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PREFACE

The moudel investigation reported herein was authorized under the
Electrical/Mechanical research program sponsored by the Headquarters, US Army
Corps of Engineers (USACE), under Work Unit No. 31166, "Pump Station Inflow-
Discharge Hydraulics.” Messrs. Mohan Singh and Bob Pletka were USACE
Technical Monitors.

The study was conducted during the period May 1988 to February 1989 in
tle US Army Engineer Watcrways Experiment Station (WES) Hydraulics Laboratory
(HL) under the direction of Messrs. F. A. Herrmann, Jr., Chief, HL, and R. A.
Sager, Assistant Chief, HL, and under the general supervision of Messrs. G. A.
Pickering, Chief, Structures Division, and N. R. Oswalt, Chief, Spillways and
Channels Branch. Technical instrumentation support was provided by Messrs. H.
Greer, J. Ables, and A. Morton of the Instrumentation Services Division, WES.
The project engineer for the study was Mr. B. P. Fletcher, assisted by Messrs.
R. B. Bryant and J. R. Rucker, Jr., all of the Spillways and Channels Branch.
This report was prepared by Mr. Fletcher.

During the course of the study, Messrs. Singh, Pletka, and S. Powell of
USACE; L. Holman and J. McCormick of the US Army Engineer Division (USAED),
Lower Mississippi Valley/Mississippi River Commission; C. Thomas of USAED,
Ohio River; J. Luther of USAED, St. Louis, and B. Moentenich of USAED, North
Pacific, participated as advisory board members and visited WES to discuss the
program and results of the investigation.

Commander and Director of WES during preparation of this report was

COL Larry B. Fulton, EN. Technical Director was Dr. Robert W. Whalin.
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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI

(metric) units as follows:

Multiply By To Obtain
degrees (angle) 0.01745329 radians
feet 0.3048 metres
inches 2.54 centimetres




FORMED SUCTION INTAKE APPROACH APPURTENANCE GEOMETRY

PART I: INTRODUCTION

Background

1. This research is an extension of tests conducted in the site-
specific model of the sump for the Yazoo Backwater Pumping Station.* 1In the
model of the Yazoo pumping station sump a selected formed suction intake (FSI)
design was investigated. The investigation indicated that the FSI design
would provide satisfactory hydraulic performance for all anticipated flow
conditions.

2. The research presented herein was initiated following numerous re-
quests for guidance on how the appurtenance geometry (pump bay width and/or
length) to the FSI could be varied relative to the direction of flow approach-

ing a pumping station sump, discharge, and submergence.

Purpose and Scope of Research

3. The purpose of this research was to develop criteria needed for the
design of the pump bay width and length relative to direction of approach
flow, discharge, and submergence. The objective of the tests was accomplished
by investigating each of the five variables independently by holding four
variables constant while varying one until adverse hydraulic performance
occurred.

4. The study was conducted in a flume that permitted simulation of
various hydraulic conditions and pump bay geometries. The limiting values
were determined by flow distribution and stability in the pump intake and the

intensity of surface vortices.

4

* Bobby P. Fletcher. "Yazoo Backwater Pumping Station Sump, West-Central
Mississippi; Hydraulic Model Investigation" (in preparation), US Army
Engineer Waterways Experiment Station, Vicksburg, MS.
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PART I1: MODEL AND EVALUATION PROCEDURES

Test Facilities

5. The investigation was conducted in a flume 45 ft* long, 35 ft wide,
and 4 ft deep. A sketch of the test facility including the location of the
FST is shown in Figure 1. A sketch and a photograph of the FSI used in the
tests are shown in Plate 1 and Figure 2, respectively. The dimensions of the
¥SI, discharge, submergence, pump bay width, and pump bay length, are pre-
sented in the plates in terms of the throat (pump column) diameter d . The
maximum discharge Q simulated in the model was equivalent to a dimension-
less value Q/\Vgd? of 2.9, where g 1is the acceleration due to gravity.
Flow through the FSI was provided by centrifugal pumps. A weir was con-

structed across the upstream end of the flume to provide evenly distributed
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Figure 1. FSI study flume

* A table of factors for converting non-SI units of measurement to SI
(metric) units is presented on page 3.




Figure 2.

FSI with impact tubes




return flow from the pumps. An 8-in. rock baffle wall was constructed across
the flune to baffle the return flow. The wooden flume was designed to facil-
itate simnulation of various approach flow geometries. The sump sidewalls,
FSI, and pump column were constructed of transparent plastic to permit ob-
servation of subsurface currents and turbulence. Water used in the operation
of the model was supplied by pumps, and discharges were measured by means of
magnetic flowmeters. Steel rails set tc grade provided reference planes for

measuring devices. Warter-surface elevations were obtained by staff gages.

Evaluation Techniques

6. Visual observation and measurement of the swirl angle, velocity dis-
tribution, and flow stability were techniques used for evaluation of hydraulic
performance of the FSI.

Visual observations

7. In order to detect surface vortices, visual cbservations were made.
A design that permits a Stage E surface vortex is considered unacceptable.
Stages of surface vortex development are shown in Plate 2. A typical test
consisted of documenting, for given flow conditions, the most severe vortex
that occurred in a 5-min (model time) time period.

Swirl angle measurement

8. Measurement of the swirl angle was made to indicate the strength of
swirl entering the pump intake. Swirl angle is a qualitative parameter com-
monly used by pump station sump modelers. It provides an index of comparison
of hydraulic performance. A swirl angle of 3 deg or less usually indicates
acceptable flow distribution in the pump intake. A swirl angle that exceeds
3 deg is considered unacceptable. Swirl in the pump column was indicated by a
vortimeter (freewheeling propeller with zero pitch blades) located inside the
pump column (Plate 1). Swirl angle is defined as the arc tangent of the ratio

of the blade speed V at the tip of the vortimeter blade to the average

S
velocity Va for the cross section of the pump column. The swirl angle 6

is computed from the following formu'a:




where
V8 = ndn
and

n = revolutions per second of the vortimeter
Q = pump discharge, cfs

A = cross-sectional area of the pump coluun, ft2

Velocity and flow measurement

9. Velocity distribution and flow stability in the pump column were

measured by impact tubes located as shown in Plate 1. A deviation in the
ratio of the average measured velocity at a point to the average computed
velocity in the cross section of 10 percent or greater was considered unaccep-
table. Four piezometers were located around the periphery of the pump column
(Plate 1) to measure an average sta*tic pressure at this location. Impact
tubes (copper tubes with 1/8-in. ID) were installed with their tips in the
same plane as the four piezometers to measure the total pressure at 25 various
points (Plate 3 and Figure 2) in the pump column. The head difrferential
between the total pressure at each pecint in the pump column and the average
static pressure provides a velocity at each point in the pump column. This
was measured by means of 25 individual electronic pressure differential cells.
The differential cells were connected to a data acquisition system capable of
collecting data for various lengths of time and sampling at various rates.

The data acquisition system was also capable of analyzing the data and
providing the deviation ir velocity ratio for each probe in the same time
frame that the maximum instantaneous velocity ratio deviation for any single
probe occurred. The magnitude of the maximum velocity deviation that should

be considered unacceéptable has not been established.

Typical Test

10. A typical test to measure velocity distribution in the pump column

consisted of stabilizing the water-surface elevation and discharge th:>ugh the




pump prior to collecting data. Data were collected for 1 min (model time),
and each of the 25 differential pressure cells was sampled at a rate of 100
samples per second. The average and maximum velocities detected by each of
the differential cells during the minute of data collection were divided by
the theoretical average velocity in the cross section. The ratio (measured/
computed) of the average velocities and ratio (measured/computed) of the
velocities at all points that occurred in the same time frame of the maximum
velocity deviation ratio anywhere in the cross section were tabulated and
plotted by a computer as contour lines of equal velocity ratios. The ratio of
the average velocities and the ratio of the velocities that occurred in the
same time frame of the maximum velocity deviation were used as parameters for
evaluating flow conditions, because the average velocity was an indicator of
flow distribution and the maximum velocity ratio deviation was sensitive to a

change in flow distribution and stability.




PART II1: TESTS AND RESULTS

Effects of Vortices on Flow Distribution

11. Initial tests were conducted to determine how the velocity distri-
bution in the pump intake is affected by surface vortices. Velocity distribu-
tion was measured during various stages of vortex development (Plate 2).
Average velocity ratio distribution with a Stage D vortex is illustrated by
the contour line in Plate 4, This condition is considered satisfactory as the
deviation of the average velocity ratio depicted by the contour lines does not
exceed 10 percent. The velocity distribution that occurred during the period
of maximum deviation in velocity is shown in Plate 5. A time-history plot of
one of the probes (channel 11) is shown as Test 1 in Plate 6. This time-
history plot reflects a stable condition. Average velocity ratio distribution
with a Stage E vortex is shown in Plate 7. Although the plot of average
velocity ratio distribution is satisfactory, the plot of maximum velocity
ratio deviation (Plate 8) shows a severe velocity differential at 2.10 sec.
Also, the presence of a vortex at 2.1 sec was confirmed by 2 time-history plot
of channel 11 (Plate 6, Test 2) and by visual observations. Various other
flow conditions were investigated, and the test results revealed that only the
Stage E vortex (sustained air-entraining vortex) had an adverse effect on the
velocity distribution or flow stability in the pump intake. Therefore, other
stages of vortex development (A, B, C, and D) were considered to have no

advesrse effect on flow distribution or flow stability in the pump intake.

Effects of Submergence on Flow Distribution

12. Tests were conducted to investigate the effects of a low sub-
mergence, S = 0.94d , on velocity distribution and flow stability where S
is the vertical distance from the invert of the roof curve to the water-
surface elevation (Plate 1) and d 1is the top diameter of the cone
(Plate 1). Average velocity distribution with a Stage D vortex is shown by
the contour lines in Plate 9. The maximum velocity deviation is shown in
Plate 10, and time-history plots of channels 1 and 7 are shown in Plate 11. A
comparison of Plates 9, 10, and 11 with the plots obtained at a higher sub-

mergence (Plates 4, 5, and 6) indicates that the lower submergence has no

10




significant effect on the average velocity distribution, but does slightly
increase the deviation in velocity. Results of additional tests conducted at
a low submergence (S = 0.94d) and a higher flow rate (Q -2.47 gd5> indi-
cated satisfactory flow distribution. Tesl results conducted to investigate
flow distribution with a higher submergence (S = 4.69d) are presented in
Plates 12 and 13. Plate 12 shows the average distribution, and Plate 13 shows
the maximum velocity deviation. Satisfactory test results were also obtained
with a higher submergence and a lower discharge (Q = 0.97 Vgdd )as shown in
Plate 14. Tests conducted at various submergences revealed that flow dis-
tribution and stability were satisfactory for submergences equal to or greater

than 0.944d .

Approach Flow from O, 45, and 90 Degrees

13. Tests were conducted with the flow approaching the pump bay at
angles with the longitudinal center line of the pump bay of 0, 45, and 90 deg.
A typical approach flow current pattern with an angle of 0 deg is shown in
Figure 3. The 12 approach configurations tested (types 1-12) with the 0-deg
approach flow are shown in Plate 15. A dimensionless plot of the discharge
parameter Q/\/ga3 versus the critical submergence parameter S /d 1is shown
in Plate 16. The data points on the plot (Plate 16) show the hydraulic con-
ditions that produce critical submergence and discharge. Critical submergence
is defined as the submergence S that generates incipient Stage E vortices.
The basic data »ve tabulated ir Table 1. Plate 16 also shows anticipated
minimum submergences and maximum flow rates per pump for two proposed typical
pump stations (Yazoo and St. Johns). The data points in Plate 16 generally
indicate satisfactory hydraulic performance for typical hydraulic conditions
regardless of the pump bay width W or length L with flow approaching the
sump at an angle of 0 deg. Measured swirl angles were satisfactory and did
not exceed a value of 0.5 deg for any of the designs tested.

14. Typical ¢urrent patterns generated by a 45-deg approach flow pat-
tern are shown in Plate 17. The 12 approach configurations tested (types 13-
24) with a 45-deg approach flow are shown in Plate 18. A plot of the data
points is shown in Plate 19. Basic data are tabulated in Table 2.

15. Current patterns generated by a 90-deg approach flow are shown in

Plate 20. The 12 approach configurations tested (types 25-36) with a 90-deg

11
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Figure 3.

approach flow are shown in Plate 21.

Plate 22.

Basic data are tabulated in Table 3.

FSI O-deg approach to pump intake

A plot of the data points is shown in

The data points in Plate 22

indicate that the tendency for vortices is more severe with the 90-deg ap-

proach flow.

However, Plate 22 does indicate that satisfactory hydraulic

performance should be anticipated for typical maximum discharges and minimum

submergences similar to St. John and Yazoo Pumping Statione.

12




PART IV: RESULTS AND DISCUSSION

16. Results of this research to define the limitations and to identify
advantages of the FSI subjected to five pumping station variables (discharge,
submergence, pump bay width, pump bay length, and angle of approach) are sig-
nificant for future Corps pumping station designs. Future Corps pumping sta-
tions designed with an appropriate FSI have the potential for cost savings due
to the enhanced hydraulic performance without the typical long straight ap-
proach channel and pump bay walls. Adequate hydraulic performance was ob-
tained for flows approaching the pump bay at angles of 0 to 90 deg with the
Yazoo type FSI. This indicates that the previous extensive approach channel
straightening and expensive pump bay divider walls can be reduced in length
and/or omitted for new FSI-equipped pumping stations. Also the FSI may be
considered for retrofitting for existing pumping stations experiencing
hydraulic problems.

17. The test results indicate that the FSI design presented in this
report (Plate 1) will provide satisfactory hydraulic performance for dis-
charges equal to or less than a value of 1.99 \/gd> , submergences equal
to or greater than a value of 0.94d , bay widths equal to or wider than a
value of 2.28d , pump bay length equal to or longer than a value of 0d , and
approach flow angle to the pump bay of equal to or less than 90 deg. It
should be noted that this guidance is appropriate only for the FSI design
shown in Plate 1. Site-specific tests have demonstrated that changing one or
more of the internal dimensions may adversely affect the performance of the
FSI.

18. Due to inquiries from Corps Districts about varying the internal
geometry of the FSI, research is in progress to investigate the hydraulic
limits of its internal geometry. Variables to be evaluated include sidewall

and roof flare, roof curve, invert curve, and cone angle.

13




Table 1

Critical Submergence and Discharge for 0O-deg Approach Flow Angle
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Table 1 (Concluded)
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Table 2

Critical Submergence and Discharge for 45-deg Approach Flow Angle
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Table 2 (Concluded)
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Table 3

Critical Submergence and Discharge for 90-deg Approach Flow Angle
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Table 3 (Concluded)
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