
Ada 9X Project Report

SIlAy 90

The Fixed-Point Facility in Ada

February 1990

DTIC
ELECTE

Office of the Under Secretary of Defense for Acquisition

Washington, D.C. 20301

Approved for public release; distributior is unlimited.

q0o 5s 11 Oas

REPORT DOCUMENTATION PAGE

Womw~~~wi ham jWfVlaI hA0cm to "rnq~u MAW~ 8U.dM

1. A ZiNCY USE CNLY tL*Svv MAM0 2. '4E IDA .EFT Type A) ATES CYERED

February 1990 Final Report

A. TLE.0AI SUBTIM 5.1 N#WEERS

Ada 9X Project Report, The Fixed-Puint Facility in Ada,

February 1990 C = MDA-903-87

Robert B.K. Dewar
John B. Goodenough, editor

7. R-FCRPMU ORGANIZATCN NAWI(S) ANO ADORESS(ES) I.aPCR, NMBAR

Software Engineering Institute SEI-90-SR-2
Carnegie Mellon University
Pittsburgh, PA 15213

9. SPC*1SCRINACNITORING AGENCY UAE(S) AND ACOFLESS(E51 10. SP~CSRO'JGV1NrTC

Ada Joint Program Office Ada 9X Project Office
1211 South Fern St., 3E113 AF Armament Lab/FXG
The Pentagon Eglin AFB, Florida 32542-5434
Washington, DC 20301-3080

11. SUPP E.WENARY NOTES

This report has been produced under the sponsorship of the Ada 9X Project Office. It is one in a series
that addresses special issues relevant to the Ada revision effort.

•a.s DISTR1,UTC -AVAILAILffY STATE.
"NT tZb. DtSTP..,UcN c=E

Approved for public release; distribution is unlimited.

ta. ABSTRACT (AMnimrn 200 vwo-)

This report addresses a number of issues involving fixed-point arithmetic in Ada -k number of

possible Ada 9X requiremer.ts are suggested for consideration.
Ada includes a facility for declaration of an arithmetic on fixed-point values. The model is

deliberately intended to be as close as possible to the Ada floating-point model, including the notion of

model numbers and model intervals. The major difference is that the error is absolute, rather than relative:

in other words, the model numbers are spaced evcnly in the fixed-point case.

14. SUECT ItERAS 15. MUWERc PO
42

Ada 9X, f'Red-point, floating-point, Ada Joint Program Officc, ALa 9X Project Office io. Pqr' COCE

17. ScURCiT CLASSIFCATICN 18. SECJITY CLAS;F cA CN fig. S RrPUDCLASSGT 20. LU'ITATCN OF

OF R U L I.OH P GF ABSTRACT ULIS NLASFE UNCLASSIFIED
1N7W0-1280-5500 tn Fr

Ada 9X Project Report

The Fixed-Point Facility in Ada

February 1990

DTIC

Office of the Under Secretary of Defense for Acquisition

Washington, D.C. 20301

Approved for public release; distribution is unlimited.

SEI-90-SR-2
February 1990

The Fixed-Point Facility in Ada

Robert B. K. Dewar
New York University

This report has been produced under the sponsorship of the Ada 9X
Project Office. It is one in a series that addresses special issues relevant
to the Ada revision effort. John B. Goodenough, of the Software Engi-
neering In3titute, has served as the editor and coordinator for each report.

Accession For
NTIS GRA&I
DTIC TAB El
Unannounced o
Justificatio Approved for public release.

Distribution unlimited.By_Distribution/

Availabi.li y CodesAval and/~aol
Dist Special Software Engineering Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213fri1

This work is sponsored by the U.S. Department of Defense. The views arid

conclusions contained in this document are solely those of the author(s) and
should not be interpreted as representing official policies, either expressed or
implied, of Carnegie Mellon University, the U.S. Air Force, the Department of
Defense, or the U.S. Government.

Copyright © 1990 by Carnegie Mellon University.

Table of Contents

1. The Fixed-Point Facility in Ada 1

2. The Representation of Fixed-Point Numbers 3
2.1. The Meaning of the small Value 4
2.2. The Selection of SAFESMALL 5
2.3. Reduced Accuracy Subtypes 7
2.4. The Values of smallThat Must Be Supported 9
2.5. Sufficient Precision for Fixed-Point Values 10
2.6. Packed Decimal and Display Arithmetic Formats 11
2.7. Ordering of Representation Clauses 12

3. Fixed-Fr.ilnt Computatlons 15
3.1. Fixed-Point Addition and Subtraction 16
3.2. Fixed-Point Multiplication and Division 17

3.2.1. Implirit Scaling Conversions 17
3.2.2. Rounding and Truncation 18
3.2.3. Mixed Bases for small 19
3.2.4. Fixed-Point Multiplication and Division Yielding an Integer Result 20
3.2.5. Fixed-Point Multiplication and Division Yielding a Floating-Point 20

Result
3.3. Fixed-Point Conversions 21
3.4. Input-Output of Fixed-Point Values Using TEXT_10 22

References 23

Appendix A. Summary of Recommendations 25

Appendix B. Implementation of Fixed-Point Arithmetic In the Low-Level 27A a/"D i.......- ..
II I1, ;I p1g . t

B.1. The Representation of Fixed-Point Numbers 27
B.1.1. Representation of SMALL 27
B.1.2. Representation of the Mantissa 29

B.2. Conversions involving fixed-point values 29
B.2.1. Conversions to or from Other Fixed-Point Types 29

CMU-SEI-SR-90-2

B.2.2. Conversions to or from Integer Types 30
B.2.3. Conversions to or from Floating-Point Types 30

B.3. Operations on Fixed-Point Numbers
B.3.1. Additive Operators 31
B.3.2. Multiplying Operators with Fixed-Point or Integer Result 31
B.3.3. Multiplying Operators with Floating-Point Results 33

B.4. Fixed-Point I/O 34
B.4.1. A Property of Our Fixed-Point Types 34
B.4.2. Demonstration 34
B.4.3. Converting Fixed-Point Values 35

B.5. Conclusion 35

CMU-SEI-SR-90-2

1. The Fixed-Point Facility in Ada

C4-Abstraet.- This report addresses a number of issues involving fixed-point arithmetic
in. Ada. A number of possible Ada 9X requirements are suggested for consideration.)

' Ada includes a facility for declaration of and arithmetic on fixed-point values. The model is
deliberately intended to be as close as possible to the Ada floating-point model, including the
notion of model numbers and model intervals. The major difference is that the error is abso-
lute, rather than relative; in other words, the model numbers are spaced evenly in the fixed-
point case.

This fixed-point facility is intended for a variety of uses:

J Poor man's floating-point' On machines where floating-point hardware is either
non-existent, or very ineff' ient, the use of Ada floating-point may be impractical.
Ada requires that floatig-point arithmetic be present on all Ada implementa-
tions, but if t isl achieved by software simulation, there will be cases where the
use i ng-point is impractical for efficiency reasons.

such machines, the use of fixed-point provides a capability for carrying out
calculations with fraction .i quantities more efficiently. Even when reasonably

/ efficient hardware floating-point is available, fixed-point arithmetic is oftenCfaster, and in some real-time applications which are computation-bound at criti-
cal points, this difference may be significant.

l)Increased accuracy ' In a situation where the absolute error control of fixed-point
is acceptable, e.g, 2 case where the range of values to be dealt with is limited,
fixed-po on des more accuracy than floating point ih)r a given word length,.-- e no space is wasted for the exponent.

3 Mapping data from specialized hardware and other external data' There are a
number of situations in which data from external devices is na'ally in fixed-
point format, for instance a volt-meter may return a volta ige-n units of 2.8 volts.
!frauth cases it - and v-ient todeal with the data directly in
fixed-point format.
A special, but important, case of external world fixed-point data arises in fiscal
calculations, where quantities of money are ty, ..ally decinnal scaled fixed-point
values (e.g., $56.34). In commercial programs which deal with money, it is much
more convenient to ileal with such quantities directly in fixed-point form. The
use of floating-point .iere is not practical because the decimal values encountered
are not floating-point model numbers, and hence unexpected rounding and trun-
cation errors can occur (e.g., 0.10 * 10 is not necessarily equal to 1.00)

S / ')

CMU.SI-SR-90-2

2 CMU-SEI-SR-90-2

2. The Representation of Fixed-Point Numbers

The intention behind the fixed-point design in Ada is that fixed-point values be rfpresented
internally as integers. The value is interpreted as the product of the integer value stored and
the small value. The small value is always known at compile time and is associated with the
fixed-point type. This means that it does not need to be stored with each instance of a fixed-
point value.

The Reference Manual for the Ada Programming Language (RM) does not enforce this meth-
od of representing fixed-point numbers since it generally is not in the business of specifying
internal representations. Even in the case of integers, the RM does not specify the exact
method of internal representation. However, it is likely that this method of storing fixed-
point numbers will in effect be mandated by an interpretation of the chapter 13 facilities,
which would permit declarations like:

type FIXED_1 Is delta 0.25 range -1.00 .. +0.75;
for FIXED_ 'SMALL use 0.25;
for FIXED_1'SIZE use 3;

If implementations are expected to accept these representation clauses, then clearly objects
of type FIXED_1 can only be stored as integer multiples of small, as shown by the following
table:

Value Corresponding Representation
Integer in Binary

-1.00 -4 100
-0.75 -3 101
-0.50 -2 110
-0.25 -1 111
0.00 0 000

+0.25 +1 001
+0.50 +2 010
+0.75 +3 011

Here we are assuming 'at integers are represented in twos-complement, which is of course
a correct assumption for the great majority of machines. On a ones-complement machine, the
binary representations would be different, and in particular, the actual represented range
would be -0.75..+0.75. However, it seems likely that the intention is that the correspondence
between the fixed-point values and the corresponding integers would hold in all implemen-
tations, so that for example, UNCHECKEDCONVERSION between entries in the first two
columns would work "as expected."

CMU-SEI-SR-90-2 3

It should be repeated that there is nothing in the RM that requires this correspondence, and
individual implementations may choose, at least in some circumstances, to use different rep-
resentation approaches. In particular, the use of hardware decimal formats may be conven-
ient in some situations, and this is discussed later on (see page 11). However, the underlying
expectation that all fixed-point values are represented as integers is fundamental and is a
model that we shall generally refer to in this discussion.

2.1. The Meaning of the small Value

There are four quantities that are relevant in the representation of fixed-point quantities:

1. The declared delta, i.e., the value of delta used in the declaration of the fixed-
point type.

2. The actual delta, which is the largest power of 2 that does not exceed the
declared delta.

3. The value of small, which is the distance between model numbers. In the ab-
sence of a representation clause specifying small, it may be, but need not be,
equal to the actual delta.

4. The value of SAFESMALL, the distance between safe numbers, which are the
model numbers of the base type. The safe numbers constrain the accuracy of
fixed-point calculations. Following the lead of the floating-point model, the RM
permits fixed-point values to be represented with more accuracy than that re-
quired by the safe numbers, which means that the unit value of a fixed-point
representation can be smaller than SAFESMALL.

The consequence of the fourth point is that whether or not small (and therefore, the value of
SAFE..SMALL) is set by a representation clause, the implementation might choose to repre-
sent fixed-point values with extra accuracy. However, the ARG is considering an AI
(AI-00341) which removes this flexibility, in part, by requiring that a specified small value be
the one which is actually used as the unit position in the represented values. The Al does
not, however, address whether representations with different accuracies are allowed for the
same type when small is not specified explicitly. This issue is discussed in Section 2.2.

POSSIBLE ADA 9X REQUIREMENT
An explicit specification of small for a fixed-point type should specify the machine
precision used to hold all values of the type. No intermedLate results can be held
with increased accuracy.

Discussion: This creates a (deliberate) inconsistency between floating-point and
fixed-point, which means the wording dealing with both together must be carefully
be examined. This inconsistency is justified, because in the case of floating-point, but
not fixed-point, the hardware formats may effectively dictate the use of extra preci-
sion.

Compatibility considerations: None. This is upwards compatible with the original
RM, and consistent with the proposed ARG interpretation.

In the remainder of this report, we will assume that a specified value of small for a fixed-
point type determines the accuracy of represented values of the type.

4 CMU-SEI-SR-90-2

2.2. The Selection of SAFESMALL
Even with the agreement that SAFE-SMALL in effect specifies the accuracy of fixed-point
representations, there is still a quite deliberate freedoa. ,eft to implementations to choose a
SAFESMALL that is less than small. Consider the following example:

type FIXED_2 is delta 2.0"*(-13) range -1.0 .. +1.0;

The actual delta is 2"13 and this is also the value of FIXED_2'SMALL, in the absence of a
length clause specifying small (RM 3.5.9(6, 10)). The value of FIXED_2'BASE'SMALL
(which is the same as FIXED_2'SAFE_SMALL) cannot be greater than this actual value but
it can be smaller. Assuming that we have a 32-bit machine, it may be convenient and effi-
cient (in the absence of a SIZE clause) for FIXED_2 objects to be represented using 32 bits, so
that ordinary 32-bit arithmetic can be used for operations on values of this type.

The FIXED_2 type only requires 14 bits, so the question is how to use the remaining 18 bits
in the word. There are two basic approaches:

1. Keep SAFE.SMALL equal to FIXED_2'SMALL, leaving unused bits (typically
these would be sign-extension. bits) in the high order positions:

18 bits 14 bits

sign extension bits value 2' 3

For example, the fixed-point value 2-13 is represented as the integer 1. This
approach is similar to what would typically be used for integer values with a
range less than the available hardware range.

2. Make SAFESMALL as small as possible, using the extra bits to provide extra
precision. In this example, SAFESMALL can be equal to 2-31.

32 bits
value / 2"31

The fixed-point value 2.13 is represented as the integer 2.13 / 2.31 = 218. This
approach has the advantage of providing extra precision without impacting the
efficiency of calculations using the fixed-point type.

Of course these two approaches are only extremes of a range of possible implementations
which provide intermediate precisions. However, there seems to be no good reason to choose
intermediate cases, so these are ignored here. There are good arguments in favor of both
approaches, which we can summarize as follows:

In favor of approach 1
Allowing, but not requiring the implementation to provide extra precision introduces
unnecessary implementation differences, with the usual negative impact on portability.
There are many situations .;i which the extra precision is actively unhelpful, and would

CMU-SEI-SR-90-2 5

have to be suppressed by the use of explicit small clauses.1 If a program needs the extra
precision, then it should use small clauses to force this extra precision. This can be done
in a machine independent manner by appropriate use of attributes. 2

The appeal to floating-point as a model for the behavior of fixed-point is inappropriate,
since the reason we allow the extra precision in the floating-point case, even though it
introduces portability problems, is that these portability problems are fundamental,
given the different hardware implementations of floating-point. Furthermore, typical
users of floating-point understand that the precision is implementation dependent. It is
much less obvious that this expectation holds in the fixed-point case.

In favor of approach 2
The extra precision provided by this approach is free in terms of the efficiency of arith-
metic operations. It seems clearly beneficial to give more accurate results where possible,
as is routinely done in the floating-point case. In those situations where extra accuracy
is harmful, or where absolute psrtability of results is required, SMALL clauses can be
used to control exactly what is r .quired.

The use of attributes to declare these "extra precision" representations is possible, but
very clumsy, and it seems much preferable to give the extra precision as the default
behavior, requiring the relatively straightforward SMALL declarations only in the rela-
tively unusual case where they are required. Note in particular that many of the cases
where the extra precision is unwelcome (e.g., in fiscal calculations) it is necessary
anyway to specify the small because it is not a power of 2.

Providing the extra precision may actually increase the efficiency of the generated code
by simplifying overflow checks. In the case where the range of the fixed point definition
covers a natural power of 2 range, then by left justifying the value, overflow in the fixed
point calculations corresponds to overflow in the underlying integer arithmetic, which
can be usually be detected much more cheaply than the explicit range check which is
needed if the value is right justified.

Both these arguments have merit. However, if we favor the second argument, then it would
probably be better to mandate the extra precision. One problem not addressed here (but
treated later; see page 13) is that the extra precision approach potentially makes the value of
SAFESMALL dependent on the SIZE of the type, which causes some further anomalies.

1For example, suppose you are performing fiscal calculations to the nearest cent. If values are reported to
customers to the nearest penny but are carried in the computer with greater accuracy, then sums will not add up
correctly. For example, if an account with a reported balance of $1.03 is combined with accounts reported to have
balances of $1.15 and $1.02, you wou!d expect the combined total to be $3.20. But if the values are carried with
more accuracy, e.g., $1.033 and $1.1353 and $1.024, the reported total will be $3.210. In this case, it is unhelpful to
carry the balances with increased accuracy. So the programmer needs to be able to control whether extra accuracy
is used.

2For example, suppose we wish to ensure that FIXED_2 values are represented with maximum precision. We
know that FIXED_2 values are represented using 32 bits since FIXED_2'SIZE is 32. The minimum number of bits
required to represent FI1XED2 model numbers is 14, which is the value of FIXED_2'MANTISSA + 1 (since
'MANTISSA does not include the sign bit). Since 'SIZE includes the sign bit and 'MANTISSA doesn't, the number of
extra bits available for increased precision is (FIXED_2'SIZE - (FIXED_2 MANTISSA + 1), i.e., 17 bits. To use these
extra bits for increased accuracy, we need to specify that the value of FIXED2SMALL is divided by 2 exr big. So
we can declare a related type:

type ACCURATEFIXED..2 Is delta 2.0'(-13) range -1.0.. +1.0;
for ACCURATE..FIXED_2'SMALL use FIXED 2'SMALL /2.0 ** (FIXED_2'SIZE - FIXED_2'MANTISSA - 1);

6 CMU-SEI-SR-90-2

Which argument appeals largely depends on the use to which fixed-point is being put. If it is
serving as "poor-man's floating-point" (as is usually the case in embedded applications), then
the extra precision is clearly welcome. If on the other hand, fixed-point is being used to get
precisely scaled integer results (as for financial applications), the extra precision is unwel-
come. In any case there seems to be unnecessary implementation freedom.

POSSIBLE ADA 9X REQUIREMENT
Ada 9X should be more specific in directing implementations how to chocse fixed
point base types, with the aim of improving portability of fixed-point cod-.

Discussion: The arguments for and against the provision of extra precision should
be evaluated and a decision made as to which default behuvior is appropriate. It is
possible to consider the addition of a pragma or other upwards compatible declar-
ative method to allow the programmer to specify the required approach. From a
language point of view, such a pragma is probably overkill, since the mechanism of
specifying small explicitly is provided. However, compatibility considerations, as dis-
cussed below, may make the provision of such a feature pragmatically desirable.

Compatibility considerations: Technically none, since either behavior is permitted by
the RM. However, in practice, there may be programs that depend on one or the
other approach. This is technically improper, but not unlikely. Such programs
might be negatively impacted by a requirement that the implementation they are
using be changed. Programs can avoid such impact by explicitly specifying small for
all fixed-point types.

2.3. Reduced Accuracy Subtypes

Consider the set of declarations:

type FIXED_3 Is delta 2.0'*(-8) range -128.0 .. +128.0;
subtype FIXED_4 Is FIXED_3 delta 2.0**(-7);

The current Ada definition certainly permits this set of declarations, and the model numbers
of the FIXED_4 subtype are a subset of the model numbers of FIXED3 even though
FIXED_3 and FIXED 4 have the same value of SAFE.SMALL. Suppose that FIXED_3's
base type has been chosen to give no extra accuracy, i.e., FIXED_3'SAFELSMALL equals
FIXED3'SMALL equals 2.8. Can values of subtype FIXED_4 be stored with model number
accuracy, i.e., with one less bit of accuracy? A similar issue has been discussed at length for
floating-point (see AI-407).

The disadvantage of allowing reduced accuracy representations of this kind is that it means
an assignment-such as:

F4 : FIXED_3;
F5 : FIXED_4;

F5 := F4;

can cause loss of accuracy, which is not a normally expected consequence of an assignment.
This loss of accuracy can occur in an even less apparent manner when a generic is instan-
tiated with the reduced accuracy subtype.

CMU-SEI-SR-90-2 7

Reduced accuracy representations can also possibly occur in records if record component

clauses are allowed to eliminate bits that are "unnecessary" for representing model numbers:

type REC is
record

PRECISE : FIXED_3;
REDUCED : FIXED_4;

end record;

for REC use
record

PRECISE at 0 range 0..15;
REDUCED at 2 range 1..15; -- legal?

end record;

FIXED_4%MANTISSA is 14, meaning that 15 bits are sufficient to hold all model numbers of
the subtype. The ARG has not yet ruled on the status of such a record component clause; it

is unclear whether the RM allows such a range in a component clause, since it changes the

accuracy with which values of the base type are stored. Of course, if the above component

clause is accepted by the implementation, and X is an object of type REC, then accuracy can
be lost in this assignment:

X.REDUCED := X.PRECISE;

The component clause for REDUCED would be illegal if small for FIXED_3 were explicitly

specified to be 2-, given our assumption that a specified value for small determines the
accuracy of all represented values (see Section 2.1).

Now suppose SAFESMALL for FIXED_3 were 2.24 instead of 2.8, i.e., suppose FIXED_- 3's
base type occupies 32 bits and the extra bits are used to provide extra precision. Could the

'bove record representation clause still be accepted? Note that in this case, the component
PRECISE would have a reduced accuracy as compared to stored values of type FIXED.3

outside of the record type. Accepting the component clause would imply a reduced accuracy

representation even for a first named subtype.

It is not at all clear that reduced accuracy representations provide an important function-

ality, and the question of whether or not they are permitted should be addressed.

POSSIBLE ADA 9X REQUIREMENT
Ada 9X should clarify the status of reduced accuracy representations for fixed-point
types. In particular, Ada 9X should consider whether to require that SAFESMALL
for a fixed-point type determines the machine precision used for all values of the type
(both stored and computed).

Discussion: Generally it seems like an unnecessary source of non-portable behavior
and a subtle source of program error to allow implementations to provide reduced
accuracy fixed-point representations.

Compatibility considerations: Technically none. Even if Ada 9X were to forbid the
implementation of reduced accuracy representations, no problems would arise, since
implementations are currently free to ignore such a request, so any correct Ada pro-
gram cannot depend on this feature.

8 CMU-SEI-SR-90-2

2.4. The Values of smallThat Must Be Supported
There is a continued confusion in the current language over the issue of what values of small
must be supported by an implementation. The ACVC suite has been extremely cautious in
this area. (ACVC 1.11 contains a single very simple test with a decimal small value, but
under pressure from implementors, this test has been reclassified as a DEP (dependent) test,
meaning that implementations may reject even this simple case.)

There are three general categories of small values which arise:

" Powers of 2. Support for these is clearly required, and all compilers implement
powers of 2. However, the range of powers of 2 which are supported varies, and is
quite restrictive in some compilers.

" Powers of 10. The need for these cases arises in conjunction with fiscal calcula-
tions, where the arithmetic must be done using accurate decimal scaling.

" Other values. These are less common. They typically arise in conjunction with
external devices which provide scaled data values.

The current RM seems to indicate that all possible small values should be supported. The

only possible reason for not supporting particular small values would have to be based on
hardware considerations, and the issue of implementing fixed-point is essentially hardware
independent, since the underlying operations required are simply integer arithmetic, which
is presumably available on all machines.

However, compilers have been slow to implement even the simple non-binary cases. The
impact, particularly on the ability to use Ada for fiscal calculations is negative. Implement-
ing the simple cases of decimal smalls is straightforward. Even the multiplication and divi-
sion case, as long as only decimal small values are involved (even if they are not all the
same), is relatively simple (similar operations are required in all COBOL compilers).

POSSIBLE ADA 9X REQUIREMENT
The range of required small values should be clearly specified. Ada 9X should sup-
port the requirements of fiscal calculations with regard to the implementation of
decimal small values.

Discussion: At least decimal small values should be required to meet the require-
ments of fiscal calculations. The issue of whether general small values should be
required is more contentious. A situation in which some compilers support certain
small values and others do not creates a major portability problem. If an Ada com-
piler fails to support the small values specified by an Ada program, the job of adapt-
ing the program to the new compiler may be extremely difficult and involve major
modifications. It seems desirable to enforce a greater level of uniformity.

Compatibility considerations: Probably none, unless Ada 9X goes so far as to pro-
hibit the acceptance of small values now accepted by some compilers. Although such
prohibition might make sense in terms of trying to achieve maximum portability, it
is probably unrealistic to go this far.

CMU-SEI-SR-90-2 9

2.5. Sufficient Precision for Fixed-Point Values

The Ada RM is silent on the maximum precision required for fixed-point values. Particularly
in the case of fiscal calculations, this has the unfortunate consequence that Ada program-
mers cannot count on the availability of sufficient precision for fiscal calculations. Most im-
plementations support only 32 bits of accuracy in fixed-point, which is clearly insufficient for
fiscal purposes (COBOL requires a range of 1018, corresponding to about 64 bits of precision).

Note that although fixed-point arithmetic is nothing more than scaled integer arithmetic, it
is not easily possible to simulate k-bit fixed-point calculations using k-bit integer arithmetic,
because in the case of multiplication of fractions, a double-length result is required. This
means that the provision of 64-bit integer arithmetic is not sufficient L, meet the require-
ment for fiscal calculations, even if a programmer were willing to do all the scaling manually.

POSSIBLE ADA 9X REQUIREMENT
Ada 9X should provide sufficient minimum fixed-point precision to accommodate
the needs of fiscal calculations.

Discussion: Although Ada was originally intended to be restricted to the area of
embedded applications, it is clear that the language has much wider applicability.
There is already a significant activity in creating fiscal applications in Ada, both in
commercial contexts, and in Department rf Defense applications. Ada is in many
ways idealy suited for such applications except in the area of fixed-point precision
and decimal smal implementation.

It is possible that this requirement could be considered to be an extra-language fea-
ture, provided for example by a set of usability guidelines. However, it is clearly
more desirable from a uniformity point of view if it is a language requirement. Im-
plementing 64-bit fixed-point is a relatively minor requirement for compilers. It typi-
cally means that a set of 128-bit arithmetic run-time routines have to be written,
which is reasonably straightforward. Note by contrast that requiring 64-bit integer
precision is much more contentious, since it implies that these 64-bit integers must
be usable as array subscripts, loop indices etc.

Compatibility considerations: None. The suggestion is to mandate a minimum re-
quired precision. Since none is mandated currently, the result would be strictly up-
wards compatible.

Another issue with respect to precision arises with respect to high precision timers. On a
machine whose timer resolution is considerably finer than 50 microseconds, 32 bits are not
enough for the type DURATION.

POSSIBLE ADA 9X REQUIREMENT
Ada 9X should provide sufficient minimum fixed-point precision to accommodate
the representation of DURAATION values for high resolution timers.

Discussion: Probably 48 bits are sufficient for this purpose. It is clear that there are
situations where 32 bits are insufficient.

Compatibility considerations: None. The suggestion is to mandate a minimum re-
quired precision. Since none is mandated currently, the result would be strictly up-
wards compatible.

10 CMU-SEI-SR-90-2

2.6. Packed Decimal and Display Arithmetic Formats

COBOL requires the implementation of arithmetic which works on integers represented as
strings of ASCII digits, called "Display" format in COBOL. The advantage of this format is

that external files containing numbers in this format are entirely machine independent.

In addition, although not required by the COBOL standard, typical COBOL compilers imple-

ment an additional format for scaled integers called COMPUTATIONAL-3, which is packed

decimal (one digit stored in four bits, two digits to a byte). This format is supported at the
hardware level by many mainframe computers, including the IBM 370.

An issue arises of whether Ada implementations can or should support either or both of these

formats.

Although there is no reason not to use packed decimal in an Ada implementation, there is a

strong assumption that the underlying implementation of fixed-point will be in binary, and

this is codified in 3.5.9(6), which defines fhe model numbers as covering a binary range,

described by the mantissa value B. This means that if we declare a fixed-point type:

type COST Is delta 0.01 range -999.99.. +999.99;
for COST'SMALL use 0.01;

then it is natural to consider implementing COST using a three-byte packed decimal format
(five nibbles contain the five digits, and one nibble contains the sign, using for example the

standard IBM 370 format).

However, consider an expression such as:

A:=B+C+D;

The intermediate value B + C cannot be stored in this same three-byte format because

3.5.9(6) requires that the mantissa be 17 bits, corresponding to a range for the base type of

-1310.78 .. +1310.78 (131078 = 217)

This means that the implementation is not justified in raising overflow for intermediate

results which are outside the declared range but inside the extended range of the base type.

Consequently an implementation would be forced to use a larger, e.g., 4-byte format, for the

intermediate result, and then check the range only on the final assignment.

It should be noted that the requirement of using extra precision for the intermediate results

is not necessarily an unacceptable one. The corresponding COBOL situation

ADD B C D GIVING A

where all four data names have the picture $999V99, actually requires that the intermediate
values be held in sufficient precision to guarantee that no intermediate overflow can occur.

In other words, COBOL has rather more strenuous requirements than Ada in this respect.

Generally it is desirable for intermediate results not to overflow, so the Ada restriction is not
necessarily a burdensome one.

Note also that we are not in a situation where intermediate results are held in registers with

fixed precision, so the requirement is not as disturbing as it would be in the binary integer

CMU-SEI-SR-90-2 11

case. It makes very little difference to the compiler, or to the efficiency of the executing
program, whether the intermediate value is allocatec' as a four-byte packed decimal value or
a three-byte packed decimal value. The Ada assignmer,(:

A:= B+C + D;

can generate four instructions on a typical machine supporting packed decimal, as follows:

Move B from 3-byte packed field to 4-byte temporary
Add packed C into the 4-byte temporary
Add packed D into the 4-byte temporary
Move the 4-byte temporary to the 3-byte ,-csult with overflo w check

Note that we cannot in any case in Ada use A as the teonporary location to compute the
result, since exception semantics say that A should not be modified if the result is out of
range.

It is important to note that there is no particular relation between the use of packed decimal
and decimal small values. Packed decimal is simply another way of representing integers,
and theoretically it is perfectly possible to use ppcked decimal for any fixed-point values,
including those with binary small values. However, in practice, packed decimal is most
relevant for fiscal applications where decimal small values are likely to be used.

The issue for Ada 9X is whether to consider any uniform syntax for the implementation of
display arithmetic or packed decimal. Such a feature would most likely be optional, but there
still might be some value in enfo,-cing a uniform syntax for those compilers supporting this
feature.

POSSIBLE ADA 9)(PEUIREMENT
Ada 9X should su.port interoperability with COBOL data files, at least on an op-
tional basis, including support for packed decimal and display arithmetic formats.

Discussion: Typical fiscal calculations involve access to existing data files. If these
files have been created using COBOL programs, or other database applications
using similar formats, they are likely to contain either display format or packed
decimal data items. An Ada program will be able to interact with such files much
more naturally if the Ada compilers support these formats.

Compatibility considerations: None. This zs a proposed upwards compatible exten-
sion.

2.7. Ordering of Representation Clauses

The representation clause for small is anomalous in that it does much more than specify a
representation; it also affects the set of values and the 2emar:tics of operations on the type.

One consequence of this is that problems arise if representation clauses for small appear too
late. One example is:

type FIXED_6 Is

-- define'subprograms using FIXED_6

12 CMU-SEI-SR-90-2

type FIXED_7 is new FIXED_6;

for FIXED_7'SMALL use...

The current language definition permits this sequence, 3 but the consequence would be un-

expected complex implicit conversions when the derived subprograms are called. This seems

clearly undesirable. A length clause specifying small should not be allowed in this context.

Another example is:

type FIXED_8 Is ...
subtype FIXED_9 Is :IXED_8 range X .. Y;
for FIXED_8'SMALL use...

The validation of the range X .. Y uses the safe numbers of the type, but these values are

potentially affected by the later clause specifying FIXED_8'SMALL. Although the appear-
ance of FIXED_8 in a subtype declaration is not a forcing occurrence, it is clear that the

small declaration appears too late to be interpreted using a linear elaboration model.

A similar issue arises with SIZE clauses for implementations that left-justify fixed-point

values. Consider the following:

type FIXED_9 Is delta 0.25 range -1.0 .. +1.0;
for FIXED 9'SIZE use...

As previously discussed, an implementation is currently free to choose SAFE_SMALL much
finer than 0.25 for the first declaration. However, if this is done, then the SIZE clause has
the unexpected property of changing the set of values by removing the extra precision.

POSSIBLE ADA 9X REQUIREMENT
The situation with respect to representation clauses for fixed-point must be clarificd.
In particular, the positioning of SIZE and SMALL clauses is problematic.

Discussion. In some respects, it would have been better if the SMALL clause had
been part of the type declaration, or if the distinction between DELTA and small were
removed from the language. H1owever, such major changes are presumably out of
bounds for Ada 9X. Clearly from the examples, some restrictions are necessary. One
possibility is simply to forbid any occurrence of SMALL clauses after any mention at
all of the type involved. Note that the issue of left versus right justification of fixed-
point values (i.e., whether extra precision is provided where possible) interacts with
this discussion, in that SIZE clauses are also problematical for implementations
which left-justify fixed-point values (providing the extra precision).

Compatibility considerations: It is not clear now what implementations do when
confronted with examples of the type given. The ACVC suite has been careful to
avoid such cases, since the situation is unclear. Probably there are already por-
tability problems between implementations in this regard, so it is likely that Ada 9X
cannot succeed in being compatible with all existing implementations.

3RM 13.1(3) says: "A length clause is the only form of representation clause allowed for a type derived from a
parent type that has (user-defined) derivable subprograms." Since a representation clause for small is a length
clause, the above sequence of declarations is allowed.

CMU-SEI-SR-90-2 13

14 CMU-SEI-SR-90-2

3, Fixed-Point Computations

The following types of fixed-point calculations are provided in the current language. .:
calcuations are performed in terms of safe numbers, i.e., in toerms of the model numbers of
the fixed-point base type.

1. Fixed-point addition and subtraction of values of the same type. Since the inputs and
outputs are all safe numbers, the results are precisely dictated. The operations cor-
respond simply to integer addition and subtraction, so there are no implementation or
semantic difficulties.

2. Multiplication or division of two fixed-point numbers, which can have different types,
to give a resulting fixed-point number, which can have a third type. The result is
required to be accurate in the safe number sense, i.e., if the result is a safe number, it
must be accurate; otherwise it must lie in the corresponding interval. Since the safe
numbers are separated by units of SAFESMALL, there are no machine numbers
between safe numbers, so there ar . only two possible results, corresponding to
rounding-up or rounding-down. Implementations are free to choose whichever they
like, and there is not even a consistency requirement.

3. Multiplication or division of two fixed-point numbers, which can have different types,
to give a resulting integer. In this case, the result must be accurately rounded.

4. Multiplication or division of two fixed-point numbers, which can have different types,
to give a resulting floating-point value. In this case the result must be safe number
accurate from the point of view of the floating-point result type.

5. Conversion of one fixed-point type to another. The result must be safe number ac-
curate.

6. Conversion of fixed-point numbers to integer. The result is required to be accurately
rounded.

7. Conversion of fixed-point numbers to floating-point. The result is required to be safe
number accurate from the point of view of the floating-point result type.

8. Input-output of fix id-point numbers using TEXTIO.

We treat these cases in iturn, considering possible problems and shortcomings ini the current

approach.

CMU-SEI-SR-90-2 15

3.1. Fixed-Point Addition and Subtraction

The only issue here is that the requirement that the two operands have the same type is

inconvenient for programmers. COBOL programmers are used to simply writing:

ADD INPUT-1 INPUT-2 GIVING RESULT-1

where the scale (i.e., the SAFE-SMALL) values of the input and result data items can be

different. An Ada programmer would be forced to write something like:

RESULT._1 := RESULT_1_TYPE (INPUT_1 + INPUT_1_TYPE (INPUT.2));

Furthermore, careful thought must be given to the exact choice of conversions. The ap-

parently equivalent forms:

RESULT_1 := RESULT._1_TYPE (INPUT_2_TYPE (INPUTl) + INPUT_2);
RESULT_1 := RESULT_1_TYPE (INPUT.l) + RESULT_1_TYPE (INPUT_2);

are not equivalent in terms of intermediate overflow. It is possible to construct three ex-

amples where the RESULT_1 value is in range of RESULTfITYPE, but only one of the

above forms avoids intermediate overflow (a different one in each case). It is always the case

that one of these forms works correctly, but figuring out which one depends on the particular

data values involved, so there is no general programming approach to solve the problem.
Furthermore, as soon as explicit conversions are involved, the conversions are only safe num-

ber accurate, and thus allow implementation-dependent rounding to be introduced into the
calculation.

By contrast, a COBOL programmer can write either:

ADD INFUT-1 INPUT-2 GIVING RESULT-1
ADD INPUT-1 INPUT-2 GIVING RESULT-1 ROUNDED

with the assurance that if the result is in range, it will be correctly romputed regardless of
the scales involved, with accurate truncation in the first case, an' accurate rounding in the

second case.4

POSSIBLE ADA 9X REQUIREMENT
Ada 9X should consider extending the fixed-point addition and subtraction
operators to allow mixing of types, as is permitted for multiplication and division.

Discussion: This would provide a level of convenience comparable to that available
to COBOL programmers, and would be more consistent with the treatment of divi-
sion and multiplication, Rounding and truncation issues would have to be ad-
dressed, as would the possible computational difficulties in the case of peculiar
mixed smalls (this point is discussed in the context of multiplication and division).

Compatibility considerations: None. If an extension is provided here it would be
upwards compatible, since it would allow notations which are currently illegal in
Ada.

4 1n general, COBOL fixed.point addition and subtraction must be performed with more precision than that
associated with the operand types. For example, INPUT-1 and INPUT-2 must be converted to higher precision
before computing the sum, which must then be converted to the result type. Such conversions cannot always be
specified in Ada, because the programmer cannot always declare types with the required precision. For example, if
the maximum precision for a declared fixed-point base type is k, some calculations will need to be performed with 2k
bits of precision, and by definition, such types cannot be declared.

16 CMU-SEI-SR-90-2

3.2. Fixed-Point Multiplication and Division

There are three issues here, two minor and one rather complex.

3.2.1. Implicit Scaling Conversions
The first issue involves the following convenience. In Ada, one cannot write:

A:= B * C;

where A, B, and C are all fixed-point values, even if they are the same type. Instead, the
conversion must always be written:

A := FIXEDPOINTTYPE (B * C);

The requirement for the conversion in this case seems particularly annoying, and is puzzling
to Ada programmers encountering fixed-point for the first time, since it seems so inconsistent
with the treatment of integer and floating-point operations.

Similarly, one cannot write:
1,, := 2.0 * B;

or ev.."
A := FIXEDPOINTTYPE (2.0 B);

Instea,., ,he required form is:

A := FIXEDPOINTTYPE (FIXEDPOINTTYPE (2.0) * B);

which seems even more ridiculous to the uninitiated. In these simple cases, it certainly
seems clear that the explicit conversions are redundant. The trouble is that generalizing this
observation runs into difficulties. If ,e allow:

A:= B* C/D*E;

where A, B, C, D, and E are all different types with different SAFE_SMALL values, then it is
quite unclear what the rules should be for intermediate precisions. It is instructive to look at
what is done in other languages allowing fixed-point.

In COBOL, forms like:

MULTIPLY INPUT-1 BY INPUT-2 GIVING RESULT-1

allow free mixing of scales (though of course the scales are limited to decimal values), and
the result is precise if it is in range, truncated or rounded as specified by the programmer.
However, if a COBOL programmer writes:

COMPUTE A = B* C/D* E

then the COBOL standard has nothing at all to say about how this computation is carried
out; it is simply said to be "implementation dependent." COBOL implementations use
various approaches to handle intermediate scaling (one approach is to use floating-point for
COMPUTE statements) and there are resulting portability problems.

COBOL programmers usually avoid the use of COMPUTE because of these uncertainties. It
seems quite appropriate and natural for fixed-point programming to specify the intermediate
precisions explicitly (unlil-e the case of integer and floating-point, where this is implicit).

CMU-SEI-SR-90-2 17

In PL/1, general expressions are permitted, and there is a complicated set of rules that speci-
fies exactly how intermediate scaling is carried out. However, these rules give rise to
anomalies, such as the one which requires that the expression:

25+1/3

always overflow, and requires instead that this be written as:

25+01/3
In practice, these rules have not proved successful, and it is unlikely that any set of rules can
be devised which avoids anomalies that are puzzling at best and incomprehensible at worst
to programmers.

The Ada approach of allowing general expressions but requiring that the intermediate preci-
sion be spelled out is therefore quite reasonable except for the rather clumsy dictions re-
quired in the simple cases.

POSSIBLE ADA 9X REQUIREMENT
Ada 9X should examine the possibility of relaxing the requirements for explicit con-
version in fixed-point multiplication and division.

Discussion: As described above, doing this in a general manner poses some nasty
problems. On the other hand, solving only the "simple" cases threatens to introduce
non-uniformities. The issue is whether there are partial solutions that allow nice
dictions in the simple cases without introducing too much non-uniformity.

Compatibility considerations: None. This change would involve allowing some ex-
pressions and statements which are currently illegal in Ada.

3.2.2. Rounding and Truncation
The second issue involves rounding and truncation. The semantic model for fixed-point com-
putations in Ada is deliberately similar to that for floating-point, and is phrased in terms of
safe numbers and safe intervals. Consider the following example:

type FIXED_1 Is delta 0.25 range -8.00 .. +7.75;
for FIXEDI'SMALL use 0.25;

A, B, C : FIXED 1;

B := 3.75;
C :=2.0;
A:= FIXED_1 (B / C);

The true result, 1.875, is not a safe number, so the result is required to be in the safe interval
containing 1.875. This interval has two values in it, 1.75 and 2.00. Implementations are free
to choose either of these two results, and it is in fact the case that current available Ada
implementations are inconsistent in their choice of results.

As we have mentioned before, COBOL programmers have full control over whether results
are truncated or rounded, and in either case the result in a COBOL program is totally speci-
fied in the standard.

It is clearly desirable that implementations give the same results for all computations unless

18 CMU-SEI-SR-90-2

there are appropriate I-ardware-related reasons why this should not be the case. In the case
of floating-point, there are such reasons, since we want Ada programs to use the available
hardware floating-point, and it is known and understood that such matters as rounding of
results do differ from one machine to another.

However, in the case of fixed-point, the underlying implementation is typically in terms of
integer operations, and these are consistent from one machine to another. There seems no
good reason to permit implementors variations here. Both truncation and rounding are easy
to implement.

Note: there is one machine that has provision for hardware fixed-point, namely the Trans-
puter, which has a fractional multiply instruction that gives a rounded result. However. even
on the Transputer it is easy to implement truncation if this is desired, since there are also
integer multiplication operations of the conventional type.

POSSIBLE ADA 9X REQUIREMENT
The implementation freedom in choosing fixed-point results should be eliminated;
the language should specify whether results of fixed-point operations should be
rounded or truncated.

Discussion: As described above, there is no good reason for allowing variations be-
tween implementations here. Once again this means that floating-point and fixed-
point are semantically less similar than they seem, but this is quite appropriate, and
indeed many of the problems with Ada fixed-point stem from an inappropriate (in
retrospect) attempt to merge fixed-point and floating-point semantics. If a program-
mer must be allowed both the rounding and truncation possibilities, as in COBOL,
extra declarative mechanisms (e.g., a pragma) must be added. If only one mecha-
nism is provided, rounding is more advantageous from a programming point of
view, but is likely to be slightly less efficient in some cases.

Compatibility considerations: Technically none, since this is just a matter of remov-
ing allowed non-determinism. It is conceivable that some programq might be af-
fected, but unlikely.

3.2.3. Mixed Bases for small
The third problem with fixed-point multiplication and division is that there are computa-
tional complications when the small values of the input arguments and results are not
simply related. In the case where all three have the same base for the smalls (e.g., all powers
of 2 or all powers of 10), there are no difficulties. This is why COBOL has no problems in
allowing the general case.

However, if different smalls are mixed, then the computations are more complex. Jean-Pierre
Rosen [2, 31 has described the treatment of the case where smalls are allowed to be any
combination of powers of 2 and powers of 5, and Paul Hilfinger [1] has treated the more
general case. The conclusion is that it is possible to deal with the general case without undue
computational inefficiency (only double precision is required), but the required computations
are somewhat complex. Furthermore, if rounding is permitted or specified, then the mixed
cases become even more complex from a computational point of view.

CMU-SEI-SR-90-2 19

The issue here is whether these mixed cases are sufficiently important to be mandated. At
the moment, the RM is phrased to suggest that an implementation may reject the declara-
tions of smalls under some circumstances, but that once it has accepted them, then it must
allow all computations on these values, including the difficult mixed small cases in mul-
tiplications and divisions. This seems unfortunate, since in practice, the major requirements
are for the non-mixed cases (all binary smalls or all decimal smalls), where no problems
arise.

The difficulty of implementing these cases has historically been the sticking point for many
implementations in allowing the declaration of smalls at all. We still have many implemen-
tations that do not permit the simple cases of decimal smalls, and this is likely to be a
substantial part of the reason, since the implementation of the simple cases is stiaightfor-
ward (it is after all required in all COBOL compilers).

We defer stating a possible requirement in this area until we have considered the next two
situations which are even more annoying.

3.2.4. Fixed-Pnint Multiplication and Division Yielding an Integer Result
The major issue here is similar to the third point discussed in the previous section except
that the computational implications of the mixed small case are even worse here. The prob-
lem is that Ada does specify accurate rounding in this case. Making sure that the rounding is
absolutely precise in the case where the smalls are unrelated (e.g., one operand has a small
of 1/3 and the other of 117) is computationally complex. Paul Hilfinger has addressed this
issue but his treatment is incomplete (in that it restricts the range of allowable smalls) and
the resulting computation sequences are unpleasantly complex.

The motivation behind specifying rounding in the Ada definition is clear enough. It is simply
a special case of the general principle that conversion of a fixed-point value to integer should
be rounded. However, it is not at all clear that the definition in the RM really intends to
introduce the level of complexity implied by requiring rounding in the multiplication and
division cases.

3.2.5. Fixed-Point Multiplication and Division Yielding a Floating-Point
Result

Again, the problematic cases arise in the case of mixed small bases. The result, is required to
be safe number accurate in terms of the floating-point type. In some implementations, the
most accurate floating-point type can have many more bits of precision than the most ac-
curate fixed-point type. In some cases, the required accuracy can be obtained by doing the
operation entirely in floating-point, but it is by no means clear that this is always the case.
Thus there is a possibility of this requirement implying the need for high precision integer
arithmetic, just to handle this case.

Here again, the requirement for safe number accuracy is simply a special case of the general
Ada principle of requiring safe number accuracy for floating-point operations, but it is not
clear that the complexity in the fixed-point multiplication and division case is intended or

20 CMU-SEI-SR-90-2

desirable. Jean-Pierre Rosen treats this case for his limited model where small values are
restricted to a combination of powers of 2 and powers of 5. In this model, fixed-point values
are 32 bits, and all operations are required to be computable with double-length arithmetic
(64 bits). Under these restrictions, his model is only able to handle digits 6 and still
guarantee safe number accuracy. Paul Hilfinger does not treat the floating-point case in the
currently available version of his paper.

POSSIBLE ADA 9X REQUIREMENT
Ada 9X should clarify the cases of fixed-point multiplication and division that an
implementation is required to handle and ensure thet no unduly complex arithmetic
requirement is implied.

Discussion: This requirement is related to the issue of what values of small an imple-
mentation is required to support. The current Ada definition creates a situation
where the range of small values accepted by a compiler tends to be restricted by the
difficulty of implementation of the mixed small cases for division and multiplication.
Such mixed small cases are (a) not often required and (b) it is not clear that the
accuracy requirements, particularly in the integer and floating-point result cases,
are really required. One possible approach is to make it clear that certain
"unpleasant" mixed small cases can be rejected at compile time, even if the represen-
tation clauses for the small values have been accepted. The rationale for Ada 9X
should include a detailed description of the arithmetic procedures required for fixed-
po':nt operations. As for as possible, these operations should not require more than
double-length arithmetic.

Compatibility considerations: The likely situation in Ada 9X is that a certain mini-
mum set of capabilities is required of all compilers. The semantics of this prescribed
set of capabilities should be identical to current Ada. Compilers can then provide
additional facilities as they please.

3.3. Fixed-Point Conversions

The conversion of one fixed-point type to another again requires safe number accuracy. The
required calculations are slightly tricky in some cases, but it does appear that all possible
conversions can be carried out using only double-length arithmetic, so there is no great prob-
lem here. The Ada 9X rationale should include a description of the approach required here,
and verify that this is in fact the case.

Conversion of fixed-point to integer requires accurate rounding. This may be problematic for
some peculiar small values. The calculation required is a simple multiplication and division,
but if the small is given as the ratio of two very long numbers, getting the rounding right
may be tricky.

Conversion of fixed-point to floating-point requires safe number accuracy for the result.
Again this may be tricky in some cases of peculiar small values.

CMU-SEI-SR-90-2 21

3.4. Input-Output of Fixed-Point Values Using TEXT_10

The issue here is whether the output has to be accurate in the case where a very large
number of digits is specified. For instance, if the small value is 1/7, it seems to be required
that if the value 1/7 is output with 100 digits after the decimal point, then these digits must
be the accurate decimal expansion of 1/7. This requires unnecessary complexity in the con-
version routines, and is probably not intentional. Note that a sir.'lar problem arises with the
output of floating-point safe numbers to "excessive" accuracy.

POSSIBLE ADA 9X REQUIREMENT
The accuracy requirements for TEXT_IO output of fixed-point and floating-point
values should not imply unnecessary complexity in the conversion routines.

Discussion: Since the required precision of output values is not known until execu-
tion time, there is a concern that all programs may have to pay timc and space
penalties for conversion routines that provide "excessive" accuracy. There is a test in
the ACVC 1.11 suite that precisely tests this situation in the floating-poila case, and
it has been protested by at least one implementor. There is no major problem in
providing conversion routines which provide the required unlimited accuracy, but
they are likely to be big and slow, and it is not clear that it is sensibly useful to be
able to output numbers accurately with many more digits than makes sense.

Compatibility considerations: Probably none. In theory, there could be programs
which expect full accuracy, and if Ada 9X relaxes this requirement, such programs
could malfunction. However, most current compilers do not in any case provide this
functionality, and it is most unlikely that there are programs of this type around.

22 CMU-SEI-SR-90-2

Reirences

1. Hilfinger, P.Implementing Ada Fixed-Point Types Having Arbitrary Scales. University
of California, Berkeley, March, 1990.

2. Rosen, J.-P. "Arithmdtique r~ele en Ada". Actes desjourn~es Ada AFCET+ENST Bigre,
42 (Dec. 1984).

3. Rosen, J.-P. Une machine virtuelle pour Ada: le syst~me d'exploitation. Ph.D. Tl1i., ENST,
1986. Paris, France.

CMU-SEI-SR-90-2 23

24 CMU-SEI-SR.90*2

Appendix A: Summary of Recommendations

If an explicit specification of small is given for a fixed-point type, it should determine the
machine precision used to hold all values of the type. No intermediate results should be held
with increased accuracy (see page 4).

Ada 9X should be specify whether extra bits in fixed-point base types are used to give in-
creased accuracy or increased range (see page 7).

Ada 9X should clarify the status of reduced accuracy representations for fixed-point types.
In particular, Ada 9X should consider whether to require that SAFE-SMALL for a fixed-
point type determines the machine precision used for all values of the type (both stored and
computed) (see page 8).

The range of required small values should be clearly specified. Ada 9X should support the
requirements of fiscal calculations with regard to the implementation of decimal small
values (see page 9).

Ada 9X should provide sufficient minimum fixed-point precision to accommodate the needs of
fiscal calculations (see page 10). '

Ada 9X should provide sufficient minimum fixed-point precision to accommodate the repre-
sentation of DURATION values for high resolution timers (see page 10).

Ada 9X should support interoperability with COBOL data files, at least on an optional basis,
including support for packed decimal and display arithmetic formats (see page 12).

The situation with respect to representation clauses for fixed-point must be clarified. In par-
ticular, the positioning of SIZE and SMALL clauses is problematic (see page 13).

Ada 9X should consider extending the fixed-point addition and subtraction operators to allow
mixing of types, as is permitted for multiplication and division (see page 16).

Ada 9X should examine the possibility of relaxing the requirements for explicit conversion in
fixed-point multiplication and divicion (see page 18).

The implementation freedom in choosing whether fixed-point results are rounded or trun-
cated should be eliminated (see page 19).

Ada 9X should clarify the cases of fixed-point multiplication and division that an implemen-
tation is required to handle and ensure that no unduly complex arithmetic requirement is
implied (see page 21).

CMU-SEI-SR-90-2 25

The accuracy requirements for TEXTJO output of fixed-point and floating-point values
should not imply unnecessary complexity in the conversion routines (see page 22).

26 CMU-SEI-SR-90-2

Appendix B: Implementation of Fixed-Point Arithmetic
in the Low-Level Ada/ED Interpreter

J-P. Rosen
ADALOG

Paris, France

This Appendix is mainly a translation of a chapter of Rosen's thesis [3], with some adaptation
and the removal of some points that were too specific to Ada/ED. The translation was pre.
pared by Jean-Pierre Rosen and edited by John Goodenough.

Note: In this Appendix, all explanations are given with the assumption that all operands are
positive except when the sign is treated independently and operations are performed on ab-
solute values. The implementation was for a DEC/Vax with a 32-bit floating-point type. In
Ada terms, this type has a mantissa of 21 bits (since the base is 16), meaning the correspond-
ing DIGITS attribute has the value 6.

B.1. The Representation of Fixed-Point Numbers

Fixed-point numbers are defined as having the form sign * mantissa * small [RM 3.5.9(4)].
Since the value of small is a property of the fixed-point type, it is not necessary to keep it in
every value; keeping it in the type template5 is sufficient. A variable of a fixed-point type
will hold only the signed mantissa, which is a plain integer value. This integer value is
called the representation of the fixed-point value.

B.1.1. Representation of SMALL
The language authorizes a representation clause for SMALL, each implementation being free
to choose what values are allowed for such a clause. The initial requirement for the low-level
Ada/ED interpreter was to allow values of SMALL that, were powers of 2 or powers of 10.
Powers of 2 are mandatory (the implicit value of SMALL in the absence of a representation
clause is always a power of 2 [RM 3.5.9(5)]), and it is likely that powers of 10 will be widely
used, especially for programs that want to use fixed-point values to represent "dollars and
cents," for example.

5A type template is an execution.time descriptor in the Ada/ED system.

CMU-SEI-SR-90-2 27

The first implementation approach in Ada/ED used two positions in the type template, one to
keep the base (2 or 10), and th- other to store the power of the base. However, manipulating
two kinds of fixed-point types led to a number of problems for conversions, mainly for multi-
plication and division of two values with different bases for SMALL, namely, one with a
SMALL of 2

n and the other with a SMALL of 101. In this case, the result belonged to a type
whose SMALL was neither a power of 2 nor a power of 10. This resulted in an extra conver-
sion, possibly leading to a loss of accuracy. In a sense, multiplication and division were
external operations over the set of fixed-point values defined this way. The solution was to
make a closure of the set of fixed-point values by allowing for SMALL any value of the form
2P.5q, therefore including powers of 2 and powers of 10 as special cases. This solution had
the following benefits:

" Greater simplicity and efficiency in handling fixed-point operations;
" Unification of fixed-point types;
" Wider set of allowed values for representation clauses of SMALL;
" Easier formatting for printing.

To give an idea of the improvement provided by our solution, the following table lists the set
of allowed values for SMALL with up to 3 fractional digits:

0.001.. 0.010 0.010.. 0.100 0.100.. 1.000

0.001 * 0.01 * 0.1
0.002 * 0.016 0.125
0.004 0.02 * 0.128
0.005 * 0.025 * 0.16
0.008 0.032 0.2 *

0.04 0.25 *
0.05 * 0.256
0.064 0.32
0.08 0.4

0.5
0.512

Bold: 2x 0.625
Underlined: 10x 0.64
*: Simple fractions of 10 0.8

Figure B-1: Allowed Values of SMALL of the form O.ddd

There are 28 allowed values, among which only 3 are powers of 2 and 3 are powers of 10. 12
of them are simple fractions of a power of 10, and therefore considered especially useful in
practice.

Note that an implementation that would allow for arbitrary values of SMALL must keep
them at execution time. But since SMALL is of arbitrary precision, these values must be
kept as rational numbers at execution time, which can be expensive. Keeping them as
floating-point values would mean restricting the allowed values of SMALL to the model num-
bers of the floating-point type. In contrast, the Ada/ED implementation makes it possible to
reconstruct the rational form if necessary, while needing only two bytes in the type template
(values forp and q), as in the initial solution.

28 CMU-SEI-SR-90-2

B.1.2. Representation of the Mantissa
The mantissa is actually a plain integer. It was decided to support 64-bit .antissa values in
order to allow for a sufficient range even for small values of SMALL. This implied being able
to handle 128-bit arithmetic fo7 temporary results (multiplication and division). Extended
arithmetic on integers is a standard problem and will not be considered further. We will just
assume that routines for integer arithmetic on 64-bit values are available.

B.2. Conversions involving fixed-point values
There are three kinds of conversions involving fixed-point types: to or from other fixed-point
types, to or from integer types, and to or from floating-point types.

B.2.1. Conversions to or from Other Fixed-Point Types
The only important parameter when dealing with conversions between fixed-point types is
the SMALL of each type. Consider a conversion from a source type with SMALL S. to a
target type with SMALL S,. Recall that the way SMALL is kept in the type template (as
exponents of 2 and 5) is only a simplified way for keeping them as rational values. Since the
model numbers of a fixed-point type arc integer multiples of SMALL, converting a value, V,
from a source type into a target type means finding a representation Rt (RM [4.5.7]) such
that, for an initial source representation R.:

Rt St < Rs Ss < (Rt +l) St

Each SMALL is fully characterized by p and q, the exponents of 2 and 5. To simplify later
demonstrations, let p+ be the value of p if it is positive, 0 otherwise; let p- be the value of p if
it is negative, 0 otherwise; and similarly for q. The conversion factor is a rational number,
defined as:

N S, 2
p' 2pI 5 q- 5'

D St 2 p; 2p+ 5 q; 5 q:

The conversion is obtained by applying:

Rt=RsxN+D
There is no rounding error as long as the multiplication is performed before the division.

As mentioned before, one of the requirements of the project was that all arithmetic be per-
formed with 64-bit values; only intermediate results used 128 bits. There is no special prob-
lem with fixed-point arithmetic as long as SMALLs are powers of 2. Introducing arbitrary
SMALLs induces converting factors that seem to require arbitrary length arithmetic. At the
time of design., no compiler offered representation clauses for SMALL other than with powers
of 2, and no literature could be found on this topic.

Since then, Froggatt [1] has demonstrated that triple-length arithmetic is sufficient to imple-
ment multiplication, division, and conversion between fixed-point values with arbitrary
SMALLs. -However, Froggatt couldn't apply his method (through the use of continued
fractions) to conversions involving floating-point numbers, and the question of the size of the

CMU-SEI-SR-90-2 29

required arithmetic to implement arbitrary fixed-point values is still open. 6

Our goal was not to provide arbitrary SMALLs, but only the most useful ones, with the

limitation of 128 bits maximum arithmetic. We therefore had to limit the allowed values for

p and q. Since N and D in the above formula were explicitly reconstructed, they had to fit in

64 bits, which in turn implied that the numerator and the denominator of the rational repre-

sentation of each SMALL had to be limited to 32 bits. Considering the initial requirement to

support powers of 2 and powers of 10, this allowed SMALLs up to 2±31 and 101 9, which

seemed sensible, considering the goals of the Ada/ED system. This implied limiting p to ± 31

and q to ± 9, with the supplementary constraint that if p and q are of the same sign, then

2P x 5 q must itself fit in 32 bits. Since 59 fits in 21 bits, a wider range could have been

allowed for q, if not used for powers of 10 (i.e., with a smaller p). This did not seem u;seful at
first, and was rejected on the ground that the justification would appear awkward to the

average user. However, as will appear later, limiting q to ± 9 is mandatory to kbep a 64-bit

arithmetic.

B.2.2. Conversions to or from Integer Types
Fixed-point types have a natural relation to integer types. To unify the interface with fixed-

point arithmetic routines, the system defines a type, called INTEGER_FIXED, defined as:

Min : constant := 1.0 * INTEGER'POS(INTEGER'FIRST);
Max : constant := 1.0 * INTEGER'POS(INTEGER'LAST);
type INTEGERFIXED Is delta 1.0 range Min.. Max;

INTEGER-FIXED is isomorphic to INTEGER (values of both types share the same

representation); therefore, conversions between fixed-point and integer types are actually

generated as operations with the type INTEGER-FIXED. There is, however, a subtle point

here: conversions to INTEGER must round, while this is not necessary (but still allowed) for

conversions to real types. This raised no problem in the Ada/ED system, since conversions

are always rounded.

Conversions to or from integer types are therefore generated like any other fixed-point con-

versions, with the template for INTEGER_FIXET) being used as the type template for in-

teger values.

B.2.3. Conversions to or from Floating-Point Types
Conversion of a fixed-point value to a floating-point value uses the same algorithm as fixed-

point division with a floating-point result (see B.3.3, below), since the conversion can be
viewed as a division by the fixed-point value 1.0 with a floating-point result. The algorithm

therefore rebuilds the rational form of the fixed-point number and then performs a

floating-point division of the numerator by the denominator. More on this, especially ac-

curacy considerations, will be found in section B.3.3.

Conversion from floating-point to fixed-point requires special care to guarantee the required

6This was written before P. Hilfinger's papers [2].

30 CMU-SEI-SR-90-2

accuracy, especially when the resulting fixed-point value is equal to or near a model number

of the floating-point type. First, note that a value of a floating-point type is defined (RM

3.5.7) as sign x mantissa x 2exponen . This can be interpreted as a fixed-point value whose

SMALL would be 2exponem-21, since mantissa is a number in the range 0.5 .. 1.0, with a

representation in 21 bits (on our target machine, the Vax). Floating-point values that have a

constant relative accuracy locally (i.e., that have a constant exponent) behave like fixed-point

values. It is, however, not possible to apply the algorithm for fixed-point values, since the

exponent may vary in a range of ± 84, which is much wider than our allowed range of ± 31
needed to guarantee that no overflow will occur during intermediate calculations. Let M.2c

be the floating-point value to be converted. Let:

M'= M221

If p and q are exponents of 2 and 5 for the (fixed-point) type of the result, converting the

value means finding a representation R such that:

R M M.2 e- 2 1 2P • 5q

2p. 5 q

Let:

x=e-21 -p

R =M' SP- 2x

5q
Since e belongs to the range ± 84 and p to the range ± 31, x belongs to the range -136. +94.
If q is positive and x negative, the numerator requires only the 21 bits for M'. If q is pc ,itive

and x positive, the numerator fits in 21 + 94 = 115 bits. If q and x are both negative, the

numerator fits in 21 + 31 = 52 bits. The numerator, for which 128 bits are allowed, can

overflow only in the case where q is negative and x positive (21 + 31 + 94 = 146 bits). But in

this case, no division is involved for the conversion. It is therefore possible to raise

NUMERICERROR (or CONSTRAINT_ERROR) safely as soon as the calculation overflows
128 bits. If x is positive, no accuracy is lost by computing M' x 5q- + 5 q+, and then dividing by

2'. This latter term may not fit in 64 bits, but the division can be performed by repeated

shifts, and in effect, there is no need to compute 2'.

B.3. Operations on Fixed-Point Numbers

Operations on fixed-point numbers include addition, subtraction, multiplication and division.

B.3.1. Additive Operators
Addition and subtraction are allowed only between operands of the same fixed-point type.
They are treated as integer operations between mantiscas, and involve no particular prob-

lem.

B.3.2. Multiplying Operators with Fixed-Point or Integer Result
Multiplication between a fixed-point value and a value of type INTEGER, as well as division

CMU-SEI-SR-90-2 31

of a fixed-point value by a value of type INTEGER are allowed, and yield a value of the same

type as the fixed-point value, without requiring any conversion. Note that such operations
are allowed only with the type INTEGER, and not with any integer type. There is no conver-
sion or accuracy problem with these operations, since they are simply performed on the
representations as regular integer arithmetic.

Apart from this special case, multiplication and division are allowed between any fixed-point
types. They yield a result of type universal-fixed. This type must in turn be immediately
converted to some numeric type. This means that the result type is always known to the

compiler, but it need not be a fixed-point type.

The case where the result is of a floating-point type will be dealt with separately later. If the
result type is an integer type, it is performed on the type INTEGER_FIXED (see page 30),
whose values have representations identical to INTEGER, with a DELTA (and a SMALL) of

1.0.

Multiplication of two fixed-point values yields (mathematically) a result whose SMALL is
equal to the product of the SMALLs of both operands. Multiplication is performed the same
way in the implementation: A temporary template is first built for the result, with a type
size of 128 bits (since each operand may be 64 bits long) and exponents of 2 and 5 that are
the sum of those of each operand; mantissas are then multiplied, and the result is converted
into the required type, using normal conversion routines and the temporary template.

Division is rather more complicated, since the quotient of mantissas is not generally an in-

teger, and the exact value of the quotient is required to guarantee the result's accuracy. We
are now going to demonstrate that there exists a fixed-point type to which the dividend can
be converted before doing the division, and that this type will yield enough accuracy for the
result. This type is the one whose SMALL is equal to the product of the divisor's SMALL

and the result's SMALL (the result's type is always known, [RM 4.5.5(11)]).

Let S1 be the SMALL of operand 1, S2 the SMALL of operand 2, and Sr the SMALL of the
result. Similarly, let R1, R2 and Rr be the corresponding representations. By definition, Rr is

such that:

Rr Sr <IS1 < (Rr+l) Sr
R2 S2

Since the SMALL of the intermediate type, Si, is equal to S2 X Sr, so converting R1 into the

intermediate type yields a representaton Ri such that:

Ri S2 Sr= RS (1)

As Ri is the result of an integer division:

R.R1 S1 .Ri 5 <i S < Ri+ 1
S2 Sr

Dividing by R2 gives:

32 CMU-SEI-SR-90-2

Ri R < R+l_ _ (2)
R 2 S2 Sr R 2

Let q be the quotient of Ri by R2:

Ri = q R2+r

Equation 2 becomes:

r Rl S1 < r+I

R2 R2 2 Sr 2
Since q 5 q + r and q+ r1< q + 1, multiplying by Sr gives:

R1 SI
q Sr :! <i S < (q+ 1) Sr

R2 S2

Therefore, q, the result of the integer division of the intermediate representation by the
representation of the divisor, is an acceptable value for Rr 7

Division operates between a 128-bit value and a 64-bit value, yielding 64 bits. Therefore, a
template is first built with powers of 2 and 5 that are the sum of those of the second operand
and of the result; the first operand is then converted into that type, then divided by the
second operand. This ensures that the result automatically has the required type and ac-
curacy. A check is then made that no overflow occurred; otherwise NUMERICERROR (or
CONSTRAINTERROR) is raised.

B.3.3. Multiplying Operators with Floating-Point Results
RM 4.5.5(11) says that the result of a product or quotient of fixed-point values must be
converted to some numeric type, but there is no restriction on this type; it can be a floating-
point type, in which case the previous algorithm cannot be applied.

In the case of a multiplication or division with a floating-point result, we rebuild the rational
values of the operands and then multiply the numerators and the denominators (exchanging
numerator and denominator of the second operand in the case of the division); we then divide
the result's numerator by its denominator in floating-point.

Since the mantissa of a (normalized) floating-point number lies between 1/16 and 1 but the
mantissa of a fixed-point number is an integer value, the floating-point mantissa must be
shifted 21 positions to the left (on the Vax). Therefore, the mantissa of the result M is such
that:

R, S 221

R2 S2

However, powers of 2 are part of the exponent part; the part that is not a power of 16 can be

7Thanks to G. Fisher for helping with this demonstration.

CMU-SEI-SR-90-2 33

dealt with separately using shifts after the floating-point division. Therefore, the only com-
putation that requires accuracy considerations is:

R 1 5 q' 5 q2 221
M=

R2 5
q T 5q2

Since R1 fits in 63 bits, and 5 q in 21 bits (with q limited to ±9), the numerator requires
63 + 21.2 + 21 = 126 bits!

This is extremely close to the limits of our arithmetic, and actually works only because we
limit floating-point accuracy to digits 6. Considering our requirement to stay within 128-bit

arithmetic, allowing one more digit for floating-point would not be possible because of an
overflow in fixed-point arithmetic.

An important conclusion (finding?) is that no proposed algorithm for fixed-point arithmetic
can ignore its relation to floating-point since floating-point accuracy requirements are more

demanding in the Ada model.

B.4. Fixed-Point I/0

The problem of I/O is rarely addressed in papers on fixed-point arithmetic. It is however an
important problem since Ada requirbs the implementation of fixed-point 1/0, and conversion
to a printable form must not require excessive space or time-consuming algorithms.

The problem is not actually one of printing, but rather one of converting a fixed-point value to

a string representation. The simplest algorithm would be to convert the value to floating-
point and then use the regular translation routines for floating-point types. Unfortunately,
the accuracy would be insufficient, especially for values located far from zero.

B.4.1. A Property of Our Fixed-Point Types
A consequence of our choice of supporting only numbers of the form 2P. 5 q for SMALL is that
the number of significant digits that are needed to represent exactly any fixed-point value is
finite. Moreover, the number of digits after the decimal point is a property of the type and

can be determined at compilation time.

B.4.2. Demonstration
Let V be the value to be printed, R its representation, and p and q the exponents of 2 and 5
for its type.

V' R . 2p. 5 q

If p and q are both positive, V is an integer. Ifonlyp is negative, then:

V = R .2P. 5q

= R 5-P . (5.2)P. 5q

= R 5 q-P. 10 P

34 CMU-SEI-SR-90-2

As R.5q-P is an integer, this demonstrates that V has exactly -p digits after the decimal
point. Similarly, we can demonstrate that if only q is negative, V has exactly -q digits after

the decimal point.

If p and q are both negative, let us assert that p > q, i.e., IPI < iqi. The demonstration would
be the same for the case where p < q.

V = R. 2P5q

= R. 2P. 2-q. (5.2)q

= R. 2p -q. 10 q

Since p is greater than q, R 2p-q is an integer, and the value has exactly q digits after the
decimal point.

We have therefore demonstrated that every value of the form R.2P. 5 q has exactly

max(lp-1, q-) digits after the decimal point. This size depends only on the fixed-point !ype,
not on the individual values, and can be determined at compilation type (p and q are static

properties of the type).

B.4.3. Converting Fixed-Point Values
Let r = max(p-l, q-). To correctly format a fixed-point value, simply multiply R by

or .2P . 5 q (yielding always an integer result), then format it using the regular integer for-
matting routine, placing a decimal point before the last r digits. If the value the user speci-

fied for AFT is less than the minimum required for the fixed-point type and rounding is
necessary, just add 5. 10r 1 to R. 10r, and then set the r last digits of the result to 0.

Note that our method of formatting benefits from the fact that, unlike integer values [RM
14.3.7(2)], real values are always represented in decimal form [RM 14.3.8(2)], and that the
"special" base used (10) is precisely the product of a power of 2 by a power of 5. Supporting
other values for SMALL would require more investigation to properly format fixed-point
values. To our knowledge, no literature addressing the problem is available.

B.5. Conclusion

Some of the design choices in this implementation could be questioned, the more restrictive
one being limiting floating-point types to digits 6. We have seen that allowing a wider range
would require either more than 64-bit arithmetic, or limiting more severely the range al-
lowed for SMALL. Since Ada/ED is for educational purposes, greater accuracy in floating-

point calculations was not felt to be of primary importance; giving extended facilities for
fixed-point values was considered more important.

The goal of this Appendix was only to show that supporting SMALLs of the form 2P .5
provides a significant simplification of the algorithms and allows an implementation with a
fixed, a priori, size for the arithmetic, while still providing the most useful values from the

user's point of view.

CMU-SEI-SR-90-2 35

It is certainly possible to implement full support for arbitrary values of SMALL; however, the
extra effort required to support them should be balanced with considerations of the practical
usefulness of such values.

References
1. Froggatt, T. Fixed-Point Conversion, Multiplication, & Division. System Designers PLC,
April, 1986. Great Britain.

2. Hilfinger, P. Implementing Ada Fixed-Point Types Having Arbitrary Scales. University
of California, Berkeley, March, 1990.

3. Rosen, J.-P. Une machine virtuelle pourAda: le systme d'exploitation. Ph.D. Th., ENST,
1986. Paris, France.

36 CMU-SEI-SR-90-2

