
41 /

ADA* EVALUATION PROJECT 'DflC FILE COP'-

ADA* DEVELOPMENT ENVIRONMENTS

Prepared for

NHEADQUARTERS UNITED STATES AIR FORCE
01) Assistant Chief of Staff of Systems for Command, Control,
CCommunications, and Computers

Technology & Security Division

00

N

E I
MAR 0 199O ',

Prepared by
Standard Automated Remote to AUTODIN Host (SARAH) Branch

COMMAND AND CONTROL SYSTEMS OFFICE (CCSO)
Tinker Air Force Base

Oklahoma City, OK 73145-6340
COMMERCIAL (405) 734-2457/5152

AUTOVON 884- 2457/5152

* Ada is a registered trademark of the U.S. Government
(Ada Joint Program Office)

L MON SAT"E-M__M A 9 December 1986
Approved for puhlic zeleas|

90 02 28 005



£

THIS REPORT IS THE FIFTH OF A SERIES WHICH-
DOCUMENT THE LESSONS LEARNED IN THE USE OF ADA IN A

COKMUNICATIONS ENVIRONMENT.

ABSTRACT

-This paper reports on the findings of a software
development group on the state of two specific Ada
software development environments.

The report first goes into a little background on
the project and people involved, in order to give

the reader a perspective on the validity of the

findings.

Next, the overall goals we had established for

using an Ada software development environment are

described. It was basically envisioned that a set

of integrated tools would allow us to be more

productive, produce a more reliable product, and

easily, but effectively, control our software

configuration.

The next section describes the process used to

identify and select our environments. We started

out to use the SofTech ALS system for the primary

development environment, and the Alsys PC AT Ada

environment for final -esting and in egration.

Because of numerous problems with the ALS
environment, we ended up almost exclusively using

the IBM PC AT environment for all the work.

After problems and advantages for each of the

environments are discussed, we then make some

specific recommendations for other groups starting

out with Ada software development.

Finally, the paper gives some sources for obtaining

additional information on Ada software development
tools and environments.

N'T IS C,'
Li

STATE -NT "A" per Capt. Addison

Tinker AFB, OK UCSCXPTA;

TELECON 2/78/90 CG

I _iI



Ada Evaluation Report Series by CCSO

Ada Training March 13, 1986

Design Issues May 21, 1986

Security May 23, 1986

Micro Compilers December 9, 1986

Ada Environments December 9, 1986

Transportability Winter 86-87

Modifiability Winter 86-87

Runtime Execution Winter 86-87

Module Reuse Spring 87

Testing Spring 87

Project Management Spring 87

Summary Fall 87



T A B L 9 O F C O N T 9 N T S

1. INTRODUCTION ............................................... I
1.1. BACKGROUND ............................................ 1
1.2. PURPOSE ............................................... 2
1.3. ASSUMPTIONS AND CONSTRAINTS ........................... 2

2. OUR GOALS .................................................. 4

3. CHOOSING AN ENVIRONMENT .................................... 5
3.1. BACKGROUND ... ......................................... 5
3.2. TESTING AND INTEGRATION ENVIRONMENT DECISION............5
3.3. THE APSE ENVIRONMENT DECISION ......................... 6
3-4. OVERALL ENVIRONMENT PLAN ..... ......................... 6

4. THE RESULTS ................................................ 7
4.1. THE ADA LANGUAGE SYSTEM ............................... 7

4.1.1. ADVANTAGES ..................................... 7
4.1.2. DISADVANTAGES .................................. 8

4.1.3. SERIOUS PROBLEMS .................................. 8
4.1.4. ALS SUMMARY ..................... ............... 9

4.2. THE ALSYS PC AT ENVIRONMENT .......................... 10
4.2.1. ADVANTAGES .................................... 10
4.2.2. DISADVANTAGES- .................................10
4.2.3. SERIOUS PROBLEMS...............................11
4.2.4. ALSYS SUMMARY. ................................ 11

4.3. OUR DEVELOPMENT ENVIRONMENT .......................... 11

5. RECOMMENDATIONS ........................................... 13
5.1; GENERAL, OVERALL RECOMMENDATIONS ...................... 13
5.2. FIVE OR MORE PEOPLE .................... .............. 14
5.3. RECOMMENDATIONS FOR SPECIFIC ENVIRONMENTS AND TOOLS..15

5.3.1. OVERALL ENVIRONMENTS .......................... 15
5.3.1.1. RATIONAL ............................. 15
5.3.1.2. PC COMPATIBLE ........................ 16

5.3.2. EDITORS ...................................... 16
5.3.3. PRODUCTIVITY TOOLS ............................ 17
5.3.4. NETWORKS .......................................17
5.3.5. CONFIGURATION MANAGEMENT.......................18

6. FOR FURTHER INFORMATION ................................... 19

Appendices

A. REFERENCES ................................................ 21



1. INTRODUCTION

This paper documents the experiences and work with several Ada
environments on an Ada language project -- a "real world" project
that has a tight schedule. If the reader wishes to read more on

the background and theory of Ada environments, volumes of

information are available. Some good sources of information are:

The Department of Defense "Stoneman" document , the Software

Engineering Institute paper on evaluation of Ada environmernts 2 ,

or the STARS (Software Technology for Adaptable, Reliable
Systems) Strategy document 3 . All of these documents should be
available through the Ada Information Clearinghouse or the
National Technical Information System (NTIS). The address is
given in the "Further Information" Chapter.

1.1. BACKGROUND

The Standard Automated Remote to Automatic Digital Network
(AUTODIN) Host (SARAH) project is a small to medium size project

(approx. 40,000 lines of source code) which will function as a

standard intelligent termina2 for AUTODIN users and will be used

to help eliminate punched cards and paper tape as

transmit/receive media.4  The development environment for SARAH
consists of the SofTech Ada Language System (ALS) hosted on a

Digital Equipment Corporation VAX 11/780, ALSYS Ada compilers
for the IBM PC AT, and several IBM compatible PC XT and PC AT
microcomputers. For some of the early Ada language training, a

Burroughs XE550 Megaframe with a Telesoft compiler was employed.

Because the system must be reliable, maintainable, and reusable,
it was decided to use modern software engineering concepts and
methodologies to the greatest extent possible. The draft

Software Volume of the Air Force Information Systems Architecture
also recommends the use of Ada, software development
environments, and formal software engineerinf methodologies in

the development of Air Force software systems.

The Department of Defense (DoD) language that best enabled

implementation of software engineering concepts was Ada. What
remained to be chosen was the design methodology and the

development environment. The desegn methodology problem is

discussed in a separate CCSO report.

Many of the members of the SARAH software development team have
had some experience or exposure to several different Ada
compilers and software development environments. Some of these
environments are:

o Telesoft/Unix: This was an early Telesoft Ada compiler



hosted on a Burroughs XE-550 Megaframe computer. -There
was no specific Ada environment for software support.
The software development tool set consisted of the
standard Unix System tools.

0 ALS/VP4S: We have used two versions of the Ada Language
System (ALS) from SofTech. We had an evaluation copy
of a very early release, and we now have the most
current commercial release from SofTech (version 3).
This environment has the recommended tools that fulfill
the requirements specified in the Stoneman' document
for a Minimum Ada Programming Support Environment
(HAPSE).

0 Verdix/Unix: One of our training courses provided by
Intellimac used the Verdix Ada Development System
(VADS) hosted on a Unix 68000 machine. Only the Unix
program development tools were available (other than
the compiler).

0 Rational R1000: Several of our team members have seen
brief demonstrations of the Rational Environment on the
Rational RIO00 hardware. This environment includes the
integrated APSE type tools.

0 Alsys/MSDOS: We are currently using (heavily) several
IBM PC AT computer systems running PCDOS 3.1. These
machines host the Alsys Ada compilers. The programming
environment consists of the typical tools available in
the MSDOS/PCDOS world.

1.2. PURPOSE

So that potential Ada developers could gain a practical insight
into what was required to successfully develop Ada software, the
Air Staff tasked the Command and Control Systems Office (CCSO)
with evaluating and reporting on the Ada language while
developing real-time digital communications software. The
evaluation was to consist of a number of evaluation papers, one
of which was to deal with Ada environments. CCSO chose the
Standard Automated Remote to AUTODIN (Automatic Digital Network)
Host (SARAH) project as the basis for this evaluation.

1.3. ASSUMPTIONS AND CONSTRAINTS

The assumptions and constraints are as follows:

o One possible constraint is the size of the SARAH
project. Since the SARAH project team is small (10-13
persons), and since it will only be some 40,000 lines
of code, some of the experiences reported in this paper

2



may not be appropriate for larger groups and 2arger
projects.

0 The SARAH team members have a variety of previous
experience. Some members have had very little software
experience. Others are very experienced in system
design and development, and have a good working
knowledge of different software development
environments. Therefore, many of the observationg
presented come from different and varied perspectives.

o Since the SARAH project is at early coding phase of
development, the final effectiveness of the concepts
presented in this paper cannot be fully evaluated now.
At the completion of the SARAH project, a summary paper
will reflect on how well the selected environment
worked out.

0 SARAH is not embedded software.



2. OUR GOALS

We had two reasons for looking to use an Ada software development

environment:

o Increase the productivity of development teams. A
totally integrated software development environment
provideg sets of tools that allow designers and
programmers to increase their productivity. Some of
the tools one would expect to see are:

-- symbolic debuggers
-- program profilers/analyzers
-- complete configuration management/control
-- documentation generators
-- syntax oriented editors

Ideally, these, and other, tools would work in concert
with each other to allow programmers to produce more
code with less time and effort.

0 Improve software quality. Some of the tools mentioned
above inherently improve the quality of software
systems if they are used properly. For instance,
profilers and analyzers can help programmers spot
sections of code that are intensively used as potential

targets for code optimization. Configuration
management tools can help ensure that the software team
knows exactly what software version and what changes
are implemented in product baselines. Syntax oriented
editors can help both productivity, and assist in
producing standardized code.

4



3. CHOOSING AN ENVIRONMENT

3.1. BACKGROUND

At the beginning of the project we knew basically what we wanted.
It was necessary to now decide what items we should attempt to
obtain for the SARAH project. Since the final product would have
to run on IBM PC AT compatible equipment, it would be necessary
to have something that produced target code for that type
equipment. At the time the initial product planning was being
done, nothing was commercially available. We did know that
several companies were working on IBM PC hosted compilers that
would produce IBM PC code. It seemed the best approach was to
buy a compiler hosted on an IBM PC or AT to use for the final
testing and iategration since this was the only possible product
that would target to the PC.

Although there were several companies that anticipated releasing
that type product, it appeared none of those products would be
more than the basic compiler/linker. If we wanted to use an Ada
Programming Support Environment (APSE), we would have to obtain
another package. Since we had a Digital Equipment Corporation
VAX available for use in the Ada project, it seemed most
expedient to obtain something that would run on that machine.
Our choices were several (Alsys, Verdix, SofTech, DEC, etc.).
Because of other CCSO usage of the VAX that required the VMS

operating system, we had to eliminate those systems that only
ran under Unix (e.g. Verdix). We were constrained to a very
small budget (under $25,000.00), so any product costing over that
(e.g. the DEC Ada environment) would be eliminated. This was
unfortunate since both the DEC Ada compiler and the Rational
compiler were reported to be very fast, and of good quality.

3.2. TESTING AND INTEGRATION ENVIRONMENT DECISION

In the PC based Ads world, we had primarily been tracking a
compiler from Alsys, and one from General Transformations. At
the 1985 Boston SIGAda, several of our team members saw a
prototype of the Alsys PC AT compiler running through the most
current Ada validation test suite. From our observations, and
verbal confirmations from Alsys, we decided that their product
would likely fulfill our compiler needs for integration and final
testing. The General Transformation compiler was reportedly

still far from validation.

We started procurement action for several IBM PC AT compatible
compilers. At the time procurement action was taken, Alsys was
the only vendor providing a validated product.

5



3.3. THE APSE ENVIRONMENT DECISION

We had a pre-release copy of the Army/SofTech Ada Language

System %LS) for evaluation purposes. It was obviously not a
produ on quality product. There were many bugs, we had no

traini. _, and the environment was not intuitively easy to learn.
We therefore had no solid experience for judging the value of

the programming environment.

From the literature available, and some limited contact with

vendors via SIGAda, we knew of only three environments that
seemed to offer an integrated approach to the Ada programming

environment:

1) Rational Environment supplied with the Rational RiO00
hardware,

2) SofTech ALS hosted on the VAX, and

3) The DEC Ada environment hosted on the VAX.

Although the early ALS system did not seem to be of production
quality, we were assured by Army personnel,and SofTech people,
and literature that the newer releases of ALS were much faster,
more complete, and of production quality. The Rational
environment was very new at the time. Although we had heard some
good things about it via the "grapevine", we had no solid basis
to judge it's merit. The same was true of the DEC Ada
environment.

The primary consideration would then be cost. The commercial
version of the ALS was in the range of $6,000.00 for government

customers. The R1000 environment was in the $800,000.00 range,
and the DEC Ada was around $50,000.00. Because of the budget
contraints, we never were able to seriously consider the DEC or
Rational Environments.

3.4. OVERALL ENVIRONMENT PLAN

The ALS environment was planned to be the focal point of our Ada
Programming Support Environment. The source code developed on the
microcomputer workstations would be maintained by the ALS
configuration control system and would be transferred to the PC
ATs for final compilation and testing. The SARAH software targets
are the IBM compatible PC AT and PC XT microcomputers.

This approach would have the disadvantage of having a lot of file
transfers between the PCs and the VAX. The big advantage would
be the integrated APSE type environment for the majority of the
software development work. Since we anticipated the speed of the
AT based compilers would be much slower than that of the ALS
hosted on the VAX we didn't anticipale using the PCs *or much
except text editing and the final integration and testing.

6



4. THO RESULTS

4.1. THE ADA LANGUAGE SYSTEM

Our ALS system was delivered and installed by SofTech Corp. This
section will describe our actual experiences with the two systems
described in the previous section. We contracted for and
received nine days of SofTech training on the ALS system
utilizing our DEC VAX 11/780 computer with four terminals.

4.1.1. ADVANTAGES

The SofTech ALS has attempted to implement much of the Ada
environment thinking proposed by the Ada community, and
specifically by the Stoneman document.

As such, it certainly has many good points:

o The configuration management and control functions
could be extremely valuable to software projects --
especially larger projects. The environment gives the
impression that you knog exactly where everything is,
who can use it, where it came from, etc. In general,
we found this to be true.

0 Access control "or code can greatly enhance the
manager's control of the developmental or baselined
environments. Some of the highlights of file control
are:

0 Files have attributes used to identify and
control access. The ability to change
attributes is controllable.

0 Files can be shared. it is possible to link
across Ada libraries ("acquiring containers"
in ALS terms). -his prevents having to have
multiple copies floating around in the
system.

0 Locks and keys to files can be used to
prevent more than one user from modifying the
same file at the same time.

0 Files can be "frozen" by the configuration
manager to prevent changes from being made.

0 ALS provides revision sets to track chan-es
made to the file.

7



o The system resides in a multi-tasking environment. It
is possible to start a compile in the background, and
edit another program concurrently.

0 By having a centralized system, programmers can examine
their peer's code for ideas, suggestions, confirmation
of interfaces, etc. without being able to change that
cod

4.1.2. DISADVANTAGES

The implementation of the ideas proposed by Stoneman did not
appear to be well dune. We encountered deficiencies that
detracted from the potential of the ALS:

o The system is SLOW. Creating a new Ada library can
take 30 minutes. Loading the debugger with a program
to debug takes around 15 minutes (which is forever when
a programmer is trying to think through a problem and
debug a program).

0 The ALS is hard to use (at least compared to today's
very user-friendly programs). To be able ' o have the
1nice" features in the environment (like keeping track
of program versions, protecting baseline versions,
etc.), the ALS is buried in its own Environmental Data
Base. It seemed that everythi'g we did had to have
some kind of special attribute or file or directory
structure, and we had to have some kind of special
procedure or code or instruction to use it. After two
weeks of classes, many people felt that they could not
sit down and enter an Ada program, compile, and run it
without extensive reference to the manuals.

4.1.3. SERIOUS PROBLEMS

With all software, we must usually endure some minor problems.

Usually, these are soon identified, and people learn to live with
them, or work around them. This is only true if the system is
o,,erall stable and predictable. With the ALS, we found this
predictablility and stability lacking.

During our ALS training class, while talking about the roll-in
and roll-out functions, the instructor stated that it wasn't
reliable -- it only worked some of the time. When we got to the
section on the debugger, we asked to see a demonstration using
one of our class problems that would not run. The debugger,
arter taking nearly 30 minutes to load and get ready to run with

-:' : :" ... .. , " ... . i i i i - " I I .. .. .. .. ...



the subject program, promptly "died" upon execution.

We had many instances where commands and tools just "didn't
work". Sometimes calls by the instructor to SofTech Headquarters
would bring an explanation (usually "Oh, that tool has some
problems -- we don't recommend you use it"), and sometimes we
never found out what happened. We had to reboot the VAX numerous

times during the class.

By the time the classes were complete, the entire group was in

agreement that the overall ALS system was still in a pre-
production state. It was not a debugged or complete product that
should be sold or released. The unpredictability of the 3ystem

cannot be tolerated in an environment that must manage an
extremely expensive resource -- software.

4.1.4. ALS SUMMARY

Overall the ALS does have many of the tools required for the
activities normally associated with software development. The
configuration management facility does seem to work. In general,
the tools needed to write and test programs are present.
However, considering the cost of the system to the government,
and the time spent developing the system there are several
notable things not present:

0 An Ada browsing capability, and a syntax sensitive
editor that would assist in the writing and overall
checking of code before compilation.

0 Debugging and program analysis capabilities that
provide features comparable with commercial products

available for other environments and languages.

0 An editor with a multi-window capability. By today's
standards, only being able to see and work 4Lth a
single file at a time is very primitive. This feature
alone can make a dramatic difference in programmer
productivity.

o A consistent, integrated, easy to use human interface.

Our experiences lead us to believe that the ALS(version 3) has
not reached a level of maturity, stability, or performance to
recommend its use. Furthermore, we believe that it is not very
likely to reach an acceptable level of maturity without major

rework.



4.2. THE ALSYS PC AT ENVIRONMENT

We initially obtained two copies of the first release of the
Alsys PC AT compiler, and two IBM PC AT computers. We were, in
general, very pleased with the package. Some of the salient
points were:

4.2.1. ADVANTAGES

" The speed of compilation was very good. The same
program that would take 20 minutes to compile on our
VAX 11/780 with the ALS would compile on the AT in less
than two minutes. In all fairness, we should mention
that later we added more memory to our VAX, and that
brought the ALS compile times to within a few minutes
of the AT times.

" The product was very stable. We encountered very few
problems, bugs, or "strange occurrences" with the
compiler. It was a solid and predictable product.

0 The compiler was very easy to learn and use. There is
an on-line help facility that enabled us to
successfully use the compiler without first reading the
users guide. The compiler environment syntax is Ada-
like.

" With the second release of the compiler, we were able
to use some of the common productivity tools available
for the PC environment (e.g. SideKick, SuperKey, etc.)

4.2.2. DISADVANTAGES

Although the section above reads very positively, there are some
definite drawbacks with using the Alsys PC AT environment:

" Keeping up with programs and development work is the
sole responsibility of the programmer. There are no
configuration management tools provided with the Alsys
package. For example, there is nothing to prohibit one
programmer from writing to another programmer's area,
other than management policy.

o There is no APSE-like environment at all, save for that
specified by the Ada Language Reference Manual. If
tools are needed other than those directly related to
the compiler, they must be obtained and "integrated" by
the end user.

" The compiler does not come with a debugger. This is
a necessity for serious software development. (We

10

__ LL _] : . " .. , , I I I I . .



understand that a debugger is being developed -- but it
will cost extra!).

0 Alsys has several predefined packages that make
programming easier on the IBM PC compatibles. However,
the source code is not included! This amounts to an
extension of the Ada language. Users should be wary of
this arrangement.

4.2.3. SERIOUS PROBLEMS

A13's is charging a royalty to distribute systems compiled and
linked (binding) with their Ada runtime executive system. In the
world of microcomputers, the concept of a compiler vendor
charging royalties on the runtime environment linked to the
generated code is archaic, and a concept that is, indeed, ugly to
many computer professionals. Many of them tend to view this
concept as greed. Indeed, when the people involved in the SARAH
project (many with considerable experience in the private sector)
learned that Alsys was extracting a royalty for all copies
(except for the first 10) of a developed system, the general
thinking changed from "what a great product - from a great
company" to that of "as soon as another product is available, we
will move to that - even if it is not as good otherwise".

4.2.4. ALSYS SUMMARY

Overall, we found the compiler a very good product. It is usable
and speedy. It can form the core of a program development
environment on IBM PC AT compatible workstations.

The compiler is, however, only a compiler. It does not in any
way provide a complete, integrated program development
environment. As we will explain below, this is not a total
disaster since many of the existing products available for the PC

can be used together to create a reasonable development
environment.

4.3. OUR DEVELOPMENT ENVIRONMENT

Because of the problems discussed above with the ALS, we have had
to, for the most part, abandon our original plans for using it.
We had still, even in the end, hoped to use it for at least the
configuration management function. This would necessitate up and
downloading source code from the PCs. We found that without high
speed local area networking, this process is very time consuming
and awkward. There is no Air Force requirements contract or
equivalent for acquiring local area networks. With this fact,
and the marginal possible usefulness of the ALS, we have not been

11



able to devote much time to further use of the ALS. The fact of

the matter is: If we want to finish the SARAH project in a

timely manner, we must focus on the reliable, solid Alsys

compiler to get the job done.

12



5. RECOMENDATIONS

We would like to note that the recommendations given are based on
our experience. Your needs, background, or funding posture may
dictate different solutions.

We have some different groups of recommendaticns. Some of them

are based on the size of the software development team, and the

software development project. The different classes for our

recommendations are:

o General, overall rocommendatina, including small
programming projects.

o The project with five or more people.

o Recommendations for specific environments and tools.

5.1. GENERAL, OVERALL RECOMMENDATIONS

These recommendation are applicable to all development efforts
regardless of the environment used, compiler used, or project

size.

0 Based on our experience in developing several thousand
(so far) linea of Ada code, we would strongly recommend

that each designer and programmer have their own

personal workstation. The increased productivity seen
would easily pay for the cost of the hardware many

times over every year.

0 Each workstation should have (or have access to) an Ada

compiler. Nothing can slow down a programmer's
momentum like being ready to test some new code, and

have to "get in line" to compile and test it. We have

found that both designers and programmers tend to get
very frustrated when they are on a productive "roll"
and the hardware and resources are not available to
allow them to move forward with their ideas.

0 Each workstation should have (or have access to) a

symbolic debugger that works in conjunction with the

Ada compiler.

0 For the very small project, it is possible to keep
track of source code development configurations, and

baselines manually. For example, a pseudo-shared
environment can be obtained by keeping current copies
of programs on a shared (manually) hard disk. k

possible additional item of value for this small
development group would be a single user version of a
configuration management (source code control) system

to be available to at least the project manager. This

13



manual type environment is not our recommendation of

ideal even for only a few programmers. However, it is

probably the minimum that is workable.

5.2. FIVE OR MORE PEOPLE

For a project of this size, significant returns can come from

having a shared environment. The environment should have the

following characteristics:

0 Networking or sharing of some type should be employed.

Packages and programs must be available from each

workstation. Walking around trading diskettes would be

unacceptable in an environment of this complexity. As

explained below in the section on Overall Environments,
there are several ways to achieve the sharing.

o There should be a number of tools available to the
users of each workstation. Some of the tools need to
be shared, and some of them could be dedicated

(resident on the workstation). Our definition of

shared for the purpose of this section is a program
that resides and runs on a central CPU (file server or

multiuser computer).

o Shared:

0 Database/Configuration Management

type tools. Configuration Manage-
ment tools are discussed in the

"further information" section.

o Electronic Mail, or equivalent.
Smooth flowing communications can
greatly enhance productivity.

Generating paper is not efficient.

0 Ability to share (or at least

easily transfer) source code files
with other programmers.

o Dedicated. It is not necessary to have dedi-
cated versions of these tools. However, if
it is more appropriate (e.g. memory resident
utilities on a PC) they may be dedicated.

0 An editor, or combination of

editors that allows viewing and
manipulating of more than one file
at a time. An Ada oriented editor
that assists with writing and
debugging syntax would be an addi-

tional benefit.

14



o Other Ada specific tools such as
tools for program analysis, program
debugging, program documenting,
etc.

5.3. RECOMMENDATIONS FOR SPECIFIC ENVIRONMENTS AND TOOLS

In order to provide more information than supplied in the general
recommendations, we have attempted to provide some specifics that
may be of assistance.

5.3.1. OVERALL ENVIRONMENTS

As mentioned above, we found the SofTech ALS to not be a good
choice for serious software development. This is not at all to
say the idea of an integrated APSE does not work.

The two environments that we now see as reasonable options from
our direct experience are the Rational environment, and the IB4
PC compatible environment. Many of the other vendors
environments may well be suitable (DEC, Data General, Harris,
etc.). We do not have the experience to comment on them.

5.3.1.1. RATIONAL

Another APSE type environment that seems to be quite successful
is the Rational Environment hosted on the Rational R1000
processor. We have seen several short demonstrations of this
system, and have been very impressed.

The entry price is now down to about $300,000.00 to get started
with this environment. The compiler is very fast. In fact, this
environment uses true incremental compilation to greatly reduce
the compilation overhead when code changes are made. The
environment includes a complete set of tools that include:

0 Interactive syntactic and semantic analysis of programs
or program fragments. Work can be checked while
editing.

0 The environment, for example, can create private part
and package body skeletons. This kind of automated
assistance can greatly reduce the number of programmer
keystrokes.

o Multi-window editor.

15



0 Interactive program cross reference ability to Allow
instant reference to variable declarations, etc.

From what we have seen, this product series may be very close to
the type integrated Ada programming environment that was
envisioned by the authors of the Stoneman document.

Any group doing large scale projects in Ada, or any programming
house with many people using Ada should certainly seriously
investigate this environment. The Rational address is in the
"Further Information" section.

5.3.1.2. PC COMPATIBLE

With the price of IBM PC AT compatible computers falling monthly,
an organization must certainly consider the economic advantage of
using PCs to enter the Ada world.

A number of AT compatible machines, AT hosted compilers (right
now, Alsys would be our recommendation -- for more information,
see the CCSO paper on microcomputer compilers), a small amount of
PC compatible software, and a local area network can result in an
inexpensive, yet reasonably effective Ada development
environment.

The remainder of the "tools specific" recommendations are aimed
at making this PC based environment as productive as possible.

5.3.2. EDITORS

There are many, many word processors and text editors available
for IBM PC compatible machines. Most of them will satisfactorily
work for producing Ada code.

When our project started out, the most used software was
WordStar. However, most of the programmers have transitioned to
using the memory resident editor supplied with SideKick. This
allows them to "pop up" the source code while running the
executable version of the same program. It also allows viewing
two source code files at the same time. In the SARAH programming
area, it is quite common to find a screen with a program opened
with Wordstar, and then another file overlayed in SideKick, so
that the programmer can work on both files at the same time.

In the "we'd sure like to try it" category, there is at least one
Ada oriented editor available for the IBM compatible world -- the
Xinotech Program Composer. If it is well done, this would be an
even greater tool for added productivity. The full reference can
be found in the "Further Information" chapter.

16



5.3.3. PRODUCTIVITY TOOLS

In the PC environment, we have found that some of the commonly
used productivity tools can be well employed in the Ada
programming environment.

SIDEKICK
As mentioned, the memory resident editor in Sidekick is used
heavily since it (and the file loaded in it) are always "there"
-- a keystroke and it's on the screen instantly. Some of the
other functions in Sidekick are also very valuable. Probably the
next most used item is the ASCII table. It's so efficient to not
have to look for that sheet of paper to look up ASCII values,
keystrokes, etc. Although those are the only two components that
are heavily used to program Ada code, the other features such as
the Calculator (it does binary and Hex too!) and Appointment
Calender are used by some of the people to optimize their time
utilization.

SUPERKEY
SuperKey is sold as a keyboard macro utility. Essentially, one
can define any key to "contain" letters, words, phrases,
commands, etc.

This allows programming shops to set up a macro that will define
certain keystrokes as Ada constructs. For example, an Alt-P
could be set up to contain the skeleton for a procedure. An Alt-
F could contain the shell for an Ada function. Then the
programmer need only type Alt-P and a complete procedure shell is
entered into the current text editor just as if the programmer
had typed it.

The program can even be set up to insert some text, pause and
wait for programmer input, then continue with more "canned" text.
It is also easy to load a "transient" variable name or phrase
into a key as it is typed. Then only that key need be pressed
every time the programmer would normally have to type the often
occurring name or phrase. This tool can take a lot of the
drudgery out of the business of writing code.

5.3.4. NETWORKS

There are a number of PC compatible local area networks
available. From our contacts, it appears 3Comm and Novell seem
to be the most mentioned as far as popularity and sales.

With this type network, many things are possible:

o Many program development tools are available in
versions that can work for multiple users on such a
network. The source code control system mentioned
in the "Further Information" chepter is one such tool
that would be of great value.

17



0 Aany very powerful and easy to use general purpose
tools will work in this environment. For instance,

many valuable tools can be quickly built with a
relational database management system like dBASE Ill
Plus from Ashton-Tate.

" These local area networks typically provide Electronic

Mail services, which can really save time by
eliminating all the paper floating about the program

development shop.

" Programmers can have the power of individual
workstations with individual compilers and Ada oriented
tools, yet they can still share files, and access
common databases, etc. Everyone has the ability to
share, but no one has to worry about the degradation of
compiler and system performance as the user load
increases.

5.3.5. CONFIGURATION MANAGEMENT

There are several software packages available to assist with the
configuration management function for software development
projects in the IBM PC compatible environment. Since software
development in this environment typically involves many different
languages, these packages are not language specific, and will
work- fine for Ada. The Polytron Version Control System listed in
the "Further Information" section below is one such system.

18



6. FOR FURTHER INFORMATION

PC BASED CONFIGURATION MANAGEMENT AND UONTROL
The Polytron Version Control System is a configuration mandgement
and control system designed for the IBM PC environment. It is
capable of managing both source code and documentation. It
tracks current version plus all increments, decrements, and notes
needed to rebuild any version. It has privilege levels to
control access. The system administrator can easily keep track
of who is working on each module. Local area network versions
are available. More information can be obtained from:

Polytron Corporation
1815 NW 169th P1 Suite 2110
Beaverton, OR 97006
(800)654-5301

ADA INFORMATION
The first and probably best contact point for obtaining most
types of information related to the Ada language is the Ada
Information Clearinghouse, sponsored by the Department of
Defense.

Ada Information Clearinghouse
Rm. 3D139 (Fern St./C-107)
The Pentagon
Washington, D.C. 20301-3081
(703)685-1477 or (301)731-8894

RATIONAL ENVIRONMENT
This multiuser APSE type environment provides a set of well
integrated tools with fast hardware for Ada program development.

Rational
1501 Salado Drive
Mountain View, CA 94043
(415)940-4770

ALSYS IBM PC AT COMPATIBLE ADA COMPILER
The Alsys compiler is a good solid product. If used 4ith some
IBM PC compatible general purpose programming tools, a
reasonable, yet inexpensive Ada programming environment can be
created.

Alsys Incorporated
1432 Main Street
Waltham, MA 02154
(617)890-0030

19



ADA ORIENTED EDITOR
The Xinotech Program Composer is an editor that has knowledge of
Ada syntax so that it can assist in writing and debugging code.

Xinotech Research, Inc.
Technology Center, Suite 213
1313 5th Street S.E.

Minneapolis, MN 55414
(612)379-3844

SIDEKICK AND SUPERKEY
These are two very popular and much used general purpose aids to
productivity. At prices usually under $50, they are one of the
best software bargains available.

Borland International
4585 Scotts Valley Drive
Scotts Valley, CA 95066

LOCAL AREA NETWORKS
The two networks that seem to be selling the best in the IB'4 PC
compatible market are the Novell network, and 3Comm.

Novell Corporate Communications
748 North 1340 West

Orem, Utah 84057
(801)226-8202

3Comm
(800)NET-3Com

20



A. REFERENCES

[i] "Stoneman", Ada Joint Program Office, Nattonal Technical
Information Service (NTIS).

[2] "Evaluation of Ada Environments", Software Engineering
Institute, Carnegie Mellon University, August 1986.

[3] "Software Technology for Adaptable, Reliable Systems (STARS)
Program Strategy", Department of Defense, ACM SIGSOFT Software
Engineering Notes, April, 1983.

[4] "SARAH Operational Concept Document", Command and Control

Systems Office, US Air Force, September 5, 1986.

[5] "Draft Air Force Information Systems Architecture --

Volume VII ", HQ US Air Force/SITI, 18 February 1985.

[6] "An Architectural Approach to Developing Ada Software
Systems", Command and Control Systems Office, US Air Force, May
1986.

GENERAL

"Proceedings of the Air Force Information Systems Architecture

Workshop", Air Force/SITI, August 1984.

"Air Force Information Systems Architecture, Vol I -- Overview",
Headquarters Air Force/SI, May 1985.

21


