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SUMMARY

This paper provides the entire proceedings of the Second Intelligent Tutoring Systems
Research Forum, which was sponsored by the Air Force Human Resources Laboratory with the
assistance of Southwest Research Institute, and which was held in San Antonio on 6-7 April
1989. The purpose of the Forum was to assemble 11 invited speakers--all experts in the field
of artificial intelligence in training--to speak to over 100 representatives of the Department ot
Defense, academia, and industry on the problems of representing various kinds of knowledge
within an Intelligent Tutoring System (ITS). Among these kinds of knowledge are domain
expertise (the knowledge to be taught to the student), instructional knowledge (knowledge of
how to teach), and the student model (knowledge about who is being taught). Representation
of each kind of knowledge presents special computational challenges to a system designer;
further, integrating these knowledge types so that the tutoring system can begin to approximate
the high quality of good human instruction also presents significant challenges.

Related peripheral issues are also addressed in these proceedings. Some of these issues
include measuring and evaluating the effectiveness of ITSs, and defining the changing roles of
literacy and text in intelligent computer-aided instruction.

The central thrust of this volume js toward recognition of ITS design as an increasingly
complex and integrated task involving muitidisciplinary teams of experts in domain, instruction,
and assessment. The early days of ITS design provided us with a cohesive component-based
architecture for the design of ITSs; in these papers, however, the distinctions between such
components blur and break down as designers attempt to capture a widening range of the
complex cognitive tasks involved in instruction.
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'PREFACE

The purpose of these Proceedings is to document, explore, and clarify the dimensions of
knowledge representation in the development of intelligent Tutoring Systems (ITSs).
Knowledge representation is a critical issue in the design of ITSs; this Forum presents multiple
viewpoints on this issue. In doing so, the Forum itseif (and these Proceedings) represents a
set of stimuli to existing research and development efforts--both contractuai and in-house--for
the Training Systems Division, and well as to other Department of Defense research
organizations (such as the Army Research Institute and the Office of iNaval Research). We
expect that these Proceedings will provide new directions for thought and investigation for
several years to come.

We gratefully acknowledge the contributions of all the speakers represented in these
Proceedings. In addition, we acknowledge the administrative support of Ms. Rose Reyes,
and the scientific and technical support of Mr. Frank Hughes and Drs. Joseph Psotka, Susan
Chipman, and Kurt Steuck, who chaired sessions of the Forum. Finally, we are grateful for
the support of the many employees of Southwest Research Institute who contributed to the
success of the Forum in various significant but hidden ways.
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THE DIMENSIONS OF TOMORROW'S TRAINING VISION: ON KNOWLEDGE
ARCHITECTURES FOR INTELLIGENT TUTORING SYSTEMS

Hugh Burns, Lt Col, USAF
Chief, Intelligent Systems Branch

James Parlett, Major, USAF
Deputy Chief, Intelligent Systems Branch

Air Force Human Resources Laboratory
Brooks AFB, TX 78235

In the twenty-first century, a technical trainer's professional credibility will depend in part on
how well he or she has kept up with intelligent training systems. Plainly stated, technical
trainers cannot afford artificial intelligence illiteracy in tomorrow’s electronic schoolhouses. They
cannot afford it for their professional lives; they certainly cannot afford it for their students'
futures. An "intelligent® computer of some sort is clearly on the practical horizon. Technical
trainers need to be able to exploit it, and--better yet--need to be afforded the opportunity to
help design, develop, test, and evaluate intelligent training systems. But until training instructors
and managers have some empirically validated proof of the new ‘“intelligent" training vision
research scientists imagine, “intelligent tutoring systems (ITSs) will not be wisely and widely
used. Researchers and users must therefore come together frequently in forums to learn, to
ciarify, to expiore, and to discuss the dimensions of tomorrow's training vision.

Designing, developing, and evaluating intelligent tutoring systems is not so much a st-rategic
matter--what things to do--as a technical enterprise—-how to do things. Figure 1 portrays the
overall evolving architecture of a practical intelligent tutoring system.
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Figure 1. intelligent Tutoring System Architecture.




The research and literature have laid out a fundamental, highly interactive set of components.
In Foundations of Intelligent Tutoring Systems [8], the foundational anatomy was used to discuss
research issues within each of the separate components--though all of the authors knew how
difficult it was to separate, if you will, the dancers from the dance. In the forum this year,
the issues have been broadened to emphasize the interactivity of the major components in the
design. This year we will be exploring the dimensions of expertise, instruction, literacy, and
application.

Now, here is what we need a better understanding of:

Domain Knowledge: The Expert Dimensions
Teaching Knowledge: The Instruction Dimensions
Communication Knowledge: The Literacy Dimensions
Meeting Users’ Needs: The Application Dimensions

* % * %

ON DOMAIN KNOWLEDGE: THE EXPERT DIMENSIONS

Trends in technical training today suggest a balanced view of declarative knowledges and
procedural skills: Instructors are articulate about the domain facts, as well as the skills they
wish to see demonstrated. Many are also concerned about the learning processes students
use to master various technical skills, such as the specific troubleshooting or operational
procedures the trainees use to solve the problem. As such trends continue, then intelligent
tutoring systems can be vaiuable allies.

The current design of ITS is closely tied to how an ITS presents the domain to a student.
Figure 2 highlights the dimensions of device or operational simuiation, the domain expert, and
the intelligent interface.

Domain knowledge is most often represented operationally. Most ITS design is featured on
the user interface. The domain obviously has implications for how a tutor is conceptualized
and how a student views the instruction. Most important'y, the knowiedge acquisition investments
for domain representation are the major roadblocks in tutorial development.

The design of the domain knowledge structures includes depicting properties of the domain
itself and the tasks to be trained. Some domain knowledge is unstructured, but most domain
knowledge is highly structured and specific. Theoretical knowledge might appear in a large,
multi-user knowledge base in a more structured fashion; for exampie, presenting a particular
viewpoint within the knowledge base that has been created based on the needs of a specific
goal for using the knowledge base. Some tasks have no generic viewpoint; equipment design,
for example, may implicitly represent the important features in an operations console. Even in
domains that do not have a task-defined interface--such as programming, algebra, electronic
troubleshooting, or writing--relevant and often creative representations can be designed and
presented. Representations are based on how experts understand and ‘interpret the task domain,
and potential areds of development will demonstrate static, procedural, and even "automatized"
tutors.
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Figure 2. Domain Knowledge Architecture.

How domain knowledge is represented and used in a computer program depends on ths
task to be performed. The task as it breaks down into goals of a training system provides a
viewpoint about the basic knowiedge in the domain. For exampie, in the domain of jet engine
mechanics, the task of diagnosing malfunctions generates various viewpoints of the knowledge
about aircraft, mechanics, and electronics. Such viewpoints might include a functional
representation that fosters a mental simulation of how the engine works or an experientially
based representation which provides quick condition-action, pattern matching capabilities. Some
high-performance domains require viewpoints on the knowledge that include physical skills.

An intelligent tutoring system can help a technical instructor train more efficiently, but a
huge question remains: Can an intelligent tutoring system help trainees learn how to perform
their real jobs more effectively? The honest, intuitive answer is: "It depends.” A more honest,
intellectual answer is, "We do no! have enough empirical data to cite a significant difference.”
However, it both students and instructors form an alliance to use intelligent training systems
appropriately, then students should perform their jobs more effectively. Some preliminary
evidence suggests that technical trainers often have not developed an adequate sense of how

. specific technical speciaities can be viewed in this larger job/task context, and so have not
been able to pass that "big picture" knowledge on to students.

inteiligent computer-assisted instruction is often controversial because it takes an explicit
domain point of view. Its value is determined by how robustly the instructional environment
captures the domain design, how "smartly* the domain expert is represented, and how capably
and flexibly the instructional intuitions are represented within the machine. This evolution,
however, means that in the near future intelligent training systems are more likely to be
appreciated for the “tools" which are emerging for domain design and delivery rather than as
“tutors" in and of themseives.
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ON TEACHING KNOWLEDGE: THE INSTRUCTIONAL DIMENSIO’.S

The single, major advantage of an intelligent tutoring system is simply achieving a more
favorable teacher-student ratio. One-on-one tutoring is not new. Any teacher or coach who
is trying to improve performance of a skill can attest that the .nore time they can spend
one-on-one, the greater the likelihood that a student’s performance will improve. So, intelligent
tutoring systems potentially allow more one-on-one instructional efficiency and, thereby, leverage
more instructional effectiveness. But there are challenges.

Proposed architectures for representing teaching knowledge in intelligent tutoring systems
can be described both in terms of how that knowledge can be understood and how it can be
represented as sets of domain-independent tutoring strategies. Teaching knowledge can a'so
be used to develop methods to generate answers and expianations from instructional knowledge
bases in which a coherent viewpoint is tailored to the individual student’'s aeeds. From a
researcher's point of view, explanation generation with and without the benefit of a student
model could empirically evaluate the robustness of the student model itself. Consequently, tools
to encode an instructional expert to control knowledge in inteiligent tutors will involve representing
multiple knowledge concepts and proposing alternative teaching tactics. Figure 3 depicts the
interaction between the instructional expert module and a dynamic siudeni model, as well as
the delivery implications for a learner-friendly inteiligent interface.
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Figure 3. ieaching Knowiedge Architecture.
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Many technical trainers are convinced that tuday's inflexibie or brittle software does not
significantly help them meet the needs of their students. Not many technical trainers are
convinced that the computers reach individual students with individual help. Much of this brittle
software sits on the sheif in the “training research laboratory" waiting to be prescribed. The




solution is to create flexible software that permits teacher-controlied modifications. An intelligent
tutoring interface should be an electronic mirror reflecting what students want to do and what
instructors want students to do--allowing both to think more about their choices. In whatever
way a technical training instructor perceives skill development, an intelligent training system
must allow appropriate opportunities for instructors to intervene precisely in the student’s learning
process. Instructors also want more control over supplementary materials; they want to have
authority over software prescriptions. Because they want the capability to reinforce their students
personally, instructors should have the capability to customize software and to at least influence
the architecture of an instructional expert module.

in the near term, computers will provide recordings of a student’s probiem-solving processes
so that students may observe their own performances, as well as the performance of experts.
Such ITS experiences will offer a time-compressed view of the tactics involved in solving a
technical problem. The "compression of process’ will allow for awareness of past habits to
more fully inform future problem-solving. Imagine seeing electronic troubleshooting expertise
in motion. In the long term, as more and more "artificial intelligence" is designed into the
instructional expert, applications will be even more individualized. - These trends are unmistakable.
Researchers must keep investigating how humans learn and teach so that intelligent computers
will surprise us even more in the future.

The tutors which educators and technical trainers will use must give students a strategic
sense of purpose, must encourage them to«sesk-appropriatelyswith an outcome in mind, must
coach them to perform efficiently, and must have them recognize effective job performance.

ON COMMUNICATION KNOWLEDGE: THE LITERACY DIMENSIONS

intelligent tutoring systems that are capable of training students in complex problem-solving
tasks require human/machine interfaces that are extremely flexible. "Interactivity" is undoubtedly
the real strength of and hope for intelligent tutoring systems. The set of instructional activities
in an intelligent tutoring system provides a way for investigating, exploring, and stimulating the
communication processes in learning.

in many human/machine systems, the parameters and requirements of the communication
protocol are well understood. Databases, for example, "expect' users to ask questions which
the system is programmed to answer. Traditional computer-based instruction asks questions,
and students answer. But our vision of communication between a human and an intelligent
tutoring system is far more demanding.- An intelligent tutoring system should be able to tel
stories and run simulations. It must be able to explain itself in an accessible way. It must
be able to communicate its own "expectations” to a student. it must “isten.” In short, an
intelligent tutoring system must be able to perform many of the communication skills handled
so fluently by human teachers. But how? The design demands of intelligent tutoring systems--with
so many graphics options, so many text and language choices--make it almost impossible for
domain experts to select a single communication model.

Figure 4 portrays how the communication architecture expresses the necessary relationship
between the user and the interface, all under the control of the instructional expert.
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Figure 4. Communication Knowledge Architecture.

Yes, interactivity should be incorporated into ITS dialogues, but what techniques should be
used to achieve them? Language-based? Graphics-based? Both? Should students type their own
short answers in their own words rather than selecting them from a menu of muitiple choices?
Should students type explanations for their answers? What about knowledge-based interactions?
Should students be able to try many aiternatives? Should students be able to create and play
and explore? Some student/computer interactions are moving toward more student-centered,
reactive learning environments. Microworlds demonstrate the effectiveness of such instructional
environments. 'Clearly, any ITS will need a library of examples, including examples of failures
and exceptions. And such an ITS will necessarily be versatile in its presentation of those
examples, providing the student with muitiple occasions in which his or her creativity,
problem-solving, and learning skills might be developed.

In the absence of such occasions for creativity, exploration, and self-generated questions,
the student will have no mental "hooks' on which to hang his or her burgeoning knowiedge.

Such creative tutoring systems will require that students ask and systems answer, but in
such a way that the student must ask more and fruitful questions, that students explore "garden
paths," that students enter willingly and fuily into the problem-solving sessions. In other words,
such tutoring systems must uitimately communicate a dramatic sense of play, exploration, and
instruction to a student. To engage students in learning, then, tutoring systems must enact
and communicate a clear and versatile pedagogical stance.

ON MEETING USERS’ NEEDS: THE APPLICATIONS DIMENSIONS

To effectively meet the varied needs of ITS users, we must first consider the identity of
potential ITS users. The most important ITS users-—-learners—-must have prerequisite skills,




knowiedges, and epistemologies in order to learn from an ITS. Instructors must also have
ways of managing and modelling currieula involving ITS in a way that promotes efficient, effective,
and flexible instruction. Finally, decision makers must have credible information about the
effectiveness of intelligent instructional technology in training and educational settings.

Figure § portrays the concept of muitipie intelligent tutoring systems meeting these users’
needs in one-on-one Instructional settings. Here the emphasis is on the flexibility of the
intelligent systems to dsliver cost-effective and instructionally effective training. And from the
interactions of the learners with an ITS, instructors and decision makers (and ultimately, the
ITS itself) will themselves learn to better meet the learner's needs.
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Figure 5. Meeting Users’ Needs: Flexibility and Effectiveness.

Current literacy theory-—ideas about how people learn to read and write--must inform the
construction and evaluation of Intelligent tutoring systems. The muitiple perspectives of students,
many of whom are underprepared in literacy skills (not to mention computer skills), must be
accounted for. Understanding literacy today means understanding a piurality of literacies. Good
reading or good writing varies across cuitural and disciplinary communities and, undoubtedly,
the relationship between literacy and educational technology will increase as new technologies
such as hypertext and hypermedia systems are introduced into the construction and design of
intelligent tutoring systems. Plainly stated, we cannot assume that students possess requisite
reading and writing skills for complex probiem-solving tasks, such as operating and learning
from ITSs. Neither can we assume that the literacy of one group or cuiture maps clearly onto

the literacy implicit (or expilicit) in the design and operation of technology in general, and ITS
in particular. ' '




" To realize the promise of intelligent tutoring systems, teachers must be confident in their
own abilities. Further, teachers and trainers must develop new, prescriptive models of instructional
design and delivery. Instructional sciences and arts will expand as this novel technology and
theories emerge. Instructional design itself will be conceived of as a problem-solving framework.
Within this framework, ITS will provide a means to discuss the processes and knowledges
involved in training and education.

How will ITS technology transfer from promising demonstrations to real training settings?
Modern-minded instructors may eventually wish to advise decision makers about technical
curriculum changes, domains, device simulations, subject-matter experts, instructional routines,
and interventions, as well as evaiuation and security matters. Teachers, learners, and planners
alike must constantly engage in a process of technology assessment, a process of examination
that leads to a clear and effective transfer of ITS technology from the research laboratory to
the classroom.

This technology transfer must involve validating methodologies, articulating appropriate
variables, gauging the social settings, as well as considering the range of external motivations--to
include the political uses of such assessments. Another related technology transfer complication
is cost, both in terms of time to become well acquainted with the various intelligent software
packages and in terms of the funds required to purchase and maintain artificial intelligence
software.” Decision makers need to be given time to learn about specific operating systems,
to survey the diverse tutoring applications, to read the documentation, and to plan potential
intelligent tutoring applications. Like teachers, decision makers must know what it means to
learn. In addition, instructors need training and training support--just like anyone else from
whom expertise is expected. Very few military, industry, and even academic managers are
promoting adequate training for their faculties and staffs in the area of advanced training
technologies; they assume instead that facuity will train themselves if they care enough. Intelligent
training systems help students, instructors, and decision makers only if wise investments of
time, money, and personnel are made at all levels.

THE DIMENSIONS OF TOMORROW’S TRAINING VISION:
A FINAL PERSPECTIVE

Can an intelligent tutoring system help a learner become a better technician, a skilled job
performer more in touch with the processes of equipment diagnosis, equipment operation, and
organization support? Yes, and technical trainers must lead novices to this journeymen’s
realization. The-issue Is not just whether students have improved individual performances but,
more importantly, whether or not they have developed and internalized more effective ways of
learning while in the act of performing their technical jobs.

The outlook for intelligent tutoring systems is bright, though technical trainers face quite a
charge. In the next few years, however, such responsibilities will seem more and more natural.

I technical training instructors have complex domains to simplify, then they can use expert
representations and advanced integrated interfaces masterfully. If instructors better understand
the nature of teaching, then they can design machines which can tutor effectively. If instructors




better understand the dynamic features of communication, then they can individualize instruction
efficiently. If trainers and researchers alike are committed to meeting users’ needs, then they
can provide the right people for the right jobs at the right time.

Inteiligent tutoring systems--tools for the twenty-first century--are machines which improve
and evolve. With them or without them, the Air Force will fly, the Navy will sail, the Marines
will land, and the Army will roil. But with wise decisions about how intelligent training systems
will supplement technical training, operational training, team training, embedded training, and
exportable training, the very enterprise of learning complex technical skills promises to be more
efficient, more effective, and much more exciting.




10.

11.

12.

13.

BIBLIOGRAPHY

Andriole, S.J., & Hopple, G.W. (Eds.). (1988). Defense applications of artificial-intelligence:
Progress and prospects. Lexington, MA: D.C. Heath.

Feigenbaum, E., McCorduck, P, & Nie, F  (1988). The rise of the expert company. New
York: Time Books. :

Gardner, H. (1985) The mind’s new science: A history of the cognitive revolution. New
York: Basic Books.

Kearsley, G.P. (Ed.). (1987). Artificial intelligence and instruction: Applications and
methods. Reading, MA: Addison-Wesley.

Lawler, R.,, & Yazdani, M. (Eds.). (1987). Al and education. Norwood, NJ: Ablex.

Psotka, J., Massey, D., & Mutter, S. (Eds.). (1988). Intelligent tutoring systems: Lessons
learned. Hillsdale, NJ: Lawrence Erbaum.

Richardson, J.J. (Ed.). (1985). Expert systems in maintenance. Park Ridge, NJ: Noyes.

Richardson, J.J., & Polson, M. (Eds.). - (1988). Foundations of intelligent tutoring systems.
Hillsdale, NJ: Lawrence Eribaum. : .

Schank, R.C., & PG. Childers. (1984). The cognitive computer: On language, learning,
and artificial intelligence. Reading, MA: Addison-Wesley.

Sleeman, D., & J.S. Brown (Eds.). (1982). Intelligent tutoring systems. New York:
Academic Press.

Wenger, E. (1987). Artificial intelligef:ce and tutoring systems: Computational and
cognitive approaches to the communication of knowledge. Los Altos, CA: Morgan
Kaufman. :

Winograd, T, & Flores, F. (1986). Understanding computers and cognition: A new
foundation for design. Norwood, NJ: Ablex.

Winston, PH., & Prendergast, K.A. (Eds.). (1984). The Al business: Commercial uses
of artificial intelligence. Cambridge, MA: MIT.

10




REPRESENTING AND TEACHING HIGH-PERFORMANCE- TASKS WITHIN
INTELLIGENT TUTORING SYSTEMS )

J. Wesley Regian
Senior Scientist
Intelligent Systems Branch
Air Force Human Resources Laboratory

ABSTRACT

intelligent Tutoring Systems (ITSs) are advanced Computer-Based Training (CBT) systems
which utilize Artificial Intelligence (Al) technology to allow highly individualized instructional
interactions with students (Soloway & Littman, 1986; Wenger, 1987; Yazdani, 1986). This paper
describes a currently impilemented Intelligent Tutoring System (ITS) developed at the Air Force
Human Resources Laboratory (AFHRL) that teaches cognitive skills associated with performing
an instrument-only landing in a fighter airplane. The [TS was developed not as an actual
training device for instrument flight but as a testbed for the application of Al to training in a
class of task domains (and task components) that have been referred to as high-performance
tasks (Regian & Shute, 1988) and real-time tasks (Ritter & Feurzeig, 1988). In high-performance
tasks, there is more of a requirement for speeded, reliable, and automatic task performance
than is found in the typical knowiedge-rich ITS domains (e.g., medical diagnosis, . electronic
troubleshooting). The Instrument Flight Trainer (INFLITE) trains students to land a simulated
aircraft (F-16) using instruments only. During the process, an intelligent coach monitors the
student and provides guidance just as an instructor pilot might guide a student pilot. This
guidance is presented verbally, using a speech synthesis device to simulate human speech.
The system supports a variety of instructional approaches including the capability to freeze the
simulation to give guidance, prebrief students before training sessions, generate guidance in
real time during training sessions, debrief students after training sessions, anticipate student
errors in real time based on prior student performance, and generate part-task drills to achieve
performance goals.

INTRODUCTION

Researchers at AFHRL are applying a taxonomy of learning skills (Kyllonen & Shute, 1987)
to the pedagogical issues surrounding ITS design and development. The taxonomy provides
a means of categorizing target domains and consequently specifying the appropriate training
approaches for particular ITSs. This paper focuses on an area that has only recently been
investigated by the ITS community: a class of tasks referred to as high-performance tasks
(Regian & Shute, 1988). In high-performance tasks, there is more of a requirement for speeded,
rellable, and automatic task performance than is found in the typical knowledge-rich ITS domains
(e.g., medical diagnosis, electronic troubleshooting). This paper describes an INFLITE developed
in the Training Systems Division at AFHRL to evaluate methods for using Al to train
high-performance tasks.

INFLITE is in no sense a serious attempt to develop an application-ready instrument flight
training device. Rather, INFLITE is a testbed system designed for the purpose of evaluating

11




promising approaches to training high-performance tasks. The decision to use flight simulation
as the prototype domain was guided by a desire to use an inherently Interesting task to increase
motivation in experimental subjects.

INTELLIGENT TUTORING SYSTEMS

Computer-Aided Instruction (CAl) is a mature technology used to teach students in a wide
variety of domains. The introduction of Al technology to the field of CAl has prompted research
and development efforts in an area known as Intelligent Computer-Aided Instruction (ICAl). In
some cases, ICAl has been touted as a revolutionary alternative to traditional CAl. "With the
advent of powerful, Inexpensive school computers, ICAl is emerging as a potential rival to CAI"
(Dede & Swigger, 1987). In contrast to this, one may conceive of CBT systems as lying along
a continuum which runs from CAl to ICAl. Thus, ICAl may be seen as an evolution of CAl
rather than as a revolutionary alternative. The key difference between the two perspectives is
that in a revolution the old guard is dismissed and replaced, whereas in an evolution the old
guard is a foundation to be built upon.. An important implication of the “"evolution" perspective
is that we are less likely to throw out the strengths and accomplishments of the old guard.
This perspective does not imply, however, that there are no important differences between CAl
systems and ICAl systems.

For my purposes, | discriminate among CBT systems according to the degrec tc which the
instruction they provide is individualized. My choice of this particular dimension is based on
more of a desire for utilitarianism than for precision. A great deal of data from the educational
literature indicates that carefully individualized instruction is superior to conventional group
instruction (Bloom, 1984; Woolf, 1987). Thus, an important way in which CBT systems differ
is in the degree to which their behavior is modified by an inferred "model of the student's
current understanding of the subject matter' (VanLehn, 1986). The CBT system that is less
intelligent by this definition, | conceive of as CAl. Similarly, the system that is more intelligent,
I conceive of as ICAl Often, ICAI systems are referred to as “Intelligent Tutoring Systems, or
ITSs" (Sleeman & Brown, 1982). This term is particularly appropriate, as it brings to mind
one-on-one tutoring.

With respect to individualization, it is important to note that virtually all traditional CAIl
systems are individualized in the sense that they are self-paced, and many are further individualized
by virtue of branching routines which allow different students to receive different instruction.
CAl systems with branching routines are, in fact, more individualized than those without branching
routines. Thus, they are more Intelligent by the current definition (although in a weak sense,
as we shall see). Nevertheless, in branched CAl the instructional developer must explicitly
. encode the actions generated by ail possible branches, and there is a finite number of possible
paths through these branches. As one moves further away from the CAl to the ICAl end of
the continuum, one begins to see a very different and more powerful approach to individualization.
This more powerful approach is touched on by Wenger (1987) when he refers to explicit
encoding of knowledge rather than encoding of decisions (p. 4). An ITS (a term which probably
shouid be reserved for systems which are very far toward the ICAI end of the continuum)
utilizes a diverse set of knowledge bases and inference routines to "compose instructional
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interactions dynamically, making decisions by reference to the knowledge with which they have
been provided" (Wenger, 1987, p. 5).

The ITS Anatomy

In an ITS, individualized instruction is an emergent property of several interacting components.
ITSs often consist of four, sometimes five, distinct components. These are the expert module,
the instructional module, the student model, the interface, and often a device simulation or
other instructional environment.

The expert module is a programmed representation of expert knowledge in the target domain
(that which is being taught). It is almost identical to what is commonly known as an expert
system, except in this context it Is often very articulate (able to generate some form of rationale
for its actions) and capable of generating alternative solution paths (rather than a single "best"
path). The expert module brings domain knowledge to the ITS. In some useful sense, the
system "knows" how to perform the task which it is seeking to teach, and can demonstrate
that knowiedge.

The instructional module is a programmed representation of expert knowledge on pedagogy
in the target domain. It is generally not articulate but is usually capable of generating alternative
instructional approaches based on the current knowledge level of the current student. Although
the expert module typically derives from knowledge engineering accomplished with an expern
practitioner in the target domain, the instructional module may derive from knowledge engineering
accomplished with an expert instructor in the target domain (which may or may not be the
same person as the expert practitioner), with a general training specialist, or both.

The student model constitutes a repository for information about each student that uses the
system. It differs from the expert and instructional modules in that it is a mere shell at the
beginning of an Initial tutoring session, whereas the latter two are generally complete when the
development of the ITS is coimplete. At the beginning of an initial tutoring session, the student
model is merely a place to store specific kinds of information about students in particular
formats that will be useful for the instructional module to access. The student model is
dynamically updated during tutoring sessions to maintain current information about the student
such as what the student knows, what the student does not know, and misconceptions the
student may have. The student model brings situational awareness to the ITS. Thus, the
system "knows" whom it is teaching and can make informed decisions about what to teach
next and how to teach it.

The interface provides the methods by which the student interacts with the ITS. The interface
may include such output methods as computer-generated graphics and text, recorded video
images, or speech synthesizers; and such input devices as a mouse, keyboard, touchscreen,
joystick, or voice recognition system. One important point about the interface is that it should
be as simple as possible so that learning to use the ITS does not interfere with learning from
the ITS.
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Many ITSs (e.g., STEAMER, IMTS/Bladefold, Sherlock) use an embedded computer simulation
of an electrical or mechanical device to provide an instructional context, or environment. That
is, the device simulations are used to teach operation or maintenance of a specific device in
the context of an operating model of the device. Other ITSs teach a body of knowledge that
is not specific to any particular device, and yet they use other kinds of simulations to provide
instructional environments. For example, Smithtown uses a simulation of microeconomics
operating in a small town, and the Orbital Mechanics tutor uses a simulation of orbital dynamics.

Knowledge-Rich Versus High-Performance Domains

Traditionally (if the term applies to a technology less than 20 years old), ITSs have focused
on knowledge-rich domains such as electronic troubleshooting, physics, economics, and medical
diagnosis. Furthermore, they have focused on the higher-level problem-solving components of
these domains even though knowledge-rich domains almost invariably involve components of
expertise, sometimes called enabling skills, which can be characterized as high-performance
components. For example, electronic troubleshooting involves schematic-tracing, which is
supported by the ability to immediately and accurately combine gate inputs to determine the
output of a particular gate type as represented on the schematic. Similarly, expert performance
in theoretical physics requires total facility with basic math and algebraic skills. Human instructors
can recognize deficiencies in basic enabling skills (especially in one-on-one tutoring situations)
and apply methods to correct these deficiencies.

ITSs as a rule are not sensitive to deficiencies in basic enabling skills, even though they
are not difficuit to identify. Moreover, computers are particularly well suited to providing the
kind of drill-and-practice exercises that can correct the deficiencies. In generating instruction
for knowledge-rich domains, ITSs may be sensitive to the full range of performance determinants
for the domain, and have appropriate routines available for remediation. Furthermore, there is
a place for ITS technology even in primarily high-performance domains such as air traffic control,
air intercept control, typing, mission control console operation, and simple equipment operation.

TUTORS FOR HIGH-PERFORMANCE TASKS

Any training program should be designed with an awareness of the underlying cognitive
operations that support performance in the targeted task or domain. Tasks may depend on
greater or lesser contributions from declarative knowledge, procedural knowledge/skill, or
performance skill determinants. These categories of cognitive operations may be said to lie
along a continuum which runs from more knowiedge-based to more performance-based (see,
for example, Kyllonen & Shute, 1987). Though most complex tasks are supported to some
degree by all of these categories of operations, many tasks are heavily weighted toward one
end of the continuum. Some tasks, for example, are very knowledge-based, such as electronic
troubleshooting or medical diagnosis. Other tasks tend to be much more performance-based,
such as air intercept control or typing. Although both types of tasks require a certain amount
of knowledge to support performance, knowledge-rich tasks require greater depth and breadth
of knowledge and are less reliant on performance-basad skills. The more performance-based
tasks, on the other hand, often require key task components to be cognitively automatized to
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the point where task performance is smooth, fiuid, and eftortless. Such an assimilation, or
"automatization," of the task has important benefits. For example, automatized task performance
allows the individual to perform other functions at the same time and renders task performance
highly reliable under stress (Schneider & Shiffrin, 1977) and highly resistant to skill degradation
(Regian & Schneider, 1986).

The Role of Automaticity in High-Performance Skill Training

The automatic/controlled processing framework (Shiffrin & Schneider, 1977) provides a
theoretical approach to training high-performance skills. The framework posits two qualitatively
different forms of processing that underlie human performance. Automatic processing is fast,
parallel, fairly effortless, not limited by short-term memory capacity, not under direct subject
control, and used in performing well-developed skilled behaviors. This mode of processing
develops when subjects deal with training stimuli in a consistent manner over many triais.
Controlled processing is slow, effortful, capacity-limited, subject-controlied, and used to deal
with novel, inconsistent, or poorly learned information. This mode of processing is expected
at the beginning of practice on any novel task, and throughout practice when a subject’s
response to a stimulus varies from trial to trial. In this framework, high-performance skills are
trainable because they involve components that can be executed rapidly, reliably, and with little
effort, freeing cognitive resources for performing other non-automatic tasks (see Schneider,
1985). :

In designing training procedures for high-performance tasks, two important findings from the
automatic/controlled framework should be considered. The first centers on the distinction
between consistent practice and varied (or inconsistent) practice. Consistent practice produces
substantial improvements in performance as automatic processing develops (e.g., 98% reduction
in visual search comparison rates, Fisk & Schneider, 1983). Varied practice utilizes only ¢ontrolled
processing and produces little improvement in performance (e.g., no change in letter search
performance over 4 months of training, Shiffrin & Schneider, 1977). The second finding centers
on the amount of effort required to perform automatic processing tasks. Consistent practice
greatly reduces the amount of effort required to perform a task, allowing controlled processing
to be allocated to another task. When subjects have already developed automatic processes
to perform one task, they can learn to time-share another task with little or no deficit. After
20 hours of consistent practice in two search tasks, subjects were able to perform both tasks
simultaneously nearly as well as they could perform each separately (Fisk & Schneider, 1983;
Schneider & Fisk, 1982a, 1982b, 1984). In addition, automatic task performance has the
advantage of being far more reliable under stress (see Hancock & Pierce, 1984).

The acquisition of skill with practice Is assumed to result from the development of automatic
processes which are used to perform consistent task components. Any applied skill of reasonable
complexity is likely to involve both consistent and inconsistent components. Thus, an empirically
verified componential breakdown of a complex skill is useful for training. Performance on
consistent components is likely to change significantly over extensive practice, whereas
performance on inconsistent components is likely to asymptote relatively quickly. Automatization
of consistent components has the benefit of freeing up processing capacity that may then be
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applied to inconsistent components. Furthermore, automatization of consistent components may
be facilitated during training by allowing trainees to attend fully to the isolated components.

Part-Task Training Again?

Component-based or part-task training is not a new idea. The part-task training literature
especially is replete with examples of failed training procedures. Nevertheless, many procedural
training programs informally break down the training into parts which are trained individually
and then in aggregate. For example, flight instructors often teach students a procedure to
scan instruments during flight. This instrument drill is practiced in isolation until the student
is comfortable with the procedure. Practice is provided on flight simulators, and students are
sometimes encouraged to practice on aircraft in the hangar. By the time the student is actually
flying an airplane, the instrument drill is supposed to be “second nature.” Under the current ~
perspective, the instrument drill is a task component that should be trained to automaticity so
that controlled processing is freed up during flight for aircraft control. Next consider the
problem of trying to do calculus without first automatizing basic math and algebra skills. if
the algebraic skills are not automatic, they will be unreliable when performed concurrently while
allocating controlled processing to performance of the calculus task. The student would be
more likely to be error prone, slow, and unable to perform complex problems. For many tasks
it is important to automatize key components of the task.

Time-Compressed Training

One of the benefits that falls out of a componential approach to training is the capability
of providing a large number of trials for any given component in a relatively short period of
time. For example, in an air intercept control training regime for Naval Air Intercept Controllers
it is important to be able to visually estimate the angular heading of a radar blip within 5
degrees of accuracy. This level of accuracy takes an average of 2,000 training trials to achieve
in laboratory tests. Under normal training conditions, this many trials would require about 5.5
weeks of training time. In a time-compressed angle judgment module, Regian and Schneider
(1986) had students perform a video-flash-card version of the task. In this form, students
experienced 2,000 trials of the critical task in 3 hours and achieved the requisite accuracy.

Al for Drill and Practice?

Artificial Intelligence programming techniques are, of course, not required for building simple
drill-and-practice exercises. The "intelligence" in high-performance training would be manifest
in decisions regarding exercise selection and sequencing, decisions rules for when to move
from one exercise to the next, and perhaps in real-time generation of specialized drill-and-practice
routines. For example, in air intercept control, suppose that the student quickly developed
facility with identifying radar blip headings that were near the cardinal points (0°. 90°, 180°,
270°) but was still error prone when identifying other heading angles (e.g., 27). An intelligent
system would note this fact and generate drill-and-practice exercises that were, heavily weighted
with noncardinal practice trials. In most cases, however, tasks are not purely high-performance




or knowledge-rich but rather, involve both kinds of components. Aircraft piloting, for example,
involves both skill and knowledge.

INFLITE

The INFLITE system trains students to land a simulated aircraft (F-16) using instruments
only. INFLITE runs on AT-class microcomputers. It is written in the C programming language
and uses the CLIPS' expert system shell. The system was designed primarily to operate with
a joystick, but also supports a keypad interface. For optimal utility, INFLITE requires a peripheral
voice synthesis device capable of converting an ASCIl character stream into articulated speech.
Such devices are commonly availabie and relatively inexpensive. The program presents an
accurate real-time simulation of the interactions among essential flight instruments, balancing
processor time among the different functional units in order to avoid disruption of the display.

The display interface to INFLITE consists primarily of the HUD (Head-Up Display), which
presents speed, altitude, heading, flight path ladder, center indicator, and Instrument Landing
System (ILS) beam indicators. In addition to joystick (or keypad) control, the student may
toggle on-screen panel lights which depict the status of the landing gear, afterburner, wheelbrake,
and airbrake.

iNFLITE was designed as an ITS "shell" that will support a variety of instructional approaches
including the ability to freeze the simulation to give guidance, prebrief students before training
sessions, generate guidance in real time during training sessions, debrief students after training
sessions, anticipate student errors in real time based on prior student performance, and generate
part-task drills to achieve performance goals. Following is a description of the initial version
of INFLITE.

In the initial familiarization session, the student is given a guided tour of the display interface
by an articulate coach. As the coach describes each component of the interface, that component
is highlighted on the screen. Next, the student is given a series of practice exercises to
engender familiarity with methods of controlling the simulation. When the coach is satisfied
that the student is sufficiently acclimated, the student is allowed to begin training trials.

At the beginning of each training trial, the simulation commences with the aircraft in flight,
under normal flight conditions and randomly positioned with respect to the target airstrip. The
goal of each training trial is to successfully land the aircraft. To do this, the student must
follow heading information from flight control, use the joystick to turn the aircraft to successive
temporary headings, locate the ILS beam, and follow this beam down to the airstrip.

During each training trial, an intelligent coach monitors the simulation (airspeed, heading,
deviation from ILS beam, etc.) and provides guidance just as an instructor pilot might guide a
student pilot. This guidance is presented verbally, using a voice synthesis system to simulate
human speech. The student also receives instructions from a ground-based flight controller,
again using synthesized speech but with an aiternate voice. During early training trials, the
coach may choose to freeze the simulation to give guidance. During all trials, student performance




information is recorded for later use in prebriefing, interactive comments, and postbriefing by
the flight coach. During the postflight debriefs, the coach reviews the student's performance
in comparison to performance on earlier flights and highlights specific areas to be worked on
in future flights. During early training trials, the coach provides guidance and feedback to the
student based on real-time observations, as well as by anticipating problems based on typical
novice tendencies. [n later training trials, the coach additionally anticipates probiems based on
the current student’s performance history. During the preflight briefs, the coach reminds the
student of problem areas that were identified in earlier flights.

The intelligent tutoring is handled by the expert, coach, and student modeling modules built
with the CLIPL expert system.2 The expert outlines suggested pilot actions and judges flight
conditions. For example, the expert may suggest a change to a heading of 90 degrees to
move the aircraft toward the ILS beam center. If the student does indeed choose to move
toward the beam, the expert will note the heading chosen and the effect on the alignment of
the craft with the ILS beam. The expert reports to the coach any motion toward or away from
the landing goal and its subgoals. The student never hears directly from the expert. Instead,
the expert provides information to the coach, who decides how best to interact with the student
from an instructional perspective.

The ccach uses information such as expert performance data, average student performance
data, current student performance data, and the history of the current student to make instructional
decisions. For example, the coach may chcose to intervene with the student by generating a
simple warning ("Wes, you've drifted off course again"), by selecting a part-task drill, or by
freezing the display and generating a lengthy description of the sroblem. In the current version
of INFUITE. the display is frozen only in early training trials, such as the first time the student
encounters the problem of being aligned with the beam according to the ILS scales but moving
away from the beam due to an incorrect heading.

The student modeling module records the student performance profile, which includes:
latency and accuracy measures for key task components, common errors (mastered, unmastered,
and presented but uniearned), deviations from the expert-suggested actions, short descriptions
of the starting flight conditions and the history of the flight, and any coach conclusions.

SUMMARY

intelligent Tutoring Systems should be sensitive to the full range of derformance determinants
for their target domain, and should be capable of generating instructional exercises that are
appropriate. Many important tasks such as aircraft piloting, complex equipment operation, and
elecicunic troubleshooting Iinvolve both knowledge-rich and high-performance components. At
the AFHRL, we are investigating ITS architectures that can support the full range of training
approaches that are required for these kinds of tasks.

INFUTE is a prototype example of a potential class of intelligent microprocessor-based
training simulators with the goal of filling the gap between classroom instruction and expensive
simulation time. Such a class of simulators would be useful during initial training and for
refresher training. INFLITE is a high-cognitive-fidelity/low-physical-fidelity simulator targeted to




teach key cognitive skills required for high-performance tasks after declarative instruction and
prior to high-physical-fidelity simulation instruction.

INFLITE will be used as an experimental testbed for purposes of evaluating the relative
training effectiveness of various approaches to automated training of high-performance skills.
For example, variations on the system are being developed with additional flight condition and
effect simulations, increased student analysis, and increased student-coach interaction initiated
by the student pilot. The goals of this work are to extend the range of domains for which
ITSs can be applied and to increase the effectiveness of ITSs for knowledge-rich domains. In
addition to providing guidance for the development of tutors in high-performance tasks, the
principles developed here will apply to inteiligent tutoring of high-performance task components
within knowledge-rich domains.

Notes

1. The C Language Integrated Production System (CLIPS) was developed by the Artificial
Intelligence Section (AlS) of the Mission Planning and Analysis Division (MPAD) at NASA/JSC.
INFUTE uses version 4.2, which was developed under joint funding from NASA and USAF.

2. For interested programmers, the following is an example of a CLIPS rule definition in
INFLITE. The keyword of the definition is "defrule’ for "define rule.” The name of the rule
follows the keyword, then the verbal description. This rule retracts the suggestion that an
action be performed to increase the reading on a gauge. The student could have been flying
too low relative to his distance to the airport, and has just made the correction himself. The
“?request" line triggers the matching of this rule. The subsequent lines ( up through the "= >"
grab the gauge reading and test for the suggested correction. If the correction has been
made, the right-hand side of the rule is executed, the suggestion is retracted, and a message
is printed to the screen.

( defrule EndlLowValueCorrection
"Retract a suggested increase in a gauge reading"
?7request <- ( correctionPerformed ?gauge positive ?magnitude )
?gaugestatus <- ( gaugecondition ?gauge tooLow ?minValue )
( ?gauge ?curValue )
( test ( ?minVaiue ?curValue))
= >
( fprintout t crif "LOW Speed correction followed..." crif )
( retract ?gaugestatus )
( retract ?request ))
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ISSUES IN REPRESENTING KNOWLEDGE
FOR TRAINING
HIGH PERFORMANCE SKILLS*

Pamela K. Fink'
Southwest Research Institute
San Antonio, Texas 78284

SUMMARY

Hov knowledge is represented and used in a computer program is dependent on the task
to be performed. The task to be performed, namely the goal of a training systenm,
provides a viewpoint on the generic, primary, or basic knovledge about the domain. For
example, in the domain cf automobiles, the task of diagnosing malfunctions generates
various vievpoints of the knovledge about cars, mechanics, and electronmics. Such
viewpoints might include a functional representation that allovs a mental simulation of
hov the automobile vorks, and an experientially-based representation that provides quick
condition-action, pattern matching capabilities. Some domains, namely ones that could be
called "high performance,"” require viewpoints on the knovledge that include physical
skills. An example is the operation of a console in the Mission Control Center at NASA'’s
Johnson Space Center. Such skills require both a knovledge of the capability which is
indicated by accuracy, as vell as the ability to perform the task quickly and accurately
vhile doing something else. Representing the accuracy of the task involves the more
traditional approaches, vwhile representing the "knovledge" that indicates the speed and
automaticity issues is a somevhat novel vievpoint and requires further research. An
intelligent tutoring system in the area of mission control console operations is under
development that vill be capable of training to automaticity a specific task. It is
serving as a vehicle for research into hov knowledge in high performance domains can be
represented and used. It will also be used to research the effectiveness of an
intelligent tutoring systems approach to training in high performance domains.

KNOVLEDGE REPRESENTATION

Knovledge representation is one of the major areas of research in artificial
intelligence (AI) today. It could be defined as the organization and codification of
knovledge, and the placement of the result intc a computer program in some kind of
computer useable form. Vhat kind of knovledge is organized and codified has changed
through the years, depending on the current philosophy for building an intelligent
system. Earlier work, during the 1960’s, emphasized the representation of general
problem solving knowledge. The goal vas to keep knovledge about a specific problem area
to a minimum and to use poverful universal problem solving techniques that would be
capable of solving any type of problem. Later vork, during the 1970’s and 1980‘s, has
emphasized the representation of more specific, domain-oriented knovledge. Here the
object is to fill a computer program with as much knovledge about a particular problem
area as possible and to use veaker, but more specific, techniques to solve a specific set
of problems. The first paradigm resulted in the development of general purpose problem
solvers vhile the latter has resulted in expert systenms.

Support for this research vas provided under RICIS Research Activity No. ET.5 (NASA
Cooperative Agreement NCC 9-16) through funding from the Air Force Systems Command’s
Human Resources Laboratory.
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The current design principle for intelligent systems, namely "in the knovledge lies
the pover" [Feigenbaum, circa 1980] meaning that the amount of pover or intelligence
displayed by a computer system is directly related to the amount of specific,
domain-oriented knovledge that is embodied in it, has led to an increase in the
impurtance of knovledge representation to the field of AI over the last fifteen years.
The current practical success of the area of Al known as expert systems is a direct
result of this pragmatic approach to building intelligent systems. This technology
fosters the belief that intelligent behavior can result froa the appropriate application
of specific knovledge in a given situation, so much work has centered around hov to get
such specific knovledge into a computer program and applied at the appropriate time
during a problem solving task. Today still, the approach is very problea and
domain-oriented, vhich is quite different from the earlier wvork in general purpose
problem solvers. Experience has shown that reasonably intelligent behavior can be
obtained by a computer program if the system has all of the specific, detailed knowledge
for vhat to do in all of the situations that it may face. The result has been the
development of a multitude of intelligent systems, usually referred to as expert systems,
but better described as "idiot-savants.” Such systems can be developed to have near
expert capabilities in the particular problem solving area for which they have been
vell-prepared vith knovledge, but they break down quickly as the problem moves out of
that specific area.

Over the years the research in knovledge representation has resulted in the
development of various techniques for representing knovledge, including production rules,
frames, semantic netvorks, and scripts. Each of these techniques is best-suited for
representing a particular kind of knovledge. For exaample, production rules wvork vell for
more dynamically-oriented knovledge based on heuristics and condition-action pairs. For
more static knovledge, frames wvork vell for representing hierarchies of objects with
their attributes and values vhile semantic netvorks handle the representation of
relationships wvell. Combinations of these techniques, such as rules that manipulate
frames or semantic netwvorks that connect sets of frames into relationships, is also
possible. All of these techniques are very good for representing the kinds of knovledge
used more or less consciously during a problem solving task. They can represent classes
of objects in the vorld (ie. frames) or chains of reasoning in a particular situation
(ie. production rules).

Knovledge representation is an important issue in an intelligent tutoring system
(ITS) because it is by this means that the system obtains a knovledge of the domain to be
tutored, as vell as a knovledge of vhat the student does and does not knov. These
portions of an ITS are often referred to as the expert and student modules, respectively.
In addition, an ITS uses the knovledge from these tvo modules, along vith some form of
teaching knovledge, to determine hov to proceed during a training session. Thus,
representation of knovledge of various sorts is essential to the development of an ITS.

The folloving section provides a general discussion on issues involved with
representing domain knovledge in an ITS. Then the problems involved specifically with
training in a type of domain referred to as "high performance"” are described as wvell as
the hierarchy of knovledge that must be trained in order for a student to proceed from
novice to expert in a high performance domain. Finally, the issues involved with
representing and using such knowvledge in an ITS to train will be analyzed, folloved by a
discussion of a particular system that implements these ideas for intelligent tutoring of
a high performance domain, namely propulsion console operations in the Mission Control
Center at NASA’s Johnson Space Center.

24 P. Fink




REPRESENTING DOMAIN KNOWLEDGE IN AN INTELLIGENT TUTORING SYSTEM

Though some vork is again undervay to represent generic domain knowladge independent
¢cf the task to be perforued {Porier et al., this volume], most representations center
around the development of an appropriate task-oriented viewpoint of the knovledge. This
same philosophy is reflected even in the definition given by Vaterman in his book A Guide
to Expert Systems for the term "representation”, vhich he defines as "the process of
formulating or viewing a problem so it will be easy to solve" (Vaterman, 1986, p. 11].
Thus, the selection of one or more of the various knovledge répresentation techniques for
representing the knovledge in a given situation depends on the task to be performed as
vell as the inherent structure and nature of the domain. The task to be performed,
namely the goal of a training system, provides a viewpoint on the generic, primary, or
basic knovledge about the domain. For example, in the domain of automobiles, the task of
diagnosing malfunctions generates various viewpoints of the knovledge about cars,
mechanics, and electronics. Such viewpoints might include a functional representation
that allovs a mental simulation of how the automobile works, and an experientially-based
representation that provides quick condition-action, pattern matching capabilities.
Figure 1 illustrates this notion of a task-oriented viewpoint that creates a projection
onto the more generic, task-independent version of the knowledge.

One wvould hope that work in ITS's could benefit from all of the research and
experience that has accumulated in knovledge representation and expert systems. At first
it seems reasonable to assume that an expert system for a particular task should be
useful as the expert module in an ITS. This is unfortunately not always the case for
various reasons, a major one being that an expert system developed without tutoring in
aind wvill most likely not embody the knovledge to be trained in an appropriate format for
training. An expert system may be able to solve a problem but not necessarily in the vay
that one would wish to train people to do it. Some vork has been done in the area of
representing and using knovledge in a wvay similar to human experts for certain training
tasks such as diagnosis [Smith et al., 1985, for example] but mucn work still remains.

ed
Relationships pusa”os
pattern
matching

Figure 1. Creating a Knowledge Projection by
Using Experience to Enforce Structure oan the
Primary Rnowledge of a Given System
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Furthermore, the knovledge representation techniques used in expert systems are not
alvays wvell-suited for representing the "knovliedge" required for training certain types
of tasks, such as those involved vith the performance of a certain skill. These kinds of
domains require a viewpoint on the knovledge that includes physical skills, so one would
not tend to build an expert system to perform the task in the first place. These skills
require both a knovledge of the capability which is indicated by accuracy, as vell as the
ability to perform the task quickly and accurately vhile doing something else.
Representing the accuracy of the task involves the more traditional approaches in
knovledge representation, vhile representing the "knovledge" that indicates speed and
automaticity issues is a somevhat novel viewpoint. To perform a particular skill
initially does require a certain amount of knovledge and some conscious thought vwhen
using that knovledge. Howvever, as an individual solves more and more problems and gets
better and better at a given task, this knovledge somehow becomes easier to use. An
experienced expert, especially in a performance-based task, is much quicker at finding
and using the appropriate knowledge to solve a particular problem. Through experience,
the more general, novice-type knovledge gets reshaped into more specific, expert-type
knovledge vhile not losing its original more fundamental useability. This transition
from novice to expert in a human during learning is an important issue for knovledge
representation in an intelligent tutoring system. It is of particular importance in the
training of performance skills vhere the original knowvledge is no longer even used, at
least consciously, to perform a given task. Such domains are referred to as "high
performance” domsains [Regian and Shute, 1988].

Most of the intelligent tutoring research to date has focussed on tasks from
knovledge-rich domains. For example, Anderson’s Lisp Tutor [Anderson, Farell, and
Sauers, 1984], Browvn and Burton’s SOPHIE system for electronic diagnosis [Brown, Burton,
and deKleer, 1982], Carbonell and Collins’ SCHOLAR system for South American geography
[Carbonell, 1970], and VWoolf and McDonald’s MENO-TUTOR for diagnosing non-syntactic bugs
in computer programs [Voolf and McDonald, 1985] all deal with domains that emphasize the
conscious use of knovledge. Such tutoring systems attempt to impart certain static
and/or procedural knovledge that the student is then tested on as much for the knovledge
content, as for the problem solving skill.

Tasks vhich are primarily performance-based have not attracted much intelligent
tutoring research attention to date. Tutoring systems in these domains must be capable
of imparting not only a certain amount of knovledge but also of drilling the student in
the use of this knovledge to the point where the student need no longer concentrate on
the actual problem solving task. At this point, the task is "automatized," and the
individual is free to concentrate on other, more cognitively demanding issues while still
performing the trained task. Testing to determine if an individual has a particular
piece of knovliedge is quite different from testing to determine if he/she has automatized
a particular skill based on that knovledge. How such knovledge and skills should be
trained also varies greatly from the approaches used in more traditional ITS domains.

TRAINING IN A HIGH PERFORMANCE DOMAIN

Acquiring the ability to perform a particular skill usually requires several stages.
For example, a student learning to play the piano must first assimilate a certain amount
of fairly static knovledge such as vhat notes are associated with what keys on the
keyboard, howv to read the notes vritten in a musical score, understand the meaning of
various terms used to provide guidance in interpreting the written notes, etc. The
student 1is also wusually presented with some exercises, such as scales and cords, to be
repeated over and over that familiarize him or her vith the actual process of playing the
- piano. The piano student must then learn to convert all of this knovledge into actions
o¢{ the hands and fingers to generate the actual music. This is usually accomplished
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through hours and hours of practice, both directed by the teacher as vell as on the
student’s own. Eventually, after a certain amount of practice that usually varies vith
the student and the type of music being played, the student no longer needs to think
about reading the notes and moving the fingers. Playing the instrument has been
automatized and the student can nov spend cognitive effort on other things, such as
singing.

This process of learning a high performance skill can be broken dowvn into several
distinct stages:

1. static overviev knovledge, where general background information is provided

2. general procedure-oriented knovledge, vhere the general steps in performing the task
are presented

3. guided-example exercises, wvhere specific examples are given and the student is
provided the opportunity to practice vhile being prompted and coached in order to
develop accuracy in the skill

4. unguided-example exercises, vhere specific examples are given and the student is
provided the opportunity to practice the whole process without interruption in order
to develop speed with accuracy

5. automated-example exercises, where specific examples are given and the student is
provided the opportunity to practice the vhole process wvhile doing another task in
srder to develop an automated capability

In a domain such as the operation of a particular piece of equipment, these steps
correspond to

1. a general system overview that describes the salient parts and features of the
particular piece of equipment onvhich the task will be performed (a "guided tour”")

2. a description of the steps that must be performed in executing the particular
procedure to be trained, such as "initialization" or "self-test," indicating the
parts of the equipment involved and the motivation for each step and/or its effect on
the overall status of the goal

3. presentation of specific example cases vhere the student must perform the procedure
on the equipment, or a simulation of it, in order to solve the problem, but with the
instructor vatching and guiding as necessary

4. independent drill and practice wvhere the student must perform the procedure on the
equipment, or a simulation of it, with no guidance during actual exercise performance
but only a final evaluation of accuracy and speed in order to become proficient at
the procedure

5. independent drill and practice where the student must perform the procedure on the
equipment, or a simulation of it, while performing another task so that performing
the trained procedure becomes automatic and conscious thought can turn to the
performance of an additional task

This training process moves the student gradually through ~the various phases of

skill development. When to move on to the next level of training versus wvhen to remain
at the same level or even backup and remediate, varies with each student. Also, the
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scale for defining the quality of skill performance varies wvith the student. Some
students may never perform as well on the task as other students. Thus, the system must
be capable of recognizing wvhen a student has "peaked” on a particular training phase.
These are issues vhere certain Al-based techniques could be used to provide the training
system vith the needed knovledge to make these decisicns on a case-by-case basis, thus
moving tovard a more adaptive, responsive, intelligent tutoring system.

REPRESENTING DOMAIN KNOVLEDGE FOR TRAINING IN A HIGH PERFORMANCE DOMAIN

As illustrated in the previous section, high performance skills could be taught in
five distinct phases, each associated with a specific kind of knovledge and a particular
means for teaching and testing it. The following paragraphs describe these issues for
each of the five levels. The types of learning strategies that are recommended at each
phase of the training wvere selected from the list that appears in [Kyllonen and Shute,
1988, Table 1, p. 15].

The static overviewv knovledge taught in phase one consists of the general, enabling
knovledge concerned with the skill to be performed. It provides the "big picture" view
of the objects and their relationships to one another in the domain that are important to
performing the task. For example, a system overviev should be organized from the
vievpoint that is desirable for performing the particular task and not necessarily
include everything there is to know about the equipment. Thus, representation is fairly
straightforvard since frames and semantic netvorks vork vell for such types of knowledge.
If training is oriented tovards the operation of a particular piece of equipment, then
the system wvould have a knovledge of all of the important pieces and components, their
name, their description, their function within the system as a vhole, etc. An
appropriate learning strategy for this particular kind of knovledge is simply rote
memorization. The student needs to assimilate all of the facts and relationships vith
little need for further exploration and no need for modification. He/she needs to be
capable of identifying components based on appearance, location, and any other attributes
salient to the task to be trained. An ITS can simply present the information and then
test it in some kind of static format such as multiple choice, fill-in-the-blank, or
identification. The student is assumed to knov the material vhen he/she can ansver all
of the test questions correctly.

The teaching of the initial, general procedural information is also involved with
fairly static knovledge. Each step can be presented in the order in which it should
occur, along with the reasons and motivations for performing that particular step at that
particular point in time. Though the knowledge is about a procedure, it is static in
nature. A directed graph format is appropriate in such a situation because it is capable
of representing the sequential nature of the knovledge. The nodes of the graph
correspond to frames that represent the steps of the procedure vhile the arcs indicate
the legal transitions betveen steps. An appropriate learning strategy for this knovledge
is again rote memorization with possibly some learning from instruction. Though vhat is
presented could be learned exactly as presented, a student may choose to internalize the
procedure in a slightly different way than it is actually presented by the tutoring
system, especially at the beginning of training vhen all conditions and exceptions that
govern the sequence of steps in the procedure are not apparent. Testing can again use
such techniques as multiple choice, fill-in-the-blanks, and identification to ensure that
the student has assimilated enough of the general knovledge to move on to the next step.

The student is assumed to know the material vhen he/she can ansver all of the questions
correctly.

The third phase of the training process, guided example, begins to move into actual
skill acquisition. In this phase the student is presented vith some specific examples of
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procedures to be performed and is guided, or coached, through thes. The goal of this
phase is to provide the student with enough experience in actually performing the
procedure to acquire the ability to do it fairly accurately. Hovever, in order to prompt
the student and coach him/her through the performance of a task during this phase of
training requires a considerable amount of knowledge. First, the system must itself know
the procedure and hov to perform correctly on the specific exercise. This knovledge is
more or less provided by the directed graph representation of the procedure developed for
phase tvo of the training. Second, it must not only be able to identify wvhen a student
is performing the task incorrectly but also be able to infer vhy the student has made the
error so that it can provide appropriate feedback. This can be quite difficult since the
only source of information that the system has avajlable concerning vhat the student does
and does not knov is deduced through the student’s input to the system during the
exercise, along wvith information on hov long it took for the student to respond and the
student’s performance on previous exercises.

If the system has a certain understanding of the general structure of the procedure
to be performed, certain mistakes that a student makes can be interpreted to indicate
certain errors or misconceptions. For example, if the student performs a step that
happens to be one of the steps that is legal to perform directly after the c'vrent legal
step, then the system could assume that the student simply skipped a step, for vhatever
reason. Ve call this a "simple step omission," meaning that the student has just
forgotten a step in the procedure. Hovever, if the student performs a step that |is
several legal actions avay from the current one it could mean one of several things.
First, if the steps that have been skipped are all logically grouped under a particular
phase of the procedure, the system could assume that the student simply forgot a higher
level "step”" in the procedure --- one that happens to consist of several separate
actions. Ve could call this a "simple group omission” in the same manner as vhen a
single step is omitted since logically only a single step vas skipped. Hovever, if there
is no relationship betveen the steps skipped, it is possible that the student is lost to
some degree and simply remembered that that step has to be performed at some point and
therefore performed it for lack of a better idea of vhat to do next. Ve could call this
a "complex omission” meaning that the student probably does not yet understand the
fundamental steps involved in performing the procedure. A final type of error that a
student could commit is to perform an action that is not legal at any point in the
current procedure. Then one might assume that the student has remembered the procedure
vrong, has confused it vith another procedure, or is completely lost. Ve call this an
"insertion error.”

All of these evaluations of vhat the student might have been thinking that would
cause him/her to perform the procedure incorrectly are based initially on the student
making this error for the first time. Hovever, if within a procedure a student
consistently makes the same mistake(s), the system could assume that the student can not
remember vhat to do next and the system vill begin to provide hints to the student to
help him/her figure out vhat to do next. If the student continues to make errors, the
system vill eventually tell the student specifically vhat is expected to be done next.
If failures still occur with little improvement on the part of the student, the system
vill decide to provide some remediation, backing up first to again demonstrate specific
examples and if problems still occur, eventually backing up to the previous phase of
training in order to provide more basic remediation.

The type of learning strategy applied here is drill and practice. The student can
refine and tune his/her knovledge through applying it in a variety of situations through
the assignment of exercises to be performed. Testing in this phase involves determining
if the student can perform a given exercise with enough accuracy and reasonable speed to
indicate that he/she has actually learned the procedure and knovs what to do at each

step. The number of trials required to attain proficiency can vary greatly from student
. k
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to student, as can the ultimate level of proficiency. The goal is to determine vhat the
student knovs based on actual performance, not on hov many times they have done it. This
requires a decision on hov accurate is accurate enough and hov fast is fast enough at
this level to indicate that the student is ready to move on to the next phase. Another
question is hov many times must an individual demonstrate the needed accuracy and speed
before the system can assume that the student can consistently sustain this level of
performance.

The fourth phase of the training process, unguided examples, requires the student to
perform example exercises without guidance or support from the tutoring system. The only
feedback that is provided occurs once the student indicates that he/she has completed a
given exercise. Then the system can provide an assessment of the student’s performance
in terms of accuracy and speed. The goal of this phase is to provide the student with
enough experience in performing the procedure straight through vithout interruption to
acquire the needed speed vhile maintaining accuracy. The knovledge required to evaluate
student performance in this phase is not as extensive as that required during the guided
examples phase because the system is no longer trying to catch and interpret student
errors as they occur. The system still needs to knov howv to perform the procedure and to
identify vhen errors have occurred, but this identification occurs too late to help guide
the student back onto the right track. Accuracy is more or less assumed in this phase
and speed of performance is the focus. It is at this phase that the problem of hovw to
represent skill rather than cognitive knovledge becomes an issue. Accuracy in many casés
vill have to be absolutely correct, but the acceptable speed may vary a lot, depending on
the actual domain as vell as the student. Thus, representation of skill must be a
sliding scale that evaluates both accuracy and speed vwith respect to the domain of
application as vell as the perceived potential capabilities of the student.

The type of learning strategy applied in this phase is again drill and practice.
The student can refine and tune his/her skill through repeatedly applying his/her
knovledge to perform the requested procedure. Testing in this phase involves determining
if the student can perform a given exercise vith increased speed vhile maintaining
accuracy to indicate that he/she has acquired a certain level of proficiency in
performing this procedure. As in the previous training phase, the number of trials
required to attain a given skill level can vary greatly from student to student. The
goal is to determine how skillful the student is based on actual performance, not on hov
many times they have practiced. This requires a decision on hov accurate is accurate
enough and howv fast is fast enough at this level to indicate that the student is ready to
move on to the next phase. Different students will most 1likely have different peak
levels of performance that they can attain and sustain, especially in terms of speed.

The fifth and final phase of training provides the student vith exercises that will
cause him/her to automsate the process, meaning that the student vill become capable of
performing another task that requires cognitive processing vhile maintaining speed and
accuracy in the initial procedural task. Here the student is presented the same kind of
exercise as in the previous tvo phases of training but in addition must also perform some
simple but nev task, such as hitting a particular function key on the computer keyboard
based on the pattern of tones heard. The goal is to bring the student to the point vhere
he/she no longer has to think about hov to perform the procedure being trained. The
student knovs the procedure so vell that cognitive effort is no longer required to
perform it. At this point the skill has been automatized. Howv this skill level is best
represented to the computer so that vhen a student reaches this point the system can
recognize it, is somewhat of a research question. Currently, wve are vorking on
expansions of the notions already used in the previous stages such as accuracy and speed.

In this phase, however, these must be used for judging student performance in both tasks
at the same time.
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The type of learning strategy applied in this phase is again drill and practice.
The student can refine and tune his/her skill through practice in a variety of
situations. Testing in this phase involves determining if the student can perform a
given exercise maintaining accuracy and speed vhile performing another task accurately to
indicate that he/she has acquired a certain level of automaticity in performing this
procedure. As in the tvo previous phases of the training process involved specifically
with skill acquisition, the number of trials required to attain a given skill level can
vary greatly from student to student. The goal is to determine hovw skillful the student
is based on actual performance, not on hov many times they have done the procedure. This
requires a decision on how accurate is accurate enough and hov fast. is fast enough at
this level to indicate that the student has automatized the procedure and has, therefore,
attained a level sufficient to conclude training. Again, different students will most
likely have differen: peak levels of performance that they are capable of attaining.

Hov long a student might spend at any given level of training is, of course,
unknowvn. It will depend to some degree on the difficulty of the domain as wvell as the
individirral student’s capabilities. No set number of trials, level of accuracy, or rate
of performance improvement is predetermined. These can Le varied based on student
aptitude and domain complexity. This type of training could be useful in screening
students for aptitude in a particular type of skill by identifying those that develop
high levels of accuracy and speed vith a minimal number of trials.

AN EXAMPLE SYSTEM

An intelligent tutoring system for a high performance domain is currently under
development. The area of application is the operation of consoles in the Mission Control
Center at Johnson Space Center. An example of such a console, namely the front-room
propulsion console, is presented graphically in Figure 2. These consoles vary somevhat
from one function to another, but they generally consist of:

1. one or more video displays

2. numerous sets of indicator lights, referred to as Display Decoder Drive Event Lights
(DDD lights)

3. various manual entry devices consisting of numeric thumbvheels and push button
indicators including the voice keyset, the manual select keyboard (MSK), the summary
message enable keyboard (SMEK), and the display request keyboard (DRK)

as vell as one or more other panels for displaying various times associated with the

mission. These consoles may also be attached to one or more strip chart recorders for

recording sets of analog signals.

In order to become proficient at operating such consoles, flight controllers must
learn howv to

1. format the various DDD light panels using the MSK

2. select, display, and read a variety of video display formats using the MSK, SMEK, and
DRK

3. select and listen to various voice loops using tha voice keyset
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PROP CONSOLE

Pigure 2. A Sketch of the Propulsion Coumsole
in the Mission Control Center at Johmsom Space Center

as vell as many other things. They must learn to operate these consoles in an automatic
manner because such operations are only a means for achieving another goal, namely
ensuring the safe and correct operation of a particular system, such as propulsion,
during a mission. Should a situation arise vhere data must be accessed, analyzed, ana
interpreted, the flight controller must be capable of quickly and effectively accessing
the needed data from various video displays and DDD lights without specific thought as to
hov to manipulate the various keyboards. Their conscious, cognitive thoughts are too
busy dealing wvith the situation to be concerned with hov to get the data. Thus, console
operations can be classified as a high performance domain.

Current vork on the intelligent tutoring system for console operations has centered
around training the operation of the Manual Select Keyboard (MSK). This is the keyboard
that is used during initialization of the console for the ascent, orbit, and descent,
phases of a mission. Initialization requires the formatting of all DDD light panels, the
selection of several video displays to get information concerning general system status,
and the selection of various voice 1loops to listen in on appropriate monologues and
dialogues. Eventually the tutoring system could be expanded to include training on all
of the various components of a console, as well as a general console overview. Figure ]
"provides a hierarchical, graphic representation of the knovledge needed to effectively
operate a Mission Control Console. Figure 4 provides a detail of the five-phase training
methodology for the MSK.

The display for the tutoring system is organized into three major windovs, as
illustrated in Figure 3. Across the top third of the screen is a complete graphic
representation of the entire console. This provides the student with an overall layout
and organization of the console. The lower left half of the display provides an area
vhere one of the panels from the console can be expanded to provide further dertail. The
figure shows the MSK panel. The lower right half of the screen provides the text
interface vhere the tutor can present information, exercises, and accept student
responses to specific verbal questions.
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Pigure 5. Layout of the Tutoring System's
Graphic Interface with the Student

The graphic display of the console is mouse-sensitive. Under certain conditions it
allovs the student to select panels by clicking over them with the mouse to have them
blovn-up in the lover left windov of the display. Vhen a panel is expanded and displayed
in the lower 1left windov, it too is mouse-sensitive. A student can manipulate it by
clicking the mouse over its components, thus incrementing or decrementing a thumbvheel
counter, turning a push button indicator on or off, or just getting a display of the text
vritten on the object. In this vay, a large portion of the console functionality is
simulated graphically and the student can gain experience in performing console
operations through these simulated manipulations.

Training on the use of the MSK proceeds through the five phases described in the
previous section. The first phase of training on the MSK provides an overview of what
the MSK consists of. The MSK panel is blown-up in the lover left window on the screen
and the system steps through each of its functional components, highlighting them on the

graphics display and describing them with text in the lower right window. This is
illustrated in Figure 5, wvhere the mode select push button indicators are highlighted in
the graphics on the left and their description appears in the text on the right. A

student can move forwvard and back at their own pace through this portion of the tutorial.
At the end, the student must pass an identificarion test wvhere the student is asked to
click over the various components of the console to indicate his/her response to the
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tutoring system’s questions in order to proceed on to the next phase of the training.
Based on the score the student is alloved to move on or required to reviev the material.

An overviev of the general procedural process for manipulating the MSK comes next.
This is done in a manner similar to the MSK overviewv. Components are highlighted in
order and explanations about each step of the procedure are provided. The procedure for
manipulating the MSK varies depending on the mode selected with the push button
indicators in the upper right corner of the MSK panel. For example, to request a
particular video display to appear in the right monitor of the console, the push button
indicator with DISPLAY REQUEST written on it must be pushed, the number of the display
entered on the right four thumbvheels, and the RIGHT MONITOR ENTER push button indicator
pressed in the lowver right corner of the MSK. A number of other steps must be performed
as well, but these are the key steps. The order of all steps does not matter, with the
exception of pressing the monitor enter push button indicator, vhich must be done last.
Thus, the procedure could be represented as in Figure 6, vhere five actions comprise an
unordered group that constitutes the first step, called "set-up," and the monitor enter
action comprises a second step, called "execute." Of course, some sequences are more
logical than others and the current system enforces a specific order for performing these
actions. In order to move on to the next phase of training, the student must identify
each general step in the correct sequence.

In the third phase of the training, specific examples of the procedure are generated
that the gystem solves as a demonstration for the student. Then the student is given an
exercise that he/she must do by manipulating the mouse over the appropriate components of
the MSK in the correct order to perform the requested operation. For example, the system
may request that the student cause the video display number 12 to appear in the left
display monitor. The system will prompt the student at each step and verify its
correctness before moving on to the next step. If an error occurs, rules 1like those
discussed in the previous section on the guided example phase are used to coach the
student to -perform the procedure correctly. Satisfactory performance in this phase of
training is based mainly on accuracy, but speed is also considered. Vhen a student has
consistently performed the assigned exercises completely correctly and the speed of
performance has more or less plateaued, then the system allovs the student to move on to
the next phase of training.

Nammal Select Keyboard

'

Plight Select DDD Format Select ?t-play I-qn.-e TV Chamanel Attach

///'s.i"llt \‘ne.t.

depress set video verify/ chack deprass

t-ctto- code DISPLAY display oumber select daal MOWITOR

thusbwbesl=l REQUEST on the lever desired purpose ENTER

[4.}9 switch data {ndicacor PBL
thumbwheels type for black
color

Pigure 6. Owverviewv of the DISPLAY REQUEST
Procedure Using the MSK
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The fourth phacs of training no longer guides or coaches the student through the
exercises. Instead the system simply presents an exercise, in the same manner as in the
previous phase, and the student must manipulate the MSK appropriately vith the mouse to
achieve the requested action. Based on consistently performing vith complete accuracy
and reaching a point vhere speed is no longer improving much, the system then allows the
student to move on to the final phase of the training.

The final phase is a repeat of the fourth phase only with an additional task that
must be performed simultaneously by the student vhile doing the assigned exercise. While
requesting a particular video display or formatting a set of DOD lights, the student must
also acknovledge certain patterns of beeps by hitting the appropriate function key. The
system assumes that the student has successfully automatized the MSK manipulation process
vhen the accuracy in performing both tasks has reached one hundred percent and the speed
of performing the assigned exercise and responding to the beeps has reached a peak for
that particular student.

It is important to note that during the final three phases of training, where skill
is being acquired and tested, no predetermined number of trials is used to determine
vhether or not the student should move on. Advancement to the next phase in training
depends on the particular student’s performance. Though accuracy is required to be one
hundred percent correct, ultimate speed can vary based on the student. - The system looks
for vhere the student seeas to be leveling off in order to determine vhen to move on.
The decision to backup and reviev material is based on hov much difficulty the student is
having attaining the required perfect accuracy. Remediation can backup all the way to
the start of the training program if necessary. In this vay the system can be used to
refresh the wmemories of individuals vho have been interrupted in their training for a
period of time, as wvell as those vho are seeing the material for the first time.

CURRENT STATUS AND FUTURE WORK

The intelligent tutoring system for Mission Control Center Propulsion Console
Operations is written in C, CLIPS, and GPR and runs on an Apollo Domain 4000 with a color
monitor. It is currently capable of training the first three phases of the MSK. The
last tvo phases of training will be working soon. At that time, an experiment will be
run to test the effectiveness of such a training system. One goal of the research is to
determine if the flexibility provided by an intelligent tutoring system increases the
speed vith vhich an individual can automatize a particular process and if so, if the
increase in training efficiency will offset the cost for developing such systems.
Another question to be ansvered is hov effectively does such training transfer to the
operation of the real equipment.
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SUMMARY

The design of current ITS is closely tied 1o how those ITS present the domain to a student, that is, © the wmtor’s interface.
Not only is domain knowledge represented in terms of the interface, but so are teaching and diagnostic knowledge. From this
observation we propose to explicitly design ITS based on the interface to the task actually presented to the student. This
proposal has the potential give the leamner a much richer view of their task: a view filtered through the eyes of the expert.
Furthermore, this proposal can break the ITS knowiedge engineering bottleneck by getting the Al wizard out of the loop and
allowing skilled instructors to be putting the knowiedge in an ITS system. The paper discusses a working example of this
approach, a proposals for a general architecture, and particular version of that general architecture.

THE CENTRAL ROLE OF INTERFACES IN CURRENT INTELLIGENT TUTORING SYSTEMS

Intelligent wtoring systems for non-trivial curriculums organize their knowledge around the presentation of that
knowledge to the student. That is, the tutor’s internal architecture and knowledge base are specifically designed to support a
particular style of interaction with the student. Consider the following examples:

Proust (6] .
A tutor for beginning programmers, Proust takes a student program and analyses that program with an
intelligent parser that looks for buggy or correct implementations of standard schemas (called “plans™. The
knowledge base of Proust is a large catalog of descriptions for correct and buggy implementations of the
standard tasks.

Lisp Tutor (11]
Another tutor for beginning programmers, this tutor coaches a student through the specific steps in coding
particular Lisp functions. The knowledge base consists of a rule set that accomplishes the task given (o the
student. There are also rules that simulate common student errors. As a student works, each of his or her
steps is associated with a correct or errorful rule.

Geometry Tutor [1)
A mtor 0 teach geometry proofs. The student constructs a proof tree on the computer screen, where each
component (subtree) of that tree places a conclusion as the parent node above the elements that produced that
conclusion. The knowiedge base of the program specifies the axioms and theorems that ailow a student to
assemble these components.

Bridge (3]
A tutor for novice programming. The swdent assembles programming schemas (called “plans™ at various
levels of detail. The knowledge base of the program consists of plan descriptions and descripuons of how
those plans are combined into solutions for various problems.

Intelligent Maintenance Training System [15]
A tutor to teach troubleshooting of complex systems. Systems are represented with screen-based
simulations containing fauits that must be discovered by the student. The knowledge base 1s represented 1n
terms of the components of the simulation including both normal and fauit states for those components.
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In each of the cases cited above, the knowledge base is organized around the particular style of presentation and pedagogy
used by the wtor. That is, around the tutor’s interface. Futhermore, it is not just the domain knowledge that is organized based
on the interface, but also the teaching knowledge and diagnostic knowledge. There is little or no knowledge about teaching or
diagnosis that is not specificaily tied o the tutor’s interface. Practical ITS seem to require careful crafting of knowledge around a
particular interface approach. In each of the examples listed above, the tutor detected student bugs, inferred underlying errors, and
made corrections, but it did so within an elaborate and sophisticated interface, carefully designed to highlight and draw attention
10 the task the tutor was designed to teach.

) - Guide ITS Devel

The above may seem obvious; of course an TS needs a well-crafted interface for the student. What [ am suggesting in
this paper, however, is that beginning with such an interface is the appropriate way to design ITS. Instead of organizing the
wtor around a formal representation of the knowledge o be presented - a often touted but as yet not realized goal of ITS research -
we should explicitly organize the tutor around how it will present things to the student. In particular, I am suggesting that we
organize an ITS around the kind of interface that an expert uses.

When discussing the interface to an [TS, it is important to realize that I mean more than what is on the screen. The
interface gives the learner access to the conceptual vocabulary used by experts when they talk about and solve problems within
the domain. This vocabulary is a crucial part of the expertise that must be imparted to the student. The right vocabulary allows
an expert to cut up a problem into the right pieces, and organizes those pieces into the right order for a solution. This
vocabularly need not be words: programmers have flow diagrams, electrical engineers have circuit schematics, etc. [ am
suggesting that the experts vocabulary, diagrams, conventions, etc. - that is, the interface - can be enormously heuristic in telling
us what must be acquired by novices. If we can build ITS around the interfaces used by experts, not only have we focussed on
the key issues of concemn for the novice, we have also made the acquisition of expert knoweldge much simpler because the ITS is
designed around how the expert views the knowledge, not around how an Al expert might view that knowledge.

WHAT IS IN AN INTERFACE-BASED ITS?
In this section I discuss the kinds of knowledge in an interface-based ITS.
Three Kings of E .

What is the expertise that we want to capture in an [TS, and how does focussing on the expert's interface help us o do
that knowledge capiure? We have identified three kinds of expertise that need 0 be captured. This “three component” analysis of
expertise derives from a body of cognitive science research swdying leaming in semi-formal domains like basic math, physics,
computer programming, etc (see Resnick & Omanson [12]). The three components are as follows:

1. Concepts. These are the abstract concepmual elements known by someone expert in a field. These are the ideas with
which an experts thinks about tasks in his or her domain. Resnick & Omanson (12] points out that in mathematics,
even beginners must reason about objects that exist only as abstractions. One can, for example, point w0 3 chairs, or
even the the numeral 3, but there is no “number 3" that can be pointed t0. Number is an abstract conceptual element.
In computer programming a “loop” is similarly abstract, as is “voltage™ in electrical circuits and “force” in mechancs.

Traditionally, curriculums are organized around the atainment of such abstract concepts - e.g. a chapter on each
concept or on a related group of concepts. The next two elements focus on aspects of expertise often unrecognized in °
formal curriculums. :

2. Representations. These are the syntax and mechanisms used by an expert. They may be embodied in notations.
sundard forms, standard procedures, or algorithms. These are mechanical in nature, providing effiencency of operation
while sacrificing some generality or formal properties. In mathematics the notational system consists of the standard

- numerals, symbols, a syntax, and various algorithms for rearranging elements of the notauonal system. In computer
programming, the notational system is the programming language itself. Finaily, other diciplines have their own
notational systems like free-body diagrams in mechanics, electric circuit schematics, chemical bond diagrams. etc.
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expertise. The representations support algorithms where basic operations can be performed with little or no
understanding of the underlying concepts. While an expert does understand those concepts, and uses his or her
understanding to make the notations; representations, and algorithins less brittle in their application, a novice often
does not understand the concepts. That is, novices try (o apply the notations, representations, and algorithms without
reference to the concepts, making errors in the process which they have no way to notice. This notion of the different
forms of expertise combining effectively is developed in more detail below.

3. Rules for refeming to situations in the world. These rules allow the expert to apply concepts and representations o
actual simations in the world. These rules allow the expert to extract neat, well defined tasks from the complexity
and fuzziness of the real-world. The rules allow an expert to interpret a situation in the world in terms of the
abstractions, represent that situation with standard representations, and make predictions or solve problems.

So, for example, experts at basic arithmetic know how to apply arithmetic representations and concepts io the task of
dewermining the most economical size laundry detergent at the supermarket. Similarly, an expert in basic electricity
recognizes the circuits created in the way an automobile battery’s negative pole is attached to the frame while the
positive terminal is attached through switches and wires to the car’s various electrical devices that are also attached to
the frame. Finally, a programming expert is able to use standard loop coastructs to represent all the different kinds of
repetition found in the worid.

Part of what makes an expert is his or her facility with all three aspects of expertise. When beginning a task, rules of
reference allow the expert to interpret the situation at hand in terms of the concepts. These concepts are represented with a
representation which then can then be freely manipulated. The representation gives considerable cognitive efficiency because it
operates without the constraints that would be induced by a constant, detailed attention to mapping back to the actual world
situation. When critical, however, the expert is able to constrain and guide the purely representational operations with theoretical
principles from the concepts and practical limitations imposed by the sitation in the world.

Building Expertise | TS

How exactly do these three kinds of expertise map on to the proposed interface orientation for ITS? The interface needs
embody all three aspects - that is, provide the integration that is natural in an expert's performance. An interface should provide
someconcmemymvisudizeacmcepnmhwdﬁecdywmﬂndmpmmiom,mdmfewﬁmdonsmtheworld. For
example, White and Horwitz {16] presents a series of microworlds designed 1o teach successively richer models of mechanics.
Each model mcmdaaphymalwmonofmpnhkcvelocxtymdmdmonbuedonmemovmnsot‘abauonthe
computer screen. The physical representation is also designed to suggest certain standard notational approaches. Similarly,
Anderson’s geomery tutor (1], while providing a set of tools for managing proof subgoals and available theorems - conceptual
elements, also uses standard geometry notation to label those subgoails. Finally in Bridge (3], our own intelligent wtwor for
teaching beginning programming (discussed in detail below), each programming concept has a distinctively shaped icon and
syntax rules suggested by how different icons can fit together.

How Can An Iniecface Help | Acquire. That Expert

Giving an ITS an expert interface orientation places the student in the same problem solving context as the expert. This
occurs in a series of ways:

1.  The interface can off-load computations that a learner might need o do. In Bridge, for example, much of the
detailed semantics of the programming constructs is handled for the student. Similarly, students using the geomerry tutor do not
need to do the detailed symbol manipulation required to apply theorems. In some ways this is cheating, the student is sheilded
from the full compiexity of the task. In allowing the stdent to focus on the salient tasks and ignore the minor details, it can be
enormously useful.

2. The inwerface can highlight the most salient tasks or features. In the real world. for example, the broken part rarely
changes color and starts to blink. There is no way isolate key elements or subsystems if those elements or subsvstems are
physically intertwined. The interface-based ITS however, is free 10 do all these things.
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BRIDGE: AN INTELLIGENT TUTOR FOR TEACHING PROGRAMMING

Research into how novices leam programming reveals that understanding the semantics of standard programming
languages is not the main difficulty of novice programmers. Instead, success with programming seems (0 be tied to a novice's
ability to recognize general goals in the description of a task, and to translate those goals into actual program code (see, for
example, [4.9,13].) In Bridge we built a programming environment that supports a novice in working with plans that describe
the goals and subgoals typical of programming tasks. By using plans that describe programming goals, Bridge allows for initial
novice conceptions of a problem solution that are informal and sketchy. The Bridge environment features an iconic plan
programming language with an editor facilities to control execution and support debugging. A complete discussion of Bridge can
be found in [3].

Bridge supports a novice in the initial informal statement of a problem solution, sibsequent refinement of that solution,
and final implementation of the solution as programming language code. This is accomplished in three phases, discussed in
dewail in the rest of this section. To illustrate Bridge use, we discuss a student working on the Ending Value Averaging problem:

Write a program which repeatedly reads in integers until it reads in the integer 99999. After seeing
99999, it shouid print out the CORRECT AVERAGE without counting the final 99999,

Bridge Phase & Informal Natural Language Plans

The first phase of Bridge involves an informal statement and refinement of the goals for the code. Empirical evidence
(2.8] suggests that novice programmers bring a vocabulary of programming-like plans from everyday experience with procedural
specifications of activities expressed in natural language. These plans come from experience with step-by-step instructons like
“check all the snudent scores and give me an average” or “see that hallway, if any docrs are open close them.” These informal
plans, however, are often extremely difficuit for novices to reconcile with the much more formal plans used in standard
ing languages. Note, for example, that both exampie phrases involve an iweration without any specific menton of a

frepeated action. .

In phase I we provide a plan language based on simpie natural language phrases typically used when people wriie step by
step instructions for other people. For example, 2 student can construct the phrase “... and 0 on ... undl 99999 is seen.”
Figure 1 shows an example with several such phrases. Such phrases represent the highest level at which a student can express
intentions to the system. Because of the ambiguity in such phrasings, Bridge must understand the student’s intentions based on
several possible naive models of programming. For example, a common naive model of looping allows a stmdent to construct a
loop with a description of the first iteration followed by the phrase “and so on.” Based on the particular phrasings constructed by
the student, Bridge infers a particular naive model.
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English step-by-step Solution
:': Read in . . . each integer
Print . . .each integer

...And So On...
Until 99999 is seen

. Figure 1. Phrases from a phase I Bridge solution.

Bridgemppomd}mediffqemnaivemodelsofpmmmingloops. Based on our empirical work (2], these models
Est;b;;w most o;:ebymmonwpuom novices have about simple programming loops. Although, there are many different
phrases mammm-mmgwwmgmmnmtfammm" amon
the three models for each ot the different plans. . g s

) mﬁrstphaseofﬂﬁdgeismimplememaﬁononhekindsofopenﬁonsandmnlmdebmuyexpmsedm
Enghsh language step-by-step specifications written by non-programmers. These operations are vague and include significant
implicit knowledge about the objects being operated on. Onlyalhnnedmoflh\ksmposﬁbhbawemmephns:orderingmd
* nesting. Dmcmmmiaﬁmﬁnbbuweenduphmmhnpﬁd&mﬂecﬁng&mmofnmﬂlmgmespeciﬁcan'ons.

Bridge Phase I: lionic P ing P1

!pmgmondphageofnﬁdgeaprommmingsu;dentmfmmeinfmducripu‘onofphm 1 into a series of semi-
fomﬂmmg_rmmmgpm'ﬁmzmmmBﬁdgesaeenasdaesmdmtiswotﬁnginphasen. In this phase the
p!ansagewhem-hkemwhmhdexnbehwgubmuufmmedhwxuﬂmmmmMgm(sx[13] for a detailed
discussion of these plans).
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What vajue do you
want 10 print?

Read in . . . each integer
Count . .. esch inleger
Continue steps . . . Untll 99839 is seen
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Figure 2. The Bridge system while a student is constructing a phase II solution, based on a complete phase I solution.

Plans have various elements that interrelate with the elements of other plans. So, for example, a counter plan has

iniialize, increment, and use elements, each with a particular relationship (o the loop containing the counter. This interaction of
elements often results in the plan implemenmion in standard programming constructs being dispersed across the program. A
running total, for example, is implemented in Pascal with four statements, dispersed throughout a program: a variable
declaration, an initialization above a loop, an update inside that loop, and a use below the loop. Spoh:crandSoloway[M] have
shown that plan to code translation errors account for many student errors.

In the second phase of Bridge students focus on relating various plan elements, but without compromising the
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fundamental plan structure and introducing the syntactic complexity required by standard programming code. Figure 3 shows a
typical phase II solution to the Ending Value Averaging problem. Each plan is represented by a single icon. There are two
kinds of links between the plan eiements. Control flow links are expressed by attaching puzzie tabs to puzzie slots. Data flow
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links are expressed by moving the small tiles with “cars™ from the data source to the data destination. This is the way, for
example, that the value of the Counter plan is associated with the average computation in the Compute plan.!

....................... ey

New Value Controlled
Loop Plan .,

Iaput
b fan
- i Planto Get ] P
. New Value
valus
99999

Loop Test i

New Value I
Soanftant H

99999 E 99999

Exit When True Do Inside ¢f LOCP
I X2

Compute Couater
Plaa

' alue
2
Qutput
Plaa

Print

Ay 2

Figure 3. A typical phase II solution in Bridge.

Where phase [ of Bridge represents the highest level plans, closest 0 the understanding of a non-programmer, phase II
represents a lower level of plan. As the student works in phase I1, links back to phase I are always available. Also, note that the
phase I plans are executable and can be run by students using the Bridge tutor.

1A problematic design issue arises with the data value tiles. We would like to show the data flow graphically, but found
the screen oo cluttered when a wire was drawn from each data source 10 each data destination. Although we experimented with
approaches that showed these links only when requested by the student, graphical data links were ultimately abandoned in favor of
overall simplicity.
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Bridge Phase IIL: Pascal Code

The third phase requires the Bridge student to transiate the plan-based description of phase two into actual Pascal code.
Students are provided with a Pascal structure editor (much like that of [5]), and an interpreter with a stepping mode. In this phase
the user drops from the world of plans into a standard programming language.

Any intelligent interface needs to infer user intentions from user behavior. In particular, the system must infer all mental
activity from the actual actions performed by the user. In tutoring programming, for example, a standard intelligent tutor must
reconstruct the student’s entire mental activity between seeing a program specification and actually entering code in the machine.
Such a reconstruction must account for both the correct and incorrect knowledge used by the student during desigri and
impiementation.

A tutor’s reconstruction of a student’s program is based on at least two kinds of knowledge. First, there must be a way
for students to break the-high-level goals of the probiem statement into lower level goals. Second, there must be knowledge
about how to transiate low level goals into program code. Within the tutor we can represent these two kinds of knowiedge as
operators that transform one kind of structure into another. In addition to correct versions of these operators, the mtor must
contain buggy versions representing common student misconceptions.

Using the knowledge base of correct and buggy operators a tutor can, in principle, use search techniques to reconstruct
plausible accounts for errorful and ambiguous student specifications. This approach has been powerfully demonstrated in the
programming tutor PROUST (6]. While the approuch works, it is very cosdy in ierms of both search time and knowledge
engineering. The accomplishments of PROUST must be weighed against the large cost in knowledge engineering time - several
hundred hours per problem tutored [7]. This knowledge engineering is particularly cost ineffective becanse the student sees so
lictle of the results. That is, almost all of the knowledge engineering that has gone into capturing operators that describe how to
apply programming knowledge is never seen by the student. Inside of PROUST, these operators are optimized for the the search
task. They are not available in a form that could be presented to studeats, or used to assist students as they work towards a
solution.

Bridge uses a different approach to reconstructing the student’s intentions. Instead of attempting to reconstruct a student's
entire reasoning from problem statement o final code in one step, Bridge has the student prepare intermediate solutions in plan
languages that correspond to particular levels in the process of moving from problem specification to goals to code. This
alleviates many of the difficulties of the PROUST approach. The search is more manageable because it has been broken up into
a series of much smaller searches. In each of the smaller searches there are fewer relevant operators to try and less reasoning
“distance™ W span between the user's surface behavior and the solution the tutor is trying to reconstruct.

In addition, the Bridge approach simplifies the knowledge engineering. The fewer operators in each search correspond o a
smaller overall catalog of operators to be specified. In addition, the smaller search spaces make it easier to tell when the space of
possible correct and errorful versions has beea covered.

A FRAMEWORK FOR UNDERSTANDING
AND DESIGNING INTERFACES-BASED ITS

In previous sections [ have discussed the value of an interface-based approach to ITS and the Bridge system as an example
of this approach. This section presents a general architecture to support interface-based ITS. The architecture has the following
two features:

1. Capturing an analysis of the educational process needed to move from novice conceptions of a task (0 expert (that is,
rich) conceptions of a task so that it is explicity available to the leamner.

2. A visual interface and corresponding knowledge structuring approach that simplify and organize the elements captured
in step 1.
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Plans: Organizing An Inigrface-Based ITS

We propose a computer system/human-computer interface based on a simpie set of icons that direct the machine. Each
icon represents an cperation and/or object that is important to the user at a particular level of dewil. We call these
operation/object elements plans. Plans are intended to capture common experience and standard operations. A plan set provides a
set of t00is at a particular level of detail. In addition to the plans, there are a few simpie links that allow plans 10 tied together in
various ways (see figure 4).

Figure 4. Plans used to create a simple computer application.

So far, we have a sinple computer application that presents itself as a few modular components. Users are allowed to
tailor these components in few limited ways to do their task. Our notion (and figure 4) should be viewed as a high level
caricature - the details of the user interface probably will specialize the links and visual appearance in some way particular to the
application. For example, we can imagine a simple spreadsheet where the links are connections between cells implicit in the
spreadsheet formulas. The key idea is visual constituents to represent the key system elements, and a simple set of underlying

How is such a system expanded to include experts? We propose that each of the plans can be “opened up” revealing a
whole new set of plans, linked together in such a way that they describe the implementation of the 10p level plan. That is, the
plans at the top level actually are a high level summary of some collection and organization.of lower-level plans. This plan
hierarchy goes on for many levels (see figure 5). Moving down a level in the plan hierarchy is viewed with two perspectives:

[ naa &

Figure 5. Interface based on a full plan hierarchy.
1. When you open a plan up to show the lower level set of plans that implement the orginal plan, you are requesung
an explanation of how the top level plan works.
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2.  Simulatenously, you are stating your willingness o confront the additional deta” additional complexity, or deeper
abstraction inherent in the lower-level set of plans.

Crucial to this approach is that traveling down a level corresponds to exactly one new idea that must be understood by the
user. Designing of the plan hierarchy should look more like a well designed course than a classic *‘top-down design” from the
structured programming literature. Good teachers build elegant scaffolds through the complexity of their subject matter domain.
The student is led with care and attention 0 avoiding the knotty complexities before the student actually needs to confront those
complexities. Good teachers carefuily seiect exampies that are complete and accurate, 23 far as they go, but leave out imporant
details that are irrelevant for that example. That is, the instructor designs the curriculum so the student only sees probiems that
are the right level of challenge for the student’s current understanding. So, for example, elementary school students learning
division begin with pairs of aumbers thas yeild whole number resuits, i.e.36 + 6, leaving remainders for [ater lessons.

Suestions For Building A Plan Hierarc!

As far as it goes, the above proposal is interesting, but not at all complete. There are many key questions to be answered
before it is of any practical use. These questions are as follows: .

1. How do you cut up the task domain? Perhaps the most important questions - how do I cut the task domain into
manageable pieces? How does one factar the many concepts and abstractions that make up any interesting application
domain into the various plans and links?

2. What do you put at each level of the hierarchy? For a given application, what should be the highest level plans and
what should be put in each successive layer? Is there one consistant layering, or do different task foci cause radical
changes to the decisions about the layers t0 be presented?

3. What is the semantics of the plan icons? Exactly what semantics should be supplied to the plans? What of their
internal structure is visable before the plan is “opened up”. What kinds of values can be swred in plans and how are
those values represented? What kinds of computations can be specified in plans and wha. does the specification look
like? _

4. What are the semantics of the links between plans? What do the connections mean? How many kinds of connections
should there be? Should there be data flow links, control flow links, or both?

The answers to questions 3 and 4 represent the language and interface overhead: infrastructure required that makes no
contribution 10 solving the application task. That is, these elements must be leamed by a non-expert computer users without
that learning directly contributin to solving any task of interest t© the end user. This argues for making as simple decisions as
possible when answering the questions about semantics that are presented above. The finai section of this paper proposes an
answer o questions 3 and 4.

Note that object-oriented programming community has confronted these questions in its emphasis on the idea of “reusable
software modules™ that can be plugged into any application. In practice, this is possible a lot less often then in theory,
particularly for modules taken from more developed applications. That is, reusability gets less and less likely as you get closer
and closer w0 providing real end-user functionality (as opposed 0 extending the wolkit available to programming experts).

We think there is a crucial missing component from the object-oriented programming approach: decisions about module
composition are made on technical grounds; i.e. “what is the most powerful abstraction”, or “what is most flexible combination
of parameters”. We are proposing to make decisions about module contents on pedagogical grounds:; i.e. “whats the simplist
useful idea that can be packaged into a module™ and “whats the single abstraction that provides the next level of functionality for
the user”. While the lower-levels of a plan based system look like what might be designed by a systems programmer, the upper-
levelzs are more like the work done by a knowledge engineer designing an expert system or like a teacher designing a course
plan<.

Note, these two notions are probably not all that different.
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MATISSE: A PLAN LANGUAGE FOR EDUCATIONAL MICROWORLDS

Based on the general discussion of a plan hierarchy, I propose a new language, Matisse3 to simplify the design and
development of educational microworids. In particular, Matisse is designed o support the design of actual plans that can be
manipulated on the screen. The language is designed with the following goals:

It should allow a microworld designer to base his or her design on an explicit mapping between an abstract domain:
and the graphical domain supported by the microworid.

It should naturally support what is currently known about the effective design of microworids.

It should be usable by educators. These users need not be programmers. The language will hide the programming
complexities inherent in direct manipulation interfaces.

It should support the design, implementation, and delivery (ix'a a classroom) of educational microworids. The systems
designed with Matisse must be efficient enough to work with students without reimplementation in standard
languages (¢.g. C, BASIC, exc.).

Exampie Use of Magisse

To illustrate Matisse I present a Matisse design for the strips and tiles microworid for teaching rational numbers in
¢lementary school. In a “strips and tiles” representation of fractions unit rectangles are divided into equal sized sections (see
figure 6). The student controls the number of section divisions and can color individual sections. The idea is that the colored
section represents a fraction’s numerator while the total number of sections represent the denominator. (see [10] for more details
on this microworid). The Matisse system is not implemented, so the following description should be viewed as an illustration
of the style 10 be used in developing a Matisse microworid.

3'1'he name honors the paper cut-outs produced by Matisse. These works are made up of simple, iconic shapes cut out of
construcuon paper. A goal for our microworlds is that they realize the dynamics and vibrancy in Matisse 's compositons.
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Figure 6. Example screen from the strips and tiles microworid.

That strips and tles world has the following basic screen objects:

* A window to contain the strips and tiles microworld.
*  Blank unit strips that can be subdivided into equal sized sections, including:
*  Sets of lines that evenly divide a unit strip into some number of equal sized sections
» Shaded sections, corresponding to one of the sections in the current set of dividers. Each
section may or may not be shaded. All shaded divisions may or may not be pushed together

at one end of the unit strip.
Pen used 1o indicate shading of a section
Eraser used t0 indicate unshading of a section
Stockpile of blank unit strips
Dividing tool use o indicate divisions
Fractions in standard notation
A notebook window showing a fraction in standard notation. This window is the same size and shape as the strips
and tiles window. Fractions in this window show are placed in the same relative position as the strips whose values
are represented.

A Matisse discription of this microworld consists of a discriptions of each of those objects. Actually, a prototypic
version of each object is described. All microworld elements are impiemented as an instance of a prototypic component. A
prototype indicates the screen appearance, properties, and refationship to instances of other prototypes., All instances of a
parucular prototype have their own values for internal properties while shanng the behavior specified in the prototype. So. for




example, all unit strips share the operation that allow their division, but each instance of a unit strip can have a different number
of divisions. .

Continuing with the exampie, the unit strip has the following properties:

Picm-lnmiscae'thepicmissdecmdfmmaﬁbmyofb\mdingbbcks. One of the standard building blocks is a
rectangle. The microworld designer can adjust the height and width of the rectange, and the thickness of the outer
line.

Division Kind - A rectangle can be divided into sections with horizontal or vertical divisions. For the strips and tiles
microworld the Division Kind property specifies vertical divisions. Other kinds of pictures have other kinds of
divisions. For example, Circles can have pie shaped divisions as well as horizontal and vertical divisions. All closeéd
figures can be divided with a grid.

Division Count - This property of the rectangle specifies how many divisions there shouid be.

Value - The unit rectangles have a value that is a function of the number of divisions and how many of those
divisions are shaded. The value can be expressed either of two different ways, depending on the desires of the
+ An ordered pair consisting of the number of divisions and a count of the shaded divisions.

. A rational number created by dividing the number of divisions by the number of shade
divisions. :

Position - The location of the unit strip on the containing window.

Each of the unit strip properties can be specified with a library elemens - some predefined object available in the Matisse
library, a value - a number, text string, or geometric figure — or as a constrain: equation. Constraint equations allow the
microworld designer to express relationships that are to be enforced whatever other behavior occurs in the microworld. To
continue the example, the properties of the unit strips have the following values:

Picture - library: rectangie (1in,3in)

This specifies a lin by 3in rectangle to be used as the picture for the unit strip.

Division Kind - library: vertical divisions, shadable

This tells Matisse to allow vertical divisions in the rectangle, and provide for the shading of those divisions.

Division Count - value: 0

This is an inital value. This field can (and will be) changed by user actions (described below).

Value - constraint: Ordered Pair(Shaded Division Count, Division Count)

This constraint equation says that the value of the unit strip is an ordered pair made up of the count of the divisions
that are shaded and the number of divisions. Actually, no constraints are introduced at this point, except that this
value, and any values that depend on this value, are updated automatically whenever the Shaded Division Count and
the Division Count change.

Position - value: Screen Position (StartingX, StartingY)

This is an intial value for the screen position. StartingX and StartingY can be replaced by some parucular values.
Note that the operator Screen Position is really a kind of ordered pair, specialized for representing screen posiuon.

J. Bonar
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Now that the properties are specified, we must specify the behaviors for those properties that have a behavior:
«  Division Count
aways Divison Count is <= 12

This behavior enforces a constraint that the division count must be less than or equal to
twelve. This is required because the screen cannot resolve anything smaller.

whenever Left Button of Mouse is Down
and  Type of Cursor is Division Tool
and Location of Cursor is Strip

then Ask User "How many divisions?”
and Division Count becomes User's answer

This Matisse behavior specifies that the user can set the division count by picking up
the Division Tool (how that is done is specified as part of the behavior for the Division
Tool), and clicking it over the unit strip. - :

*  Position
aways Position of Strip inside Microworid Window
This Matisse behavior says that the strip must stay inside the microworld window.
That is the eatire specification for the unit strips. A number of other objects need to be specified as well, but to simplify
this exposition, only a one of those descriptions will be shown here. N
¢ Pen

whenever Left Button of Mouse is Down
and  Type of Cursor is Normal
and Location of Cursor is on Pen icon

then Cursor becomes Pen Cursor
whenever Left Button of Mouse is Down

and Type of Cursor is Pen icon

and  Location of Cursor is Division of Strip

then Shade Division ot Strip

CONCLUDING REMARKS

Interface-based architectures for [TS provide opportunities for delivering both more powerful tutors and more effecuve
knowledge engineering. This paper hac discussed three systems: a working tutor, a general architecture, and language for
implementing parts of that architecture. These systems should not be seen as an attempt at systematic coverage but rather as
provocatve data points,
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. Abstract

Providing coherent explanations of domain knowledge is essential for a fully func-
tioning Intelligent Tutoring System (ITS). Current ITSs that generate explanations
from the underlying representation provide a limited solution because they place re-
strictions on the form and extent of the underlying knowledge. However, generating
explanations in tutors that are designed to teach the kind of foundational knowledge
conveyed in most introductory college courses poses special problems. These prob- -
lems arise because this knowledge is broad, complex, and contains multiple, highly-
integrated views.

In this paper we propose an explanation generation system for the field of botany
that provides a general solution. The system uses domain-independent knowledge in
the form of view types to assure that the knowledge incorporated in the explanation
is relevant and coherent. We show how view types are used in designing explanation
strategies to answer the question “How is X defined?”. We conclude by proposing
extensions to the explanation generator that enable the processing of other question
types and that take into account specific knowledge about the student and dialogue
history.

'Support for this research was provided by the Army Research Office under grant ARO-DAAG29-84-K-
0060 and the National Science Foundation under grant IRI-§620052.
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INTRODUCTION

Providing coherent explanations of domain knowledge is essential for a fully function-
ing Intelligent Tutoring System (ITS). There are two approaches to providing coherent
explanations: presenting “canned text” and generating explanations from the underlying
knowledge representation. Generating explanations offers several advantages. First, sys-
tems that generate explanations do not have to anticipate every question, thus they may
be able to provide explanations even for unexpected questions. Second, the exact form
of the explanation can be shaped to fit the current situation and student. Third. as the
domain knowledge changes, canned explanations must be examined to determine if they
are still consistent with that knowledge. In contrast, generated explanations are always
consistent with the knowledge. Finally, generated explanations can be used by the tutor
directly in tasks like diagnosis and evaluation. For example, they might be used to evaluate
the quality of a student explanation or to diagnose the basis for a faulty conclusion.

Current ITSs provide a limited solution to explanation generation. Their success results
. either from natural or imposed limitations on the form and extent of domain knowledge.
These limitations include dedicating the ITS to a single task (3,1,4], characterizing thc
domain knowledge by a relatively small number of rules or axioms [7,6,1], covering only
a small portion of a domain (2], and keeping viewpoints separate in the knowledge base
1,7].

An important class of tutors requires a broader solution to generating explanations
than these ITSs have provided. The domain of these tutors is the foundational knowl-
edge conveyed in introductory college courses. For most subjects, this knowledge broadly
surveys the domain, contains multiple, highly-integrated views, and is not reducible to a
small number of principles or axioms.

These properties of foundational knowledge pose special problems for an explanation
generator. It must access the relevant knowledge and generate adequate explanations from
the multiple views that are typically represented. In addition, any ITS that generates
explanations must have a way of controlling the degree of elaboration and the amount of
detail provided so that the definitions are adequate but not overwhelming.

In this paper we present an ezplanation generation system for the domain of botany
that addresses these problems. To assure the coherence and relevance of the explanations
that are generated. this system employs view types, which are used to provide a viewpoint
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on the knowledge within which to couch the explanation.

We begin by describing our extensive knowledge base in the domain of botany. The
knowledge base contains foundational knowledge described with multiple, integrated views
of botanical objects and processes. We then describe an explanation generation system
that uses view types and default knowledge about the student. We conclude by proposing
to customize these explanations using a student model and dialogue history.

REPRESENTING FOUNDATIONAL KNOWLEDGE

Botany is representative of domains with foundational knowledge. The botany knowl-
edge base we are constructing currently contains over 4,000 concepts in the areas of
anatomy, physiology, and development [5]. Nonetheless, this knowledge is only a small
portion of the information contained in an introductory botany course. This knowledge is
oriented around botanical processes (such as growth and water absorption) a.nd the ob jects
that participate in them (such as root system).

A comprehensive representation of each concept requires multxple views. For example,
glucose may be viewed as a 6-carbon ring structure, a sugar, the product of photosynthesis,
the raw material for fermentation and respiration, the building block for polysaccharides,
the most essential nutrient provided by plants to animals. an important intermediate in
many biosynthesis processes, an important osmotic particle, etc.

The “backbone” of the knowledge base is a collection of related botanical objects and
processes (Figures 1 and 2). The relations support the inheritance of facts from general
concepts to specific concepts. For example, phdtosynthesis is a kind of biological production
event, whosc raw inatenals are cubstauces the plaut must be able to assimilate. The output
includes organic compounds which are more complicated than the raw materials and may
include other organic and inorganic compounds in the form of by-products and waste-
products.
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Object Hierarchy
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Building on this ontology, each concept is represented with a frame. which contains
slots that record relations to other concepts. For example, Figure 3 describes the fruit
development process, its relations to the objects it affects, and its subprocesses. The
structure of objects and processes is represenfed with constraints among the parts: for
example, the grown seed is constrained to be contained by the developed pericarp, and fruit
development is constrained to occur before fruit ripening.

( Fruit Development
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Figure 3

The foundational knowledge of botany, as in most fields. is broad and complex. This
affords considerable flexibility in its use. but poses problems for access: how can an ITS
locate and structure the knowledge relevant for answering a particular question?
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AN EXPLANATION GENERATION SYSTEM:
INITIAL RESULTS

When generating coherent explanations from a foundational knowledge base, it is nec-
essary to constrain the information presented so that the explanations are coherent and
contain only relevant knowledge. To accomplish this, we employ a small number of view
types, which are used to define the context for the explanation. Strategies derived from
the view types then generate the explanation within the contextual constraints defined by
the view type.

FEach explanation generation strategy is designed to answer a given class of questions
the student might ask. In our examination of student questions, we have found that they
fall into a hierarchy of question types. Each question type represents a class of equivalent
questions, where two questions are considered to be equivalent if they can be put in the
same form without losing meaning. This form is used to select the appropriate explanation
generation strategy. ,

We will describe in detail the notion of view types and the question types they address.
Then we will show how strategies derived from the view types can provide answers to the
question type “How is X defined?”.

View Types

Each coherent area of a knowledge base represents a particular viewpoint on the domain
knowledge. For example, an explanation about pollen might use the viewpoint of “pollen
as an actor in plant reproduction” or “pollen as an object composed of other parts and
substances” or “pollen as a nasal irritant.”

Although there are an unlimited number of viewpoints possible, we propose that a
small number of view types are sufficient to characterize all viewpoints. The view types
that we have developed are the functional, modulatory, structural, class-dependent. and
attributional view types.

The functional view type considers the role of some object in some process. For exam-
ple, the viewpoints

e Pollen as an actor in Plant Reproduction

o Chloroplast as the producer in Plant Photosynthesis
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both employ-the functional view type.

A functional viewpoint necessarily includes a slot that represents some kind of actor in
relation, such as producer, agent, a.” raw material. Sometimes this slot relates the cbject
and process of interest directly. Often there is only an indirect relationship. For example,
a part or specialization of the object may be an actor in the process specified. rather
than the object itself. Thus a functional viewpoint that relates the object and process
includes an obligate actor in type slot and certain other “permissible” slots (e.g., has part
and specialization) that provide intermediate links between the object and process. These
slots are permissible because their presence does not invalidate the functional relationship
between the object and process. For example. it can be said that one of the functions of
the seed is to protect the plant embryo, though strictly speaking it is the seed cvat, a part
of the seed, that protects the embryo.

The modulatory view type considers how one object or process affects another. An
example of a modulatory viewpoint is “Sunlight as an influence on Plant Growth” or
“Embryo Growth as a cause of Seed Coat Rupture.” A modulatory viewpoint necessarily
includes at least one regulatory slot, such as causes or inhibits. Other slots also may be
included, as with the functional view type.

The structural view type considers an object or process in terms of its substructures.
or superstructures. These structures may be either temporal or spatial.

For example,

e Photosynthesis as the Light Reactions followed by the Dark Reactions
o Seed as the structure consisting of a Seed Coat, Endosperm, and Embryo

¢ Flower as Flower Bud Stage followed by Opening Flower Stage followed by Mature
Flower Stage

are all substructural viewpoints. Analogous superstructural viewpoints are
e Light Reactions as the subprocess of Photosynthesis preceding the Dark Reactions
e Seed Coat as the part of a Seed containing the Endosperm and Embryo

e Opening Flower Stage as the stage of Flower development following the Flower Bud
Stage and followed by the Mature Flower Stage.
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As illustrated by these examples, a structural viewpoint includes those constraints that
specify how the temporal or spatial parts are interconnected.

The class-dependent view type considers a concept in terms of how it fits into a class
hierarchy. The class-dependent view type has two subtypes: categorical view type and
enumerative view type. The categorical view type considers a concept in terms of the
properties and relations it inherits from one of its generalizations (superclasses). For
example, “Flower as Reproductive Organ” and “Photosynthesis as Energy Transduction
Process” are categorical viewpoints. The enumerative view type considers a class concept
in terms of its instances (members) or specializations (subclasses). An example of the
enumerative view type is “Plant Reproduction as Sexual Plant Reproduction or Asexual
Plant Reproduction.”

The simplest view type is the attributive view type. This view type considers a concept
in terms of its properties or attributes. Property slots, such as color and weight, have values
that fall along some range or spectrum. Unlike the other view types, the a.ttnbutxona.l view
type involves properties rather than relations.

Since each of these view types concerns th= relationship of the concept of interest to at
most one other concept, it is straightforward to specify a particular viewpoint using these
view types. All that is required is to specify the concept of interest, the view type, and the
reference concept, that is, the concept to which the view type relates the concept of interest.
For example, (Pollen Functional-View-Type Plant-Reproduction) specifies pollen from the
viewpoint of its functional role in plant reproduction. Thus a view type is instantiated to
a particular viewpoint by specifying the concept of interest and the reference concept.

An ITS can use view types to generate coherent explanations in the following way.
The question asked by the student determines the concept of interest. The system then
selects a view type using information in the student’s question and meta-level knowledge
about the applicability of the view types to the particular question type. The explanation
generator has a strategy for each valid mapping between a question type and a view type.
It uses the appropriate strategy to retrieve from the knowledge base the network of frames.
slots. and constraints that forms the basis of a coherent answer to the student’s question.
The strategy uses the concept of interest and the reference concept to guide access to the
knowledge base.
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Question Types

To develop strategies for generating coherent explanations in response to student ques-
tions, an TS must have a predefined set of question types. A question type is a template
for a class of questions that have the same kind of conceptual representation and that
are answered using the same explanation generation strategy. It is important to classify
questions on the basis of conceptual representation rather than syntactic form because the
same question can be phrased in many ways. However, one way to facilitate the process
of classifying student questions is to restrict the allowable syntax for each question type
so that the syntax of a student’s question uniquely determines its meaning, and thus its
question type.

We have developed a hierarchically structured set of question types. When the student
asks a question of a particular question type that has subtypes, the stand-alone explanation
generator uses a default knowledge structure to transform the question into a more specific
question covered by one of the subtypes (or into a combination of more specific questions).
The customized system will be able to use the student model, the dialogue history, and
the knowledge base to make such transformations. In this way, the system can apply very
specific and direct explanation generation strategies even to a very general question. The
hierarchy of question types we have developed is summarized below.

¢ How is X defined?

— What kind of thing is X?

— What are some examples of X?

— Describe the spatial/temporal structure of X.
- What are the properties of X?

- In what events is object X an actcr?

— What events/ob jects does X affect (and how)?
- What events/objects affect X (and how)?

= What conditions are sufficient/necessary for X?
= What would be the effect on X if condition C were true/false?

» What processes/conditions/quantities influence quantity Q of X°
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¢ Compare/contrast X with Y.

How is X different from the prototypical Y?

— How are the va ues for characteristic C of X like/different from the values for charac-
teristic C of Y?

How is the spatial/temporal structure of X like/different from the structure of Y?

How is the role of object X in process P like/different from the role of object X in P?
How is the effect of X on Z like/different from the effect of Y on Z?

¢ What are the values for characteristic C of X7

e Why does X have the value V for characteristic C?

¢ Why doesn’t X have the value V for characteristic C?

e -How is X related to Y?

. o How does object X perform process P?

¢ What concept has the following.properties and relations?

o What would be implied if condition C were true/false?

For each question type an explanation generation strategy must be developed. If the
question type represents questions that can be answered using more than one view type.
then a strategy that can be applied to the question type is needed for each view type.
For the definition and comparison question types described above, we have developed
strategies for each of the five view types. In the next few months we plan to implement

these strategies in a prototype explanation generation system. The next section is a brief
discussion of a few of these explanation generation strategies.

Definition Strategies

Much of our work on explanation generation strategies has focused on the definition
question type. We have taken a liberal interpretation of definition in which “How is
X defined?” is taken to mean “Give me some information about X that will help me
to understand its significance.” Each view type is used to guide the construction of a
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particular explanation generation strategy. The explanation strategies for each of the five
view types are discussed below.
The functional view type strategy for generating definitions is as follows:

e The system collects all values found on actor in slots on the frame representing the
concept of interest.

e If any of these values is the reference concept, then the functional relationship has
been established. If none of them are, the system determines if any of the values are
specializations or subevents of the reference concept. (Here the reference concept is
restricted to processes. )

o If the above fails, the system attempts to establish a functional relationship between
one of the specializations or parts (either spatial or temporal) of the concept of
interest and the reference concept.

The class-dependent view type has two subtypes: the categorical view type and the
enumerative view type. The definition generation strategy for the categorical view type
attempts to show how the concept of interest is a specialization of the reference concept.
The reference concept is restricted in this case to a generalization of the concept of inter-
est. First, all slots, values, and constraints that the concept of interest inherits from the
reference concept are collected. Then the system retrieves all values local to the concept
of interest that appear on slots inherited from the reference concept.

The enumerative view type involves collecting either all the instances of a concept
representation in the knowledge base or all the specializations. If an unmanageable number
are found, then the system will present only a subset of the examples to the student. Unless
requested by the student, the system selects the enumerative view type only as part of a
definition using multiple viewpoints or for the definition of a superordinate category. A
superordinate category, such as furniture, is sufficiently polymorphic to warrant a definition
by example.

The structural view type strategy for generating definitions is conceptually the same
regardless of if a spatial structural viewpoint or a temporal structural viewpoint is re-
quested. The same basic strategy is used to explain the parts of an object. the stages of an
object, and the subprocesses of a process. The only difference in the strategies for these
three is the actual slots employed.
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To give a spatial substructural definition of an object, the system reports the values
and constraints on all part slots on the frame representing the object. The definition also
includes constraints on how these parts are interconnected. To give a spatial superstruc-
tural definition of an object, the system reports the values and constraints on all slots that
indicate what the object is part of, connected to, or contained in. In addition, it reports
all constraints indicating how the object is connected to its superstructures, including its
“neighboring” parts and interconnections.

The definition generation strategy corresponding to the modulatory view type has
several varieties, depending on the nature of the concept of interest and the reference .
concept. Since either can be an object or a process, there is a strategy for each combination.
A general tactic used is to determine if some quantity, such as size or rate, of one concept
affects some quantity of the other concept through a qualitative relation. To determine
how a concept (either an object or a process) affects another process, the system first
determines if the concept appears in any constraints or preconditions on the process, or
on one of its subprocesses or specializations. Failing this, if the concept is an object, it
determines if one of the specializations or parts of the object affects the process. If still
no modulatory relationship is established, then it searches for an actor in relationship.
If the concept is a process, it tries to establish a chain of slots such as causes, enables,
prevents, inhibits, and facilitates from the first process to the second. The search for such
a chain also can involve specializations, generalizations, subprocesses, and superprocesses
of the two processes. To establish a modulatory relationship between a process and an
object, the system determines if the process or one of its specializations or subprocesses
has the reference object as an actor. If this fails, it determines if the event affects some
specialization or part (temporal or spatial) of the reference object.

If no modulatory link can be established using the above strategies. then it may be
possible to construct an indirect modulatory link. For example, although there may be no
representation in the knowledge base of how the amount of sunlight in a plant’s environment
affects the amount of glucose in the plant, such a relationship can be established by first
establishing the relationship between the amount of sunlight ana the rate of photosynthesis.
and the relationship between the rate of photosynthesis and the amount of glucose. The
system will search for such an indirect relationship only as a last resort and with a time
limit imposed.
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The definition strategy corresponding to the attributional view type involves collecting
all slots on the frame representing the concept of interest that are property or attribute
slots, such as color and weight. Once these slots have been collected, the values and
constraints found on the slots are retrieved. Like the enumerative view type, the system
will never use the attributional view type as the sole basis of a definition. Rather it will
use it in combination with other view types to provide added detail to the definition.

CONCLUSION

An important task of Intelligent Tutoring Systems is providing students with coher-
ent explanations. There are two basic approaches to explanation generation: presenting
“canned text” and generating explanations directly from the representation in the knowl-
edge base. Unlike using “canned text,” generating explanations directly from the represen-
tation allows for the flexible use of explanations in the tasks of presentation, diagnosis. and
interpretation. We have presented five view types that can be used to design explanation
generation strategies for answering student questions.

Questions that can be put in the same form without loss of meaning constitute a
question type. When a student asks a question, the system uses the form of the question to
select the appropriate view type for the question. It then uses the explanation generation
strategy associated with the view type for that particular question type to generate a
coherent explanation from the underlying representation.

We have developed strategies from each of the five view types for the definition and
comparison question types. The definition strategies, either singly or in combination, were
sufficient to generate each of the 50 definitions selected from a botany textbook. In the next
few months we plan to develop strategies for the other question types and to implement
these strategies in a prototype explanation generation system.

Future work will include embedding the system described here in a customized expla-
nation generator. This customizing system will be sensitive to the particular needs of the
current student by accessing information contained in a student model. This requires de-
signing a student modelling system to build and maintain a model of the student’s evolving
knowledge of the domain. To generate explanations that maximize discourse coherency.
the customizing explanation generator will also maintain and use a dialogue history. We

68 B. Porter

14




-

will then perform a comparative analysis of the noncustomizing and the customizing sys-
tems to empirically test the effectiveness of explanation customization, as well as to gauge
the cost of enhancing a stand-alone explanation generator with a customizer, a student
model, and a dialogue history.
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Abstract

This paper describes the process of encoding tutoring knowledge in a knowledge -based tutor
and breaks it down into its component parts. Knowledge representatic1is explained in terms of
modelling domain knowledge, human thinking, learning processes, and tutoring strategies. A
uniform language is proposed to store tutoring primitives, including lessons, topics and presen-
tations. Knowledge acquisition is described as a methodology for identifying and encoding the
expertise used by teachers to reason about tutoring. Control knowledge is explained in terms
of the machine’s ability to first select a topic or response for an individual student and then
customize its discourse or dynamically modify its examples, questions, or descriptions.

The paper describes how tutoring can be understood in terms of the Artificial Intelligence
paradigm of knowledge and control. It shows how to represent knowledge computationally and
how to express it as strategies and rules. Architectures are proposed for developing new systems
and tools described to facilitate the process. The tools are now used in a generic and consistent
foundation which has enabled us to represent, acquire, and reason about tutoring knowledge
across several domains and from within several sites. Our goal is to enhance this framework and
ultimately to produce a system in which “just plain folk”, including psychologists, instructional
scientists, and domain experts, can work directly on the machine to modify and upgrade tutors
without the need for knowledge engineers.
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DC 20332 under contrac: No. F30602-85.C-0008. This contrac: suppor:s the Northeas: Arsificiai [nteligence
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1. BUILDING A TUTORING SYSTEM

We have evolved a generic and consistent foundation for representing, acquiring, and rea-
soning about tutoring knowledge. The big payoff has been that we can apply the framework
and evolving theory to several domains and have developed or designed systems that tutor
about statics, thermodynamics, time management, statistics, genetics, algebra word problems,
and explanations. In this paper we name that foundation, draw it, and describe it.

We are not invested in promoting a particular tutoring strategy, nor do we advocate a
specific intelligent tutoring system design. Rather, we build tools that allow for a variety of
system components, teaching styles, and intervention strategies to be combined into a single
framework. For example, Socratic tutoring, incremental generalizations, and case-based rea-
soning are just a few of the teaching strategies that we have implemented in this framework.
Ultimately, we expect the machine to reason about its own choice of intervention methods. to
switch teaching strategies, and to use a variety of tactics and teaching approaches, while making
decisions about the most efficacious method for managing one-on-one tutoring.

We are aided in our work by colleagues in three states who apply the tools we develop
to new demains and new user groups.? For example, colleagues at San Francisco State Uni-
versity have sent us several carefully built physics simulations on top of which we placed the
tutoring formalism described here.® These colleagues help us evaluate the tutors. One pro-
fessor at City College of San Francisco used the statics tutor (Section 2.1) in a classroom and
noticed deficiencies in the machine discourse which she amended in her verbal discourse with
the students. She added examples or explanations to bolster the tutor’s response, to diagnose
student preconceptions , or to clarify the system’s response. She delivered a list of additional
discourse moves to us to be incorporated into the next version of the tutor.

1.1 Cycle of Development in Artificial Intelligence Systems

Development of intelligent tutors, like development of any Artificial Intelligence system,
requires several iterative cycles: computer scientists and instructional designers have to first
collaborate on the design and development of a system, additional collaboration is required
to test it with students, and then the original implementation has to be modified and refined
based on information gained through testing. This cycle is repeated as time permits.

1.2 Representation and Control

Artificial Intelligence programs are built by first defining and encoding the knowledge to
be used and then by building control structures which define the way an interpreter will tra-

?Participant institutions inciude San Francisco State University, San Francisco City Coliege Trinity Codege
in Hartford, CT.. and State University of New York at Platishurgn. NY

’San Francisco State University. the University of Massachusetts. anc the University of Hiowaii are memoess
of the Expioring Svstem Ear:x Consortium. ESE . a group of universities and :ncustries NOLKINg logeiner t.
build :nteiligent science tutors. The consortium :§ supporiea ov the Hewiett.Pacxard Corporation.
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Figure 1: Representation and Control in a Tutoring System.

verse that knowledge. Knowledge representation refers to how knowledge is stored by a system
to allow it to model the domain, human thinking, learning processes, and tutoring strategies.
Knowledge bases store concepts, activities, relations between topics, and other quantities needed
to make expert decisions. In particular, they store a variety of the lessons, topics, presentations,
and response selections available to the tutor (see Figure 1).

Control refers to passage of an interpreter through those knowledge bases and its selec-
tion of appropriate pieces of knowledge for making a diagnosis, a prediction, or an evaluation.
For tutoring, control structures are specified at the four levels indicated in Figure 1, separately
defining control for selection of lesson, topic, presentation, and response selection.

Currently, our control structures are motivated by specific instructional and diagnostic
goals: thus, for example, one control structure produces a predominantly Socratic interaction
and another produces interactions based on presenting incrementally generalized versions of
new concepts or examples. Control structures are specific to a particular level of control and
are used separately to define the reasoning to be used for selecting a lesson. topic. presentation.
Oor response.

Acquiring and encoding this large amount of knowledge. or the knowiedge acquisition pro-

cess. 1s difficult and time consuming. This paper describes our current efforss o perform knowi-
edge acquisition and knowledge engineering and to represent and reason aboul This Kncwiedgs
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Figure 2: Tools for the Representation and Control of Tutoring Knowledge.

In particular, we bave built a number of tools that facilitate the representation and reasoning
about tutoring knowledge (see Figure 2). For each knowledge base (lessons, topics, presenta-
tion, or response), we consider the nature of the knowledge that must be accessed, such as the
examples or questions (from the presentation knowledge base) or the activity the tutor must
engage in, such as to motivate or teach a topic, or to provide follow-up. We have built tools to
support each activity listed at the bottom of Figure 2. Ounly a few such tools will be described
in this paper, namely TUPITS, Exgen, Response Matrix, DACTN, and multiple views.

We divide the discussion into two parts, separately presenting tools for representing tutoring
primitives, or lessons, topics and presentations, and tools for representing discourse knowledge.

2 TOOLS FOR REPRESENTING TUTORING
PRIMITIVES

We define tutoring primitives as those elements needed for tutoring, such as topics to be
taught, specific tutoring responses, and possible student errors. Our knowledge bases hoid a
variety of examples. tvpes of knowledge. tasks to be given to the student. and discourse states
describing various human-machine interactions.
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2.1 Example Tutoring Primitives

As an example of how tutoring primitives are used, we describe two tutors we have built in
conjunction with the Exploring Systems Earth (ESE) Consortium {3]. These tutors are based
on interactive simulations that encourage students to work with “elements” of physics, such as
mass, acceleration, and force. The goal is to help students generate hypotheses as necessary
precursors to expanding their own intuitions. We want the simulations to encourage them to
“listen to” their own scientific intuition and to make their own model of the physical world
before an encoded tutor advises them about the accuracy of their choices. These tutors have
been described elsewhere (see for example, [16]; [18]) and will only be summarized here.

Figure 3 shows a simulation for teaching concepts in introductory statics. In this example,
students are asked to identify forces and torques on the crane boom, or horizontal bar, and to
use rubber banding to draw appropriate force vectors directly on the screen. When the beam is
in static equilibrium there will be no net force or torque on any part of it. Students are asked
to solve both qualitative and quantitative word problems.

If a student were to specify incorrect forces either by omiting force lines or by includ-
ing the wrong ones. the tutor makes a decision about how to respond. There are many possible
responses depending on the tutorial strategy in effect. The tutor might present an explanation.
a hint, provide another problem, or demonstrate that the student’s analyvsis leads to a logical
contradiction. Still another response would be to withhold explicit feedback concerming :he
quality of the student’s answer. and to instead demonstrate the consequence of omutting the
“missing” force: 1.e.. the end of the beam next to the wall would crash down Such a response
would show the student how her conceptions mught be in conflict with the »bservabie worid and
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Figure 4: Thermodynamics Tutor.

to help her visualize both her internal conceptualization and the science theory.

A second tutor is designed to improve a student’s intuition about concepts such as energy,
energy density, entropy, and equilibrium in thermodynamics. It makes use of a very simpli-
fied but instructive simulated world consisting of a two-dimensional array of identical atoms
(Figure 4 [1]). Like the statics tutor, the thermodynamics tutor monitors and advises students
about their activities and provides examples, analogies, or explanations. In this simplified world
the atoms have only one excited state; the excitation energy is transferred to neighboring atoms
through random “collisions.” Students can specify initial conditions, such as which atoms will
be excited and which will remain in the ground state. They can observe the exchange of exci-
tation energy between atoms, and can monitor, via graphs and meters, the flow of energy from
one part of the system to another as the system moves toward equilibrium. In this way, several
systems can be constructed, each with specific areas of excitation. For each system, regions
can be defined and physical qualities, such as energy density or entropy, plotted as functions of
time.

2.2 Representing and Reasoning about Tutoring Primitives

The topics, examples, explanations, and possible misconceptions about concepts to be
taught in these two domains must be represented in the four knowledge bases described in
Section 1.2. We use a network of Knowledge Units frames to explicitly express reiationships
between topics such as prerequisites. corequisites. and related musconceptions Figure 5+ An
umportant notion about the network is that is declarative-it contains a structured space =f
concepts. but does not mandate any particular order for traversal of thus space
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Figure 5: Hierarchy of Frames.

The network describes tutorial strategies in terms of a vocabulary of primitive discourse
moves. It is implemented in a language called TUPITS* which was used to build both the
tutors described in Section 2.1. It is an object-oriented representation language that provides
a framework for defining primitive components of a tutorial discourse interaction. These com-
ponents are then used by the tutor to reason about its next action.

As shown in Figure 5 , each object in TUPITS is representad as a frame and each frame is
linked with other frames representing prerec ‘i-ites, co-requisites, or triggered misconceptions.
The primary objects in TUPITS are:

o Lessons which define high-level goals and constraints for each tutoring session (see '7');
o Knowledge Units (KUs);

e MIS-KUs, which represent common misconceptions, wrong facts or procedures. and other
types of “buggy” knowledge;

e Examples, which specify parameters that configure an example. diagram. or simulation
to be presented to the student:

¢ Questions. which define tasks for the student and how the student’s behavior curing :h:
task might be evaluated: and

*TUPITS /Tutoriai discourse Primitives for [nteiligent Tutoring Svstems :uns o~ a Hewie::-Pacxare Sooca:
. ana an Appie Macintosn [I.
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o Presentations, which bind an example and a question together.

MIS-KUs, or “Mis-Knowledge Units,” represent common misconceptions or knowledge “bugs”
and ways to remediate them. These are inserted opportunistically into the discourse. The tu-
toring strategy parameterizes this aspect of Knowledge Unit selecticn by indicating whether
such remediation should occur as soon as the misconception is suspected, or wait until the
current Knowledge Unit has been completed.

Control is achieved through information associated with each object which allows the system
to respond dynamically to new tutoring situations. For instance, Knowledge Units, or topics
~epresented as objects, have procedural “methods” associated with them that:

¢ teach their own topic interactively;

e explain knowledge didactically;

o teach their own prerequisites;

¢ test students for knowledge of that topic;

e summarize themselves;

¢ provide examples of their kpowledge (an instantiation of a procedure or concept);
¢ provide motivation for a student learning the topic; and -

¢ compare this knowledge with that of other Knowledge Units.

A specific tutoring strategy manifests itself by parameterizing the algorithm used to traverse
the knowledge primitives network based on classifizations of and relations between knowledge
units. Several major strategies have thus far been implemented. For example, the tutor might
always teach prerequisites before teaching che goal topic. Alternatively, it might provide a
diagnostic probe to see if the student knows a topic. Prerequisites might be presented if the
student doesn't exhibit enough knowledge on the probe. These prerequisites may be reached
in various ways, such as depth-first and breadth-first traversal. An intermediate strategy is to
specialize the prerequisite relation into “hard” prerequisites, which are always covered before
the goal topic, ard “soft” prerequisites, taught only when the student displays a deficiency.

Control and Reasoning about Examples. Another example of reasoning about tutoring
primitives is shown by the actions of ExGen {17}; (13}, ExGen takes requests from the
various components of the tutor and produces an example, question. or description of the con-
cept being taught. A “seed” example base contains prototvpicai presentations of each rvpe.
Exfen’s modification routine expands this into a 'nuch larger virtual space of presentations
as needed. The goal 1s to enabie the tutor to have flexibility in 1ts presentation ol -.:amples
and questions tasks that.accompany those examples. without needing to represent all possibie
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Figure 6: Reasoning About Examples.

presentations explicitly.

Requests given to ExGen are expressed as weighted constraints called requests (see Fig-
ure 6). The constraints are written in a language which describes logical combinations of the
desired attributes of the example, and the weights on them represent the relative importance
of each of these attributes. The returned example generally meets as many of the constraints
as possible in the priority indicated by the weights.

ExGen is driven by example gene-ation specialists, or knowledge sources, each of which ex-
amines the current discourse and student models and produces requests (weighted constraints)
to be given to ExGen. These example generation specialists may be thought of as tutor-
ing rules. encoding such general prescriptives as “when starting a new topic, give a start-up
example” , or “ask questions requiring a qualitative response before those involving quantities.”

The tutoring strategy impacts on this layer of presentation selection by prioritizing the
relative importance of the recommendations produced by each of the example generation spe-
cialists. Within a strategy. each specialist has a weight multiplied by the weight of the requests
produced by the specialists. Altering the behavior of the presentation control 1s simpiv a matter
of changing the weights on the specialists by selecting a new strategy

For instance. one specialist requests that presentations iescribing the -urrent Kaorwieadgs
Unit be given. and another requests that the student be quesiiuned These cimpeting regues:

[




are ordered by the current tutoring strategy. We are also examining strategies for temporal
ordering of the presentation of examples, such as Bridging Analogies ('2}; [8] unpublished) and
Incremental Generalization.

Acquiring Tutoring Primitives Knowledge. Knowledge acquisition for tutoring primi-
tives knowledge means encoding the questions, examples, analogies, and explanations that an
expert might use to tutor a particular domain, as well as the reasoning he/she uses to decide
how and when to use those primitives. We achieve knowledge acquision for tutoring primitives
through a graphical editor which is used by the instructional designer to encode and modify
primitives and reasons why one primitive will be used instead of another. The graphical editor
allows a teacher to generate and modify primitives without working in a programming language.
The system presents a sheaf of “cards” listing a series of primitives. The user chooses a card
and brings the primitive into an edit window, from which he/she can build new primitives.

3. TOOLS FOR REPRESENTING DISCOURSE .
KNOWLEDGE

Our tutors are beginning to represent and reason about their alternative responses to the
student. Choices are concerned with how much information to give and what motivational
comments to make. For instance, the machine must decide whether or not to:

o talk about the student’s response;

e provide motivational feedback about the student’s learning process;

e say whether an approach is appropriate, what a correct response is, and why a student’s
response is correct or incorrect; or

e provide hints, leading questions, or a counter-suggestion;

Motivational feedback may include asking questions about the siudent’s interest in con-
tinuing or providing encouragement, congratulations, challenges, and other statements with
affective or prelocutionary content. Control is modulated by which tutoring strategy is in ef-
fect, which in turn places constraints on what feedback or follow-up response to generate. The
strategy may also specify that system action be predicated on whether the student’s response
was correct, or even that no response is to be given.

Reasoning about Discourse Level. As a start to this process we have defined several
high-level response strategies and tactics (see Figure7). For example. we have designated an
informative response tactic as one in which the machine will elaborate. give reascns anc :on-
gratulate the student. For each concept represented in the machine. some of :hese Drimiiive
responses are avallable and the machine will generate the requested tactic. However we a.3c
advise the system about strategies such as Socratic tutoring. being drief. and Deing vers s2
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Figure 7: Reasoning about Discourse Level.

Here we indicate a priority ordering; thus to be Socratic, the machine must place highest pri-
ority on the tactic called coy and secondary rating on the tactic to be informative. If there is
a conflict between the checks and the crosses, that notation with the highest priority will win.

3.1 Managing Discourse

We realize that a more flexible and responsive discourse management technique is critical
to any tutoring or consultant svstem. By discourse management, we mean the system's abil-
ity to maintain interactive discourse with the user and custom-tailor its responses beyond the
generalized discourse level suggested above. Ideally, the system should tailor its response to
the idiosyncracies of a particular user. Machine discourse and response need not be in natural
language to be effective [10].

For example, the system should ensure that an intervention relates directly to an individual’s

personal history, learning style, and on-line experience with the system. It should dynamically
reason about a user’s actions, the curriculum, and the discourse history. In doing this the tutor
should make each user feel that his/her unique situation has been responded to, appropriately
and sensitively. In this way the system simulates one-on-one human tutoring behavior.
The mechanism we use to do this is called a DACTN, Discourse 4Ction Transition Network.’
which represents and controls the human-machine dialog. Figure 8 is a DACTN for responding
to a user about the inventory test of questions that he,she took in the svstern described in
Section 3.2. This graphic is taken directly off the screen of the system.

Sometimes the intervention steps designated by a DAC'TN are based on a taxancmv =f re.

*Raymes wiza ACT-IN
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quently observed discourse sequences which provide default responses for the tutor {18]. The
discourse manager also can reason about local context when makicg discourse decisions. Here
local context is an aggregate of the client profile and response history.

The DACTN represents the space of possible discourse situations: Arcs track the state
of the conversation and are defined as predicate sets while nodes provide actions for the tutor.
The discourse manager first accesses the situation indicated by the arcs, resolving any conflicts
between multiply- satisfied predicate sets, and then initiates the action indicated by the node
at the termination of the satisfied arc. '

Arcs represent discourse situations defined by sets of predicates over the client profile and
the state of the system. For instance, the value of the arc “CLIENT-IS-AVOIDING”(top-half
of Figure 8) is determined by infering over the current state of the profile and recent client
responses. Placing actions at the nodes rather than on the arcs, as was done in the ATN ‘13|,
allows nodes to represent abstract actions which can be expanded into concrete substeps when
and if the node is reached during execution of the DACTN. For example, the node “EXPLAIN
RESULTS” (middle of Figure 8) expands into yet another complete DACTN to be executed if
this node is evaluated in the course of the intervention. ‘

Each user response causes the user model, or in this case the personmality profile, to be
updated, which in turn affects the interpretation of the current discourse situation. DACTNs
allow discourse control decisions to be based on a dynamic interpretation of the situation. In
this way the mechanism remairs flexible, domain-independent, and able to be dynamically
rebuilt—decision points and machine actions are modifiable through a graphical editor, as ex-
plained in the Section 3.4. DACTNSs have been implemented in two domains, one of which is
described in the next section.

3.2 Example Discourse Knowledge

TEV (Time , Energy, and Vision) is a consultant tutor that presents interventions directed
at improving an individual’s personal time perspective. The system moves through two phases
which model the human-to-human consultation process: 1) Initial Client Assessment, and 2)
Intervention/Evaluation (see Figure 9).

Phase I: Initial Client Assessment.

During the first phase, TEV gathers information about the person’s attitudes, knowledge.
and skills using an assessment instrument which, in a non-computerized version, has been tested
with 11.000 individuals. The client is presented with a series of statements which focus on atti-
tudes. knowledge, and skills related to time perspective (Stanford Time Perspectives [nventorv
'3]) For each statement. the client is given a choice of five ratings ranging from very charac-
teristic to very uncharacteristic and is asked to :ndicate "How characteristic is thus >f vou'”
Example statements include the followmng:
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sork fatal istic Hedonistic goal Ties pragesetic daily
sotivetion sealk ing press plamning

Figure 10: Actual Evaluation of a Client who Presented a Present-Oriented Time Perspective.

o Thinking about the future is pleasant to me.
o If things don’t get done on time, I don’t worry about them.

o I do things impulsively, making decisions on the spur of the moment.

I try to live one day at a time.

Responses are evaluated according to the established interpretation of the instrument and
then used in two ways. First they are shown to the client in a graph form based on the client’s
rating among his age-group peers (see Figure 10). Then an explanation of the results is pro-
vided along with an opportunity for the client to react (see Figure 11) . The evaluation and
the client’s response are used as the initial database to form an internal client profile. The pro-
file is to help determine the future direction of the consultation and to generate expectations
about client responses. It becomes the primary determining knowledge base for designing the
consultation and is constantly updated to provide a moment-to-moment view of the client.

Phase II: Intervention/Evaluation.
The second phase uses the profile to begin the consultation process. Here the goal is to

create an ongoing dialog which leads the client to form and hold a more balanced time perspec-
tive. A second goal is to improve the client’s repertoire of useful time management behaviors.

The dialogue s not generated through natural language processing. rather througn menu input anc caaned
text output. This mignt be a imitation of the svstem. However. prior work :n the area of computer-oasec nerapv
Servan-Schreider. 1986  shows :hat ciinically significan: tnerapy can de acaieved .n spite of 1xis Smitation
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Tutor: Your scores indicate that you have a basically present orented time per-
spective. Do you agree?

Person A: No, | think | also consider the future in my life. 14

Tutor: Well, let’s look more ciosely at your scores, and see where you think they
are wrong.

Person A: OK.

Tutor: Your score on the hedonism scale indi that you may be extremely
simular to people who are primarily interested in having a good time, taking risks,
and who often act impulsively. Does that sound like you ?

Person A: Mostly, but it sounds a little extzeme.

Tusor: OK. let’s look now at the fatalism scale; it indicates that you may be very
similar to people who live one day at & time in order to avoid planning for a fututre
they believe is determined by fate. Is that what you do?

Person A: Yes, [ gueas so.

Tutor: Let’s look at one more suh; Goal-seeking. Your score here shows that
you may not be similar to peopie who pian for the future and get satisfaction from
setting and achieving their goals. Do you agree?

Person A: It is true that [ don't do much goal setting.

Tutor: It was mainly your scores on these scales that led me to view you as
basically a p ot d person. Since you disagree with the hedontsm score
slightly, why don't we say slightly present-oriented ?

Person A: Yes, that sounds more like me.?

Figure 11: Dialogue about the Evaluation of Figure 10.

These goals are achieved through dialogue consultation, specifically through the use of interven-
tions, which are exercises or presentations designed to facilitate awareness of time perspectives
or to provide learning or practice of skills. Example interventions are “Learning to Say No,”
“Life Goals,” and “Time Wasters.” Dialogue strategies are derived from a large repertoire of
similar activities used in one-on-one and group counseling over the last 15 years by experts in
clinical psychology. These strategies and interventions have proven effective in improving time
management skills for a large number of people.

TEV’s orientation as a consultant tutor has led to a view of interventions as dialogs. Each
intervention is seen as a distinct segment of an ongoing dialogue between TEV and the client
which is extended by presentation of the next intervention. The consultation experience for
each client is uniquely defined by the composite of high-level interventions and low-level dis-
course actions resulting from his/her responses to the system.

3.3 Representing Discourse Knowledge

In the system we have built, the coasultant represents knowledge of discourse as alternative
plans. Knowledge of alternative curriculum activities is stored as predefined plans and alter-
native discourse moves are stored as different plan contingencies in these prestored plans (see
Figure 12). The consultant has limited planning ability to manage these plans and plan con-
tingencies. Pedagogical activities and discourse knowledge have been articulated by a clinical
psvchologist and are used to generate the lesson plan in response to client input during the
lesson
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One characteristic aspect of the computational model of didactics is described here: the
plan of action or lesson plan that enacts didactic operations. The local contezt in which a
particular plan of action is triggered [14] was described in Section 3.1.

The plan of action is a unit of decision in the didactic process that manages knowledge
about the curriculum, the available teaching resources, and the client’s needs. In the case of
a consultant, the curriculum consists of a prioritized overlay of skills, behaviors, and concepts
which the client should be able to understand, demonstrate, and integrate into his/her lifes.
(For example, one of th skills the machine presents is to keep a ‘to-do’ list or to have the client
state his/her priorities for the next month.) The plan of action is controlled by the TISM (Tev’s
Intervention Selection Mechanism) which models an expert’s ability to select appropriate inter-
ventions for a specific student. For each instructional objective, several pedagogical approaches
(DACTNS) are indicated as being able to achieve the chosen objective (see Figure 12). Alter-
natively, for each pedagogical approach, or single DACTN, several curriculum objectives might
be achieved. Our experts have developed a library of resources to teach alternative curriculum
items, such as identifying time-wasters. During a one-on-one consulting session, TISM chooses
among these resources based on an understanding of the needs and learning style of the client.

These resources are represented in the consultant in the form of interventions. The svs-
tem reasons about the current context in generating the next step in its plan of action. It is
constrained by the client assessment. a record of the client’s state of knowledge. and svstem
history. The TISM is responsible for establishing a globally coherent instructional objective
and for ensuring that curricula 1tems follow each other in 2 way that matches the client s needs.
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3.4 Acquiring Discourse Knowledge

Knowledge acquisition for discourse knowledge involves encoding the reasons why an in-
structor makes decisions about responding to the student and how he/she decides when such
interventions will take place. We facilitate the knowledge acquisition process for discourse
knowledge by use of a graphical editor in which the instructor selects interventions and modi-
fies the dialogue “on-line.” The editor facilitates piecewise development and evaluation of the
system, thus providing an opportunity for a wide circle of people, including psychologists, teach-
ers, curriculum developers, and instructional scientists, to participate in the process of system
implementation.

Because DACTNs provide a structured framework for representing dialogs, we have been
able to develop a visual dialogue editor which allows an expert to create new interventions
graphically and have them automatically translated into LISP .code. This allows the experts
to work on knowledge acquisition without having to work with knowledge engineers. Thus we
continue to elicit new interventions from our experts even as development and evaluation of
TEV proceeds. By adding interventions to the library and linking them to the curriculum we .
expand TEV’s repertoire without reworking the entire system.

The dialogue editor allows an expert to directly manipulate a graph of the dialoguewhere
each question, statement, or action is represented in an editable node, and each arc (also ed-
itable) represents a discourse situation that could result from the client’s response.

The expert adds a new question or statement and is led through a series of prompts de-
signed to elicit the possible client responses. Each response has associated with it two pieces of
information: a classification of the response, which is based on the current user profile, and the
profile updates related to the choice of this response. Using a small set of classifications, i.e.,
EXPECTED, INDICATES-CONFUSION, AVOIDANCE, etc., the expert indicates his under-
standing of the meaning of this response. These classifications may depend on the current user
profile, since this provides an indication of context. The profile modifications may include both
updates based on the classification of the response and updates specific to this question and
response.

As each question is added the graph is updated so the expert always has a view of the
current state of the intervention. The underlying DACTN is created dynamically so that at
any point in the editing it can be executed against default profiles, allowing the expert to check
the appropriateness of the machine’s responses.

87




17

4 TECHNOLOGY AND INTELLIGENT TUTORING
SYSTEMS

4.1 Near-Term Goals

We are working toward the achievement of several near-term goals in this field. These are
listed below:

o Real interaction and learning between the communities of instructional designers and
builders of ITS.

o Wide expansion of ITS into new training and teaching areas as computer price goes down
and memory and processing time goes up.

o Representing and reasoning about large numbers of teaching strategies based on advances
in Artificial Intelligence, Discourse Methods, and Cognitive Science results about teaching
and learning. .

o Establishment of criteria by which domains can be assessed as potential applications for
building new intelligent tutors. Such criteria include:
— topics which are repeatedly taught to large groups, e.g:, military domains;
- difficult or dangerous domains;
— domains in which there exists an ability (or willingness) of the organization to in-
corporate new system, new style.

¢ Distribution of ITS tools, including knowledge bases, control struttures, among sites,
between applications.

4.2 Long-Term Opportunities

We suggest that production of these systems will have long-term effects on education. In
particular, we propose that the following will be possible:

e Establishment of distributed education. Training and literacy is now communicated by
industry, community, schools, parents—education has moved out of the classroom. ITS
will contribute to this process, enabling people to learn at any place or time, free of
constraints.

o Enable students to become autonomous scholars. ITS will be used to access foreign
krowledge bases, on-line encyclopedia, graphics, real-time, long-distance results (e.g..
stock market closings), or communicate with other scholars and other knowledge bases.

o Establish human-machine partnership. Two intelligent entities will participate in joint
problem solving. Each partner will use those features at which be she 1t excels Humans
are best at intuitive thinking. reasonung from incomplete. uncertain knowledge. and us-
ing analogies from disparate flelds to draw conclusions. Machines are best at memury
retention, computation. pattern matching, making plans. and orgamzing tools.
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‘e World-wide multi-media communication. Electronic networks, collision of media (televi-
sion, cd rom, video, computer) and movies all use the same digital signal, leading to rapid
and wide bandwidth communications.

o Construction of mega-scale knowledge bases, all recorded encyclopedic knowledge avail-
able at a keyboard.
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SUMMARY

The document is organized in three sections. Secuon [ is included to provide background and
context. Section II contains the domain-independent instructional strategy (Tables 2 and 3) and documents- -
the evolutionary changes in cur thinking on this strategy. The information in this section was derived
from several sources: the research literature, knowledge elicitation of an Army subject marter expert
(SME) and expert teacher, as well as from reviews of draft strategies by ADI consultants, particularly Drs.
Robert Gagne, Douglas Towne, and Richard Clark. Significant contributions were also made by Dr. .
Zhongmin Li. In addition, relevant comments by colleagues at Percepuronics ana Harris Corporation have
been incorporated. Finally, relevant suggestions by government monitors on our contract research project
were implc:nenwd. In Section III, implementation issues are discussed and future developments
suggested.

BACKGROUND AND CONTEXT

The ideas for this chapter were derived from a program of research in the area of intelligent
computer-assisted instruction (ICAI) with which we were associated. We view the application of ICAI as
one way of increasing the cost-effectiveness of future education and training systems. We prefer the term
ICAI to intelligent tutoring systems (ITS) because we view tutoring as only one of many possible

1The research reported herein was supported in pant by the Air Force Human Resources Laboratory,
Army Research Institute for the Behavioral and Social Sciences, Navy Training Systems Center, and
Advance Design Information, Inc. However, the views, opinions, and/or findings contained in this report
are the authors’, and should not be construed as an official Department position, policy, or decision,
unless so designated by other official documentation.

2A version of this paper will be presented at the 1989 Knowledge Architectures in Intelligent Tutoring
Sysiems Conference, San Antonio, Texas.

3A version of this paper will be published as a chapter in Bums, H., Luckhardt, C.. & Ratleu. J.. (Eds.)
Knowledge architectures in intelligent tutoring systems, Orlando. Florida, Academic Press, 1990.

4 The chapter version of this paper will focus on examples of instructional rules for a particular
environment, i.e., teaching selected troubleshooting task strategies of the electrical system of the
Improved TOW Vehicle (ITV). It will also document represensative domain specific instantiz.ons of
principles, procedures, concepts, and facts.
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instructional strategies. ICAI also offers a technology to implement one-on-one tutoring, -“ich Bloom
(1984) suggests is the most effective educational interventior.. In particular, we were interested in
designing and developing software tools that would make the design and development process of ICAI
more efficient and effective. From our viewpoint in the instructional arena, we originally thought that this
would provide both domain-independen: and domain-dependent instuctional strategies. Thus. each
strategy would be instantiated in the domain of interest. These strategies would collectively teach the
subject matter in question. This chapter will briefly discuss intelligent computer-assisted instruction and
then focus on what we consider the key technical issues.

ICALI is the application of artficial intelligence to computer-assisted instruction. Artificial
intelligence, a branch of computer science, is defined as making computers smart in order to (a) make them
more useful and (b) better understand human intelligence (Winston, 1977). Topic areas in artificial
intelligence have included natural language processing, vision, knowledge representation, spoken
language, planning, and the development of expert systems. y

Expert system technology is the branch of artificial intelligence which is, at this point, most relevant
to ICAL ICAI systems use approaches from artificial intelligence and cognitive science to teach a range of
subject matters. Representative types of subjects include: computer programming in PROUST (Johnson
& Soloway, 1983, 1987) or the LISP Tutor (Anderson, Boyle, & Reiser, 1985), rules in ALGEBRA
(McArthur, Stasz & Hotta, 1987), and diagnosis of infectious diseases in GUIDON (Clancey, 1979,
1987). chgnée;cmativc research in ICAl is described by O'Neil, Anderson and Freeman (1986) and
Wenger (1987). .

Progress in cognitive science has been made in the following areas: identification and analysis of
misconceptions or "bugs” (Clement, Lockhead, & Soloway, 1980), the use of learning strategies (O'Neil
& Spielbergez, 1979; Weinstein & Mayer, 1986), the nature of expertise as expert versus novice
knowledge (Chi, Glaser, & Rees, 1982), the role of mental models in learning (Kieras & Bovair, 1983,
Konoske & Ellis, 1986), and the role of self-explanations in problem solving (Chi, Bassok, Lewis,
Reimann, & Glaser, 1987).

The key components of an ICAI system consist of: (-) the knowledge base—that is, what the
student is to learn, i.e., the expert model which represents both the relevant knowledge in the domai -~ and
can solve problems as an expert based on this knowledgs; (b) a student model, in which a model is
constructed by comparing the student’s performance to the computer-based expert's behavior on the same
task; and finally (c) a tutor, that is, instructional techniques for teaching the dec larative or procedural
knowledge. This final component represents the teacher and must be able to apply the appropriate
instructional tactics at the appropriate times. It should model the desirable properties of a human tutor. In
general, the tutor must know what to say to the learner and when to say it. In addition, it must know how
to take the learner from one stage of skill 1o another and how to help the leamner, given his or her current
state of knowledge. In general, there are few extant examples of complete ICAI systems.

Although suggestve evidence has been provided by Anderson, Boyle, and Reiser (1985) and Baxer,
Aschbacher, and Feifer (1985), few of these [ projects have been eval* _ted in any rigomus fashior:.
There are no ~xamples of the explicit use of formatve evaluazc .. In a sense they have all been toy
systems for research and demonstradon. Nonetheless these projects have generated a good deal of
excitement and enthusiasm because they indicate that ICAI systems can be effective insquctional
environmer's.

However, few instructional design cousiderations (e.g., Ellis, Wulfeck & Fredericks, 1979; Park,
Perez & Seidel, 1987, or Reigeluth, 1987) are reflected in ICAI wutors. An excepdon is the work of Baker
et al. (1985), which suggests instructional strategies to urnrove existing ICAI programs. This chapter
TepOrs a systematic attempt to provide an instructional framework for the design of an ICAI systein. In
parucular, we have struggled with the specifications of domain-independent instructonal strategies and
domain-dependent instructional strategies.
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CONCEPTUAL ISSUES

A particularly knotty problem associated with developing the framework for domain-independent
insxuctional strategies has been determining the boundaries of concepts such as "domain” and

What's 2 "Domain"? Part of the issue revolves around the definition of domain. In cognitive
science, the term usually refers o a subject matter area (e.g., math) or a process within a subject matter
area (e.g., use math formulae). The term domain is often used synonymously with application area (e.g.,
equipment maintenance). Further, within an application area the focus has often been on the task level
(e.g., diagnose and troubleshoot an electrical system). Instructional researchers, however, tend to use the
term domain to refer to performance outcomes, €.g., the learning of procedures. Thus, domain could
legitimately refer to subject matter, application area, task, or performance outcome. We believe it is
essential to be specific, explicit, and consistent in our meanings of critical terms. We will use the term
domain 1o refer either to task or to subject matter area.

"2 Another part of the issue revolves around the term independen: (i.c.,
independent of what?). Given the diversity of definitions of domain, independen: can have a number of
interpretations. /ndependent can mean "other than” or "as well-as" the target domain. Domain-

i ndent instructional strategies could mean independent of the subject matter (i.c., strategies
independent of math), or independent of the performance outcome (i.e., strategies appropriate both to
concept leamning and to problem solving), or both. The problem of domain independence, in other words,
is a problem of degree of transfer or generalizability. )

Our solution to this issue is based on two key assumptions: (a) it is mandatory for instructional
practices to specify for the designer the outcome or objective of the learning (e.g., problem solving); and
(b) various outcomes (e.g., problem solving or principle learning) have specific learning conditions, i.e.,
instructional strategies. (The second assumption was adopted from the framework of Bob Gagné and
David Merrill) These leaming conditions are dependent on outcome (e.g., problem solving), but are
independent of domain or task as we are using it (e.g., diagnose and troubleshoot the electrical system).
These learning conditions or strategies are also thought to be independent of subject matter or application
arca. Nonetheless, these conditions (or strategies) must be instantiated for a particular domain.

"2 Reflecting the problem of independence is the issue of domain dependence.
Our analysis suggests that domain dependence indicates a domain that is exclusive or unique to the
particular task area, with no generalizability across either subject matter or types of performance outcomes.

The next set of discriminations involve distinguishing between instantiations of domain-
independent instructional strategies and domain-dependent instructional strategies. After considerable
cifort to develop counter examples, we have agreed that we have found no domain-dependent instructional
siraregies that could not just as well be called domain-specific instantiations of domain-independent
instructional strategies. This finding may counter some work on problem solving in cognitive science.
However, we believe that while sk requirements differ enormously, task-specific instruction is best
conceived of as instantiations of domain-independent instructional strategies rather than as domain-
dependent instructional strategies unique to the particular domain. In fact, the differences among domain-
dependent and domain-specific instantiations of strategies are not hard and fast, and, undoubtedly, share
space on the same continuum.

With respect to our rule classification as domain-dependent or domain-independent, we have decided
to operationally define independent in terms of a strategy's appropriateness to a particular class of learning
outcomes, specifically, problem solving.

' For our own work we have chosen problem solving as it is appropriate for ICAI technology.
"Problem Solving” (a Gagné term) is roughly equivalent to Merrill's “Using Principles.” The domain-

independent instructional strategies (or, in Gagné's terms, learning conditons) for problem solving are
shown in Table 1.
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1. Retrieval of relevant rules and concepts
2. Successive presentation of novel problem situations
3. Demonstration of solutions by student

(Gagne, 1977)

Table 1. Domain-Independent Instructional Strategies
(Learning Conditions) to Teach Problem Solving Outcomes

The instructional strategies in Table 1 are clearly at a very general level. For this research program
our area of interest is troubleshooting. Troubleshooting is a concept that comprises many activities; one
activity is problem solving. The technician is confronted with a maifunction which shows itself in certain
"symptoms.” He or she must then usc his or her knowledge of the system, the tools available for
diagnosis, and roubleshooting strategies to find the source(s) of the malfunction. Each malfunction with
its set of symptoms constitutes a new problem to be solved by a thinking process. The more rational and
informed the thinking can be, the more efficient the procedure of locating the trouble will be. We have

ided the instructional strategies to teach diagnostic problem solving in Table 2.3

In Table 2, the domain-independent instructional sequence is provided in list format since this is
clearer and more efficient than rule format for communicating macro sequences. The rules which sequence
items in this list are "housekeeping™—not instuctional—and would be devised by the impiementor. The
domain-independent strategy in Table 2 was instantiated in the area of troubleshooting for the turret system
of the Improved Tow Vehicle (ITV). Before we provide the next level of detail of these strategies in
troubleshooting in Table 3, we will discuss the troubleshooting area itseif.

Troubleshooting is a broad area of activity. We have chosen to focus on the subset of tasks that
include the use of troubleshooting aids and techniques to test hypotheses and locate and correct faults.

Carrying out troubleshooting in this area involves following procedures of several kinds.
Sometimes the trouble can actuaily be found by following a fixed sequence of steps (this is one end of a
continuum of complexity of troubleshooting tasks). More often, though, procedures are simply parts of
the whole activity that is required. There are procedures for identifying the location of parts of the system.
There are procedures for taking apart equipment components. And there are procedures for using test
equipment. All of these are procedures that must be well known by the technician, else he or she will be
impeded in his or her main task—thinking out the solution of a problem.

Presumably, an expert tutor would break down troubleshooting into at least five components:

1. Identifying equipment parts by name (for matching with technical manuals, supply lists);
Identifying the flow of power and/or current through the system;
Demonstrating the function of each part in terms of the flow;

Demonstrating the use of test equipment; and
. Strategies for troubleshooting.

It should be emphasized particularly that this knowledge is predominantly what is called
"procedural.” However, declarative knowledge (such as the equipment "lore” of the veteran) is useful as
an aid to encoding and retrieval of the procedures themselves.

nhwe

5 This swrategy is based on a refinement of Dr. Robert M. Gagné's work in the teaching of troubleshooting.
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. Define diagnostic problem solving family to be taught by describing problem solving
characteristics or events pertaining to the family (e.g. "Electrical roubleshooting consists of
checking current flow at input and output points, etc...").

. Communicate a description of the appropriate example device(s), as whole systems, and

necessary concepts and principles of operation in the order prescribed below:

a.

Present name and brief overall description of the device including operational controls or
inputs and ways in which failures are indicated on the device w/ examples.

Present concepts of causal media in system (e.g. current flow if electrical system, forces if
mechanical, etc.)

Present concepts of schematic representation and methods of illustrating physical/schematic
mapping to be used, with examples.

Present concept of replaceable units. Present names and locations and functions of
replaceable units--using diagrams as needed--as examples. Require the student to identify
the parts by pointing to them. ,

Teach operatiqn and function (how the system works in terms of inputs, controls,
component functions, causal flows, and outputs) of major activating and intermediary
components, with reference to schematics and physical layout diagrams, taught by racing
causal paths through components on schematics and referencing physical locations.

. Confirm or teach subordinate skills (e.g., demonstrating how each check is made, how each
exchange is done in the example device, etc.)

. Describe and demonstrate appropriate diagnostic problem-solving task strategies to be taught for
this application (e.g. select component to test based on malfunction probability, etc.).

. Provide practice, using a variety of novel'problems requiring the strategies taught, and provide

feedback and correction.

Table 2. Domain Independent Instructional Strategy to Teach Diagnostic Problem-Solving

Table 3 was generated by ADI consultant Dr. Robert Gagne. Entries 1, 2, and 3 are domain-specific
instantiations of the leamning condition "retrieval of relevant rules and concepts” (see Table 1). Entry 4 is
the "success.ve presentations of novel problem solutions” (see Table 1). And Entry 5 is the
"demonstration of solutions by student” (see Table 1).

As is shown in Table 3, in the application area of ITV, the domain-specific problem-solving task
strategies are to find system faults based on: (a) malfunction probability, (b) change cost, and (c) split-half
search. These are taught using domain-specific instantiations of domain-independent strategies.

, the instructional outline in Table 3 presents a domain-independent instructional strategy

(Entries 1-5) for teaching the domain-dependent problem solving rask strategy (e.g., split-half) of electrical
troubleshooting. We view the teaching of these task strategies as "using principles": Tasks would be
taught using a modified version of Merrill's Component Display Theory (Merrill, 1987). These tasks are
taught using domain-specific instantiations of domain-independent instructional strategies. Our project
provided a first cut of the instandatons of these strategies by providing instantations of the domain-

independent instructional strategies in troubleshootins the elecmical faults of a Earticular vehicle.
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To teach domain-independent troubleshooting, using several malfunctions of the ITV turret system
as instances of domain-independent strategies:

1.

Communicate a description of the system as a whole to identify schema, having the following
components. .

a. concepts of current flow in each subsystem
b. concepts of major replaceable parts by name
¢. concepts of schematic representations of parts
d. functions of parts

Communicate that troubleshooting consists of checking current flow at input and output points
of parts, and then replacing the part that shows an absence of proper output.

Confirm or teach subordinate skills, demonstrating how each check is made and how each
replacement is done.

Describe and demonstrate the problem-solving task strategies:
a. malfunction probability

b. change cost

¢. split-half technique

Provide practice, using a variety of problems requiring troubleshooting with the use of these
strategies, and providing feedback and correction.

Table 3. Domain-Independent Instructional Strategy to Teach Electronic Troubleshooting

An Ammy ITV Electronics Troubleshooting SME met with Perceptronics and ADI personnel for three
days for elicitation of instantiations of instructional and remedial strategies and elicitation of student errors
and deficiencies. The SME, working with ADI, suggested changes in the order and content of instructional
strategies; these are reflected in the Tables 2a and 3a, which are revisions of Tables 2 and 3, respectively.
Although this document reflects interactions with the SME, it has not been reviewed or approved by him.
The tables were also reviewed by colleagues at Perceptronics and Harris Corporation but no needed
changes were noted.

“
(SME comments or changes in italics)

1.

Define diagnostic problem solving family to be taught by describing problem solving
characteristics or events pertaining to the family (no changes)

Communicate a description of the appropriate example device(s), as whole systems, and
necessary concepts and principles of operation in the order prescribed below:

a. Present name and brief overall description of the device including operational controls or
inputs and ways in which failures are indicated on the device w. examples.
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b. Present concepts of how things are caused in the system (e.g. data/signal flow if electrical
system, forces if mechanical, etc.) (revised terms)

c. Present concepts of schematic representation and methods of illustrating physical/schematic
mapping to be used; examples.

d. Present concept and funcrion of replaceable units—using block diagrams as needed--as
examples. Require the student to idendfy the parts by pointing to them. (Teach top level
descriprion first)

e. Teach operation and function (how the system works in terms of inputs, controls,
component functions, causal flows, and outputs) of major activating and intermediary
componeants, with reference to schematics and physical layout diagrams, taught by tracing
causal paths through components on schematics and referencing physical locations. (Teach
detailed operation and function using schematics after general function of replaceable units
in previous presenzation)

. Confirm or teach subordinate skills (no changes)

. Describe and demonstrate appropriate diagnostic problem solving task strategies to be taught
for this application (no changes)

. Provide practice, using a variety of novel problems requiring the strategies taught and provide
feedback and corrections (no changes)

Table 2a. Revised Domain Independent Instructional Strategy to
Teach Diagnostic Problem-Solving

(SME comments or changes in italics)

1. Communicate that "Electrical troubleshooting consists of using techniques and strategies to

verify data or signal flow in a device in order to find and replace faulty LRU's (line replaceable
units)”. (Changed in wording, order -- was step 2)

. Communicate a description of the example system as a whole to identify schema, having the
following components: (Note change in order and grouping of substeps; also, as prerequisites,
these concepts would apply for this application in the pretest only, before any instruction.)

a. Present an orientation which typically includes demonstration and (sometimes) hands on
experience with the system in full operation including operational controls or inputs and
ways in which failures are indicated on the device (with examples). With experienced
studenss, present new things by building on previous knowledge, highlighting similanities
and differences.

b. Use of reference designators and concept of line replaceable units (LRU's). Briefly presen:
names, locations, and functions (generally) of specific LRU's to be used in this instruction-
-using block diagrams, TM, etc.--as examples. Require the student to identify the parts by
function by pointing to them. In this context, present concepts of how things are caused in
the system by major subsystem functions and dataisignal flows. (In classroom setting, this
is often a brief presentation followed by hands-on operation.)
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c.

Present concepts of schematic representations of syszems and methods of illustrating
physicalischemaric mapping to be used, with examples. (SME says some kind of diagrams
would be helpful for physicalischematic mapping but in the school they learn where parts
are on vehicle by hands-on experience, not during prerequisite presentation. The level of
presenzation would be at the level of modules or block diagrams before detailed schematics,
e.g. "there is 24 VDC berween these pins connecting these two LRU’s ™)

Teach detailed operation and function (how the system works in terms of inputs, controls,
component functions, cawusal flows, and outputs) of major activating and intermediary
components, with reference to schematics and physical layows diagrams, taught by tracing
daza or signal paths through components on schematics and referencing physical locations.
(At this point the SME is working at the level of specific components inside a modue
Also, any peculiarities of schematic representation for this vehicle would be taught in the
current context.)

3. Confirm or teach subordinate skills (Again, since these are prerequisites, the test of these skills
would precede the course and they will not actually be taught here in the demo application.
Included are basic roubleshooting knowledge, safety, part replacement, standard operating
procedures, erc.)

4. Describe and demonstrate the troubleshooting task strategies. These are taught in the order of
typical use or most likely frequency of use, exceps that split half is taughs first because the other
swrazegies are frequently combined with this "default” strategy. Practice should be provided
after each strategy, including examples which integrate and require discriminations between the
strategies taught up to that point. The strategies to be taught assist in the basic troubleshooting
process of localizing, isolating, and identifying faults:

a.
b.
c.

d.

split half (basic strategy for determining efficient fault search in series circuits)
malfunction probability (test likely failed components firs:)
change cost (e.g. perform easiest tests first)

necessary and sufficient factors (using logic and knowledge of normal parameters to
localize and identify faults)

commonality of fault (using principle that concurrent symptoms with common component
imply the common component is faulty)

5. Provide practice, using a variety of novel problems requiring the strategies taught and provide
feedback and corrections. The final practice should integrate all techniques taughs. After the
techniques are practiced, a posttest requires the learner to locate faults giving reasons for steps
to verify understanding.

Table 3a. Revised Domain-Independent Insrucnonal Strategy to
Teach Electronic Troubleshooting

m

IMPLEMENTATION ISSUES

Students would be taught electronics wroubleshooting task strategies using the instructional strategy
found in Table 3a (Enties 1, 4, and 5). Since the application is to teach troubleshooting task strategies, a
pretest would be needed to screen out any students who do not have the prerequisite facts, concepts, and
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skills (Table 3a: Entries 2 and 3). Students experienced in troubleshooting the ITV should get a perfect
pretest score, barring error. The pretest is not part of the instructional rules or instantiations for teaching
the troubleshooting task strategies, and so is not included in our designed knowledge base. Likewise,
rules for remediatgon of basic skills and knowledge and for posttesting are not included. However, in the
chapter version of this document, instantiations of the instructional strategies will be provided for the
communication of selected oubleshooting task strategies (e.g., presentation of the principles with
examples and practice). In addition, remediation to correct misunderstanding or misapplication of the task
strategies themselves, plus a few deficiencies common to even experienced troubleshooters (e.g., inability
to locate components), will be selectively provided.

The domains of interest will be portions of three ITV troubleshooting cases elicited by Perceptronics
in 2 modified petri net formalism, properly contexted and, with the assertion of various faults, used as
examples and practice exercises for teaching the use of some of the troubleshooting task strategies. The
task strategies that are adequately covered in the malfunction networks are "fault search based on
malfunction probability” and "change cost” (Table 3a: Entries 4b and 4c). The other task strategies would
generally be taught in the same manner, but are not included as they did not appear in at least two
malfunctions.

An implementor would note the implicit macro sequencing information in Table 3a. Concepts or
principles are taught in the order in which they appear. Micro sequencing for teaching the task strategies is
indicated in specific rules. At a micro level, the presenation of each troubleshooting task strategy is -
followed by practice on the strategy just taught and instruction and practice. on synthesizing the new
knowledge with any previously taught strategies. .

Following are some specific areas in which additional work is needed for the researcher and for the

implementor. .

Alternate and Parameterized Strategies. One of the requirements for a researcher is to be able to
modify and try out variations of the domain-independent instructional strategies, i.e., the provision of
"knobs and dials.” For example, the researcher might vary: (a) the degree or kind of learner contol, (b)
the immediacy, amount, or kind of feedback (e.g., guided practice option), (c) performance criteria or
branching options after leamer performance evaluation (e.g., if fail then ignore/retry/kick out), and (d) the
amount or kind of tutorial help or explanations available when requested by leamner.

Any of these options could be implemented in a variety of ways. For example, learner control could
be optionally "off," "on,” or “automatic” (i.c., under control of the tutor). With or without control by the
researcher, the default or "automatic” selection of alternative strategies must be specified by metarules
which determine the active rule sets.

Review Techniques. In addition to the areas of knowledge base refinement indicated in the
comments above, general refinement of the knowledge communications, rules, and rule classifications are
needed. Depending on the degree to which an application is to be developed (i.e., the courseware issue),
further work may also be required in specifying rules that are specific to a leamer interface. The rules will
have t0 undergo more extensive validation in the areas of consistency and completeness.

Since we were required by contract to produce no software, our series of reviews focused on
determining the instructional validity of the rules and the completeness of the rule set, and on providing
domain-?lciﬁc instantiations. Draft rules were reviewed by ADI consultants Drs. Douglas Towne and
Richard Clark, and were also reviewed in a government [PR. Suggestions were also made by
Percepaonics and a meeting was held with Harris colleagues to discuss the rule set.

. Validaton included checking for completeness, consistency, and correctness of the rules.
Simulations (via people, not computer software) of rule firing under error-free instruction resulted in rule
changes. Further, the knowledge communications were revised so that they now have labels for their
constituent parts (a Perceptronics suggestion). These labels would allow the domain-independent
sequencing rules to reference displays indirectly, and the instantiations with explicitly coded sequencing of
presentations would be eliminated. ADI's check for consistency and completeness also turned up some

inadequate rules, rule conflicts, and misclassifications, which were resolved and which resulted in a
modified rule set.
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We Now?

We have a good "first cut” of a domain-independent instructional strategy to teach troubleshooting of
an electrical system. Further, we have a reasonable rule set to teach one aspect of domain-specific task
strategies. Our next step is to implement our design and test it. We are currenty seeking funding to
accomplish this goal.
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MANAGING COMMUNICATION KNOWLEDGE

Kathleen M. Swigger
Computer Science Department
University of North Texas
Denton, Texas 76203

ABSTRACT

Intelligent tutoring systems which are capable of training
students in complex problem solving tasks require man/machine
interfaces that are extremely flexible. This paper discusses the
issues surrounding the design, implementation, and evaluation of
flexible training environments.

This paper will begin by defining student/computer
interaction and will explain how this definition is becoming
ocbsolete as we move toward more student-centered, reactive
environments. The idea of microworlds, similar to the Orbital
Mechanics tutor, demonstrates the effectiveness of these new
student-centered environments. Because advances in interface
design have allowed us to explore more complex reasoning tasks,
researchers should now focus on the question of developing more
formal design specification tools that can be used to describe a
particular type of interaction at a conceptual, rather than
implementation level. Formal specification techniques are
particularly useful because they describe user behavior,
independent of software implementation. Finally, this paper
explores the question of how to evaluate student/computer
interfaces, particularly reactive learning environments.

INTRODUCTION

This paper describes the communication knowledge part in an
intelligent tutoring system (ITS). Traditionally, communication
knowledge has been defined as a specific module that is
responsible for administering the interaction between the student
and computer [27]. Under this narrow definition, the
communication module can be considered an information exchange
system. More recently, the definition of communication knowledge
has been expanded to include the entire tutoring system. Indeed,
Wenger (25] maintains that the primary purpose of an intelligent
tutoring system is to provide the student with a set of operators
that will cause/or support the communication of knowledge. These
set of operators now include a vast array of interactive styles
(menus, natural language, icons) and interactive de. :ses (mouse,
touch pads, speech recognition). Under this broader definition,
the designer of intelligent tutors is responsible for building
massive communication management system that controls and
monitors a student's learning environment.
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The following paper will discuss how designers of
intelligent tutoring systems confront the problem of creating
systems that communicate rather than simply provide information:
the distinction between communication management systems and
information exchange systems is fundamental to this discussion.
Further, this paper will attempt to answer such questions as;
What is communication knowledge in an intelligent tutoring
system? How is it different from other types of communication?
How does one represent and present communication knowledge? and
How does one evaluate an effective communication system? These
and other issues will be discussed below.

The first section explains the relationship between
communication as defined in intelligent tutoring systems and
theories of communication as developed by human communication
researchers. The second section defines communication knowledge
within the context of existing intelligent tutors. The third
section discusses a methodology that can, hopefully, assist
designers of communication knowledge. The fourth section
discusses the question of evaluating the communication between
student and tutor. Finally, the paper concludes with a
discussion of future research.

A DEFINITION OF COMMUNICATION

The field of human communication studies has a body of well-
established knowledge about which intelligent tutor interface
designers are largely unaware. The term communication has had a
variety of meanings for different communication theorists. 1Its
most restrictive definition refers to face-to-face communication
and relates only to the function of referencing the transmission
of information between two individuals (2]. This allows for only
a few necessary functions to be fulfilled by the communication.

More recent definitions refer to communication acts that
reference an external world of objects and events [17]. The
simplest possible communication act involves one person (A)
transmitting information to another person (B) about some object
(X) (see figure 1). The meaning of the conversation consists of
"report" and "content" functions, and "command" and
"relationship”" functions. Thus, a successful communication act ]
consists of managing or manipulating content and relationships in
order to come to some agreement about object X.

Traditional man/computer interfaces use the metaphore of
communication in a more restrictive manner. The computer is seen
as a passive partner engaged in information exchange with a user
who gives orders or makes requests while the computer does the
work (see figure 2). Most computer users are not interested in
communicating with computers, but rather want tc use the computer
to solve problems or accomplish a task. This model can be seen
most readily in computer applications such as querying a
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database, using a word processor, or manipulating a spreadsheet.
Even when the user is given a more direct interface, he is still
engaged in information exchange. 1In an information exchange

activity, the person does not want to come to an agreement with
the computer. The person wants the computer to retrieve object

2

AQgure | Pemson/Peron

Ague 2. Person/Comouter

More traditional computer assisted instructional (CAI)
environments provide yet another metaphore of communication. 1In
a CAI environment the computer controls the communication act by
soliciting information from the student in the form of questions
and requests (figure 3). Information exchange is again the
purpose of the communication, but this time the computer is
soliciting the information. Sometimes the computer even
evaluates the student with respect to the quality of the
information exchange. 1In this particular communication
environment, the student is asked to retrieve information about
object X.

Intelligent tutoring systems, more specifically student-
centered intelligent tutors, try to model different levels of
communication and adapt to the choices of the human user. Some
of these systems ([10] use the metaphore of iconic object
manipulation to manage the interaction. This metaphore suggests
that the student view items on the screen as objects which he can
hold in his hand. Instead of referring to an ocbject by its name,
the student can use a mouse to point to an object or grab it and
drag it across the screen. Some student-centered environments
even allow the student to enter natural language expressions that
communicate more naturally with the system [(4]. In a student-
centered environment, the computer and the student gradually
become partners and learn how to manipulate content and
relationships in order to come to an agreement about the
knowledge they both share (see figure 4). I suggest that this
type of communication management system is most similar to the
face-to-face communication that is represented in figure 1, and

is the type of communication that is required to make intelligent
tutors more effective.
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Foure 3: Pemson/Computer Tutor

COMMUNICATION KNOWLEDGE IN INTELLIGENT SYSTEMS

There are two problems that must be solved by a designer of
an intelligent tutoring system: 1) How to define the knowledge
that the system is suppose to teach, e.g., teaching people how to
land an aircraft, teaching people about a physics, etc., and 2)
how to design a system that manages the interaction or
‘relationship between student and computer so that the primary
task can be achieved more quickly. Thus, communication knowledge
in an intelligent tutoring system consists of rules and facts
that tell the system how to manage the student/computer
interaction.

Fischer and Morch [9] describe three approaches to
communication styles used in human-computer interaction systems:
tutoring, consultation, and critiquing.

Tutoring is important in the initial stages of training
because a student needs to know something before he can ask a
question. A tutoring system might be loosely defined as the
arrangement of instructional sequences that eventually leads to
the mastery of a specific goal. Thus, the designer of a tutoring
system is responsible for arranging the sequences of instruction
in a manner that facilitates the mastery of a specific objective.
The communication management system, in turn, supports the
instructional sequence and provides an interface that guides the
student toward the goal. Thus, the major issue involved in
constructing this type of interface is the question of limiting
the users' choices to a finite number of selections. Although
tutoring systems appear to be tolerant of students' responses,
they impose a structure that can only react to anticipated
responses. Examples of tutoring approaches include PROUST [20],
the LISP-TUTOR (1], and SOPHIE (4].

Consultation is an interaction style that is used more
frequently in expert systems than training systems. This
particular model provides little support for learner controlled
functions. The computer controls the dialogue by asking the user
to enter responses to specific questions (much like what occurs
when a student responds to a human consultant). Therefore the
system is responsible for managing an interface that facilitates
information exchange. At the end of the consultation, the
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student receives an answer to his question. The student can ask
the system why it gave a particular answer, but he cannot
volunteer additional information nor can he pursue a particular
line of reasoning. Examples of such systems include MYCIN [5],
and an early version of GUIDON [7].

The critiquing model is used in more student-centered
environment that permits students to pursue their own goals. The
computer interrupts only when the student fails to meet minimum
criteria. Based on previous research (6], it is known that
students learn only what is necessary to solve the current
problem. Thus, the critic intervenes only when it is necessary
and only with advice that is problem specific. The critiquing
approach provides information to the student only when it becomes
relevant. The critiquing approach also allows the student to
fail and make mistakes. Interface management for this type of
model is much more difficult since the system cannot anticipate .
every action- the student takes. Instead, the designer must
provide a flexible environment that allows the student to explore
different .paths of action. -

The author has developed a number of training systems that
use different aspects of the critiquing approach. 1In order to
help students better understand the relationships between orbital
" elements and ground tracks, we built an elaborate system that
allows students to explore the "microworld" of orbital mechanics
(22]. The original training system was designed to teach
students how to deduce orbital elements by looking at ground
tracks. Ground tracks are two-dimensional displays that show the
portion of the earth that a satellite covers as it circles the
earth. The actual satellite path appears as a continuous line on
a monitor. The ground track information is then used by Air
Force crews to verify orbital paths of known satellites, to
hypothesize about mission intent of unknown satellites, and to
monitor space debris. The ground track, as well as the orbit
itself, is a direct function of the orbital elements.

The orbital mechanics tutor, nicknamed OM, allows the
student to explore the interactions between orbital elements and
ground tracks. Students learn about ground tracks by changing
orbital parameters, changing injection points, generating ground
tracks, predicting ground tracks, etc. Additionally, there are
several online tools that help students organize and systematize
their information. These tools include: a two-dimensional
display that helps students conceptualize the effect of orbital
parameters, definition and example windows that relate facts, a
history tool that allows students to overlay previous work, and a
prediction window that allows students to state relationships
between variables. This system is designed so that students
learn about orbital mechanics by gathering data, generating and
testing hypotheses, as well as forming generalizations about the
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different orbital elements.

The communication management system for OM includes a model

of how students explore a microworld environment. The system
monitors the student's actions and determines whether he is

" demonstrating effective inquiry skills. This is accomplished by
simply associating all the online tools with specific categories
of inquiry skills. When there is a sufficient amount of evidence
to indicate that the student needs help, then the system suggests
alternative problem solving strategies.

This same approach was used to develop a tutoring system
called S-TRAINER (Strategic Training Routes Architecture for an
Intelligent Effective Reviewer) which is designed to assist in
the debriefing of Air Force pilots who have completed a bombing
mission [23]. The system has the ability to reason about
tactical situations and provide plausible explanations about
these activities. Pre-stored mission events serve as script
templates that are matched against actual events and the time
relation between events. After the air crews complete the
training mission, the system diagnoses pilot and crew errors, .
generates a written evaluation of the mission along with a set of
graphics that can be used to supplement the written report.

S-TRAINER contains an elaborate communication management
system that determines significant mission events and uses this
information to generate a training script. The training script
consists of a list of significant events along with a list of
graphic displays that describe these events. All of the graphics
are eventually shown on one of two screens. Each of the two
screens, in turn, can be partitioned into a full, half, or
guarter display. Thus the communication management system must
decide on the content, type, and location of each display. 1In
order to accomplish this task, S-TRAINER uses a series of rules
that 1) suggest possible displays, 2) compute display times for
each event, 3) determine whether to expand or reduce the number
of displays, and 4) determine the correct flow of the script.
Furthermore, the communication management system is responsible
for producing a pedagogically sound and aesthetically pleasing
training session. After several iterations, the system produces
a final training script that indicates the type, length,
location, and begin/end times for each display.

From the above discussion, it is clear that communication
knowledge consists of rules that tell the system how to
communicate task-relevant informaticn to the student. For time-
varying, multi-task problems, like teaching someone how to
operate a space shuttle, the designer needs to consider several
additional factors. For example, a format for an individual
display must not only provide information about a specific task,
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it must also blend with other displays that are presented
simultaneously on the screen. It is becoming increasingly common
for a format to be a member of a larger set, which is stored in
software and presented on demand in different display areas.
Consequently, the designer must make some provision for a smooth
transition between formats as the different instructional events
unfold. A poorly designed format will either fail to communicate
critical information or demand more processing time than the
student has available. The problem of constraining the design of
a multi-media training system that uses simultaneous displays in
a learner-controlled environment is the subject of the next
section of this paper.

DESIGNING COMMUNICATION KNOWLEDGE

The creation of a student-centered communication management
system requires special skills, special system capabilities, and
special tools. The task is further complicated by the
introduction of multi-media, multi-interactive, and simultaneous
displays. A third problem relates to the human communication
barriers that exist among those responsible for creating the
training system - the psychologist, the computer programmer, and
the instructional designer. Although the problem may appear to
be overwhelming, the rather obvious solution is to develop a tool
that will organize and systematize the development of a complex
training systems.

Traditional computer science research has long suggested the
importance of using software engineering tools to significantly
improve the structure of programs and assist programmers with
their problem solving tasks. Researchers argue that a design
methodology can provide a focus and structure for solving
computer problems [3]. A design methodology is an artificial
language that enables the programmer (and any other member of the
design team) to describe a particular idea at a conceptual,
rather than implementation level. A design methodology also
encourages a consistent design that can be shared among all the
members of the team including the psychologist, instructional
designer, and the programmer.

The problem, of course, is selecting a design tool that
properly describes the computer's actions and reactions to a
student's inputs. 1In short, the design tool needs to represent a
communication process that often appears to be non-deterministic.

One way to distinguish between the various design
methodologies is to classify them according to the declarative
and procedural paradigms. Procedural representations are used to
describe knowledge about how to perform a task. 1In contrast,
declarative systems are used to represent descriptive
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information. In some ways, the tension between the declarative
and procedural representations has made it difficult to propose a
design methodology for intelligent tutoring systems. Most
designers of ITS systems believe that both the storage and
retrieval of expert knowledge is best facilitated by the
frame/object orientation (7). Yet, when researchers wish to
describe how their systems actually work, they use a procedural
approach to explain the student/computer interaction (7]. A
procedural representation more closely resembles the
communication act. A procedural representation can best describe
how one process activation is often dependent on the outcome of
another. .

The majority of the languages used to specify human-computer
interfaces emphasize procedural information. Although these
procedural methodologies go by different names (state transition
diagrams (15], Petri Nets (11], and augmented data flow diagrams
(13]), they all present a formal design model that looks very
similar to a directed graph. In every case, nodes are used to
represent the completion of events, whereas arcs represent
transitions from one event to another. Different system
responses are shown on the arcs and may involve an invocation of:
another part of the graph. Thus, the designer can represent both
the conceptual and detailed structure of the student/computer
interaction. 1In addition, a designer can represent a student's
exploration of a single state by drawing an arrow from a node to
itself. '

An example of the use of a procedural methodology to
describe the Orbital Mechanics student/computer interaction is
presented in figure 5. As previously mentioned, the Orbital
Mechanics tutor allows students to discover relationships between
orbital elements and ground tracks. The student initiates a
discovery activity by changing one or more orbital parameters and
generating a ground track. After investigating the effects of
changing different parameter values for different ground tracks,
the student can advance to the Prediction window where he can
make a hypothesis regarding the shape of a particular ground
track. The student tests his predictive powers by selecting
options from the menu and comparing the inputs to the Expert's
conclusions. After making several successful predictions, the
student enters the Orbit Prediction environment which is designed
to check the student's mental state by asking him to perform a
task in the reverse order of the one previously described. The
student is shown a specific ground track and asked to enter
orbital descriptors that match the ground track displayed on the
screen. In this manner, the student explores the orbital
mechanics microworld. Figure 5 describes this interaction and
shows how the student advances through the program.
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- Figure S: 'STUDENT/COMPUTER INTERACTION FOR OM

There are many compelling reasons for using the above
methodology to construct student-centered environments. There are
also a number of reasons why another design tool might be more
appropriate. It is obvious, for example, that flow diagrams are
cumbersome for specifying highly interactive environments.
Higher-level, more directly-executable specification languages,
would free the designer of the low level details. Yet it is also
obvious that a design methodology helps support knowledge
abstraction and computational primitives at the architectural
level. Such a methodology permits the knowledge engineer to -
cooperatively develop systems using a shared language of :
conceptual constructs, rather than a set of problem specific
primitives. A design methodology for a learner controlled
environment is especially important since this form of problem
solving is considered more complex than other types of tutors.

EVALUATING COMMUNICATION KNOWLEDGE

Although a common methodology allows us to better describe
communication knowledge, there remains the problem of determining
whether the communication is effective. A review of the
literature on student-centered environments reveals only a
minimal number of studies that contain hard data on the
effectiveness of their instruction [12; 19]. Although many
current AI systems emphasize the interactive and exploratory
nature of learning, it is not clear that systems that use these
principles are effective [18]. The evaluation of intelligent
tutoring systems has always been predicated on behavioral
experiments that determine whether one treatment is better than
another treatment. The typical methodology is to construct a
system, and then to use the system with multiple subjects and
multiple trials to obtain reliable measures on the effectiveness
of a treatment. These experiments are usually difficult, costly,
and time consuming to conduct. These experiments become even
more difficult to perform as researchers develop training systems
that use a variety of different media and interactive styles.

A few evaluation studies attempt to discover which features
of a tutoring system affect individual users ([19]. It is
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expected that this information can be used to predict the
behavior of individual users engaged in complex problem solving
tasks. The factors that affect user behavior are quite complex
and interact extensively with one another. Thus, information
that predicts how an individual student reacts to an exploratory
environment should help us produce more effective training
systems.

Another approcach to the evaluation issue is to determine
patterns of behaviors that characterize different groups of
student interactions. Far example, two groups of students
enrolled in the Undergraduate Space Training School at Lowry Air
Force Base, were asked to use the Orbital Mechanics tutors.
Subjects were classified as either beginners (students in their
first week of the program) or experts (students in their last
week of the program). Subjects belonging to the two different
skills levels were told how to use the system and then asked to
interact with the system in a self-paced manner. A data
collection program recorded all student/computer interactions.
The data collection phase began after the students entered their
first input and continued for, no more, than 15 minutes. Twenty
subjects served in this experiment: 12 experts and 8 beginners.

) An analysis of the subjects' interactions was performed
using the Reitman and Rueter algorithm [16] which clusters
individual responses into groups of responses that always appear
continguously, regardless of order. This particular analysis
showed that expert subjects demonstrate a greater variety and
depth of interaction. The expert students used more online tools
and used them in a more consistent manner. Further analysis
suggests that, as a group, the expert subjects were more similar
to each other than they were to their beginner counterparts. The
expert subjects tended to pursue goals in a very planned and
prescribed manner [24]. The beginner students showed no
similarity to each other, and tended not to pursue any clear
goals.

What this particular study shows is that there is a
correlation between expertise and knowledge organizations. This
idea has already been confirmed by other studies on expertise [8:
14]. What this study also suggests is that we can use this type
of information to identify different patterns of skills which
should, in turn, help us to build better communication management
systems. Pattern matching is one of the standard themes that
appear throughout the artificial intelligence literature, and
this study suggests that we should continue to develop this
theme.
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RESEARCH OPPORTUNITIES IN THE AREA OF COMMUNICATION kNOWLEDGE
A number of near-term and lona-term research opportunities
seem obvious at this point. A few of these goals are listed
below.

Near-Term Goals

* We need to validate a methodology for developing
communication knowledge. The methodology might be similar to the
one proposed in this paper, or it might include other types of
design tools. The methodologies should examine how to better
represent communication knowledge.

* We need to develop a nationwide database that classifies
existing media according to its content and cognitive function.
This country, as well as other nations, have produced a large
number of films and video disks. A simple database would allow
us to extract various media selections in order to enhance
existing instruction.

* We need to expand our definition of student-centered
environments to include interfaces that facilitate computer-
supported cooperative environments. Cooperative problem solving
refers to the shared, systematic behaviors displayed by two or
more people as they work towards the solution of a single
problem. As we begin to explore the issue of cooperative work
environments [21], we might also ask whether people know how to
use these cooperative work environments for group decision
making. If this is not the case, then we need to develop systems
that teach people how to become more effective problem solvers in
a computer-supported environment.

Long-Term Goals

* Interfaces should adapt to their users. Some of the
advances in machine learning suggest that we can build interfaces
that bridge the gap between the user's model of the information
and the system's organization of the data. This initial success
indicates that we can use these types of techniques to alter the
interfaces and accommodate different learning styles.

* Design methodologies for intelligent tutors should
generate the code for intelligent tutoring systems. Many
computer aided software engineering (CASE) products are already
generating Cobol, C, and Ada code. [13] suggests that a tool
already exists that can generate three different stvles of user
interfaces. It seems likely that a such a tool could be used to
generate interfaces for student-centered environments.
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* There should be a communication management science that
would enable us to predict a student's interaction style. Such a
science may soon be available as researchers examine cognitive
functions and the effects of attenticn on dual task activities
(26]. Such information is crucial to our understanding of how
students learn and understand information.

REFERENCES

(1] Anderson, J., and Reiser, B., The LISP Tutor, Byte, 10,
April, 1985, pp. 159-175.

(2] Bateson, G., Information and codification: A phllosophlcal
approach, In Communication: The Social Matrix of Psychiatry.
J. Ruesch and G. Bateson, Eds., W.W. Norton, New York, 1951,
pp. 168-211. -

{3] Boehm, B., Software Engineering Economics, Prentice-Hall,
Englewood Cliffs, N. J., 1981.

{4] Brown, J., and Burton, R. Pedagogical, natural language and
knowledge engineering techniques in SOPHIE I, II, III.
In Intelligent Tutoring Systems, D. Sleeman and J.S.
Brown, Eds., Academic Press, “aw York, 1982, pp. 227-279.

(S] Buchanan, B. and Shortliffe, E., Rule-Based Expert Systems:
The MYCIN Experiments of the Stanford Heuristic Programming
Project, Addison-Wesley Publ., Reading, MA, 1984,

(6] Carroll, J. and McKendree, J., Interface design issues for
advice-giving expert systems. Commun. of the ACM, 30, 1,
1987, pp. 14-31.

(7] Clancey, W. Knowledge-Based Tutoring, MIT Press, Cambridge,
Mass., 1987.

(8) Engle, R. and Bukstel, L., Memory processes among bridge
players of differing expertise. American Journal of
Psychology, 91, 1978, pp. 673-689.

(9] Fischer, G. and Morch, A., Crack: A critiquing approach to
cooperative kitchen design. 1In Proceedings on Intelligent
Tutoring Systems, Montreal, Canada, 1988, pp. 176-185.

[(10) Fischer, G., and Lemke, A., Construction kits and design
environments: Steps toward human problem domain

114




(11]
(12]

(13]

(14]

(15]

(16]

[17]

(18]

(19]

(20]

(21]

communication. Human-Computer Interaction, 3, 1988, pp. 105-
160.

Jentzen, M., Structured representation of knowledge by Petri
nets as an aid for teaching and research. Lecture Notes in
Computer Science, Springer-Verlag, Berlin, 1980.

Hoecker, D. and Elias G., User evaluation of the LISP
intelligent tutoring system. In Proceedings of the Human
Factors Society, Dayton, Ohio, 1986, pp. 182-185.

Kuo, F., and Karimi, J., User interface design from a real
time perspective. Commun. ACM, 31, 12, 1988, pp. 1456-1473.

Larkin, J., McDermott, J., Simon, D. P. and Simon, H.,
Expert and novice performance in solving physics problems.
Science, 208, 1980, pp. 1335-1342..

Ling, M., Designing data entry programs using state diagrams
as a common model. In Proceedings of the 6th International
Conference on Software Engineering,, Tokyo, Japan, 1982, pp.
296-308. _

McKeithen, K. Reitman, J., Rueter, H., and Hirtle, S.;-
Knowledge organization and skill differences in computer
programmers. Cognitive Psychology, 13, 1981, pp. 307-325.

Newcomb, T., An Approach to the study ¢7f communicative acts.
Psychological Review, 60, 1953, pp. 393-404.

Sebrechts, M. and Deck, J., Techniques for acquiring
computer procedures: Some restrictions on interaction. In
Proceedings of the Human Factors Society, Dayton, Ohio,

1986, pp. 275=-279.

Shute, V., and Glaser, R., An intelligent tutoring system
for exploring principles of economics. Tech. Rep. Learning
Research and Development Center, Univ. of Pitts., Pitts.,
Penn., 198s6.

Soloway, E. M., and Johnson, W. L., Rembrance of blunders
past: a retrospective on the development of PROUST. In
Proceedings of the Sixth Cognitive Science Society
Conference, Boulder, Colorado, 1984, pp. 57-60.

Stefik, M., Foster, G., Bobrow, D., Kahn, K., Lanning, S.,
and Suchman, L., Beyond the chalkboard: Computer support
for collaboration and problem solving in meetings. Commun.
ACM, 30, 1, 1987, pp. 32-47.

115




(22]

[23]

[24]

(25]

(26]

[(27)

Swigger, K., Burns, H., Loveland, H., and Jackson, T., An
intelligent tutoring system for interpreting ground tracks.
In Proceedings of AAAI-87, Seattle, Wash., 1987, pp. 72-76.

Swigger, K. and Holman, B. S-TRAINER: Script-based reasoning
for mission assessment. (in press).

Swigger, K. An evaluation of the Orbital Mechanics tutor.
(in press).

Wenger, E. Knowledge Communication Systems,'norgan Kaufmann,
Inic., Los Altos, Calif., 1987.

Urbanczyk, A. A., Angel, C., and Kennelly, K., Hemispheric
activation increases positive manifold for lateralized
cognitive tasks: An extension of Stankov's hypothesis.
Brain and Cognition, (in press).

Yazdani, M. Intelligent tutoring systems: An overview, In
Artificial Intelligence and Education Vol. One, R. Lawler
and M. Yazdani, Eds., Ablex Publishing, Norwood N. J., 1987.

116




FROM TRAINING TO TEACHING: TECHNIQUES FOR CASE-BASED ITS

Christopher K. Riesbeck
Roger C. Schank

The Institute for the Learning Sciences
Northwestern University
Evanston, IL 60201

1 INTRODUCTION

This chapter will focus on the teaching of knowledge-intensive domains, such as biology,
history, and weather forecasting, in contrast to other chapters that discuss teaching
high-performance skills (e.g., Fink and Regian) or basic concepts (e.g., Bonar, Porter and Woolf).

It has become a truism Iin artificial intelligence (Al) that knowledge is crucial. Clever
algorithms, fancy data structures, and elegant formaiisms won't save an Al program that doesn't
know what it's doing. Success in Al depends on both quantity of knowledge (how much the
program knows) and quality (how accurate is the knowledge, how accessible is it, and so on).

Consider what distinguishes a good encyclopedia from a bad one. It is not the "data
structures” involved; both have labelled articles and a master index. Rather, it is the quality
of the articles and the appropriateness of the index terms that matters. Similarly, an Al
program—or a person-—needs the right knowledge and the right indexes to be intelligent. It
foliows that a major task in education is to teach both knowledge and the indexes that make
that knowledge accessible.

But that raises the classic Al question "how should knowledge be represented?" and the
classic educational question "how should knowledge be communicated?" In much of what is
called "knowledge-based Al" the representation question is answered with “rules.” Rules have
the form "IF situation THEN conclusion,” Problems are solved and situations are understood by
chaining rules together.

There are a number of problems with this approach. Coming up with a reasonable set of
rules is a very difficult, if not impossible, task for many domains. Even in domains with rules,
such as mathematics, the computational complexity of combining them to form inference chains
may be too great to be feasible.

Furthermore, rules have their limits as a way of communicating knowledge. While detailed
formulas and general principles are rule-like, neither are sufficient for describing a domain. Real
domains, such as weather forecasting, have so many detailed formulas and so many exceptions
to the general principles that a student would be overwhelmed by any tutoring system ihat
tried to present them all.

There is an alternative to rules, however, and that is to represent domain knowledge in the
form of many example cases that embody, either explicitly or implicitly, the relevant formulas
and principles. Problems are solved by adapting previous solutions for similar problems.
Situations are understood by adapting previous interpretations for similar situations.

Case-based reasoning has a number of potential advantages for solving Al problems, but
our focus in this chapter is on the impact this technology can have on intelligent tutoring
systems.
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2 CASE-BASED TEACHING

It is well understood in many complex domains that the best teaching method is case-based.
Law schools and business schools teach cases rather than rules. Recent research in Al suggests
that there- is a valid psychological reason for this, and we are now designing -Al teaching
methods that use cases to teach. We believe that many, if not most, skilis can be taught in
a case-based fashion.

Most training involves teaching a trainee to know what to do and when to do it. A trainee
is successful to the extent that he does what he is toid to do when he is supposed to. The
trick is that the trainee has to abstract from the situations he has been toild about to ones for
which he was not specifically trained.

To iearn to deal with specific cases, one must earn the prototypical cases, the standards
that serve as the basis from which one learns how to deal with a new situation. A computer
system that Is a real-life simulation can create a situation, posed as a problem to the trainee,
and ask for a response. A good teacher forces conjectures on the part of the trainee and
simulates real world situations. A trainee would be expected to respond with the right answer,
or, failing that, would be presented with a situation where that question has been asked before
and where a good answer was given in response. The trainee would then be encouraged to
try a variation of the previous good answer. Learning by copying is an important part of
learning. Learning to move from copying to creative adaptation is another. And learning to
know what cases to try to adapt, that is, learning what makes cases relevant, may be the most
important part of all. Thus, in our approach, a trainee is developing a battery of situations —cases —
and appropriate ways to respond in those situations.

A recent book, Thinking in Time, by Neustadt and May, describes how decision making
occurs in government and how the authors actually go about teaching decision makers to
improve their ability in this area. A great deal of what i3 said in the book indicates that
government decision makers, like everybody else, reason by reminding. They need to make
decisions, so they recall similar situations and try to reason from them.

Two situations in the book are noteworthy in this context. The first is the Bay of Pigs
invasion and the second is the Mayaguez incident. Decision makers in both cases recalled
and argued from past cases in history. In the Bay of Pigs case, the prototype was an incident
in Latin America ten years earlier that caused a little-known invasion by the U.S. which seemed
to work. In the Mayaguez incident, the prior case was the Pueblo incident from a few years
before.

In both of these remindings, we have a situation where decision makers had an incident
brought to mind that had occurred a few years before, that is, within the memory of decision
makers, and that was superficially similar. | emphasize the word "superficial* because, as the
authors point out, that's ali that was in common. The Pueblo and the Mayaguez were both
ships with Spanish names flying U.S. flags captured in Asia, but one was a military ship while
the other was commercial. One was captured by an enemy government, while the other was
not. In fact, these incidents had very litle In common with the exception that when President
Ford heard about the Mayaguez decided not to do what had been done with the Pueblo and
almost created a great deal of difficulty for the people he was trying to save.

The problem here is that while reminding is the nght and natural thing to do, it doesn't
mean much if you don't have much to be reminded of. There is a real problem with the
corporate memory of the government and of the world in general. Education means having
enough cases available so that when a decision needs to be made, one or more very close
matches from history come to mind. The more relevant evidence available, the more an
intelligent decision is like to result.
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Thus, it becomes clear that a system of selecting and presenting cases to a decision maker
can be an important means of enhancing good decisions. For a student, interacting with a
system that can present past history when needed ailows for the possibility of learning what
one needs to know when one wants to know it. _Teach a student about Viet Nam and he may
fall asieep. Charge him with having to make a decision about Nicaragua and he may, all of
a sudden, become quite interested in Viet Nam. If a student suggests invasion, a suitable
historical precedent is retrieved and described. If he mentions economic support, a different
prior story would be told. If he mentions ignoring the situation, yet another story surfaces,
and so on.

Case-based teachers, then, would be well-indexed libraries of prior situations. The trick in
creating them is indexing them properly. Good teachers try to present facts and alternative
interpretations as neutrally as possible. This is quite difficuit for people, but, for obvious
reasons, much easier for machines.

Most of all, such systems wouid allow students to do hypothetical reasoning in complex
domains while becoming active learners about subjects they themselves decide to explore. This
is what education can and ought to be about. Since learning is really the accumulation of
cases, learning and creativity involves the adaptation of imperfectly fitting cases to new situations.

3 CASE-BASED REASONING

The most common model of cognition in Al is rule-based reasoning. It distinguishes two
kinds of knowledge, facts and procedures. Facts are represented using propositions, frames
and/or semantic networks. Procedures are represented with IF-THEN inference rules. To explain
a situation or solve a problem, a rule-based reasoner applies various combinations of rules to
various facts until a chain of reasoning, i.e., a proof, is found. The proof may be wrong,
because the ruies and facts are dubious and the combination rules heuristic, but a rule-based
reasoner remains a very thoughtful creature. Usually, however, a rule-based reasoner is also
a very forgetful creature. Proofs are forgotten, so that when the same or similar situation
arises again, the same problem-solving behavior must be reenacted.

We have argued elsewhere, however, that everyday intelligence is just not that thoughtful
and certainly not that forgetful [Riesbeck and Schank, 1989]. People quickly relate events and
problems to prior experience. When personal knowledge is stretched too far, as when the man
in the street is asked to evaluate complex political events, absurd responses can result. But
in familiar situations, sophisticated answers come quickly and robustly, as when the average
person goes to a restaurant or shops for grocerias, an experienced car mechanic sees a
familiar situation, or a chef encounters a tricky situation he or she has dealt with before.

We call reasoning from experience case-based reasoning (CBR) [Schank, 1982; Kolodner
and Riesbaeck, 1986; Kolodner, 1988]. CBR is important in domains such as politics or cooking,
because it is very difficult, if not impossible, to formalize them with rules. In these domains,
reasoning from examples is the only serious option. CBR is also important in domains that
have too many rules, as in weather forecasting or economics, or too many ways in which the
rules can be applied, as in mathematics, programming, or game playing. In these domains,
ca;es suggest approximate answers, thereby limiting how many rule combinations must be
explored.

At the heart of CBR are two processes: indexing or labelling, and adaptation. When new
experiences come into the system, they need to be labelled for future retrieval. When retrieved
to deal with a new situation, cases needed to be adapted to fit the current circumstances.

119




-

Cases need two kinds of indexes, concrete and abstract. Concrete indexes refer to objects
and actions usually directly mentioned -in the case. Abstract indexes refer to more general
characterizations of the case. For example, a chef might index a recipe by concrete indexes
such as ingredients and basic type (stew, stir fry, casserole, etc.), as well as by more general
characterizations, such as how easy it is to prepare, what kind of people like it, what kind of
cooking problems it solves, and so on.

The indexing problem, as it is usually called in CBR research, is the problem of determining
the appropriate abstract and concrete indexes for cases. How we index incoming cases
(instances of going to a restaurant, proofs by contradiction, monetarist arguments, and so on)
determines what cases we will compare the inputs against. A very general index will cause a
case to be retrieved even when it shares no specific details with the current situation. Romeo
and Juliet is useful for understanding West Side Story, even though the details differ greatly.

Figure 1 shows the reasoning and learning components of a typical CBR system. An input
describing a problem or situation is analyzed and used to retrieve one or more similar cases
in the case library. The solution that was used in the most similar case is then adapted to
solve the input problem. If it works, the new solution is added to the case library. This is
success-driven learning. Ideally, a CBR system should never repeat the same problem-solving
process. If the new solution fails, then two things happen. First, the failure is analyzed and
the solution repaired. If the repaired solution works it is added to the case library. Serond,
new indexes for labelling cases are created, based on the failure analysis, so that similar inputs
in the future will retrieve the repaired solution, not the one that led to the failure. This is
called failure-driven learning. Ideally, a CDR system should never repeat its mistakes. More
details of case-based reasoning, along with examples 10 of various CBR systems can be found
in [Kolodner and Riesbeck, 1986; Riesbeck and Schank, 1989].

Case-based reasoning relates to ITS research in two ways. First, CBR is a model of
cognition and learning that suggests that the goal of an ITS system should be to teach cases
and how to index them. Rules can be useful, even crucial, but they don't become intuitive
and useful until there is a rich case base showing when the rules apply and when they don't.

Second, CBR is a technology for building ITS systems, a technology that stresses the
construction, indexing, and use of large libraries of related, sometimes redundant, examples,
rather than the development of Inference engines and highly-tuned sets of rules.

In the sections that follow, we are going to describe three complementary technologies for
building case-based intelligent tutoring systems:

e case-based reasoning itself, in particular the indexing of cases with labels that allow cases
to be used in a variety of circumstances

e direct memory access parsing, to enable natural language access to cases
e reactive tutorial plans that take into account the contents of the case- base. current

pedagogical goais, and the state of the student

4 INDEXING CASES

If we simply indoxed cases with words and phrases:

e synonyms would have to be included for each index word;
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Figure 1. CBR Flow Chart.

o cases would have to be reindexed when the language of the student population changed;

e common uses of words might not agree with the case library’s, e.g., "bug" and “insect"
are synonyms to the average person, but not to a case library about entomology:;

e ambiguous words would retrieve unrelated cases, e.g., "bug" would index cases in
entomology and computer programming; and

e the student wouldn't know why a case was retrieved, e.g., “beef* and ‘inflation* might
both retrieve a description of Argentina, but for different reasons.

We need to separate lexical connections from conceptual ones. Linking words and phrases
to concepts should be taken care of by the interface, as discussed in the language understanding
section below. Furthermore, we need to Indicate how an index concept relates to a case.
Thus, we might index a case as "a kind of ...," "an Instance of ...," "a part of ...," "the cause
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of ...," and so on, where each "..." is filled in by some concept. Beyond these simpie semantic

relationships are others such as “is analogous to ..." 'is often accompanied by ...," 'is a
prototypical instance of ...,” "is an exception to ...," “is summarized by ..., and so on.

Consider an’ITS in the domain of. programming, and how powerful it could be if it knew
that:

e Computer programs are analogous to cooking recipes.
e The bubble sort is a classic instance of a computer program.
e PROLOG Is an exception to the procedural view of programming languages.

Even in simple semantic networks, these kinds of indexes can be useful: robins and sparrows
are prototypical birds, the penguin and ostrich are exceptional, one goal of flocking behavior
can be summarized by "safety in numbers," and so on.

Getting these indexes means analyzing domain experts, tutors, and students to find the
concepts each uses to organize experience. The concepts students use need to be tied to
the concepts domain experts use. Some of what a student knows can be characterized as
instances or examples of specific domain concepts, e.g., BAS/C (a student concept) is an
instance of a procedural language (a domain expert concept). Other student concepts can be
characterized as abstractions of more specific domain concepts, e.g., monkey (student concept)
is really a subclass- (domain expert concept) that excludes chimpanzees.

e - - 5 CONNECTING LONGUAGE TO,KNOWLEDGE . , o . -

Teaching knowledge-intensive domains such as biology or history commonly involves natural
language. There are texts, summaries, questions, answers, problem specifications, and so on.
Even In weather forecasting, where problem situations are specified with maps and numeric
annotations, there are the briefings where the forecaster summarizes his or her analysis and
prognosis, and the instructors critique the briefing. Certainly, our normal picture of a tutor-student
interaction Involves natural language dlalogue.

The problem Is that natural language understanding is one of the hardest problems in Al
There are no systems that can understand a significant corpus of text; that is, there are no
systems that can produce meaning representations usable by a reasoning system or an ITS.
The difficuities are particularly noticeable in dialogues, where grammatical rules become the
most context-dependent. The classic example of this is the sentence "George thinks vanilla.”
It looks non-grammatical and nonsensical in isolation, but is in fact perfectly fine after the
question "What flavor ice cream does Mary like?"

Our approach has been to radically re-think what language understanding is all about. The
standard model of language understanding is the meaning construction model: text is understood
by putting pleces of meaning together. To understand "George thinks vanilla," fit together the
pieces a person named George, the action of thinking, and a flavor called vanilla. The meaning
construction model fails in this situation, because vanilla can't be an object or style of thinking.
To fix this, the system assumes that vanilla is an elliptical reference, and searches memory for
what it might be referring to. The system "changes modes," so to speak, going from construction
to memory search.

In our view, language understanding is always memory search. Texts are always references
to existing knowledge structures, and the goal of the language understander is to chase down
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those references. The Diract Memory Access Parser (DMAP) [Riesbeck and Martin, 1986;
Riesbeck and Schank, 1989] is an implementation” of an understander based on memory search.
When DMAP sees words and phrasas, it searches for the concepts those words could refer to.
When DMAP sees a sequence of concepts, it searches for larger memory structures that such
a sequence couid refer to, and so on.

Unlike most systems, DMAP does not have a lexicon of word senses. Instead, attached to
each concept -or case are patterns or sequences of words and concepts that might be used
to refer to that concept or case. By intersecting referances as the text is read, DMAP determines
which memory structures account for the text as a whole. (DMAP uses a marker passing
algorithm, described in detail in [Riesbeck and Martin, 1986; Riesbeck and Schank, 1989).)
Figure 2 shows the reference sequence that recognizes "George thinks ...," which is attached
to the believe memory structure.

{ actor thinks object }

actor object

| Proposition |

e e < lGeorge| Mary | _ [Event] [state]

{ George } { Mary }

“

Figure 2. DMAP Reference Sequences.

DMAP has memory structures representing dialogue structures, such as questions and
answers, with reference sequences attached to different kinds of questions, e.g., "What object
does actor action?* and answers, e.g., "object." One kind of answer is a version of the believe
memory structure, where the object of the believing is the answer to the question. The question
"What flavor ice cream does Mary like?" followed by the statement of belief "George thinks
vanilia” satisfies the reference sequence for a particular question and answer memory structure.

We believe that the memory search approach Is ideal for ITS for several reasons:

e Language entry Is simpler, l.e., attach sequences to memory structures; getting the right
memory structures remains hard but an intelligent system needs them, whether or not
language is involved;

e The reference model of language seems particularly appropriate to the highly referential
nature of dialogues;

o Specilal cases are easy to capture, e.g., questions about certain topics or the use of
particular phrases; and

e Only modest extensions is required to use reference sequences in reverse to describe
concepts and cases in natural language; choosing what to say when remains a hard
problem, but putting it into words is not.
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6 TUTORIAL PLANS

A third problem in teaching knowledge-intensive domains is covering the curriculum. The
more the student discovers things on his or her own, the better, but an ITS should take
-advantage of any situation where important topics can be introduced. For example, consider
the foliowing dialogue that took place between a human biology professor and a student, where
the student was asked to design an animal.

STUDENT: | want to design a cow-like thing. But | want my cow to have six legs.
PROFESSOR: I'll iet you if you want. But I'll tell you that there aren't any.
STUDENT: Why aren't there?

PROFESSOR: That never happened because cows evolved from animals that only had four
legs. Not that it's impossible, but that it never happened. That's an interesting point:
several things we could get to are possible, but they just never happened. That's the
way history went.

STUDENT: I'm going to give it six legs.

PROFESSOR: Go ahead. What are the legs for?

STUDENT: | want it to run fast.

PROFESSOR: Why do you think six legs will make it go fast?
T W A WTUOENT: You Bl fe.

PROFESSOR: | don't think you can reason whether it will or not because there are
six-legged things around. Some of them are very fast for their size, like ants. Insects
in general really truck out.

The types of the answers the professor gave depended very heavily on exactly what he
knew and what he thought was interesting to teach. For example, when the student mentioned
a six-legged cow, the professor knew that no such thing existed, that no analogous creature
existed, such as any six-legged mammal, and that the reason was more evolutionary than
functional. [f the professor knew about six-legged cows in Borneo, he could have mentioned
them. If he knew about six-legged cats, he couid have mentioned them. [f he knew that
mammals can't function with six legs, he could expiain why. In this case, the professor talked
about evolution because (1) it could be related to why cows don't have six legs, and (2)
evolution is an important concept in biology.

Although the student asked the questions and proposed the variations, the content and
options made available in the dialogue were controlled by the professor, who opportunistically
inserted examples, generalizations, questions, and so on, as he felt appropriate. This is called
a mixed-initiative dialogue {Carboneil, 1970]. One problem with achieving mixed-initiative dialogues
is that it is “ard to specify in advance a set of tutorial scripts or plans that can apply in all
circumstances. Whether or not it is appropriate to answer a student’s question with another
question, or an example, or a hint, depends on the content of the question, the expertise of
the student, the history of the dialogue, and so on.

Until recently, plans in Al were very rigid. For example, a plan for getting milk might be
"get in car; drive to store; buy milk; drive home." There was a sharp division between planning
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time when the plan was constructed, and execution time when the plan was executed [Charniak
and McDermott, 1985]. Such a model of planning can't work in the real world, where too
many things are unknown to be able to specify all actions completely. Where is my car exactly?
On which side of the garage? Does it have enough gas? Has construction finished on Main
Street? Has the price of mitk changed? Do | have enough money in my wallet? ’

[Firby, 1989)] redefines plans to consist of sets of reactive action packages (RAPs) rather
than sequences of actions. Each RAP is a little program responsible for achieving some small
goals, such as “get in car." A RAP tests to see if its goal is already achieved. If not, the
RAP selects an appropriate method to execute to achieve that goal, based on the current
situation. The method might be a primitive action or another RAP. Thus, my “get in car' RAP
would have a test "be in car" and methods for achieving that goal, such as "look to see where
car is; go to that location; get inside car" "Get inside car' would itself be a RAP that would
unlock the car if necessary, open the door, and so on. A RAP monitor keeps the RAPs in a
queue and selects for execution those RAPs with important goals or impending deadlines. The
key point is that many low-level planning decisions are deferred until execution time, allowing
the system to deal with unexpected obstacles and take advantage of unexpected opportunities.

This execut.un-time context-sensitivity is the key feature we want to exploit with our tutorial
RAPs. The goals will be pedagogical: concepts to be covered, skills to be confirmed, difficulties
to be resolved, and so on. The methods will be dialogue techniques: give a hint, give an
analogy, ask a leading question, tell a story, review a previous case, and so on. The tests
will look not at the real world, but at memory: past elements of the dialogue, prior experience
with the student, examples with a given set of features, and so on. For example, a tutorial
RAP might look for examples of non-social insects in memory. We see our tutorial RAPs as
being much like the DACTN's described by Woolf in this volume, with two differences. First,
we are most interested in RAPs that make opportunistic use of domain knowledge found in
memory, and, second, we want to encode our tutorial RAPs as memory structures.

7 A CASE STUDY

I's easy to say that a intelligent tutoring system should have such and such properties.
Building such a system is another matter. Calls for mixed-initiative dialogues, for example, are
almost as old as the field of computer-based education. The problem is getting from where
we are to where we want to be. Just as it's hard for students to learn in isolation from
real-world contexts, so it's hard for ITS designers to construct solutions separate from some
real system. But it's easy for an ITS design to become an all-or-none affair. Either domain
knowledge and linguistic abilities are there, or nothing works.

Our approach is to build a tutoring system in phases, where the early phases build the
knowledge base and the later phases add the intelligent interaction. A key constraint is that
every phase should be a useful product in its own right, and that each phase is more attractive
to the student than the previous phase.

As an example of what we mean, we'd like to describe a design we proposed for a case-
based tutoring system in the domain of weather forecasting. This is a very preliminary design,
inspired by conversations with personnel at the Weather Training Division at Chanute Air Force
Base. The proposals and claims made below, however, are those of the authors alone.

7.1 Weather Forecaster Tralnm

The Weather Training Division at Chanute Air Force Base in Rantoul, lllinois, trains weather
forecasters for all of the armed services. The intensive 22-week course covers everything from
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basic principles of weather and climate to detailed techniques for analysis and forecasting. The
students are high school graduates, normaily with several years of service, but with no significant
experience in forecasting.

The course is a mixture of class and lab work, where lab work means applying techniques
taught in the classes to real weather data. At several points in the course, there is a major
evaluation period, where each student analyzes a set of data and/or forecasts and presents a
briefing to the instructors, who then critique both the analyses and the briefing style.

The students have a /ot to learn and a lot to do. An analysis and/or forecast can take
six or more hours to work up. Not surprisingly, the students have trouble managing all the
data and rules. Many of the instructors’ critiques of student briefings focussed on failures of
the students to tie together factors from several sources, e.g., to connect the motion of a
particular system to an upper air jet stream. Often the students would have a correct analysis,
but miss many corroborating details.

7.2 A Sequence of Tools

As noted by Pirolli in this volume, a key issue Is the integration of educational tools into
the existing educational system. Introducing a new tool into a crowded educational curricuium
Is made much harder if it takes time from the class day, has to be forced on the students, or
requires additional training for the instructors. Therefore, we considered introducing case-based
ITS into the weather school incrementally, via the following sequence of tools for the student:

e a "dumb" homework helper with forms and tools to make it easy to do forecasts on-line
faster and more neatly than by hand;

ea "dumb" case browser, callable from the homework helper, for scanning a case library
of weather situations and forecasts;

e a "smart’ case retriever, callable from the homework helper, capable of retrieving weather
situations similar to the current exercise; and finally

e a case advisor, callable from the homework helper, that can give hints, advice, stories,
cautions, and so on, relevant to the current exercise.

Each succeeding application improves the previous one in an obvious way, but each
application is a useful tool Iin its own right. Figure 3 shows the basic set of modules.

The homework helper is the critical “foot in the door." To make the homework helper attractive
to students, it should have

e exercise data already on-line.

e drawing and calculation tools that make doing analyses and forecasts faster or more
accurate than doing them by hand.

e the ability to print answers that can be handed in.

An obvious part of such a tool would be a contour chart drawing tooi for drawing isobars.
The contour tool screen would show a map with numerical data points, just like the paper
charts the students start with currently. The student would point and click at points in sequence
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to draw a line, just like following the dots. The tool would automaticaily generate smooth
curves. For the student, the resuit would be a faster way to generate cleaner charts.

Case
Retriever

Case Case
Advisor Library

Case
Browser

Student

Homework
Helper

Figure 3. Forecast Tutoring System.

In addition, it becomes easier to check the charts for correctness. Currently, the students
check their charts by laying a correct chart on top of theirs, and then laying on top of that
a colored template with several holes that indicates key locations.to compare. This is necessary
because trying to match the entire chart would be too tedious. The student then has to decide
if his or her lines are close enough. With the tool, the possibility exists for evaluating the
charts automatically, comparing not the lines, tut the data points selected for each line.

The case browser module would let the student or instructor specify weather features and
retriove weather cases with those features. The instructors could use this facility to find examples
or exercises, and the students could use.it to find situations similar to the problem they are
working on.

We would like to use natural language as much as possible for browser requests, for reasons
discussed earlier. Weather situations are very complex entities, however, not easily describable
in one sentence. Therefore, we will probably design a “fill in the blanks" request form to help
break the request down into well-defined parts. The blanks would then be filled in English.

The case retriever module introduces true CBR to the tutoring system. The retriever will
find cases similar to the current exercise, using indexes encoded by domain experts. It will
list both the cases retrieved and the index features that connect them to the current case.
This list of features is important pedagogically because it captures how experts view weather
situations.

The case advisor Is the intelligent tutoring module, and the most complex and ambitious
component of the system. The student will call on the advisor (using natural language) when
he or she reaches an impasse during a problem solving session. Using pre-defined tutorial
RAPs that opportunistically select different kinds of responses depending on what is in memory,
the advisor may answer Socratically with a question of its own, give a hint, draw an analogy,
refer to the cases returned by the retriever, or browse for cases with particular features.
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8 LONG-TERM GOALS AND VISION

In our vision, the ideal case-based tutor is a raconteur, a teller of stories, a fountain of
examples and exceptions. It communicates in the natural language of the student, pushes the
student to make conjectures and ask questions, and presents cases not as solutions to problems,
but as examples of what has been done before. Ideally, the tutor is fun to interact with because
of the stories and cases it tells, not because it has flashy sound and graphics, arcade game
interludes, scoring and competitive ranking, or whatever. The student learns because the student
is the dominant actor in the conversation, led into exploring new concepts and ideas because
they answer questions the student has raised for him or herself, based on hints and allusions
dropped by the tutor in conversation. .

On the other hand, our ideal tutor is not a test giver or a question answerer. Tests serve
two purposes: as a stick to force the student to learn, and as a means of evaluating what the
student_has learned. The kinds of objective tests that are usually administered, especially on
computers, with their blanks to fill in and muitiple choices to select, do a terrible job on both
goals. They don't force students to learn, because many students just "study for the test,
learning little, and retaining less. Nor do they evaluate what the student has learned, because
such tests only measure simple question-answering skills, and fail to give any indication of a
student’s creativity (in fact they stifle it) or ability to apply what's been learned in real situations.

Our ideal tutor is not a question answerer, because, in our view, learning results when the
student both asks the questions and answers them. The role of the tutor is to either (1) help
*he student who is having difficulty to organize his or her attack on the problem, by asking a
few leading questions, making a simple analogy, or showing an example of a similar situation,
or (2) push the student with the giib answer into exploring alternatives, by presenting
counterexamples unusual situations, and so on. Except for minor clarifications and pointers,
we belleve the tutor should never terminate discussion and exploration with “the answer."

In doing this, of course, we need to avoid frustrating the student with evasive non-informative
interactions. Part of the solution is to put the student in charge of the problem-solving or
exploration, and make the tutor more of a Doctor Watson to the student’'s Sherlock Holmes.
That is, the tutor should prompt the student to think things through, carry the tools the student
needs, bring up issues that should be examined, and so on, but should not be viewed (by the
student or the designers of the tutoring system) as the "brains of the outfit."

Our proposed weather tutor is certainly a long way from our ideal, but it does point in the
right direction. It puts the student into a well-motivated context (making forecasts) with real
examples to work on. As a homework helper, it does not have a lesson plan that says when
a student has to learn something. Instead, it waits until the student wants to know something.
As a knowledge resource to be called on when needed, it neither interferes with nor redirects
a student’s natural fiow of problem solving. As a library of cases rather than solutions, it does
not tell the student what to do, only what has been done. The role of the homework helper
is clearly that of assistant, not holder of answers.

9 SUMMARY

We've described two aspects to the design of knowledgeabie intelligent tutoring systems.
First, we described the case-based reasoning (CBR) modei of what learning a knowledge-rich
domain involves. We also proposed the use of CBR for implementing the knowledge base of
tutoring systems. Second, we described how a tutor should teach this knowledge, emphasizing
guided exploration in a problem-solving context. A student would ask the tutor for help in
solving a problem, and the tutor would help, albeit indirectly, with leadirig questions, hints, case
histories, and so on. This dialogue would be guided by tutorial RAPs that are sensitive not

128




just to the history of the dialogue but also to what knowledge is in the tutor's case base and
what pedagogical goals are active. The natural language understanding and generation would
be handled by a knowledge-based technique called direct memory access parsing (DMAP).

Finally, we outlined an approach to the design of a homework helper for trainees in weather
forecasting. We organized development of the helper into short and long term goals. In the
short term, we are look to build useful tools, including on-line calculation and graphic tools for
doing analysis and forecast exercises, a case library of weather situations, a "dumb" case
browser, and a "smart" case retriever. As a long term goal, we would build a case advisor,
with RAP-like memory structures for its tutorial plans, the weather case library as its source of
examples, exercises, analogies, and so on, and DMAP-based natural language understanding
and generation.
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ON THE ART OF BUILDING:
PUTTING A NEW INSTRUCTIONAL DESIGN INTO PRACTICE

Peter Pirolli
Education in Mathematics, Science, and Technology
University of California, Berkeley

SUMMARY

Professional instructional designers are one set of potential consumers of the resuits of
work in cognitive science and intelligent tutoring systems. One way of disseminating new theories
of instructional design into design practice might be through the development of computer-based
design tools. This paper provides a characterization of the design process and significant features
of new instructional theories. It also presents an overview of two existing computer-based design
systems. The first, ID Expert, is an expert consuitation system which essentially guides the user
through the design process. The second, IDE, is a hypermedia system that facilitates the
structuring and manipulation of analyses and specifications by expert designers. Each system has
its merits and drawbacks. Finally, new instructional design techniques are discussed that might be
profitably incorporated into computer-based design systems. .

INTRODUCTION

Work in the field of intelligent tutoring systems pursues a variety of goals. In part, the work
is that of any descriptive science, attempting to understand human cognition and learning, and the
instructional effects of particular technologies. In part, the field is an engineering discipline,
involving the development of instructional principles and rationalized instructional designs. There
are clearly a number of audiences or consumers for the resuits and artifacts produced by the field
and one of these is surely the professional designers and builders of instruction. The main task of
this paper is to examine how the field of intelligent tutoring systems, and more generally the field of
cognitive science and education, may systematize and disseminate its theones and methods of
design into professional design practice.

Lessons From History

It is interesting to reflect on the history of architecture, perhaps the most established of
design disciplines, and consider a particular set of events that turned it into a systematic and well-
defined profession, and produced the wide-spread dissemination of a certain style of design.

Many historians [9, 25] regard Leon Battista Alberti's (1] On the Art of Building 1o be the first
modem treatise on architecture. Alberti was a true Renaissance man in every sense of that word,
being well-versed in a variety of humanities, arts, and sciences [6]. His work is remarkable
becausae it is based on a reanalysis of ancient writings (in particuiar the work of the Roman
engineer Vitruvius Pollio), the extraction of design principles from the classical Roman architecture
that he observed throughout italy, and the formulation of a theoretical basis for the practices of
Brunelleschi and other contemporary builders at the beginnings of the ltalian Renaissance. Alberti
did more than collect a compendium of principles and practices: He developed a theoretical
framework that rationalized the form of buildings based on contemporary notions of perspective,
nature, and beauty. The framework was both systematic and generative and, more than any other
work, is probably responsible for the rapid spread and evolution of Renaissance architecture (19].
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The essential aspects of Alberti's work remained a dominant view of architecture until at least the
mid-nineteenth century [19].

Although the rapid spread of Renaissance architecture was facilitated by the availability of a
systematic and generative theory of design, it also benefited from a wonderful new technoiogy for
disseminating knowledge: the printing press. In fact, Alberti's On the Art of Building was the first
printed book on architecture, preceding the printed edition of the more ancient treatise of Vitruvius
by a year [25]. In light of this historical reflection, it is interesting to look at the field of intelligent
tutoring systems. The theoretical ianguage of the fieid is ciearly framed by cognitive science and it
is a framework that has the potential for producing systematic and generative accounts of the form
of instruction. One of the most interesting aspects of the field is its view that technology-
specifically the technology of artificial intelligence--can be used as a means for analyzing,
disseminating, and communicating subject-matter knowledge. Can we make use of this theoretical
framework and this view of knowiedge dissemination by computational technolcgy to place new
views of instructional design into wide-spread practice?

In addressing this particular problem, 1 think it is important to keep in mind a significant
constraint. For new practices to comae into being, they often need to evoive from existing practice,
or have the wide-spread and enthusiastic support of those grass-roois practitioners. Consider the
history of educational technology. Time and time again, new technologies have shown great
promise for revolutionizing instructional practice, and those promises remained unfuifilied. In the
first third of this century, it was film and radio that would open new avenues to kncwiedge; in the
second third, television; in the last third, computers. Cuban [4], in an analysis of this history,
suggests that (a) practitioners naturally resist being forced to change, (b) they resist proposed
changes they do not understand, (c) they resist changes that may affect their security, and (d)
changes generated in a culture that values science and technology must be made understandable
and valued for another cuiture. The upshot of this second historical lesson is that any new
instructional design methodology must be somewhat consistent with current practice in the industry
of instructional design.

Scope of This Paper

The main idea in this paper is that instructional design methodologies based on cognitive
science perspectives can be developed along with supporting technological tools. One promising
avenue is to begin to develop instructional design systems analogous to the computer-aided
design (CAD) systems used in other design disciplines. The place where these are most likely to
have an impact is in instructional design areas in which there is a high volume of instruction being
continuously developed and in which the design problems have substantial overtap. Train.ng in
industry and the military are prime candidates for such developments. Instructional design in these
areas very often invoives the application of familiar analysis techniques and methods to new
problems (e.g., maintenance training for a new device in a product line), the modification of existing
instruction to meet changes in instructional situations (e.g., to meet changes in the student
population), or the reanalysis of existing instruction to improve efficiency and effectiveness.

Design problems in which there is a high carry-over of analysis techniques or design specifications
from prior problems are well-suited for CAD-based methodologies.

A GENERAL FORMULATION OF DESIGN
Attempts to characterize the process of design has had a long history in cognitive science
(21, 26]. Recently, Vinod Goel and | (8] used the following approach. Rather than attempt to come
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to a specific definition of generic design, we described design as a radial category--that is,
particular tasks will be called design to the extent that they match a prototype of the design
process. Based on an information-processing account, we outlined how the iqvanant§ of the
prototypical task environment for design interact with the invariants of human information
processing to structure the problem space of design situations. This analysis was then related to
data from verbal protocols from experts in instructional design, mechanical engineering, and
architecture.

Problem

Qatement

Generation
Design v v
Problem Evolution of speciflcatlons{ = implementation
Space . I
<4 i<
y N Evaluation
Feedback

Figure 1. Structure of a prototypical design task.

Figure 1 provides a summary of the prototypical design task. A design problem is given,
usually specifying the current state of the world and a set of intentions to be fulfilled by an artifact.
In instructional design, the artifact may be a set of material resources, such as texts, along with
some instructional process. The design process iteratively generates and evaluates a set of
artifact specifications until they are deemed compiete. Typically, these specifications go to another
agent for interpretation and implementation. Also typical of this process, feedback from the world
about the design of the artifact occurs after it has been impiemented.

There are a number of important features of the typical design process that appear to have
a substantial effect on design problem solving [8]:

1. There are many degrees of freedom or substantial lack of information in the problem
definition.

2. There is delayed or limited feedback from the world during problem solving.
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3. The input to design is largely comprised of goals and intentions. The output is the
specification of an artifact.

4. The artifact must function independently of the designer.
5. The specification and implementation of the artifact are temporally quite separate.

6. Actions in the world have costs (e.g., time and money) and there are penaities for being
wrong. :

7. There are no absolutely right or wrong answers, but gradations of better and worse.

8. The problems tend to be large, complex, and require problem solving over the course of
days, months, or even years.

Several entailments of these features were identified by Goel and Pirolli. Of particular
relevance for discussion here are the following:

* Because there are many degrees éf freedom in problem statements, design problems
require substantial analysis, nagotiation, and structuring.

* The delay of feedback, cost of action in the world, and the independent functioning of the
artifact suggests that a substantial amount of performance modelling of the artifact must
take place during problem-solving.

 The size and complexity of problems require management through problem
decomposition and the correlated use.of abstraction hierarchies in the specification of an
artifact.

Knowledge structures problem solving and, in the case of design, theories about the form of
artifacts and about the world influence the analysis and structuring of problems, the performance
modelling of current specifications, and the kinds of abstractions and decompositions that occur
during the design process. The term "theories"” is used loosely hera, for often it is some
combination of engineering theory combined with personal rationalizations based on experience.
Consequently, the ways in which design problems are solved are greatly determined by knowledge
t:at sha:'%es the designer's views of the world and the forms of artifacts that she intends to place in
that world.

THEORIES OF INSTRUCTION

A fairly traditional view, is that instructional design theories attempt to specify the space of
instructional situations, the space of instructional methods, and to develop statements, called
principles or theories, that link these spaces. The analysis of instructional situations is taken to
broadly include the effects of instructional methods, usually called instructional outcomes, and the
conditions that affect the outcomes and use of those methods. Such conditions include the

subject-matter, the instructional setting, properties of the targated leamers, and the nature of the
learning task. )

Tradiﬁonqlly, principles of instruction are taken to be those statements that characterize
elementary building blocks for instructional methods. Descriptive principles are scientific
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statements about the effects of a particular method under given conditions. Prescriptive principles
are the kind of statement used in design to identify the optimal method to use in a given situation.
Instructional theories deal with larger and more integrated sets of methods, describing outcomes
and prescribing methods in given situations. Comprehensive instructional theories are intended to
provide the knowledge base for solving the problems of instruction.

Eilsewhere [18], we have looked at traditional views of the instructional world, such as work
in the paradigm of Gagne and Briggs [7] and asked how that view is expanding and changing with
developments in intelligent tutoring systems and cognitive science. The analysis of instructional
situations has been enhanced greatly by richer and more detailed characterizations of the
knowledge to be acquired by students and of the cognitive states of students throughout an
instructional process. For example, Anderson's (2] review of kinds of expert modules in intelligent
tutoring systems indicates the variety of ways of representing detailed knowledge targeted as
instructional outcomes, including ways of representing declarative knowledge, procedural
knowledge, and qualitative process models. Analysis of the conditions for instruction has been
greatly enhanced by similarly rich and detailed student modelling techniques [30}, which provide a
means for tracking subtle changes in students’ cognitive states during instructional interactions
rather than broader characterizations of the student populations.

Commensurate with the evolution of more detailed ways of representing knowiedge has
been the evoiution of techniques for the empirical analysis of behavior, largely deriving from work
on verbal protocols {5, 12]. Research on interface design and tutoring strategies is expanding the
space of instructional methods, and many authors [3, 29} have attempted to formulate principles to
prescribe their conditions of use. Finally, there are attempts to produce tighter couplings of
theories of instruction to theories of learning, and to develop systematic accounts of social pattems
of activity and their relations to the development of meta-cognition, epistemology, and social
practice.

These new ways of looking at instruction ‘are the sorts of things that one would like to see
structuring the problem solving of practicing instructional designers. One reason for this is that the
new analytic techniques more accurately capture knowiedge acquisition, performance, and
transfer [27]. Another is that the new instructional methods can achigve at least a standard
deviation improvement in efficiency and effectiveness over traditional group-oriented instruction.
Unfortunately, there are no broad integrative theories of instruction arising out of the new cognitive
science perspective. However, it may be possible to string together various bits and pieces of
methodology into an effective whole. One way to do this might be to begin to develop CAD
systems for instructional design practitioners.

COMPUTER-BASED INSTRUCTIONAL DESIGN SYSTEMS

Several computer-based systems for instructional design are under current development.
Although none are in wide-spread use, it is useful to examine their form and function with an eye
towards future possibilities. Two systems are discussed in some detail here (see also [31]). The
first is ID Expert (17], which is the prototype for an expert system consultant for instructional
developers. The sacond is the Instructional Design Environment (IDE), which is an augmented
hypermedia system (23, 24].
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ID Expert

ID Expert [17] is a prototype expert system intended for use as a consultation system by
inexperienced instructional designers. It is currently implemented in an expert system shell, and
contains about 400 rules. Use of the system assumes that the user has already done some
analysis, involving the identification of student attributes, subject-matter knowledge_. and the goals
of the instruction. The user enters into a dialog with the system, eventually producing an output
consisting of a set of specifications and recommendations for a course design.

Goals,
knowledge, > Content > Course
& student structure organization
attributes : :
-
Sequence Module |. Module Module
Strategy Transaction

| -

Figure 2. The model of instructional design underiying ID Expert.

It is apparent that the model of instruction underlying ID Expert derives from work in the
Gagne-Briggs approach to instruction, and particularly on the more recent integrative theories of
Merrill [16] concerning instructional presentations for specific concepts, principles, and skills, and
of Reigeluth [20] concerning the organization of lesson modules and courses. Figure 2 illustrates
the components of this model underlying ID Expert. The inputs to the process are specifications of
instructional goals, subject-matter knowledge, and student attributes. Using these inputs. a
content structure is constructed. A content structure is an organization of subject-matter content,
and a particular organization will also depend on goals and student attributes. Based on the
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content structure, goals, and student attributes, a course organization is constructed. This -
determines the paths a student may take through the components of instruction. This organization
consists of modules, which are comprised of some representation of content, a set of transactions,
and a set of strategy rules. Transactions are communicative actions or activities fulfilling some
instructional function. Sequencing rules organize modules and strategy ruies organize
transactions.

ID Expert is in part dependent on a a frame-based representation of various types of
content structures, course organizations, strategies, and transactions. IDE Expert also has a rule-
based component used to select and refine particular frames given that other frames have been
selected and partially or fully instantiated. Although a substantial amount of knowledge has to be
acquired from a user in order to construct a particular design, there is also a substantial amount of
knowledge that is embedded within the system.

One interesting feature of ID Expert is that it not only knows-what methods will achieve
which goals, but it can also recommend a space of alternative methods with graded degrees of
confidence across the altematives. This is basically an extension of the technique of accumulating
certainty factors in diagnostic expert systems. For example, to provide an overview, the system
(on a scale of -1 to +1) might recommend a synthesis transaction with a certainty = .40, a summary
transaction with certainty = .30, and an exposition with certainty = .10.

Although ID Expert is currently just a prototype for a consuitation system it has some
interesting properties:

It suggests that substantial amounts of knowledge about instructional design can be
embedded in an expert system.

» Such knowledge can be used to drive a designer through territory she is not familiar
with, providing advice, suggestions, or even making decisions.

» The rationale for the design can be reconstructed by tracing through the rules
suggesting methods to fulfill particular functions and the evidence accumuiating for
various aiternatives.

The Instructional Design Environment

In contrast to ID Expert, in which the system drives the user, the Instructional Design
Environment (IDE) centers on experienced users driving their way through the system. [DE [23,
24] is a hypermedia system in which instructional designers can enter, edit, and manipulate their
analyses and specifications. Information is entered into notecards and relations among notecards
can be specified by links of various link types. Notecards are of a variety of card types, and with
each card type is an associated substancs. Substances are essentially different kinds of media,
such as text, graphical browsers, sketches, animations, etc., each coming with its own set of
editing operations, and perhaps default content (for example, a set of slots to be filled, or icons that
act as buttons to generate sets of actions). Notecards and links can be organized in notefiles, and
notecards may contain cross-links across notefiles.

Figure 3 presents a conceptual view of a possible notecards structure in IDE, with notecards
represented by boxes and ovals, and links represented by lines and arrows. At the top of Figure 3
IS an analysis of subject-matter which organizes material around the functional decomposition of a

P. Pirolli
137 7

NN




device into subsystems and parts, and associated analyses of relevant concepts and tasks. Atthe
bottom of Figure 3 is part of a maze representing an abstract view of the structure of of a piece of
interactive video-disk instruction.

Device
system

I

Figure 3. A heterogeneous mix of cards and links in
IDE hypermedia analysis.

IDE is not coupled to any particular design methodology and consequently exists in a
variety of forms, each tailored to the specific needs or interests of its users. Particular designers or
groups of designers may tend to use specific ways of representing their analyses and
specifications. To capture these regularities, new card-types are developed. In a fairly compelling
way, these task-specific card types are analogous to the frame-based representations used in 1D
Expert. The card types are used to encode particular kinds of content representation (e.g.,
concepts, tasks, skills, device components) and various kinds of instructional presentations and
organizations. Associated with particular representations are sets of common actions, which can
be captured by menus and action-generating buttons associated with particular card types. These
common operations are analogous to the knowiedge encoded in the ruie-based component of ID
Expert. The construction of new card types and associated actions is available to designers
through a relatively simpie set of tools.

IDE also comes with capabilities for organizing related sets of card types and tools into
modes that can be associated with the specific subtasks associated with design. Forinstance, in
working with several instructional design groups [24], IDE developers structured IDE to have
modes for: (a) data collection, (b) task analysis/structuring knowledge, (c) sequencing, (d) delivery,
and (e) evaluation. The data collection mode is meant to be used during th early stages of design
during which the main task in simply collecting incoming information and notes. The task
analysis/knowledge structuring mode supports the development of analyses of subject-matter.
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The sequencing mode is used to organize the content with respect to the instructional goals and
student attributes. The delivery mode is used to sketch out, or actually specify the particuiar
instruction in the media of choice. Evaiuation mode is used to collect feedback from the
implementation of the course.

IDE has been used in the design of instruction for a variety of media, including text,
interactive video disk, and as a driver for an intelligent tutoring system. For example, in the case of
interactive video disk, IDE was structured to contain card types and tools for specifying the
commonly used abstractions for sketching out video disk sequencing (mazes, scripts), for
prototyping frame sequences, and for actually driving the video disk [24]. Russell [22] describes
the intelligent tutoring system architecture (IDE-Interpreter) that can take as input a set of
specifications output from IDE. One could also view IDE-Interpreter as a facility for modelling the
details of complex interactions that may occur in instructional interactions involving media that is
not computer based.

The following are some of the interesting features of IDE noted by Russell et al. [24]:

» Although hypermedia is too ill-structured to be used as a true database management
system, it can act as vast repository of heterogeneous information, and many kinds of
queries can be answered through direct inspection or automatic search techniques
tailored for specific tasks. '

* Analyses, specifications, and other products are available in a sharable and inspectabie
form. In some cases, IDE collaborations have taken place across country.

» Permanent storage of structured and inspectable designs permits the reuse of analyses
and specifications, the modification of materials to meset changing needs, and reanalysis
of existing designs to extract principles or identify problems.

 The creation of representation types and tools implicitly creates a design standard and
allows a design methodology to evolve through time.

Russell et al. also identify a host of research issues, which would actually have to be
addressed in any hypermedia-based design environment:

+ Kinds of analyses, design decisions, and rationale to record. As shown in recent
research on software design [28], it is not aiways clear what sorts of information need to
be recorded to facilitate future modifications or reanalysis, or use of components to solve
new problems.

. Support of collaboration.” Although IDE permits sharable notefiles, there are many
Issues surrounding versioning, means for keeping track of who is working on what, and
negotiating the meaning of hypermedia structures among collaborators.

. Navigatiqn and query techniques. As with all hypermedia systems, finding information
and moving through complex structures often beccmes a serious time sink.

. I.D Expert places much of the knowledge about the representation and process relevant to
design inside the system, extracting the information needed to instantiate a particular design from
a user who is in inexperienced designer. In contrast, IDE basically provides a fairly malleable
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~ medium and it is up to the experienced designer-user to structure the process and fill in the
relevant information. One couid well iinagine that having a set of expert system advisors or toois
would be of use even to thu expert, just as having an automatic symbolic integrator is useful to the
engineer or scientist: to accomplish tasks that are well-structured but tedious, and to reduce
cognitive load. It seems clear that an ideal instructional design system would sit somewhere
between the System-driven approach of ID Expert and the user-driven approach of IDE.

LOOKING TO THE FUTURE

Although ID Expert, IDE, and other emaerging instructional design systems show promise,
none really meet our ideal of a system that incorporates substantial aspects of instructional theory
from a cognitive science perspective. As noted in the discussion of IDE, the evolution of tools and
representation techniques drives the evolution of new design standards and methodologies. What
sort of tools and techniques are out there in the literature, ripe for the picking?

Wae can reconsider earlier discussion of the ways in which cognitive science has expanded
and refined the traditional view of instruction. Refinements in knowledge representation
techniques, and specifically their use in intelligent tutoring systems, is beginning to drive the
development of a variety of general architectures for developing intelligent tutoring systems [14,
22]. The experience of some developers (2] suggests that such architectures will probably be
somewhat specific to particular kinds of instructional problems. As with the IDE-interpreter, such -
architectures couid be coupled with design environments to facilitate the standardization of
associated design methodologies and the development of databases of design knowledge. Even
without complete tutoring system architectures, there has been substantial progress in formuiafing
fairly general formalisms for representing knowledge in specific domains. For instance, Kieras and
Polson [11] have developed a production system formalism for characterizing task-related
knowiedge and a generalized augmented transition network formalism for capturing device
operations that can be useful in capturing man-machine interactions. Such kinds of detailed
representation techniques would be useful even when the goal does not involve producing a
sophisticated computer-based tutor.

Protocol analysis techniques have evolved to the point where they can be carried out in part
automatically. The work of Means and Gott [15] illustrates a protocol analysis technique that can
be used even when the analyst knows very little about the subject-matter area. The technique,
called the two-expert method, basically invoives having two experts develop problems and give
them to each other. In the process, the expert gives verbal protocols of problem solutions,
sketches relevant models, identifies relevant resources, and identifies aiternative solution paths.
Much of the work surrounds the development of a graphical representation of relevant portions of
the problems space. Such techniques and associated graphical representations seem ideal for a
computer-based medium.

The selection and organization of instructional content has received less attention than the
analysis of expert and student knowledge, however there are a few interesting developments.
Kieras [10] suggests a set of heuristics for developing a mental model to be taught in association
with some task. Using a rational task analysis, domain experts, and relevant documentation,
knowledge about how a device works is selected based on its relevance to task goals, the
accessibility of system companents to inspection or manipulation, and explanations of critical
procedures. Lesgold [13] discusses an object-oriented approach to analyzing curriculum

organization, in which constraints among content organization, student attributes, and instructional
goals are resolved.
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In sum, there are a variety of analytic and representational techniques under development
that seem ready for incorporation in larger, more integrated approaches to the design of
instruction. Traditional approaches to instructional design are admirable for their degree of
completeness and coherence, however, to quote Alberti [1], “there is no reason why we should
follow [the ancients’] design in our work, as though legally obliged; but rather, inspired by their
example, we should strive to produce our own inventions, to rival, or, if possible, to surpass the
glory of theirs.”
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LITERACY AS PREREQUISITE KNOWLEDGE

Glynda Ann Hull
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SUMMARY

This paper argues that literacy skills--skills such as reading and writing which
are used in interacting with print to function as a member of society--are
prerequisite knowledge for users of intelligent tutoring systems. The author reviews
recent assessments of the literacy skills of young adults; such assessments indicate )
deficiencies in literacy skills which require complex information processing. She
also reviews recent research on the nature of reading and writing, in particular that
which focusses on populations which are underprepared, and characterizes in more
detail the kinds of literacy problems that students might bring to their interactions
with intelligent tutoring systems. She illustrates some of these problems with
reference to a tutor for teaching writing skills. She next discusses the changing
nature of texts and the increasingly complex literacy requirements thatwill -
accompany new information technologies like hypertext and hypermedia systems.

INTRODUCTION

This paper presents some components from current literacy theory--ideas
about the nature and function of texts and how people learn to read and write them--
and asks how such ideas can inform the construction and use of intelligent tutoring
systems. Although intelligent tutoring systems are sometimes created so that people
can acquire complex knowledge and procedures in a context that is independent of
reading and writing, I want to suggest that learning to use many such systems
involves literacy-related activities, and that, for most learners, literacy demands will
continue to increase as new contexts for use include new technologies, like hypertext
and hypermedia systems. It is crucial, then, to pay careful attention to the lteracy

skills required to operate and learn from intelligent tutoring systems and other
information technologies.

In offering these ideas, I attempt to represent the perspective of computer
users who are students, to see through their eyes rather than through the lenses of
developers or computer scientists or domain experts. In fact. I am particularly
interested in those student users who are "underprepared” in literacy skills, whose
reading and writing skills appear insufficient to accomplish the literacy tasks
required by schooling or work. Research is showing that even those reading and
writing performances which seem genuinely flawed possess a history and a logic.

Such a perspective broadens considerably the population we think will be able to
attain complex literacy skills.

In the first part of the paper, I describe the literacy problems-that currently
appear to be the most serious impediments for young adults in their schooling and
the workplace. Then I review some recent research on literacy, work which
characterizes reading and writing as complex cognitive and social processes, and
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mention its implications for practice. In the next section, I discuss some of the
literacy skills involved in using intelligent tutoring systems, with reference in
particular to a tutor for teaching writing skills. Then follows a discussion of the
changing nature of texts and the literacy requirements that will accompany new
information technologies. I conclude with some recommendations for literacy
instruction in our age of new technologies. :

A LITERACY CRISIS

Everywhere there are warnings of a literacy crisis in America, warnings
apparently butressed by striking evidencé. In the language of the National
Commission on Excellence in Education [1],

e Some 23 million American adults are functionally illiterate by the simplest
tests of everyday reading, writing, and comprehension.

¢ The College Board's Scholastic Aptitude Tests (SAT) demonstrate a virtually
unbroken decline from 1963 to 1980. Average verbal scores fell over 50 points
and average mathematics scores dropped nearly 40 points.

e Many 17-year-olds do not possess the "higher order” intellectual skills we
should expect of them. Nearly 40 percent cannot draw inferences from written
material; only one-fifth can write a persuasive essay....

¢ Business and military leaders complain that they are required to spend
millions of dollars on costly remedial education and training programs in such
basic skills as reading, writing, spelling, and computation ( p. 26).

Although such warnings about insufficient language skills are frequently made, along
with similar predictions about an illiteracy that is scientific or mathematical or
historical or cultural in nature, many of these figures are regularly questioned, and
their interpretation roundly debated. Indeed, the very language we have used to
describe the problem--literacy as opposed to illiteracy--is now recognized as an
inaccurate dichotomy. Most people are, in fact, illiterate in most areas of knowledge.
but literate in a few, while literacy skills can more accurately be viewed to form a
continuum. And though it is clear that some proportion of our U.S. population cannot
read or write at all, and thus might accurately be termed "illiterate,” that percentage
is very low. Nor does the word illiteracy, with its connotation of an inability to sustain

an independent and satisfying life, do justice to the ingenuity and attainments of
many citizens who don't read and write well.

I make all of these caveates about our country's literacy "crisis.” not because I
believe there isn't one, or that we shouldn't be concerned about improving reading
and writing skills, but because it is important to be clear about how we define and
delimit the problem we most want to solve. I find some useful definitions and
distinctions in a recent report released by the National Assessment of Educational
Progress (NAEP, [2]). NAEP tested a national sample of 3,600 young adults on a
range of test items representing typical written materials’ and information processing
demands: reading bus schedules and tax tables, filling out application forms and
check ledgers, deciphering road signs and grocery labels. According to this
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assessment, only an estimated five percent of the population functions below th'e
fourth grade level on literacy skills. However, around fifty percex.}t of the nation's
young adults is projected to possess what Thomas Sticht called "mid-level” literacy,
skills which put them far above the literacy levels of preceding generations, but
discouragingly below the skills needed in an information processing age. Kirsch and
Jungeblut (2], the authors of the assessment report, concluded that:

It 1s clear from these data that "illiteracy” is not a major problem for
this population. It is also clear, however, that "literacy” is a
problem. Sizable numbers of individuals are estimated to perform
within the middle range on each of the scales. Within these broad
ranges, individuals are neither totally "illiterate” nor fully "literate”
for a technologically advanced society (p. 5).

In their review of the NAEP assessment data, Venezky, Kaestle, and Sum [3]
characterize the literacy crisis similarly. They see a subtle danger in the failure of
young adults to be competent problem solvers. For example, they point out that
respondents in the NAEP study did well so long as they were asked to identify a
single item of information from a prose passage and the language used to describe the
item in the question and the text were the same or almost the same. However, when
the information couldn't be derived from a single sentence, but rather had to be
drawn or inferred from several sentences or a passage, respondents did less well.
Similarly, respondents could use an index accurately when that process required only
one step, but were derailed by multi-step searches. Difficulty with items involving
computation also seemed to center on the complexity of print processing rather than
arithmetic operations alone. These NAEP data suggest that most young adults have
decent abilities when it comes to basic tasks, but fail to thrive when tasks require
more complex problem-solving. And among those who do poorly, a disproportionate
number are racial and ethnic minorities--Blacks and Hispanics. If current

demographic projections hold. the proportion of young adults who have insufficient
literacy skills will increase in future years.

There is a literacy problem in our country, then, but this problem isn't for most
young adults so much a crisis of "basic” skills--being able to decode individual words
and spell them correctly. It has to do. rather, with literacy put to more complex
purposes, as would seem fitting for a society in an information age. There is some
debate, however, about whether our technological society will continue to require
increasing numbers of future workers who possess high-level literacy skills. Some
argue that white collar jobs will be downgraded. and others, that white-collar Jobs
which require problem-solving and adaptable learning are bound to increase. (See,
for example, Sticht (4]). In a later section, I will suggest that new information ‘
technologies have the potential to put more information into the hands of more
people, and that the mark of a literate person will increasingly be measured by the
capability to manage that information in more sophisticated ways than we currently
are able. However, before discussing new conceptions of literacy suggested by these
technological advances. I'll review current theory on writing and reading. -
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WRITING AND READING AS COGNITIVE AND SOCIAL PROCESSES

There has been much research in recent years on reading and writing as
cognitive acts. The work on reading characterizes this process as "constructive.”
While it was formerly believed that reading consisted of recognizing one word, and
then another and another, and finally combining those words into meaningful
sentences and larger groupings, current theorists emphasize the degree to which
what a reader understands from a text greatly depends on the knowledge he or she
brings to the text. That knowledge includes general information about the world,
assumptions about the author's intentions, knowledge about genre and particular
discourse conventions. We once thought of texts merely as repositories of
information where any good reader would withdraw the same set of facts and
knowledge. The contrasting current view is that "a text is not so much a vessel
containing meaning as it is a source of partial information that enables a reader to use
already-possessed knowledge to determine the intended meaning" ({5]) Becoming a
Nation of Readers. p. 8). Better readers connect the information in texts with the
knowledge they already have, while poorer readers may overemphasize the text or
their own knowledge. Unlike poorer readers, better readers are strategic, varying
how they read according to how difficult the text is, their purpose for reading, and
how much they know about the topic. And they monitor their own comprehension,
taking corrective action once they recognize that a text is not making sense.

Research on writing from a cognitive perspective views writing as a "problem-
solving” process, a process whereby writers age in conscious cognitive and
linguistic behaviors [6]. Researchers have found that writing consists of several main
processes--planning, transcribing text, and reviewing--and that these processes don't
occur in a particular order. Instead, one process can interrupt another: a writer can
stop to plan in the middle of transcribing a paragraph: a writer can begin to revise
before he has a word on the page. Better writers develop guiding plans for producing
texts that are flexible--amenable to revision. On the other hand. poorer writers don't
plan as much as they should and then don't want to discard plans they have
constructed even when those plans are dysfunctional. Bette: writers spend more
time improving the meaning of their texts, while novices are more likely to limit
themselves to changes that improve surface features such as spelling or word choice.

Most recently, theorists have begun to view reading and writing not only as
complex cognitive processes, but as processes embedded in particular contexts. This
view suggests that whatever skills we value as desirable literacy performances will
depend for their meaning and practice upon social institutions and conditions. It
makes sense, then, to think about writing not as a single process. but as a plurality.
What counts as good writing will vary, depending on the function that writing will
serve and the audience it is for. We are also beginning to think about learning to read
and write as enculturation into a community or a discipline. Being a good reader in a
literature class means, then, more than being able to decode sentences and to
summarize the content of an essay. It includes, in addition, learning the values and
ways of knowing that characterize the discourse of a particular community (7).

This reseaych suggests some implications for practice. People most easily
acquire literacy in settings which provide authentic tasks and the scaffolding
necessary to accomplish reading and writing tasks that are too difficult to handle
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alone. One of the most important factors in literacy instruction for underprepared
students is a recognition that learners' performances, though they may seem very
flawed or idiosyncratic, possess a history and a logic. Learners are capable of much
more than our interpretation of their reading and writing performances lead us to
think. However, they are likely to bring misconceptions to literacy tasks

LITERACY AND INTELLIGENT TUTORING SYSTEMS

It's popular today to add new literacies to the list that educa:ed citizens are
supposed to acquire, such as "computer” literacy or knowing how to operate various
systems and to understand the functions that those systems can serve. I want to
discuss here, not the new computer skills that people must acquire if they are to
become literate or proficient at using intelligent tutoring systems, but the literacy
skills and literacy-related activities that users may engage in when learning to use
and when operating intelligent tutoring systems. I will refer particularly to a tutor for
teaching learners to correct errors in their writing. .

There have been few efforts to build intelligent systems for teaching reading
and writing skills because of the formidable problem of natural language
understanding. A system which could process unrestriced input--which could, for
example, read any document and assess its propositional accuracy--is a wonderful but
unattained (and some would argue unattainable) vision. However, there have been
several attempts to build systems which analyze written language in ways that can be
instructionally useful to writers (e.g., WRITER'Ss WORKBENCH (8], CRITIQUE [9]).

To build one such system. MINA (Mlsconceptions are NAtural), I and other
researchers at the University of Pittsburgh created'a taxonomy of the common errors
that young adult writers made in their writing and then constructed a program that
would identify some of those errors by flagging designated error patterns [10]. The
system also contained a tutor which led users to consider their error patterns and
how they might correct them. Specifically, writers saw particular error patterns
highlighted in their own writing on the screen, and they were encouraged to use on-
line helps to identify and correct them. These helps included a set of written
examples and definitions and correction tips and also a speech synthesizer whereby
users could hear sentences read aloud. The system would also delimit the amount of
text a user had to scan in order to detect an error--first highlighting a few lines of
text as potentially errorful and then narrowing the highlighting to the actual errors.

Testing MINA with students revealed some interesting things about the process
of learning to correct errors. It showed us, for example, the fragility of knowledge
structures: students rarely acquired new rules about sentence construction cleanly
and robustly but learned through slow stages of successive approximation. We also
came to recognize that particular literacy skills were required to operate and learn
from the program, skills apart from the ones the program purported to teach. As
mentioned above, one of the help levels that our system offered was a set of
definitions and examples and tips. We took great care in constructing this
information--avoiding grammatical terminology. using simple language in our
examples, linking one concept to another, predicting pitfalls common among
beginning writers. We found, however, that students used this help leve! infrequently
and poorly. One reason for this no doubt had to do with a general tendency on the
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part of computer users to disregard on-line help. Another reason, however, centered
on poor reading skills. We noticed that when students took the time to read our help
files, they misread or misinterpreted much information. Another reason had to do
with users' simply not knowing how to use the help flles--where to look for examples
or when to expect and seek more information.

As a result of these testing sessions, we came to think of our tutor differently.
It was not the case that we had created a self-contained and autonomous environment
in which users needed no skills to learn except those we had already provided the
scaffolding for. On the contrary, students brought with them to our tutor poor
learning skills acquired elsewhere, and these skills of course helped to determine
whether they would be successful with our tutor. Students were also faced with a
new learning environment--one that required them to be facile at locating relevant
information and to be metacognitively aware of when new information was required.
We came to think of our the activities surrounding the use of our tutor as comprising
a special kind of literacy event, the conventions for which could never be transparent
_but which, rather, students would need to learn. In other words, in constructing our
tutor and in introducing it to users, we were more aware of the cognitive demands of
the tasks than the social context in which those demands are played out. [ want to
argue for the importance of both in introducing users to intelligent tutoring systems.

THE CHANGING NATURE OF TEXTS:
HYPERTEXTS, HYPERMEDIA, AND NEW LITERACIES

So far 1 have limited my comments on literacy and computer tools to traditional
current views of reading and writing. However, with the advent of new information
technologies, the nature of texts is changing, and with those changes will come new
demands for complex literacy skills. For many years, when we have thought of texts,
we have had a particular kind of text in mind: a text written or printed on paper,
read from beginning to end, and comprised mostly of words with perhaps
illustrations or graphics as augmentation. In the world of business and industry and
science, we have also expected expository texts to display particular kinds of logic
and reasoning. A characteristic of all books is that they are static: once it is printed,
a book doesn't change, and readers certainly don't have the opportunity to manipulate
its contents (11]. But with new information technologies--usually called hypertext
and hypermedia systems--our notions of what a text can be are changing, along with
our understanding of what it means to read and write.

Hypertexts are electronic documents that can be non-linear. That is, instead of
being read from beginning to end, as is customary with printed matter, hypertexts
allow a reader to chart his/her own path through information. One screen of a
hypertext document might be a conceptual map of the topics contained within the
document. One reader might, then, peruse this map and choose one starting place.
given his own interests and purposes in reading; another reader would most likely
explore the information in a different order. A hypertext can be non-linear in other
ways as well. Suppose, for example, that a reader comes upon a concept in the
course of reading that she needs further information about or a topic that she wants
to pursue. In an approriately constructed hypertext, that reader could indicate her
decision. whereupon the screen would reopen or a new window would appear
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presenting the desired information. Imagine a film in the window or sound or an
animation or another graphic, and you have an example of hypermedia.

When technology enthusiasts talk about the advantages of hypertext and
hypermedia systems, they often mention "connectivity” [11]. Such systems are well
suited for allowing writers to indicate connections among ideas and readers to
explore those connections. They also praise the interactive nature of documents
created with such systems. It is possible, for example, for readers and authors to add
to and alter electronic texts in ways impossible with paper ones. Hypertexts can be
customized for different audiences. A hypertext of a textbook or training manual
could contain several versions of the same information, and a reader could select the
level of reading difficulty appropriate for him. People also think that hypermedia
offers the advantages associated with different modes of presenting information.
Certainly complex procedures can often be described through film or animation
rather than or in addition to text, for example.

Developers are beginning to create data bases in the form of hypertext and
hypermedia systems. Such data bases are particularly interesting to educators, who
see the potential to transform schooling by virtue of bringing information resources
to the classroom where that information can be manipulated and explored in ways
that haven't normally been possible previously. (See, for example, the hypermedia
projects on Shakespeare [12] and Steinbeck's Grapes of Wrath (13]). Indeed. at the
center of the literacy activities that will characterize the exploration of data bases is
information management: deciding what information is important, how to. synthesize
it, how to organize it, how to interpret it, how to represent it. The dream of
hypertext enthusiasts is not just self-contained data bases, however, but electronic
access to all sources of information in museums and libraries and data bases and

publications of all kinds. The skills required to manage information in such a world
will be at a premium.

Research on the skills required to construct and process hypertexts is just
beginning (14]. But it seems certain that these skills will differ from traditional
literacy skills and will exceed them in complexity. The skills required go far beyond
merely comprehending a single text or producing a coherent text for a single
audience; they also involve being able to select relevant information from abundant
resources and connect that information to other knowledge, possibly through
multiple modalities. It is discouraging, then, when we recall the recent NAEP data
on the literacy skills of young adults which suggests that the skills these respondents
were weak in were those that required more complex information processing, that
required, for example, multi-step procedures. On the other hand. we can be cheered
by the recent understandings of literacy, which give us some hints about the
transmission of reading and writing as cultural and cognitive skills, and recent

research on underprepared students, which suggests that their abilities exceed our
expecations.
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Techmology Assessment: Policy and Methodological Issues
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ABSTRACT

How can we promote technology to its most effective use in training
environments? The paper will explore the role of technology assessment in
answering that question. Technology assessment will be defined, and its functions
and future will be contrasted with typical perceptions of evaluation. Technology
assessment divides into two major areas: (a) assessment of particular cases of the
technology, and (b) assessment of the collective set of applications and predictions
about future udlity. Technical and practical problems in conducting either type of
TA will be discussed. Major issues involve the outcome measurement, use of
quality indicator models, the mixed models of assessment, the essential social
character of the assessment, and problems of reporting. Short-term and long-term
research and development implications will be suggested.

INTRODUCTION

How do we assess the utility of technology in training? How should
information be assembled, analyzed, and interpreted to promote defensible
decisions on the use of technology in training environments? In addressing these
questions, this paper focuses on the interplay between methodological and policy
issues. For at least five reasons, the term technology assessment is deliberately
used instead of evaluation, a more common descriptor of the process described
above (see, for example, Alkin, Daillak & White, 1979). First, evaluation, as it
employed in education and training environments, connotes to many a relatively
narrow set of methodological choices. For instance, it is common to assume that
evaluations necessarily have certain features. Evaluations appear, for example, to
be empirical in nature and obligated to: (a) collect data using designs similar to
those employed in experiments, i.e., control groups, (b) use quantitative analysis as
the basis for inference, and (c) focus on summarizing and reducing data. Viewing
evaluation as bound by a relatively constrained methodology is an inaccurate but
relatively widespread perception. A second, venerable misunderstanding of
evaluation is the belief that its purposes are either summative or formative.
Believers in this analysis assign studies into either decision or program
improvement slots, as if such functions were mutually exclusive. A third, and
seriously limited conception of evaluation can be traced to the systems approach
underlying most evaluation models. Such models almost always focus exclusively
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on the performance of the intervention against relatively simple requirements (i.c.,
desired performance objectives). Fourth, evaluation studies normally apply to
individual cases, such as one tutor, rather than a class of technological uses and
functions (e.g., intelligent tutoring systems). When focused on one particular
specific implementation, evaluation purposes may also become suspect. Evaluation
is inferred to be a politically inspired process.

CHARACTERISTICS OF TECHNOLOGY ASSESSMENT

Technology assessment should supplant evaluation if only to avoid the
enumerated liabilities of an older term. But the concept of technology assessment is
appropriate to our present discussion for a number of important, additional
reasons. Consider first that training technology itself differs fundamentally from
other instructional interventions. Technology is interactive, dynamic, and develops
rapidly, often in surprising leaps and directions. Paradoxically, the power of
technology continues to expand as its costs, with relatively small bubbles, continue
to drop. Thus, to think of technology as simply another delivery system,
comparable to lecture-discussion, is to miss the conceptual boat.

This analysis implies that decision-makers should not focus alone on short-
term yacht races between one instructional delivery system and another. When
new technology first gets built and evaluated, it usually fares poorly in comparison
to well-established practical alternatives, such as lectures and books. Thus, initial
effects are almost always underestimated. Rather, studies of technology must be
especially sensitive to the notion of technology-push (Glennan, 1967), the idea that
technology bumps up against the usual requirements-driven programs in odd and
unexpected ways. For what technology is almost guaranteed to do is to generate, by
its very existence, outcomes and applications that were not previously considered
by the training system, nor imagined by the technology designer. These new uses
may be mistakenly described as side effects, when, in fact, they may be the delayed
but central outcomes of the innovation. A critical element in technology assessment,
therefore, is identifying when these options represent powerful, useful approaches,
goals, or recombination or redefinitions of prior goals. As a corollary, new
technology, more than other sorts of innovation, should not be shut off because its
superiority on existing goals cannot be immediately demonstrated. For example,
one effect of designing tutors may be the development of technology to create new
kinds of human performance measures (Baker & Linn, 1985; Lesgold, Bonar & Ivill,
1988; Collins, 1987) and new ways of conceiving of performance tasks (Means &
Gott, 1988). It is possible that such practical and conceptual outcomes may be more
important than the adaptive wonders of instruction that particular intelligent
systems are purported to create. If we are to develop clear traces of the broad
utility of technology to meet training needs, studies must involve analyses far
beyond what the technology designer or any given set of trainees believes or
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experiences. Poliéymakers- need to be involved actively and 'éarly to determine
which options should be highlighted, tracked, and ultimately ratified as bonafide

new goals and functions.

The detection of the unforeseen has fundamental costs that policymakers
should consider. These costs involve changing expectations about the purpose of
studies. Minimally implied are a period of suspended disbelief and a planned
commitment to the conduct and analysis of a network of studies of individual cases
of technology. Because it takes time to execute such studies, they cannot be the sole
initiative of an individual with only a limited period of assignment. Some larger,
longer-term policy must be put in place. To reiterate, the purposes of such
investigations focus on not only the differential impact of particular instances—tutor
A versus option B-—for particular tasks, but the larger and more important task of
forecasting the utility of a class of technology. Thus, the explicit goals of technology
assessment are dual: the case, usually against a specific training requirement; and
the class, forecast for known and uncertain future requirements.

There is an additional, methodological nuance of the term assessment. It also
implies a broader conception than typical product evaluations, specifically attention
to multiple measures of input, context, and conditions of implementation, as well as
to specific requirement-driven and unforeseen outcomes. The goal of such activity
is to develop training quality indicators that provide composite estimates of
variables and the relationships among them, much as economic indicators provide
composite descriptions/forecasts. This indicator assessment perspective, by the
way, is apparently useful to state policymakers, legislators, governors, and
educational boards and superintendents, as they try to determine systematically
and longitudinally the systemic consequences of policy changes to improve the
quality of precollegiate educational services. (See, for instance, U.S. Department of
Education Office of Educational Research and Improvement, 1988). Note that
multiple indicator development is a natural opportunity for collaboration among
branches and services that assess technology. Yet, full-blown technology quality
indicator systems are still a long way off. Many specific problems must first be
addressed.

TECHNICAL AND PRACTICAL PROBLEMS

This section of the paper addresses a litany of some of the major practical and
technical issues that must be confronted to improve the information base for
decision-making in technology and training.
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Outcome Measurement

Even the most limited assessment needs high quality outcome data to
contribute to judgments of present and predicted impact. Relatively few studies of
intelligent systems use outcome data of any sort (Anderson, in press, is an
exception). Other designers describe system goals for learners and then, at best,
measure a proxy of performance. In two studies of tutors at UCLA " (Baker,
Aschbacher, Feifer, Bradley & Herman, 1985), we attempted to design, using
domain-referenced procedures, measures of only those goals articulated by the
designers. For example, in a study of WEST, we developed measures of
computational skill, referenced to the universe of problems that students
confronted, as well as measures of game strategy, an articulated but surprisingly
unmeasured outcome. It is our view that outcome measurement of complex
training goals is so important that it cannot be left- to the designer alone to
accomplish. Designers do not always work with teams who have measurement
“experience, so expertise may be missing. Secondly, important training outcomes
need multiple measurement across time and conditions to comsider effects beyond
the short-term achievement of the training goal.- These dimensions include
retention, robustness of performance across field conditions, transfer, and
assessment of underlying constructs to facilitate cross training, to name of few.

New developments in performance assessment lean heavily on trainee-
generated performance, or constructed responses, using constructs from cognitive
learning theory to derive scoring attributes (Glaser, in press; Baker, in press). The
major message of this development is that measures must map back to
characteristics of learning, i.e., elaboration, schema, and problem detection. Such
approaches are partially validated by using expert-novice distinctions.  This
concern with the close relationship between learning and measurement conditions’
contrasts strongly with the majority of current outcome testing practice, where
convenience and simplicity of test formats strongly influence what we are able to
say about student performance. A second direction in performance assessment
(Baker & O'Neil, 1989) involves improved, more sensitive ways to select and train
judges of performance. No longer is simple designation as a subject matter expert,
for instance, sufficient to assure reliable and valid assessment.

Mixed Models of Assessment

Remember that the term evaluation still calls up for many the specter of a
single, monolithic methodology, largely social science derived, experimental, and
quantitative in nature. That view may have accurately characterized the majority
of social science research twenty years ago, but only accounts for a limited
proportion of current effort. It is true that the field of evaluation a dozen years ago
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was fractionated into methodological camps, with lines drawn between quantditative
experimentalists and qualitative interpreters. However, at present, we have
glasnost, a more balanced blend of eclectic methodology. For example, it is common
to mix relatively objective forms of performance assessment with qualitative
analyses of protocols of trainee thinking (Feifer, 1989). Intensive descriptions of
processes—for instance, knowledge engineering (Baker, Novak & Slawson, 1989)—
and understanding queries in natural language systems (Baker & Lindheim, 1988),
can be combined with surveys, and more traditional test forms to provide a more
complete explanation for findings. : ' :

Thus, dichotomies such as cognitive versus behavioral, qualitative versus
quantitative, descriptive versus experimental, and formative versus summative . no
longer present real choices. Rather, methods are selected to provide insights as
appropriate and to provide multiple measurement of the same construct— a fact that
is desirable both for the development of indicators, and for the condurt of serious
validation studies.

Social Cl .

When enumersting misunderstood issues in evaluation at the outset of this
paper, the inferred political impetus of evaluation was briefly described. The
evaluatee believes evaluation is an instrument of aggression (for evaluation occurs
when someone has a problem). Program managers, on the other hand, may use
evaluation defensively. They primarily may be interested in it as a defense against
future assaults, rather than in the information it provides about innovation. Most
efforts at assessment or evaluation provoke some level of resistance, resentment, or
defensiveness. No one really believes the slogan "we're here to help,” and they are
often correct. Over and above usual paranoia, there are- issues in the social context
of new technology assessment that deserve comment, since much assessment is a
social as well as a technical enterprise. One issue is: Who does the assessment for
what ostensible purpose? If the designer is responsible for assessment, one is not
only limited to a particular vision, but also inevitably confronted with self-interest.
Furthermore, designers are more committed to the task of creating systems than to
creating systems that result in demonstrable trainee outcomes. Particularly in
computer-based technologies, the trick is to make a system run according to
prediction. The importance of process is highlighted in an article by Cohen and
Howe (1988). As they describe evaluation, it is limited to an expert review of the
quality or process of research efforts. This article was especially heartening for me
because it confirmed an earlier conclusion about the distinctions among expectations
of high technology researchers, program managers, and evaluation and assessment
professionals, and the resulting social complexity of getting the job done.
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In emerging fields, researchers may propose to create a training system,
program managers may think that's what they bought, and those charged with
assessment may assume that training outcomes should be measured. In fact, the
likelihood of strong outcome measurement increases omly with the maturity of the
technology. With nascent technology, the designer's claims and focus on a training
system may simply provide conmstraints on the selection of a research problem. The
researcher may say, and believe, that the chosen task is to develop an intelligent
tutor to teach specific outcomes. But what the researcher may mean is that
research will be conducted on an interesting part of the problem of developing a
tutor. Researchers are not the same as training system developers, and this fact is
demonstrated recurrently by the number of partial systems: tutors without student
models, tutors, with wonderful diagnostic capability, tutors without pedagogical
modules. Awareness and understanding of the various contexts and subtexts of
communication among researchers, managers, and assessors may allow some form
of collaborative assessment to work. It is also undoubtedly useful to program
managers to understand underlying messages, particularly when they may have
obtained priority for funding a particular technology program with a promise of a
proeduct for an actual Zzining system. Tolerance for—exploratory*behavior s¢ems to
be directly related to size of budget. :

A second, more obvious difficulty, especially within newly emerging fields, is
the insider/outsider problem. We are experiencing this phenomenon in our DARPA
project on assessing Al systems. Expertise and expectations differ, suspicions
abound, not only between measurement specialists and AI researchers, but among
linguists, psychologists, and Alers, and within the Al community between devotees
of one or another approach. We have tried numbers of options to bridge the
communication and knowledge gaps, including hiring AI people, providing
incentives, using consecutive translation, and throwing ourselves on the mercies of
friends. The trade-off here again is objectivity and detachment versus credibility
and insight. A solution, of course, is to train people who become proponents and
experts in the assessment of technology, but that will only happen when the
technology has a surplus of researchers—a self-contradictory state when the focus is
new technology. Yet, collaborative teams at UCLA, at LRDC, and elsewhere are at
work. How they forge successes should be an interesting story.

Reporting

A final, and overlooked, area is the nature of reporting useful information for
various levels of program and policy decisions. The identification of the full range
of audiences is a critical point, as is the understanding that any data or conclusions
can be used or misused against you. The challenge is to find ways of communication
that will contextualize results appropriately, without endless qualification, reams of
tables, or micromud descriptions that put off all but the most devoted reader. One
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area of general interest is trying to get a handle on the report users’ mental models
and effective decision options. If we could apply what we know from cognitive
psychology to assist sophisticated decision-makers process and integrate assessment
findings, we would develop: clues related to what information was most relevant.
Furthermore, one might expect that such report readers might themselves need a
modicum of training so that we could assure that more than one reader would reach
the same set of conclusions given similar findings.

RESEARCH AND DEVELOPMENT IMPLICATIONS
Short Term R & D

The issue enumeration above leads directly to some recommendations for R&D
activities to advance the field. First, in the general area of technology assessment of
intelligent tutoring systems, it will be important to categorize systematically the
existing and developing Defense supporied tutors by attributes, techmical approach,
and training tasks. UCLA has undertaken this task for DARPA in the area of natural
language (NL) understanding systems and has a created a sourcebook of the
problem types that natural language systems address (Read, Dyer, Baker & Butler,
1989). Reviews of the utility of this sourcebook by researchers in the field have
been very positive. The NL sourcebook is also available for use in a database form
which can be updated.

A second short-term project involves the creation of advisory or assessment
authoring systems particularly suited to technology problems. A prototype system
has been developed at UCLA on the narrow problem of reliability for criterion
referenced tests, and costs for a library of such aids are relatively small.

A third activity might be a case study analysis of an attempt at class-oriented
technology assessment of ITSs, using naturally occurring and planned assessments.

Fourth, decision-maker mental model research could be conducted to provide
better understanding of assessment requirements.

Long-term Studies

The design of seriously planned embedded assessment systems that includes
the full range of input, process, and outcome data, such as individual differences.

process, trainee performance, retention, and transfer data could be undertaken in a
long-term study.
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SUMMARY
This paper introduced the topic of technology assessment and tried to
illustrate the benefits of a broader policy-sensitive approach. Specific problems in
data quality models and social context of assessment were discussed. Finally, R&D
options in this area were provided.
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