
UNCLASSIFIED %

SECUR!'t CLASSIFICA'ION OF THIS PAGE (WhenData Entered)

REPORT DOCUMENTATION PAGE Br s'vrrop.S

1. REPORT NIUMBLR 12. 6OVT ACCESSION 10O, 3. RECIPIEk7"S CATALOG NUMBER

4. TITLE (endSubtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: TeleSoft, 24 Nov. 1989 to 24 Nov. 1990
TeleGen2 Ada Development System, Data Gkneral AViiON SysteT

O 5120 Server under DG/UX Release 4.20 (Host & Target), . PERrORM1NG'bRG. REPORT NUMBER
591124Tl. 10220
7. ALTHORs) 8. CONTRACT OR GRANT NUMEER(s)

O)IARC
N Ottobrunn, Federal Republic of Germany.

N ,. P[RFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PRCjECT. TASK
AREA & WORK UhIT NUMBERS

IABG,
Ottobrunn, Federal Republic of Germany.

11. COhtROLING OFFICE NAME AND APDRESS 12. REPORT DATE
Ada oint Program Office
United States Department of Defense .".uMDL U, FALb
Washington, DC 2D301-3081

14. NOl TORIMG AGENC.Y NAME & ADORE SS(If different from Controlling Office) 15. SECURI TV CLASS (ofthis report)

IABG, UNCLASSIFIED
Ottobrunn, Federal Republic of Germany. . N/A

15. DISTRIUJTION STATEMENT (ofthisReport)

Apprcved for public release; distribution unlimited.

17. DISTRIL 1jOh STATEMENT (of the absttr nrere nB~~ ifd ern from Report)

UNCLASSIFIED 1JIC
_LECTE

18. SUPP&.EMPI1ARi NOTES AP 2 I

19. KEYWNRDS (Continue on reverse side if neCejs*j endidentify b block number)

Ada Progra.-ing language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side of necessary nd identif) by block number)

TeleSoft, TeleGen2 Ada Development System , Ottobrunn West Germany, Data General
AViion

Systdm 5120 Server under DG/UX Release 4.20 (Host & Target), ACVC 1.10.

DD tu' 1473 EDITION or I NOv 6s Is OBSOLETE
I JA 73 S/N 010Z-LF-014-660 UNCLASSIFIED

SECURPIY CLASSIFICATION Or THIS 5'AGE (WhernDaf Entered)

$0 04 4 __..

AiF Control Number: AVF-IABG-052

Ada COM4PILER
VALIDATION SUMMIARY REPORT:

Certificate Number: #89112411.102260
TeleSoft

TeleGen2 Ada Development System
Data General AVijON System 5120 Server

tinder DGiUX-Release 4.20

Comp~letion of On-Site testing:
24 November 1989

Prep~ared By:
IABG mbi,- Abt. SZiT
Einsteinstrasse 20
D-8012 Ottobrunn

West Germany

Prepared For:
ada -joint - Prograw Off ice

United-States Dt-partment of Defense
Vashington DC 20301-303^1

Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada Development System
Version 4.0

Certificate Number: #89112411.10220

Host and Target: Data General AViiON System 5120 Server
under DG/UX Release 4.20

Testing Completed 24 November 1989 Using ACVC 1.10

This report has been reviewed and is approved.

IABG mbH, Abt. SZT
Dr. S 1,1.lbrunner
E in 20
D- 'nn
We

Accesion For

-" _ _NT)S CRA&I

Ada Validation Organization DT'C TA8 0
Director, Computer & Software Engineering Division Uniar-non;.cc-d 0
Institute for Defense Analyses JJstificuoj,;
Alexandria, VA 22311

BY
Distiibutio"il

t 9'f - -i Availability- Codes

Ada Joint Program Office Dist SAvp ndr

Dr John Solomond

Department of Defense ,dI _ _ _

Washington DC 20301 -

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUINMARY REPORT 2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 3
1.? REFERENCES 4
1.4 DEFINITION OF TERMS 4
1.5 ACVC TEST CLASSES 5

CHAPTER 2 CONFIGURATION INFORMATION 8

2.1 CONFIGURATION TESTED 3
2.2 IMPLEMENTATION CHARACTERISTICS 9

CHAPTER 3 TEST INFORMATION15

3.1 TEST RESULTS15
3.2 SUMMARY OF TEST RESULTS BY CLASS15
3.3 SUMMARY OF TEST RESULTS BY CHAPTER16
3.4 WITHDRAWN TESTS16
3.5 INAPPLICABLE TESTS16
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 20
3.7 ADDITIONAL TESTING INFORMATION20

3.7.1 Prevalidation20
3.7.2 Test Method20
3.7.3 Test Site 21

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER AND LINKER OPTIONS

i

INTRODUCTION

CRAPTER 1

INTRODUCTION

This Validation Summary Report Q94tSR-)- describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/UIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (7AC-VCi-). ':An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

-The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the AdalStandard by testing that the compiler properly
implements legal languag constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution.

1.1 PURPOSE OF THIS VAbIDATTON SUMMARY REPORT (

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

NITRODUCTION

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by the AVF according to
procedures established by the Ada Joint Program Office and administered by
the Ada Validation Organization (AVO).

1.2 USE OF THIS VALIDATION SUNMARY REPORT

Consistent with the national laws of the originating country, the VO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"
(5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and' compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washi:,gton DC 20301-3081

or from:
IABG mbH, Abt. SZT
Einsteinstr. 20
D-8012 Ottobrunn
West Germany

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institlife for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

INTRODUCTION

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/14IL-STD-1815A, February 1983 and iSO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations acctrding to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. in the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

The computer on which the compiler resides.

INTRODUCTION

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the -xpected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdzawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile beraiise the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. it also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and

,ests. However, some tesLs contain values that require the test to be

INTRODUCTTON

customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

.OHFTG;,RATIO'-,! 11,;FORIZTION

CHAPTER 2

i"t'T147.iGURAT ItFORATTi-N

2.1 CONFIGURATTON TESTED

The candidate compilation system for this laliil.ion ,.s ce4 ln(;er the
following configuration:

Compiler: TeleGen2 Ada Development System

Version 4.0

ACVC Version: 1.10

Certificate Number: 48911241i.10220

Host and Target Computer:

M.achine: Data General AViiONT System
5120 Server

Operating System: DG/UX Release 4.20

Memory Size: 16 r.egaBytes

CONFIGURATTOR T IATIO?

2.2 !MPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

1) The compiler correctly processes a compi.ation
containing 723 variables in the same declarative part. (See
test D29002K.)

2) The compiler correctly processes tests containing
loop statements nested to 65 levels. (See tests D55AO3A..H
(8 tests).)

3) The compiler correctly processes tests containing
block statements nested to 65 levels. (See test D5600B.)

4) The compiler correctly processes tests containing
recursive procedures separately compiled as subunits nested to
17 levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

1) This implementation supports the additional predefined types
SHORTINTEGER, SHORT SHORTINTEGER and LONG FLOAT in the
package STANDARD. (See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

1) Some of the default initialization expressions
for record components are evaluated before any value is
checked for membership in a component's subtype. (See test
C32117A.)

2) Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

3) This implementation uses no extra bits for extra precision
and uses no extra bits for extra range. (See test C35903A.)

4) NUNERICERROR is raised for predefined and largest integer

CONFIGURATION WTFORMATION

comparison tests, and NUMERICERROR is raised for predefined
and largest integer membership tests, and no exception is
raised for smallest integer membership tests when an integer
literal operand in a comparison or membership test is outside
the range of the base type. (See test C45232A.)

5) NUMERICERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

6) Underflow is not gradual. (See tests C45524A..Z (26
tests).)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. Vhile the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

1) The method used for rounding to integer is round to even.
(See tests C46012A..Z (26 tests).)

2) The method used for rounding to longest integer is round
to even. (See tests C46012A..Z (26 tests).)

3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINTERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises no exception under the
specific circumstances test C36003A.

2) NUMERIC ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

3) NUMERIC ERROR is raised when an array type with
SYSTEM.MAXINT + 2 components is declared. (See test
C36202B.)

4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGZR'LAST

C0

CONFIGURATION INFORMATION

raises NUNERICERROR. (See test C52103X.)

5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when the length
of a dimension is calculated and 'xceeds INTEGER'LAST. (See
test C52104Y.)

6) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT-ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

7) In assigning two-dimensional array types, the expression
is not evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

8) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINTERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERICERROR. (See test E52103Y.)

f. Discriminated types.

1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

1) In the evaluation of a multi-dimensional aggregate, the test
results indicate that index subtype checks are
made as choices are evaluated. (See tests C43207A and
C43207B.)

2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

3) CONSTRAINTERROR is raised after all choices are
elialuated when a bound in a non-null range of a non-null
aggregate does not belong to an index subtype. (See test
E43211B.)

CONFIGURATION INFORMATION

h. Pragmas.

1) The pragma INLINE is not supported for procedures or func-
tions. (See tests LA3004A..B (2 tests), EA3004C..D (2 tests),
and CA3004E..F (2 tests).)

i. Generics.

This implementation creates a dependence between a generic body
and those units which instantiate it. As allowed by IA-408/11, if
the body is compiled after a unit that instantiates it, then that
unit becomes obsolete.

1) Generic specifications and bodies can be compiled
in separate compilations. (See tests CA1O12A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be
compiled in separate compilations. (See tests CA1012A and
CA2009F.)

3) Generic library subprogram specifications and bodies can
be compiled in separate compilations. (See test
CAI012A.)

4) Generic non-library package bodies as subunits can
be compiled in separate compilations. (See test CA2009C.)

5) Generic non-library subprogram bodies can be
compiled in separate compilations from their stubs. (See test
CA2009F.)

6) Generic unit bodies and their subunits can be
compiled in separate compilations. (See test CA3O11A.)

7) Generic package declarations and bodies can be
compiled in separate compilations. (See tests CA2009C,
BC3204C, and BC3205D.)

CONFIGURATION INFORMATION

8) Generic library package specifications and bodies can
be compiled in separate compilations. (See tests
BC3204C and BC3205D.)

9) Generic unit bodies and their subunits can be
compiled in separate compilations. (See test CA3O11A.)

j. Input and output.

1) The package SEQUENTIAL 10 can be instantiated with uncon-
strained array types or record types with discriminants with-
out defaults. (See tests AE210C, EE2201D, and EE2201E.)

2) The package DIRECT _O cannot be instantiated with uncon-
strained array types or record types with discriminants with-
out defaults. (See tests AE2101H, EE2401D, and EE2401G.)

3) Modes INFILE and OUTFILE are supported for SEQUENTTALIO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

4) Modes IN FILE, OUT FILE, and INOUT FILE are supported for
DIRECTIO. (See tests CE2102F, CE21021..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

5) Modes !NJILE and OUTFILE are supported for text files.
(See tests CE3102E and CE3102I..K (3 tests).)

6) RESET and DELETE operations are supported for
SEQUENTIALTO. (See tests CE2102G and CE2102X.)

7) RESET and DELETE operations are supported for DIRECT_10.
(See tests CE2102K and CE2102Y.)

8) RESET and DELETE operations are supported for text
files. (See tests CE3102F..G (2 tests), CE3104C, CE311OA, and
CE3114A.)

9) Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

10) Temporary sequential files are given names and not
deleted when closed. (See test CE2108A.)

11) Temporary direct files are not given names and not
deleted when closed. (See test CE2108C.)

12) Temporary text files are not given names and not deleted
when closed. (See test CE3112A.)

CONFIGURATION INFORMATION

13) More than one internal file can be associated with
each external file for sequential files when reading
only. (See tests CE2107A..E (5 tests), CE2102L, CE211OB, and
CE211lD.)

14) More than one internal file can be associated with
each external file for direct files when reading only. (See
tests CE2107F..H (3 zests), CE2I1OD and CE2111H.)

15) More than one internal file can be associated with
each external file for text files when reading only (See
tests CE3111A..E (5 tests), CE3114B, and CE3115A.)

14

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 312 tests were inapplicable to this implementation.
All inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding
that supported by the implementation. Modifications to the code,
processing, or grading for 12 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E. L

Passed 128 1130 2018 17 24 44 3361

Inapplicable 1 8 297 0 4 2 312

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

TEST 1INFORMATION

3.3 SUhARY OF TEST RESULTS BY CHAPTER

RESULT TEST CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 1: 13 14

Passed 198 573 545 244 172 99 161 132 129 36 25C 341 281 3361

N/A 14 76 135 4 0 0 5 0 8 0 2 28 40 312

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 A04 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10
at the time of this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84N CD2A84U CD5O11O CD2BI5C CD7205C CD2DIlB
CD5007B ED7004B ED7005C ED7005D ED7006C ED7006D
CD7105A CD7203B CD7204B CD7205D CE21071 CE3I11C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 312 tests were inapplicable for

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTE1. MAXDIGITS:

C24113L..Y (14 tpsts) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707b..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C452,,T. . 1tC L . 14 11 test

TEST INFORMATION

C45421L..Y (14 tests) C45521L..Z (15 tests)

C45524L..Z (15 tests) C4562!L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

b. C355081, C35508J, C35508*., and C355081 are not applicable because
they include enumeration representation clauses for BOOLEAN types
in which the representation values are other than (FALSE => 0,
TRUE => 1). Under the terms of AI-00325, this implementation is
not required to support such representation clauses.

c. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT-FLOAT.

d. .,C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because they acquire a value of SYSTEM.MAX-MANTISSA greater than
32.

e. C52008B is not applicable because this implementation generates
code to calculate the maximum object size for type REC2 at run
time which yields a number exceeding INTEGER'LAST and raises
NUMERIC_ERROR.

t. C86001F is not applicable because, for this implementation, the
package TEX'Tio is dependent upon package SYSTEM. These tests
recompile package SYSTEM, making package TEXT_10, and
hence package REPORT, obsolete.

g. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

h. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG-FLOAT, or SHORT FLOAT.

i. The following 16 tests are not applicable because this
implementation does not support a predefined type LONGINTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09C B86001W
CD71O1F

j. CA2009C, CA2009F, BC3204C and BC3205D are not applicable because
this implementation creates a dependence between a generic body
and those units which instantiate it (See Section 2.2.i and
Appendix F of the Ada Standard).

k. LA3004A, EA3004C, and CA3004E are not applicable because this
implementation does not support pragma INLINE for procedures.

I T 'A.A .A D V7k I " v f Ae A* v I, all A CAvv.*r are ao t applicable because this

TEE" TNFOR.ATION

implementation does not support pragma PILINIE for functions.

m. CD1009C, CD2A41..B (2 tests), CD2A41E and CD2A42A..J (10 tests)
are not applicable because of restrictions on 'SIZE length clauses
for floating point types.

n. CDICO4E is not applicable because this implementation does not
support component clauses specifying more than 8 bits for boolean
componeats of a record.

o. CD2A61I..J (2 tests) are not applicable because of restrictions on
'SIZE length clauses for array types.

p. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because of restrictions on 'SIZE 3ength clauses for access types.

q. AE2101H, EE2401D, and EE240IG use instantiations of package
DIRECT10 with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

r. CE2102D is inapplicable because this implementation supports
CREATE with INFILE mode for SEQUENTIAL_10.

s. CE2102E is inapplicable because this implementation supports
CREATE with OUT-FILE mode for SEQUEUTIAL_10.

t. CE2102F is inapplicable because this implementation supports
CREATE with INOUTFILE mode for DIRECT_10.

u. CE2102I is inapplicable because this implementation supports
CREATE with INFILE mode for DIRECTTO.

v. CE2102J is inapplicable because this implementation supports
CREATE with OUT-FILE mode for DIRECTIO.

w. CE210211 is inapplicable because this implementation supports OPEN
with INFILE mode for SEQUENTIALIO.

x. CE21020 is inapplicable because this implementation supports RESET
with INFILE mode for SEQUENTIALIO.

y. CE2102P is inapplicable because this implementation supports OPEN
with OUT-FILE mode for SEQUENTIAL_IO.

z. CE2102Q is inapplicable because this implementation supports RESET
with CUT FILE mode for SEQUENTIAL_10.

aa. CE2102R iF inapplicable because this implementation supports OPEN
with I;OUTFILE mode for DIRECTIO.

TEST T:IFORMATION

ab. CE2102S is inapplicable because this implementation supports RESET
with INOUTFILE mode for DIRECT-TO.

ac. CE2102T is inapplicable because this implementation supports OPEN
with IN .-ILE mode for DIRECTIO.

ad. CE2102U is J'nplicable because this implementation supports RESET
with IN FILE mode for DIRECT To.

ae. CE2102V is inapplicable because this implementation supports OPEN
with OUTFILE mode for DIRECTTO.

at. CE2102V is inapplicable because this implementation supports RESET
with OUT-FILE mode for DIRECT_10.

ag. CE2107B..E (4 tests), CE2107L, CE21l0B, and CE2111D are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing
for sequential files. The proper exception is raised when
multiple access is attempted.

ah. CE2107G..H (2 tests), CE2110D, and CE2111H are not applicable
because multiple internal files cannot be associated with the same
external file when one or more files is writing for direct files.
The proper exception is raised when multiple access is attempted.

ai. CE3102E is inapplicable because text file CREATE with INFILE mode
is supported by this implementation.

aj. CE3102F is inapplicable because text file RESET is supported by
this implementation.

ak. CE3102G is inapplicable because text ile deletion of an external
file is supported by this implementation.

al. C33102I is inapplicable because text file CREATE with OUTFILE
mode is supported by this implementation.

am. CE3102J is inapplicable because text file OPEN with INFILE mode
is supported by this implementation.

an. CE3302K is inapplicable because text file OPEN with OUTFILE mode
is supported by this implementation.

ao. CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing for
text files. The proper exception is raised when multiple access
is attempted.

ES I r FO

3.6 TEST, PF0CESSITG, AN'D EVALUATioIr 10DIFICATIONS

it is expected that some tests wu.jl require modifications of code,
processing, or evaluation in order to comtpensate for 'Legitiwite
implementation behavior. M~odifications are made by the AVF in cases wher;e
legitim~ate implementation behavior prevents rie succ-ssfill K'oc~ipletion of an
(otherwisv) applicable test. Examples of -"ch 'oi f i(-tt ions inclivie:
adding a 1Length clause to alter the defauic size of Aolection 6r.lrtin
ti Class B test into subtests so that alIl errors -t re 4 t tr; -. I
confrmnmg that messages produced by An -:coutable test (ieontrzv-
conforming behavior that was not anticipated by the -isr ,such is
one exception instead of another).

Modifications were required for 12 tests.

The following tests were split because syntax ervors ar nne point r e sulte d
in the compiler not detecting other errors in the test:

B71001E B71001K B71001Q B7i001TJ BA2001C
BA2001E BA3006A BA3006B BA3007B BA3008A
BA3008B BA3013A1 (6 and 7N)

3 .7 ADDITI~iTAL TE.STINrG IiJFORM'ATIOM

3.7.1 Prevalidatiom

Prior to validation, a set of test results for ACVC Version 1.10 pr''duced
by rhi TeleGen2 Ada Development System for a computing -;stn basedt on
the same instrnction set architecture was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
We~NW? System successfully passed all applicable tests, and it
exhi,)ited the expected behavior on all inapplicable t-ests. The appLicant
cer-ifiei that testing results for the computing systemq of this -:alidation
would be identical to the ones submitted. for review prior to -'aiiacion.

3.7.2 Test Mjethod

Testing of the TeleGen2 Ada De~velopment System Version 4.0 using A CV C
Version 1.10 was conducted on-site by a validation ceam from~ he
AVF. The configuration in which the testing was performed is
described by the following designations of hardware and software comipo-
nents:

Host and Target Com~puter: Data General AVijiTl Syst,-
5120 Server

Host and Target Operating System: DG/UXY Release dl.20

TEST 1IiFORMATTON

A cartridge containing the customized test suite was loaded onto a SUN-3
and transferred via Ethernet to an intermediate computer. The customized
test suite was then written to a cartridge in a different format and loaded
onto the host computer. Results were collected on the host computer where
they were evaluated and archived.

The compiler was tested using command scripts provided by TeleSoft
and reviewed by the validation team. The tests were compiled using the
command

ada -S -1 +enable traceback -W -debuginfo <filename>

and linked with the command

ald -S -b -1 +linktarget=bbn <main unit>

The -L qualifier was added to the compiler call for class B, expanded and
modified tests. See Appendix E for explanation of compiler and linker
switches.

Tests were compiled, linked, ard executed (as appropriate) using one com-
puter. Test output, compilz' :.n listings, and job logs were captured on
cartridge and archived at t .VF. The listings examined on-site by the
validation team were also a:d!,ived.

3.7.3 Test Site

Testing was conducted at TeleSoft, San Diego, USA, and was completed on
24 November 1989.

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

TeleSoft has submitted the following Declaration of Conformance concerning
the TeleGen2 Ada Development System compiler, Version 4.0.

DECLARATION OF CONFORMANCE

Compiler Implementor: TELESOFT
Ada Validation Facility: IABG, Dept. SZT, D-8012 Ottobrunn
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: TeleGen2 Ada Development System

Version: 4.0

Host Computer System: Data General AViiON 5120 Server (under DG/UX Release 4.20)

Target Computer System: Same as Host

Customer's Declaration

I, the undersigned, representing TELESOFT, declare that TELESOFT has no knowledge
of deliberate deviations rom the Ada La uage Standard ANSI/MIL-STD-1815A in the
imp entation(s) li ted i this declar ion.

'I _ ___ Date: C;2/-
, TELESOFT

Raymond A. Parra, Vice Presdent and General Counsel

;PPENDIX F OF THE kda STANDARD

APPEI;DIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the TeleGen2 Ada Development System compiler Version
4.0, as described in this Appendix, are provided by TeleSoft. Unless
specifically noted otherwise, references in this appendix are to compiler
documentation and not to this report. Implementation-specific portions
of the package STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHOFT _ITEGER is range -32768 .. 32767;
type SHORTSHORTINTEGER is range -128..127;

type FLOAT is digits 6 range -1.70141E+38 .. 1.70141E+38;
type LONG FLOAT is digits 15

range -8.98846567431158E+307 .. 8.98846567431158E+307;

type DURATION is delta 2#1.0#E-14 range -86400.0 .. 86400.0;

end STANDARD;

ATTACHMENT B

Appendix F OF THE Ada LANGUAGE REFERENCE MANUAL

1. Implementation Dependent Pragmas
2. Implementation Dependent Attributes
3. Specification of Package SYSTEM
4. Restrictions on representation clauses
5. Implementation dependent naming
6. Interpretation of expressions in address clauses
7. Restrictions on unchecked conversions
8. 1/0 Package characteristics

10OCT89 Page 20

Appendix F

1. Implementation Dependent Pragmas

pragma COM2IENT (<string literal>);
It may only appear within a compilation unit.
The pragma comment has the effect of embedding the given
sequence of characters in the object code of the compilation unit.

pragma LINKNAME(<subprogramname>, <string literal>);
It may appear in any declaration section of a unit.
This pragma must also appear directly after an interface pragma
for the same <subprogram._name>. The pragma linkname has the
effect of making string_literal apparent to the linker.

pragma INTERRUPT(FunctionMapping);
It may only appear immediately before a simple accept statement,
a while loop directly enclosing only a single accept statement,
or a select statement that includes an interrupt accept alternative.
The pragma interrupt has the effect that entry calls to the
associated entry, on behalf of an interrupt, are made with a
reduced call overhead.

pragma IMAG ES(<enumerationtype>,Deferred) or
pragma IMAG ES(<enumeration_type>,Immediate);
It may only appear within a compilation unit.
The pragma images controls the creation and allocation of
the image table for a specified enumeration type. The
default is Deferred, which saves space in the literal pool
by not creating an image table for an enumeration type
unless the 'Image, 'Value, or 'Width attribute for the type
is used. If one of these attributes is used, an image table
is generated in the literal pool of the compilation unit in
which the attribute appears. If the attributes are used in

more than one compilation unit, more than one image table is
generated, eliminating the benefits of deferring the table.

pragma SUPPRESSALL;
It may appear anywhere that a Suppress pragma may appear as
defined by the Language Reference Manual. The pragma

Suppress All has the effect of turning off all checks
dtzined in section ii.7 of the Language Reference Manuai.
The scope of applicablility of this pragma is the same as
that of the pre-defined pragma Suppress.

10OCT89 Page 21

Appendix F, Cont.

2. Implementation Dependent Attributes

'Offset Attribute

'Offset along with the attribute 'Address. facilitates machine code
insertions. For a prefix P that denotes a declared parameter
object, P'Offset yields the statically known portion of the
address of the first of the storage units allocated to P. The
value is the object's offset relative to a base register and is
of type LongInteger.

INTEGER ATTRIBUTES

'ExtendedImage Attribute

Usage: X'ExtendedImage(Item,Width,Base,Based,Space-IF _Positive)

Returns the image associated with Item as per the Text Io definition.
The Text Io definition states that the value of Item is an integer
literal with no underlines, no exponent, no leading zeros
(but a single zero for the zero value) and a minus sign if negative.
If the resulting sequence of characters to be output has fewer than
Width characters then- leading spaces are first output to make up
the difference. (LRM 14.3.7:10,14.3.7:11)

For a prefix X that is a discrete type or subtype; this attribute
is a function that may have more than one parameter. The parameter
Item must be an integer value. The resulting string is
without underlines, leading zeros, or trailing spaces.

10OCT89 Page 22

Appendix F, Cont.

Parameter Descriptions:

Item -- The user specifies the item that he wants the
image of and passes it into the function. This
parameter is required.

Width - The user may specify the minimum number.of
characters to be in the string that is returned.
If no width is specified then the default (0) is
assumed.

Base - The user may specify the base that the image is
to be displayed in. If no base is specified then
the default (10) is assumed.

Based - The user may specify whether he wants the string
returned to be in base notation or not. If no
preference is specified then the default (faise)
is assumed.

Space If Positive -- The user may specify whether or not the sign bit
of a positive integer is included in the string
returned. If no preference is specified then
the default (false) is assumed.

Examples:

Suppose the following subtype was declared:

Subtype X is Integer Range -10..16;

Then the following would be true:

X'Extended Image(5) - "5"
X'Extended Image(5,0) - "5"
X'Extended Image(5,2) =uI 5"
X'Extended _Image(5,0.2) - "101"
X'Extended Image(5,4,2) i"1 01"
X'Extended Image(5,0,2,True) = ,,2-101"
X'Extended Image(5,0,10,False) = "5"
X'Extended _Image(5.0,10,False,True) = " 5"
X'Extended Imae(-,0,10,False,False) = "-I"

X'Extended Imae(-1,0,10,False,True) ="-"

X'Extended Image(-1 ,1, 10,False,True) = "-1"
X'Extended Image(-1,0,2,True,True) = "-2-"
X'Extended Image(-1,10,2,True,True) = ,, -- ,,

10OCT89 Page 23

p

Appendix F, Cont.

'ExtendedValue Attribute

Usage: X'ExtendedValue(Item)

Returns the value associated with Item as per the Text Io definition.
The Text Io definition states that given a string, it reads an
integer value from the beginning of the string. The value returned
corresponds to the sequence input. (LRM 14.3.7:14)

For a prefix X that is a discrete type or subtype; this attribute
is a function with a single parameter. The actual parameter Item

must be of predefined type string. Any leading or trailing
spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINTERROR is raised.

Parameter Descriptions:

Item -- The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type X.

Examples:

Suppose the following subtype was declared:

Subtype X is Integer Range -10..16;

Then the following would be true:

X'ExtendedValue("5") = 5
X'ExtendedValue(" 5") = 5
X'ExtendedValue("2#101#) 5
X'Extended Value("-1") = -1

X'ExtendedValue(" -1") = -1

10OCT89 Page 24

Appendix F, Cont.

'ExtendedWidth Attribute

Usage: X'Extended Width (Base,Based,SpaceIfPositive)

Returns the width for subtype of X.

For a prefix X that is a discrete subtype; this attribute
is a function that may have multiple parameters. This attribute
yields the maximum image length over all values of the type
or subtype X.

Parameter Descriptions:

Base -- The user specifies the base for which the width
will be calculated. If no base is specified
then the default (10) is assumed.

Based -- The user specifies whether the subtype is stated
in based notation. If no value for based is
specified then the default (false) is assumed.

SpaceIfPositive - The user may specify whether or not the sign bit
of a positive integer is included in the string
returned. If no preference is specified then the
default (false) is assumed.

Examples:

Suppose the following subtype was declared:

Subtype X is Integer Range -10..16;

Then the following would be true:

X'Extended Width 3 - "-10"

X'ExtendedWidth(10) 3 -- "10

X'ExtendedWidth(2) = 5 - "10000"
X'Extended Width(10,True) = 7 t- - .M"

X'Extended Width(2,True) = 8 - "2#-10000#

X'Extended Width(10,False,True) = 3 - 1 16"
X'ExtendedWidth(10,True.False) = 7 -- "40#10Y"
X"ExtendedWidth(10,True,True) = 7 -- " 10#16 "
X'ExtendedWidth(2,True,True) = 9 -- " 2#10000#"
X'ExtendedWidth(2,False,True) = 6 -- "10000"

10OCT89 Page 25

Appendix F, Cont.

ENUMERATION ATTRIBUTES

'Extended Image Attribute

Usage: X'ExtendedImage(Item,Width,Uppercase)

Returns the image associated with Item as per the Text lo definition.
The Text lo definition states that given an enumeration literal,
it will output the value of the enumeration literal (either an
identifier or a character literal). The character case parameter
is ignored for character literals. (LRM 14.3.9:9)

For a prefix X that is a discrete type or subtype; this attribute
is a function that may have more that one parameter. The parameter
Item must be an enumeration value. The image of an enumeration
value is the corresponding identifier which may have character case
and return string width specified.

Parameter Descriptions:

Item - The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.

Width - The user may specify the minimum number of characters to
be in the string that is returned. If no width is
specified then the default (0) is assumed. If the Width
specified is larger than the image of Item, then the
return string is padded with trailing spaces; if the
Width specified is smaller than the image of Item then
the default is assumed and the image of the enumeration
value is output completely.

Uppercase - The user may specify whether the returned string is in
uppercase characters. In the case of an enumeration
type where the enumeration literals are character
literals, the Uppercase is ignored and the case
specified by the type definition is taken. If no
preference is specified then the default (true) is
assumed.

10OCT89 Page 26

Appendix F, Cont.

Examples:

Suppose the following types were declared:

Type X is (red, green, blue, purple);
Type Y is ('a', 'B', 'c', 'D');

Then the following would be true:

X'ExtendedImage(red) "RED"
X'ExtendedImage(red, 4) - "RED "

X'ExtendedImage(red,2) = "RED"
X'ExtendedImage(red,O,false) = "red"
X'Extended_Image(red,10,false) "red
Y'Extended_Image('a') = "a"

Y'ExtendedImage('B') "'B'
Y'ExtendedImage('a',6) "'a' "

Y'Extended Image('a',0,true) "'a"'

'Extended Value Attribute

Usage: X'ExtendedValue(Item)

Returns the image associated with Item as per the TextIo definition.
The TextIo definition states that it reads an enumeration value
from the beginning of the given string and returns the value of
the enumeration literal that corresponds to the sequence input.
(LRM 14.3.9:11)

For a prefix X that is a discrete type or subtype; this attribute
is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing
spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINTERROR is raised.

Parameter Descriptions:

Item -- £he user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type of X.

10OCT89 Page 27

Appendix F, Cont.

Examples:

Suppose the following type was declared:

Type X is (red, green, blue, purple);

Then the following would be true:

X'Extended Value("red") red
X'ExtendedValue(" green") green

X'Extended Value(" Purple") = purple
X'ExtendedValue(" GreEn ") - green

'ExtendedWidth Attribute

Usage: X'Extended Width

Returns the width for subtype of X.

For a prefix X that is a discrete type or subtype; this attribute
is a function. This attribute yields the maximum image length over

all values of the enumeration type or subtype X.

Parameter Descriptions:

There are no parameters to this function. This function
returns the width of the largest (width) enumeration literal
in the enumeration type specified by X.

Examples:

Suppose the following types were declared:

Type X is (red, green. blue, purple);
Type Z is (Xl, X12, X123, X1234);

Th-I the .ll.in= -would be true:

X'Extended Width - 6 - "purple"
Z'Extended-Width = 5 - "X1234"

10OCT89 Page 28

Appendix F, Cont.

FLOATING POINT ATTRIBUTES

'Extended-Image Attribute

Usage: X'ExtendedImage(Item,Fore,Aft,Exp,Base,Based)

Returns the image associated with Item as per the Text Io definition.
The Text lo definition states that it outputs the value (f the
parameter Item as a decimal literal with the format defined by the
other parameters. If the value is negative then a minus sign
is included in the integer part of the value of Item. If Exp
is 0 then the integer part of the output has as many digits as
are needed to represent the integer part of the value of Item or
is zero if the value of Item has no integer part. (LRM 14.3.8:13,
14.3.8:15)

For a prefix X that is a discrete type or subtype; this attribute
is a function that may have more than one parameter. The parameter
Item must be a Real value. The resulting string is
without underlines or trailing spaces.

Parameter Descriptions:

Item .- The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.

Fore - The user may specify the minimum number of characters for
the integer part of the decimal representation in the
return string. This includes a minus sign if the
value is negative and the base with the '#' if based
notation is specified. If the integer part to be output
has fewer characters than specified by Fore, then leading
spaces are output first to make up the difference. If no
Fore is specified then the default (2) value is assumed.

Aft -- The user may specify the minimum number of decimal digits
after the decimal point to accommodate the precision desired.
If the delta of the type or subtype is greater than
0.1 then Aft is one. If no Aft is specified then the
default (X'Digits-1) is assumed. If based notation is
specified the trailing '#' is included in aft.

Exp -- The user may specify the minimum number of digits in the
exponent; the exponent consists of a sign and the exponent,
possibly with leading zeros. If no Exp is specified then
the default (3) is assumed. If Exp is 0 then no exponent
is used.

I0OCT89 Page 29

Appendix F, Cont.

Base -- The user may specify the base that the image is to be
displayed in. If no base is specified then the default
(10) is assumed.

Based -- The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.

Examples:

Suppose the following type was declared:

Type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X'ExtendedImage(5.0) i" 5.0000E+00"
X'ExtendedImage(5.0,1) - "5.0000E+00"
X'Extended Image(-5.0,1) = "-5.0000E+00"
X'ExtendedImage(5.0,2,0) = " 5.0E+00"
X'Extended_Image(5.0,2,0,0) -" 5.0"
X'ExtendedImage(5.0,2,0,0,2) - "101.0"
X'ExtendedImage(5.0,2,0,0,2,True) = "2#101.0#1"
X'Extended_Image(5.0,2,2,3,2,True) = 1'2#1.1#E+02"

'ExtendedValue Attribute

Usage: X'ExtendedValue(Item)

Returns the value associated with Item as per the Text Io definition.
The Text lo definition states that it skips any leading zeros,
then reads a plus or minus sign if present then reads the string
according to the syntax of a real literal. The return value is
that which corresponds to the sequence input. (LRM 14.3.8:9.
14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute
is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing
spaces in the string X are ignored. In the case where an illegal
string is passed. a CONSTRAINT ERROR is raised.

10OCT89 Page 30

Appendix F, Cont.

Parameter Descriptions:

Item -- The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type of the input string.

Examples:

Suppose the following type was declared:

Type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X'ExtendedValue('5.0") - 5.0
X'ExtendedValue("0.5El") - 5.0
X'Extended Value('2#1.01 # E2") = 5.0

'ExtendedDigits Attribute

Usage: X'ExtendedDigits(Base)

Returns the number of digits using base in the mantissa of model
numbers of the subtype X.

Parameter Descriptions:

Base - The user may specify the base that the subtype is
defined in. If no base is specified then the default
(10) is assumed.

Examples:

Suppose the following type was declared:

Type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X'ExtendedDigits = 5

10OCT89 Page 31

Appendix F, Cont.

FIXED POINT ATTRIBUTES

'ExtendedImage Attribute

Usage: X'Extended Image(ItemFore,Aft,Exp,BaseBased)

Returns the image associated with Item as per the Text lo definition.
The Text Io definition states that it outputs the value of the
parameter Item as a decimal literal with the format defined by the
other parameters. If the value is negative then a minus sign
is included in the integer part of the value of Item. If Exp
is 0 then the integer part of the output has as many digits as
are needed to represent the integer part of the value of Item or
is zero if the value of Item has no integer part. (LRM 14.3.8:13,
14.3.8:15)

For a prefix X that is a discrete type or subtype; this attribute
is a function that may have more than one parameter. The parameter
Item must be a Real value. The resulting string is
without underlines or trailing spaces.

Parameter Descriptions:

Item - The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.

Fore - The user may specify the minimum number of characters for
the integer part of the decimal representation in the
return string. This includes a minus sign if the
value is negative and the base with the '#' if based
notation is specified. If the integer part to be output
has fewer characters than specified by Fore, then leading
spaces are output first to make up the difference. if no
Fore is specified then the default (2) value is assumed.

Aft - The user may specify the minimum number of decimal digits
after the decimal point to accommodate the precision desired.
If the delta of the type or subtype is greater than
0.1 then Aft is one. If no Aft is specified then the
default (X'Digits-1) is assumed. If based notation is
specified the trailing '#' is included in aft.

Exp -- The user may specify the minimum number of digits in the
exponent; the exponent consists of a sign and the exponent,
possibly with leading zeros. If no Exp is specified then
the default (3) is assumed. If Exp is 0 then no exponent
is used.

I0OCT89 Page 32

Appendix F, Cont.

Base - The user may specify the base that the image is to be
displayed in. If no base is specified then the default
(10) is assumed.

Based - The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.

Examples:

Suppose the following type was declared:

Type X is delta 0.1 range -10.0 .. 17.0;

Then the following would be true:

X'Extended_lmage(5.0) = " 5.00E+00"
X'ExtendedImage(5.0,1) = "5.00E+00"
X'ExtendedImage(-5.0,1) = "-5.00E+00"
X'Extended_Image(5.0,2,O) = " 5.0E+00"
X'ExtendedImage(5.0,2,0,0) i t 5.0"
X'ExtendedImage(5.0,2,0,0,2) 1101.01"
X'Extended_Image(5.0,2,0,0,2,True) = "2#101.0#"
X'Extended Image(5.0,2,2,3,2,True) = "2#1.1#E+02"

'ExtendedValue Attribute

Usage: X'ExtendedValue(Image)

Returns the value associated with Item as per the Text Io definition.
The Text lo definitior states that it skips any leading zeros,
then reads a plus or minus sign if present then read the string
according to the syntax of a reai literal. The return value is
that which corresponds to the sequence input. (LRM 14.3.8:9.
14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute
is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing
spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT ERROR is raised.

10OCT89 Page 33

Appendix F, Cont.

Parameter Descriptions:

Image - The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type of the input string.

Examples:

Suppose the following type was declared:

Type X is delta 0.1 range -10.0 .. 17.0;

Then the following would be true:

X'ExtendedValue("5.0") 5.0
X'ExtendedValue("0.5El") = 5.0
X'Extended Value("2# 1.01# E2") = 5.0

'ExtendedFore Attribute

Usage: X'ExtendedFore(Base,Based)

Returns the minimum number of characters required for the integer
part of the based representation of X.

Parameter Descriptions:

Base -- The user may specify the base that the subtype would be
displayed in. If no base is specified then the default
(10) is assumed.

Based -- The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.

I0OCT89 Page 34

Appendix F, Cont.

Examples:

Suppose the following type was declared:

Type X is delta 0.1 range -10.0 .. 17.1;

Then the following would be true:

X'Extended Fore 3 -- "-10"

X'Extended-Fore(2) - 6 - "10001"

'ExtendedAft Attribute

Usage: X'Extended Aft(Base,Based)

Returns the minimum number of characters required for the fractional
part of the based representation of X.

Parameter Descriptions:

Base - The user may specify the base that the subtype would be
displayed in. If no base is specified then the default
(10) is assumed.

Based - The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.

Examples:

Suppose the following type was declared:

Type X is delta 0.1 range -10.0 .. 17.1;

Then the following would be true:

X'Extended Aft 1 -- "1" from 0.1
X'Extended Aft(2) = 4 - "0001" from 2r0.0001-

10OCT89 Page 35

Appendix F, Cont.

3. Specification of Package SYSTEM

with UncheckedConversion;

package System is

- CUSTOMIZABLE VALUES

type Name is (TeleGen2);

SystemName constant name := TeleGen2;

Memory Size : constant := (2 ** 31) -1; -Available memory, in storage units
Tick : constant := 1.0 / 100.0; -Basic clock rate, in seconds

-- NON-CUSTOMIZABLE, IMPLEMENTATION-DEPENDENT VALUES

StorageUnit : constant := 8;
Min Int constant -(2 ** 31);
MaxInt : constant (2 ** 31) - 1;
Max-Digits : constant := 15;
Max Mantissa : constant := 31;
Fine-Delta : constant := 1.0 / (2 * Max-Mantissa);

subtype Priority is Integer Range 0 .. 63;

- ADDRESS TYPE SUPPORT

type Memory is private;
type Address is access Memory;

NullAddress: constant Address := null:

type AddressValue is range-(2"'31)..(2*'31)-1;

function Location is new Unchecked Conversion (Address-Value. Address);

function Label (Name: String) return Address;

pragma Interface (META, Label);

10OCT89 Page 36

function ">" (Left, Right: Address) return Boolean;
pragma Interface (META, 11>11);

function "<" (Left, Right: Address) return Boolean:
pragma Interface (META, 11<It);

function ">=" (Left, Right: Address) return Boolean;
pragma Interface (META, 1I>="1);

function "<=" (Left, Right: Address) return Boolean;pragma Interface (META, 11<="1);

function "±" (Left: Address; Right: Address Value) return Address;
function "+" (Left: Address Value; Right: Address) return Address;
pragma Interface (META, "+'");

function "-" (Left: Address; Right: AddressValue) return Address;
function h-" (Left: Address; Right: Address) return AddressValue;
pragma Interface (META, t-");

- CALL SUPPORT

type SubprogramValue IS
record
Proc addr : Address;
Parent frame : Address;

end record;

procedure Call- (Subprogram: Subprogram Value);
procedure Call (Subprogram: Address);

pragma Interface (META. Call);

MaxObject Size : CONSTANT := Max Int;
Max Record Count : CONSTANT := Max Int;
Max-Text loCount : CONSTANT := Max -Int-1;
Max-Textlo-Field : CONSTANT := 1000;

private
type Memory is
record

null;
end record;

end System;

10OCT89 Page 37

Appendix F, Cont.

4. Restrictions on Representation Clauses

The hardware needs a minimum of 32 bits to represent floating point
and access types. Therefore, specifying a size of less than 32 bhs cannot
be handled simply by the underlying hardware (LRM 13.1 (10)).

The Compiler supports the following representation clauses:

Length Clauses: for enumeration and derived integer types 'SIZE
attribute (LRM 13.2(a))

Length Clauses: for composite types 'SIZE attribute (LRM 13.2(a)
Size clauses for composite types are rejected when the
specified size implies compression of composite components.

Length Clauses: for access types 'STORAGESIZE attribute (LRM 13.2(b))

Length Clauses: for tasks types 'STORAGE SIZE attribute (LRM 13.2(c))

Length Clauses: for fixed point types 'SMALL attribute (LRM 13.2(d))

Enumeration Clauses: for character and enumeration types other than
boolean (LRM 13.3)

Record representation Clauses (LRM 13.4) with following constraints:
- Each component of the record must be specified with

a component clause.
- The alignment of the record is restricted to mod 2,

word (16 bit)aligned.

- Bits are ordered right to left within a byte.

Address Clauses: for objects, entries and external subprograms
(pragma INTERFACE used) (LRM 13.5(a)(c))

This compiler does NOT support the following representation clauses:

Enumeration Clauses: for boolean (LRM 13.3)

Address Clauses: for packages, task units, and non-external Ada
subprograms (LRM 13.5(b))

100CT89 Page 38

Appendix F, Cont.

5. Implementation dependent naming conventions

There are no implementation-generated names denoting implementation
dependent components.

6. Interpretation of Expressions in Address Clause

Expressions that appear in address specifications are interpreted as the
first storage unit of the object.

7. Restrictions on Unchecked Conversions

Unchecked conversions are allowed between any types or subtypes unless
the target type is an unconstrained record or array type.

8. 1/O Package Characteristics

Sequential 10 can be instantiated for unconstrained array
types or unconstrained types with discriminants without default values,
but not Direct_10.

In TEXTIO the type COUNT is defined as follows:

type COUNT is range 0 .. 2_147483646;

In TEXTIO the subtype FIELD is defined as follows:

subtype F.IELD is INTEGER range 0..1000;

In TEXT 1O, the Form parameter of procedures Create and Open is not
supported. (If you supply a Form parameter with either procedure. it
is ignored.)

10OCT89 Page 39

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below:

Name and Heaning Value

SACCSIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

SBIGID1 199 * 'A' & '1'
An identifier the size of the
maximum input line length which
is identical to $BIGID2 except
for the last character.

$BIGID2 199 * 'A' &'2
An identifier the size of the
maximum input line length which
is identical to $BIG IDi except
for the last character.

SBIG_1D3 i0o * 'A, 3' & 99 * 'A'

An identifier the size of the
maximum input line length which
is identical to SBTrD4 except

TEST PARAMETERS

Nlame and M~eaning valite

for a character near the middle.

$BIG ID4 100 * 'V' & '4' & 99 *'A'

An identifier the size of the
maximum input line length which
is identical to $BIG -ID3 except
for a character near the middle.

$BIG INTLIT 197 * '0' & "298"0
An integer literal of v~alue 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG REAL -LIT 195 * '0' & "690.0"'
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRINlG! ' 100 ' ?A' & fl
Astring literal which when

catenated with BIGSTRihG2
yields the image of BIG ID1.

$BIG-STRIlG2 "'&99 k A &,4 111 I

A string literal which when
catenated to the end of
BI TIG yields the image of
BIGIDI.

SOBLAflKS 130
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTIA S-t 2 147 483_946
A universal integIer
literal whose value is
TEXT IO.COUflT'LAST.

$DEFAULT M1EN SIZE 2147483647
An integer literal whose value
is SYSTEM!.:*EMIORYSTZE.

$DET.AUL TSTORUlIT 3
An integer literal whose u'alue
is SYSTE4. STORAGE U3NIT .

TEST PARAMETERS

Name and Meaning Value

$DEFAULTSYSNAIE TELEGEN2
The value of the constant
SYSTEM. SYSTEM NAME.

$DELTADOC 2#1.0#E-31
A real literal whose value is
SYSTEN.FINEDELTA.

$FIELD LAST 1000
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

$FIXEDNAME NOSUCHFIXEDTYPE
The name of a predefined
fixed-point type other than
DURATION.

SFLOAT .NAME NO_SUCH_FLOAT TYPE
The name of a predefined
floating-point type other than
FLOAT, SHORT-FLOAT, or
LONGFLOAT.

$GREATERTHANDURATION 100000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATERTHANDURATIONBASELAST 131_073.0
A universal real literal that is
greater than DURATION'BASE'LAST.

SHIGH PRIORITY 63
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL EXTERNAL_FILENAMEl BADCHAR**/k
An external file name which
contains inlralid characters.

SILLEGALEXTENALFILENAME2 -14NAINE/DIRECTORY
An external file name uhich
is too long.

TEST PARAMETERS

Name and Reaning Value

$INTEGERFIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGERLAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLASTPLUS_1 2147483648
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESS THAN DURATION -100_000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESS THAN DURATION BASEFIRST -131_073.0
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOU ?RIORITY 0
An integer literal whose :alue
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SHAU;TSSADOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

SMAX DIGITS
:aximum digits supported for
floating-point types.

S!AX TITLEN 200
:aximum input line length
permitted by the implementation.

$S!AXTNT 2147183647
A universal integer literal
whose value is SYSTEM.MAX INT.

MAXINT PLUSI _447 483_;43
A uni',ersal integer literal
whose value is SYSTEM.NAXT!T+L.

TEST PARAMETERS

Name and Meaning Value

$1AX LENINTBASEDLITERAL "2:" & 195 * '0' & "11:"
A universal integer based
literal whose value is 2,#11#
with enough leading zeroes in
the mantissa to be .IAX IN LEN
long.

$MAXLEN REAL BASED_LITERAL "16:" & 193 * '0' & "F.E:"
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

S.4AX STRING-LITERAL '"' & 198 * 'A' &
A string literal of size
MAX IN LEN, including the quote
characters.

SMINJNT -2147483648
A universal integer literal

whose ,alue is SYSTEIM. MIN INT.

$,IN TASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NIULL;" as the only statement in
its body.

SNAME SHORTSHORT 1INTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGER,
LONGFLOAT, or LONGINTEGER.

SNAME LIST TELEGE112
A list of enumeration literals
in the type SYSTEMI.NAIME,
separated by commas.

SNEGBASED INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.AXINT.

TEST PARAMETERS

Name and Meaning Value

$NE1J_.EM SIZE 2147483647
An integer literal whose value
is a permitted argument for
pragma MEMORYSIZE, other than
SDEFAULT *IEIN SIZE. If 'here is
no other value, then use
$DEFAULTMEMSIZE.

$NEWSTORUNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE JNIT, other than
$DEFAULT_STOR UNIT. If there is
no other permitted value, then
use value of SYSTEI.STORAGEUNIT.

SNE1 SYS NAME TELEGE0I2
A value of the type SYSTENI.11AME,
other than SDEFAULT SYS2NAME. If
there is only one value of that
type, then use that value.

$TASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object ';hich has
a single entry with one 'Ill OUT'
parameter.

STICK 0.01
A real literal whose 1,alue is
SYSTEM. TICK.

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
Ai-ddddd is to an Ada Commentary.

a. E28005C This test expects that the string "-- TOP OF PAGE. --
63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma,.and it is this that must appear at the top
of the page.

b. A39005G This test ,nreasonably expects i component clause to
pack an array component into a minimum size ('ine 30).

c. B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selectiue
wait alternative (line 31).

d. C97116A This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation.
may use interleaved execution in such a way that the evaluation
of the guards at lines 50 & 54 and the execution of task CHANGING-
OF THEGUARD results in a call to REPORT.FAILED at one of
lines 52 or 56.

e. BC30098 This test wrongly expects that circular instantiations
will be detected in several compilation units e?,en though none of
the units is illegal with respect to the ,units it depends on; by
AI-00256, the illegality need not be detected intil execution is
attempted (line 95).

f. CD2A62D This test wrongly requires that in array object's site
be no greater than 10 although its s'lbtype's size was specified
to be 40 (line 137).

VITHDRAWN TESTS

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests] These
tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them
to a derived subprogram (which implicitly converts them to the
parent type (Ada standard 3.4:14)). Additionally, they use the
'SIZE length clause and attribute, whose interpretation is
considered problematic by the VG9 ARG.

h. CD2A81G, CD2A83G, CD2A84N & t4, & CD50110 (5 tests] These tests
assume that dependent tasks will terminate while the main pro-
gram executes a loop that simply tests for task termination; this
is not the case, and the main program may loop indefinitely
(lines 74, 85, 86 & 96, 86 & 96, and 58, Cesp.).

i. CD2BI5C & CD7205C These tests expect that a 'STORAGESIZE
length clause provides precise control over the number of
designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

j. CD2DllB This test gives a SMALL representation clause for a
derived fixed-point type (at line 30) that defines a set of
model numbers that are not necessarily represented in the
parent type; by Commentary Ai-00099, all model numbers of a
derived fixed-point type must be representable values of the
parent type.

X. CD5007B This test wrongly expects an implicitly declared sub-
program to be at "he the address that is snecified for an un-
related subprogram (ine 303).

1. ED00O4B, ED7005C & D, ED7006C & D "5 tests] These tests check
various aspects of the use of the three SYSTEM pragmas; the AVG
withdraws these tests as being inappropriate for validation.

. CD71O5A This test requires that successive calls to CALENDAR.-
CLOCK change by at least SYSTEI.TICX; liowever, by Commentary
AI-00201, it is only the expected frequency of change that must
be at least SYSTE!.TCK--particular instances of change may be
less (line 29).

n. CD7203B, & CD7204B These tests ,ise the 'SIZE length clause and
attribute, whose interpretation is considersd problematic by
the 4G9 ARG.

o. CD7205D This test checks Rn invalid test objective: it treats
the specification of storage to be reser'ed for a task's
activation as though it were like the specif-cation of storage
for a collection.

p. CE2107T This test require that objects of two similar scalar
types be distinguished when read from a file--DATA_ERROR is

WITHDRAWN TESTS

expected to be raised by an attempt to read one object as of
the other type. However, it is not clear exactly how the Ada
standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considered valid. (line 90)

q. CE311C This test requires certain behavior, when two files are
associated with the same external file, that is not required by
the Ada standard.

r. CE3301A This test contains several calls to ENDOFLINE &
ENDOF PAGE that havre no parameter: these calls were intended
to specify a file, not to refer to STANDARD IJPUT (lines 103,
107, 118, 132, & 136).

s. CE3411B This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUTERROR is raised
by a subsequent PUT operation. But the former operation will
generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

COMPILER AND LINKER OPTIONS

APPENDIX E

COMPILER AND LINKER OPTIONS

References and pace numbers in this appendix are consistent
with compiler documentation and not with this report.

In addition to the switches described- in the sequel the
following switches are available:

-W +enable-traceback
allow internal compiler errors to propagate all the way
out. The default is to inhibit internal exceptions call
chains from being displayed.

-'; -debig_info
inhibits insertion of Ada symbolic iebugger information
into the working sublibrary. This uill speed up
compilation. The default is to insert all information
into the working sublibrary.

-W +link target=bbn
generates a Berkeley Unix style link script. The default
is to generate a System 7 style link script.

COMPILATION TOOLS

2.1. The Ada CompUer ("ada")

The TeleGen2 Ada Compiler is invoked by the ada command. Unless you specify otherwise.

the front end, middle pass, and code generator are executed each time the compiler is invoked.

Before you can compile, you must (1) make sure you have access to TeleGen2, (2) create a
library file, and (3) create a sublibrary. These steps were explained in the Getting Started section
of the Overview. We suggest you review that section. and then compile, link, and execute the
sample program as indicated before you attempt to compile other programs.

This section focuses specifically on command-level information relating to compilation, that
is, 6n invoking the compiler and using the various options to control the compilation process.
Details on the TeleGen2 compilation process and guidelines for using the compiler most
effectively are in the Compiler chapter of the User Guide volume. (You might want to look at
Figure 3-1 in that volume right now, to give you insight into the TeleGen2 compilation process
and to see how the options mentioned in this Command Summary volume relate to the actual
compilation process.)

The syntax of the command to invoke the Ada compiler is:

ada {<"commonn...option">>} {<option>} <input.spec>

where:

<"common-option"> None or more of the following set of options that are com-
mon to many TeleGen2 commands:

-l(ibfile or -t(emplib
-V(space.size
-v(erb-se

These options were discussed in Chapter 1.

<option> None or more of the compiler-specific options discussed
below.

<input.spec> The Ada source file(s) to be compiled. It may be:

* One or more Ada source files, for example:

/user/john/example
Prog_.A.text
ciosrc/calc-mem .ada
calcio.ada myprog.ada

.ada

A A file containing names of files to be compiled. Such a
file must have the extension '.ilf". You can find de .
tails for using input-list files in the User Guide portion
of your TeleGen2 documentation set.

- A combination of the above.

Please note that the compiler defaults are set for your convenience. In most cases you will
not need to use additional options: a simple "ada <input_spec>" is sufficient. However. options

24AUG89 INTRO-1381N-V1.2(UNIX-H) @ 1989 TeleSoft 2-3

TeleGen2 Command Summary for UNIX-Based Host Compilers

are included to provide added flexibility. You can, for example, have the compiler quickly check
the source for syntax and semantic errors but not produce object code (-e(rrorsonly) or you can
compile, bind, and link an main program with a single compiler invocation (-m(ain). Other
options are provided for other purposes.

The options available with the ada command, and the relationships among them. are
illustrated in the following figure. Remember that each of the options listed is identified by a
dash followed by a single letter (e.g., "-e"). The parenthesis and the characters following the
option are for descriptive purposes only; they are not part of the option.

-l(ibflle <libname> -t(emplib <sublib>{,...}

-V(space-size 2000
I

-v(erbose

-e(rrors-only cornpiie to object

-d(ebug

-'(nhibit <key>t

-k(eep

-O(ptimnize <key>t

-S(ource..asm

-u(pdate.Jib <key>f

-x (ecutionprofile

-C(ontext 1
I

-E(rror-abort 999

-L(ist -F(ile._only.-errs
L-, I

o -s(oftwareJfloat
I

-m(ain <unit>I
<input-spec>

I (1) <key> for -0: refer to topt. (2) <key> for -u: i or s: s is the deftult. (21 <key> for -i a or certai comoinations of

2-4 INTRO-1z81N-V1.2(UNIX-H) (D 1989 TeleSoft 24AUG89

COMPILATION TOOLS

The options available with the ada command are summarized in Table 2-2. The default
situation (that is, what happens if the option is not used) is explained in the middle column.
Each option is described in the paragraphs that follow the table.

Table 2-2. Summary of Compiler Options

Option Default Discussed
in Section

Common options:
-l(ibfile <libname> Use liblst.alb as the library file. 1.4.1
-t(emplib <sublib...> None 1.4.1
-V(space..size <value> Set size to 2000 Kbytes. 1.4.2
-v(erbose Do not output progress messages. 1.4.3

-d(ebug Do not include debug information in 2.1.1
object code. (-d sets -k(eep.)

-E(rror.abort <value> Abort compilation after 999 errors. 2.1.2
-e(rrors-only Run middle pass and code generator, 2.1.3

not just front end.
-i(nhibit <key>. Do not suppress run-time checks, source 2.1.4

line references, or subprogram name
information in object.

-k(eep Discard intermediate representations of 2.1.5
secondary units.

-m(ain <unit> Do not produce executable code 2.1.6
(binder/linker not executed).

-O(ptimize <key>t Do nct optimize code. 2.1.7
o-s(oftware.float Use hardware floating-point support. 2.1.8

-u(pdateJib <key>t Do not update library when errors are 2.1.9
found (multi-unit compilations).

-x(ecution-profile Do not generate execution-profile code. 2.1.10

Listing options:
-C(ontext <value> Include i. line of context with error 2.1.11.1

message.
-L(ist Do not generate a source-error listing. 2.1.11.2
-F(ile.only -errs Do not generate an errors-only listing. 2.1.11.3

only.
-S(ource.asm Do not generate assembly listing. 2.1.11.4

2.1.1. -d(ebug - Generate Debugger Information. The code generator must generate
special information for any unit that is to be used with the TeleGen2 symbolic debugger. The
generation of this information is enabled by use of the -d option. The use of -d automatically

t (1) <key> for -0: refer to ispt. (2) <key> for -%: i or s; s is the default. (2) <key> for -i a or certain combinations of
Ing.

24AUG89 INTR.O-13811N-V1.2(UN1X-H) ©) 1989 TeleSoft 2-5

TeleGen2 Command Summary for UNIX-Based Host Compilers

sets the -k(eep option. This to make sure that the High Form, Low Form, and debugger
information for secondary units are not deleted.

To see if a unit has been compiled with the -d(ebug option, use the als command with the
-X(tended option. Debugger information exists for the unit if the "dbg.info" attribute appears
in the listing for that unit. The default situation is that no debugger information is produced.

Performance note. While the compilation time overhead generated by the use of -d(ebug is
minimal, retaining this optional information in the Ada library increases the space overhead.

2.1.2. -E(rror.abort - Set an Error Count for Aborting Compilation. The compiler
maintains separate counts of all syntactic errors, semantic errors, and warning messages detected
by the front end during a compilation.

A large number of errors generally indicates that errors in statements appearing earlier in
the unit have "cascaded" through the rest of the code. A classic example is an error occurring in
a statement that declares a type. This causes subsequent declarations that use the type to be in

error, which further causes all statements using the declared objects to be in error. In such a
situation, only the first error message is useful. Aborting the compilation at an early stage is
therefore often to your advantage; the -E option allows you to do it.

The format of the option is:

-E <value>

where <value> is the number of errors or warnings allowed. The default value is 999. The

minimum value is 1. Caution: If you do not use the -E option, it is possible to have 999 (
warning messages plus 999 syntax errors plus 999 semantic errors without aborting compilation,

since each type of error is counted separately.

2.1.3. -e(rrors-only - Check Source But Don't Generate Code. This option instructs
the compiler to perform syntactic and semantic analysis of the source program without

generating Low Form and object code. That is, it calls the front end only, not the middle pass
and code generator. -(This means, of course, that only front end errors are detected and that only
the High Form intermediates are generated.) This option is typically used during early code
development where execution is not required and speed of compilation is important.

Note: Although High Form intermediates are generated with the -e option, these intermediates
are deleted at the end of compilation. This means that the library is not updated.

The -e option cannot be used with -S(ource-asm, since the latter requires the generation of
object code. If -e is not used (the default situation), the source is compiled to object code (if no
errors are found). The -e option is also incompatible with -k(eep, -d(ebug, -O(ptimize, and

other options that require processing beyond the front end phase of compilation.

2.1.4. -i(nhibit - Suppress Checks and Source Information. The -i(nhibit option
allows you to suppress, within the generated object code, certain run-time checks, source line

references. and subprogram name information.

The Ada language requires a wide variety of run-time checks to ensure the validity of
operations. For example, arithmetic overflow checks are required on all numeric operations, and
range checks are required on all assi..rment statements that could result in an illegal value being
assigned to a variable. While these checks are vital during development and are an important
asset of the language. they introduce a substantial overhead. This overhead may be prohibitive

2-6 IN TRO-1381N-V1.2(UN'X-H) (©) 1989 TeleSoft 24AUG89

COMPILATION TOOLS

in time-critical applications.

Although the Ada language provides pragma Suppress to selectively suppress classes of
checks. using the pragma requires you to modify the Ada source. The -i(nhibit option provides
an alternative mechanism.

The compiler by default stores source line and subprogram name information in the object
code. This information is used to display a source level traceback when an unhandled exception
propagates to the outer level of a program: it is particularly valuable during development, since it
provides a direct indication of the source line at which the exception occurs and the subprogram
calling chain that led to the line generating the exception.

The inclusion of source line information in the object code, however, introduces an overhead
of 6 bytes for each line of source that causes code to be generated. Thus, a 1000-line package
may have up to 6000 bytes of source line information. For one compilation unit, the extra
overhead (in bytes) for subprogram name information is the total length of all subprogram names
in the unit (including middle pass-generated subprograms), plus the length of the compilation
unit name. For space-critical applications, this extra space may be unacceptable; but it can be
suppressed with the -i(nhibit option. When source line information is suppressed, the traceback
indicates the offset of the object code at which the exception occurs instead of the source line
number. When subprogram name information is suppressed, the traceback indicates the offsets of
the subprogram calls in the calling chain instead of the subprogram names. (For more
information on the traceback function, refer to the Programming Guide chapter in your
Reference Information volume.)

The format of the -i(nhibit option is:

-i <suboption>{<suboption>)

where <suboption> is one or more of the single-letter suboptions listed below. Combinations of
suboptions are possible. When more than one suboption is used, the suboptions appear together
with no separators. For example, "-i Inc".

11line.-infoi Suppress source line information in object code.

niame-inffo! Suppress subprogram name information in object
I code.

cihecksj Suppress run-time checks - elaboration, overflow,
storage access, discriminant, division, index, length,
and range checks.

aill! Suppress source line information. subprogram name
information, and run-time checks. In other words, a

I (=inhibit all) is equivalent to Inc.

As an example of use. the command....

ada -v -i Ic myfflIe.ada

...inhibits the generation of source line information and run-time hecks in the object coue ot the
units my.file.ada.

24AUG89 INTRO-1381N-V1.2(UNLX-H) @ 1989 TeleSoft 2-7

TeleGen2 Command Summary for UNIX-Based Host Compilers

2.1.5. -k(eep - Retain Intermediate Forms. As a default, the compiler deletes the High

Form and Low Form intermediate representations of all compiled secondary units from the
working sublibrary. Deletion of these intermediate forms can significantly decrease the size of

sublibraries - typically 50% to 80% for multi-unit programs. On the other hand. some of the
information within the intermediate forms may be required later. For example, High Form is
required if the unit is to be referenced by the Ada Cross-Referencer (azr). In addition,

information required by the debugger and the Global Optimizer must be saved if these utilities
are used. For these reasons. the -k option is provided with the ada command. The -k option:

* Must be used if the compiled unit is to be optimized later with aopt; otherwise, aopt

issues an error message and the optimizer aborts.

* Should be used if the unit is to be cross-referenced later; otherwise, an error message is
issued when the Ada Cross-Referencer attempts to cross-reference that unit.

* Need not be used with -d(ebug, since -k is set automatically whenever -d is used.

To verify that a unit has been compiled with the -k(eep option (has not been "squeezed"),
use the als command with the -X(tended option. A isting will be generated that shows whether

the intermediate forms for the unit exist. A unit has been compiled with -k(eep if the attributes

high-form and low-form appear in the listing for that unit.

2.1.6. -m(ain - Compile a Main Program. This option tells the compiler that the unit

specified with the option is to be used as a main program. After all files named in the input

specification have been compiled, the compiler invokes the prelinker (binder) and the native

linker by calling aid to bind and link the program with its extended family. An executable file

named <unit> is left in the current directory. The linker may also be invoked directly by the (
user with the aid command.

The format of the option is:

-m <unit>

where <unit> is the name of the main unit for the program. If the main unit has already been

compiled, it does not have to be in the input file. However, the body of the main unit, if

previously compiled, must be present in the current working sublibrary.

Note: Options specific to the linker (invoked via aid) may be specified on the ada command line
when the -m option is used. With -m, the compiler will call aid when compilation is complete,

passing to it aid-specific options specified with the ada command. For example...

ada -m welcome -T 2 -o new sample.ada

... instructs the compiler to compile the Ada source file, sample.ada, which contains the main

program unit Welcome. After the file has been compiled, the compiler calls the linker, passing to

iz the -T and -o options with their respective arguments. The linker produces an executable

version of the unit, placing it in file new as requested by the -o option.

2.1.7. -O(ptimize - Optimize Object Code. This option causes the compiler to invoke

the global optimizer to optimize the Low Form generated by the middle pass for the unit being

compiled. The code generator takes the optimized Low Form as input and produces more

efficient object code. The format of this option is:

-0 <key>

2-8 INTRO-1381N-V1.2(UNIX-H) (D 1989 TeleSoft 24AUG89

COMPILATION TOOLS

where <key> is at least one of the optimizer suboption keys discussed in the Global Optimizer
chapter. Please refer to that chapter for all information regarding the use of the optimizer. The
chapter discusses using the optimizer as a standalone tool for collections of compiled but
unoptimized units and using the -O(ptimize option with the ada command. The latter topic
includes a definition of the -O(ptimize suboption key values plus a presentation of two other ada
options (-G(raph and -I(nlineJist, not shown on the ada chart) that may be used in
conjunction with the -O(ptimize option. Note: We strongly recommend that you do not
attempt to use the optimizer until the code being compiled has been fully debugged and tested.

2.1.8. -s(oftware float - Use Software Floating-Point Support. This option may not
be available with your TeleGen2 system; please consult the Overview portion to see if it is
provided. The Ada linker selects hardware floating-point support by default. If you do not have
hardware floating point support or if you wish to generate code compatible with such machines,
use the -s option. In addition: If you use the -s option, the library file you use for compilation
must contain the the name of the software floating point run-time sublibrary, srt.sub. Refer to
the Library Manager chapter in your User Guide volume for more information on the run-time
sublibrary.

2.1.9. -u(pdate.lib - Update the Working Sublibrary. The -u(pdate-Jib option tells
the compiler when to update the library. It is most useful for compiling multiple source files.
The format of the option is:

-u <key>

where <key> is either "s" (source) or "i" (invocation).

i "i" tells tJ-. compiler to update the working sublibrary after all files submitted in that
invocatlu, of ada have compiled successfully. If an error is encountered, the library is
not updated. even for source files that compile successfully. In addition, all remaining
source files will be compiled for syntactic and semantic errors only. Implications: (1)
If an error exists in any source file you submit, the library will not be updated, even if
all other files are error free. (2) Compilation is faster, since the library is updated
only once, at the end of compilation.

s (This is the default; it is equivalent to not using the -u(pdatelib option at all.) "3"
tells the compiler to update the library after all units within a single source file
compile successfully. If the compiler encounters an error in any unit within a source
file, all changes to the working sublibrary for the erroneous unit and for all other units
in the file are discarded. However, library updates for units in previous or remaining
source files are unaffected. Implications: (1) You can submit files containing possible
errors and still have units in other files compile successfully into the library. (2)
Compilation is slightly slower, since the library is updated once for each file.

24AUG89 INTRO-1381N-V1.2(UNLX-H) (©) 1989 TeleSoft 2-9

COMPILATION TOOLS

where <key> is at least one of the optimizer suboption keys discussed in the Global Optimizer
chapter. Please refer to that chapter for all information regarding the use of the optimizer. The
chapter discusses using the optimizer as a standalone tool for collections of compiled but
unoptimized units and using the -O(ptimize option with the ada command. The latter topic
includes a definition of the -O(ptimize suboption key values plus a presentation of two other ada
options (-G(raph and -I(nlinelist, not shown on the ada chart) that may be used in
conjunction with the -O(ptimize option. Note: We strongly recommend that you do not
attempt to use the optimizer until the code being compiled has been fully debugged and tested.

2.1.8. -s(oftware..float - Use Software Floating-Point Support. This option may not
be available with your TeleGen2 system; please consult the Overview portion to see if it is
provided. The Ada linker selects hardware floating-point support by default. If you do not have
hardware floating point support or if you wish to generate code compatible with such machines,
use the -s option. In addition: If you use the -s option, the library file you use for compilation
must contain the the name of the software floating point run-time sublibrary, s.rt.sub. Refer to
the Library Manager chapter in your User Guide volume for more information on the run-time
sublibrary.

2.1.9. -u(pdate..ib - Update the Working Sublibrary. The -u(pdate-Jib option tells
the compiler when to update the library. It is most useful for compiling multiple source files.
The format of the option is:

-u <key>

where <key> is either "s" (source) or "i" (invocation).

i "i" tells the compiler to update the working sublibrary after all files submitted in that
i,ivocation of ada have compiled successfully. If an error is encountered, the library is
not updated. even for source files that compile successfully. In addition, all remaining
source files will be compiled for syntactic and semantic errors only. Implications: (1)
If an error exists in any source file you submit, the library will not be updated, even if
all other files are error free. (2) Compilation is faster, since the library is updated
only once, at the end of compilation.

s (This is the default; it is equivalent to not using the -u(pdateJib option at all.) "s"
tells the compiler to update the library after all units within a single source file
compile successfully. If the compiler encounters an error in any unit within a source
file, all changes to the working sublibrary for the erroneous unit and for all other units
in the file are discarded. However, library updates for units in previous or remaining
source files are unaffected. Implications: (1) You can submit files containing possible
errors and still have units in other files compile successfully into the library. (2)
Compilation is slightly slower, since the library is updated once for each file.

24AUG,89 INTRO-1381N-V.2(UNLX-H) (E) 1989 TeleSoft 2-9

TeleGen2 Command Summary for UNIX-Based Host Compilers

Therefore:

Use "u s" (or no -u(pdate option) when:

You're not sure all units will compile successfully.
Compilation speed is not especially important.

Use "u i" when:

You are reasonably certain your files will compile successfully.
Fast compilation is important.

2.1.10. -x(ecution.profile - Generate Profile Information. The -x(ecution..prodle
option uses the code generation phase of compilation to place special information in the generated
code that can be used to obtain a "profile" of a program's execution. This information is
generated by a facility known as "the profiler." Refer to your User Guide volume for information
on how to use the profiler to obtain execution timing and subprogram call -information for a
program.

Important: If any code in a program has been compiled with the -x(ecution.profile option,
that option must also be used with aid when the program is bound and linked. Otherwise,
linking aborts with an error such as "Undefined RECORDSSCURR VNT".

2.1.11. Listing Options. The listing options specify the content and format of listings
generated by the compiler. Assembly code listings of the generated code can also be generated.

2.1.11.1. -C(ontext - Include Source Lines Around the Error. When an error (
message is sent to stderr, it is helpful to include the lines of the-source program that surround the
line containing the error. These lines provide a context for the error in the source program and
help to clarify the nature of the error. The -C option controls the number of source lines that
surround the the error.

The format of the option is:

-C <value>

where <value> is the number of source context lines output for each error. The default for
<value> is 1. This parameter specifies the total number of lines output for each error (including

the source line that contains the error). The first context line is the one immediately before the
line in error; other context lines are distributed before and after the line in error. Let's say that
trialprog.ada, which consists of the following text...

2 -10 INTRO-1381N-VI.2(UNIX-H) @ 1989 TeleSoft 24AUG89

TeleGen2 Command Summary for UNIX-Based Host Compilers

2.1.11.3. -F(ile-only.errs - Put Only Errors in Listing File. This option is used to ,

produce a listing containing only the errors generated during compilation; source is not included.
The output is sent to <file..spec>.l. -F is incompatible with -L.

2.1.11.4. -S(ource..-asm - Generate a Source/Assembly Listing. This option instructs
the compiler to generate an assembly listing and send it to a file named <unit>.<ext>, where
<unit> is the name of the unit in the user-supplied source file and <ext> is the file extension (it
may be "s" or something else, depending on your configuration). The listing consists of assembly
code intermixed with source code as comments. If input to the ada command is an input-list file
(<file_spec>.ilf), a separate assembly listing file is generated for each unit contained in each
source file listed in the input file. If -S is not used (the default situation), an assembly listing is
not generated.

2(.;

212 INTRO-1Z81N-V1.2(UNIX-I).(© 1989 TeleSoft 24AUG89

COMPILATION TOOLS

2.2. The Ada Linker ("aid")

The TeleGen2 Ada Compiler produces object code from Ada source code. The TeleGen2
Ada Linker takes the object (of a main program) that is produced by the compiler and produces a
UNIX executable module. The TeleGen2 Ada Linker will be called "the linker" in the remainder
of this manual.

To produce executable code, the linker (1) generates elaboration code and a link script (this
is called "binding" or "prelinking") then (2) calls the UNIX link editor (1d) to complete the
linking process.

The linker is invoked with the aid command; it can also be invoked with the -m(ain option
of the ada command. In the latter case the compiler passes appropriate options to the linker, to
direct its operation.

In the simplest case, the aid command takes one argument - the name of the main unit of
the Ada program structure that is to be linked - and produces one output file - the executable
file produced by the linking process. The executable file is placed in the directory where aid was
executed, under the name of the main unit used as the argument to aid. For example, the
command

aid main

links the object modules of all the units in the extended family of the unit Main. The name of
the resulting executable file will simply be "main". Important: When using the aid command,
the body of the main unit to be prelinked must be in the working sublibrary.

The general syntax of the aid command is:

ald {<"common_..option'>} {<option>} <unit>

where:

<"common.option"> None or more of the following set of options that are
common to many TeleGen2 commands:

-l(ibfile or -t(emplib
-V(space.size
-v(erbose

These options were discussed in Chapter 1.

<option> None or more of the options discussed in the following
sections.

<unit> The name of the main unit of the Ada program to be
linked.

The options available with the aid command and the relationships among them are illustrated
below.

24AUG89 INTRO-1381N-V1.2(UNIX-H) @ 1989 TeleSoft 2-13

Te]eGen- Carnxnand Snzunary for UNIX-Based Host Compilers

-l(ibfile <Iibname> -t(emplib <sublib>{,...}
I I

-V(space-.size 2000

-v(erbose

7b(ind.-only
I

-o(utput <file-spec>

-P(ass.options 'string'

-p(assobjects 'string'

c -s(oftware-float

-S("asmIisting"

-T(raceback 15

-x(ecution-profile
I I

-D(elay..NonPreempt -w("timeslice" 0

-X(ception..show

-Y 8192 Ibytes-long

-y 1024 Ibytes-naturadl

2.2.1. -b(ind-only - Produce Elaboration Code Only. To provide you with m're
control over the linking process, the -b option causes the linker to abort after it has created.the
elaboration code and the linking order, but before invoking the UNIX link editor. This option
allows you to edit the link order for special applications and then invoke the link editor directly.
The link order is contained in an executable script that invokes the link editor with the
appropriate options and arguments. The name of the script produced is <unit>.Ink, which is
placed in your working directory. To complete the link process, enter "<unit>.lnk'.

The name of the file containing the elaboration code is <unit>.obm, which is placed in the
obje,:t directory of the working sublibrary.

Sstem V versions ol .U..,NIX, the file names generated as a resulL of linking are created
by appending t:he 3-letter extension to the unit name and truncating the result to 14 characters.

2.2.2. -o(utput - Name the Output File. This option allows you to specify the name of
the output file produced by the linker. For example. the command...

ald -o yorkshire main

... causes the linker to put the executable module in the file yorkshire.

2-14 INTRO-1.381N-V1.2(UNIX-H) @ 1989 TeleSoft 24AUG89

COMPILATION TOOLS

2.2.3. -P(assOptions - Pass Options to the Linker. This option allows you to pass a
string of options directly to the UNIX link editor. For example, the command

aid -P '-t -r' main

adds the string "-t -r" to the options of the link editor when it is invoked. The options must be
quoted (double or single quotes).

2.2.4. -p(assobjects - Pass Arguments to the Linker. This option allows you to pass
a string of arguments directly to the UNIX link editor. For example, the command

ald -p 'cosine.o /usr/lib/libm.a' main

causes the link editor to link the object file cosine.o (which it expects to find in the current
working directory), and to search the library /usr/lib/libm.a for unresolved symbol references.
(The location of the libm.a library may be different on your system.) Remember that the link
editor searches a library exactly once at the point it is encountered in the argument list, so
references to routines in libraries must occur before the library is searched. That is, files that
include references to library routines must appear before the corresponding libraries in the
argument list. Objects and archives added with the -p option will appear in the linking order
after Ada object modules and run-time support libraries, but before the standard C library
(/Iib/libc.a). This library is always the last element of the linking order.

You ui also use the -p option to specify the link editor's -1 option, which causes the link
editor to sei,'ch libraries whose names have the form "/lib/libname.a" or "/usr/lib/libname.a".
For example. the command

le a -p '-xyz'|-p

causes .ic link editor to search the directories /Ilib and /usr/lib (in that order) for file libzyz.a.

Z.2.5. -S("asm.lsting" - Produce an Assembly Listing. The -S option is used to
output an assembly listing from the elaboration process. The output is put in a file,
<file>.obm.s, where-<file> is the name of the main unit being linked. (The file extension may be
different on your system.)

2.2.6. -s(oftware.float - Use Software Floating-Point Support. This option may not
be available on your TeleGen2 system. Please consult the Overview portion of this volume to see if
it is provided. The Ada linker currently selects hardware floating-point support by default. This
default situation is provided for users of systems with an arithmetic coprocessor. If you do not
have hardware floating point support or if you wish to generate code compatible with such
machines. use the -s option. In addition: if you use the -s option, the library file you use for
compiling and linking must contain the name of the software floating point run-time sublibrary,

rt-sub R-fr to the Library Manager .L-----------your VJ~ Guide volume for more information
on the run-time sublibrary.

2.2.7. -T(raceback - Set Levels for Tracing Exceptions. When a run-time exception
occurs (and is not handled by an exception handler), the name and line number of the unit where
the exception occurred is displayed along with a recursive history of the units which called that
unit. (See the "Exception Handling" section in the Programming Guide chapter of your
Reference Information volume for a more complete explanation of exception reports.) The -T
option allows you to set the number of levels in this recursive history. For example, the

24AUG89 INTRO-1381N-V1.2(UNIX-H) 0 1989 TeleSoft 2-15

TeleGen2 Command Summary for UNIX-Based Host Compilers

command

ald -T 3 main

specifies that traceback histories will be three levels deep. The default value for this option is 15.

When an exception occurs, the run-time support system stores the history in a preallocated

block of memory. Since the size of this block is determined by the - T option, setting this value
to a large number can introduce objectiunable overhead in deeply nested, time-critical code. You

may wish to make this value smaller for well-tested programs.

2.2.8. -x(ecution-profile - Bind and Link for Profiling. This option is used for units
that have been compiled with the -x option. Use of -z with ada causes the code generator to
include, in the object, special code that will later be used to provide a profile of the program's

execution.

If -z is used with ada. it must be used with aid as well. The -z option of aid instructs the

linker to link in the profiling run-time support routines and generate a subprogram dictionary,
profile.dic, for the program. The dictionary is a text file containing the names and addresses of

all subprograms in the program. The dictionary can be used to produce a listing showing how

the program executes.

Refer to the Ada Profiler chapter in your User Guide volume for a full discussion of the

profiler.

2.2.9. Tasking Options. The following aid options are binding options used for task

execution. They are therefore useful only for linking programs that contain tasking code.

2.2.9.1. -D(elayNonPreempt - Specify Non-Preemptive Delay. By default, the

TeleGen2 run-time is set for preemptive delay handling. That is, an active task is preempted if

another task is waiting that has a priority equal to or greater than that of the active task.

The -D option allows you to specify non-preemptive delay handling. With non-preemptive

delay, a task is scheduled only when a synchronization point is reached. -D(elayNonPreempt is

incompatible with the -w option (see below).

2.2.9.2. -w("tneslice" - Limit Task Execution Time. The -w option allows you to
define the maximum time a task may execute before it is rescheduled. The format of the option

is:

-w <value>

where <value> is the maximum time the task is to execute, in milliseconds. before a task switch

occurs between it and a task having the same or higher priority. The default value is 0 (noirnmpdui-s, ITf v,, .. . ,-, .. ."au - *i.-
ti .. ___y, o, - L,_ter 1a 0, it must be at least as great as the ciock interval
time.

Since rescheduling of tasks is incompatible with interrupt-scheduling, -w is incompatible
with - D (elay-Non Preempt (see above).

2.2.9.3. -X(ception..show - Report Unhand]ed Exceptions. By default, unhandled

exceptions that occur in tasks are not reported: instead, the task terminates silently. The -X
option allows you to specify that such exceptions are to be reported. The output is similar to
that displayed when an unhandled exception occurs in a main program.

2-16 ITRO-1381N-V1.2(JNIX-H) ®c 1989 TeleSoft 24AUG89

COMPILATION TOOLS

2.2.9.4. -Y and -y - Alter Stack Size. In the absence of a representation specification for
task storage-size, the run time will allocate 8192 bytes of storage for each executing task. You
can change the amount of space allocated for tasking by using the - Yand -y options.

-Y specifies the size of the basic task stack. The format of the option is:

-Y <value>

where <value> is the size of the task stack in 32-bit (long-integer) bytes. The default is 8192.

-y specifies the stack-guard size. The stack-guard space is the-amount of additional space
allocated per task to accommodate interrupts and exception-handling operations. The format of
the option is:

-y <value>

where <value> is the size of the stack-guard size in 16-bit (natural) bytes. The value given must
be greater than the task-stack size. The default is 1052 bytes; this is the amount allocated unless
otherwise specified.

A representation specification for task storage size overrides a value supplied with either
option.

24AUG89 INTRO-13811N-V1.2(UNIX-H)) 1989 TeleSoft 2-17

