GL-TR-89-0275

Wayne S. Hering

University of California, San Diego Marine Physical Laboratory San Diego, CA 92152-6400

30 September 1989

Scientific Report No. 1

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Evaluation of Stochastic Models for Estimating the Persistence Probability of Cloud-Free Lines-of-Sight

GEOPHYSICS LABORATORY AIR FORCE SYSTEMS COMMAND UNITED STATED AIR FORCE HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731-5000

"This technical report has been reviewed and is approved for publication"

JOSEPH W. SNOW Contract Manager Atmospheric Structure Branch

DONALD D. GRANTHAM,

Atmospheric Structure Branch Atmospheric Sciences Division

FOR THE COMMANDER

-bet-Cl. Millatok

ROBERT A. MCCLATCHEY, Director Atmospheric Sciences Division

This report has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your orgainization, please notify GL/IMA, Hanscom AFB, MA 01731. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned. UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE

Is REPORT SECURITY CLASSIFEATION Ib. RESTRICTIVE MARKINGS UNCLASSIFE D Ib. RESTRICTIVE MARKINGS 2s. SECURITY CLASSIFEATION CONDOWNGRADING SCHEDULE Ib. RESTRICTIVE MARKINGS 2s. SECURITY CLASSIFEATION REPORT NUMBERS Ib. RESTRICTIVE MARKINGS 2s. DECLASSIFEATION REPORT NUMBERS Ib. OFFEE SYMBOL 2s. DEVELOPMENT INSTRUMENT IDENTIFICATION NUMBER Ib. SOURCESS Laboratory 2s. ADDRESS (City, State, and Zip Code) Ib. SOURCESS ID RESIDENCE Ib. SOURCESS ID RESIDENCE 11. TITLE (include Security Classification) Ib. OFFEE SYMBOL (include Security Classification) Ib. SOURCESS ID RESIDENCE Ib. SOURCESS ID RESIDENCE 2s. THE COMPONING CLASSIFICATION Ib. SOURCESS ID RESIDENCE Ib. SOURCESS ID RESIDENCE Ib. SOURCESS ID RESIDENCE 11. TITLE (include Security Classification) Ib. SOUR	REPORT	DOCUMENTATI	ON PAGE			Form Approved OMB No. 0704-0188		
UNCLASSIFIED 3. DISTRIBUTCONAULABLINY OF REPORT Approved for public release, distribution unlimited. a SECURITY CLASSIFICATION DOWNGRADING SCHEDULE distribution unlimited. a PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) SID DECLASSIFICATION DOWNGRADING SCHEDULE distribution unlimited. a PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION SID DECRY State, and Zp Code() MPL U-180(89) CL-TR-89-0275 Continue of PERFORMING ORGANIZATION B. OFFCE SYMBOL (*applicable) ZE NAME OF MONORING ORGANIZATION NUMBER To ADDRESS (City, State, and Zp Code() Sun Diego, CA 92093 BE OFFCE SYMBOL (*applicable) DEOCUREMENT INSTRUMENT DENTIFICATION NUMBER To SOURCE OF PRODUCE NUMBERS Re ADDRESS (City, State, and Zp Code() BE OFFCE SYMBOL (*applicable) DEOCUREMENT INSTRUMENT DENTIFICATION NUMBER To SOURCE OF PRODUCE NUMBERS Re ADDRESS (City, State, and Zp Code() EValuation of Stochastic Models for Estimating the PERSISTICE Probability of Cloud-Free Lines of Sight. (UNCL) 11. TITLE (include Security Classification) Evaluation of Stochastic Models for Estimating the PERSISTICE Probability of Cloud-Free Lines of Sight. (UNCL) 12. PERSONAL AUTHOR(S) Way ne S. Herring 13. TYPE OF REPORT Yay The CoveRED 14. DATE OF REPORT (Yaz, Month, Day) 15 PAGE COUNT	1a. REPORT SECURITY CLASSIFICATION		1b. RESTRICTIVE MARKINGS					
21 DECLASSIFICATION REPORT NUMBER(s) 22 DECLASSIFICATION REPORT NUMBER(s) 23 DECLASSIFICATION REPORT NUMBER(s) 24 DECLASSIFICATION REPORT NUMBER(s) 25 DECLASSIFICATION REPORT NUMBER(s) 25 DECLASSIFICATION REPORT NUMBER(s) 26 ADMESS (CRANIZATION REPORT NUMBER(s) 27 A NAME OF PROVINCING ORGANIZATION REPORT NUMBER(s) 27 DECLASSIFICATION REPORT NUMBER(s) 28 NAME OF PROVINCING SCRIPTION 29 DECLASSIFICATION REPORT NUMBER(s) 20 DECLASSIFICATION REPORT NUMBER(s) 21 DECLASSIFICATION 21 DECLASSI								
25 DECLASSIFICATION DOWINGRADING SCHEDULE Institution unlimited. 4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONTORING ORGANIZATION REPORT NUMBER(S) 5 SID Ref 59-25 MPL_U-80/89 G.LTR. 89-0275 6 NAME OF PERFORMING ORGANIZATION BO OFFCE STVIBOL TA NAME OF INCOMPOSING ORGANIZATION 0 SID NEEDS (CV), State, and Zp Code) MPL Goophysics Laboratory 6 ADDRESS (CV), State, and Zp Code) MPL Goophysics Laboratory 8 AME OF FUNDINGSPONSORING Bo OFFCE STVIBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 0 CRANIZATION Bo OFFCE STVIBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 0 CRANIZATION Bo OFFCE STVIBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 0 CRANIZATION Bo OFFCE STVIBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 11 TITLE (include Security Classification) Evaluation of Stochastic Models for Estimating the Persistence Probability of Cloud-Free Lines-of-Sight. 10 PROF (CUULT) 12 PERSONAL AUTHOR(S) Way ne: S. H erring "Sa TIME CONSERVING Classification. 14 DATE OF REPORT Year Model, Day. 15 PAGE COUNT 13 DEPE OF REPORT Way ne: S. H erring "Sa TIME CONSERVING PROFESTION SUBBLICKTERMS (Continue on inverse / incesses /	24. SECONT FOLASSIFICATION AUTHORITY		Annoved fo	vavailabili i OF i	EPURI			
Image: PERFORMING ORGANIZATION REPORT NUMBER(S) Image: Store of the image: Store	20. DECLASSIFICATION/DOWNGRADING SCHED	DULE	distribution	unlimited.		•		
SID Ref 89-25 MPL-U-80/99 GL-TR-89-0275 6a NAME OF PERFORMING ORGANIZATION Bit OFFCE SVIRGC. 7a NAME OF MONITORING ORGANIZATION 10 Iniversity of California, San Diego MPL Geophysics Laboratory 7b ADDRESS (Ciry, State, and Zp Code) 7b ADDRESS (Ciry, State, and Zp Code) 7b ADDRESS (Ciry, State, and Zp Code) 8a NAME OF FUNDING/SPONSORING Bb OFFCE SVIRGC. 9 PROCUREMENT INSTRUMENT DENTFICATION NUMBER 7c00RANIZION (# applicable) 9 PROCUREMENT INSTRUMENT DENTFICATION NUMBER 7c00RANIZION PROCUREMENT INSTRUMENT DENTFICATION NUMBER 7c00RAN (# applicable) 9 PROCUREMENT INSTRUMENT DENTFICATION NUMBER 7c00RAN (# applicable) 10 SOURCE OF FUNDION NUMBERS 7c00RAN (# applicable) 10 COURT 7c00RAN (# applicable) 10 COURT 7c00RAN (# applicable) 10 COURT 7c00RAN (# applicable) 1	4. PERFORMING ORGANIZATION REPORT NUN	IBER(S)	5. MONITORING	ORGANIZATION RE	PORT NUI	MBER(S)		
Gai NAME CF PERFORMING ORGANIZATION Bio CFFCE SYMBOL (1/updatasing) Ta NAME CF MONITORING ORGANIZATION Construction Geophysics Laboratory Geophysics Laboratory Construction MPL Geophysics Laboratory Geophysics Laboratory To XONGES (CP), Same, and Zp Code) To XONGES (CP), Same, and Zp Code) San Diego, CA 92093 Bansom AFB, MA 01731-5000 Bansom AFB, MA 01731-5000 Ba NAME CF FUNDING/SPONSORING Ban OFFICE SYMBOL (1/updatasing) PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER F19628-88-K-0005 Is SOURCE OF INDING NUMBERS F19628-88-K-0005 Sc. ADDRESS (CI), State, and Zp Code) Is SOURCE OF INDING NUMBERS NO. I'I TITLE (include Security Classification) Evaluation of Stochastic Models for Estimating the Persistence Probability of Cloud-Free Lines-of-Sight. (UNCL) NO. I'I TITLE (include Security Classification) Values to COVERED III. DATE OF REPORT (Year, Monh, Day) III. DATE OF REPORT (Year, Monh, Day) III. DATE OF REPORT (Year, Monh, Day) III. DAGE COUNT I'S SUPECEMENTIAL NO NOTATION I'S SUB-GOVER III. DATE OF REPORT (Year, Monh, Day) I'S COCALITICONES UPCLEMENTATION IIII. D	SIO Ref 89-25	MPL-U-80/89	GL-TR-89-0	275		· · · · · · · · · · · · · · · · · · ·		
University of California, San Diego MPL Geophysics Laboratory 6< ADDRESS (CP), Sale, and Zp Code)	68. NAME OF PERFORMING ORGANIZATION	8b. OFFICE SYMBOL (if applicable)	7a. NAME OF MO	NITORING ORGANI	ZATION			
Ge ADDRESS (Cry, State, and Zp Code) To ADDRESS (Cry, State, and Zp Code) San Diego, CA 92093 Hanscom AFB, MA 01731-5000 Ba MAUE OF FINDING-SPONSORING ORGANIZATION Bo OFFICE SYMBQL (* applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER F19628-88-K-0005 Be ADDRESS (Chy, State, and Zip Code) Bo OFFICE SYMBQL (* applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER F19628-88-K-0005 Be ADDRESS (Chy, State, and Zip Code) Its SUBCE OF FINDING NUMBERS FOORAM TASK NOCK NUT NOCK NUMBERS 11. TITLE (include Security Classification) Evaluation of Stochastic Models for Estimating the Persistence Probability of Cloud-Free Lines-of-Sight. (UNCL) TASK NOCK NUT 12. PERSONAL AUTHOR(5) 12. TITLE (include Security Classification) Way ne S. Hering Na TYPE OF REPORT 14. DATE OF REPORT (Year, Monith, Day) 15. PAGE COUNT 15. PAGE COUNT 16. SUPFLEMENTARY NOTATION 17. COSATICODES SUB-GROSE (Cloud-Free Line-of-Sight, Whole-Sky Imager), Stochastic Modeling, Markov Process, Recurrence and Persistence Probability, Sky Cover, W.C.Y. Apric C.C.E.C.C., R.C.A. UNITY, J.L. UNITY, Study is directed toward extension of the analytical form of the O-U Markov model to yield estimates of the simple Markov process have been used effectively to estimate the conditional probability of a variety of weather events (Gringorten, 1972). This study is directed toward extension of the analytical form of the O-U Markov model to yield estimates are made of the recurrence probability of textension of the analytical form of the O-U Markov model to sight destimates are made of the r	University of California, San Diego	MPL	Geophysics	Laboratory				
San Diego, CA 92093 Hanscom AFB, MA 01731-5000 Ba NAME OF FUNDING/SPONSORING ORGANIZATION Bb: OFFICE SVMBQ (#applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER F19628-88: K-0005 Be: ADDRESS (City, State, and Zip Code) 10. SOLICE OF FUNDING NUMBERS FOODS Be: ADDRESS (City, State, and Zip Code) 10. SOLICE OF FUNDING NUMBERS WORK UNIT ACCESSION NO. 63707F MORE NUMBERS 11. TITLE (include Security Classification) Evaluation of Stochastic Models for Estimating the Persistence Probability of Cloud-Free Lines-of-Sight. (UNCL) MORE UNIT ACCESSION NO. 63707F MORE NUMBERS 12. PERSONAL AUTHOR(S) Way ne S. H ering 13a TVPE OF REPORT 14. DATE OF REPORT (Year, Monit, Day) 15. FAGE COUNT 15. SUB-CRODES 13. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 15. FAGE COUNT 16. SUB-CRODES 16. SUB-CRODES 14. DATE OF REPORT 18. SUB-CET TERMS (Continue on reverse if necessary and identify by block number) 15. FAGE COUNT 1989 /9/30 15. FAGE COUNT 1989 /9/30 15. ABSTRACT Commune on reverse if necessary and identify by Diok number) 14. DATE OF REPORT (Year, Monit, Day) 15. FAGE COUNT 1980 /9/30 16. SUB-CRODES 18. SUB-COT TERMS (Continue on reverse if necessary and identify by Diok number) 15. FAGE COUNT 1980 /9/30 15. FAGE COUNT 1980 /9/30 17. COSATICODES 18. SUB-CRODE	6c. ADDRESS (City, State, and Zip Code)		7b. ADDRESS (Cil	ty, State, and Zip Cod	le)			
Sa MARE OF FUNDING SPONSORING ORGANIZATION B. DEFECT SYNBIG. 9 PROCHREMENT INSTRUMENT IDENTIFICATION NUMBER F19628-88-K-0005 8: ADDRESS (City, State, and Zip Code) IS SUBCE OF FUNDING NUMBERS F19628-88-K-0005 No. NO. 10: ADDRESS (City, State, and Zip Code) IS SUBCE OF FUNDING NUMBERS F19628-88-K-0005 No. No. ACCESSION NO. 11: ITTLE (include Security Classification) Evaluation of Stochastic Models for Estimating the Persistence Probability of Cloud-Free Lines-of-Sight. No. ACCESSION NO. 12: PERSONAL AUTHOR(S) Way not S. Hering 14. DATE OF REPORT (Year, Month, Day) 15: PAGE COUNT 13: TYPE OF REPORT T30: TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15: PAGE COUNT 14: SUBJECT TERMS (Continue on reverse if inceasary and identity by block number) FIELD GROUP SUB-GROUP 19: ABSTRACT (Continue on reverse if inceasary and identity by block number) FIELD Cloud-Free-Line-of-Sight, Whole-Sky Imagery, Stochastic Modeling, Markov Process, Recurrence and Persistence Probability, Sky Cover, W 67 merce C FLOC, Y Club C, Y Club C	San Diego, CA 92093		Hanscom A	FB, MA 01731	-5000			
F19628-88-K-0005 8c ADDRESS (City, State, and Zip Code) 10. SOURCE OF FINDING NUMBERS VRORAM PROJECT 10. SUPEC OF FINDING NUMBERS VRORAM PROJECT 11. TITLE (include Security Classification) Evaluation of Stochastic Models for Estimating the Persistence Probability of Cloud-Free Lines-of-Sight. (UNCL) 12. PERSONAL AUTHOR(S) Way nc S. Hering 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT 13b. TIME COVERED 15. SUPPLEMENTARY NOTATION 14. DATE OF REPORT (Year, Month, Day) 17. COSATICODES 18. SUPPLEMENTARY NOTATION 16. SUBJECT TERMS (Continue on reverse i mecessary and identify by block number) 17. COSATICODES 18. SUPPLEMENTARY NOTATION 16. SUBJECT TERMS (Continue on reverse i mecessary and identify by block number) 19. ABSTRACT (Consume on reverse in mecessary and identify by block number) Cloud-Free-Line-of-Sight, Whole-Sky Imagery, Stochastic Modeling, Markov 19. ABSTRACT (Consume on reverse in mecessary and identify by block number) Cloud-Free-Line-of-Sight, Whole-Sky Imagery, Stochastic Modeling, Markov 19. ABSTRACT (Consume on reverse in mecessary and identify by block number) Cloud-Free-Line-of-Sight, Whole-Sky Imagery, Stochastic Modeling, Markov 19. ABSTRACT (Con	8a. NAME OF FUNDING/SPONSORING ORGANIZATION	85. OFFICE SYMBOL (if applicable)	9. PROCUREMEN	NT INSTRUMENT ID	ENTIFICAT			
Se ADDRESS (City, State, and Zip Code) ¹¹⁰ SOURCE OF FLONION UNMERS ¹¹¹ TITLE (include Security Classification) ¹¹⁰ SOURCE OF FLONION UNMERS ¹¹⁰ SOURCE OF FLONION ¹¹¹ TITLE (include Security Classification) ¹¹¹ SOURCE OF FLONION ¹¹¹ SOURCE OF FLONION ¹¹¹ TITLE (include Security Classification) ¹¹¹ SOURCE OF FLONION ¹¹² SOURCE OF FLONION ¹¹³ DATE COVERED ¹¹⁴ DATE OF REPORT (Year, Monit, Day) ¹¹⁵ PAGE COUNT ¹¹⁶ SUPPLEMENTARY NOTATION ¹¹⁸ SUBJECT TERMS (Continue on reverse if necessary and identify by block number) ¹¹⁷ COSATI CODES ¹¹⁸ SUBJECT TERMS (Continue on reverse if necessary and identify by block number) ¹¹⁷ COSATI CODES ¹¹⁸ SUBJECT TERMS (Continue on reverse if necessary and identify by lock number) ¹¹⁷ COSATI CODES			F19628-8	38-K-0005				
Instruction	sc. ADDRESS (City, State, and Zip Code)		10. SOURCE OF I	FUNDING NUMBER	S	WORKINT		
63707F 6670 09 A0 11. TITLE (include Security Classification) Evaluation of Stochastic Models for Estimating the Persistence Probability of Cloud-Free Lines-of-Sight. (UNCL) 12. PERSONAL AUTHOR(S) Tab. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 13. TYPE OF REPORT T3b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 16. SUBJECK TERMS (Continue on reverse if necessary and identify by block number) 15. PAGE COUNT 16. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17 COSATICODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 15. PAGE COUNT 19. ABSTRACT (Continue on reverse if necessary and identify by block number) C FLOS, f(r) to proverse if necessary and identify by block number) 16. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and dentify by block number) 16. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 17. COSATICODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 17. The cover on the reverse if necessary and identify by block number) 19			LIFMENT NO.	NO.	NO.	ACCESSION NO.		
11. TITLE (include Security Classification) Evaluation of Stochastic Models for Estimating the Persistence Probability of Cloud-Free Lines-of-Sight. (UNCL) 12. PERSONAL AUTHOR(S) Way ne S. H ering 13a. TVPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Scientific No. 1 FROM 10/1/88 TO. 9/30/89 1989/9/30 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 15. PAGE COUNT 17. COSATICODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 15. PAGE COUNT 18. BUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. Process, Recurrence and Persistence Probability, Sky Cover, W & Cover, C & ELOS_, ft CLA & COVER, D & COVER, C & CLOS_, ft CLA & COVER, D & COVER, C & CLOS_, ft CLA & COVER, D & COVER, C & CLOS_, ft CLA & COVER, D & COVER, C & CLOS_, ft CLA & COVER, D & COVER, C & CLOS, A & GROWER, C & COVER, C & CLOS, A & GROWER, C & COVER, C & CLOS, A & GROWER, C & COVER, C & CLAS & COVER, C & CLAS & C & CLOS, A & C & CLAS & CLAS & C & CLAS & C & CLAS & CL		_	63707F	6670	09	A0		
Probability of Cloud-Free Lines-of-Sight. (UNCL) 12. PERSONAL AUTHOR(S) Way ne S. H ering 13a. TYPE OF REPORT Scientific No. 1 FROM 10///88 14. DATE OF REPORT (Year, Month, Day) Scientific No. 1 FROM 10///88 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Scientific No. 1 FROM 10///88 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Scientific No. 1 FROM 10///88 TO 9/30/89 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Scientific No. 1 FROM 10///88 To 9/30/89 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Field GROUP Cloud-Free-Line-of-Sight, Whole-Sky Imagery, Stochastic Modeling, Markov Process, Recurrence and Persistence Probability of Case of the Oracle and Persistence Probability of Case of the Oracle and Persistence Probability of Case of th	11. TITLE (include Security Classification) Eva	luation of Stochastic Mo	dels for Estima	ting the Persiste	nce			
12. PERSONAL AUTHOR(S) 13a. TYPE OF REPORT 13b. TIME COVERED 13c. TYPE OF REPORT 13c. SUPPLEMENTARY NOTATION 17. 17. COSATI COOES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP Substance Process, Recurrence and Persistence Probability, Sky Cover, Wether the conductional identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 10. ABSTRACT (Continue on reverse if necessary and iden		Probability of Cloud-Fr	ee Lines-of-Sig	sht. (UNCL)				
Way ne S. Hering 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Scientific No. 1 FROM 10/1/88 TO_9/30/82 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB GROUP SUB GROUP Cloud-Free-Line-of-Sight, Whole-Sky Imagery, Stochastic Modeling, Markov Process, Recurrence and Persistence Probability, Sky Cover, Wernher 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Stochastic models, based upon the Omstein-Uhlenbeck (O-U) class of the single Markov process have been used effectively to estimate model to yield estimates of the joint occurrence probability of a variety of weather events (Gringorten, 1972). This study is directed toward extension of the analytical form of the O-U Markov model to yield estimates are made of the recurrence probability of sky cover as a function of sky. cover a sa function of sky. The model calculations are made for the persistence probability of CFLOS and sky cover as a function of sky-cover category and time using an analytical 'representation of the O-U Markov model, calculations are made of the joint occurrence probability of Sky-cover at two or more sites and compared with the observations from the entral United States. Finally, analytic techniques are presented for calculat	12. PERSONAL AUTHOR(S)			· · · · · · · · · · · · · · · · · · ·				
Way net S. Herring 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Scientific No. 1 15. URE COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Scientific No. 1 16. SUPPLEMENTARY NOTATION 17. COSATI COOES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 10. State in the containalis		o						
Inductor on the one of	Way ne	S. Hering		APT Ware Marth /	Javel			
16 SUPPLEMENTARY NOTATION 17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17 Cloud-Free-Line-of-Sight, Whole-Sky Imagery, Stochastic Modeling, Markov Process, Recurrence and Persistence Probability, Sky Cover, Wearborg 19 ABSTRACT (Continue on reverse if necessary and identify by block number) 19 ABSTRACT (Continue on reverse if necessary and identify by block number) Stochastic models, based upon the Ornstein-Uhlenbeck (O-U) class of the simple Markov process have been used effectively to estimate the conditional probability of a variety of weather events (Gringorten, 1972). This study is directed toward extension of the analytical form of the O-U Markov model to yield estimates of the joint occurrence probability of CFLOS for specific categories of sky cover in tenths as a function of time. Then model calculations are made for the persistence probability of CFLOS and sky cover as a function of sky-cover category and time using an analytical representation of the mathematic solution of persistence probability for the O-U Markov process given by Kielson and Ross (1975). The model calculations of CLFOS recurrence and persistence are compared with the Columbia, MO, data base (Lund, 1973). Again using an analytical form of the O-U Markov model, calculations are made of the joint occurrence probability of sky-cover at two or more sites and compared with the observations from the central United States. Finally, analytic techniques are presented for calculating probability estimates of the duration of cloud-free or cloudy lines of sight from one or multiple ground sites to points in space. Trial calculations based upon climatic summaries of sky-cover	Scientific No. 1	10/1/88 TO 9/30/89	14. DATE OF REPORT (1980, Multur, Day) 15. FAGE COUNT					
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROOP Cloud-Free-Line-of-Sight, Whole-Sky Imagery, Stochastic Modeling, Markov Process, Recurrence and Persistence Probability, Sky Cover, WEGGERGE CEPLOS, Production Status	16 SUPPLEMENTARY NOTATION		۹ <u>ــــــــــــــــــــــــــــــــــــ</u>	100117150		1		
17. COSATI COOES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROOES Cloud-Free-Line-of-Sight, Whole-Sky Imagery, Stochastic Modeling, Markov 19. ABSTRACT (Continue on reverse if necessary and identify by block number) CFLOS, frotestic models, based upon the Ornstein-Uhlenbeck (O-U) class of the simple Markov process have been used effectively to estimate the conditional probability of a variety of weather events (Gringorten, 1972). This study is directed toward extension of the analytical form of the O-U Markov model to yield estimates of the joint occurrence probability of CFLOS and sky cover in tenths as a function of time. Then model calculations are made for the persistence probability of CFLOS and sky cover as a function of sky-cover category and time using an analytical 'representation of the mathematic solution of persistence probability for the O-U Markov model, calculations are made of the joint occurrence probability of Sky-cover at two or more sites and compared with the observations from the central United States. Finally, analytic techniques are presented for calculating probability estimates of the duration of cloud-free or cloudy lines of sight from one or multiple ground sites to points in space. Trial calculations based upon climatic summaries of sky-cover are made for a selected group of sites in south western United States.) 20 DISTRIBUTIONAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 21 UNCLASSIFIED 22c. OFFICE SYMBOL 22a NAME OF RESPONSIBLE MDIVIDUAL 2b. TELEPHONE (include Area Code) 2c. OFFICE SYMBOL 22a NAME OF R								
FIELD GROUP SUB-GROUP Cloud-Free-Line-of-Sight, Whole-Sky Imagery, Stochastic Modeling, Markov Process, Recurrence and Persistence Probability, Sky Cover, Wfarther C. FLOS, fishe and the State of Cloud-Free-Line-of-Sight, Whole-Sky Imagery, Stochastic Modeling, Markov Process, Recurrence and Persistence Probability, Sky Cover, Wfarther C. FLOS, fishe and the State of Cloud-Free-Line-of-Sight, Whole-Sky Imagery, Stochastic Modeling, Markov Process, Recurrence and Persistence Probability, Sky Cover, Wfarther C. FLOS, fishe and the State of Cloud-Free-Line-of-Sight, Whole-Sky Imagery, Stochastic Modeling, Markov Process, Recurrence and Persistence Probability of Cloud-Free-Line-of-Sight, Uncloud-Free-Line-of-Sight, Uncloud-Free-Line-of-Sight, Whole-Sky Imagery, Stochastic Modeling, Markov Process, Recurrence and Persistence Probability of Cloud-Free-Line-of-Sight, Uncloud-Free-Line-of-Sight, Uncloud-Free of the post-of-Sight (CFLOS). As a first step, model estimates are made of the recurrence probability of CFLOS for specific categories of sky cover in tenths as a function of time. Then model calculations are made of the persistence probability of CFLOS and sky cover as a function of sky-cover category and time using an analytical ' representation of the mathematic solution of persistence probability for the O-U Markov process given by Kielson and Ross (1975). The model calculations of CLFOS recurrence and persistence are compared with the Columbia, MO, data base (Lund, 1973). Again using an analytical form of the O-U Markov model, calculations are made of the joint occurrence probability of sky-cover at two or more sites and compared with the observations from the central United States. Finally, analytic techniques are presented for calculating probability estimates of the duration of cloud-free or cloudy lines of sight from one or multiple ground sites to points in space. Trial calculations based upon climatic summaries of sky-cover are		LIR SUBJECT TEDMS (Con	inua an muarca it aa	corces and identify	by block of	mbad		
Process, Recurrence and Persistence Probability, Sky Cover, Wearsher, Markov 19. ABSTRACT (Continue on reverse if necessary and identity by block number) Stochastic models, based upon the Ornstein-Uhlenbeck (O-U) class of the simple Markov process have been used effectively to estimate the conditional probability of a variety of weather events (Gringorten, 1972). This study is directed toward extension of the analytical form of the O-U Markov model to yield estimates are made of the recurrence probability and duration of sky cover and cloud free lines of sight (CFLOS). As a first step, model estimates are made of the recurrence probability of CFLOS and sky cover as a function of sky-cover category and time using an analytical ' representation of the mathematic solution of persistence probability for the O-U Markov model, calculations are made of the joint occurrence probability of Sky-cover at two or more sites and compared with the observations from the central United States. Finally, analytic techniques are presented for calculating probability estimates of the duration of cloud-free or cloudy lines of sight from one or multiple ground sites to points in space. Trial calculations based upon climatic summaries of sky-cover are made for a selected group of sites in south western United States. 20 DISTRIBUTIONAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 21 UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL 22c. OFFICE SYMBOL Chars are obsolete. SECURITY CLASSIFICATION OF THIS PAGE	FIELD GROUP SUB-GROUP	Cloud-Free-Line-of-Si	ight Whole-Sky	u Imagery Stock	astic M	ndeling Markov		
CFLOS, from transformed to state the state of the st		Process Recurrence	nd Persistence	Probability Sky	Cover	MET TAR		
19. ABSTRACT (Continue on reverse if necessary and identify by block number) Stochastic models, based upon the Ornstein-Uhlenbeck (O-U) class of the simple Markov process have been used effectively to estimate the conditional probability of a variety of weather events (Gringorten, 1972). This study is directed toward extension of the analytical form of the O-U Markov model to yield estimates of the joint occurrence probability and duration of sky cover and cloud free lines of sight (CFLOS). As a first step, model estimates are made of the recurrence probability of CFLOS for specific categories of sky cover in tenths as a function of sky-cover category and time using an analytical * representation of the mathematic solution of persistence probability for the O-U Markov process given by Kielson and Ross (1975). The model calculations of CLFOS recurrence and persistence are compared with the Columbia, MO, data base (Lund, 1973). Again using an analytical form of the O-U Markov model, calculations are made of the joint occurrence probability of sky-cover at two or more sites and compared with the observations from the central United States. Finally, analytic techniques are presented for calculating probability estimates of the duration of cloud-free or cloudy lines of sight from one or multiple group of sites in south western United States. 20. DISTRIBUTIONAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 22. NAME OF RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSIFICATION of THIS PAGE 22. NAME OF RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSIFICATION of THIS PAGE		CELOS POLO		1100a0mity, 5ky	Cover	wer ner		
Stochastic models, based upon the Ornstein-Uhlenbeck (O-U) class of the simple Markov process have been used effectively to estimate the conditional probability of a variety of weather events (Gringorten, 1972). This study is directed toward extension of the analytical form of the O-U Markov model to yield estimates of the joint occurrence probability and duration of sky cover and cloud free lines of sight (CFLOS). As a first step, model estimates are made of the recurrence probability of CFLOS for specific categories of sky cover in tenths as a function of time. Then model calculations are made for the persistence probability of CFLOS and sky cover as a function of sky-cover category and time using an analytical * representation of the mathematic solution of persistence probability for the O-U Markov process given by Kielson and Ross (1975). The model calculations of CLFOS recurrence and persistence are compared with the Columbia, MO, data base (Lund, 1973). Again using an analytical form of the O-U Markov model, calculations are made of the joint occurrence probability of sky-cover at two or more sites and compared with the observations from the central United States. Finally, analytic techniques are presented for calculating probability estimates of the duration of cloud-free or cloudy lines of sight from one or multiple ground sites to points in space. Trial calculations based upon climatic summaries of sky-cover are made for a selected group of sites in south western United States. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 21. ABSTRACT SECURITY CLASSIFICATION 22c. OFFICE SYMBOL 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL 22c. OFFICE SYMBOL (617) 377-5952 GLLYA	19. ABSTRACT (Continue on reverse il necessary	and identify by block number)				1.5.		
of sky cover and cloud free lines of sight (CFLOS). As a first step, model estimates are made of the recurrence probability of CFLOS for specific categories of sky cover in tenths as a function of time. Then model calculations are made for the persistence probability of CFLOS and sky cover as a function of sky-cover category and time using an analytical ' representation of the mathematic solution of persistence probability for the O-U Markov process given by Kielson and Ross (1975). The model calculations of CLFOS recurrence and persistence are compared with the Columbia, MO, data base (Lund, 1973). Again using an analytical form of the O-U Markov model, calculations are made of the joint occurrence probability of sky-cover at two or more sites and compared with the observations from the central United States. Finally, analytic techniques are presented for calculating probability estimates of the duration of cloud-free or cloudy lines of sight from one or multiple ground sites to points in space. Trial calculations based upon climatic summaries of sky-cover are made for a selected group of sites in south western United States, 20. DISTRIBUTIONAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 21. AMME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL 22c. OFFICE SYMBOL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL 22c. OFFICE SYMBOL	Stochastic models, based upon the Orns to estimate the conditional probability of extension of the analytical form of the o	stein-Uhlenbeck (O-U) cl of a variety of weather ev D-U Markov model to yi	ass of the simpl vents (Gringorte eld estimates of	e Markov proce n, 1972). This s the joint occurr	ss have l study is o ence pro	been used effectively directed toward bability and duration		
Of CFLOS for specific categories of sky cover in tenths as a function of time. Then model calculations are made for the persistence probability of CFLOS and sky cover as a function of sky-cover category and time using an analytical * representation of the mathematic solution of persistence probability for the O-U Markov process given by Kielson and Ross (1975). The model calculations of CLFOS recurrence and persistence are compared with the Columbia, MO, data base (Lund, 1973). Again using an analytical form of the O-U Markov model, calculations are made of the joint occurrence probability of sky-cover at two or more sites and compared with the observations from the central United States. Finally, analytic techniques are presented for calculating probability estimates of the duration of cloud-free or cloudy lines of sight from one or multiple ground sites to points in space. Trial calculations based upon climatic summaries of sky-cover are made for a selected group of sites in south western United States. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 21. UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL DR. J. W. SNOW/ (617) 377-5952 GL/LYA DD FORM 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE	of sky cover and cloud free lines of sign	nt (CFLOS). As a first s	tep, model estin	nates are made o	of the rec	surrence probability		
persistence probability of CPLOS and sky cover as a function of sky-cover category and time using an analytical representation of the mathematic solution of persistence probability for the O-U Markov process given by Kielson and Ross (1975). The model calculations of CLFOS recurrence and persistence are compared with the Columbia, MO, data base (Lund, 1973). Again using an analytical form of the O-U Markov model, calculations are made of the joint occurrence probability of sky-cover at two or more sites and compared with the observations from the central United States. Finally, analytic techniques are presented for calculating probability estimates of the duration of cloud-free or cloudy lines of sight from one or multiple ground sites to points in space. Trial calculations based upon climatic summaries of sky-cover are made for a selected group of sites in south western United States. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 22a. NAME OF RESPONSIBLE INDIVIDUAL 21. DTIC USERS UNCLASSIFIED 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL DD FORM 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE	of CFLOS for specific categories of sk	y cover in tenths as a run	f alm aguar aguar	i nen model calc	ulations	are made for the		
(1975). The model calculations of CLFOS recurrence and persistence are compared with the Columbia, MO, data base (Lund, 1973). Again using an analytical form of the O-U Markov model, calculations are made of the joint occurrence probability of sky-cover at two or more sites and compared with the observations from the central United States. Finally, analytic techniques are presented for calculating probability estimates of the duration of cloud-free or cloudy lines of sight from one or multiple ground sites to points in space. Trial calculations based upon climatic summaries of sky-cover are made for a selected group of sites in south western United States. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL DR. J. W. SNOW' (617) 377-5952 GL/LYA DD FORM 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE	representation of the mathematic soluti	on of persistence probab	i sky-cover cale	gory and time u	sing an a	hy Kielson and Ross		
(Lund, 1973). Again using an analytical form of the O-U Markov model, calculations are made of the joint occurrence probability of sky-cover at two or more sites and compared with the observations from the central United States. Finally, analytic techniques are presented for calculating probability estimates of the duration of cloud-free or cloudy lines of sight from one or multiple ground sites to points in space. Trial calculations based upon climatic summaries of sky-cover are made for a selected group of sites in south western United States. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION ■ UNCLASSIFIED/UNLIMITED SAME AS RPT. 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL DD FORM 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE	(1975) The model calculations of CLE	OS recurrence and persi	stence are comp	ared with the Co	olumbia	MO data base		
probability of sky-cover at two or more sites and compared with the observations from the central United States. Finally, analytic techniques are presented for calculating probability estimates of the duration of cloud-free or cloudy lines of sight from one or multiple ground sites to points in space. Trial calculations based upon climatic summaries of sky-cover are made for a selected group of sites in south western United States. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION Image: UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS DR. J. W. SNOW' (617) 377-5952 GL/LYA DD FORM 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE	(Lund, 1973). Again using an analytica	al form of the O-U Mark	ov model, calcu	lations are made	of the i	oint occurrence		
analytic techniques are presented for calculating probability estimates of the duration of cloud-free or cloudy lines of sight from one or multiple ground sites to points in space. Trial calculations based upon climatic summaries of sky-cover are made for a selected group of sites in south western United States. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION Image: UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL DR. J. W. SNOW/ (617) 377-5952 GL/LYA DD FORM 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE	probability of sky-cover at two or more	sites and compared with	h the observation	ons from the cen	tral Unit	ed States. Finally.		
from one or multiple ground sites to points in space. Trial calculations based upon climatic summaries of sky-cover are made for a selected group of sites in south western United States. 21. ABSTRACT SECURITY CLASSIFICATION 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION Image: Summaries of Sky-cover are displayed by the selected group of sites in south western United States. 21. ABSTRACT SECURITY CLASSIFICATION 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION Image: Summaries of Sky-cover are displayed by the selected group of sites in south western United States. 21. ABSTRACT SECURITY CLASSIFICATION 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION Image: Summaries of Sky-cover are displayed by the selected group of sites in south western United States. 21. ABSTRACT SECURITY CLASSIFICATION Image: Summaries of Sky-cover are displayed by the selected group of sites in south western United States. 21. ABSTRACT SECURITY CLASSIFICATION Image: Summaries of Sky-cover are displayed by the selected group of sites in south western United States. 220. OFFICE SYMBOL Image: Summaries of Sky-cover are displayed by the selected group of sites in south western United States. 220. OFFICE SYMBOL Image: Summaries of Sky-cover are displayed by the selected group of sites in south western United States. 220. OFFICE SYMBOL Image: Summaries of Sky-cover are displayed by the selected g	analytic techniques are presented for ca	lculating probability esti-	mates of the dur	ration of cloud-fi	ree or clo	oudy lines of sight		
made for a selected group of sites in south western United States 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION ■ UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL DR. J. W. SNOW/ (617) 377-5952 GL/LYA DD FORM 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE	from one or multiple ground sites to po	ints in space. Trial calc	ulations based u	ipon climatic su	mmaries	of sky-cover are		
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION Image: Distribution of the security of Abstract 21. Abstract security classification Image: Distribution of the security of Abstract 21. Abstract security classification Image: Distribution of the security of Abstract 22. Office symbol Image: Distribution of the security of Abstract 22. Office symbol Image: Distribution of the security of Abstract 22. Office symbol Image: Distribution of the security of Abstract Security classification of this page	made for a selected group of sites in so	uth western United State	s,					
UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS UNCLASSIFIED 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL DR. J. W. SNOW/ (617) 377-5952 GL/LYA DD FORM 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE	20. DISTRIBUTION/AVAILABILITY OF ABSTRACT		21. ABSTRACT S	ECURITY CLASSIFIC	CATION			
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL DR. J. W. SNOW? (617) 377-5952 GL/LYA DD FORM 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE	UNCLASSIFIED/UNLIMITED SAME A	S RPT. DTIC USERS	UU	NCLASSIFIED				
DR. J. W. SNOW (617) 377-5952 GL/LYA DD FORM 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE	22a. NAME OF RESPONSIBLE INDIVIDUAL		22b. TELEPHONE	(include Area Code,		22c. OFFICE SYMBOL		
DD FORM 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE	DR. J. W. SNOW		(617) 37	7-5952		GL/LYA		
	DD FORM 1473, JUN 86 Pre	vious editions are obsolete.		SECURITY CLA	SSIFICATI	ON OF THIS PAGE		

UNCLASSIFIED

TABLE OF CONTENTS

1.0	Introduction	1
2.0	CFLOS As A Function of Sky-Cover and Zenith Viewing Angle	1
3.0	Properties of the Ornstein-Uhlenbeck Markov Process	2
4.0	 Estimating the Recurrence and Persistence Frequency of CFLOS for a Given Sky-Cover Condition 4.1 Comparison of 5-Min Recurrence Frequencies with O-U Markov Model Estimates 4.2 Comparison of 5-Min Persistence Values with O-U Markov Model Estimates 	3 3 4
	4.3 Comparison of 1-Hour Recurrence Probabilities of CFLOS with O-U Markov Model Estimates	6
5.0	Estimating the Multisite Joint Occurrence Frequency of Sky-Cover with a Markov Model	7 7 8
6.0	 Trial Determination of Joint Occurrence Statistics for WSI Sites 6.1 Persistence Probability of Cloudy Line of Sight for Zenith Viewing Angle = 30 Deg as a Function of Sky Cover 6.2 Recurrence Probability of Cloudy Line of Sight for Zenith Angle = 30 Deg. 6.3 Joint Probability of CFLOS (30) for Combinations of 2 and 3 Sites 6.4 Persistence Probability of CLOS (30) at Individual and Multiple WSI Sites 6.5 Determination of Down Time Duration Frequency for Individual or Multiple Sites 	9 10 10 11 11 11
7.0	Acknowledgements	14
8.0	References	15

	Acces	sion F	or						
	NTIS GRALI								
	DTIC TAB								
	Unant	nounced	ā						
	Justi	ficati	on						
	By								
	Distribution/								
OUAT A	Availability Codes								
		Avail	and/or						
	Dist	Speo	1al						
	1. 1	1							
	12-1	1							

-111-

LIST OF TABLES

Table #	Table Title	Page
1	Model Estimates of the Relative Frequency of Cloud Free Line of Sight as a Function of Total Sky Cover and Zenith Viewing Angle	. 1
2	Cloud Free and Cloudy Line of Sight Recurrence Frequency as a Function of Sky Cover at Columbia, MO	. 4
3	O-U Markov Model Estimates of the Relative Recurrence Frequency of Cloud-Free and Cloudy Lines of Sight	. 4
4	Cloud-Free and Cloudy Line of Sight Persistence Probabilities as Determined from 5-Min Interval Data at Columbia, MO	. 5
5	O-U Markov Model Estimates of Cloud Free and Cloudy Line of Sight Persistence Probabilities	. 5
6	Summarized Sky-cover Frequencies Extracted From Lund (1973)	. 6
7	Calculated and Observed Values of CFLOS Recurrence Probability at 1-hr Intervals	. 7
8	Relative Frequency of Winter Sky Cover ≥ 0.8 For Selected Locations in Central United States	. 8
9	A Comparison of Observed and Model Calculations of the Joint Occurrence Frequency of Sky Cover ≥ In Winter At Selected Pairs of Sites	. 8
10	Same as Table 9 Except the Joint Occurrence Frequencies are for Various Combinations of 4 Sites	. 9
11	Same as Table 9 Except The Joint Occurrence Frequencies Are For Various Combinations of 6 Sites	. 9
12	Climatic Cumulative Frequency of Sky Cover for Selected WSI Sites in January and July	. 9
13	Persistence Probability for Cloudy Line of Sight at Zenith Angle = 30 Deg As A Function of Sky Cover and Time	. 10
14	Relative Frequency of Sky Cover When a Cloudy Line of Sight is Observed for a Zenith Viewing Angle = 30 Deg.	. 10
15	Recurrence Probability of Cloudy Lines of Sight at Zenith Angle = 30 Deg. for Selected WSI Sites in January and July	. 11
16	Joint Relative Frequencies of Sky Cover for Individual Pairs of WSI Sites and for a Network of 3 WSI Sites	. 11
17	Same as Table 16 Except for the Joint Relative Frequencies of Cloudy Lines of Sight at Zenith Angles = 30 Deg.	. 11
18	Persistence Probability of Sky Cover for Holloman AFB in January	. 12

List of Tables con't.

19	Persistence Probability of a Cloudy Line of Sight at Zenith Angle = 30 Deg. as a Function of Time	12
20	Persistence Probability of the Joint Occurrence of Cloudy Lines of Sight at Combinations of 2 and 3 Sites	13
21	Estimates Number of Downtime Episodes Per Month as a Function of Downtime Duration Interval for Holloman AFB, NM	14
22	Estimated Number of Joint Occurrences of Downtime Episodes Per Month as a Function of Downtime Duration Interval for Kirtland AFB,NM, and China Lake, CA	14
23	Estimated Number of Joint Occurrences of Downtime Episodes Per Month as a Function of Downtime Duration Interval for Combinations of 2 and 3 WSI Sites	14

LIST OF ILLUSTRATIONS

Fig. #	Figure Title	Page
1	Trial Calculations of the Probability of the Continuous Occurrence of CLOS (30) at Single Sites and the Continuous Joint Occurrence at Multiple Sites as a Function of Duration Interval (January)	. 13
2	Trial Calculations of the Probability of the Continuous Occurrence of CLOS (30) at Single Sites and the Continuous Joint Occurrence at Multiple Sites as a Function of Duration Interval (July)	. 13

1.0 INTRODUCTION

Minute by minute determinations of sky-cover and cloud-free-line-of-sight (CFLOS) are being made in an experimental field program initiated in 1988 by the University of California, San Diego. Solid-state, wholesky imagery (WSI) systems have been installed in a network configuration consisting of 6 field sites in the western United States. The primary goal is to obtain detailed observations of the joint occurrence frequency of CFLOS in time and space that are required to evaluate and extend sky-cover models. The stochastic sky-cover models are to be used for estimating the impact of clouds on ground-based systems that depend upon unobscured paths of sight to satellites in space.

A comprehensive statistical model has been developed by Boehm, et al, (1986) that specifically provides estimates of the duration of cloud free lines of sight from multiple ground sites to orbiting and geostationary satellites. The innovative method establishes the climatic probabilities through repetitive simulations of sky-cover distributions with the multidimensional Bochm Sawtooth Wave Model. The simulation model and its many component approximations are the prime candidates for test and evaluation with the new WSI data base.

Prominent among alternate approaches to the problem are models based on the Ornstein-Uhlenbeck (O-U) class of the simple Markov process. This approach has been applied successfully both in purely analytical form and by Monte Carlo simulation of probability distributions to estimate the joint occurrence and duration of a variety of weather events (Gringorten 1966, 1967, 1968, 1972). This study is directed toward extension of the analytical form of the O-U Markov model to yield estimates of the joint occurrence and persistence probability of cloud free lines of sight in time and space.

The ultimate objective of the modeling process is to determine the joint climatological probability of the duration of cloud free lines of sight to a point in space from one or more preselected ground sites, given the climatic summaries of sky-cover at each site. The solution to a number of intermediate modeling problems is required to achieve the desired objective. In Section 2, the application of existing models to estimate cloud free line of sight (CFLOS) probability as a function of sky-cover and the zenith angle of the path of sight is described. The basic O-U Markov modeling concepts are reviewed in Section 3. Estimates of the single station duration of CFLOS as a function of sky-cover using the Keilson-Ross procedure are discussed in Section 4. Estimates of the joint conditional probability of skycover at multiple sites is discussed in Section 5. Procedures for estimating the frequency of downtime intervals caused by cloud obscured lines of sight persisting concurrently at designated network sites are described in Section 6.

2.0 CFLOS AS A FUNCTION OF SKY COVER AND ZENITH VIEWING ANGLE

Variations in the angle of view through the atmosphere coupled with the 3-dimensional structure of cloud forms result in a systematic decrease in the average relative frequency of CFLOS with an increase in the zenith angle of the ground-based observer's path of sight. The probability of CFLOS as a function of skycover, cloud type and zenith viewing angle was determined empirically by Lund and Shanklin (1973). Three years of hourly summer data were used to establish the model estimates. The smoothed and adjusted probabilities were derived from whole-sky photographs with infrared film and companion observations of cloud amount by National Weather Service observers at Columbia, Missouri. The relative frequencies of CFLOS as summarized for a composite of all cloud types by Lund and Shanklin are shown in Table 1. The model estimates have been refined and upgraded by Allen and Malick

Table 1. Model estimates of the relative frequency of cloud free line of sight as a function of total sky cover and zenith viewing angle.

ZENITH ANGLE DEGREE		SKY COVER (TENTHS)									
	0	2	4	6	8	10	1				
0 30 50 70 80	1.00 0.99 0.99 0.98 0.97	0.92 0.90 0.88 0.83 0.76	0.81 0.80 0.76 0.67 0.55	0.70 0.66 0.62 0.50 0.39	0.48 0.46 0.42 0.33 0.24	0.08 0.08 0.07 0.05 0.03	0.665 0.648 0.623 0.560 0.490				

LUND AND SHANKLIN EMPIRICAL MODEL

ALLEN AND MALICK GEOMETRIC MODEL

ZENITH ANGLE DEGREE		SKY COVER (TENTHS)									
	0	2	4	6	8	10]				
0 30 50 70 80	1.00 0.99 0.99 0.98 0.97	0.92 0.90 0.88 0.83 0.74	0.78 0.74 0.71 0.61 0.48	0.58 0.54 0.50 0.40 0.27	0.32 0.29 0.26 0.20 0.12	0.01 0.00 0.00 0.00 0.00	0.602 0.577 0.557 0.503 0.430				

(1983), removing apparent observer bias through geometric modeling procedures. The revised model presented in analytical form yields the distribution of relative frequency of CFLOS, $P_r(s, \theta)$, as a function of skycover, s, and zenith observing angle, θ , as follows:

$$P_{r}(s,\theta) = P_{n}^{(1+b\tan\theta)}, \qquad (1)$$

where

$$P_n = 1 - s (1 + 3s) / 4$$
, (2)

and

$$b = 0.55 - s/2$$
 (3)

The resultant probability distribution of CFLOS is shown in Table 1.

For the objective at hand, this class of model approximation is a necessary first step, serving to convert climatic summaries of sky-cover into the corresponding climatic probabilities of ground to space CFLOS for designated viewing angles. The accuracy of the Lund-Shanklin and Allen-Malick models will be subjected to close analysis with the expanding data base generated by the WSI program, including the determination of systematic variations in the CFLOS relationships with respect to cloud type.

3.0 PROPERTIES OF THE ORNSTEIN-UHLENBECK MARKOV PROCESS

In this study, we explore a purely analytical solution to the problem of estimating the recurrence and persistence probability of sky-cover and CFLOS. The approach assumes that the stochastic behavior in both time and space can be described with close approximation by the Ornstein-Uhlenbeck Markov process (Feller, 1966). A brief review of the basic relationships as given by Gringorten (1972) is included here. The initial step is to transform the weather variable, (X), into its <u>equivalent</u> <u>normal deviate (END)</u>, y, through its cumulative probability:

$$P_r(X \le x) = (1/\sqrt{2\pi}) \int_{-\infty}^{y} exp(-\eta^2/2) d\eta$$
. (4)

The resulting new variable (y) has a variance of 1.0 and a mean of 0.0. In the O-U Markov process the correlation coefficient, ρ_t , between the two END's (y_o and y_t) separated by time interval, (t), is given by

$$\rho_t = \exp\left(-t/\tau\right) = \exp\left(-\alpha_t\right), \quad (5)$$

where τ is the relaxation time.

The fundamental stochastic equation relating the END

values of y_{a} and y_{t} over time interval (t) can be written (Gringorten, 1972)

$$y_t = \rho_t y_0 + \sqrt{1 - \rho_t^2} \eta_t$$
, (6)

where η_t is the END of the conditional probability $P_r(y \le y_t \mid y_o)$. The stochastic process is assumed to be stationary and the relaxation time is assumed constant. Eqs. 5 and 6 yield the conditional probability of a weather event following a prescribed initial condition. The input variables are the unconditional climatic cumulative frequencies of y_o and y_t , time interval (t) and a representative relaxation time (t) for that location, month and time of day.

For continuous variables, such as temperatures, the value of y_o in Eq. 6 is uniquely defined by the cumulative probability distribution at time zero. For variables expressed in categories, such as sky-cover, it is important to subdivide the category probability range into subsets with smaller but equal probability ranges. The calculations of conditional probabilities should be carried out using in turn each of the midpoints of the subsets as y_o and the results averaged to yield the composite result for the sky-cover category. Experience shows that division into 6 subsets is sufficient for reliable results even for categories with a large range of unconditional probability.

In this study, Eq. 6 is used to determine the climatological probability of the recurrence of sky-cover and CFLOS in space as well as in time. Recurrence is defined here as the occurrence of a weather event at a later time or at another site following the occurrence of the event at initial time or at the reference location, without regard to conditions occurring over the intervening time or space. For joint occurrence estimates in space, the form of the expression is the same except that a relaxation distance is substituted for relaxation time.

The O-U Markov process is used also in this study to model the persistence of sky-cover and CFLOS. Persistence is defined as the uninterrupted presence of a weather condition at one site or a combination of sites. A mathematical solution of persistence probability for the O-U Markov process was presented by Keilson-Ross (1975). The solution for event duration probability is mathematically complex, such that Ross (1980) applied the method of cubic splines to approximate the solutions for more rapid calculation. Further analysis suggested to us an alternative analytical representation of the formal solution for reliable approximation over the desired range of output. As given by the mathematical solution of Keilson-Ross, the case when the climatic cumulative frequency of the weather event is 50 percent ($y_o = 0.0$) is very simple:

$$F_{\alpha}(y_{o} = 0) = (1/\pi) \sin^{-1}[\exp -t/\tau]$$
, (7)

where F_{α} is the unconditional probability that $y \le y_{\alpha}$ throughout time interval (t).

Solutions for $(y_{\circ} \neq 0)$ in this study are approximated by

$$f_{a}(y_{o}) = f_{a}(y_{o} = 0) + y_{o}(1 + 0.13 \alpha_{c}^{0.9}) ,$$

$$\begin{bmatrix} -2 \le y_{o} \le 2 \\ 0 \le \alpha_{1} \le 3 \end{bmatrix}$$
(8)

where $f_{\alpha}(y_{\circ})$ is the END value corresponding to $F_{\alpha}(y_{\circ})$, and $f_{\alpha}(y_{\circ} = 0)$ is the END value corresponding to the solution for the maximum equal the median case, $(y_{\circ} = 0)$, given by Eq. 7, and y_{\circ} is the END value corresponding to the cumulative probability of the weather event.

In turn, the conditional persistence probability of y remaining $\leq y_{n}$ in time interval t is given by

$$P_{r}(y \le y_{o}, t \mid y \le y_{o}) = F_{\alpha}(y_{o}) / P_{r}(y \le y)$$
 (9)

where $P_r(y \le y_o)$ is the unconditional probability of $y \le y_o$ at t = 0.

in contrast with the recurrence expression (Eq. 6), the persistence probability expression (Eq. 9) assumes that the initial and final climatic frequency distributions are the same. Work is underway to extend the analytic process to include the effects of systematic changes in the unconditional event probabilities.

4.0 ESTIMATING THE RECURRENCE AND PERSISTENCE FREQUENCY OF CFLOS FOR A GIVEN SKY-COVER CONDITION.

Let us direct attention to a unique subset of photogrammetically determined CFLOS data that has been summarized by Lund (1973). During one summer of the 3-year observational program at Columbia, MO, CFLOS determinations were made from whole-sky photographs at 5-min intervals between the hours of 0800 and 1700, for a total of 585 hours in June, July, August, and September of 1969. Recurrence and "5-min persistence" frequencies of CFLOS were calculated by Lund (1973) using a grid representing lines of sight at azimuth angles 0, 90, 180 and 270 deg over the zenith angle range 0-80 deg in increments of 10 deg. Cloud/no cloud determinations were made for each of the 33 grid points at 5-min time intervals. Data from all grid points were included in the summarized recurrence and persistence statistics without regard to grid point location.

Hourly observations by National Weather Service personnel provide concurrent determinations of skycover. For the 5-min data base, the relative frequencies of recurrence and persistence were calculated by Lund (1973) as a function of sky-cover. It was assumed that the sky-cover at all 5-min intervals during a given hour was the average of the conventional observations of skycover made at the beginning and the end of the hour.

Thus, the probability statistics summarized by Lund for the 5-min data do not reflect synoptic changes in skycover during the intervening time interval. The summaries do depict the relative frequencies of recurrence and persistence as observed at the grid points for fixed categories (tenths) of average sky-coverduring the hourly periods.

4.1 Comparison of 5-min recurrence frequencies with O-U Markov model estimates.

The cloud-free and the cloud-obscured recurrence relative frequencies as a function of sky-cover extracted from Figs. 6 and 7 of Lund (1973) are given in Table 2. The observed frequency of CFLOS for this subset is 0.533. In general, the recurrence statistics appear to be quite regular and consistent except for some categories of sky-cover where the number of observations is very small.

The overall cloud free and cloudy recurrence probabilities for this summer season at Columbia, MO, denoted by "ALL" in Table 2, were calculated as the average weighted by the observed frequency of occurrence of the individual categories of sky-cover in tenths. The cloud free and cloudy recurrence probabilities are about the same for this data base where the event probabilities are roughly equal.

The relative recurrence frequencies as calculated by Eqs. 5 and 6 are shown in Table 3. A cloud-element relaxation time, τ (c) of 30 min was selected in a deliberate attempt to obtain a close fit for both cloud free and cloudy lines of sight. Our purpose here was to determine the extent the O-U Markov process effectively models the real recurrence behavior. The results shown in Table 3 compare well with the observed behavior given in Table 2 for the individual cloud categories as well as the overall recurrence probabilities.

 Table 2.
 Cloud free and cloudy line of sight recurrence frequency as a function of sky cover at Columbia, MO. Data were extracted from Figs. 6 and 7 of Lund (1973). The period of record is 585 hours during the months of June, July, August and September 1969. The number of observations is denoted by N.

j	TIME	CLOUD COVER (TENTHS)										ALL	
	MIN	0	!	2	3	4	5	6	7	8	9	10	
i	5	100	948	93	92	85	82	79	72	71	71	67	89
1	15	100	95	ÿ١	87	8:	76	72	60	61	60	55	64
	25	100	95	90	86	79	74	67	56	54	54	46	82
1	35	100	96	90	86	78	70	64	55	50	50	45	81
ļ	45	100	97	87	85	76	69	60	55	45	45	45	80
!	55	100	97	85	85	73	71	60	59	40	40	41	79
1	N	26399	14288	16731	14256	10034	0283	11732	9456	6431	3041	909	123560

RECURRENCE PROBABILITY OF CLOUDY LINE OF SIGHT

TIME				C	LOUD	COVEF	(TENT	HS)				ALL
MIN	0	1	2	3	4	5	6	7	8	9	10	
5	64	64	61	68	61	63	74	83	88	94	98	87
15	46	6C	52	52	50	50	66	77	85	90	97	82
25	44	53	47	47	45	43	58	73	82	89	97	79
35	28	50	44	43	44	38	55	67	80	90	96	77
45	10	55	35	38	42	34	47	61	77	89	95	74
55	9	51	29	39	43	33	50	58	75	90	95	74
N	133	1552	3069	3564	3826	4765	9256	14304	15745	12799	39087	108100

Table 3. O-U Markov model estimates of the relative recurrence frequency of cloud-free and cloudy lines of sight.

i I		CLOUD COVER (TENTHS)										
	0	1	2	3	4	5	6	7	8	9	10	
MIN	[CFLO	s proe	BABILIT	Y (PER	CENT)				ALL
	99 5	90	85	80	72	68	56	40	29	19	23	
5	100	96	94	92	90	88	84	78	74	68	49	91
15	100	94	90	88	83	81	74	64	57	49	24	84
25	100	32	86	35	80	77	68	57	48	35	14	81
35	100	92	87	83	77	74	65	52	42	33	9	79
45	100	91	86	82	76	72	62	48	38	28	7	77
55	99	91	86	82	75	71	60	46	36	26	5	77

ESTIMATED RECURRENCE PROBABILITY OF CLOUD FREE LINE OF SIGHT (PERCENT)

				CL	OUD C	OVER	(TENT)	IS)				
	0	1	2	3	4	5	6	7	8	9	10	ļ
MIN	CFLOS PROBABILITY (PERCENT)										ALL	
	05	05 10 16 20 28 32 44 60 71 81 98										
5	40	61	66	69	73	75	80	86	89	93	99	89
15	15	39	45	50	56	59	67	77	83	88	98	82
25	7	28	35	40	47	50	60	71	79	86	98	78
35	4	22	29	33	41	45	55	68	76	84	98	76
45	2	18	24	29	37	41	52	33	75	93	98	74
55	2	15	22	27	34	38	50	64	74	82	98	73

ESTIMATED RECURRENCE PROBABILITY OF CLOUDY LINE OF SIGHT (PERCENT)

A variety of model deficiencies and data base anomalies lead some systematic disparities between model results and observed values. Attention is directed to one special consideration with respect to the CFLOS data base. Cloud/no cloud discrimination in the case of high thin clouds is at times very difficult for both the human observer and for determinations from whole-sky photographs. A particular case in point are instances when photogrammic results repeatedly specify cloud free conditions while the weather observer records obscuration by thin clouds or vice versa. This problem could contribute anomalously to the strong apparent recurrence of CFLOS in broken to overcast conditions as shown in Table 2.

4.2 Comparison of 5-min persistence values with O-U Markov model estimates.

We might expect that the O-U Markov model estimates of persistence probability for this data sample would verify equally well and would also confirm that the appropriate cloud-element relaxation time is near 30 min. We do have a special problem in that the cloud/no cloud determinations were made at 5-min intervals, such that we have no knowledge of conditions during the intervening time. Thus, for example, the so-called "5min persistence" probability for the first 5-min interval is listed as being equal to the recurrence probability for that interval despite frequent undetected changes in cloudiness which contribute significantly to a relatively lower persistence probability for the interval.

A more representative comparison of model and observed persistence can be achieved by some adjustment to the "5-min persistence" data even though it is approximate and, therefore, introduces additional uncertainty in the comparison process. We can, for example, make an adjustment for the unknown fluctuations in CFLOS during the first 5-min period by multiplying the observed "5-min persistence" by a correction factor which also should be applied to values for all subsequent time periods. Adjustments for unknown CFLOS fluctuations in subsequent time intervals are more difficult and controversial, but on the other hand have less impact if left uncorrected. So for purposes of this comparison the observed "5-min persistence" frequencies were adjusted by a single correction factor given by the ratio of the persistence and recurrence probabilities as calculated by the O-U Markov model for the first 5-min interval. The correction factor thus determined is applied to the observed probabilities for all time intervals. The correction factor is independent in the sense that the relaxation time used for the adjustment was determined from the recurrence probability distribution as described

in Section 4.1 above

The observed relative "5-min persistence" frequencies for cloud free and cloudy lines of sight as extracted from Figs. 4 and 5 of Lund (1973) and subsequently a ljusted by the correction factor are shown in Table 4.

Table 4. Cloud-free and cloudy line of sight persistence probabilities as determined from 5-min interval data at Columbia, MO. Summarized data were extracted from Lund (1973) and adjusted for high frequency changes as discussed in the text. Penod of record is the same as for Table 2.

ADJUSTED PERSISTENCE PROBABILITY OF CLOUD FREE LINE OF SIGHT (PERCENT)

								_	_			_	
				CL	OUD C	OVER	TENTH	IS)					
	0	1	2	3	4	5	6	7	8	9	10]	
time Min	CFLOS PROBABILITY (PERCENT) ALL 99 5 90 85 80 72 68 56 40 29 19 23												
	995	90	85	80	72	68	56	40	29	19	23]	
		ADJUSTMENT FACTOR (PERCENT)											
	99.1	93.4	91.0	89 2	86 2	84 6	80.3	74 5	70 7	65.4	51.1	1	
5	99	92	85	82	73	69	63	54	50	46	34	78 5	
15	98	88	76	71	59	51	46	33	33	32	21	68 2	
25	98	84	71	63	47	38	35	22	25	24	16	61 6	
35	98	83	66	58	43	29	28	17	20	23	14	57 7	
45	97	80	61	53	35	21	24	13	15	20	12	53 6	
55	97	79	57	4 0	32	12	20	12	13	18	11	50 9	

ADJUSTED PERSISTENCE PROBABILITY OF CLOUD OBSCURED LINE OF SKGHT (PERCENT)

ſ					CL	OUDC	OVER (TENTH	S)					
ł		0	1	2	3	4	5	6	7	8	9	10		
	MIN		CFLOS PROBABILITY (PERCENT)											
1	ļ	05	10	16	20	28	32	44	60	71	81	96]	
			ADJUSTMENT FACTOR (PERCENT)											
Ĺ		53 3	587	63 2	65 8	69 6	71 3	76 2	81 9	85.6	89 4	97 5		
ſ	5	34	38	39	45	42	45	56	68	75	84	96	75.9	
	15	25	29	24	26	24	24	38	52	64	76	93	65.8	
ł	25	15	20	20	20	16	14	26	41	56	72	91	59.8	
ļ	35	13	17	16	17	11	7	21	34	51	65	87	54 6	
ļ	45	•	14	15	17	9	4	18	29	43	63	84	51.0	
l	55	0	15	11	12	8	3	14	25	37	59	82	47 8	

The data base is identical to that used for calculation of the relative recurrence probabilities. Values are listed for each sky-cover category in tenths and the composite result. The persistence probability for the combined data base was calculated as the average weighted with respect to the observed climatic frequency of sky-cover in tenths when a cloud free (cloudy) line of sight occurs at any grid point selected at random.

Shown in Table 5 for comparison with the Columbia data in Table 4, are the relative persistence probability distributions for cloud free and cloudy conditions determined from Eqs. 7 and 8. As in the case of the recurrence calculations, the relative frequency of CFLOS as a function of sky-cover and the climatic frequency of sky-cover were taken from the Lund summary of the summer subset of data (585 hours of observation). The relaxation

Table 5. O-U Markov model estimates of cloud free and cloudy line of sightperistence probabilities.

ESTIMATED PERSISTENCE PROBABILITY OF CLOUD FREE LINE OF SIGHT

TIME				CLO	UD CO	OVER	(TENT	HS)				ALL
MIN	0	1	2	3	4	5	6	7	8	9	10	
5	99	90	86	82	77	74	68	58	52	45	26	79 9
15	98	80	72	67	60	56	46	34	27	20	8	66.1
25	97	72	62	56	47	43	33	22	16	11	3	57.2
35	95	64	54	47	38	34	24	14	10	6	1	50.3
45	94	58	46	40	31	27	18	10	6	3	1	45 2
55	93	52	40	33	25	21	13	6	4	2	0	40.8

ESTIMATED PERSISTENCE PROBABILITY OF CLOUD OBSCURED LINE OF SIGHT

TIME				CLO	UDCO	OVER	TENT	HS)				ALL
MIN	0	1	2	3	4	5	6	7	8	ý	10	
5	21	36	42	45	51	54	61	70	76	83	97	77 8
15	6	14	18	21	26	29	38	49	58	68	93	63.4
25	2	6	9	11	15	17	25	36	46	57	90	54.8
35	1	3	5	6	9	11	17	27	37	48	86	48.3
45	1	2	3	4	6	7	12	20	29	41	83	43 5
55	0	1	2	2	3	4	8	15	23	34	79	39.0

time (30 min) was assumed to correspond with cloudelement the determination made in the recurrence probability comparison.

Although there is good agreement between the model estimates and the adjusted observed values over the first few 5-min intervals, the observed persistence probability increases relative to the model estimates with increasing lag time. We might suspect that the uncertainties involved in the determination of pure persistence from data with a sampling interval of 5-min contributes to the underestimates of persistence probability. The correction factors are only a rough approximation and the factors deal only with high frequency fluctuations not likely to be detected during the first 5-min interval. The WSI data base with determinations of CFLOS at 1-min intervals will provide for a much closer examination of the problem.

Another factor that might contribute significantly to the apparent model under-estimates of persistence is the differences in the discrimination of CFLOS between the human observer and the photographic method, as discussed above. Repeated disagreement over several time intervals would lead to a false perception of event occurrence and duration.

The Keilson-Ross mathematical solution for the persistence probability assuming the O-U Markov process reveals that the nonlinear properties of the relationship are an important consideration in its application to specific problems. In particular, a calculation of persistence probability using the CFLOS frequency of the mean skycover as input will not yield a reasonable estimate of the composite result for all sky-cover categories. Compare, for example, the calculated probability distributions for a median cloud cover between 3 and 4 tenths for cloud free persistence and for a median of 8 tenths for cloudy persistence with the corresponding calculations for all categories combined in the last column labelled "all" of the summaries. The disparity is particularly large at longer time intervals when overcast (clear) and near overcast (clear) sky conditions make the overwhelming contribution to the continuation of the cloudy (clear) line of sight. Note for example in the lower Table 5, the 55min persistence frequency of CLOS with the median initial sky cover of 8 tenths is 0.23 vs. 0.39 for the weighed average (or all) calculation.

The nonlinearities in the persistence model calculations are of interest for another reason. The data base is a summary of relative frequency over a grid of 33 points spread over azimuth angles up to 80 deg. As shown in Table 1, climatic frequency of CFLOS depends significantly on the zenith angle of observation. Model calculations of the composite without regard to zenith angle, as was done in this comparison study, will result in an underestimate of the overall persistence probabilities. In practice, *une* model calculations should be confined to specific points or small regions of the sky dome. The results can be combined later if required for a given application.

In view of all the above considerations, we cannot extract a clear measure of performance of Eqs. 7 and 8 for estimating persistence probability through comparison with the "5-min persistence" data base. This is particularly true since the attempt to adjust the observed data to compensate for the behavior between intervals helps to ensure compliance between calculated and observed values at short lag times. On the other hand, it is encouraging that the O-U Markov model handles the recurrence probability estimates very well, and there is no reason at this point to suspect that the Keilson-Ross mathematical solution of the process for persistence probability estimates will not work as well. Comparisons with CFLOS data obtained at more frequent intervals is required for definitive evaluation.

4.3 Comparison of 1-hour recurrence probabilities of CFLOS with O-U Markov model estimates

An examination of O-U Markov model recurrence estimates over longer time intervals, including the effects of the natural changes in sky-cover with time, can be made through comparisons with yet other summaries of the Columbia, MO, data base by Lund (1973). The hourly recurrence of CFLOS was determined from the same 33-point grid as in the 5-min summary. A much larger data base was used for this purpose, covering 3 years (885 days) of data from all seasons at the Columbia site. The climatic summary of sky-cover for this period is given in Table 6. Shown also in the same table is the probability of CFLOS for specific categories of skycover in tenths which were taken from the 5-min data sample (comparable data were not available for the 885day sample).

Table 6	Summarized sky-cover frequencies extracted from
	Lund (1973). The data bare includes 885 days in all
	seasons over a period of 3 years at Columbia, MO The
	CFLOS probabilities as a function of sky cover were
	taken from the 5-min data base as listed in Table 4. All
	frequency values are given in percent.

SKY CVR TENTHS	CLIMATIC FREQUENCY SKY COVER	CUMULATIVE FREQUENCY SKY COVER	PROBABILITY CFLOS VS. SKY COVER
0	18 5	18.5	99.5
1	4.5	23.0	90.2
2	47	27.7	84 5
3	5.1	32.8	80.0
4	3.5	36.3	72.4
5	2.8	39.1	68 3
6	4.5	43.6	55.9
1	47	48.3	39.8
8	49	53.2	29.0
9	5.9	69.1	19.2
10	40.9	100.0	23

In the case of the hourly recurrence data, model estimates of CFLOS recurrence can be obtained readily by making some simplifying assumptions which do not significantly degrade the accuracy of the results. We note that the recurrence probability for the composite data base can be calculated using the relative climatic probability of CFLOS corresponding to the mean skycover as input with essentially the same result as proceeding with the calculations for individual sky-cover categories and combining the individual results.

Let us direct attention again to the calculations of CFLOS recurrence for a fixed sky-cover category in tenths (or the mean sky-cover) shown in Table 3. Note that the recurrence probability of CFLOS approaches the climatic frequency of CFLOS for that sky-cover category after a time interval greater than roughly 2 times the relaxation time. The cloud-element relaxation time for CFLOS for a fixed sky-cover condition is on the order of 30 min. Thus, we can assume reasonably that after a time interval of 1 hour or so the observed recurrence probability will correspond rather closely with the climatic CFLOS probability for the prevailing mean sky-cover at that point in time.

Thus, the problem of estimating the CFLOS recurrence at 1-hour intervals is reduced to a determination of the mean sky-cover for the period following the observed occurrence of CFLOS at a point selected at random from the 33-point grid. The mean sky-cover after initial CFLOS occurrence will systematically change with time so as to approach the mean sky-cover for the complete sample as the time interval increases. Since the diurnal variation in the cumulative frequencies of sky-cover are not available for this data base, these effects are not dealt with in this comparison. The progression of median sky-cover with time is given by Eq. 6 with $\eta_t = 0$ so that

$$y_{t}(\eta_{t} = 0) = \rho_{t} y_{t}$$
 (10)

where $y_t (\eta = 0)$ is the END of the cumulative probability of the median sky-cover at time t, following the occurrence of CFLOS at time = 0.

Using the available climatological information shown in Table 6, the median sky-cover at the time of an initial occurrence of CFLOS at a grid point is 0.282. The climatic cumulative probability that the sky-cover will be equal to or less than 0.282 tenths is 0.319, with a corresponding END value, y_o , of -0.47. The median skycover for the complete data base (885 days) is 0.616.

The calculations of the median sky-cover for each hour and the probability of CFLOS associated with the calculated median sky-cover are shown in comparison with the recurrence probabilities observed by Lund (1973) in Table 7. The sky-cover relaxation time, τ (s), of 16 hours chosen for the calculations produced a very close correspondence in the observed and calculated recurrence probability values. The basic considerations for the determination fo relaxation time for sky-cover, τ (s), and for CFLOS, τ (c), for a given sky-cover category are reviewed in a later section of this report.

5.0 ESTIMATING THE MULTISITE JOINT OCCURRENCE FREQUENCY OF SKY-COVER WITH A O-U MARKOV MODEL

The basic property of a simple Markov process is that the conditional probability of a state at any future time, given the present state, is not dependent upon any additional knowledge of behavior prior to initial time (cf. Kendall and Buckland, 1971). Extending the concept to space, the analogous assumption is that the conditional probability of a state at any site, given the state at the

 Table 7.
 Calculated and observed values of CFLOS recurrence probability at 1hr intervals. The observed recurrence probabilities were extracted from Table 1 of Lund (1973), and refer to the same data base as in Table 5 above. Y(t) is the cumulative probability of the calculated mean sky cover and y(t) is the corresponding END value determined from Eq. 1.

	CALCUL	A'ieD	CALC	JLATED	OBSERVED
TIME HOURS	y (t)	Y (t)	MEDIAN SKY COVER	RECURRENCE PROBABILITY	
0	-0.47	0.319	28	100	100
1	-0.442	0.329	30	80	80
2	-0.415	0.339	33	78	78
3	-0.390	0.348	36	76	76
4	-0.366	0.357	38	74	74
5	-0.344	0.365	41	72	72
6	-0.323	0.373	41	70	71

closest site, is not dependent upon knowledge of the state at more distant sites. Eq. 6 applies in exactly the same form except that " α_i " is redefined, α_a , as the ratio of site separation distance, d, and relaxation distance, D, (directly analogous to relaxation time τ). For the addition of a new site outside an existing network of sites, the separation distance, d, is defined as the distance between the new site and the perimeter of the area enclosing the existing network of sites. The perimeter is defined by straight lines connecting the outermost sites in the group.

5.1 Estimating the joint occurrence frequency of sky-cover at 2 sites

As part of a detailed study of the joint occurrence probabilities of weather events at multiple sites, Lund and Grantham (1980) published comprehensive summaries of the joint relative frequencies of sky-cover in central United States. In particular, the joint occurrence frequency of sky-cover ≥ 0.8 in winter was determined for a network of 7 stations from hourly observations made over a period of 13 years. The extensive data summaries provide a convenient and reliable basis to explore the applicability of the O-U Markov model for the determination of the joint occurrence frequency of sky-cover in space.

The relative climatic frequencies of winter sky-cover ≥ 0.8 for the individual sites as summarized by Lund and Grantham (1980) are listed in Table 8. Shown in Table 9 are comparisons of the observed 2-site joint frequencies with the estimates of joint probabilities determined with the O-U Markov model. Model estimates are

Table 8 . Relative frequency of winter sky cover ≥ 0.8 for selected locations in central United States. The summarized data were extracted from Lund and Grantham (1980).

	Location	Frequency Sky Cover ≥ 0.8
EVV	Evansviile, ID	0.598
BLV	Scott AFB, IL	0.564
STL	St. Louis, IL	0.566
COU	Columbia, MO	0.532
мкс	Kansas City, MO	0.507
TOP	Topeka, KS	0.502
DDC	Dodge City, KS	0.406

Table 9. A comparison of observed and model calculations of the joint occurrence frequency of sky cover ≥ 0.8 in winter at selected pairs of sites. The observed data were obtained from summaries of Lund and Grantham (1980). The model estimates were calculated with Eq. 6, assuming relaxation distances, D, of 500 and 650 miles.

	ļ	Separation	Joint (Docurrence Free	uency
Loca	tons	Distance	Observed	Estin	nated
		Miles		D = 500 mi	D = 650 mi
BLV	STL	32	0.512	0.510	0.517
TOP	MKC	56	0.437	0.431	0,440
COU	STL	108	0.457	0.448	0.459
мкс	COU	120	0.419	0.412	0.424
BLV	EVV	130	0.479	0 474	0.486
COU	BLV	139	0.443	0.436	0.449
STL	EVV	162	0.469	0.462	0.476
TOP	COU	176	0.392	0.392	0.406
МКС	STL	228	0.395	0.386	0.407
DDC	TOP	251	0.299	0.304	0.319
MKC	BLV	259	0.387	0.384	0.400
COU	EVV	<u>^</u> \$9	0.419	0.413	0.429
TOP	STL	283	0.374	0.379	0.395
DDC	МКС	305	0.284	0.292	0.308
TOP	BLV	313	0.368	0.372	0.388
мкс	EVV	389	0.373	0.374	0.391
DDC	COU	420	0.269	0.283	0.300
TOP	EVV	443	0.359	0.366	0.383
DDC	STL	524	0.268	0.282	0.298
DDC	BLV	552	0.264	0.279	0.296
DDC	EVV	678	0.264	0.280	0.296

shown for 2 assumed values of relaxation distance, illustrating the sensitivity of the estimates for a range of input values. In the case of 2-site joint occurrence, a designated relaxation distance of about 500 mi yields a very close approximation to the observed winter values. In other words, with the proper choice of relaxation distance the model works well in this case over the full range of separation distance from 32 to 678 miles.

5.2 Estimating the joint occurrence frequency of sky-cover at more than 2-sites.

Commensurate with the O-U Markov process and its application to conditional probability determinations in space, the joint occurrence probability of a state at a remote site, given the state of the nearest site is not dependent upon knowledge of the state at other more distant sites. To the extent that this is true, the joint probability of the occurrence of a weather event at more than 2 sites is simply the product of the probabilities of the individual station pairs. One necessary condition is that the separation distance for each new station added to an existing group of stations is the distance to the nearest existing station or the distance to the perimeter enclosing the existing group of stations, whichever is less. The determinations should proceed in such a way that each new station is outside the perimeter of the existing stations.

Given the relative joint occurrence probability for constituent pairs of stations, the frequency of simultaneous occurrence at all stations can be determined easily. The joint occurrence frequencies, P(i j), for 2 sites listed in Table 9 are given by

$$P(ij) = P(i)P(j|i)$$
(11)

where P (i) is the unconditional frequency at an individual station (see Table 8), and P (j | i) is the conditional probability that the event will occur at the second site given the occurrence of the event at the first site. The expression for joint occurrence frequency at 3 sites is

$$P(ijk) = P(i)P(j|i)P(k|j)$$
(12)

and so on.

The stations included in this comparison are virtually in a line configuration, so the station separation is always greater than the distance to the existing area perimeter. If this were not the case, the distance to the perimeter should be used as discussed above, and the unconditional event probability at the closest perimeter point should be determined by spatial interpolation of existing site data.

Thus, starting at one end of the station configuration and combining the pair probabilities as in Eq. 12, the resultant estimates of the joint occurrence frequencies for combinations of 4 stations are shown in Table 10 and for combinations of 6 stations in Table 11. Again, the observed occurrence frequencies were extracted from the summaries by Lund and Grantham (1980) for the winter data base covering a period of 13 years.

				Joint C	ocurrence Fre	quency
t	Loca	tions		Observed	Estin	nated
					D = 650 mi	D = 500 mi
BLV	COU	DDC	МКС	0.203	0.217	0.194
BLV	COU	DDC	TOP	0.202	0.218	0.195
BLV	COU	MKC	STL	0.344	0.334	0.313
BLV	COU	МКС	EVV	0.313	0.308	0.284
BLV	COU	STL	EVV	0.373	0.361	0.339
BLV	DDC	МКС	STL	0.207	0.226	0.200
BLV	DDC	MKC	EVV	0.188	0.209	0.186
BLV	DDC	STL	EVV	0.211	0.235	0.214
BLV	MKC	STL	TOP	0 323	0.323	0.296
BLV	МКС	TOP	EVV	0.296	0.299	0.274
COU	DDC	МКС	STL	0.210	0.222	0.200
COU	DDC	MKC	EVV	0.188	0.208	0.184
COU	DDC	STL	EVV	0.198	0.218	0.195
COU	MKC	STL	TOP	0.326	0.317	0.295
COU	МКС	TOP	EVV	0.297	0.297	0.272
DDC	MKC	STL	TOP	0.212	0.224	0.199
DDC	MKC	TOP	EVV	0.196	0.216	0.193
MKC	STL	TOP	EVV	0.295	0.297	0.268

Table 10. Same as Table 9 except the joint occurrence frequencies are for various combinations of 4 sites.

Table 11. Same as Table 9 except the joint occurrence frequencies are for various combinations of 6 sites.

						Joint C	ocurrence Fre	quency
		Loca	tions			Observed	Estin	nated
 							D = 650 mi	D = 500 mi
BLV	COU	DDC	MKC	sπ	TOP	0.187	0.184	0.167
BLV	COU	DDC	MKC	STL	EW	0.172	0.175	0.154
BLV	COU	DDC	MKC	TOP	ΕW	0.169	0.170	0.134
8LV	COU	DDC	STL	TOP	EW	0.171	0.175	0.154
BLV	COU	MKC	STL	TOP	EW	0.271	0.250	0.238
BLV	DDC	MKC	STL	TOP	ΕW	0.172	0.177	0.155
cou	DDC	MKC	STL	TOP	EW	0.170	0.170	0.144
				avera	age	0.187	0.186	0.164
				ra	tio	1.000	0.991	0.873

Very close agreement is found between the observed and estimated values for both 4-site and 6-site combinations. However, the best correspondence in both cases results from an assumed relaxation distance of about 650 miles rather than 500 miles as revealed by the 2-site model calculations. So the evidence in this example indicates that the conditional event probabilities for pairs of stations within the sample are not entirely independent. As might be expected, the joint occurrence frequency for a pair of sites increases to some extent if the event occurs jointly at a nearby pair of sites. The evidence here also suggests that an effective adjustment consists of an appropriate increase in relaxation time for multiple sites, which remains essentially the same regardless of the number of additional sites above 2.

6.0 TRIAL DETERMINATIONS OF JOINT OCCURRENCE STATISTICS FOR WSI SITES

In summary a series of trial calculations were made for selected WSI sites to illustrate the potential range of joint CFLOS occurrence statistics to be determined with the O-U Markov model. Holloman AFB, NM, Kirtland AFB, NM, and China Lake, CA, were chosen for analysis. The climatic frequency distributions of sky-cover for January and July at these stations are shown in Table 12. The values are monthly averages of hourly observations over a 10 year period. It is important to note that the

lable 12.	Climatic cumulative frequency of sky cover for selected
	WSI sites in January and July.

	Holloman	AFB, NM	China L	ake, CA	Kirtland AFB, NM	
Sky Cover Tenths	Jan	July	Jan	July	Jan	July
10	24.0	12.1	20.9	3.5	27.6	12.4
9	29.5	20.8	27.1	6.2	31.6	20.0
8	35.0	29.6	33.2	8.9	35.7	27.6
7	40.5	38.4	39.4	11.6	39.8	35.1
6	46.0	47.1	45.6	14.3	43.8	42.7
5	52.0	56.0	51.4	20.1	47.5	50.0
4	58.0	65.0	57.2	25.9	51.3	57.2
3	64.0	74.0	63.0	31.6	55.0	64.5
2	70.0	83.0	68.8	37.4	58.8	71.7
1	76.0	92.0	75.0	43.2	62.5	79.0
0	100.0	100.0	100.0	100.0	100.0	100.0
Mean Sky Cover (Tenths)	5.3	5.7	5.2	2.2	4.8	5.0

diurnal variations in average cloud cover were not considered in these trial calculations. These systematic variations of course do have significant impact on the persistence determinations and should be included for comprehensive analyses of these sites. While the diurnal range in mean sky cover is only about one tenth at the selected sites in January, the diurnal range increases to 2 to 4 tenths in July. In the absence of more complete information, the values for scattered and broken clouds were assumed to be equally divided among the individual categories of clouds in those ranges.

6.1 Persistence probability of cloudy line of sight for zenith viewing angle = 30 deg as a function of fixed and specified sky cover

The trial calculations were made for cloudy lines of site for an assumed zenith viewing angle of 30 deg, CLOS (30). For the determination of recurrence and persistence probability, the relaxation time for cloud elements, τ (c), and for sky cover, τ (s), must be specified. Calculations can be carried out separately for cloud element persistence and sky cover persistence using the nondimensional time scales of α_t (c) and α_t (s). The actual time interval can be determined later by multiplying by the appropriate relaxation times τ (c) and τ (s). To retain the convenient advantage of a nondimensional time scale in the composite calculations, we assumed that

$$\tau$$
 (s) = 32 τ (c) (13)

Thus for a sky-cover relaxation time of 16 hours, the corresponding value of cloud-element relaxation time is 30 min, and the value of α (s) for a time interval of 4 hours is 0.250. In general, this assumption is unduly restrictive and should not be used for accurate determinations. It was used here to explore conveniently the sensitivity of the calculations to variations in τ (s), which govern the frequency of long duration intervals.

The climatic probability of CLOS (30) as a function of sky cover (s) is given in the last row of Table 13. For example from Eqs. 1, 2 and 3, the probability of CLOS at zenith angle 30 deg. for a sky cover of 8 tenths is 71 percent.

 Table 13.
 Persistence probability for cloudy line of sight at zenith angle = 30 deg as a function of sky cover and time. A detailed calculation is given in the text for the resultant value that is outlined by the rectangle.

			S	KY CO	VER (1	TENTH	S)		
TIME/τ (s)	9	8	7	6	5	4	3	2	1
0.005	85	76	69	62	56	50	44	37	30
0.016	72	58	47	39	32	25	20	14	10
0.031	58	41	30	22	16	11	7.2	4.5	2.6
0.063	39	21	12	7.2	4.2	2.3	1.3	0.7	0.1
0.125	18	6.0	2.2	0.9	0.4	0.2	0.1		
0.250	4.2	0.5	0.1						
0.375	0.4	0.2	0.1						
Climatic Probability	85	71	58	46	36	26	17	10	4

The relative persistence probability of cloudy lines of sight at zenith angle = 30 deg, CLOS (30), as a function of fixed and specified sky cover and α_1 (s) as determined from Eqs. 7, 8 and 9 are shown in Table 13. Extending the example in the previous paragraph, let the time

interval (t) be 15 min and the cloud-element relaxation time, τ (c) be 30 min, then the related variables become:

$$\alpha_{t}(c) = 0.5$$
 Eq. 5

$$\rho_{\rm c}({\rm c}) = 0.6065$$
 Eq. 5

$$\tau(s) = 16 \text{ hours} \qquad \text{Eq. 13}$$

$$t/\tau$$
 (s) = 0.016

$$s = 0.8$$
 given

$$P_r(y \le y_s) = 0.71$$
 given

$$y_o = 0.551$$
 prob. table (Eq. 1)

$$F_a(y_o = 0) = 0.2074$$
 Eq. 7

$$f_{a}(y_{o} = 0) = -0.816$$
 prob. tables (Eq. 1)

$$f_{a}(y_{a}) = -0.227$$
 Eq. 8

$$F_{a}(y_{o}) = 0.411$$

$$P_r(y \le y_o, t | y \le y_o) = 0.579$$
 Eq. 9,
corresponds to persistence
probability in Table 13

6.2 Recurrence probability of cloudy line of sight for zenith angle = 30 deg.

The recurrence probabilities of CLOS (30) as a function of normalized time, α (s), were determined by Eqs. 5 and 6 using the procedures presented in Section 4.3. The conditional probability of sky-cover when CLOS (30) is observed at the WSI sites is given in Table 14. The resultant calculations of CLOS (30) recurrence probability for January and July as a function of α (s) are shown in Table 15.

 Table 14.
 Relative frequency of sky cover when a cloudy line of sight is observed for a zenith viewing angle = 30 deg.

	Holloman	AFB, NM	China L	ake, CA	Kirtland AFB, NM		
Sky Cover Tenths	Jan	July	Jan	July	Jan	July	
10	54.7	28.0	49.4	2.0	66.3	32.0	
9	10.6	17.2	12.4	14.4	8.3	16.6	
8	8.9	14.3	10.4	12.1	6.9	13.9	
7	7.3	11.8	8.5	9.9	5.7	11.4	
6	5.8	9.4	6.8	7.9	4.5	9.1	
5	4.9	7.4	4.8	12.9	3.2	6.6	
4	3.2	5.4	3.5	9.4	2.3	4.8	
3	2.1	3.6	2.4	6.2	1.5	3.2	
2	1.2	2.1	1.4	3.6	0.9	1.9	
1	0.5	0.9	0.6	1.5	0.4	0.8	
0	0	0	0	0	0	0	
Mean Sky Cover (Tenths)	8.3	7.3	8.59	5.5	8.8	7.5	

! 	Hollomar	man AFB, NM China Lake, CA			Kintland /	AFB, NM
TIMEr (s)	Jan	July	Jan	July	Jan	July
0.005	91	86	92	79	94	88
0.016	85	78	88	66	89	80
0.031	81	71	84	55	86	73
0.062	77	64	80	46	83	68
0.125	72	60	75	37	79	62
0.250	66	58	69	30	69	58
0.375	63	56	66	26	64	55
0.562	59	53	62	21	58	52
0.750	55	50	58	19	54	48
1.500	48	47	48	16	44	42
Climatic Frequency	44	43	42	16	42	39

Table 15. Recurrence probability of cloudy lines of sight at zenith angle = 30 deg. for selected WSI sites in January and July.

6.3 Joint probability of CLOS (30) for combinations of 2 and 3 sites

Trial calculations of the joint relative frequencies of sky cover and joint relative frequencies of CLOS (30) for pairs of WSI sites and a combination of the 3 selected sites are shown in Tables 16 and 17. The separation distances between WSI sites are as follows:

Holloman AFB - Kirtland AFB	155 mi
Holloman AFB - China Lake	691 mi
Kirtland AFB - China Lake	620 mi

A measure of the sensitivity of the calculations to the assumed value of sky-cover relaxation distance, D, is

Table 16.Joint relative frequencies of sky cover for individual
pairs of WSI sites and for a network of 3 WSI sites.
Values are shown for relaxation distances (D) of 300
mi and 600 mi.

	Overcast		Overca Bro	ast And ken	Overcast And Broken And Scattered	
Stations	Jan	July	Jan	July	Jan	July
Holloman-Kırtland D = 300 mi D = 600 mi Holloman-China Lake D = 300 mi D = 600 mi	14.6 16.6 5.9 8.1	5.0 6.8 0.6 1.1	30.1 34.0 22.5 25.9	30.0 33.9 7.6 9.5	55.3 58.3 48.6 51.3	76.3 77.7 40.2 41.3
Kirtland-China Lake D = 300 mi D = 600 mi Holloman-Kirtland- China Lake D = 300 mi D = 600 mi	7.0 9.4 3.7 5.7	0.7 1.2 0.3 0.6	21.9 25.6 15.1 19.9	7.2 9.2 5.1 7.3	48.3 51.3 42.8 47.8	35.3 37.7 34.1 37.1

Table 17.	Same as Table 16 except for
	the joint relative frequencies of
	cloudy lines of sight at zenith
	angles = 30 deg.

Stations	January	July
Holloman-Kirtland D = 300 mi D = 600 mi	22.7 26.4	18.3 20.9
Holloman-China Lake D = 300 mi D = 600 mi	14.5 17.6	5.2 6.4
Kirtland-China Lake D = 300 mi D = 600 mi	14.9 17.9	4.9 6.1
Holloman-Kirtland- China Lake D = 300 mi D = 600 mi	7.9 10.6	2.2 3.1

given by the individual determinations for D = 300 mi and D = 600 mi. This appears to be a reasonable annual range of expected values for this geographical area, with higher values in the winter and lower values in the summer months. The procedures for the joint occurrence frequency determinations are given in the Section 5.

The joint occurrence frequencies of CLOS (30) shown in Table 17 were determined directly from the joint occurrence frequency of sky-cover in Table 16 and the relative climatic frequency of CLOS (30) as a function of sky cover given in the bottom line of Table 13. The CLOS (30) frequency for clear sky is 0 and 1.0 for overcast sky. Although the sky-cover between sites is not independent, it is assumed (Lund, 1973b) that the arrangement of clouds over the sites is independent. For viewing paths with the zenith angle near 30 degrees or less, the assumption should be valid for site separations greater than about 20 miles. Thus, the joint occurrence frequency of CLOS (θ) for a given sky-cover category is given by the square of the climatic frequency for that cover and zenith angle.

6.4 Persistence probability of CLOS (30) at individual and multiple WSI sites

The procedure for the determination CLOS (30) persistence probabilities consists of 3 steps. First the probabilities that the sky-cover will persist in an amount equal to or above specific fractional values (in tenths) are determined with Eqs. 7 and 8. Sample calculations for Holloman AFB in January are shown in Table 18. Next, the values in Table 18 are weighted by the conditional probability that each sky cover is observed when CLOS (30) is observed (from Table 14). Then for each time

		SKY COVER (TENTHS)									
TIME/t (s)	10	≥ 9	≥ 8	27	≥ 6	≥ 5	≥ 4	23	≥ 2	≥ 1	2 O
0.005	90	91	92	92	93	94	94	95	96	97	100
0.016	82	84	85	87	88	89	90	92	93	94	100
0.031	76	78	80	81	83	85	86	88	90	92	100
0.063	67	69	72	74	76	78	81	83	85	88	100
0.125	55	58	61	64	67	70	73	76	79	82	100
0.250	40	44	48	51	54	58	62	66	70	74	100
0.375	31	35	38	42	46	50	54	58	63	68	100
0.563	22	25	29	32	36	40	44	49	54	60	100
0.750	15	18	22	25	29	33	37	42	48	54	100
1.125	8.1	10	13	16	19	22	26	31	37	43	100
1.500	4.4	6.0	7.8	9.9	12	15	19	23	29	35	100
3.000	0.5	0.8	1.1	1.7	2.4	3.6	5.2	7.5	11	15	100
Climatic Cum.Prob.	24	30	35	40	46	52	58	64	70	76	100

Table 18. Persistence probability of sky cover for Holloman AFB in January. See text for sample calculation of outlined value.

interval, we obtain the product of the persistence probability of CLOS (30) for a given sky cover category (Table 13) and the expected relative frequency of sky-cover in that category which is obtained by subtraction of adjacent weighted cumulative values of sky cover for that time interval in Table 18. In turn the persistence probability of CLOS (30) for a given time interval is the sum of the above products over all sky-cover categories.

The resultant determinations of CLOS (30) persistence probabilities for individual WSI sites for January and July are given in Table 19. For illustration let us

Table 19. Persistence probability of a cloudy line of sight at zenith angle = 30 deg as a function of time. A detailed sample calculation is given in the text for the value outlined by the rectangle.

	Holloman AFB, NM		China L	ake, CA	Kirtland AFB, NM	
TIME/t (s)	Jan	July	Jan	July	Jan	July
0.005	80	73	79	65	83	74
0.016	67	56	65	45	72	57
0.031	56	41	53	30	62	43
0.062	43	27	40	18	51	29
0.125	32	16	28	9.5	39	18
0.250	22	9.0	19	4.8	29	10
0.375	17	6.2	14	3.0	22	7.1
0.562	12	3.8	9.7	1.7	16	4.5
0.750	8.4	2.5	6.7	1.0	12	2.9
1.125	4.5	1.1	3.4	0.4	6.3	1.3
1.500	2.4	0.6	1.8	0.2	3.6	0.6
3.000	0.3	0.0	0.2	0.0	0.4	0.1

consider a set of sample calculations yielding a specific result (56 percent) in Table 19 for the persistence probability of CLOS (30) at Holloman AFB in January for a normalized time, α (s) = 0.031. The actual time would then be 30 min for τ (s) = 16 hours and τ (c) = 30 min (see Eq. 13). As a first step we must determine the persistence probability of <u>sky cover</u> for that season and location using Eqs. 7, 8 and 9 as given in Table 18. In particular, the input variables for the case where s \geq 8 tenths are:

$$\alpha_{\rm c}({\rm s}) = 0.031$$
 given

$$s \ge 0.8$$
 given

$P_r(s \ge 0.8) = 0.35$	Table 12
$y_{o} = -0.385$	Prob. tables
$\rho_{t} = 0.969$	Eq. 5

and the result for this <u>conditional</u> probability that the sky cover will remain above 8 tenths at Holloman in January for 30 min (α = 0.031) as shown in Table 18 is

$$P_{s}$$
 (s ≥ 0.8 , t | s ≥ 0.8) = 0.80. Eqs. 7, 8 and 9

From Table 14, the relative frequency of $s \ge 0.8$ when CLOS (30) is observed is

$$0.547 + 0.106 + 0.089 = .742$$
, Table 14

so that the relative probability that $s \ge 0.8$ will be observed for the entire 30 min period following the occurrence of CLOS (30) at the onset of the period is

$$0.80 * 0.742 = 0.594.$$

The corresponding relative persistence probability for s ≥ 0.9 is

$$(0.547 + 0.106) * 0.78 = 0.509$$
 Tables 14, 18

and so forth for the other sky cover classes.

From Table 13, we find that the calculated recurrence probabilities of CLOS (30) for a fixed sky cover of 0.8 and t = 30 min, $\alpha_t(s) = 0.031$, is 0.41. The comparable value for s = 0.9 is 0.58 and 1.0 for s = 1.0 (overcast). The overall persistence probability of CLOS (30) for the time interval $\alpha_t(s) = .031$ as given in Table 19 for Holloman AFB in January is calculated as the weighted sum:

1.0 * 0.547 * 0.76 + 0.58 (0.653 * 0.78 - 0.547 * 0.76)

+ 0.41 (0.742 * 0.80 - 0.653 * 0.78) - - - - - - -

--+0.0(1.0 * 1.0 - .995 * .92) = 0.56

which corresponds to the number we set out to duplicate for this demonstration exercise.

The relative persistence probabilities for the joint occurrence of CLOS (30) at 2 or more sites are shown in Table 20. The determinations were made with the same

Table 20. Persistence probability of the joint occurrence of cloudy lines of sight at combinations of 2 and 3 sites. The assumed relaxation distance is 300 mi.

					Holloman AFB, NM And	
	Holloman AFB, NM And		Kirtland AFB, NM And		Kirtland AFB, NM And	
	KINIAND AFB, NM		Unina Lake, CA		China Lake, CA	
TIME/t (s)	Jan	July	Jan	July	Jan	July
0.005	69	57	74	56	61	45
0.016	54	38	59	36	46	28
0.031	44	26	48	25	36	19
0.062	35	17	37	16	27	13
0.125	26	11	27	9.6	19	8.2
0.250	18	6.4	17	5.1	11	4.4
0.375	13	4.2	11	3.1	7.4	2.6
0.562	8.4	2.4	6.7	1.6	4.2	1.4
0.750	5.6	1.5	4.2	0.9	2.5	0.8
1.125	2.7	0.6	1.8	0.3	1.0	0.3
1.500	1.3	0.3	0.8	0.1	0.4	0.1
3.000	0.1	0.0	0.1	0.0	0.0	0.0

procedure except that the cumulative frequency distributions of initial sky-cover that are used for the persistence calculations are now the joint occurrence frequencies of sky-cover given in Table 16. Again, the arrangement of clouds above the sites but not sky-cover is assumed to be independent.

The results of the trial calculations of the joint occurrence persistence probability that are listed in Tables 19 and 20 are summarized in graphical form in Figure 1 for January and Figure 2 for July. The time scale for the graphs was determined by assuming a sky-cover relaxation time, τ (s), of 16 hours and a cloud-element relaxation time, τ (c), of 30 minutes. The calculated climatic frequency that cloudy lines of sight ($\theta = 30$) will occur and persist as a function of duration interval are shown for a single site as well as for the joint occurrence of CLOS (30) at multiple sites. Notice for example in Fig. 1 for January that the estimated climatic frequency of a continuous joint occurrence of CFLOS (30) at Holloman AFB and Kirtland AFB reduces to 1 percent after about 13 hours, whereas the estimated frequency reduces to 1 percent after only 9 hours for the continuous joint occurrence at Kirtland AFB and China Lake, CA, and after 3-4 hours duration at the 3-site combination of Holloman, Kirtland and China Lake. For the July estimates in Fig. 2, the climatic frequency of continuous joint occurrence

Fig. 1 Trial calculations of the probability of the continuous occurrence of CLOS (30) at single sites and the continuous joint occurrence at multiple sites as a function of duration interval. The determinations were based upon the climatic frequency of observed sky cover for January averaged over all hours at the individual sites.

Fig. 2 Trial calculations of the probability of the continuous occurrence of CLOS (30) at single sites and the continuous joint occurrence at multiple sites as a function of duration interval. The determinations were based upon the climatic frequency of observed sky cover for July averaged over all hours at the individual sites.

of CLOS (30) reduces to 1 percent after a duration interval of about 4 hours at Holloman and Kirtland and after only 5-minutes duration at the 3-site combination of Holloman, Kirtland and China Lake.

6.5 Determination of down time duration frequency for individual or multiple sites

Estimates of downtime duration frequency can be obtained from Tables 19 and 20, where downtime is defined as the continuous occurrence of CLOS (30) at a site or at all sites in the case of multisite combinations. The expected number of downtime episodes, N_x , of a given duration interval, I_x , in a given time period T (month, season, etc.) may be expressed

$$N_{x} = P_{r}(x)T P_{r}[CLOS(\theta)] / \left[\tau(s)\sum_{x=0}^{m} P_{r}(x)\overline{\alpha}_{x}(s)\right]$$
(14)

where m is the number of successive time intervals, x, and P_x (x) is the probability the event will persist for a period of time corresponding to x (difference between the persistence probability corresponding to beginning and ending time for I_x). P_r [CLOS (θ)] is the unconditional probability of a cloudy line of sight for zenith angle, θ , τ (s) is sky cover relaxation time and $\overline{\alpha}_{a}$ (s) is the antilog of the average of the logarithms of α_{a} (s) for the beginning and ending times for interval I_x (the beginning time for the first interval must be greater than 0; 1 - min is suggested).

The resultant trial determinations of downtime duration statistics for individual sites and multiple site combinations are summarized in Tables 21, 22 and 23. For purposes of illustration the input values to Eq. 14 for Holloman AFB in January (Table 21) for $I_x = 15 - 30$ min and τ (s) = 16 hours are as follows:

- T = 1 month or approximately 720 hours
- $P_{x}(x = 15 30) \ 0.67 0.56 = 0.11$ (from Table 19)
- $P_{1}[CLOS(30)] = 0.44$ (from Table 15)

 $\bar{\alpha}_{15,30}(s) = 0.0221$

Table 21.Estimated number of downtime episodes per month as
a function of downtime duration interval for Holloman
AFB, NM. Comparative estimates are given for
assumed sky cover relaxation times of 16 and 20 hours.
The relaxation distance is 300 miles.

HOLLOMAN AFB, NM						
TIME	HELAX TIN	1E = 16 HR	TIME	RELAX TIME = 20 HR		
INTERVAL	January	July	INTERVAL	January	July	
1-5 MIN	19.7	57.2	0-6 MIN	15.7	45.8	
5-15 MIN	13.2	38.8	6-19 MIN	10.5	31.0	
15-30 MIN	11.1	31.2	19-38 MIN	8.9	25.0	
30-60 MIN	12.1	31.1	38-75 MIN	9.7	24.9	
1-2 HRS	11.1	23.8	1.2-2.5 HRS	8.9	19.0	
2-4 HRS	9.6	14.7	2.5-5 HRS	7.7	11.8	
4-6 HRS	5.3	6.1	5-7.5 HRS	4.2	4.9	
6-9 HRS	5.1	5.0	7.5-11 HRS	4.1	4.0	
9-12 HRS	3.3	2.9	11-15 HRS	2.7	2.3	
12-18 HRS	3.9	3.0	15-22 HRS	3.1	2.4	
18-24 HRS	2.0	1.3	22-30 HRS	1.6	1.0	
24-28 HRS	2.1	1.1	30-60 HRS	1.7	0.9	

Table 22.Same as Table 23 except for Kirtland
AFB, NM, and China Lake, CA. The
assumed relaxation time is 16 hours and
the relaxation distance is 300 miles.

TIME	Kirtland A	FB, NM	China Lake CA		
INTERVAL	January	July	January	July	
1-5 MIN	12.2	45.7	22.8	48.0	
5-15 MIN	8.5	30.8	15.9	27.3	
15 30 MIN	7.3	24.9	13.3	19.4	
30-60 MIN	8.3	25.1	14.2	17.1	
1-2 HRS	8.3	19.8	12.6	11.4	
2-4 HRS	8.0	12.9	10.2	6.4	
4-6 HRS	4.7	5.6	5.4	2.4	
6-9 HRS	4.7	4.7	5.0	1.8	
9-12 HRS	3.2	2.7	3.2	0.9	
12-18 HRS	3.8	2.8	3.6	0.8	
18-24 HRS	2.0	1.2	1.8	0.3	
24-28 HRS	2.3	1.1	1.8	0.2	

Table 23.	Estimated number of joint occurrences of downtime episodes per month as a function of downtime duration				
	interval for combinations of 2 and 3 WSI sites. The assumed sky cover relaxation time is 16 hours and the				
	assumed relaxation distance is 300 miles.				

TIME	Holloman AFB, NM And Kirtland AFB, NM		Kirtland AFB, NM And China Lake, CA		Holloman AFB, NM And Kirtland AFB, NM And China Lake, CA	
INTERVAL	Jan	July	Jan	July	Jan	July
1-5 MIN	20.97	58.98	13.13	19.78	14.84	13.12
5-15 MIN	10.05	26.67	7.28	8.83	5.74	4.17
15-30 MIN	6.79	16.09	5.30	5.27	3.55	2.09
30-60 MIN	6.38	12.51	5.40	4.05	3.29	1.51
1-2 HRS	5.77	8.39	5.20	2.79	3.10	1.13
2-4 HRS	5.77	6.05	4.95	2.03	2.95	0.91
4-6 HRS	3.33	3.02	2.68	0.90	1.51	0.43
6-9 HRS	3.12	2.47	2.28	0.68	1.21	0.29
9-12 HRS	1.90	1.24	1.24	0.32	0.64	0.14
12-18 HRS	1.97	1.24	1.19	0.27	0.57	0.12
18-24 HRS	0.95	0.41	0.50	0.09	0.23	0.05
24-28 HRS	0.81	0.41	0.35	0.05	0.15	0.02

7.0 ACKNOWLEDGEMENTS

I recall with particular gratitude the many helpful discussions on cloud modeling processes with Don Grantham, Irving Gringorten and Albert Boehm of the Air Force Geophysics Laboratory. The techniques presented here are simply extensions or modifications of concepts successfully demonstrated by them in prior statistical climatology studies. However, any errors in the application of the methodology in this study are surely not theirs. Indeed, the techniques presented in Sections 5 and 6 have not been subjected to critical review and remain to be tested extensively with data bases such as the new whole-sky imaging data base. Special thanks go to Irving Gringorten for corrections and additions to the basic equations given in Section 3 and for drawing attention to the formal mathematical solution by Keilson and Ross of persistence probability assuming the O-U Markov process. The author is also indebted to Carole Robb for expert assistance in the typing and formatting of the manuscript.

8.0 REFERENCES

- Allen, J. H. and J. D. Mahlick, (1983). *The frequency of cloud-free viewing intervals*, Preprint 21st Aerospace Science Meeting, 10-13 Jan. 1983, Reno, Nev.
- Boehm, Albert, Irving A. Gringorten and Charles F. Burger, (1986). Private communication.
- Feller, W., (1966). An introduction to probability theory are its applications, Vol. II, John Wiley and Sons, Inc., New York, 626pp.
- Gringorten, Irving I., (1966). A stochastic model of the frequency and duration of weather events, J. Appl. Meteorol. 5:606-624.
- Gringorten, Irving I., (1967). Probabilities of moving time averages of a meteorological variate, Tellus XX:461-472.
- Gringorten, Irving I., (1968). Estimating finite-time

maxima and minima of a stationary Gaussian Ornstein-Uhlenbeck process by Monte Carlo Simulators, J. Amer. Statistical Assoc., 63:1517-1521.

- Gringorten, Irving I., (1972). Conditional probability for an exact noncategorized initial condition, Monthly Weather Review, Vol. 100, No. 1, 796-798.
- Keilson, J., and H. F. Ross, (1975). Passage time distributions for Gaussian Markov (Ornstein-Uhlenbeck) statistical process, Selected Tables in Mathematical Statistics, Vol. 3. Institute of Mathematical Statistics, American Mathematical Society, Providence, R. I.
- Lund, I. A., 1973. Persistence and recurrence probabilities of cloud-free and cloudy lines-of-sight through the atmosphere, J. Appl. Meteor., 12, 1222-1228.
- Lund, I. A., (1973b). A model for estimating the joint probabilities of cloud-free lines-of-sight through the atmosphere, J. Appl. Meteorol. 12:1040-1043.
- Lund, I. A., and D. D. Grantham, (1980). Estimating the joint probability of a weather event at more than two locations, J. Appl. Meteor., 19, 1091-1100.
- Lund, I. A., and M. D. Shanklin, (1973). Universal methods for estimating probabilities of cloud-freeline-of-sight through the atmosphere, J. of Appl. Meteor, 12, 28-35.
- Ross, H. F., (1980). An algorithm for $F_{\theta}(y)$ using cubic B-Splines, AFGL-TR-81-0068 AD A103468, Air Force Geophysics Laboratory, Hanscom AFB, MA.