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INTRODUCTION

\

XGlasses in the yttria-alumina-silica (YAS) system are candidate matrices for 1C reinforced
composites because of their high elastic moduli and excellent chemical durability.*> “"More-
over, several compositions offer the potential for controlled crystallization into glass ceramics
exhibiting low-thermal expansion and elevated temperature stability."—In order to exploit the
properties of these glasses and glass ceramics, improved processing techniques and detailed

5 mvestlganons of their crystalhzatlon behavior are requlred. One area being explored to

‘enhance the processing of ceramics and composites is the use of sol-gel technology Advan-
tages of sol-gel technology include increased homogeneity aad reduced processing tempera-
tures. This report focuses on the preparation of YAS gels and the feasibility of obtaining
dense glasses and glass-ceramics from them. Of particular interest is the ability to complete
the gel-to-glass conversion before the onset of crystallization. Recent observations suggest
that gels and gel-derived glasses have higher nucleation rates and lower crystallization tempera-
tures relative to conventionally prepared glasses. This behavior appears to be dominant for
compositions which correspond to compounds and/or have strong tendencies for homogeneous
nucleation.” A high water content and a large surface area due to internal porosity have
been presented as possible reasons for the enhanced crystallization in gels.*’ The objectives
of this work were to synthesize Y,03-SiO; and ternary YAS gels and glasses, and then use dif-
ferential thermal analysis and x-ray diffraction to examine the kinetics and phase developments
during crystallization.

BACKGROUND

In this report, the crystallization kinetics of gels and glasses are examined by differential
thermal analysis (DTA). The use of DTA to evaluate the kinetics of crystallization deserves
comment, however, because of uncertainties in the analytical models used to describe crystalli-
zation under nonisothermal conditions.!®?

The foundation for the model used in this investigation comes from the Johnson-Mehl-
Avrami (JMA) equation:

= 1 - exp[-(K)"] (1)

for isothermal solid-state phase transformation kinetics!> where x is the volume fraction
crystallized, K is the reaction rate constant, t is time, and n is the Avrami exponent. The
Avrami exponent depends upon the morphology of crystal nucleation/growth where n = 1-2
for surface crystallization and n = 3-4 for bulk crystallization. The reaction rate constant is
usually assigned an Arrhenius dependence:

K = vexp(-E/RT) (¢))

where v is the frequency factor and E is the activation energy for the overall crystalli-
zation process. K is determined by the nucleation rate (I) and the growth rate (u).
Equation 2, therefore, necessarily assumes Arrhenius behavior of both I and wu.

Yinnon and Uhlmann reviewed various models derived from the JMA equation for use
under nonisothermal conditions and pointed out that most models dld not take into account
the proper temperature dcpendence of the rca«.hon rate constant;'! the only exccptior was
the model proposed by Augis and Bennett.'* Bansal and Doremusls used an approach similar




to that of Augis and Bennett to address the temperature dependence of K in teims of
heating rate and the exotherm peak temperature, and derived the relation:

In(T,%8) = In(E/R) - Inv + (E/RTp) (3)

where T, is the temperature at the peak of the crystallization exotherm, ¢ is the experimental
heating rate, E is the activation energy for the crystallization process, R is the universal gas
constant, and v is a frequency factor. For narrow ranges of temperature, such as those occur-
ring in DSC/DTA experiments where only the exothermic peak is being used for analysis,
Bansal and Doremus found that the values for v and E calculated from this model were in
very good agreement with the same parameters calculated from isothermal studies.'® It should
be noted that the Bansal and Doremus model assumes that the exothermic peak, T, corre-
sponds to the maximum rate of crystallization for that sample. This is true for DSC but in
DTA, the maximum rate of crystallization typlcally occurs just prior to T 7 Hammetter and
Loehman'® examined the consequences of using DTA results with the Bansal and Doremus
model and calculated the activation energy for crystallization of a lithium silicate glass from
both DSC and DTA traces. It was found that if a consistent point was chosen to represent

a crystallization event from DTA traces, such as the onset temperature or exotherm peak tem-
perature, then activation energies would be obtained which were in very good agreement with
those calculated from DSC. For the present work, it is assumed that DTA traces obtained
from a variable heating rate technique, used in conjunction with the Bansal and Doremus
model, are a reasonable method of calculating the effective activation energy for crystallization.

EXPERIMENTAL PROCEDURE
Sol/Gel Synthesis

The two compositions chosen for examination were 65.0 Y05 - 35.0 SiO; and 42.0 Y,0; -
23.0 AlO3 - 35.0 SiO; (in weight percent). In this mvestlgatlon, yttrium nitrate, yttrium
acetate, and yttrium isopropoxide were evaluated as candidate Y3* sources. Aluminum
sec-butoxide and distilled TEOS were used as the network forming cation precursors.

The yttrium-silicate solutions synthesized using yttrium nitrate, Y(NOj3);xH,0, appeared
quite homogeneous and were water clear during preparation and gelation. During drying, how-
ever, the gels became opaque with a cream color. The x-ray analysis of gels dried at 120°C
revealed the obvious presence of Y(NO,); in various states of hydration. Calcination at
600°C eliminated the detection of any nitrates, but because the resultant material was of
dubious homogeneity, the use of yttrium nitrate as a precursor was considered unacceptable.

Yttrium acetate, Y(OOCCH,)3xH,0, was then tried as a precursor, but its limited solu
bility (9 g/L) precluded its use for the formation of stable (low water content) sols. Yttrium
isopropoxide, Y[OCH(CH3)2]3, was also attempted, but this alkoxide proved insoluble in the
alcohols and other solvents examined.

The precursor problem was solved through the laboratory synthesis of a soluble yttrium
alkoxide. Synthesis of the alkoxide was based on an approach reported for the prepara-
tion of dielectric and superconducting ceramics'® and proved suitable for preparation of a
homogeneous gel.




The alkoxide was prepared by mixing yttrium acetate with 2-methoxyethanol
(OCH;C,;HsOH) and then heating to >125°C under constant refluxing. After 12 hours the
solution turned clear with a slight greenfvellow tint. The resultant yttrium methoxyethoxide
was quite stable and could be stored for long periods at room temperature.

The formation of an alkoxide solution corresponding to Y,0325i0; was first attempted by
introducing yttrium methoxyethoxide into partially-hydrolyzed TEOS. These sols were unstable
and resulted in a fine white crystalline precipitate with an unidentified x-ray pattern. Numer-
ous adjustments to the processing conditions, such as pH, degree of hydrolysis, temperature of
mixing, and order of addition, also proved unsuccessful due to precipitation. The synthesis of
ihis composition was rot successfully achieved without precipitation.

In contrast, the ternary eutectic YAS composition was successfully synthesized by control-
ling the kinetics of hydrolysis and polycondensation reactions between the three precursor
alkoxides. Distilled Si(OC,Hs)4 was first partially hydrolyzed using deionized water, anhydrous
ethanol, and concentrated HNO; as a catalyst. After stirring for one hour at 60°C,
Al(OC4Hy); and isopropanol were introduced. The solution remained water clear with no
evidence of either AIO(OH) or Al(OH); precipitate formation. After continuous stirring for
an additional one hour at 60°C, the yttrium alkoxide was poured into this aluminosilicate sol.
Refluxing continued for two hours while the YAS sol was slowly cooled to room temperature.
Formation of an insoluble alkoxide complex, which had occurred in the Y,052Si0, system,
was avoided and the resulting YAS sol was clear with a color similar to the yttrium alkoxide.
At this point, the only water in the system was that used to partially hydrolyze the TEOS.
Water in excess of that required for theoretical hydrolysis and polycondensation (2 mol H,0O:1
mol alkoxide) was mixed with desired amounts of the water-deficient YAS solution. This solu-
tion remained transparent throughout gelation and drying with no sign of precipitation. Once
gelled and dried through 120°C, the material was heated at 2°C/min to 600°C to remove resi-
dual organics. This material is referred to as gel (or gel powder) throughout the remainder
of this report.

Some of the gel powder was then heated at 10°C/min to 1000°C and held for one hour
to complete the gel-to-glass conversion. This material is referred to as gel-derived glass (or
glass powder) throughout the remainder of this report. Finally, some of the gel was melted
at 1500°C in a platinum crucible and then air quenched. This is referred to as melt-derived
glass (or glass powder) throughout this report.

Methods of Characterization

Densities of the YAS gel, gel-derived glass, and melt-derived glass were determined using
helium pyncnometry on 5 cm® of sample. Compositional analyses on representative samples
were obtained using borate-fluxed emission spectroscopy, with the reported composition being
an average of three runs.

DTA was used to investigate the crystallization behavior of the gels and glasses. Samples
of gel and melt-derived glass were first pulverized and screened to -200 +280 mesh, then
analyzed for specific surface area and residual hydroxyl content using BET and diffuse reflec-
tance IR spectroscopy (DRIFTS), respectively. After these analyses, 70 mg of each of the
powders were packed into platinum crucibles and loaded into the DTA unit. Great care was
taken to keep the particle size, weight, and packing procedure for each YAS sample the same
in order to avoid shifting of exotherm peaks due to heat transfer differences within the




samples. In addition to the gel and glass powder samples, bulk melt-derived glass was also
examined in the DTA. This was obtained by melting 70 mg of gel in identical platinum DTA
crucibles at 1500°C, then quenching at the same rate used to prepare the melt-derived glass
powder. Alpha alumina of the same mesh fraction was used as the standard.

In order to examine differences in crystallization behavior between the YAS gel powder,
the melt-derived glass powder, and the melt-derived bulk glass, a variable heating rate method
was used. The DTA unit was first calibrated by plotting the observed melting point of gold
as a function of each heating rate and comparing these values to the actual melting point.
This plot was linear with a maximum deviation of 2.5°C at the highest heating rate. The
three types of YAS samples were then run at rates of 2.5°C, 5°C, 10°C, and 20°C/min in
flowing air with the exotherm peak temperature being determined by the thermal-analysis soft-
ware. The exotherm peaks observed for the YAS materials were corrected based on the devi-
ation obtained during the gold calibration, and these corrected temperatures were used in the
kinetics analysis.

The thermoanalytical model used to calculate the kinetic parameters for crystallization
under nonisothermal conditions is given by Equation 3,

In(Tp%/8) = In(E/R) - Inv + (E/RT,).

A plot of ln(szlﬂ) versus 1/T, should show an Arrhenius dependence with the slope and
intercept being proportional to the activation energy and frequency factor, respectively, for
the overall crystallization process.

X-ray diffraction was used to characterize the phase development during crystallization.
Samples of the -200 mesh gel, melt-derived glass powder, and chunks of bulk melt-derived
glass were placed in platinum pans, heated at 10°C/min in flowing air, then held at tempera-
tures between 1000°C and 1400°C for periods of one hour and five hours, respectively. X-ray
diffraction patterns were obtained on pulverized samples using CuKa radiation and scan rates
of 4°C 20/min. Because of inconsistencies in the available x-ray diffraction data for the
various_Y,05-2Si0, phases, standard JCPD files, as well as recently reported x-ray diffraction
data,”®?! were used to identify the Y,04-28iO, polymorphs present in each sample.

RESULTS

The partially hydrolyzed YAS sols remained stable over a period of several weeks. When
the moles water:moles alkoxide was greater than 4:1, the solutions gelled within 24 hours at
25°C and remained clear throughout the aging/drying/calcining processes. Monolithic pieces of
dried gel were very difficult to obtain. Although the majority of cast samples cracked into
cubes 2 to 4 mm on edge, with the greatest extent of cracking occurring before 120°C, the
large pieces present after drying tended to remain intact during further heat treatment.

The compositions and densities of the YAS gel, gel-derived glass, and melt-derived glass
appear in Table 1. The total percent oxides analyzed for the gel was slightly less then the
other samples due to the presence of residual organics. These organics were essentially
removed after the 1000°C heat treatment. Compositional analyses revealed that the desired
eutectic composition was obtained in all YAS materials. Densities of both the gel-derived
glass and melt-derived glass were in very good agreement with values reported for the same
composition processed by conventional melting of oxides.}> X-ray diffraction analysis of the




gels, gel-derived glasses, and melt-derived glasses showed only a broad peak centered around
28.5° 20. BET surface area for the -200 mesh gel and melt-derived glass powders used in
the DTA study appears in Table 2. The gel exhibited significantly greater surface area rela-
tive to the ground glass.

Table 1. COMPOSITIONS AND DENSITIES OF YAS GEL AND GLASS

Gel-Derived' Gel-Derived® Mett-Derived**

Constituent Gel* Giass Glass Glass Target
SiO; 30.0 339 330 33.7 (+1.0) 33w/o
ALO; 217 24.4 251 23.3 (x1.0) 25w/o
Y203 374 K “8 426 (£1.0) 42w/o
Total 89.1 9.8 99.9 99.6
Density 1.45 3.36 3.38 338 3.38°

* Heated at 2°C/min; held 12 hours at 600°C

1 Heated at 10°C/min; held 1 hour at 1000°C

$ Heated at 20°C/min; to 1100°C; immediately air quenched
** Heated at 10°C/min; held 1 hour at 1500°C

From Reference 1

Table 2. SPECIFIC SURFACE AREA OF YAS POWDERS (-200 MESH)

Material Surface Area
YAS Gel 126.95 m%/gm (+10%)
YAS Melt-Derived Glass 0.82 (£10%)
YAS Gel-Derived Glase* 0.56 (£10%)

*Sampie heated at 20°C/min to 1100°C then immediately air quenched

Figure 1 is a composite plot of the DTA results for all three YAS materials heated at
2.5°C and 20°C/min. A single crystallization event was observed for each YAS material,
and x-ray diffraction analysis revealed this to be due to the formation of yttrium disilicate
(Y,032Si0;). No exothermic events corresponding to either the formation of mullite or a
pre-mullite aluminosilicate spinel were observed. The gel and melt-derived glass powders
exhibited well-defined crystallization exotherms, but the gel had an exotherm maximum con-
sistently lower than the glass; both maxima were within 8°C of each other at all heating
rates. The melt-derived bulk glass displayed a much broader exotherm with the maximum
shifted 90°C to 130°C higher over the 2.5°C and 20°C/min runs, respectively. The values
of T,, T, (maximum in the crystallization exotherm), and Ty, for all YAS materials are
listed in Table 3 and were obtained from the 10°C/min DTA traces for comparison with
literature data on similar compositions.
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Figure 1. DTA traces for YAS gels and glasses obtained
at heating rates of 2.5°C/min and 20°C/min.
Table 3. GLASS TRANSITION, CRYSTALLIZATION PEAK, AND MELTING POINT
TEMPERATURES FOR YAS GELS AND GLASSES*
Material To T Tet
Gel Powder 920 1160 1387
Meit-Derived Glases Powder 918 1165 13868
Mekt-Derived Glass Bulk 921 1290 1389
Conventionally Melted Oxides 884!, g25t 118! 1380°*
*From DTA scans at 10°C/min
tFrom Reference 3
$From Reference 37

** From Reference 38

A plot of ln(TPZ/ﬂ) versus 1/T, for the three YAS materials appears in Figure 2. The
The activation energies and fre-
quency factors for crystallization were readily calculated from the linear least-squares fit lines
for each set of data in Figure 2, and these values appear in Table 4. The gel powder and

linearity exhibited in these Arrhenius plots is excellent.




the glass powder had essentially the same activation energy, whereas the bulk glass exhibited
an appreciably lower activation energy for crystallization.
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Figure 2. The relstionship between exothermic peak temperature,
To, and heating rate, s, for YAS gels and glasses.

Tabie 4. KINETIC PARAMETERS OF CRYSTALLIZATION

FOR YAS GELS AND GLASSES
n E kJmol) v (sec)
YAS Gel Powder 18 492 15 x 10"
YAS Me#t-Derived Glass Powder 1.8 476 12 x 10"
YAS Meh-Derived Glass Bulk 1.7 333 22 x 10"

The crystallization products detected in each YAS sample after isothermal heat treatment
for one hour and five hours appear in Table S. X-ray diffraction analysis showed that all sam-
ples remained amorphous up to 1000°C; the gel and glass powders crystallized after treatment
at 1100°C, but the bulk glass did not exhibit crystallization until 1200°C. The amorphous
peak in the x-ray diffraction patterns shifted from approximately 28.5° in uncrystallized mate-
rial shown to 26° 26 as crystallization progressed. Samples held at 1200°C for five hours
showed the greatest degree of crystallization. These samples were opaque, white, and
remained monolithic during cooling to room temperature. After one hour at 1400°C, all YAS
materials melted, but could be cooled to room temperature without crystallization.




Table 5. CRYSTALLIZATION PRODUCTS OF YAS GELS AND G ASSES

1000°C 1100°C 1200°C 1300°C 1400°C
tHour SHours 1Hour SHours 1Hour SHours 1Hour SHours 1 Hour
YAS Gel and A A Y Y Y Y ;a 6 A
Melt-Derived M gg M {tn M {tn A
Glass Powders a a (tn a (tn)
YAS Melt-Derived A A A A* A
Glass Bulk a (tn EI ’34 el
A = Amorphous
A* = Crystalline scale on sample not detected by xrd
Y = y-Y25p07
a = a-¥2Si207
3 = B-Y2Si207
M = Mullite
{tn = Trace

DISCUSSION OF RESULTS
Crystallization of YAS Gels and Glasses

Figure 1 shows a substantial decrease in T, (=110°C) for the glass powder as compared to
the bulk glass. This suggests that nucleation and growth from the powder surfaces was respon-
sible for the lower value of T,. Additional support for a surface crystallization argument comes
from the Avrami exponents, which were determined by plotting In(AY) versus 1/T where AY was
the vertical displacement from the baseline at temperature T in each crystallization exotherm.'$%?
The slope of the linear least-squares fit line for each material equaled -nE/R from Piloyan’s rela-
tion,” and n was calculated using the E values determined for nonisothermal conditions. The n
values, which appear in Table 4, are in agreement with a surface nucleation mechanism and
imply one-dimensional growth of cry-tals to the interior of the glass particles from a constant
number of surface nuclei.?*

Figure 2 demonstrates that the reaction rate coustant, K, for all YAS materials has an
Arrhenius temperature dependence, but that there are differences in the activation energy for
crystallization and in the temperature range where the maximum nucleation rate is observed. In
the interpretation of these data, it is important to recall that all of the YAS materials were syn-
thesized using organometallic precursors. It can be assumed, therefore, that differences in the
impurity levels among the materials are negligible. Further, the bulk glass and the glass powder
were both repaired by melting; thus, their thermal history is identical. Finally, the gel powder
and glass powder were crushed and sized to equivalent size fractions. These similarities and dif-
ferences between the various samples are the basis for the discussion that follows.

In the case of the bulk glass, the higher temperature of crystallization and lower activation
energy (relative to the powders) suggests that crystallization occurred on preexisting nuclei. It is
likely that the glass/Pt cup interface, or the bulk glass surface itself, contained heterogeneous
nuclei formed during melting and cooling. The limited surface area of the bulk glass, i.e., rela-
tive to the powders, did not allow for any appreciable surface nucleation at lower temperatures.
Thus, the observed activation energy probably reflects interfacial rearrangement processes, i.e.,
rejection of Al and excess Si at the advancing Y,032SiO; growth front (see next section).

The glass powder was melted and cooled like the bulk glass, but it possesses a higher,
more reactive surface area due to crushing. The lower temperature of crystallization and




higher activation energy (relative to the bulk glass) are consistent with nucleation on particle
surfaces and, in this case, the activation energy primarily reflects the barrier to nucleation.

The key issue concerns the gel powder. It was expected that the high internal surface area
would lead to an even lower temperature of crystallization than the glass powder. However, it
was found that the (microporous) gel powder and (dense) glass powder behaved almost identi-
cally. It was hypothesized that the gel-to-glass conversion was complete before the onset of any
crystallization. To verify this, YAS gel powder was heated at 20°C/min to 1100°C (T<Ty) and
then immediately air<ooled. This powder was analyzed and found to be amorphous with a den-
sity and specific surface area nearly equal to the melt-derived glass powder (see Table 1). Thus,
it could be concluded that the comparable behavior of the gel powders and glass powders in the
DTA experiment was due to densification of the gel powder into a gel-derived glass at T<T.
In a more general sense, it revealed that it is possible to sinter YAS gels independent of their
crystallization. This behavior is different than that observed for lithium-aluminosilicate (LAS)

gels where sintering and crystallization occur simultaneously, and, thereby, limit the densification
process.

Finally, the slight shift in the Arrhenius plots between the gel and melt-derived glass pow-
ders, corresponding to the observed 8°C to 10°C difference in maximum crystallization rate as
shown in Figure 3, should be noted. The effect was found to be due to a higher water content
in the sintered gel. Figure 3 compares the IR spectra of the 1100°C sintered gel-derived glass
powder and the crushed melt-derived glass powder. The lower hydroxyl content of the melt-
derived glass is not surprising since volatilization of residual water could occur more easily during
melting than sintering. The lower hydroxyl content of this glass increased its viscosity and,.
thereby, the temperature where the maximum crystallization rate was observed.

1.00

Gel-Derived Glass
0.75

0.50

Absorbance (Percent)

Meit-Derived Glass

0.25 -

0 1 | !
4000 3500 3000 2500 2000

Wavenumbers (cm™1)

Figure 3. IR spectra showing the relative water content in gel-derived
and meft-derived YAS glasses; the broad band at 3500 cm’' is due to
both hydroxyl groupe and residual water.




Phase Development During Crystallization

The YAS composition studied fell on the tie line between Y;032SiO; and 3Al;03-2Si0;.
The gel and glass powders showed development of these phases at 1100°C, but in the bulk
glass, crystallization was not detected until 1200°C (see Table 5). Of the five known
Y,052Si0; polymorphs, three were observed in the crystallized samples.

The initial phase appearing in the gel and glass powders was identified as y-Y,Si,O.
Although uncommon, y-Y,Si;O; has been observed as the first Eolymorph during crystallization
of yttrium silicate powders28 and YAS grain boundary phases, as well as from oxidation of
Y-Al-Si-O-N g]asses2030 A number of x-ray diffraction patterns and crystal structures have
been reported for y-Y2812O7, ! but the y- yhase observed in this investigation consistently
matched the pattern submitted by Batalieva™® for a monoclinic polymorph.

It has been proposed that the formation of y-Y,Si;O7 results from impurity stabilization,
and the following formula has been submitted:

RY;SigOz;, where R = Na+, Mg2+, Mn2+, Fe2+, Fe3+, Al3+, Thd4+, or Zrd4+.22

Here, the high purity sol-gel precursors should have reduced the chance of multiple impunty
influences; if the precipitation of y-Y,Si,O; requires an impurity cation, it is likely that Al ¥
is responsible in this case. Recent EDXS analysis has shown a limited solubility of AI**
y-Y28i,0,.%

The presence of minor amounts of a-Y,Si;O; in the powders that were heated to 1200°C
is consistent with the published y -» e transformation range.zs However, the amount of
a-phase after both one and five hours at 1200°C remained constant suggesting a limited
degree of y -+ a transformation (see Reference 32).

The mixed y + c-phase material completely transformed to g- 2§S|207 by 1300°C. The
published temperature for the @ + § transformation is 1225+10°C.“ It is uncertain
whether the y-phase material first transformed to a before the transformation to 8, but
for the following reasons, a direct y to 8 transformation seems reasonable:

e Both y and B-phases are monoclinic with very similar unit cell dimensions,
e The a-phase is triclinic with a significant reduction in unit-cell volume, and

e The conversion to 8-Y:Si;O7 was complete after one hour at 1300°C.

The YAS bulk melt-derived glass displayed a simplified polymorph development. The
initial crystallization product was B-Y;Si;O;, and it remained the only polymorph detected
prior to the onset of melting. This is in contrast to the powdered glass samples and is
consistent with the difference in crystallization kinetics observed in the DTA. Apparently,
crystal growth at the high temperatures exhibited in the bulk glass results in the direct pre-
cipitation of 8-Y,Si,O,; this further verifies that nucleation site density plays an important
role in the nucleation and stabilization of Y,0,-25i0, polymorphs.

Whereas the immediate development of an yttrium-disilicate phase was always observed,

formation of the mullite phase was substantially retarded in all three YAS materials. An
amorphous contribution was observed in all x-ray diffraction patterns indicating that none of
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the samples were fully crystallized. The shift of this amorphous peak from 28.5° in the
uncrystallized material to 26° 20 in samples exhibiting well-developed Y,052SiO,, but with
little or no mullite, directly reflects a residual aluminosilicate ﬁlass An amorphous hump
centered at 26° 20 has also been reported for mullite glasses™ and gels,®* and this position
corresponds to the most intense diffraction plane for 3Al,05:2Si0O,.

Based on the accounts of phase development in similar rare-earth aluminosilicate glasscs,
the delayed c%stalhzatxon of mullite in these YAS glasses is unusual. Both isothermal*® and
nonisothermal™ analyses have shown the immediate development of mullite. The delayed crys-
tallization of mullite in this study is not fully understood since the appropriate Al,03°SiO-;
ration was present in the system, and the difficulty in retalmn§ mullite glasses (due to rapid
devitrification during cooling) has been well documented.”

SUMMARY

Glass in the yttria-alumina-silica system was successfully synthesized using a sol-gel
approach, and the crystallization behavior of the gels and glasses was studied. A variable
heating rate DTA method was used to determine the kinetic parameters of crystallization, and
isothermal studies were used to characterize phase development. In all materials, the reaction
rate constant for the crystallization process followed an Arrhenius temperature dependence.
Although surface nucleation/crystallization was found to dominate, no significant difference in
the crystallization behavior between microporous gel and dense glass powders was found;
therefore, it could be concluded that the gel-to-glass conversion was complete before the
onset of crystallization. Isothermal heat treatments produced Y;032SiO; and 3Al,052SiO,
crystalline phases; three of the five known yttrium disilicate polymorphs were readily observed
(y, @, and B), but development of the mullite phase was appreciably retarded.

11
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