AD-A220 204

UNCLASSIFIED J
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

e

REPORT DOCUMENTATION PAGE

BEAD INSTRUCTIONS
BITOFE COMF.ETEING FOPN

3. REPORT MUMBLR {2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMEER

4. TIILE (and Subtitie)
Ada Compiler Validation Summary Report: TeleSoft,

5120 Server under DG/UX Release 4.20 (Host & Target),
89112471.10220

§. TYPE OF REPORT & PERIOD COVERED
24 Nov. 1989 to 24 Nov. 1990

TeleGen2 Ada Development System, Data Guneral AViiON Systet.

8. PilFDRlXNG}RG. REPORT NUMBER

7. AUTHOR(s)

TABGy
Ottobrunn, Federal Republic of Germany.

8. CONTRACT OR GRANT MUMELR(s)

§. PERFORMING ORGANIZATION AND ADDRESS

IABG,
Ottobrunn, Federal Republic of Germany.

10. PROGRAM ELEMENT, PRCIOECT, TASK
AREA & WORK UNIT NUMELRS

11. CONTRO.LING OFFICE NAME AND ADDRESS
Ada Joint Program Office

United States Department of Defense
Washington, DC 20301-3081

12. REPORY DATE

[T RURSTR OF PAGES

14, MOMITORING AGENCY NAM: & ADDRESS(!f different from Controliing Office)

IABG, '
Ottobrunn, Federal Republic of Germany.

15, SECURITY CLASS (of this report)
UNCLASSIFIED

15s. gégtssﬁ'XCATION/DOH\SRADING

16. DISTRIBUTION STATEMENT (of this Report)

Apprcved for public release; distribution unlimited.

S ELECTE

317. DISTRIBUTION STATEMINT (of the abstractenteregin Biqck 20 If different from Report)
UNCLASSIFIED b IC

18. SUPP.EMINTARY NDTES

- -

18. KEYWORDS (Continye onreverse side f necessary endidentify by block number)

1815A, Ada Joint Program Dffice, AJPO

Ada Programming language, Ada Compiler Validation Summary Repcrt, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

20. ABSTRALT (Continue onreverse side if necessary and dentify by block number)

TeleSoft, TeleGen2 Ada Development System , Ottobrunn West Germany, Data General AViion
Systém 5120 Server under DG/UX Release 4.20 (Host & Target), ACVC 1.10.

[2°C1]
1M 73

DD 1473 £DI1ION OF § NOV 85 1S OBSOLETE

$/N 0102-LF-024-8601

UNCLASSIFIED

SECURITY CLASSIFICATION OF TMIS 7AGE (When Date Entered)

90 04 24 08y

AVF Control Wumber: AVF~IABG-052

Ada COMPILER
: VALIDATION SUNMARY REPORT:
1 Certificate Number: #89112411.10220
- TeleSoft
TeleGen2 Ada Developmenf Systam
Data General AViiON System 5120 Server
nnder DG/UX Release 4.20

Completion of On-Site Testing:
24 Hovember 1989

Prepared By:
IABG mbH, Abt. SZT
Einsteinstrasse 20

D~8012 Ottobrunn

Yest Germany

Prepared For:
ida Jjoint Program Office
Jnited States Department of Defense
Yashington D¢ 20301-3031

Ada Compiler Validation Summary Report:
Compiler Name: TeleGen2 Ada Development System
Version 4.0

Certificate Number: #89112411.10220

Host and Target: Data General AViiON System 5120 Server
under DG/UX Release 4.20

Testing Completed 24 November 1989 Using ACVC 1.10

This report has been reviewed and is approved.

o

IABG mbH, Abt. SZT
Dr. S #%H-ilbrunner

Eins 20
D~ ‘n
We
. P Accesion For A
GL-- NTIS CRA&I 9
]L,‘ Ada Validation Organization DTIC TAS o
Director, Computer & Software Engineering Division “Unsrnounced O
Institute for Defense Analyses Justification)
Alexandria, VA 22311
By . .. :
. ' Distribution |
/ {’{/ g a4 7 T
; /, 4 / Avalabiinty-
i Thnd VA it iy Gods
“; Ada Joint Program Office Dist Aval and [or
Special
/" Dr John Solomond pE-e
Director i |
Department of Defense H'f l
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 2
1.1 PURPOSE OF THIS VALIDATION SUKMARY REPORT . 2
1.2 USE OF THIS VALIDATION SUMNMARY REPORT . 3
1.7 REFERENCES . . 4
1.4 DEFINITION OF TERIS . 4
1.5 ACVC TEST CLASSES . 5
CHAPTER 2 CONFIGURATION INFORMRATIOM 8
2.1 CONFIGURATION TESTED e e e e e e e e o 8
2.2 IMPLEMENTATION CHARACTERISTICS e e e e e e e . . 9
CHAPTER 3 TEST INFORMATION « + « ¢« « « « . . . 15
3.1 TEST RESULTS . . e e e e e e . e+« .+ . . 15
3.2 SUMMARY OF TEST RESULTS BY CLass15
3.3 SUHMARY OF TEST RESULTS BY CHAPTER 16
3.4 WITHDRAWN TESTS v ¢ ¢ v o 4 ¢ o o o o« o « « « . . 18
3.5 INAPPLICABLE TESTS . . . « « « + « .« . . 16
3.6 TEST, PROCESSING, AND EVALUATION HODIFICATIONS . 20
3.7 ADDITIONAL TESTING INFORMATION 20
3.7.1 Prevalidation 20
3.7.2 Test Method20
3.7.3 Test Site ¢ 21
APPENDIX A DECLARATION OF CONFORHANCE
APPENDIX B APPENDIX F OF THE Ada STANDARD
APPENDIX C TEST PARAMETERS
APPENDIX D WITHDRAWN TESTS
APPENDIX E COMPILER AND LINKER OPTIONS

INTRODUCTION

_”/)

CHAPTER 1

INTRODUCTION

RN
This Validation Summary Report Q@Hﬁw'gzescribes the axtent to vwhich a
specific Ada compiler conforms to the Ada Standard, ANSI/HIL-STD-1815A.
This report explains all technical terms used within it and thoroughlv
reports the results of testing this compiler using the Ada Compiler
Validation Capability{-(-AC-VC)Q.,,\-An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The &da Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.“;
[

Even though all validated Ada compilers conform to the Ada Standard, it

must be understood that some differences do exist between implementatioms.

The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.

Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.)

<::’—W’l’he information in this report is derived from the test results producad
during wvalidation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results.‘\ihe purpose of validating is to ensure conformity

of the compiler to the Adal Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent,{ but is permitted by the Ada Standard. Six
classes of tests are used. |\ These tests ars designed to perform checks at
compile time, at link time,\and during execution.

/. -
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT { /Qf/QD) /('
h '//

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

THTRODUCTION

To attempt to identif; any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify anv language constructs not supported by
the compiler but regquired by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Tasting of this compiler was conducted by the AVF according to
procedures established bv the Ada Joint Program Office and administered by
the 2ada Validation Organization (AVO).

1.2 USE OF THIS VALIDATION SUHMARY REPORT

Consistent with the rational laws of the originating country, the 3aV0 may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "“Freedom of Information Act"
(5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified 1in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the nida Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D~139 (Fern Street)
Washiugton DC 20301-3081

or from:
IABG mbH, Abt. SZT
Einsteinstr. 20
D-8012 Ottobrunn
¥est Germany

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Vvalidation Organization
Institute for Defense Analvses
1801 North Beauregard Street
Alexandria VA 22311

. IHTRODUCTION
. 1.3 REFEREHNCES
1. Reference i#anual for the Ada Programming Language,

ANSI/MIL-STD-1815A, February 1983 and iSO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint

Program Office, 1 January 1987.

3. Ada Compiler Validation Capabilitv Implementars’ Guide, SoiTech,
Inc., Decewmber 1986.

1=

Ada Compiler Validation Capability WUser's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the

Commentary point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/HIL-STD-1815A, February 1983 and IS0 8652-1987.
Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF 1is responsible for
conducting compiler validations acccrding to procedures
contained in the 2Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada VYalidation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for wvalidation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for ths Ada language. In the context of this
report, a compiler is any language wvrocsssor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformitv to the Ada Standard.

The computer on which the compiler resides.

THTRODUCTION

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the ~xpected

result.

Target The computer which =xecutes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a

particular feature or A combination of features to the Ada
Standard. 1In the context of this rsport, the tsrm is used fo
designate a single test, which may comprise one or more

files.
Withd: awn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails tc meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and 1illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time. .

Class A tests ensure the sunccessful compilation and execution of legal Ada
programs with certain langwage constructs which cannot be verified at run
time. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detacted at compile time and the bprogram executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal 1language usage.
Class B tests are not execntable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error 1in the test is detected. A Class B test is passed if
every illeqal construct that it contains is detected by the compiler.

INTRODUCTION

Class C tests check the run time system to ensurs that lsgal Ada programs
can be correctly compiled and executed. Rach Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted 1ia a compilation or the number of wunits in a librarv--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, 1if a Class D test fails to compile hezcanse the capacity of the
compiler is exceeded, the test is classifiad as inapplicable. TIf a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution,

Class E tests are expected to execute successfully and check
implementation-dependent options and rasolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler 1if it is «compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled wunits are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time-~that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. 1In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism bv which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is nsed to
check the contents of text files written bv some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILZ is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of sach test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, c¢ontain
lines with a maximum length of 72 characters, use small numeric values, and
teszts, However, some L(esls contain values that require the test to be

IHTRODUCTTON

customized according to implementation-specific values--for example, an
illegal file name. A 1list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process sach of the tests in the suite and
demonstrate conformity to the Ada Standard bv either meeting the pass
criteria given for the test or bv showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACYC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

CONFIGURATION INFORMATION

CHAPTE

-0
(S)

COUFIGHRATION INFORWATTON

2.1 COUFIGURATION TESTED
The candidate compilation system for fhis validation wag rese(ed ander
following configuration:

Compiler: TeleGen2 Ada Development System

Version 4.0

ACVYC Version: 1.10

Certificate Wumber: #891124T1,10220
Host and Target Computer:
Hachine: Data General AViiOil System

5120 Server
Operating System: DG/UX Release 4.20

Hemory Size: 16 ifegabykes

COUFIGURATTON TINFORUATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. Howavar, tests in other classes also characlterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

i) “he compiler correctly processges a compilation
containing 723 variables in the same derlarative part. (See
test D29002K.)

2) The compiler correctly processes tests containing
loop statements nested to 65 levels. {See tests D55R02A..H
(8 tests).)

3) The compiler corractly processes tests containing
block statements nested to 65 levels. (See test D56001B.)

4) The compiler correctly ©processes tests containing
recursive procedures separately compiled as subunits nested to
17 levals. (See tests D64005E..G (3 tasteg).)

b. Predefined types.

1) This implementation supports the additional predefined types
SHORT_INTEGER, SHORT_SHORT_INTEGER and LONG_FLOAT in the
package STANDARD. (See tests B860017..Z (7 teasts).)

¢. Expression evaluation.

The crder in which expressions are evaluated and the time at which
constraints are <checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

1) Some of the defaunlt initialization a¥pressions
for record components are evaluated before any wvalue is
checked for membership in a component’s subtype. (See test
C321171.)

2) Assignments for subtypes are performed with the sape
precision as the base type. (See test C35712B.)

3} This implementation uses no extra bits for extra precision
and uses no extra bits for extra range. (See test C35%033.)

4) MNUHERIC_ERROR 1is raised for predefined and largest integsr

=7

CONFIGURATION THFORMATION

comparison tests, and NUMERIC_ERROR is raised for predefined
and largest integer membership tests, and no exception 1is
raised for smallest integer membership tests when an integer
literal operand in a comparison or membership test is outside
the range of the base type. ({Sae test C45232A.)

5) NUMERIC_ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

6) Underflow is not gradual. (See tests C45524A..Z (26
tests).)

Rounding.

The method by which values are rounded in tvpe cenversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

1) The method used for rounding to 1integer 1is round to even.
(See tests C46012A..Z (26 tests).)

2) The method used for rounding to 1longest integer 1is round
to even. (See tests C46012A..Z (26 tasts).)

3} The method used for rounding to integer in static universal
real expressions is round away from zero. (See test C4A014A.)

Array tybpes,

An implementation is allowed to raise WUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a 'LENGTH that axceeds
STANDARD.INTEGER'LAST and/or SYSTEH. HAX_INT. For this
implementation:

1) Declaration of an array type or sibtype declaration with more
than SYSTEM.MAX_INT components raises no exception under the
specific circumstances test C36003A.

2) HNUMERIC_ERROR 1is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

3) HUMERIC_ERROR is raised when an arrav type with
SYSTEM.MAX _INT + 2 components is declared. (See test
C36202B.)

4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST

5)

6)

7)

8)

CONFIGURATION INFORMATION

raises NUMERIC_ERROR. (See test C52103X.)

A packed two-dimensional BOOLEAN array with mwore than
INTEGER'LAST components raises NUMERIC_ERROR when the length
of a dimension is calculated andé 2xceeds INTEGER'LAST. (See
test €521v4Y.)

In assigning one~dimensional arrav types, the expressicn is
evaluated in its entirety bhefore CONSTRAINT_ERROR is
raised when checking whether the eoxpression's subtvpe is
compatible with the target's subtype. (See test C52013R.)

In assigning two-dimensional array tyves, the expression
is not evaluated in its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression's subtype 1is
compatible with the target's subtype. (See test C520131.)

A null array with one dimension of length greater than
INTEGER'LAST mav raise NUMERIC_ERROR or CONSTRAINT_ERROR
either when declaraed or assignad. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERIC_ERROR. (See test E52103Y.)

Discriminated types.

1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT_ERROR is raised
when checking whether the expression's subtyve is compatible
with the target's subtype. (See test C52013A.)

Aggregates.

1) In the evaluation of a multi-dimensional aggregate, the test
results indicate that index subtype checks are
made as choices are evaluvated. (See tests C432072 and
¢43207B.)

2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

3) COWSTRAINT_ERROR is raised after all choices are

evaluated when a bound in a non-null range of a non-null
aggregate does not belong to an 1index subtype. (See test
E43211B.)

CONFIGURATION INFORMATION

Pragmas.

1) The pragma INLINE is not supported for procedures or func-
tions. (See tests LA3004A..B (2 tests), EA3004C..D (2 tests),
and CA3004E..F (2 tests).)

Generics.

This implementa“ion creates a dependence between a generic body
and those units which instantiate it. As allowed by IA-408/11, if
the body is compiled after a unit that instantiates it, then that
unit becomes obsolete.

1) Generic specifications and Dbodies «can Dbe compiled
in separate compilations. (See tests CAl012A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be

compiled in separate compilations. (See tests CA1012A and
CA2009F.)

3) Generic 1library subprogram specifications and bodies can
be compiled in separate compilations. (See test
CA10127.)

4) Generic non-library package bodies as subunits can
be compiled in separate compilations. (See test CA2009C.)

5) Generic non-library subprogram bodies can be

compiled in separate compilations from their stubs. (See test
CA2009F.)

6) Generic unit Dbodies and their subunits can be
compiled in separate compilations. (See test CA3011A.)

7) Generic package declarations and bodies can be
compiled in separate compilations. (see tests CA2009C,
BC3204C, and BC3205D.) . .

8)

9)

CONFIGURATION INFORMATION

Generic 1library package specifications and bodies can
be compiled in separate compilations. (See tests
BC3204C and BC3205D.)

Generic unit bodies and their subunits can be
compiled in separate compilations. {See test CA3011A.)

Input and output.

1)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

The package SEQUENTIAL_IO can be instantiated with uncon-
strained array types or record tvnes with discriminants with-
out defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT_IO cannot be instantiated with uncon-
strained array tvnes or record types with discriminants with-
out defaults. (See tests AE2101H, EE2401D, and EE2401G.)

tlodes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E, CE2102H, and CE2102P.)

Hodes 1IN_FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

Modes 1IN _FILE and OUT_FILE are supported for text files,
(See tests CE3102E and CE3102I..K (3 tests).)

RESET and DELETE operations are supported for
SEQUENTIAL_I0. (See tests CE2102G and CE2102X.)

RESET and DELETE operations are supported for DIRECT_IO.
(See tests C=22102K and CE2102Y.)

RESET and DELETE operations are supported for text
files. (See tests CE3102F..G (2 tests), CE3104C, CE21102, and
CE31144.)

Overwriting to a sequential file does not truncate the £file.
(See test CE2208B.)

Temporary sequential £iles are given names and not
deleted when closed. (See test CE2108A7.)

Temporary direct files are not given names and not
deleted when closed. (See test CE2108C.)

Temporary text files are not given names and not deleted
vhen closed. (See test CE3112A.)

13)

14)

15)

CONFIGURATION INFORMATION

More than one internal file can be associated with
each external file for saquential files when reading
only. (See tests CE2107A..E (5 tests), CE2102L, CE21108, and
CE2111D.)

More than one internal file can be associated with
each external file for direct files when reading only. (See
tests CE2107F..H (3 tvests), CE2110D and CE2111H.)

Hore than one internal file can he associated with

each external file for text files when reading only (See
tests CE3111A..E (5 tests), CE3114B, and CE3115A.)

14

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 312 tests were inapplicable to this implementation.
All inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding
that supported by the implementation. Modifications to the code,
processing, or grading for 12 tests were requirad to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B c D E. L

Passed 128 1130 2018 17 24 44 3361
Inapplicable 1 8 297 0 4 2 312
Vithdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

TEST THFOR

3.3 GSUHMARY OF TEST RESULTS BY CHAPTER

HATIOH

RESULT TEST CHAPTER TOTAL
2 3 4 5 6 7 3 g 10 11 13 13 14

Passed 198 573 545 244 172 99 161 332 129 36 25 341 281 3361
/A 14 76 135 4 0 0 3 0 8 0 2 28 40 312
Wdrn 1 1 0 0 0 0 0 2 0 0 i 35 4 44
TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717
3.4 VITHDRAWN TESTS
The following 44 tests were withdrawn from ACVC Version 1.10
at the time of this validation:

E28005C A39005G6 B97102E C97116A BC30093 CD2A62D

CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B

CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D

CD2AT6A CD2A76B CD2A76C CD2A76D CD2A816 CD2A83G

CD2A84N CD2A34M £D50110 €D2B15C CD72065C CD2D11B

CD5007B ED7004B ED7005¢C ED7005D ED7006C ED7006D

CD7105A CD72038 CD72C4B CD7205D CE21071 CE311icC

CE3301A CE3411B
See Appendix D for the reason that esach of these tests was withdrawn.
3.5 INAPPLICABLE TESTS
Some tests do not apply to all compilers because thev make use of features

that a compiler is not required by the Ada Standard to support.
depend on the result of another tast that is either inappl
withdrawn. The applicability of a test to an implementation is
each time a validation is attempted. A test that is inapplicable
validation attempt is not necessarily inapplicable for a
attempt. For this validation attempt, 312 tests were inappli
because

a. The following 201 tests are not

applicable

Others wav
icable or
considered

for one
subseguent
cable for

they have
gits than

floating-point type declarations requiring more di
SYSTEM.HMAX_DIGITS:
C24113L..Y (14 tests) €35705L..Y (14 tests)
€35706L..Y (14 tests) €35707%,..Y (14 tests)
C35708L..Y (14 tests) €35802L..7 (15 tests)
CAS241%L,, .Y 114 btasts) C45321L..7 (14 tests)

[0

TEST THFORMATION

Cd45421L..Y (14 tests) C45521%L..2 (15 tests)
€45524L..72 (15 tests) C45621L..2 (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

355081, C35508J, €35308'., and C35508H are not applicable because
thev include enumeration representation clauses for 300LEAN types
in which the representation values are other than (FALSE => JQ,
TRUE => 1). Under the terms of AI-00325, this implementation is
not required to support such renrasentation clauses.

C357022 and B86001T are not applicable because this implementation
supports no predefined type SHORT_FLOAT.

LC45531H..P (4 tests) and C45532M..P (4 tests) are not applicable

because they acquire a value of SYSTEM.MAX_MANTISSAR greater than
32.

C52008B is not applicable because this implementation generates
code to calculate the maximum object size for type REC2 at run
time which vields a number exceeding INTEGER'LAST and raises
NUHERIC_ERROR.

C8600irF is not applicable because, for this implementation, the
package TEXT_IO0 is dependent upon package SYSTEi. These tests
recompile package SYSTEIH, making package TEXT_IO, and
hence package REPORT, obsolete.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

The following 16 tests are not applicable because this
implementation does not support a predefined type LONG_INTEGER:

C45231C €45304C c45502cC €45503C €45504C
C45504F C45611cC €45613C €45614C C45631C
C45632¢C B52004D C55B07A B55B09C B86001W
CD7101F

CA2009C, CA2009F, BC32047 and BC3205D are not applicable because
this implementation creates a dependence between a generic bady
and those units which instantiate it (See Section 2.2.1 and
Appendix F of the Ada Standard).

LA3004A, EA3004C, and CA3004E are not applicable because this
implementation does not support vragma IWLINE for procedursas.

4D, and CAJ004F are not applicable because this

aa.

TRE™ INFORMATION

implementation does not support pragma IVLINE for functionms.

CD1009C, <CD2E41A..B (2 tests), CD2A41E and CD2a42A..J (10 tests)
are not applicable because of restrictions on 'SIZE length claunses
for floating point types.

CD1CO4E is not applicable because this implementation does not
support component clauses specifying more than 8 bits for boolean
componeats of a record.

CD2A61I..J (2 tests) are not anplicables because of restrictions on
'SIZE length clauses for array tvpes.

CD22A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because of restrictions on 'SIZE length clausas for access types.

AE2101H, £EE2401D, and EE2401G use instantiations of package
DIRECT_I0 with unconstrained arrav types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

CE2102D 1is 1inapblicable *ecause this implementation supports
CREATE with IN_FILE mode for SEQUENTIAL_IO.

CE2102E is inapplicable because this implementation supports
CREATE with OUT_FILE mode for SEQUENTIAL_IO.

CE2102F 1is inapplicable because this implementation supports
CREATE with INOUT_FILE mode for DIRECT_IO.

CE2102I 1is inapplicable because this implementation supports
CREATE with IN_FILE mode for DIRECT_IO.

CE2102J 1is inapplicable because this implementation supports
CREATE with OUT_FILE mode for DIRECT_IO.

CE2102M is inapplicable bscause this implementation supports OPEN
with IN_FILE mode for SEQUENTIAL_IO.

CE21020 is inapplicable because this implementation supports RESET
with IN_FILE mode for SEQUENTIAL_IO.

CE2102P is inapplicable because this implementation supvorts OPEN
with OUT_FILE mecde for SEQUENTIAL_IO.

CE21029Q is inapplicable bhecause this implementation supports RESET
with CUT_FILE mode for SEQUENTIAL_IO.

CE2102R is inapplicable because this implementation supports OPEN
with INOUT_FILE mode for DIRECT_IO.

™
u

ab.

ac.

ad.

ae.

afl.

ag.

ah.

ai.

aj.

ak.

al.

am.

an.

a0.

TEST TUFORMATION

CE2102S is inapplicable because this implementation supports RESET
with INOUT_FILr mode for DIRECT_IO.

CE2102T is inapplicable because this implementation supports OPEN
with IN_FILE mode for DIRECT_IO.

CE2102U is inar»plicable because this implementation supports RESET
with IN_FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports OPEil
with OUT_FILE mode for DIRECT_IO.

CE2102VW is inapplicable because this implementation supports RESET
with OUT_FILE mode for DIRECT_IO.

CE2107B..E (4 tests), CE2107L, CEZ110B, and CE2111D are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing
for sequential files. The vproper exception 1s raised when
multiple access is attempted.

CE2107G..H (2 tests), CE2110D, and CE2111H are not anplicakle
because multiple internal files cannot be associated with the same
external file when one or more files is writing for direct files.
The proper exception is raised when multiple access is attempted.

CE3102E is inapplicable because text file CREATE with IN_FILE mode
is supported by this implementation.

CE3102F is inapplicable because text file RESET is supported by
this implementation.

CE31026 is inapplicable because text file deletion of an external
file is supported by this implementation.

C33102I is inapplicable because text <£ile CREATE with OUT_FILE
mode is supported by this implementation.

CE3102J is inapplicable because text file OPEN with IN_FILE mode
is supported by this implementation.

CE3102K is inapplicable because text file OPEN with OUT_FILE mode
is supported by this implementation.

CE3111B, CE3111D..E (2 tests), CE3114B, and CE311534 are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing for
text files. The proper exception is raised when multiple access
is attempted.

3.6 TEST, PROCESSIHG, AND EVALUATIOI “ODIFICATIONS

It is expected that some tests witl require modifications of code,
processing, or evaluation in order e compensate for legitimate
implementation behavior. iHodifications are made by the AVF in cases whera
legiripate implementation hehavior pravents rhe successfvl completion of an
(otherwis=) applicable test. Examples of «wch odifications include:
adding a l2ngth clanse to alfer the defavir size of a colleetion: spiirting
3 Class B kest 1into subtests so that defoctad; ad
coenfirming that messages produced by i ¢St dewongtvats
conforming hehavior that was not anticipatad bv the 2zsr Isuch 35 raising
one =xception instead of another),

al
an

Hodifications vere required for 12 tests.

-3

he folloving tests were split Lecause syntax ervors at one point resuitzd
in the compiler not detecting other errors in the test:

B71001E B71001K B71001Q 3710601V Bx2001C
BA2001E BA3006A BA3006B BA3007B BA30038A
BA3008B BA30132 (6 and TH

3.7 ZADDITIOHAL TESTIIIG INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of fest results for ACVYC Version 1.i0 produced
by rth: TeleGen2 Ada Development System for a computing system based on
the same instrnction set architecture was submitted to the AYF by the
applicant for review. Analysis of these results demonstrated that the
TeleGen? System successfully passed alil appliecable tasts, and it

exhinited the expectad behavior on all inapplicabie tests. The apniicant
certified that testing results for the computing svstem of this =»alidation
would bhe identical to the ones submittsd for review prior to walidarion

3.7.2 Test iethod

Testing of the TeleGen2 Ada Development System Version 4.0 using aCVC
Version 1.10 was conducted on-site by a validation «eam (£rom the
AVF. The configuration in which the testing was performed is
described by the following designations of hardvare and software compo-
nents:

Host and Target Computer: Data General 2Viidll Svstem
5120 Server

Host and Target Operating System: DG/UX Release 4.20

TEST INFORMATION

A cartridge containing the customized test suite was loaded onto a SUN-3
and transferred via Ethernet to an intermediate computer. The customized
test suite was then written to a cartridge in a different format and loaded
onto the host computer. Results were collected on the host computer where
they were evaluated and archived.

The compiler was tested using command scripts provided by TeleSoft
and reviewed by the validation team. The tests were compiled using the
command

ada -$ ~-W +enable_traceback -¥ -debug_info (filename>
and linked with the command
ald =S -b -¥ +link_target=bbn <main unit>

The -L qualifier was added to the compiler call for class B, expanded and

modified tests. See Appendix E for explanation of compiler and linker
switches.

Tests were compiled, linked, ard executed (as appropriate) using one com-
puter. Test output, compil:’ - :n listings, and job logs were captured on
cartridge and archived at tiLe¢ VF. The listings examined on-site by the
validation team were also a:chived.

3.7.3 Test Site

-~

Testing was conducted at TeleSoft, Gan Diego, USA, and was completed on
24 November 1989.

-4

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORIANCE

TeleSoft has submitted the following Declaration of Conformance concerning
the TeleGen2 Ada Development System compiler, Version 4.0.

DECLARATION OF CONFORMANCE

Compiler Implementor: TELESOFT
Ada Validation Facility: IABG, Dept. SZT, D-8012 Ottobrunn
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: TeleGen2 Ada Development System

Version: 4.0

Host Computer System: Data General AViiON 5120 Server (under DG/UX Release 4.20)
Target Computer System: Same as Host

Customer’s Declaration

1, the undersigned, representing TELESOFT, declare that TELESOFT has no knowledge
of deliberate deviatior}s rom the Ada Language Standard ANSI/MIL-STD-1815A in the
imp, entation(s)liCtedi this declaration.

MU’LC\.) £ Date: c;)"/'_ (/, 0

Fer

TELESOFT 7 S—

Raymond A. Parra, Vice President and General Counsel

APPENDIX F OF TH® ada STANDARD

APPEIIDIX B

APPENDIX ¥ OF THE Ada STANDARD

The only alloved implementation dependencies correspond to
inplementation-dependent pragmas, to certain machine~dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the TeleGan2 Ada Development Svstem compiler Version
4.0, as described in this Appendix, are provided by TeleSoft. Unless
specifically noted otherwise, references in this appendix are to compiler
documentation and not to this report. Implementation-specific portiomns
of the package STANDARD, which are not a part of Appendix F, are:

nackage STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT_INTEGER is range -32768 .. 32767;
type SHORT_SHORT_IWTEGER 1is range -128..127;

type FLOAT is digits 6 range -1.70141E+38 .. 1.70141E+38;
type LONG_FLOAT is digits 15

range -8.98846567431158E+307 .. 8.98846567431158E+307;
type DURATION is delta 2#1.04E-14 range -86400.0 .. 86400.0;

e

end STANDARD;

ATTACHMENT B

Appendix F OF THE Ada LANGUAGE REFERENCE MANUAL

Implementation Dependent Pragmas
Implementation Dependent Attributes
Specification of Package SYSTEM
Restrictions on representation clauses
Implementation dependent naming
Interpretation of expressions in address clauses
Restrictions on unchecked conversions

I/0 Package characteristics

e I ol o a

100CT89 Page 20

Appendix F
1. Implementation Dependent Pragmas

pragma COMMENT (<string_literal>);

It may only appear within a compilation unit.

The pragma comment has the effect of embedding the given
sequence of characters in the object code of the compilation unit.

pragma LINKNAME(<subprogram _name>, <string_literal>);

It may appear in any declaration section of a unit.

This pragma must also appear directly after an interface pragma
for the same <subprogram_name>. The pragma linkname has the
effect of making string_literal apparent to the linker.

pragma INTERRUPT(Function_Mapping);

It may only appear immediately before a simple accept statement,
a while loop directly enclosing only a single accept statement,

or a select statement that includes an interrupt accept alternative.
The pragma interrupt has the effect that entry calls to the
associated entry, on behalf of an interrupt, are made with a
reduced call overhead.

pragma IMAGES(<enumeration_type>,Deferred) or
pragma IMAGES(<enumeration_type>,Immediate);

It may only appear within a compilation unit.

The pragma images controls the creation and allocation of
the image table for a specified enumeration type. The
default is Deferred, which saves space in the literal pool

by not creating an image table for an enumeration type
unless the ’Image, Value, or "Width attribute for the type
is used. If one of these attributes is used, an image table

is generated in the literal pool of the compilation unit in
which the attribute appears. If the attributes are used in
more than one compilation unit, more than one image table is
generated, eliminating the benefits of deferring the table.

pragma SUPPRESS_ALL;

It may appear anywhere that a Suppress pragma may appear as
defined by the Language Reference Manual. The pragma
Suppress_All has the effect of turning off all checks

defined in secilon i1.7 of the Language Reference Manual.

The scope of applicablility of this pragma is the same as

that of the pre-defined pragma Suppress.

100CT89 Page 21

Appendix F, Cont.

2. Implementation Dependent Attributes

’Offset Attribute

’Offset along with the attribute ’Address. facilitates machine code
insertions. For a prefix P that denotes a declared parameter
object, P’Offset yields the statically known portion of the

address of the first of the storage units allocated to P. The

value is the object’s offset relative to a base register and is

of type Long_Integer.

INTEGER ATTRIBUTES

'Extended_Image Attribute

Usage: X’Extended Image(Item,Width,Base,Based,Space IF Positive)

Returns the image associated with Item as per the Text_lo definition.

The Text_lo definition states that the value of Item is an integer

literal with no underlines, no exponent, no leading zeros

(but a single zero for the zero value) and a minus sign if negative.
If the resulting sequence of characters to be output has fewer than
Width characters then-leading spaces are first output to make up

the difference. (LRM 14.3.7:10,14.3.7:11)

For a prefix X that is a discrete type or subtype; this attribute

is a function that may have more than one parameter. The parameter

Item must be an integer value. The resulting string is
without underlines, leading zeros, or trailing spaces.

100CT89

Page 22

Appendix F, Cont.

Parameter Descriptions:

Item

Width

Base

Based

-- The user specifies the item that he wants the
image of and passes it into the function. This
parameter is required.

-- The user may specify the minimum number.of
characters to be in the string that is returned.

If no width is specified then the default (0) is
assumed.

- The user may specify the base that the image is
to be displayed in. If no base is specified then
the default (10) is assumed.

-~ The user may specify whether he wants the string
returned to be in base notation or not. If no
preference is specified then the default (faise)
is assumed.

Space_If Positive -- The user may specify whether or not the sign bit

Examples:

of a positive integer is included in the string
returned. If no preference is specified then
the default (false) is assumed.

Suppose the following subtype was declared:
Subtype X is Integer Range ~10..16;

Then the following would be true:

X’Extended_Image(5) = "gn
X’Extended_Image(5,0) = ngn
X’Extended Image(5,2) =" g
X’Extended_Image(5,0,2) = "101"
X’Extended Image(5,4,2) =" 101"
X’Extended Imaoe(a 0,2,True) = "2L101&"
X’Extended Image(5,0,10 False) = "g"
X’Extended Image(5,0,10,False,True) ="35"
X’Extended _Image(-1,0,10,False,False) = "-1"
X’Extended Image(-1,0,10,False,True) = "-1"
X’Extended Image(-1,1,10,False,True) = "-1"
X’Extended Image(-1,0,2,True,True) = "-2#14"
X’Extended _Image(-1,10,2,True,True) ="

100CT89

Appendix F, Cont.

"Extended_Value Attribute

Usage: X’Extended Value(Item)

Returns the value associated with Item as per the Text_lo definition.
The Text_lo definition states that given a string, it reads an

integer value from the beginning of the string. The value returned
corresponds to the sequence input. (LRM 14.3.7:14)

For a prefix X that is a discrete type or subtype; this attribute

is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing

spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT _ERROR is raised.

Parameter Descriptions:
Item -- The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type X.
Examples:
Suppose the following subtype was declared:
Subtype X is Integer Range -10..16;
Then the following would be true:
X’Extended _Value("5") =5
X’Extended Value(" 5") =5
X’Extended Value("2#101#") =
(
(

X’Extended:Value "1m) =-1
X’Extended Value(" -1") =

100CTs89 Page 24

Appendix F, Cont.
'Extended_Width Attribute
Usage: X’Extended_Width(Base,Based,Space_If Positive)
Returns the width for subtype of X.

For a prefix X that is a discrete subtype; this attribute

is a function that may have multiple parameters. This attribute
yields the maximum image length over all values of the type

or subtype X.

Parameter Descriptions:

Base -- The user specifies the base for which the width
will be calculated. If no base is specified
then the default (10) is assumed.
Based -- The uvser specifies whether the subtype is stated
in based notation. If no value for based is
specified then the default (false) is assumed.
Space_If Positive - The user may specify whether or not the sign bit
of a positive integer is included in the string
returned. If no preference is specified then the
default (false) is assumed.

Examples:
Suppose the following subtype was declared:
Subtype X is Integer Range -10..16;

Then the following would be true:

X’Extended_Width =3 —"10"
X’Extended_Width(10) =3 --"-10"
X’Extended _Width(2) =5 --"10000"
X’Extended_Width(10,True) =7 - "-104104"
X’Extended Width(2,True) =8 -- "2#10000%"
X’Extended Width(10,False,True) =3 --" 16"

=7 - ".10£10&"

7 -- " J0#16"
9 -- " 2410000£"
6 - " 10000"

X"Extended:Width 10,True, True) =
X’Extended_Width(2,True,True)
X’Extended_Width(2,False,True)

E
X’Extended Width(10,True,False)
(
(
(

100CT89 Page 25

Appendix F, Cont.

ENUMERATION ATTRIBUTES

'Extended Image Attribute
Usage: X’Extended Image(ltem,Width,Uppercase)

Returns the image associated with Item as per the Text_lo definition.
The Text_lo definition states that given an enumeration literal,

it will output the value of the enumeration literal (either an

identifier or a character literal). The character case parameter

is ignored for character literals. (LRM 14.3.9:9)

For a prefix X that is a discrete type or subtype; this attribute

is a function that may have more that one parameter. The parameter
Item must be an enumeration value. The image of an enumeration
value is the corresponding identifier which may have character case
and return string width specified.

Parameter Descriptions:

Item ~ The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.
Width — The user may specify the minimum number of characters to
be in the string that is returned. If no width is
specified then the default (0) is assumed. If the Width
specified is larger than the image of Item, then the
return string is padded with trailing spaces; if the
Width specified is smaller than the image of Item then
the default is assumed and the image of the enumeration
value is output completely.
Uppercase — The user may specify whether the returned string is in
uppercase characters. In the case of an enumeration
type where the enumeration literals are character
literals, the Uppercase is ignored and the case
specified by the type definition is taken. If no
preference is specified then the default (true) is
assumed.

100CT89 Page 26

Appendix F, Cont.
Examples:
Suppose the following types were declared:

Type X is (red, green, blue, purple);
Type Y is (a’, 'B’, ’c’, 'D’);

Then the following would be true:

X’Extended_Image{red) = "RED"
X’Extended Image(red, 4) ="RED "
X’Extended Image(red,2) = "RED"
X’Extended Image(red,0,false) = "red"
X’Extended Image(red,10,false) = "red "
Y’Extended Image(’a’) = "
Y’Extended Image(’B’) = "WB™
Y’Extended _Image(’a’,6) =13 "
Y’Extended Image(’a’,0,true) = g™

"Extended Value Attribute
Usage: X’Extended Value(Item)

Returns the image associated with Item as per the Text_lo definition.
The Text_lo definition states that it reads an enumeration value
from the beginning of the given string and returns the value of

the enumeration literal that corresponds to the sequence input.
(LRM 14.3.9:11)

For a prefix X that is a discrete type or subtype; this attribute

is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing

spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT_ERROR is raised.

Parameter Descriptions:
Item -- [he user passes to the function a parameter of the

predefined type string. The type of the returned
value is the base type of X.

100CT8Y ‘ Page 27

Appendix F, Cont.
Examples:
Suppose the following type was declared:
Type X is (red, green, blue, purple);

Then the following would be true:

X’Extended Value("red") = red
X’Extended_Value(" green") = green
X’Extended Value(" Purple") = purple
X’Extended Value(" GreEn ") = green

'Extended_Width Attribute

Usage: X’Extended_Width

Returns the width for subtype of X.

For a prefix X that is a discrete type or subtype; this attribute

is a function. This attribute yields the maximum image length over

all vaiues of the enumeration type or subtype X.

Parameter Descriptions:
There are no parameters to this function. This function
returns the width of the largest (width) enumeration literal
in the enumeration type specified by X.

Examples:

Suppose the following types were declared:

Type X is (red, green. blue, purple);
Type Z is (X1, X12, X123, X1234);

Then the following would be true
X’Extended Width =6 -- "purple”
Z’Extended_Width =5 - "X1234"

100CT89

Page 28

Appendix F, Cont.
FLOATING POINT ATTRIBUTES
’Extended _Image Attribute
Usage: X’Extended Image(Item,Fore,Aft,Exp,Base,Based)

Returns the image associated with Item as per the Text_lo defirition.
The Text_lo definition states that it outputs the value of the
parameter [tem as a decimal literal with the format defined by the
other parameters. If the value is negative then a minus sign

is included in the integer part of the value of Item. If Exp

is 0 then the integer part of the output has as many digits as

are needed to represent the integer part of the value of Item or

is zero if the value of Item has no integer part. (LRM 14.3.8:13,
14.3.8:15)

For a prefix X that is a discrete type or subtype; this attribute

is a function that may have more than one parameter. The parameter
Item must be a Real value. The resulting string is

without underlines or trailing spaces.

Parameter Descriptions:

Item - The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.

Fore - The user may specify the minimum number of characters for
the integer part of the decimal representation in the
return string. This includes a minus sign if the
value is negative and the base with the '#’ if based
notation is specified. If the integer part to be output
has fewer characters than specified by Fore, then leading
spaces are output first to make up the difference. If no
Fore is specified then the default (2) value is assumed.

Aft -- The user may specify the minimum number of decimal digits
after the decimal point to accommodate the precision desired.
If the delta of the type or subtype is greater than
0.1 then Aft is one. If no Aft is specified then the
default {X’Digits-1) is assumed. If based notation is
specified the trailing ’#’ is included in aft.

Exp -- The user may specify the minimum number of digits in the
exponent; the exponent consists of a sign and the exponent,
possibly with leading zeros. If no Exp is specified then
the default (3) is assumed. If Exp is O then no exponent
is used.

100CT89 Page 29

Appendix F, Cont.

Base -- The user may specify the base that the image is to be
displayed in. If no base is specified then the default
(10) is assumed.

Based -- The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.
Examples:
Suppose the following type was declared:

Type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X’Extended Image(5.) = " 5.0000E+00"
X’Extended_Image(5.0 , 1) = "5.0000E+00"
X’Extended_Image(-5.0,1) = ".5.0000E+00"
X’Extended_Image(5.0, 2 ,0) =" 5.0E+00"
X’Extended Image(5.0,2,0,0) =" 5.0"
X’Extended_Image(5.0,2,0,0,2) = "101.0"
X’Extended_Image(5.0,2,0,0,2,True) = "2#101.0#"
X’Extended_Image(5.0,2,2,3,2,True) = "2#1.1#E+02"

"Extended Value Attribute
Usage: X’Extended_Value(Item)

Returns the value associated with Item as per the Text_Jo definition.
The Text_lo definition states that it skips any leading zeros,

then reads a plus or minus sign if present then reads the string
according to the syntax of a real literal. The return value is

that which corresponds to the sequence input. (LRM 14.2.8:9,
14.3.8:10) .

For a prefix X that is a discrete type or subtype; this attribute

is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing

spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT _ERROR is raised.

100CT89 Page 30

Appendix F, Cont.
Parameter Descriptions:

Item -- The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type of the input string.

Examples:
Suppose the following type was declared:

Type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X’Extended Value("5.0") = 5.0
X’Extended_Value("0.5E1") = 5.0
X’Extended_Value("2#1.01#E2") = 5.0

'Extended_Digits Attribute
Usage: X’Extended _Digits(Base)
Returns the number of digits using base in the mantissa of model
numbers of the subtype X.
Parameter Descriptions:
Base -- The user may specify the base that the subtype is
defined in. If no base is specified then the default
(10) is assumed.
Examples:
Suppose the following type was declared:
Type X is digits 5 range -10.0 .. 16.0;
Then the following would be true:

X’Extended Digits

fl
(4]

100CT89 Page 31

Appendix F, Cont.
FIXED POINT ATTRIBUTES
'Extended_Image Attribute
Usage: X’Extended_Image(Item,Fore,Aft,Exp,Base,Based)

Returns the image associated with Item as per the Text_lo definition.
The Text_lo definition states that it outputs the value of the
parameter Item as a decimal literal with the format defined by the
other parameters. If the value is negative then a minus sign

is included in the integer part of the value of Item. If Exp

is 0 then the integer part of the output has as many digits as

are needed to represent the integer part of the value of Item or

is zero if the value of Item has no integer part. (LRM 14.3.8:13,
14.3.8:15)

For a prefix X that is a discrete type or subtype; this attribute

is a function that may have more than one parameter. The parameter
Item must be a Real value. The resulting string is

without underlines or trailing spaces.

Parameter Descriptions:

Item - The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.

Fore — The user may specify the minimum number of characters for
the integer part of the decimal representation in the
retarn string. This includes a minus sign if the
value is negative and the base with the ’#’ if based
notation is specified. If the integer part to be output
has fewer characters than specified by Fore, then leading
spaces are output first to make up the difference. If no
Fore is specified then the default (2) value is assumed.

Aft - The user may specify the minimum number of decimal digits
after the decimal point to accommodate the precision desired.
If the delta of the type or subtype is greater than
0.1 then Aft is one. If no Aft is specified then the
default (X’Digits-1) is assumed. If based notation is
specified the trailing '#’ is included in aft.

Exp -- The user may specify the minimum number of digits in the
exponent; the exponent consists of a sign and the exponent,
possibly with leading zeros. If no Exp is specified then
the default (3) is assumed. If Exp is 0 then no exponent
is used.

100CT89 Page 32

Appendix ¥, Cont.

Base — The user may specify the base that the image is to be
displayed in. If no base is specified then the default
(10) is assumed.

Based — The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.

Examples:
Suppose the following type was declared:
Type X is delta 0.1 range -10.0 .. 17.0;

Then the following would be true:

X’Extended_Image(5.0) =" 5.00E+00"
X’Extended_Image(5.0,1) = "5.00E-+00"
X’Extended Image(-5.0,1) = ".5.00E-+00"
X’Extended_Image(5.0,2,0) =" 5.0E+00"
X’Extended_Image(5.0,2,0,0) ="5.0"
X’Extended Image(5.0,2,0,0,2) = "101.0"
X’Extended Image(5.0,2,0,0,2,True) = "2#101.04#"
X’Extended_Image(5.0,2,2,3,2,True) = "2#1.1#E+02"

’Extended Value Attribute
Usage: X’Extended Value{Image)

Returns the value associated with Item as per the Text_lo definition.
The Text_lo definition states that it skips any leading zeros,

then reads a plus or minus sign if present then read the string
according to the syntax of a reai literal. The return value is

that which corresponds to the sequence input. (LRM 14.3.8:9.
14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute

is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing

spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT _ERROR is raised.

100CT89 Page 33

Appendix F, Cont.
Parameter Descriptions:
Image — The user passes to the function a parameter of the
predefined type string. The type of the returned
“value is the base type of the input string.
Examples:
Suppose the following type was declared:
Type X is delta 0.1 range -10.0 .. 17.0;
Then the following would be true:
X’Extended Value("5.0") = 5.0

X’Extended_Value("0.5E1") =5.0
X’Extended Value("2#1.01%E2") =

"Extended Fore Attribute
Usage: X’Extended_Fore(Base,Based)

Returns the minimum number of characters required for the integer
part of the based representation of X.

Parameter Descriptions:

Base -- The user may specify the base that the subtype would be
displayed in. If no base is specified then the default
(10) is assumed.

Based -- The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.

100C7T89 Page 34

Appendix F, Cont.
Examples:
Suppose the following type was declared:
Type X is delta 0.1 range —10:0 . 17.1;
Then the following would be true:

X’Extended Fore =3 - ".10"
X’Extended _Fore(2) =6 --"10001"

'Extended Aft Attribute
Usage: X’Extended_Aft(Base,Based)
Returns the minimum number of characters required for the fractional
part of the based representation of X.
Parameter Descriptions:
Base —~ The user may specify the base that the subtype would be
displayed in. If no base is specified then the default
(10) is assumed.
Based —~ The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.
Examples:
Suppose the following type was declared:

Type X is delta 0.1 range -10.0 .. 17.1;

Then the following would be true:

X’Extended _Aft =1 --"1" from 0.1
X’Extended_Aft,(2) =4 - "0001" from 2#0.0001%
100CTs89

Page 35

Appendix F, Cont.
3. Specification of Package SYSTEM
with Unchecked_Conversion;

package Systern is

-~ CUSTOMIZABLE VALUES

type Name is (TeleGen2);
System Name : constant name := TeleGen2;

Memory_Size : constant := (2 ** 31) -1; -Available memory, in storage units
Tick : constant := 1.0 / 100.0; --Basic clock rate, in seconds

-- NON-CUSTOMIZABLE, IMPLEMENTATION-DEPENDENT VALUES

Storage_Unit : constant := §;

Min_Int : constant :=-(2 ** 31);

Max_Int :constant := (2 ** 31) - 1;

Max _Digits : constant := 15;

Max_Mantissa : constant := 31;

Fine Delta : constant := 1.0 / (2 ** Max_Mantissa);

subtype Priority is Integer Range 0 .. 63;

- ADDRESS TYPE SUPPORT

type Memory is private;
type Address is access Memory;

Null_Address: constant Address := null:
type Address_Value is range -(2**31)..(2**31)-1;
function Location is new Unchecked_Conversion (Address_Value, Address);

function Label (Name: String) return Address;
pragma Interiace (META, Label);

100CT89 Page 36

function ">" (Left, Right: Address) return Boolean;
pragma Interface (META, ">");

function "<" (Left, Right: Address) return Boolean:
pragma Interface (META, "<");

function ">=" (Left, Right: Address) return Boolean;
pragma Interface (META, ">=");

function "<=" (Left, Right: Address) return Boolean;
pragma Interface (META, "<=");

function "+" (Left: Address; Right: Address_Value) return Address;
function "+" (Left: Address_Value; Right: Address) return Address;
pragma Interface (META. "+");

function "-" (Left: Address; Right: Address_Value) return Address;
function "-" (Left: Address; Right: Address) return Address_Value;
pragma Interface (META, "-");

-- CALL SUPPORT

type Subprogram_Value IS
record
Proc_addr : Address;
Parent _frame : Address;
end record

procedure Call- (Subprogram: Subprogram _Value);
procedure Call (Subprogram: Address);

pragma Interface (META, Call);

Max_Object_Size : CONSTANT := Max _Int;
Max Record _Count : CONSTANT := Max _Int;
Max Texc Io _Count : CONSTANT := Max _Int-1;
Max Texr. Io Fleld CONSTANT := 1000;

private
type Memory is
record
null;
end record;

end System;

100CTs89

Page 37

Appendix F, Cont.
4. Restrictions on Representation Clauses
The hardware needs a minimum of 32 bits to represent floating point
and access types. Therefore, specifying a size of less than 32 bits cannot
be handled simply by the underlying hardware (LRM 13.1 (10)).

The Compiler supports the following representation clauses:

Length Clauses: for enumeration and derived integer types 'SIZE
attribute (LRM 13.2(a))

Length Clauses: for composite types 'SIZE attribute (LRM 13.2(a)

Size clauses for composite types are rejected when the

specified size implies compression of composite components.
Length Clauses: for access types 'STORAGE_SIZE attribute (LRM 12.2(b))
Length Clauses: for tasks types 'STORAGE _SIZE attribute (LRM 13.2(c}))
Length Clauses: for fixed point types 'SMALL attribute (LRM 13.2(d))

Enumeration Clauses: for character and enumeration types other than

boolean (LRM 13.3)

Record representation Clauses (LRM 13.4) with following constraints:
- Each component of the record must be specified with

a component clause.
- The alignment of the record is restricted to mod 2,

word (16 bit)aligned.
- Bits are ordered right to left within a byte.

Address Clauses: for objects, entries and external subprograms
(pragma INTERFACE used) (LRM 13.5(a)(c))

This compiler does NOT support the following representation clauses:
Enumeration Clauses: for boolean (LRM 13.3)

Address Ciauses: for packages, task units, and non-external Ada
subprograms (LRM 13.5(b))

100CT89 Page 38

Appendix F, Cont.
5. Implementation dependent naming conventions

There are no implementation-generated names denoting implementation
dependent components.

6. Interpretation of Expressions in Address Clause

Expressions that appear in address specifications are interpreted as the
first storage unit of the object.

7. Restrictions on Unchecked Conversions
Unchecked conversions are allowed between any types or subtypes unless

the target type is an unconstrained record or array type.

8. 1/0O Package Characteristics

Sequential 1O can be instantiated for unconstrained array
types or unconstrained types with discriminants without default values,
but not Direct_IO.
In TEXT_IO the type COUNT is defined as follows:
type COUNT is range 0 .. 2_147 483 646;

In TEXT_IO the subtype FIELD is defined as follows:

subtype FIELD is INTEGER range 0..1000;
In TEXT 10, the Form parameter of procedures Create and Open is not

support.ed-: (If you supply a Form parameter with either procedure. it
is ignored.)

-

100CT89

Page 29

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted ars represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
beiow:

tlame and eaning Yalue

SACC_SIZE 32
an integer 1literal whose value
is the number of bits sufficient
to hold any value of an access
type.
L)

$81G_1DL 199 = "X & 'V
an identifier the size of the
maximum input line length which
is identical to $BIG_ID2 except
for the last character.

$BIG_ID2 199 * 'A' & '2°
an identifier the size of the
maximum input line length which
is identical to $BIG_ID1 ~xcapt
for the last charactar.
$8IG_ID3 100 * 'A% "3 & 39 x '}

an identifier the size of the
maximum input line length which
is identical to $BIG_ID4 =zxaent

Name and ¥eaning
for a character near the middle.

$BIG_ID4
An identifier the size of the
maximum input line length which
is identical to $BIG_ID3 except
for a character near the middle.

$BIG_INT_LIT
An integer literal of walue 298
with enough 1leading =zeroes so
that it is the size of the
maximum line length.

$BIG_REAL_LIT
A universal real 1literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG_STRINGL
A string 1literal which when
catenatad with BIG_STRINGZ

vields the image of BIG_iD1.

$BIG_STRING?2
A string literal which when

catenated to the and of
BIG_STRINGL vields the image of
BIG_ID1.

3BLANKS

A sequence of blanks twenty
charactars 1less than the size
of the maximum line iength.

SCOUNT_LAST
A universal intaqger
literal whose valne is

TEXT_IO.COUNT'LAST.

$DEFAULT_MEM_SIZ
an integer 1
is SYSTEH.ME

E
iteral whose walue
MORYV_STZE.

SDEFAULT_STOR_UNIT
An integer iiteral whose walne
is SYSTEN{.STORAGE_INIT.

TEST PARAMETERS

Vaine

100 * 'A' & '4' & 99 * A"

197 * '0' & "298"

13

-2
(3o

5 % '0' & "690.0"

LD} & 100 * 'A' & e

rir e

3]
w
(X}
x
2
»
-
)

2147483647

Name and ieaning

$DEFAULT_SYS_WNAME
The value of the constant
SYSTEY.SYSTEM_NANE.

$DELTA_DOC
A real literal whose value is
SYSTEM.FINE_DELTA.

SFIELD_LAST
A universal integer
literal whose value is

TEXT_IO.FIELD'LAST.

SFIXED_NAME
The name of a predefined
fizxed-point type other than
DURATION.

SFLOAT_NAME
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LONG_TLOAT.

$GREATER_THAN_DURATION

A universal real 1literal that
lies between DURATIOW'BASE'LASY
and DURATION'LAST or anv value
in the range of DURATION.

SGREATER_THAN_DURATION_BASE_LAST

A universal real literal that is
gr=ater than DURATION'BASE'LAST.

SHIGH_PRIORITY
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

SILLEGAL_EXTERNAL_FTLE_NAHEL

An external file name which
contains invalid charactars.

axternal file name which

SILLEGAL_EZRTERMAL_FILE_VAHEZ
An
is too long.

TEST PARAMETERS

Value

-3
(&2

&3

LEGEN2

2#1.04E-31

1000

HO_SUCH_FIXED_TYPE

NO_SUCH_FLOAT_TYPE

100_000.0

131_073.0

lame and MYeaning

INTEGER_FIRST
A universal integer 1literal
whose wvwalue 1is INTEGER'FIRST.

SINTEGER_LAST
A universal integer 1literal
whose value 1is INTEGER'LAST.

SINTEGER_LAST_PLUS_1
A universal integer literal
whose value is INTEGER'LAST + 1.

SLESS_THAN_DURATION
A wuniversal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or anv value
in the range of DURATION.

SLESS_THAN_DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOV_PRIORITY
an integsr iiteral whose walue
is the lower bound of the range
for the subtvpe SYSTEM.PRIORITY.

SHANTISSA_DOC
an integer iiteral whose value
is SYSTEM.MAX MANTISSA.

SHAX_DIGITS
dazimum digits supportsd for
fioating-point types.

$HUAX_Ti_LEW
Haximum input 1line length
permitted by the implementation.

SUAK_INT

A universal integer litsral
whose value is SYSTEM.MAX_INT.

SUAR_IIT_PLUS_1

a universal integer literal
whose value is SYSTEM.HAX_IBT+i.

Yalue

-2147483648

2147483647

2147433648

-100_000.0

-131_073.0

fo=y
(92

2147483647

3_147_483_A43

TEST PARAMETERS

Name and Meaning

$HAX_LEN_INT_BASED_LITERAL

A universal integer based
literal whose value is 28114
with enough leading zeroes in

the mantissa
long.

ko be MAX_IN_LEN

SHAX_LEN_REAL_BASED_LITERAL
A universal real based literal
whose value is 16:F.E: with
enough 1leading <zerces in the
mantissa to be MAX_IN_LEN long.

SHAX_STRING_LITERAL

A string literal of size
MAX_IN_LEN, including the quote
charactars.

SUMIN_INT
A universal integer 1literal
whose walne is SYSTEM.MIN_INT.

$HIN_TASK_SIZE
An integer literal whose walue
is the number of bits required
to hold a task obiect which has
no entries, no deciarations, and
"NULL;" as the onlv statament in

its body.

SHUANE
A name of a nredefined numeric
tvpe other than TLOAT, INTEGER,

SHORT_FLOAT,
LONG_FLOAT, or

SHORT_INTEGER,
LONG_TINTEGER.

SUAME_LIST
A list ¢f enumeration 1literals
in the tyve S ISTEM.WAME,
separated by commas.

SWEG_BASED_INT
A based 1integer literal
highest order
fails in the sign bit
position of the vrepresentation
for SYSTEM.MAX_INT.

whose
nonzero bit

TEST PARAMETERS

Value

"3:" & 135 * 'O

& "11:"

it & 198 * OAI & LR LN

-21474836438

32

SHORT_SHORT_INTEGER

Name and ieaning

SNEW_MEM_SIZE

An integer literal whose value
is a npermitted argument for
pragma HEMORY_SIZE, other than

$DEFAULT_MEM_SIZE. TIf thera is

nc other value, then use

$DEFAULT_MEY_SIZE.
SNEW_STOR_UNIT

An integer literal whose value

is a permitted argument for
pragma STORAGE_UNIT, other than
$DEFAULT_STOR_UNIT. If there is

no other permitted wvalue, then

use value of SYSTEM.STORAGE_UNIT.

SNEW_SYS_NAME
A value of the type SYSTEI.IAME,
other than SDEFAULT_SYS_VAME. If
there is only one value of that
type, then use that value.

TASK_SIZE
an intager iiteral whose value
is the number of bits required
to hoid a task object which has

a single antrv with one 'IN OUT’
narameter.

STICK
a real literal whose wvalue is

STSTEH.TICK.

TEST PARAMETERS

Yalue

2147483647

TELEGEN

o1
—
o

32

0.01

WITHDRAWN TESTS

APPENDIX D

VITHDRAWN TEST3

Some tests are withdrawn from the ACVC because thev do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the fornm
AI-ddddd is to an Ada Commentary.

a. E28005C This test aexpacts that the string "-- TOP OF PAGE. --
63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma, .and it is this that must appear at the top

of the page.

396056 This test wnreascnably =xXpects 31 component clauss to
ck an arrav component into a ainimum size {iine 30).

c. B87102E This test contains an unitended illeqality: a ssgliac
statement contains a null statement at the piace of a selective
wait alternative (line 31).

ot

d. C97116a7 This test contains race conditions, and it assumes that
guards are evaluated indivisiblv. A conforming implementation,
mav use interleaved execution in such A wav that the avaluation
of the quards at lines 50 & 54 and the zxecution of task CHANGING~
OF THE_GUARD resnlts 1in 1 <aii to REPORT.FAILED at one of
lines 52 or 56.

3}

BC30098 This test wronglv expects that circular instantiations
wiil be detected in several compilation nnits 2ven though none of
the units is iliagal with respect to the units it dewends on; by
AI-90256, the illiagalitv need not be dztectad antil execution is
attempted {(line 95;.

€. CD2362D This tast wrongly raauires that an arrav object's size
be no gr=ater than 10 although its swbtvpe's sizz was specified
to be 40 (line 137).

12

VITHDRAWN TESTS

CD2A63A..D, CD2A66A..D, CD2A73A..D, CDZATAA..D {16 tests] These
tests wrongly attempt to check the size of obiects of a derived

tvne {for which a 'SIZE length clause is given) by passing thenm
to a derived subprogram (which implicitly converts them to the
parent type (Ada standard 3.4:14)). Additionaily, they use the
'SIZE length clause and attribute, whose interpretation is

considered problematic by the YGS ARG.

CD2A81G, CD2A83G, CD2A84N & M, & CD50110 [5 tests] These tests
assume -that dependent tasks will terminate while the main pro-
gram executes a loop that simply tests for task termination; this
is not the case, and the main program may loop indefinitely
(lines 74, 85, 86 & 96, 86 & 96, and 33, resp.).

CD2B15C & CD7205C These tests expect that a 'STORAGE_SIZE
length clause provides precise control over the number of
designated objects in a colliection; the Ada standard 13.2:15

allows that such control must not be expeacted.

CD2D11B This test gives a SMALL representation clause for a
derived fixed-point tyve {at line 30) that Jdefines a set of
model numbers that ares not necsssarily reprasented in the
parent type; by Commentary AI-J0099, all modal numbers of a

derived fixed-point tvne must be reprasentable values of the
parant Lyne.

€D54078 This test wrongly expects an impliciclyv declarad sub-
program to be at the the address that is specified for an un-
r2iated subprogram (line 303).

ED7004B, ED7005C & D, ED700AC & D 15 tests] These tests check
various aspects of che use of the three SYSTEH pragmas; the AVC
withdraws these tests as being inappropriate for wvalidation.

CH71035A This test requires ftuat snccassiva calls tc CALENDAR.-
CLOCK change by at iecast SYSTEH.TICK; howevar, opv Conmmentary
AI-N0201, it is oniyv the expectad fraquency »f change that must
pe at least SYSTEM.TiICX--particniar instances of change mav be
iass (line 29).

CD7203B, & CD72043B These tasts nse the 'SIZE i2ngth clause and
atrribute, vwhose infterpratation is considerad problematic by
the Y69 ARG.

¢D7205D This tast checks an invalid tast objective: it treats
the specification of storage to e vaserwrad for a task's
activation as though it wers iixe the specification of storaga

for a coilection.

21971 This test raquirs that objects of two similar scalar
tvoes bhe distinguished ™ when read from a fiie--DATA_ERROR is

WITHDRAWN TESTS

expected to be raised by an attempt to read one object as of
the other type. However, it is not clear exactly how the Ada
standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considerad valid. (line 20)

CE31llcC This test requires certain behavior, when two files are

associated with the same axternal file, that is not required by
the Ada standard.

CE3301A This test contains several calls to END_OF_LINE &
END_OF_PAGE that have no parameter: these calls were intended
to specify a file, not to refer to STANDARD_INPUT (lines 103,
107, 118, 132, & 136).

CE34118 This test requiras that a text file's column number be
set to COUNT'LAST in order to check that LAYOUT_ERROR is raised
bv a subsequent PUT aperation. But the former operation will
generallvy raise an exception due %o a lack of available disk
space, and the test would thus encumber validation testing.

COMPILER AND LINKER OPTIONS

APPENDIX E

COMPILER AND LINKER OPTIONS

References and pace numbers in this appendix ave consistent
with compiler documentation and not with this report.

In addition to the switches described in the sequel the
following switches are available:

-4 +enable_traceback
allow internal compiler arrors %o »nrovagats all the way
out. The default is to inhibit internal exceptions call
chains from being displavad.

-V -debng_info

inhibits insartion of Ada svmbolic debugger information
into the working subiibrary. This wiil spneed up
compilation. The dafanit is io insert all information

into %he working sublibrarv.

-¥ +link_target=bbn
geherates a BSerkslay
r a

3 Uniz stylz link script. The default
is to generats !

Svstem V stvi=z link script.

COMPILATION TOOLS

2.1. The Ada Compiler (““ada”)

The TeleGen2 Ada Compiler is invoked by the ada command. Unless you specify otherwise.
the front end, middle pass, and code generator are executed each time the compiler is invoked.

Before you can compile, you must (1) make sure you have access to TeleGen2, (2) create a
library file, and (3) create a sublibrary. These steps were explained in the Getting Started section
of the Overview. We suggest you review that section. and then compile. link, and execute the
sample program as indicated before you attempt to compile other programs.

This section focuses specifically on command-level information relating to compilation, that
is, on invoking the compiier and using the various options to control the compilation process.
Details on the TeleGen2 compilation process and guidelines for using the compiler most
effectively are in the Compiler chapter of the User Guide volume. (You might want to look at
Figure 3-1 in that volume right now, to give you insight into the TeleGen2 compilation process
and to see how the options mentioned in this Command Summary volume relate to the actual
compilation process.)

The syntax of the command to invoke the Ada compiler is:

ada {<“common_option”>} {<option>} <input_spec>

where:

<‘*common-option’”> | None or more of the following set of options that are com-
mon to many TeleGen2 commands:

~I(ibfile or —t(emplib
—~V(space_size
~v({erb-se

These options were discussed in Chapter 1.

<option> None or more of the compiler-specific options discussed
below.

<input_spec> The Ada source file(s) to be compiled. It may be:

* One or more Ada source files, for example:
/user/john/example
Prog_A.text
ciosrc/calc_mem.ada

calcio.ada myprog.ada
*.ada

= A file containing names of files to be compiled. Such a
file must have the extension *“.ilf”. You can find de-
tails for using input-list files in the User Guide portion
of your TeleGen2 documentation set.

= A combination of the above.

Please note that the compiler defaults are set for your convenience. In most cases you will
not need to use additional options: a simple ‘“‘ada <input_spec>" is sufficient. However. options

24AUGS39 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 2-3

TeleGen2 Command Summary for UNIX-Based Host Compilers

are included to provide added flexibility. You can, for example, have the compiler quickly check
the source for syntax and semantic errors but not produce object code (—e(rrors_only) or you can
compile. bind, and link an main program with a single compiler invocation (-m(ain). Other
options are provided for other purposes.

The options available with the ada command, and the relationships among them. are
illustrated in the following figure. Remember that each of the options listed is identified by a
dash followed by a single letter (e.g.., “*—e’"). The parenthesis and the characters following the
option are for descriptive purposes only; they are not part of the option.

]

I 1
~l(ibfile <libname> —t(emplib <sublib>{,...}
L J

- V(space_size 2000
l
~v(erbose

r 1
—e(rrors_only (_ compile to object)
T
~d(ebug

]
~i(nhibit <key>t

~k (’eep
-O(ptimi;e <key>t
~S{ our‘ce...asm
—u.(pdate_.:lib <key>t

—x(ecution_profile

I
—~C(ontext 1
!
—E(rror_abort 999

i
—L(ist —~F(ile_only_errs
L]

o —~s(oftware_float
i
—m(ain <unit>

[<input_spec> |

t (1) <key> for =0: refer to eopt. (2) <key> for —u: i or 5: s 1s the defeult. (2) <key> for ~£ a or certain combinations of

2-4 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 24AUG89

COMPILATICN TOGLS

-

The options available with the ede command are summarized in Table 2-2. The default
situation (that is, what happens if the option is not used) is explained in the middle column.
Each option is described in the paragraphs that follow the table.

Table 2-2. Summary of Compiler Options

Option Default .stcnss?ed
in Section
Common options:
-I(ibfile <libname> Use liblst.alb as the library file. 1.4.1
—~t(emplib <sublib...> None 14.1
~V(spacesize <value> | Set size to 2000 Kbytes. 1.4.2
~v(erbose Do not output progress messages. 1.4.3
~d(ebug Do not include debug information in 2.1.1
object code. (—d sets ~k(eep.)
—E(rror_abort <value> Abort compilation after 999 errors. 1 2.1.2
~e(rrors_only Run middle pass and code generator, 2.1.3
not just front end.
~i(nhibit <key>* Do not suppress run-time checks, source | 2.1.4
line references, or subprogram name
information in object.
~k(eep Discard intermediate representations of | 2.1.5
secondary units.
—m(ain <unit> Do not produce executable code 2.1.6
(binder/linker not executed).
—O(ptimize <key>t Do nct optimize code. 2.1.7
g —s(oftware_float Use hardware floating-point support. 2.1.8
~u{pdate_lib <key>t Do not update library when errors are 2.1.9
- found (multi-unit compilations).
-x(ecution_profile Do not generate execution-profile code. 2.1.10
Listing options:
—C(ontext <value> Include 1 line of context with error 2.1.11.1
message.
~L(ist Do not generate a source-error listing. 2.1.11.2
~F(ile_only_errs Do not generate an errors-only listing. 2.1.11.3
only.
-S{ource_asm Do not generate assembly listing. 2.1.11.4
2.1.1. —-d(ebug - Generate Debugger Information. The code generator must generate

special information for any unic that is to be used with the TeleGen2 symbolic debugger. The
generation of this information is enabled by use of the —d option. The use of ~d automatically

t (1) <key> for ~0O: refer to aspt. (2} <key> for —u: ior ¢; 8 is the default. (2) <key> for ~= a or certain combinations of
Ine.

24AUGS9 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 2-5

TeleGen2 Command Summary for UNIX-Based Host Compilers

sets the —k(eep option. This to make sure that the High Form, Low Form, and debugger
information for secondary units are not deleted.

To see if a unit has been compiled with the —d(ebug option. use the als command with the
~X(tended option. Debugger information exists for the unit if the *dbg_info™ attribute appears
in the listing for that unit. The default situation is that no debugger information is produced.

Performance note. While the compilation time overhead generated by the use of ~d(ebug is
minimal. retaining this optional information in the Ada library increases the space overhead.

2.1.2. —-E(rror_abort — Set an Error Count for Aborting Compilation. The compiler
maintains separate counts of all syntactic errors, semantic errors, and warning messages detected
by the front end during a compilation.

A large number of errors generally indicates that errors in statements appearing earlier in
the unit have ‘‘cascaded” through the rest of the code. A classic example is an error occurring in
a statement that declares a type. This causes subsequent declarations that use the type to be in

error, which further causes all statements using the declared objects to be in error. In such a .

situation, only the first error message is useful. Aborting the compilation at an early stage is
therefore often to your advantage; the — E option allows you to do it.

The format of the option is:

-E <value>

where <value> is the number of errors or warnings allowed. The default value is 999. The
minimum value is 1. Caution: If you do not use the —E option, it is possible to have 999
warning messages plus 999 syntax errors plus 999 semantic errors without aborting compilation,
since each type of error is counted separately.

2.1.3. —e(rrors_only — Check Source But Don’t Generate Code. This option instructs
the compiler to perform syntactic and semantic analysis of the source program without
generating Low Form and object code. That is, it calls the front end only, not the middle pass
and code generator. ‘(This means, of course, that only front end errors are detected and that only
the High Form intermediates are generated.) This option is typically used during early code
development where execution is not required and speed of compilation is important.

Note: Although High Form intermediates are generated with the —e¢ option, these intermediates
are deleted at the end of compilation. This means that the library is not updated.

The —e option cannot be used with —S(ource_asm, since the latter requires the generation of
object code. If ~e is not used (the default situation), the source is compiled to object code (if no
errors are found). The —e¢ option is also incompatible with ~k(eep, —d(ebug, ~O(ptimize, and
other options that require processing beyond the front end phase of compilation.

2.1.4. -i(nhibit — Suppress Checks and Source Information. The ~i(nhibit option
allows you to suppress, within the generated object code, certain run-time checks, source line
references. and subprogram name information.

The Ada language requires a wide variety of run-time checks to ensure the validity of
operations. For example, arithmetic overflow checks are required on all numeric operations, and
range checks are required on all assig..ment statements that could result in an illegal value being
assigned to a variable. While these checks are vital during development and are an important
asset of the language. they introduce a substantial overhead. This overhead may be prohibitive

2-6 INTRO-1281N-VL.2(UNIX-H) © 1989 TeleSoft 24AUGS89

T,

COMPILATION TOOLS

in time-critical applications.

Although the Ada language provides pragma Suppress to selectively suppress classes of
checks. using the pragma requires you to modify the Ada source. The —i(nhibit option provides
an alternative mechanism.

The compiler by default stores source line end subprogram name information in the object
code. This information is used to display a source level traceback when an unhandled exception
propagates to the outer level of a program: it is particularly valuable during development, since it
provides a direct indication of the source line at which the exception occurs and the subprogram
calling chain that led to the line generating the exception.

The inclusion of scirce line information in the object code, however, introduces an overhead
of 6 bytes for each line of source that causes code to be generated. Thus, a 1000-line package
may have up to 6000 bytes of source line information. [For one compilation unit, the extra
overhead (in bytes) for subprogram name information is the total length of all subprogram names
in the unit (including middle pass-generated subprograms), plus the length of the compilation
unit name. For space-critical applications, this extra space may be unacceptable; but it can be
suppressed with the —i(nhibic option. When source line information is suppressed, the traceback -
indicates the offset of the object code at which the exception occurs instead of the source line
number. When subprogram name information is suppressed, the traceback indicates the offsets of
the subprogram calls in the calling chain instead of the subprogram names. (For more
information on the traceback function, refer to the Programming Guide chapter in your
Reference Information volume.)

The format of the ~i(nhibit option is:
—~i <suboption>{<suboption>}

where <suboption> is one or more of the single-letter suboptions listed below. Combinations of
suboptions zre possible. When more than one suboption is used, the suboptions appear together
with no separators. For example, “~i Inc”.

1(line_info| Suppress source line information in object code.

niame_infor | Suppress subprogram name information in object
code.

cihecksj Suppress run-time checks — elaboration, overflow,

storage access, discriminant, division, index, length,
and range checks.

ailll Suppress source line information. subprogram name
information. and run-time checks. In other words, a
(=inhibit all) is equivalent to lne.

As an example of use. the command....
ada -v -i lc my_file.ada

...inhibits the generation of source line information and run-time .aecks in the object coue ot the
units my_file.ade.

[&)
-3

24AUGS9 INTRO-1281N-V1.2(UNIX-H) © 1989 TeleSoft

TeleGen2 Command Summniary for UNIX-Based Host Compilers

2.1.5. ~k(eep — Retain Intermediate Forms. As a default, the compiler deletes the High
Form and Low Form intermediate representations of all compiled secondary units from the
working sublibrary. Deletion of these intermediate forms can significantly decrease the size of
sublibraries — typically 30% to 80% for multi-unit programs. On the other hand. some of the
information within the intermediate forms may be required later. For example, High Form is
required if the unit is to be referenced by the Ada Cross-Referencer (azr). In addition,
information required by the debugger and the Global Optimizer must be saved if these utilities
are used. For these reasons. the —k option is provided with the ada command. The —k option:

= Must be used if the compiled unit is to be optimized later with aopt; otherwise, aopt
issues an error message and the optimizer aborts.

= Should be used if the unit is to be cross-referenced later; otherwise, an error message is
issued when the Ada Cross-Referencer attempts to cross-reference that unit.

x Need not be used with —d(ebug, since ~k is set automatically whenever —d is used.

To verify that a unit has been compiled with the ~k(eep option (has not been “squeezed”),
use the als command with the —X(tended option. A listing will be generated that shows whether
the intermediate forms for the unit exist. A unit has been compiled with —k(eep if the attributes
high_form and low_form appear in the listing for that unit.

2.1.6. —m(ain - Compile a Main Program. This option tells the compiler that the unit
specified with the option is to be used as a main program. After all files named in the input
specification have been compiled, the compiler invokes the prelinker (binder) and the native
linker by calling ald to bind and link the program with its extended family. An executable file
named <unit> is left in the current directory. The linker may also be invoked directly by the
user with the ald command.

The format of the option is:
—-m <unit>

where <unit> is the name of the main unit for the program. If the main unit has already been
compiled, it does not have to be in the input file. However, the body of the main unit, if
previously compiled, must be present in the current working sublibrary.

Note: Options specific to the linker (invoked via ald) may be specified on the ada command line
when the —m option is used. With —m, the compiler will call ald when compilation is complete,
passing to it ald-specific options specified with the eda command. For example...

ada -m weicome -T2 -onew sample.ada

...instructs the compiler to compile the Ada source file, sample.ada, which contains the main
program unit Welcome. After the file has been compiled, the compiler calls the linker, passing to
it the =T and —o options with their respective arguments. The linker produces an executable
version of the unit, placing it in file new as requested by the —o option.

2.1.7. —-O(ptimize - Optimize Object Code. This option causes the compiler to invoke
the global optimizer to optimize the Low Form generated by the middle pass for the unit being
compiled. The code generator takes the optimized Low Form as input and produces more
efficient object code. The format of this option is:

-0 <key>

2-8 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 24AUGS9

COMPILATION TOOLS

where <key> is at least one of the optimizer suboption keys discussed in the Global Optimizer
chapter. Please refer to that chapter for all information regarding the use of the optimizer. The
chapter discusses using the optimizer as a standalone tool for collections of compiled but
unoptimized units and using the —O(ptimize option with the ada command. The latter topic
includes a definition of the —O(ptimize suboption key values plus a presentation of two other ada
options (~-G(raph and -I(nline_list, not shown on the ada chart) that may be used in
conjunction with the —O(ptimize option. Note: We strongly recommend that you do not
attempt to use the optimizer until the code being compiled has been fully debugged and tested.

2.1.8. —s(oftware_float — Use Software Floating-Poini Support. This option may not
be available with your TeleGen2 system; please consult the Overview portion to see if it is
provided. The Ada linker selects hardware floating-point support by default. If you do not have
hardware floating point support or if you wish to generate code compatible with such machines,
use the —s option. In addition: If you use the —s option, the library file you use for compilation
must contain the the name of the software floating point run-time sublibrary, s_rt.sub. Refer to
the Library Manager chapter in your User Guide volume for more information on the run-time
sublibrary.

2.1.9. —u(pdate_lib — Update the Working Sublibrary. The —u(pdate_lib option tells
the compiler when to update the library. It is most useful for compiling multiple source files.
The format of the option is:

-u <key>

where <key> is either ““s” (source) or “i” (invocation).

i “1” tells th2 compiler to update the working sublibrary after all files submitted in that
invocatiuu of ada have compiled successfully. If an error is encountered, the library is
not updated. even for source files that compile successfully. In addition, all remaining
source files will be compiled for syntactic and semantic errors only. Implications: (1)
If an error exists in any source file you submit, the library will not be updated, even if
all other files are error free. (2) Compilation is faster, since the library is updated
only once, at the end of compilation.

s (This is the default; it is equivalent to not using the —u(pdate_lib option at all.) *“3”
tells the compiler to update the library after all units within a single source file
compile successfully. If the compiler encounters an error in any unit within a source
file, all changes to the working sublibrary for the erroneous unit and for all other units
in the file are discarded. However, library updates for units in previous or remaining
source files are unaffected. /mplications: (1) You can submit files containing possible
errors and still have units in other files compile successfully into the library. (2)
Compilation is slightly slower, since the library is updated once for each file.

24AUGS9 INTRO-1381N-V1.2(UNIX-H) ® 1989 TeleSoft 2-9

COMPILATION TOOLS

where <key> is at least one of the optimizer suboption keys discussed in the Global Optimizer
chapter. Please refer to that chapter for all information regarding the use of the optimizer. The
chapter discusses using the optimizer as a standalone tool for collections of compiled but
unoptimized units and using the —O(ptimize option with the ade command. The latter topic
includes a definition of the —~O(ptimize suboption key values plus a presentation of two other ada
options (-G(raph and -I(nline_list, not shown on the ada chart) that may be used in
conjunction with the —O(ptimize option. Note: We strongly recommend that you do not
attempt to use the optimizer until the code being compiled has been fully debugged and tested.

2.1.8. -s(oftware_float - Use Software Floating-Point Support. This option may not
be available with your TeleGen2 system; please consult the Overview portion to see if it is
provided. The Ada linker selects hardware floating-point support by default. If you do not have
hardware floating point support or if you wish to generate code compatible with such machines,
use the —s option. In addition: If you use the —s option, the library file you use for compilation
must contain the the name of the software floating point run-time sublibrary, s_rt.sub. Refer to
the Library Manager chapter in your User Guide volume for more information on the run-time
sublibrary.

2.1.9. —-u(pdate lib — Update the Working Sublibrary. The —u(pdate_lib option tells
the compiler when to update the library. It is most useful for compiling multiple source files.
The format of the option is:

- <key>

where <key> is either ““s” (source) or *“i” (invocation).

i %37 tells the compiler to update the working sublibrary after all files submitted in that
Livocation of ada have compiled successfully. If an error is encountered, the library is
not updated. even for source files that compile successfully. In addition, all remaining
source files will be compiled for syntactic and semantic errors only. Implications: (1)
If an error exists in any source file you submit, the library will not be updated, even if
all other files are error free. (2) Compilation is faster, since the library is updated
only once, at the end of compilation.

s (This is the default; it is equivalent to not using the —u(pdate_lib option at all.) *3”
tells the compiler to update the library after all units within a single source file
compile successfully. If the compiler encounters an error in any unit within a source
file, all changes to the working sublibrary for the erroneous unit and for all other units
in the file are discarded. However, library updates for units in previous or remaining
source files are unaffected. Implications: (1) You can submit files containing possible
errors and still have units in other files compile successfully into the library. (2)
Compilation is slightly slower, since the library is updated once for each file.

24AUGS89 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 2-9

TeleGen2 Command Summary for UNIX-Based Host Compilrrs

Therefore:
Use “u s” (or no —u(pdate option) when:

You’re not sure all units will compile successfully.
Compilation speed is not especially important.

Use “u i” when:

You are reasonably certain your files will compile successfully.
Fast compilation is important. .

2.1.10. -x(ecution.profile -~ Generate Profile Information. The ~x(ecution_proiile
option uses the code generation phase of compilation to place special information in the generated
code that can be used to obtain a “profile” of a program’s execution. This information is
generated by a facility known as “‘the profiler.”” Refer to your User Guide volume for information
on how to use the profiler to obtain execution timing and subprogram call information for 2
program.

Important: If any code in a program has been compiled with the —x(ecution_profile option,
that option must also be used with ald when the program is bound and linked. Otherwise,
linking aborts with an error such as “Undefined RECORD$SCURRENT",

2.1.11. Listing Options. The listing options specify the content and format of listings
generated by the compiler. Assembly code listings of the generated code can also be generated.

2.1.11.1. ~C(ontext - Include Source Lines Around the Error. When an error
message is sent to stderr, it is helpful to include the lines of the-source program that surround the
line containing the error. These lines provide a context for the error in the source program and
help to clarify the nature of the error. The —C option controls the number of source lines that
surround the the error.

The format of the option is:
—~C <value>

where <value> is the number of source context lines output for each error. The default for
<value> is 1. This parameter specifies the total number of lines output for each error (including
the source line that contains the error). The first context line is the one immediately before the
line in error; other context lines are distributed before and after the line in error. Let’s say that
trialprog.ada, which consists of the following text...

2-10 INTRO-1281N-V1.2(UNIX-H) © 1989 TeleSoft 24AUGS9

-—

TeleGen2 Command Summary for UNIX-Based Host Compilers

2.1.11.3. -F(ile_only_errs - Put Only Errors in Listing File. This option is used to
produce a listing containing only the errors generated during compilation; source is not included.
The output is sent to <file_spec>.l. —=F is incompatible with —L.

2.1.11.4. —S(ource_asm — Generate a Source/Assembly Listing. This option instructs
the compiler to generate an assembly listing and send it to a file named <unit>.<ext>, where
<unit> is the name of the unit in the user-supplied source file and <ext> is the file extension (it
may be “s” or something else, depending on your configuration). The listing consists of assembly
code intermixed with source code as comments. If input to the ada command is an input-list file
(<file_spec>.ilf), a separate assembly listing file is generated for each unit contained in each
source file listed in the input file. If ~S is not used (the default situation), an assembly listing is
not generated.

2-12 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 24AUGS9

)

——~~

S’

COMPILATION TOOLS

2.2. The Ada Linker (““ald”)

The TeleGen2 Ada Compiler produces object code from Ada source code. The TeleGen2
Ada Linker takes the object (of a main program) that is preduced by the compiler and produces a
UNIX executable module. The TeleGen2 Ada Linker will be called *“the linker’” in the remainder
of this manual.

To produce executable code, the linker (1) generates elaboration code and a link script (this
is called “binding™ or “prelinking”) then (2} calls the UNIX link editor ({d) to complete the
linking process.

The linker is invoked with the ald command; it can also be invoked with the —~m(ain option
of the ada command. In the latter case the compiler passes appropriate options to the linker, to
direct its operation.

In the simplest case, the ald command takes one argument — the name of the main unit of
the Ada program structure that is to be linked — and produces one output file — the executable
file produced by the linking process. The executable file is placed in the directory where ald was
executed, under the name of the main unit used as the argument to ald. For example, the
command

ald main

links the object modules of all the units in the extended family of the unit Main. The name of
the resulting executable file will simply be **main’. Important: When using the ald command,
the body of the main unit to be prelinked must be in the working sublibrary.

The general syntax of the ald command is:

ald {<“common_option’”>} {<option>} <unit>

where:

<*“common_option’> | None or more of the following set of options that are
common to many TeleGen2 commands:

—I(ibfile or —t(emplib
—~V(space_size
—v(erbose

These options were discussed in Chapter 1.

<option> None or more of the options discussed in the foilowing
sections.

<unit> The name of the main unit of the Ada program to be
linked.

The options available with the ald command and the relationships among them are illustrated
below,

24AUGSS INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 2-13

TeleGenZ Coramand Suinmary for UNIX-Based Host Compilers

ald

{ [
~l(ibfile <libname> —~t{emplib <sublib>{,...}
L J

—V(space_size 2000
—v(ei'bose
-_-b(incli_only
~o(utput Lﬁle_spec>
. -P(ass_options ’string’
~p(ass_objects ’string’
o-s(oftware_float
~S(‘““asmlisting”
—T(ra.celback 15

—x(ecution_profile

{ |
—D(elay NonPreempt ~w(**timeslice” 0
{ |

—X(ception._show
!

~Y 8192 |bytes-long|
1

~y 1024 |bytes-natural|

<unit>

2.2.1. -b(ind_only - Produce Elaboration Code Only. To provide you with more
control over the linking process, the —b option causes the linker to abort after it has created .the
elaboration code and the linking order, but before invoking the UNIX link editor. This option
allows you to edit the link order for special applications and then invoke the link editor directly.
The link order is contained in an executable script that invokes the link editor with the
appropriate options and arguments. The name of the script produced is <unit>.lnk, which is
placed in your working directory. To complete the link process, enter *“<unit>.Ink”.

The name of the file containing the elaboration code is <unit>.obm, which is placed in the
obje:t directory of the working sublibrary.

For System V versions of UNIX, the file names generated as a resuil of linking are created
by appending ti.e 3-letter extension to the unit name and truncating the result to 14 characters.

2.2.2. —of{utput - Name the Output File. This option allows you to specify the name of
the output file produced by the linker. For example. the command...

ald -—o yorkshire main

...causes the linker to put the executable module in the file yorkshire.

214 INTRO-1281N-V1.2(UNIX-H) ® 1989 TeleSoft 24AUGS9

DI 4

N3

* editor to se:.ch libraries whose names have the form */lib/libname.a’ or “/usr/lib/libname.a”.

COMPILATION TOOLS

2.2.3. —P(ass_Options ~ Pass Options to the Linker. This option allows you to pass a
string of options directly to the UNIX link editor. For example, the command

ald =P ’-t -r’ main

adds the string “~t —r”’ to the options of the link editor when it is invoked. The options must be
quoted (double or single quotes).

2.2.4. —p(ass_objects —~ Pass Arguments to the Linker. This option allows you to pass
a string of arguments directly to the UNIX link editor. For example, the command

ald -p ’cosine.o /usr/lib/libm.a’ main

causes the link editor to link the object file cosine.o (which it expects to find in the current
working directory), and to search the library /usr/lib/libm.a for unresolved symbol references.
(The location of the libm.a library may be different on your system.) Remember that the link
editor searches a library exactly once at the point it is encountered in the argument list, so
references to routines in libraries must occur before the library is searched. That is, files that
include references to library routines must appear before the corresponding libraries in the
argument list. Objects and archives added with the —p option will appear in the linking order
after Ada object modules and run-time support libraries, but before the standard C library
(/lib/libc.a). This library is always the last element of the linking order.

You can also use the —p option to specify the link editor’s —! option, which causes the link
b2

For example¢. the command

ald —p ’-Ixyz’
causes thz link editor to search the directories /lib and /usr/lib (in that order) for file libzyz.a.

2.2.5. -S(‘“asm_listing”> - Produce an Assembly Listing. The —S option is used to
output an assembly listing from the elaboration process. The output is put in a file,
<file>.obm.s, where-<file> is the name of the main unit bemg linked. (The file extension may be
different on your system.)

2.2.8. -s({oftware_float — Use Software Floating-Point Support. This option may not
be available on your TeleGen?2 system. Please consult the Querview portion of this volume to see if
it i3 provided. The Ada linker currently selects hardware floating-point support by default. This
default situation is provided for users of systems with an arithmetic coprocessor. I you do not
have hardware floating point support or if you wish to generate code compatible with such
machines. use the —s option. In addition: if you use the —s option, the library file you use for
compiling and linking must contain the name of the software ﬂoaning point run-time sublibrary,
s rt.sub Refer to the Library Manager chapter in your User Guide volume for more information
on the run-time sublibrary.

2.2.7. -T(raceback - Set Levels for Tracing Exceptions. When a run-time exception
occurs (and is not handled by an exception handler), the name and line number of the unit where
the exception occurred is displayed along with a recursive history of the units which called that
unit. (See the “Exception Handling™ section in the Programming Guide chapter of your
Reference Information volume for 2 more complete explanation of exception reports.) The ~T
option allows you to set the number of levels in this recursive history. For example, the

24AUGS89 INTRC-1381N-V1.2(UNIX-H) © 1989 TeleSoft 2-15

TeleGen2 Command Summary for UNIX-Based Host Compilers

command

ald -T 3 main

specifies that traceback histories will be three levels deep. The default value for this option is 15.

When an exception occurs, the run-time support system stores the history in a preallocated
block of memory. Since the size of this block is determined by the - T option, setting this value
to a large number can introduce objectiunable overhead in deeply nested. time-critical code. You
may wish to make this value smaller for well-tested programs.

2.2.8. —x(ecution_profile - Bind and Link for Profiling. This option is used for units
that have beea compiled with the —z option. Use of —z with ada causes the code generator to
include, in the object, special code that will later be used to provide a profile of the program’s
execution.

If —zis used with ada. it must be used with ald as well. The -z option of ald instructs the
linker to link in the profiling run-time support routines and generate a subprogram dictionary,
profile.dic, for the program. The dictionary is a text file containing the names and addresses of
all subprograms in the program. The dictionary can be used to produce a listing showing how
the program executes.

Refer to the Ada Profiler chapter in your User Guide volume for a full discussion of the
profiler.

2.2.9. Tasking Options. The following ald options are binding options used for task
execution. They are therefore useful only for linking programs that contain tasking code.

2.2.9.1. -D(elay_NonPreempt - Specify Non-Preemptive Delay. By default, the
TeleGen2 run-time is set for preemptive delay handling. That is, an active task is preempted if
another task is waiting that has a priority equal to or greater than that of the active task.

The —D option allows you to specify non-preemptive delay handling. With non-preemptive
delay, a task is scheduied only when a synchronization point is reached. -D(elay_NonPreempt is
incompatible with the —w option (see below).

2.2.9.2. ~w(“timeslice’”” — Limit Task Execution Time. The —w option allows you to
define the maximum time a task may execute before it is rescheduled. The format of the option
is:

—w <value>

where <value> is the maximum time the task is to execute, in milliseconds. before a task switch
occurs between it and a task having the same or higher priority. The default value is 0 (no
timeslice). If you choose 2 value greater than G, it must be at leasi as greav as the ciock intervai
time.

Since rescheduling of tasks is incompatible with interrupt-scheduling, ~w is incompatible
with ~D(elay _NonPreempt (see above).

2.2.9.3. ~X(ception_show - Report Unhandled Exceptions. By default, unhandled
exceptions that occur in tasks are not reported: instead. the task terminates silently. The —X
option allows you to specify that such exceptions are to be reported. The output is similar to
that dispiaved when an unhandled exception occurs in a main program.

2-16 INTRO-1281N-V1.2(UNIX-H) (© 1989 TeleSoft 24ATUGS9

*,

COMPILATION TOOLS

2.2.9.4. =Y and -y - Alter Stack Size. In the a2bsence of a representation specification for
task storage_size, the run time will allocate 8192 bytes of storage for each executing task. You
can change the amount of space allocated for tasking by using the - Y and -y options.

-Y specifies the size of the basic task stack. The format of the option is:

-Y <value>

where <value> is the size of the task stack in 32-bit (long_integer) bytes. The default is 8192.

-y specifies the stack-guard size. The stack-guard space is the-amount of additional space
allocated per task to accommodate interrupts and exception-handling operations. The format of
the option is:

-y <value>

where <value> is the size of the stack-guard size in 16-bit (natural) bytes. The value given must
be greater than the task-stack size. The default is 1052 bytes; this is the amount allocated unless
otherwise specified.

A representation specification for task storage size overrides a value supplied with either
option. .

24AUGS89 INTRO-1281N-V1.2(UNIX-H) © 1989 TeleSoft 2-17

