD2A61I and CD2A61J are not applicable because this implementition
imposes restrictions on 'SIZE length clauses for array types.

CD2AT1A..D (4 tests), CD2A72A..D (4 tests), CD2AT4A..D (4 tests)
and CD2A75A..D (4 tests) are not applicable because this
implementation imposes restrictions on 'SIZE length clauses for
record types.

CD2A84B..I (8 tests), CD2A84K and CD2A84L are not applicable
because this implementation imposes restrictions on 'SIZE length
clauses for access types.

The following 238 tests are inapplicable because sequential, text,
and direct access files are not supported:

CE2102A..C (3 tests) CE2102G..H (2 tests)
CE2102K CE2102N..Y (12 tests)
CE2103C..D (2 tests) CE2104A..D (4 tests)
CE2105A..B (2 tests) CE2106A..B (2 tests)
CE2107A..H (8 tests) CE2107L

CE2108A..B (2 tests) CE2108C..H (6 tests)
CE2109A..C (3 tests) CE2110A..D (4 tests)
CE2111A..I (9 tests) CE2115A..B (2 tests)
CE2201A..C (3 tests) CE2201F..N (9 tests)
CE2204A..D {4 tests) CE2205A

CE22088B CE2401A..C (3 tests)
CE2401E..F (2 tests) CE2401H..L (5 tests)
CE2404A..B (2 tests) CE2405B

CE2406A CE2407A..B (2 tests)
CE2408A..B (2 tests) CE2409A..B (2 tests)
CE2410A..B (2 tests) CE2411A

CE3102A..B (2 tests) EE3102C

CE3102F..H (3 tests) CE3102J..K (2 tests)
CE3103A CE3104A..C (3 tests)
CE3107B CE3108A..B (2 tests)
CE3109A CE3110A

CE3111A..B (2 tests) CE3111D..E (2 tests)

TEST INFORMATION

CE3112A..D (4 tests) CE3114A..B (2 tests)
CE3115A EE3203A
CE3208A EE3301B
CE3302A CE3305A
CE3402a EE3402B
CE3402C..D (2 tasts) CE3403A..C (3 tests)
CE3403E..F (2 tests) CE3404B..D (3 tests)
CE3405A EE3405B
CE3405C..D (2 tests) CE3406A..D (4 tests)
CE3407A..C (3 tests) CE3408A..C (3 tests)
CE3409A CE3409C..E (3 tests)
EE3409F CE3410A
CE3410C..E (3 tests) EE3410F
CE3411A..B (2 tests) CE3412A
EE3412C CE3413A
CE3413C CE3602A..D (4 tests)
CE36032 CE3604A..B (2 tests)
CE3605A..E (5 tests) CE3606A..B (2 tests)
CE3704A..F (6 tests) CE3704M..0 (3 tests)
CE3706D CE3706F..G (2 tests)
CE3804A..P (16 tests) CE3805A..B (2 tests)
CE3806A..B (2 tests) CE3806D..E (2 tests)
CE3806G..H (2 tests) CE3905A..C (3 tests)
CE3905L CE3906A..C (3 tests)

CE3906E..F (2 tests)

These tests were not processed because their inapplicability can
be deduced from the result of other tests.

q. Tests CE2103A, CE2103B and CE3107A raise USE_ERROR upon create for
Sequential, Direct and Text IO.

r. Tests EE2201D, EE2201E, EE2401D and EE2401G raise USE_ERROR wupon
create.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collecticn; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 14 tests.

TEST INFORMATION

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B22003A B2400%A B29001A B38003A B38009A B380098B
B51001A B91001H BA1101E BC2001D BC2001E BC3204B
BC3205B BC3205D

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the KRUPP ATLAS ELEKTRONIK Ada Compiler VVME Version 1.81 was
submitted to the AVF by the applicant for review. Analysis of these
results demonstrated that the compiler successfully passed all
applicable tests, and the compiler exhibited the expected behavior on
all inapplicable tests.

3.7.2 Test Method

Testing of the KRUPP ATLAS ELEKTRONIK Ada Compiler VVME Version 1.81
using ACVC Version 1.10 was conducted on-site by a validation
team from the AVF. The configuration in which the testing was per-
formed is described by the following designations of hardware and
software components:

Host computer: VAX 6310

Host operating system: VMS Version 5.1

Target computer: KRUPP ATLAS ELEKTRONIK GMBH MPR 2300
Target operating system: EOS 2300 Version 1.4

Compiler: KRUPP ATLAS ELEKTRONIK Ada Compiler VVME

Version 1.81
The host and target computers were linked via Ethernet.

A magnetic tape containing all tests except for withdrawn tests and
tests requiring unsupported floating-point precisions was taken on-site by
the validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were locaded to disk, the full set of tests was
compiled and 1linked on the VAX 6310, then all executable images were
transferred to the target via Ethernet and run. Results were printed

TEST INFORMATION

from the host computer.

The compiler was tested using command scripts provided by KRUPP ATLAS
ELEKTRONIK and reviewed by the validation team. Executable tests were
compiled using the command

S@ADA:COMPILE (test name> OPTIONS = LIST => OFF
OPTIMIZER => ON
INLINE => ON
COPY_SOURCE => OFF

and linked with the command
S@ADA:LINK <(test name> <(test name>.EXE COMPLETE => ON
DEBUG => OFF

SELECT => ON
LOADMAP => OFF.

Chapter B tests were compiled with the full listing option

S@ADA:COMPILE <(test name> OPTIONS = LIST => ON
LIST = (listfile name>.

A full description of compiler and linker options is given in Apendix E.
Tests were compiled, linked, and executed (as appropriate) using a single
host and target computer. Test output, compilation listings, and
job logs were captured on magnetic tape and archived at the AVF.
The listings examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at KRUPP ATLAS ELEKTRONIK, Bremen West-Germany, and
was completed on Friday 24th November 1989.

,_4
£

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

KRUPP ATLAS ELEKTRONIK has submitted the following Declaration
of Conformance concerning the KRUPP ATLAS ELEKTRONIK
Ada Compiler VVME Version 1.81:

DECLARATION OF CONFORMANCE

Compiler Implementor: KRUPP ATLAS ELEKTRONIK GMBH
Ada validation Facility: IABG MBH
Ada Compiler Validation Capability (ACVC) Version: 1.10.

BASE CONFIGURATION

Base Compiler Name: KRUPP ATLAS ELEKTRONIK Ada Compiler

VVME 1.81
Base Compiler Version 1.81

Host Architecture ISA: VAX 6310 under VMS 5.1
Target Architecture ISA: KRUPP ATLAS ELEKTRONIK GMBH MPR 2300
under EOS 2300 1.4

IMPLEMENTOR’S DECLARATION

We, the undersigned, representing KRUPP ATLAS ELEKTRONIK GMBH
have implemented no deliberate extensions to the Ada Language
Standard ANSI/MIL-STD-1815A in the compiler listed in this de-
claration. We declare that KRUPP ATLAS ELEKTRONIK GMBH is the
owner of record of the Ada language compiler listed above and,

as such, is responsible for maintaining said compiler in con-
formance to ANSI/MIL-STD-1815A. All certificates and registra-
tions for Ada language compiler listed in this declaration shall
be made only in the owner’s corporate name.

KRUPP ATLAS ELEKTRONIK GMBH

7. - /, ’ f\‘ \

- Brotje - - Barg,;\‘_

OWNER'’S DECLARATION

We, the undersigned, representing KRUPP ATLAS ELEKTRONIK GMBH,
take full responsibility for implementation and maintenance of
the Ada compiler listed above, and agree to the public disclosure
of the final Validation Summary Report. We declare that all of
the Ada language compilers listed, and their host/target perfor-
mance, are in compliance with the Ada Language Standard
ANSI/MIL-STD-1815A.

KRUPP ATLAS ELEKTRONIK GMBH

/'A(C/;:;;;;g;z; . I

- Brétje- Vv

Bremen, November 21st, 1989

APPENDIX F OF THE Ada STANDARD

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine~dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the KRUPP ATLAS ELEKTRONIK Ada Compiler VVME Version
1.81, as described in this Appendix, are provided by KRUPP ATLAS
ELEKTRONIK GmbH. Unless specifically noted otherwise, references in
this appendix are to compiler documentation and not to this
report. Chapter 7 (Representation Clauses and Implementation-Dependent
Features) and chapter 8 (Input - Qutput) of the KRUPP ATLAS ELEKTRONIK Ada
System User Manual are also listed in this Appendix. Implementation-spe-
cific portions of the package STANDARD, which are not a part of
Appendix F, are:

package STANDARD is

type INTEGER is range - 2_147_483_648 .. 2_147_483_647;
type SHORT_INTEGER is range - 32_768 .. 32_767;

type FLOAT is digits 15 range
- 16#0.FFFF_FFFF_FFFF_F84E32 .. 16#0.FFFF_FFFF_FFFF_F8#E32;
type SHORT_FLOAT is digits 6 range
- 16#0.FFFF_F8#E32 .. 16#0.FFFF_F84#E32;
type LONG_FLOAT is digits 18 range
- 16#0.FFFF_FFFF_FFFF_FFFCHE256 ..
16#0.FFFF_FFFF_FFFF_FFFCHE256;

type DURATION is delta 2#1.04#E-7 range
- 16_777_216.0 .. 16_777_216.0;

end STANDARD;

]

Apvendix F
- - —

Chapter 9

3 _Appendix F

This is the Appendix F required in ([Ada), in which all implemen-

tation-dependent characteristics of an Ada implementation are
described.

9.1 Implementation-Dopendent Pragmas

The form, allowed places, and effect of every implementation-
dependent pragma is stated in this section.

9.1.1 Predefined Language Pragmas #

The form and allowed places of the following pragmas are defined
by the language; their effect is .t least partly) implementation-
dependent and stated hexz. All the other pragmas listed in
Appendix B of [Ada) are implemented and have the effect described
there.

CONTROLLED
has no effect.

INLINE

Inline expansion of subprograms is supported with following
restrictions: the subprogram must not contain declarations of
other subprograms, tasks, generic units or body stubs. If the
subprogram is called recursively only the outer call of this
subprogram will be expanded.

KRUPP ATLAS ELEXKTRONIK Ada System - User Manual 49

Appendix F . Chapter 9

INTERFACE

is supported for the languages Assembler and Meta. For each
Ada subprogram for which

PRAGMA interface (<language> , <ada_name>);

is specified, a routine implementing the body of the sub-
program <ada_name> must be provided, written in the specified
language. The name of the routine, which implements the sub-
program <ada_name>, should be specified using the PRAGMA
EXTERNAL NAME, otherwise the compiler will generate an en-
ternal name that leads to an unsolved reference during lin-
king.

The subprogram <ada_name> specified in the PRAGMA INTERFACE
may be a function or a procedure. For the interface (META,...)
there are following conventions. For paramet2r passing the
programmer has to specify a record in Ada with USE- and AT-
clauses. The META-program takes a pointer to the physical
structure of the record as its one and only parameter. There
are also restrictions in the use of the META-language.

- META-Tasking actions (e.g. META-Parallel) are not
allowed.

- The User-semaphores from 0 to 1023 are used for the
runtime-system and not available for the programmer.
Their use of them may lead to an erronous pfogram.

- The use of the Space-Monitor (SPAMON) of the MOS is
restricted, too. For Ada-Data-Space the first segmented
and the first not segmented subspace available through
SPAMON are already used.

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 50

. Appendix F Chapter 9

. ' Example:

Ada:

TYPE parameter IS

RECORD
length : natural;
addr : system.address;

END RECORD;

FOR parameter USE
RECORD AT MOD ¢;
length AT 0 RANGE 0 .. 31;
addr AT 4 RANGE 0 .. 31;
END RECORD;

PROCEDURE put_line (x : IN parameter);
PRAGMA INTERFACE (META, put_line);
PRAGMA EXTERNAL NAME ("P_L", put_line);

META:

PROC: P_L (PB POINTER_TO_PARAMETER);

TYPE PARAMETER STRUCT /
LENGTH LONG;
ADDRESS POINTER;

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 51

Aogendix F

Chapter 9
For the interface (ASSEMBLER,...) the parameter passing 1is
similiar to interface (META,...). You specify a record in Ada

with the correct structure of the parameters. You can
reference them in the assembler program via the Al-register,
which is known as parameter base. The following conventions
have to be obayed by the assembler programmer:

- First of all save all used registers by a MOVEM.L

instruction onto the user stack.

- Take care of the stackpointer.

- Reference parameters via Al.

- In the end restore all saved registers.

- Return to the calling routine with an RTS-instruction.

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 52

Apvendix F Chapter 9

Example:
Ada:
TYPE mos_time IS
RECORD
year : integer;
month : integer;
day : integer;
seconds : integer;
END RECORD;
FOR mos_time USE
RECORD
year AT 0*4 RANGE O 31;
month AT 1*4 RANGE 0 31;
day AT 2*4 RANGE 0 31;
seconds AT 3*4 RANGE 0 31;
END RECORD;

FOR mos_time’size USE lé*system.storage_unit;

FUNCTION meos_clock RETURN mos_time;
PRAGMA INTERFACE (Assembler, mos_clock);
PRAGMA EXTERNAL_NAME ("_TSKCLCK", mos_clock);

Assembler:

XDEF _TSKCLCK
_TSKCLCK EQU *

* Save registers
MOVEM.L AQ-A7/D0-D7,-(A7)
* Take Time from MCS

MOVE.L Al,-(A7)
MOVEQ.L #5, DO
TRAP #6
MOVEA.L (A7)+,Al

* Parameters via Al-registers

BFEXTU D1{16:7},D0
ADD.L #1900,D0
MOVE.L DO, ([Al],0)
BFEXTU D1{23:4},D0
MOVE.L DO, ([Al],4)
BFEXTU D1{27:5},D0
MOVE.L DO, ([Al],8)
TMULS.L #DU_SMALL,D?2
ADD.L $99,D2
TDIVS.L #TENMILLI,D2
MOVE.L D2, ([Al],12)

* restore registers

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 53

Appendix F Chapter 9

MOVEM.L (A7)+,A0-A7/D0-D7
RTS

The KRUPP ATLAS ELEKTRONIK Ada Compiler does not provide checking
the observance of the procedure calling standard. If it is
violated the call of the system routine will be erroneous.

MEMORY_SIZE
has no effect.

OPTIMIZE
has no effect.

PACK

see User Manual

PRIORITY

There are two implementation-defined aspects of this pragma:
First, the range of the subtype PRIORITY, and second, the
effect on scheduling of not giving this pragma for a task or
main program. The range of subtype PRIORITY is 0 .. 63 as
declared in the predefined library PACKAGE system and the
effect on scheduling of leaving the priority of a task or main
program undefined by not giving PRAGMA priority for it is the
same as L1f PRAGMA priority 63 had been given (i.e. the task
has the highest priority). Moreover, in this implementation
the PACKAGE system must be named by a with clause of a
compilation unit if the predefined PRAGMA priority is used
within that unit.

SHARED
is supported.

STORAGE_UNIT
has no effect.

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 54

Appendix F Chagter 9

SUPPRESS
has no effect, but see for the implementation-defined PRAGMA
suppress_all.

SYSTEM_NAME
has no effect.

KRUPP ATLAS ELEKTRONIK Ada System -~ User Manual 55

Apvendix F Chapter 9

9.1.2 Implementation-Defined Pragmas

SQUEEZE
is supported

SUPPRESS_ALL
causes all the run_time checks except ELEBORATION_CHEK to be
suppressed; this pragma is only allowed at the start of a
compilation before the first compilation unit; it applies to
the whole compilation.

EXTERNAL NAME (<string>, <ada_name>)

<ada_name> specifies the name of a subprogram, <string> must
be a string literal. The string has a maximum length of 8
characters. It denotes the external name that the compiler
place with the entry point of the specified sub-program. The
suprogram declaration of <ada_name> must precede this pragma.
If several subprograms with the same name satisfy this
requirement the pragma refers to that subprogram which preceds
immediately. This pragma will be used in connection with
PRAGMA interface (Meta) or interface (Assembler)

RESIDENT (<ada_name>)
this pragma causes that no assigment of a value to the object
<ada_name> will be eliminated by the optimizer of the KRUPP
ATLAS ELEXKTRONIK Ada Compiler. The following code sequence
demonstrates the intended usage of the pragma:

X : integer;
a : SYSTEM.address;
PROCEDURE do_something (a : SYSTEM.address);

BEGIN

X = 5;

a := x‘ADDRESS;

do_something (a); =-- a.ALL will be read in the body
-- of do_something

X = 6;

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 56

Agoendix F Chagter 9

If this code sequence is compiled by the KRUPP ATLAS
ELEKTRONIK Ada Compiler with the option

OPTIMIZER=>ON

the statement x := 5; will be eliminated because from the
point of view of the optimizer the value of x is not used
before the next assignment to x. Therefore

PRAGMA resident (x);

should be inserted after the declaration of x. This pragma can

be applied to all those kinds of objects for which the address
clause is supported

9.2 Implementation-Dependent Attributes

The

name, type and implementation-dependent aspects of every

implementation-dependent attribute is stated in this chapter.

9.2.1 Language-Defined Attributes

The name and type of all the language-~defined attributes are as
given in ([Ada]. We note here only the implementation-dependent
aspects.

ADDRESS

The value delivered by this attribute applied to an object is
the address of the storage unit where this object starts. For
any other entity this attribute is not supported and will
return the value system.address_zero.

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 57

Appvendix F Chapter 9

STORAGE_SIZE

The value delivered by this attribute applied to an access
type is as follows: If a length specification (STORAGE_SIZE)
has been given for that type (static collection), the attri-
bute delivers that specified value. In case of a dynamic col-
lection, i.e. no length specification by STORAGE_SIZE given
for the access type, the attribute delivers the number of sto-
rage units currently allocated for the collection. Note that
dynamic collections are extended if needed. If the collection
manager is used for a dynamic collection the attribute deli-
vers the number of storage units currently allocated for the
collection. Note that in this case the number of storage units
currently allocated may be decreased by release operations.
The value delivered by this attribute applied to a task type
or task object is as follows:

If a length specification (STORAGE_SIZE) has been given for
the task type, the attribute delivers that specified value;
otherwise, the default value is returned elsewhere.

9.2.2 Implementation-Defined Attributes

There are no implementation-defined attributes.

9.3 Specification of the Package SYSTEM

The PACKAGE system of [Ada,$13.7)) is reprinted here with all
implementation-dependent characteristics and extensions filled in.

KRUPP ATLAS ELEXTRONIK Ada System - User Manual 58

Apvendix F

Chapter 9

PACKAGE system IS
TYPE designated_by address IS LIMITED PRIVATE;
TYPE address IS ACCESS designated _by_address;
FOR address’size USE 32;
For address’storage_size USE 0;
-- Logically, the type address is defined by:
-- TYPE Address IS PRIVATE;
-- However, in this case no representation specification
-- can be given for record components of type system.address.
-- The storage size specification assures that any attempt
-- to create an address value with an allocator raises
-- STORAGE ERROR
address_zero : CONSTANT address := NULL;
FUNCTION "+" (left : address; right : integer) RETURN address;
PRAGMA _built_in (address_plus_integer, "+");
FUNCTION "+" (left : integer; right : address) RETURN address;
PRAGMA _built_in (integer_plus_address, "+");
FUNCTION "=" (left : address; right : integer) RETURN address;
PRAGMA _built_in (address_minus_integer, "-");
FUNCTION “=" (left : address; rlght : address) RETURN integer;
PRAGMA _built_in (address_minus_address, "-");
SUBTYPE external address IS STRING;
-- External addresses use hexadec;mal notation with characters

-- '0’..'9’, 'a’'..'f’ and ‘A’..’'F’. For instance:
- "JFFFFFFE"
-- 80000000
-- "8" rerresents the same address as "00000008"
FUNCTION c- .. z2rt_address (addr:external_address) RETURN
acd iress;
-- conve.t_address raises CONSTRAINT_ERROR if the external
address
-- addr is the empty string, contains characters other than
- '0'..’9', a'..’f’, 'A’..'F’ or if the resulting address

-- value cannot be represented with 32 bits.

FUNCTION convert_address (addr : address) RETURN
external_address;
-- The resulting external address consists of exactly 8
characters
P IOI..Igl’ !AI..IFI.

system_name CONSTANT name := motorola_68020_kae;

TYPE name IS (motorola_68020_kae);
storage_unit : CONSTANT := 8;

memory size : CONSTANT := 2 ** 31;
min_int : CONSTANT := - 2 ** 31;
max_int : CONSTANT := 2 ** 31 - 1;
max_digits : CONSTANT := 18;
max_mantissa : CONSTANT := 31;

fine_delta : CONSTANT := 2.0 ** (-31);
tick : CONSTANT := 0.01;

SUBTYPE priority IS integer RANGE 0 .. 63;

non_ada_error : EXCEPTION RENAMES _no_ada_error;
-~ non ada _error is ra;sed if some event occurs whlch does not
-- correspond to any situation covered by Ada, e. g.

-- illegal instruction encountered
-- error during address translation
- illegal address

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 59

Apvendix F Chapter 9

TYPE exception_id IS NEW integer;

no_exception_id ¢ CONSTANT exception_id
-- Coding of the predefined exceptions:
constraint_error_id : CONSTANT exception_id
numeric_error_id CONSTANT exception_id
program_error_id CONSTANT exception_id
storage_error_id CONSTANT ‘exception_id
tasking_error_id CONSTANT exception_id
PRIVATE
TYPE designated_by_address IS NEW integer;
END system;

0;

1640002_0000;
1640002_0001;
. 16#000270002;
16#0002_0003;
1640002_0004;

(1] (1] .o e o8
L] (1] as s o
uwuwuna

9.4 Restrictions on Representation Clauses

See $$7.2-7.5 of this manual.

9.5 Conventions for Implementation-Generated Names

There are no implementation-generated names denoting
implementation-dependent components [Ada,$13.4].

9.6 Expressions in Address Clauses

Address clauses [Ada,$13.5] are supported for objects except for
task objects. The object starts at the given address.

9.7 Restrictions on Unchecked Conversions

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 60

Appendix F Chapter 9]

9.8 Characteristics of the Input-Output Packages

The implementation-dependent characteristics of the input-output

packages as defined in Chapter 14 of [Ada] are reported in Chapter
8 of this manual.

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 61

Representation Clauses and Implementation-Dependent Features

] _Representation Clauses and Imglementation—Deggndent Features

In this chapter we follow the section numbering of Chapter 13 of

(Ada] and provide notes for the use of the features described in
each section.

7.1 Representation Clauses

PRAGMA pack

As stipulated in [Ada,$13.1)], this pragma may be given for a
record or array type. It causes the compiler to select a re-
presentation for this type such that gaps between the storage
areas allocated to consecutive components are minimized. For
components whose type is an array or record type PRAGMA pack
has no affect on the mapping of the component type. For all
other component types the compiler will try to choose a more
compact representation for the component type. All components
of a packed data structure will start at storage unit bounda-
ries and the size of the components will be a multiple of
system.storage_unit. Thus, PRAGMA pack does not effect packing
down to the bit level (for this see PRAGMA squeeze).

PRAGMA squeeze

This is an implementation-defined pragma which takes the same
argument as the predefined language PRAGMA pack and is allowed
at the same positions. It causes the compiler to select a re-
presentation for the argument type that needs minimal storage
space (packing down to the bit level). For components whose
type is an array or record type PRAGMA squeeze has no affect
on the mapping of the component type. For all other component
types the compiler will try to choose a more compact repre-
sentation for the component type. The components of a squeezed
data structure will not in general start at storage unit
boundaries.

KRUPP ATLAS ELEKTRONIX Ada System - User Manual 38

Representation Clauses and Imglementation-Deoendext Features

7.2 Length Clauses

SIZE

for 2ll integer, fixed point’ and enumeration types the value
must be <= 32; for short_float types the value must be = 32
(this is the amount of storage which is associated with these
types anyway);

for flcat and long_float types the value must be = 64 (this is
the amount of storage which is associated with these types
anyway) .

for access types the value must be = 32 (this is the amount of
storage which is associated with these types anyway).
If any of the above restrictions are vioclated, the compiler
responds with a RESTRICTION error message in the compiler
listing.

STORAGE_SIZE

Collection size: If no length clause is given, the storage
spaceneeded to contain objects designated by values of the
access type and by values of other types derived from it is
extended dynamically at runtime as needed. If, on the other
hand, a length clause is given, the number of storage units
stipulated in the length clause is reserved, and no dynamic
aextension at runtime occurs.

Storage for tasks: The memory space reserved for a task is 4K
bytes if no length clause is given (cf. Chapter 6). If the
task is to be allotted either more or less space, a length
clause must be given for its task type, and then all tasks of
this type will be allotted the amount of space stipulated in
the length clause (maximum length is 256 kByte for each task
virtuell.)

SMALL

there is no implementation-dependent restriction. Any speci-
fication for SMALL that is allowed by the LRM can be given. In
particular those values for SMALL are alsc supported which are
not a power of two.

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 39

Reoresentation Clauses and Implementation-Dependent Features

7.3 Enumeration Representation Clauses

The integer codes specified for the enumeration type have to lie
inside the range of the largest integer type which is supported;
that is the type intager defined in PACKAGE standard.

7.4 Record Representation Clauses

Record representation clauses are supported. The value of the ex-
pression given in an alignment clause must be 0, 1, 2 or 4. If
this restriction 1is violated, the compiler responds with a
RESTRICTION error message in the compiler listing. If the value is
0 the objects of the corresponding record type will not be align-
ed, if it is 1 (resp. 2 or 4) the starting address of an object
will be a multiple of 1 (resp. 2 or 4) * storage unit size.

The number of bits specified by the range of a component clause
must not be greater than the amount of storage occupied by this
component. (Gaps between components can be forced by leaving some
bits unused but not by specifiing a bigger range than needed.)

Viclation of this restriction will produce a RESTRICTION error
message.

There are implementation-dependent components generated to hold
the size of the record object if the corresponding record type
includes variant parts or to hold the offset of a record component
(relative to this generated component) if the size of the record
component is dynamic. But there are no implementation-generated
names (cf. ([Ada,$13.4(8)]) denoting these components. So the
mapping of these components cannot be influenced by a
representation clause.

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 40

Representation Clauses and Imglementation-oeoendent Features

7.5 Address Clauses

Address clauses are supported for objects declared by an object
declaration. If an address clause is given for a subprogram,

package, task unit or single entry, the compiler responds with a
RESTRICTION error message in the compiler listing.

7.6 Change of Representation

The implementation places no restrictions on changes of represen-
tation.

7.7 The Package SYSTEM

See $9.3. The pragmas system_name, storage_unit and memory_size
have no effect.

7.7.1 System-Dependent Named Numbers
See §9.3.

7.7.2 Representation Attributes

These are all implemented.

7.7.3 Representation Attributes of Real Types
These are all implemented.

KRUPP ATLAS ELEXKTRONIK Ada System - User Manual 41

Reporesentation Clauses and Implementation-Dependent Features
M

7.8 Machine Code Insertions

A PACKAGE machine_code is not provided and machine code insertions
are not supported.

7.9 Interface to Other Languages
The PRAGMA interface is provided for META and Assembler language
of MPR2300 subprogram that obeys the calling conventions of the

MOS procedure calling standard. It is described in $9.1.1 of this
manual.

7.10 Unchecked Programming

7.10.1 Unchecked Storage Deallocation

The implementation does not support unchecked storage deal-
location. (The generic PROCEDURE unchecked_deallocation is
provided, but the only effect of calling an instantiation of this
procedure with an object X as actual parameter is

X := NULL;

i.e. no storage is reclaimed.)

7.10.2 Unchecked Type Conversions

The implementation does not support unchecked type conversions.

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 42

Input-Qutput 7 , Chagter 8

8 Input-Qutput

In this chapter we follow the section numbering of Chapter 14 of

(Ada] and provide notes for the use of the features described in
each section.

8.1 External Piles and File Objects

File-management is not supported, cause embedded systems don’t

need any File-I/0O. Any use of DIRECT_IO and SEQUENTIAL_IO raises
the exception USE_ERROR.

Files associated with terminal devices (which is only legal for

text files) may be opened with an arbitrary mode at the same time
and associated with the same terminal device.

8.2 Text Input/Cutput

Text input/output 1is only implemented for standard 1I/0 and
devices. So in the following "Text Files" means an output to a
device. Text files are represented as sequential files with
variable record format. One line is represented as a sequence of
one or more records; all records except for the last one have a
length of exactly MAX RECORD_SIZE and a continuation marker
("SPACE" = 16#20#) at the last position. A line of length
MAX_RECORD_SIZE is represented by one record of this length. The
end of a record which is shorter than MAX RECORD_SIZE or which has
length exactly MAX RECORD_SIZE and does not have a continuation
marker as its last character is taken as a line terminator.

The value MAX_RECORD_SIZE is fixed to 255 byte.

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 43

Input-Output Chapter 8 l

Line terminators, page terminators and file terminators are not
represented explicitly on the external file. The effect of these
terminators is determined by respective Standard-I/O-functions of
the MOS 2300 operating system. A record of length zero is assumed
to precede a page terminator if the record before the page
terminator is another page terminator or a record of length
MAX RECORD_SIZE with a continuation marker at the last position;

this implies that a page terminator is preceded by a line
terminator in all cases.

The end of the file is taken as a file terminator. A page
terminator is assumed to precede the end of the file if there is
not explicitly one as the last record of the file.

8.2.1 File Management

The association of an external file with MOS 2300 filename
convention is only supported if the MOS 2300 filesystem is
present. Otherwise the MOS 2300-error-messages will trigger the
predefined Ada exception USE_ERROR.

8.2.2 The NAME and FORM Parameters

The name parameter string must be a MOS 2300 device specification
string and must not contain wild cards. The FUNCTION name will
return a device specification string which is the device name of

the device opened or created.

The syntax of the form parameter string is defined by:

form_parameter ::= [form_specification { , form_specification }]

form_specification :: keyword [=> value]

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 44

Input-Output Chapter 8

keyword ::= identifier

value ::= identifier | string_literal | numeric_literal

For identifier, numeric_literal, string_literal see ([Ada,Appendix

E]. Only an integer literal is allowed as numeric_literal (see
(Ada,$2.4]).

DEVICE

In the following, the form specifications which are allowed for
all files are described. If the keyword "DEVICE" is used as form-
specification, then the internal file is associated with a MOS
2300 device (D.name). This form parameter is only allowed in an
open statement. The Device name must denote a legal external MOS

2300 device. An external MOS 2300 device may be opened in mode
" inu or nout " . ‘

8.3.3 Default Input and Output Files

The standard input (resp. output) file is associated with the
terminal device of M0OS2300 ("*").

The name string for the standard files is assumed to be :

standard_input

NAME => Terminaldevicename

standard_output NAME => Terminaldevicename

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 45

Input-Output Chapter 8

8.2.4 Implementation-Defined Types

The implementation-dependent types count and field defined in
the package specification of TEXT_IO have the following upper
bounds :

COUNT'’LAST

2_147_483_647 (= INTEGER'LAST)

FIELD'LAST

255

8.3 Exceptions in Input-Output

For each of NAME_ERROR, USE_ERROR, DEVICE_ERROR and DATA_ERROR we
list the conditions under which that exception can be raised. The
conditions under which the other exceptions declared in the
package IO_EXCEPTIONS can be raised are as described in
(Ada,$14.4].

NAME_ERROR
is never raised. Instead of this exception the exception
USE_ERROR is raised whenever an error occurred during an
operation of the underlying MOS operating system.

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 46

B |

Ingut-Outout Chagter 8

USE_ERROR

if an attempt is made to increase the total number of open
files (including the two standard files) to more than 32;

whenever an error occurred during an operation of the under-
lying MOS2300 operating system. This may happen if an in-
ternal error was detected, an operation is not possible for
reasons depending on the file or device characteristics, a
size restriction is violated, a capacity limit is exceeded
or for similar reasons;

if the function name is applied to a temporary file;

if the characteristics of the external file are not appro-
priate for the file type; for example, if the record size of
a file with fixed-length records does not correspond to the
size of the element type of a DIRECT_IO or SEQUENTIAL_IO
file. In general it is only guaranteed that a file which is
created by an Ada program may be reopened by another
program if the file types and the form strings are the same;

if two or more (internal) files are associated with the same
external file at one time (regardless of whether these files
are declared in the same program or task), and an attempt is

made to open one of these files with mode other than
in_file. However, files associated with terminal devices
(which is only legal for text files) are excepted from this
restriction. Such files may be opened with an arbitrary mode
at the same time and associated with the same terminal devi-
ce;

if a given form parameter string does not have the cor-

rect syntax or if a condition on an individual form specifi-
cation described in $8.2.2 is not fulfilled:

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 47

R

Input-Output Chagter 8

. if an attempt is made to open or create a sequential or di-
rect file.

DEVICE_ERROR

is never raised. Instead of this exception the exception
USE_ERROR is raised whenever an error occurred during an
operation of the underlying MOS operating system.

DATA_ERROR
the conditions under which DATA_ERROR is raised in the
package TEXT_IO are laid decwn in (Ada].

8.4 Low Level Input-Output

not implemented

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 48

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file

name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for sach of these names
before the test 1is run. The values used for this validation are given
below:

Name and Meaning Value

SACC_SIZE 32

An integer literal whose value
is the number of bits sufficient
to hold any value of an access

type.

$BIG_ID1 254 * 'A* & '1"
An identifier the size of the
maximum input line length which
is identical to $BIG_IDZ except
for the last character.

SBIG_ID2 254 * 'A' & '2'
An identifier the size of the
maximum input line length which
is identical to SBIG_ID1 except
for the last character.

$BIG_ID3 127 * 'A' & '3' & 127 * A’
An identifier the size of the
maximum input line length which
is identical to $BIG_ID4 except
foc a character near the middle.

Name and Meaning

$BIG_ID4
An identifier the size of the
maximum input line length which
is identical to $BIG_ID3 except
for a character near the middle.

$BIG_INT_LIT
An integer 1literal of value 298
with enough 1leading zeroes so
that it 1is the size of the
maximum line length.

SBIG_REAL_LIT
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG_STRING1

A string 1literal which when
catenated with BIG_STRING2
vields the 1image of BIG_ID1.

$BIG_STRING2

A string 1literal which when
catenated to the end of
BIG_STRING1 vyields the image of
BIG_ID1.
$BLANKS
A sequence of blanks twenty
characters less than the size
of the maximum line length.
SCOUNT_LAST
A universal integer
literal whose value is
TEXT_IO.COUNT'LAST.
SDEFAULT_MEM_SIZE
An integer literal whose value
is SYSTEM.MEMORY_SIZE.
SDEFAULT_STOR_UNIT
An integer literal whose value

is SYSTEM.STORAGE_UNIT.

TEST PARAMETERS

Value

127 x 'Al & 04' & 127 x IAI

252 * '0° & "298"

250 * '0° & "690.0"

Ut g 127 % AT &

g 127 % AT & LT &

235 * °

2147483647

2_147_483_648

TEST PARAHMETERS

Name and Meaning

SDEFAULT_SYS_NAME
The value of the constant
SYSTEM.SYSTEH_NAME.

SDELTA_DOC
A real literal whose value 1is
SYSTEM.FINE_DELTA.

SFIELD_LAST
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

SFIXED_NAME
The name of a predefined
fixed-point type other than
DURATION.

SFLOAT_NAME
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LONG_FLOAT.

SGREATER_THAN_DURATION
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATER_THAN_DURATION_BASE_LAST
A universal real literal that is
greater than DURATION'BASE'LAST.

SHIGH_PRIORITY
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

SILLEGAL_EXTERNAL_FILE_NAMEl
An external file name which
contains invalid characters.

SILLEGAL_EXTERNAL_FILE_NAME2
An external file name which
is too long.

Value

MOTORCLA_63020_KAE

281.04E-31

255

NO_SUCH_TYPE_AVAILABLE

NO_SUCH_FLOAT_TYPE

0.0

16_777_217.0

63

MUCH_TOO_LONG1_TX

MUCH_TOO_LONG2_TX

Name and Meaning

SINTEGER_FIRST
A universal
whose value 1is

integer literal
INTEGER'FIRST.

SINTEGER_LAST
A universal
whose value 1is

integer literal
INTEGER'LAST.

$INTEGER_LAST_PLUS_1
A universal integer literal
whose value is INTEGER'LAST + 1.

SLESS_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESS_THAN_DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOW_PRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSA_DOC
An integer literal whose
is SYSTEM.MAX_MANTISSA.

value

SMAX_DIGITS

Maximum digits supported for

floating-point types.
SMAX_IN_LEN

Maximum input line length

permitted by the implementation.

SMAX_INT
A universal
whose value 1is

integer literal
SYSTEM.MAX_INT.

SMAX_INT_PLUS_1
A universal integer literal
whose value is SYSTEM.MAX_INT+1.

Yalue

-2147483643

2147483647

2147483648

0.0

-16_777_217.0

31

18

255

2147483647

2_147_483_648

TEST PARAMETERS

TEST PARAMETERS

Mame and Meaning Value
SMAX_LEN_INT_BASED_LITERAL "2:" & 250 x "0 & "1l1:¢
A universal integer based

literal whose value 1is 2#11%
with enough 1leading zerces in
the mantissa to be MAX_IN_LEN
long.

$MAX_LEN_REAL_BASED_LITERAL "16:" & 248 * ‘0 & "F.E:"
A universal real based literal
whose value 1is 16:F.E: with
enough 1leading zeroes 1in the
mantissa to be MAX_IN_LEN long.

SMAX_STRING_LITERAL Mg 253 x AT & M
A string literal of size
MAX_IN_LEN, including the quote
characters.

SMIN_INT -21474836438
A universal integer literal
whose value is SYSTEM.MIN_INT.

SHIN_TASK_SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

SNAME NO_SUCH_TYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.

SNAME_LIST MOTOROLA_63020_KAE
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

SNEG_BASED_INT 164FFFFFFFES
A based 1integer literal whose
highest order nonzero bit

falls in the sign bit
position of the representation
for SYSTEM.MAX_INT.

TEST PARAMETERS

Name and Meaning Value

SNEW_MEM_SIZE 2_147_483_6438
An integer literal whose wvalue
is a permitted argument for
pragma MEMORY_SIZE, other than
SDEFAULT_MEM_SIZE. 1If there 1is
no other value, then use
SDEFAULT_MEM_SIZE.

SNEW_STOR_UNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE_UNIT, other than
SDEFAULT_STOR_UNIT. 1If there is
no other permitted value, then
use value of SYSTEM.STORAGE_UNIT.

SNEW_SYS_NAME MOTOROLA_63020_KAE
A value of the type SYSTEM.NAME,
other than $DEFAULT_SYS_NAME. If
there 1s only one value of that
type, then use that value.

$TASK_SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STICK 0.01
A real literal whose value is
SYSTEM.TICK.

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005¢C This test expects that the string "-- TOP OF PAGE. --
63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma, and it is this that must appear at the top
of the page.

b. A390056 This test unreasonably expects a component clause to
pack an array component into a minimum size (line 30).

¢. B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selective
wait alternative (line 31).

d. C97116A This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementaticn
may use interleaved execution in such a way that the evaluation
of the guards at lines 50 & 54 and the execution of task CHANGING-
_OF_THE_GUARD results in a call to REPORT.FAILED at one of
lines 52 or 56.

e. BC3009B This test wrongly expects that circular 1instantiations
will be detected in several compilation units even though none of
the wunits is illegal with respect to the units it depends on; by
AI-00256, the illegality need not be detected until execution is
attempted (line 95).

f. CD2A62D This test wrongly requires that an array object's size
be no greater than 10 although its subtype's size was specified
to be 40 (line 137).

WITHDRAWN TESTS

CD2A63A..D, CD2A66A..D, CD2AT3A..D, CD2A7T6A..D [16 tests] Thesa
tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them
to a derived subprogram (which implicitly converts them to the
parent type (Ada standard 3.4:14)). Additionally, they use the
"SIZE 1length clause and attribute, whose interpretation 1is
considered problematic by the WG9 ARG.

CD2A81G, CD2A83G, CD2A84N & M, & CD50110 [5 tests] These tests
assume that dependent tasks will terminate while the main pro~
gram executes a loop that simply tests for task termination; this

is not the case, and the main program may loop indefinitely
(lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

CD2B15C & <CD7205C These tests expect that a 'STORAGE_SIZE
length <clause provides precise control over the number of
designated objects in a collection; the Ada standard 13.2:15
allows that such control must not ke expected.

CD2D11B This test gives a SMALL representation clause for a
derived fixed-point type (at line 30) that defines a set of
model numbers that are not necessarily represented in the
parent type; by Commentary AI-00099, all model numbers of a

derived fixed-point type must be representable values of the
parent type.

CD5007B This test wrongly expects an implicitly declared sub-
program to be at the the address that is specified for an un-
related subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests] These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

CD7105A This test requires that successive calls to CALENDAR.-
CLOCK change by at least SYSTEM.TICK; however, by Commentary
AI-00201, it is only the expected frequency of change that.must
be at least SYSTEM.TICK--particular instances of change may be
less (line 29).

CD7203B, & CD7204B These tests use the 'SIZE length clause and
attribute, whose interpretation is considerad problematic by
the WG9 ARG.

CD7205D This test checks an invalid test objective: it treats
the specification of storage to be reserved for a task's
activation as though it were like the specification of storage
for a collection.

WITHDRAWN TESTS

CE2107I This test requires that objects of two similar scalar
types be distinguished when read from a file--DATA_ERROR is
expected to be raised by an attempt to read one object as of
the other type. Haowever, it is not clear exactly how the Ada
standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considered valid. (line 90)

CE3111c¢C This test requires certain behavior, when two files are
associated with the same external file, that is not required by

the Ada standard.

CE3301A This test contains several calls to END_OF_LINE &
END_OF_PAGE that have no parameter: these calls were 1intended
to specify a file, not to refer to STANDARD_INPUT (lines 103,
107, 118, 132, & 136).

CE3411B This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUT_ERROR is raised
by a subsequent PUT operation. But the former operation will
generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

This

COMPILER AND LINKER OPTIONS

APPENDIX E

COMPILER AND LINKER OPTIONS

appendix contains information concerning the compilation and 1linkage

commands used within the command scripts for this validation.

Compiling, Linking and Executing a Program Chapter 3

3 Comgilingl Linking and Executing a Progqram

3.1 Overview

After a program library has been created, one or more compilation
units can be compiled in the context of this library. The compi-
lation units can be placed on different source files or they can
be all on the same file. One unit, a parameterless procedure, acts
as main program. If all units needed by the main program and the
main program itself have been compiled successfully, they can be
linked. The resulting executable files can then be transfered to
the MPR2300 and executed by a *ADA command.

§3.2 and $3.4 describe in detail how to call the compiler and the
linker. The information the compiler produces and outputs in the
compiler listing is explained in $3.2.1. Further on in $§3.3 the
completer, which is called to generate code for instances of

generic units, is described.

$3.5 and $3.6 describe how to transfer to and excecute a program
on MPR23Q0.

$3.7 explains the information which is given if the execution of a
program is abandoned due to an unhandled exception.

Finally, the log of a sample session is given in $3.8.

3.2 Starting the Compiler

To start the KRUPP ATLAS ELEXTRONIK Ada Compiler, call the command

dVMK:COMPILE <source> ([LIBRARY=<directory>] -
(OPTIONS=<string>] -
(LIST=<filespec>]

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 19

Comgiling‘ Linking and Executing a Program Chapter 3

The input file for the compiler is <source>. If the file type of
<source> is not specified, <source>.ADA is assumed. The maximum

length of lines in <source> is 80; longer lines are cut and an
error is reported.

<directory> is the name of the program library; [(.ADALIB] is as-
sumed if this parameter is not specified. The library must exist
(see $2.2 for information on program library management).

The listing file is created in the default directory with the file
name of <source> and the file type .LIS if no file specification
<filespec> is given by the parameter LIST. Otherwise, the direc-
tory and file name are determined by the file specification <file-
spec>. If no full file specification is given, missing components
are determined as described above (i.e. the default directory is
used if no directory is specified, the file name of <source> if no
file name is specified and the file type .LIS if the file type is
missing). See $3.6 for information about the listing.

Options for the compiler can be specified by using the parameter
OPTIONS; they have an effect only for the current compilation.
<string> must have the syntax:

"(option {, option}]”
where blanks are allowed following and preceding lexical elements

within the string.

The compiler accepts the following options:

(LIST => ON/OFF)
(OPTIMIZER => ON/OFF)
(INLINE => ON/OFF)
(COPY_SOURCE => ON/OFF)
(SUPPRESS_ALL)

)

(SYMBOLIC_CODE

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 20

Comgiling! Linking and Executing a Program Chapter 3

The options LIST and SUPPRESS_ALL have the same effect as the cor-
responding pragmas would have at the beginning of the source (see
(Ada,Appendix B] and $9.1.2 of this Manual).

No optimizations like constant folding, dead code elimination or

structural simplifications are done if OPTIMIZER => OFF is speci-
fied.

Inline expansion of subprograms which are specified by PRAGMA
inline (cf. $9.1.1) in the Ada source can be suppressed generally
by giving the option INLINE => OFF. The value ON will cause inline
expansion of the respective subprograms.

COPY_SOURCE => ON causes the compiler to copy the source file
<source> into the program library. This option 1is already
implemented for a debugger. The debugger of the KRUPP ATLAS
ELERKTRONIK Ada System will be implemented later. It works on this
copy (cf. $2.2.7) instead of on the original file.

The generation of a symbolic code listing can be achieved by the
option SYMBOLIC_CODE and produces a file in the default direc-
tory with the name of <source> and file type .SYM.

The source file may contain a sequence of compilation units (cf.
Chapter 10.1 of [Ada]). All compilation units in the source file
are compiled individually. When a compilation unit is compiled
successfully, the program library is updated and the compiler con-
tinues with the compilation of the next unit on the source file.
If the compilation unit contained errors, they are reported (see
$3.2.1). In this case, no update operation is performed on the
program library and all subsequent compilation units in the
compilation are only analyzed without generating code.

The compiler delivers the status code WARNING on termination (see
(VAX/VMS, DCL Dictionary, command EXIT]) if one of the compilation
units contained errors. A message corresponding to this code has
noct been defined; hence 3NONAME-W-NOMSG is printed upon notifi-
cation of a batch job terminated with this status.

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 21

——
Compiling, Linking and Executing a_Program Chapter 3

3.3 The Completer

The compiler does not generate code for instances of generic
bodies. Since this must be done before a program using such
instances can be executed, the COMPLETER tool must be used to com-
plete such units. This is done implicitly when PRELINK is called.

It is also possible to call the completer explicitly by

@VMK:COMPLETE <ada_name> [LIBRARY=<directory>] -
[OPTIONS=<string>] -
[(LIST=<filespec>]

<ada_name> must be the name of the library unit, not the filename.
All library units that are needed by that unit (cf. [Ada,$10.5])
are completed, if possible, and so are their subunits, the sub-
units of those subunits and so on. The meaning of the parameters
LIBRARY and LIST corresponds to that of the COMPILE command (cf.
$3.2). Options apply to all units that are completed; the follow-
ing cnes are accepted (cf. $3.2):

(OPTIMIZER => ON/OFF)
(INLINE => ON/QFF) -
(SUPPRESS_ALL)
(SYMBOLIC_CODE)

The completer delivers the status code WARNING on termination (see
(VAX/VMS, DCL Dictionary, command EXIT]) 4if it detected some
error. A message corresponding toc this code has not been defined;
hence 3%NONAME-W-NOMSG is printed upon notification of a batch job
terminated with this status.

In this case a listing file is created that contains the error
messages (cf. $3.2.1). If no file specification <filespec> is
given by the parameter LIST, the listing file is created in the
default directory with file name COMPLETE and the file type .LIS;
otherwise, the directory and file name are determined by the file
specification <filespec>. If no full fil. specification is given,
missing components are determined as described above (i.e. the de-
fault directory is used if no directory is specified, the filename

KRUPP ATLAS ELEXTRONIK Ada System - User Manual 26

Compiling, Linking and Executing a Progqram Chagter 3

COMPLETE if no filename is specified and the file type .LIS if the
file type is missing).

3.4 The Linker

An Ada program is a collection of units used by a main program
which controls the execution. The main program must be a para-
meterless library procedure; any parameterless library procedure
within a program library can be used as a main program.

To link a program, call the command

@VMK:LINK <ada_name> <filename> [LIBRARY=<directory>] -
[OPTIONS=<string>] -
[LIST=<filespec>] -
[COMPLETE=ON/OFFP] -
(DEBUG=ON/OFF] -
(SELECT=ON/OFF] -
{ EXTERNAL=<string>] =
[LOADMAP=0ON/OFF]

<ada_name> is the name of the library procedure, not the filename
which acts as the main program.

<filename> is the name of the file which is to contain the exe-
cutable code after linking. If no filetype is specified, .RAX is
assumed. KAX is the short form for ERRUPP ATLAS ELEKTRONIK ADA
EXECUTABLE.

<directory> is the name of the program library which contains the
main program; [.ADALIB] is assumed if this parameter is not speci-
fied.

The COMPLETE parameter specifies whether the program is to be com-
pleted before it is linked; default is ON. If the completer is
called, the parameters LIBRARY, OPTIONS and LIST are passed to it
(cf. $3.3).

KRUPP ATLAS ELEXTRONIK Ada System - User Manual 27

Compiling, Linking and Executing a Program Chapter 3

The DEBUG parameter is already implemented for a later version of
the debugger. It specifies whether information for the KRUPP ATLAS
ELEKTRONIK Debugger are to be generated; default is ON.

SELECT=ON causes only those object modules which are needed during
program execution to be linked together. In the case of OFF all
imported compilation units are linked together; the default is ON.
LOADMAP=ON causes the generation of a file on the default
directory with the name of <source> and the file type .MAP.

The following steps are performed during linking. First the Com-
pleter is called, unless suppressed by COMPLETE=0OFF, to complete
the bodies of instances. Then the Pre-Linker is executed; it de-
termines the compilation units that have to be linked together and
a valid elaboration order. A code sequence to perform the elabora-
tion is generated.

The prelinker of the KRUPP ATLAS ELERTRONIK Ada System delivers
the status code WARNING on termination (see [VAX/VMS, DCL Dic-
tionary, command EXIT]) if one of the above mentioned steps failed
(e.g. if one of the completed units contained errors, if any com-
pilation unit cannot be found in the program library or if no
valid eleboration order can be determined because of incorrect
usage of the PRAGMA elaborate). A message corresponding to this
code has not been defined; hence $%NONAME-W-NOMSG is printed upon
notification of a batch job terminated with this status.

KRUPP ATLAS ELEKTRONIK Ada System - User Manual 28

