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ABSTRACT

-tmospheric turbulence severely limits the resolution of

ground-based astronomical telescopes. In good seeing conditions at the

best observatory sites, resolution at visible wavelengths is typically

limited to,-1 sec of arc. During the past 15 years adaptive optical

systems using electrically deformable mirrors have been developed to

compensate for turbulence effects. Unfortunately, these systems

(require bright reference sources adjacent to the object of interest and

can be used to observe only the brightest stars. Artificial guide

stars suitable for controlling an adaptive imaging system can be

created in the upper atmosphere by using a laser to excite either

Rayleigh backscattering in the stratosphere or resonance backscattering

in the mesospheric*a layer. The design requirements of a laser-guided

adaptive telescope, as well as the expected imaging performance, are

discussed in detail in this thesis.

Analytical expressions giving the performance of a class of

adaptive optics systems using slope sensors are derived. The unique

analysis takes into account the nonideal characteristics of the

wavefront sensor and wavefront correction device, as well as the

effects of anisoplanatism. Performance measures include the mean

square residual phase error across the aperture of the optical system

and the optical transfer function. ,'We show that a two-meter, ground-

based, laser-guided telescope can achieve imaging performance levels at

visible wavelengths nearly matching those of the Hubble Space Telescope
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(HST). The laser power requirement for Rayleigh and Na guide stars is

on the order of 33 V and 6 W, respectively, for zenith viewing and ro =

20 cm. Both systems will achieve near diffraction limited imaging with

a Strehl ratio of - 0.73 and an angular resolution of approximately

0.07 arcsec for an observation wavelength of 0.5 Um.

In the case of guide stars created in the mesospheric Na layer,

saturation effects may significantly reduce the backscattered signal

expected for resonance fluorescence lidar systems. The level of

saturation is determined by the laser's pulse length, pulse energy,

beamwidth and linewidth. 6esign examples, including lidar systems for

atmospheric research and laser-guided telescopes, are studied in

detail.(f
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1. INTRODUCTION

It is well-known that the resolution of large ground-based

telescopes is limited by random wave front distortion caused by

atmospheric turbulence. Real time wave front reconstruction systems,

commonly called adaptive optics systems, have been shown to improve

significantly the image resolution of these telescopes.' With the use

of adaptive optics techniques it should be possible to achieve nearly

diffraction limited imaging performance. The operation of an adaptive

optics system consists of two basic functions: wave front sensing and

wave front correction. By using the light from either the object being

observed or a nearby guide star, a wave front sensor measures the

turbulence induced phase perturbations across the telescope aperture.

The measurements are in turn used to adjust an electrically deformable

mirror to compensate for the phase distortions. This general class of

adaptive optics system has been shown to work if 1) the reference wave

front from the guide star is within the isoplanatic angle of the object

being observed and 2) if the guide star is bright enough to provide an

adequate signal for the wave front sensor. For astronomical imaging,

these two requirements imply that bright guide stars must be available

within the isoplanatic angle for all observation directions. As

described by Beckers, 2 the size of the isoplanatic angle is least

restrictive at longer wavelengths. For wavelengths longer than 4 um

the Isoplanatic angle is large enough to allow wave front correction of

the entire sky using natural guide stars, yet less than 0.003% of the

sky can be corrected at visible wavelengths using natural guide stars.
2
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Obviously an adaptive telescope based on natural guide stars does

not provide adequate sky coverage for astronomical imaging at the

visible wavelengths. In 1985 Foy and Labeyrie 3 suggested that it may

be possible to create a suitable artificial guide star with a laser in

the upper atmosphere. Laser guide stars would allow access to the

entire sky, even at visible wavelengths, since the laser could be

pointed in any desired direction. In 1987 Thompson and Gardner
4

further advanced the laser guide star concept by demonstrating

experimentally the feasibility of creating a laser guide star in the

mesospheric Na layer. They made detailed engineering calculations to

determine the necessary laser power to create a sufficiently bright

guide star for zenith observations. They subsequently verified their

analytical expressions by predicting the brightness of an experimental

guide star produced at Mauna Kea Observatory.4 Figure 1.1 is a contour

plot of an image obtained by Thompson and Gardner of a Na guide star

created with the University of Illinois lidar system. The image was

obtained using a low-noise CCD detector array positioned at the

Cassegrain focal plane of the University of Hawaii 2.2 meter telescope.

For this experiment no attempt was made to decrease the size of the

guide star to that required for an adaptive telescope system. The

analytic and experimental results of Thompson and Gardner suggest that

full adaptive correction for ground-based telescopes is within

reasonable grasp of current laser technology.



3

450 -

400-

350.

00

3250-

50 I a0omin

30 -P. o .. c-,' , -."
300- 00

LI .I" . ", I Ik t\I i

150 5 P0 5 2 0 3o0 0
10 - 0 - . .- <' C,..":

50 - om i.n> = .

50 100 150 200 250 300 350 400 450
PIXELS

Figure 1.1. Photocount contour plot of a Na guide star
image taken on January 21, 1987. The guide star
was generated by the University of Illinois lidar
system and imaged by the University of Hawaii 2.2
meter telescope. The contours are 150, 200, 300,
400, 500, 600, 800 and 900 counts per pixel. The
pixel size is 3.4 urad.
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If natural guide stars are available for the entire sky at

infrared wavelengths, why consider the laser guide star technique?

There are three important reasons. First, astronomers have an interest

in observing astrophysical phenomena at all wavelengths. Second, the

performance of imaging detectors and the associated sky background

noise are both worse in the infrared. Third, even if an adaptive

optics system corrects the wave front to the diffraction limit, this

diffraction limit at infrared wavelengths is not nearly as good as that

possible at visible wavelengths. For example, a 4 m telescope working

at 10 pm (where guide stars are easily found) has a diffraction limit

of 0.63 arcsec. If the telescope is operated at 5 pm (where only 50%

of the sky has acceptable guide stars) the diffraction limit is still

only 0.32 arcsec, while at visible wavelengths the diffraction limit is

less than 0.03 arcsec. To reach these limits of resolution in the

infrared will, no doubt, be a great advance. However, the infrared

diffraction limits do not match the limiting resolution of the Hubble

Space Telescope (HST). A laser guide star system operating at a large

ground-based telescope with a full adaptive optics system will produce

images in the visible wavelength region close to or even better than

those expected from the HST.

Described in the remaining chapters are the results of a detailed

study of the design and performance of laser-guided telescopes. In

addition to the actual design and performance issues, much of the

material in the following chapters encompasses the analytical design

tools developed over the course of the study. One of these tools is a
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unique performance analysis of a class of adaptive optics systems using

wavefront slope sensors. Unlike past analyses, the performance

analysis takes into account the nonideal characteristics of the

vavefront sensor and vavefront correction device, as well as the

effects of anisoplanatism. Performance measures include the mean

square residual phase error across the aperture of the optical system

and the optical transfer function (OTF). These performance measures

are ultimately used to determine the key design parameters for the

laser, wavefront sensor and wavefront correction device. One of the

most important design tasks is determining the required laser

parameters. The required brightness, size and number of laser guide

stars are dependent on the desired imaging performance of the adaptive

telescope. These requirements in turn directly impact the design of

the laser. In the case of guide stars created in the mesospheric Na

layer, the choice of the laser pulse energy, pulse length, and

linevidth is complicated by the nonlinear absorption (saturation)

effects. Saturation effects may significantly reduce the backscattered

signal (and thus the brightness of the guide star). Characterizing the

effects of saturation for a pulsed Na laser is a necessary step in the

process of specifying the laser parameters.

In Chapter 2 the basic concepts and engineering design issues of

laser-guided adaptive telescopes are introduced and discussed.

Computing the required brightness of the guide star is one of the major

design tasks. The brightness issue is addressed by investigating the

imaging performance of an adaptive optics system as a function of the
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photon flux density at the vavefront sensor. Other design issues

include the method of forming the guide star, the positional stability

of the guide star, the required size of the guide star, and the number

of guide stars needed for a given telescope diameter. Some of these

design issues have significantly different implications, depending on

the altitude at which the guide star is formed. We consider guide

stars created at a relatively low altitude within the stratosphere,

using Rayleigh scattering from air molecules and guide stars created

using resonance-fluorescence scattering at a relatively high altitude

within the mesospheric sodium (Na) layer. Both techniques have their

own unique advantages and disadvantages. The material in this chapter

closely parallels that found in Reference 5.

The imaging performance of the adaptive telescope calculated in

Chapter 2 is based on the analysis described in Chapter 3. Chapter 3

introduces a method of analyzing the performance of a general class of

adaptive optical systems using wavefront slope sensors. Unlike past

performance analyses, this analysis takes into account the nonideal

characteristics inherent in any real system. The material in this

chapter closely follows that of Reference 6. In Chapter 4 the effects

of nonlinear resonant absorption are characterized for the pulsed lidar

system. The results from this chapter are used in Chapter 2 to

calculate the required Na laser parameters. The material in this

chapter closely follows that of Reference 7.
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The effects of anisoplanatism on the performance of laser-guided

telescopes are addressed in Chapter 5. Anisoplanatism degrades the

imaging performance of systems that use a reference source (i.e., a

guide star) separate from the object being imaged. Due to the finite

altitude of laser guide stars and the effects of anisoplanatism,

multiple guide stars are required to fully sample a large telescope

aperture.3 The analysis presented in this chapter is critical for

determining how many guide stars are required for a given telescope

size and how imaging performance degrades as the observation direction

is separated in angle from that of the laser guide stars. The required

number of guide stars calculated in Chapter 2 is based on the results

of this chapter. The material in this chapter closely parallels that

found in Reference 8.

Finally, in Chapter 6, a new remote sensing technique for the

study of the upper atmospheric metal layers is presented. This

technique holds in common many of the design issues related to laser

guide stars. The bistatic imaging lidar technique is fundamentally

different from traditional monostatic lidar techniques. The vertical

density of an atmospheric layer, such as the mesospheric sodium layer,

is measured by imaging an illuminated spot within the layer. The spot

is illuminated with a laser and imaged with a telescope in a bistatic

configuration. Profiles through the image contain information about

the vertical structure of the layer as well as the laser beam cross

section. The material in this chapter closely follows that of

Reference 9.
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2. DESIGN AND PERFORMANCE ANALYSIS OF
ADAPTIVE OPTICAL TELESCOPES USING LASER GUIDE STARS

2.1 Introduction: Qualitative Discussion of Design Issues

Consider a small diameter telescope as illustrated in Figure 2.1a.

A diffraction limited image is focused onto the image plane of the

telescope if the pupil diameter D is less than the Fried"0 coherence

cell size ro. The angular resolution of the telescope in the short

exposure limit is 1.22X/D, where X is the optical wavelength. However,

for long exposures, random wavefront tilts cause the image to dance

around in the focal plane and image blurring occurs. If the object is

bright enough, a simple tip-tilt mirror arrangement can be used to

compensate for the random wavefront tilt." Such a system would

consist of three main components: an image centroid detector, a

tip-tilt mirror, and a control algorithm connecting the two.

For a telescope diameter larger than r., the angular resolution is

limited to 1.22X/ro . Each subaperture of size ro within the telescope

pupil generates a subimage of angular radius 1.22X/r.. A random

wavefront tilt over each r. subaperture causes the subimages to dance

around in the image plane. The motio.a of a single subimage is nearly

independent of the motion of every other subimage. Modern adaptive

optics telescopes of the type illustrated in Figure 2.1b use a

wavefront sensor to measure the wavefront tilts over each r.

subaperture. A typical wavefront sensor consists of a lenslet array

and detector array. The detector array measures the centroid

displacement of the image spot under each lenslet. These
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measurements are in turn used to cancel the tilts by controlling the

shape of a deformable mirror. If the tilts are removed from each r

subaperture, nearly diffraction limited imaging performance can be

achieved.

Figure 2.2 illustrates the optical design of a laser guided

adaptive telescope. The major components include the telescope

aperture, laser, laser beam jitter sensor, low frequency motion sensor,

deformable mirror, tip-tilt mirror, wavefront sensor, imaging module

and control module. In the remainder of this section we discuss the

basic operation of these components and how the nonideal

characteristics of the components affect imaging performance.

Throughout we concentrate on phase correcting systems, and assume that

turbulence induced amplitude perturbations are negligible.
1 2

The laser beam is expanded and transmitted through a projection

telescope behind the Cassegrain secondary mirror. The beam is focused

at the altitude of the selected atmospheric scattering region. Before

leaving the projection telescope, part of the beam is sampled for use

by the jitter sensor. The jitter sensor measures the propagation angle

of the laser beam, and this information is fed back into the control

module to null out effects of beam jitter.

The backscattered light from the laser guide star, after being

focused by the telescope, is passed through the central hole of a 450

turning mirror. The mirror reflects the light from a set of widely
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spaced natural stars which are used for low frequency motion

compensation. The low frequency motion sensor locks onto the location

of these widely spaced stars and sends a signal to the control module

where the low frequency motions of the laser guide star and telescope

are nulled. The requirement for low frequency motion compensation is

discussed in more detail below. Once passing through the annular

turning mirror the light from the laser guide star is collimated and is

reflected first off the tip-tilt mirror and then off the deformable

mirror. The tip-tilt mirror removes overall wavefront tilt while the

deformable mirror removes subaperture tilts. The light is then

reflected off a dichroic beamsplitter to the wavefront sensor, and the

remaining light is directed to the imaging module. The subaperture

tilts detected by the wavefront sensor are processed and sent to the

deformable mirror as actuator control signals. The imaging module

captures the corrected image reflected from the deformable mirror and

these data are saved as the final astronomical image.

Consider the problem (first discussed by Thompson and Gardner in

Reference 13) of creating the guide star by transmitting the laser beam

with a projection aperture of diameter ro . Except for the tilt induced

by the turbulence, the beam is relatively unperturbed as it goes up

through the atmosphere. Because the round-trip travel time for light

scattered in the upper atmosphere is < 600 vs, the refractive index

perturbations in the atmosphere remain essentially unchanged, so the

laser light received within the r. aperture returns along the same path

traversed during transmission. In this case the random tilt over the
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r. aperture does not cause the guide star to move. Consequently, the

image of the guide star does not dance around in the image plane of the

r. aperture, while natural stars--whose light traverses the atmosphere

only once--do. Such an arrangement yields no information about the

turbulence effects within the r. aperture. Next consider the case

where the transmitting aperture contains M cells each of diameter ro.

Since M separate beams are deflected at independent angles due to the

tilt components in each r. cell, the resulting guide star, when viewed

from below, contains M small sources which are spread over a patch of

angular diameter - %2(l.22X/ro). The /2 factor arises because of the

double pass through the atmosphere. The centroid of the

multiple-speckled guide star provides a stationary point of reference

which can be used by the wavefront sensor to measure the subaperture

tilts. However, if the atmosphere contains wavefront perturbations of

the same size as (or larger than) the transmitting aperture, these low

spatial frequency wavefront errors are not detected for reasons

directly analogous to the single r. case. These low frequency

wavefront perturbations cause the position of the laser guide star to

move relative to the natural stars.

Low frequency wavefront perturbations are one of three effects

which will cause the centroid of the laser guide star to move in

unexpected ways, and thereby to lose reference with respect to the

background stars. The other two effects include 1) jitter in the laser

beam and 2) nonsidereal motion of the transmitting telescope. The

problem of laser beam jitter is easily solved by monitoring the angular
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orientation of the beam at the output of the laser. Any detected beam

jitter can simply be measured and nulled within the computer analyzing

the wavefront. The other two sources of error--telescope jitter and

low frequency atmospheric refraction--are more difficult to remove,

especially at the required level of precision. To first order, both of

the latter image motion effects can be removed by building a tracking

system that locks onto nearby natural guide stars. These stars do not

have to lie in the isoplanatic patch of the adaptive mirror since only

first order effects must be corrected. The error signal from the

tracking system can be sent to a tip-tilt mirror capable of moving at

high frequency, and this will remove most, if not all, of the detected

image motion.

In an ideal system the wavefront compensation would result in

perfect cancellation of the phase perturbations of the aberrated

wavefront. In reality, though, there are many factors which prevent us

from achieving the Ideal diffraction limit. These factors can be

summarized as our inability to build perfect wavefront sensors and

deformable mirrors. Hardy' presents a thorough review of the types of

wavefront sensors and deformable mirrors used in modern adaptive

optics. The two most important limiting factors are 1) the spacing of

the sensors and mirror actuators within the aperture of the optical

system, 2) and photon noise. Sensor and actuator spacing determine the

response of the adaptive optics system to the highest spatial frequency

of the phase perturbations. From the discussion above we indicate that

tilt sensors and tilt correctors spaced at intervals of ro can result
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in nearly diffraction limited imaging performance. Even with this

spacing the accuracy of the reconstructed wave can be severely degraded

if photon noise effects are significant. Photon noise arises because

of the finite flux available from the guide star reference wavefront.

In the simplest case the signal-to-noise ratio for sensors based on

photon counting techniques is proportional to 1/N where N is the total

photon count per subaperture during the measurement integration time.

Depending on the efficiency of the sensor, a weak reference wavefront

can significantly degrade performance. Quantifying the effects of

photon noise is particularly important for the design of laser-guided

adaptive telescopes, since the laser requirements are derived directly

from guide star brightness requirements.

One of the more common wavefront sensors is the Hartmann sensor,

the performance of which is analyzed in detail by Kane et al. 14'15  The

Hartmann wavefront sensor falls under the general category of a slope

or tilt sensor. The aperture of the optical system is segmented into

subapertures and within each subaperture the wavefront tilt is

measured. The Hartmann sensor uses a lenslet array to translate the

task of wavefront tilt detection to one of centroid detection in the

image plane. Figure 2.3 illustrates a diagram of a single cell of a

Hartmann sensor. A tilt * (rad) is detected by measuring the centroid

offset of the diffraction limited spot in the focal plane (x,y plane)

of a single lenslet. The offset is measured by a sensor array capable
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of photon counting. For an ideal centroid detector the rms tilt

measurement error in the x or y directions A*x, is given by14 '1

0.431 X

d

A% - - (2.1)
0.431Xd

d > rrd O

where N is the total photon count for the single Hartmann cell. The

factor 0.431 arises because the Airy spot distribution in the image

plane is equated to a Gaussian spot distribution by matching the spot

diameter at the e-1 points. Kane et al. 1 4 '1 present a more detailed

analysis and find that the total tilt measurement accuracy A* of this

type of sensor can be written

0.61 X nc
d~r 0

M d d r

A* .[ =1 : +a:2dh (2.2)
0.61 X nc

VNd r
0

where nc is an efficiency factor that includes the effects of an

imperfect detector array in the image plane (i.e., dead space in the

detector surface, finite pixel size, and finite pixel spacing), the

effects of spot size and spot location within the focal plane, and the

effects of an image intensifier in front of the array. In an analysis

similar to that of Vinick,16 Kane finds that the efficiency factor r

can be minimized with respect to the size of the focal plane spot. For

typical CCD array and image intensifier parameters he finds that the
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minimum value of 1C ranges from 1.35 to 1.50. In Section 2.3 we use

the accuracy specified in Equation (2.2) to calculate the guide star

brightness requirement for a Hartmann type vavefront sensor.

The size of the guide star also affects wavefront sensor accuracy.

For maximum centroiding accuracy it is reasonable to assume that the

full angular resolution of a subaperture lenslet should be employed.

For a given lenslet focal length, this angular resolution determines

the smallest possible spot size in the focal plane. If the subaperture

diameter d is less than ro, the smallest angular diameter of the spot

is 2.44X/d (i.e., diameter at the e- 2 intensity points). For d > r.,

turbulence restricts the smallest angular diameter to 2.44X/r o. To

take advantage of these resolution limits, the angular size of guide

star Aa should be no larger than the angular resolution of the

subaperture. There is virtually no advantage to making the laser guide

star smaller; in fact, for Na laser guide stars there is a significant

disadvantage to making the angular diameter smaller. Thus we require

the diameter of the laser guide star to equal the angular resolution of

the subaperture

S2.44X/d d < ro (2.3)

2.44X/ro d > r

For the case of d > r. the width given in Equation (2.3) corresponds to

the apparent size of natural stars. If an adaptive optics telescope is

designed to work at a wavelength of 0.5 um in conditions where d = r. =

20 cm, the laser guide star should have a diameter at the e-2 intensity
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points of - 1.26 arcsec. Achieving this angular size is likely to be

quite easy even in the presence of the double pass through the

atmosphere. If there is a need to make the guide star smaller, the

beam wander induced by each of the r. projection cells could be

compensated by projecting the laser beam through the phase corrected

telescope.

Nonisoplanicity represents another fundamental limitation to

imaging performance. The effects of nonisoplanicity arise because of

the distribution of turbulence along the optical path. Effective

wavefront compensation is limited to an angular region surrounding the

guide star. The size of the region is defined by the isoplanatic

angle. The isoplanatic angle is commonly defined as the largest field

of view (FOV) for which the OTF of the optical system does not change

significantly. Due to the small size of the isoplanatic angle at

visible wavelengths and the finite altitude of the laser guide star,

several guide stars are required to fully correct a large telescope

aperture. The actual number required is derived in Chapter 5.

In Sections 2.2 - 2.5 we provide a more quantitative discussion of

the design issues by deriving the key design equations for a

laser-guided adaptive telescope. To aid in deriving these equations,

we first review, in Section 2.2, the basic concepts and terminology

used to describe the effects of atmospheric turbulence on ground-based

imaging systems. The required brightness of the guide star is

addressed next in Section 2.3. Design equations are derived giving
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overall imaging performance as a function of guide star brightness. In

Sections 2.4 and 2.5 we discuss adaptive telescope systems based on

Rayleigh and Na resonance fluorescence guide stars. The results of

Section 2.3 are used to compute the laser characteristics required to

generate sufficiently bright guide stars. In Section 2.6 we present

the key design parameters of 2- and 4-meter laser-guided adaptive

telescope systems. We specify the required laser characteristics and

compute the expected imaging performance. Finally, in Section 2.7, we

briefly discuss the application of laser guide star systems to optical

interferometric imaging.

2.2 Atmospheric Turbulence Effects

During the past 15 years many authors have studied the effects of

atmospheric turbulence on ground-based imaging systems.' 0
,

7- 2 4 In

1966 Fried'0 wrote a seminal paper describing the performance of an

optical system in the presence of atmospheric turbulence. He

characterizes performance in terms of the OTF. From the OTF Fried

derives a single parameter, now called the Fried coherence diameter r.,

that concisely characterizes the performance of an aperture in the

presence of atmospheric turbulence. Fried defines ro as

V ]3/5

r. = 0.185[ [1 C dj//(2.4)

I - - C ( & ) d &

fo h

where X is the optical wavelength, C. is the structure constant of the

refractive index fluctuations, and h is the length of the optical path
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from the aperture entrance plane to the light source. The parameter Cn

is a general measure of the severity of the turbulence-induced phase

distortions and is a function of location. By using a measure of

resolution equivalent to the Strehl ratio, Fried showed that for a

telescope diameter D much less than r., resolution is proportional to

the square of D. As D becomes larger than r., resolution

asymptotically approaches a constant value slightly greater than the

resolution of an aperture of diameter ro .

The dependence of ro on wavelength goes as X
61 . As the

wavelength is increased, the effects of atmospheric turbulence

decrease. At the best observatory sites, and in conditions of good

seeing, r. can range from 10 to 30 cm for visible wavelengths. For

infrared wavelengths (- 2 pm) Beckers et al.2 find that r. can range

from 50 to 200 cm. The dependence of ro on the structure parameter

Cn(Q) is related to the length of the optical path through the

turbulence and on the actual strength of the turbulence. If the value

of r. for vertical viewing is used as a reference, it is easy to show

using Equation (2.4) that ro varies with the zenith angle e as

ro(e) = 0.185 (cose)3 5/ [ 0 [ i - 3 C dj (2.5)

This decrease in r. with the zenith angle is caused by the increased

path length through the turbulence.
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The dominant effect of atmospheric turbulence for an aperture of

diameter r is a random wavefront tilt. This assertion was quantified

by Fried. 25 He derived the statistics of the phase fluctuation across

an aperture by characterizing the fluctuations as an infinite sum of

orthogonal geometric representations. The first few terms used in the

representation include easily visualized phase surfaces: a constant

phase shifted surface, a tilted surface, a spherical surface, and a

hyperbolic surface. Fried finds that the average rms value of the

phase A* (m) over an aperture of diameter d is given by
25

[ d5/6 
'\

(2.6)

r] 6.2

He then approximates the wavefront phase with the first two terms in

the geometric representation, which include the constant phase shift

and tilted wavefront surfaces. The average rms difference between the

phase of the actual and approximate wavefront is given by
25

= d./ (2.7)
r] 17.4

This rms difference is equivalent to the residual phase variation

obtained for an adaptive optics system capable of achieving perfect

tilt compensation. Equation (2.7) indicates that a large part of the

phase distortions across an aperture can be attributed to wavefront

tilt. In fact nearly 90 percent of the power in the phase fluctuations

is due to tilt. This is an important result, since it indicates that

an adaptive optics system correcting only for wavefront tilt can remove
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a large percentage of the phase distortions. The smaller the aperture

over which the tilt is removed, the smaller the residual uncorrected

phase variation. Consider an aperture segmented into subapertures of

diameter ro . If the overall aperture and subaperture tilts are

removed, the resulting rms phase variation over the entire aperture

will be X/17.4. This wavefront phase variation yields a Strehl ratio

of 0.88. By comparison, the HST is designed for a figure error not to

exceed X/20, which corresponds to a Strehl ratio of 0.91. This simple

example demonstrates that it is possible to achieve near diffraction

limited performance simply by removing wavefront tilt over subapertures

of diameter r0 .o

The isoplanatic angle represents a significant limitation for

adaptive telescope systems that rely on guide stars which are separated

in angle from the object of interest. The offset results in two

optical paths traversing different regions in the turbulence. The

turbulence effects in one path are only partially correlated with the

turbulence effects in the other path. This decotrelation degrades the

accuracy of the wavefront compensation. Many papers26 - 30 have

addressed the effects of anisoplanatism on adaptive optical systems.

Most of these characterize the effects in terms of the degradation of

the OTF as a function of angular separation between the reference light

source and object of interest. A common definition of the isoplanatic

angle is the largest field of view (FOV) for which the OTF of the

optical system does not change significantly. Fried28 gives the

following expression for the isoplanatic angle:



255/i3 3/5
1 - C2 (&) d&

ep -(6.88)1/3 (2.8)
(6"88)s3 -f C2(&) &5/3 d&

For computational purposes it is common to approximate the effects of

the atmosphere by assuming the turbulence is confined primarily to a

single layer at a height of ht . In this case Equation (2.8) reduces to

9 3 h.. - - - .(2.9)
3 hh)

For the case of astronomical imaging, ht << h and Equation (2.9)

reduces to

r 0

ep = - .(2.10)

3 ht

For r° = 20 cm and ht = 10 km, we find that O is - 1.38 arcsec.

Due to the small size of the isoplanatic angle at visible

wavelengths, multiple laser guide stars are required to fully correct a

large telescope aperture. This was first pointed out by Foy and

Labeyrie. 3 In an ideal situation the guide star would be in the far

field of the telescope aperture, giving rise to a plane wave reference

wavefront at the telescope entrance pupil. Due to the finite altitude

of the laser guide star the effects of nonisoplanicity must be

considered. The wavefront corrections are effective only for those
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points in the aperture that lie within the isoplanatic angle of the

guide star. Figure 2.4 illustrates a diagram of the isoplanatic angle

superimposed on a cross section of the telescope aperture. The points

in the aperture that lie within the isoplanatic angle are encircled by

an area of diameter DIP where DIP is given by3'

DIP = 2 zg eip, (2.11)

and zg is the height of the guide star above the telescope entrance

plane. For apertures larger than D.P, the number of guide stars

required N is approximately
5'31

D2  D2

Ng 2 4 z2 (2.12)
I P gI

If the effects of the turbulence are well modeled by a single turbulent

layer at a height of ht, Equation (2.10) can be substituted into

Equation (2.12) to obtain

D2 h 
2

N ~-2.25 r2. (2.13)g Z 2 r 2

g 0

Equation (2.13) is obtained by choosing, rather arbitrarily,

Fried's definition of eOp. More recently Welsh and Gardner8 presented

an analysis of the effects of anisoplanatism on laser-guided

telescopes. This analysis is summarized in Chapter 5. In this

analysis, Welsh and Gardner take into account the nonideal

characteristics of the wavefront sensor and deformable mirror, as well
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as the spherical nature of the wavefront from the laser guide star.

They quantify the imaging performance of the adaptive telescope as a

function of the height and number of guide stars. The results of their

numerical computations indicate that N., can be substantially reduced

from that given by Equation (2.13) without significantly degrading the

imaging performance of the adaptive telescope. This is a significant

result, since the laser power requirements for the laser-guided

adaptive telescope are directly proportional to Ng . They find that

D
2 h 

2

N , (2.14)s z 2 
r 2

g o

which is a factor of 2.25 reduction of that given by Equation (2.13).

In the remainder of this chapter, Equation (2.14) will be used for all

calculations involving N . Consider, for example, a telescope

diameter of 2 m, r. = 20 cm, ht = 10 km, and a guide star height of z 9

= 92 km. The number of guide stars required for these parameters is -

1. For a 4 m diameter telescope the number of guide stars required

increases to - 5. The height z = 92 km corresponds to the nominal

altitude of the mesospheric Na layer.3 2 The required number of guide

stars increases when the guide star is formed at lower altitudes. If a

Rayleigh guide star is formed at a height of 12 km, the required number

of guide stars is - 69 for a 2 m telescope and - 278 for a 4 m

telescope.

Up to this point we have addressed only the spatial nature of the

turbulence effects. Temporal fluctuations of the wavefront phase are
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caused by the relative motion of the turbulence with respect to the

aperture of the optical system. For vertical viewing through the

atmosphere it is common to think of the turbulence as stratified into

horizontal layers, each with a characteristic velocity. Several

authors6 ,33-35 have characterized the effects of temporal fluctuations

on adaptive optics systems by assuming either the turbulence is

confined to one layer with a characteristic velocity and C n value, or

that the turbulence consists of several layers, each with a

characteristic velocity and C value. The impact of temporal

fluctuations is a constraint on the minimum frequency at which the

wavefront must be corrected. The required frequency is dictated

primarily by the correlation time of the atmosphere. For a single

layer of turbulence with a speed of v, Tyler 35 shows that the required

3 dB bandwidth of the adaptive optics servo loop is on the order of

v/ro . Using this relationship and substituting in v = 10 m/s and ro =

20 cm, the required correction rate is 50 Hz. Welsh and Gardner6

investigated the effects of the correction rate on the performance of

an adaptive optics system using slope sensors. For the same layer

velocity assumed above, they found that correction rates of 100 Hz or

larger resulted in minimal degradation of the performance. For zenith

viewing through the atmosphere it is generally accepted that the

required correction rate will be on the order of 50 to 100 Hz. The

guide star must be bright enough to provide the required flux within

the cycle time of the adaptive optics system. This requirement

specifies that the laser be pulsed at a rate greater than or equal to

the sampling rate of the adaptive optics system and that the pulse
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energy be large enough to insure that the required photon flux density

is achieved per cycle period.

2.3 Guide Star Brightness

The brightness of the guide star determines the ultimate accuracy

of the vavefront sensor and consequently the performance of the

adaptive telescope. To discuss the brightness requirement (and in

later sections the power requirements of the laser), we must first

discuss the desired performance of the adaptive telescope. In the

analysis to follow we calculate performance in terms of the rms

residual phase error over the telescope aperture and the Strehl ratio.

These performance measures are related to the spacing of the wavefront

sensors and the tilt measurement accuracy. The wavefront sensor is

modeled after the basic design of the Hartmann sensor described in

Section 2.1. The deformable mirror is assumed to be perfect in the

sense that it removes the measured tilt in each subaperture of the

telescope pupil. The effects of misalignment of the individually

tilted mirror segments are ignored. The analysis yields very simple

formulae that can be used to obtain estimates of the required photon

flux. The section is concluded by comparing the results obtained from

this analysis to the results from a more sophisticated analysis

technique presented by Welsh and Gardner6 and summarized in Chapter 3.

They analyzed the performance of a complete wavefront compensation

system based on slope sensors. Included in their analysis are the

effects of photon noise and realistic models of the wavefront sensor

and deformable mirror.
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Equation (2.7) gives the rms wavefront phase variation over a

circular aperture of diameter d for the case of perfect tilt removal.

This phase variation is designated 6+'. If tilt is removed over

subapertures of diameter r., the total residual rms phase variation

over the entire aperture A+ will be A+ = 6+' - X/17. This small

residual phase variation results in nearly diffraction limited imaging.

Another useful performance measure is the Strehl ratio, which compares

the peak amplitude of the point spread function (PSF) to the peak

amplitude theoretically possible in an unaberrated system. The Strehl

ratio is a general indication of how well the peak intensity in the

image plane can be discerned from the surrounding intensity

distribution. For 6* < X/10 the Strehl ratio S can be approximated by'

j 2 ) .* 2S(6#) = exp - - .(2.15)

In the case of perfect tilt removal, 6#' given by Equation (2.7) is

substituted for A+ in Equation (2.15) to give

S(6 ') = exp 0.1301[ . (2.16)
[d 

5

For d = r., S is approximately 0.88.

To achieve perfect tilt compensation the tilt measurement error in

the wavefront sensor must go to zero. The tilt measurement accuracy

a given by Equation (2.2) indicates that the guide star would have to



32

be infinitely bright to achieve zero measurement error. Since it is

impossible to remove the subaperture tilts perfectly, the contribution

of the uncorrected tilt must be included in the computation of the

total rms phase variation A+. Let Atllt (m) be this contribution. In

a straightforward geometric calculation it is easy to show, for a

circular aperture of diameter d, that a* (rad) is related to Atilt by

6* d

Otilt - (2.17)
4

Substituting 6* given by Equation (2.2) into Equation (2.17) gives

0.153 X 1c

M d < rIN
a~lt = (2.18)0.153 X nc d

d> rIN r

Assuming 6#tilt is statistically independent of the residual phase

variation for perfect tilt removal, 6+', the total rms phase variation

A# can be written

a# = (6+,2 + otlilt)4. (2.19)

Note that the effect of a time delay between wavefront sensing and

wavefront correction has been ignored in the derivation of Equation

(2.19). Preliminary results from ongoing research indicate that the

degradation to imaging performance caused by the time delay can be

incorporated into the analysis by letting 6+,2 be a sum of two terms:

the residual phase variation for perfect tilt removal (Equation (2.7))
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and the phase variation due to a nonzero time delay between wavefront

sensing and correction. For the remainder of the analysis we assume

the time delay is small enough to insure that the additional phase

variation is negligible.

Restricting our attention to the case where d < r. and

substituting Equations (2.7) and (2.18) into Equation (2.19) and then

solving for the required photon flux density F (photons/m2) we obtain

8.99 fl

F = (2.20)

0. 0574X r

where F is related to the subaperture photon count N by F = 4N/nd 2.

Equation (2.20) is valid for A# > 6 '. Using Equations (2.19) and

(2.15) we can also solve for the required flux as a function of the

Strehl ratio S(A+):

1.17 r12

F .(2.21)

d 2 {-In(IS (6))1 - 0.1301 IT. I)5/I

Recall the approximation for S(A+) given by Equation (2.15) is valid

for 6+ < X/10. This restriction implies Equation (2.21) is valid for

S(A+) > 0.674.

Equations (2.20) and (2.21) give the required flux density F to

achieve a specified level of phase error (6 ) or Strehl ratio (S(6#))
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as a function of subaperture size d. The flux density F can be

minimized with the proper choice of d. Let do designate the value of d

that minimizes F. Minimization of Equations (2.20) or (2.21) gives

do = 21.45 ro (A#/X)/5 (2.22)

and

1.42x10 - ' Vic
F =n f (2.23)Fan'r 2 ( a#/X)22 1/5 (.3

where Fai n is the minimized photon flux density. The restriction that

d < r. implies that Equations (2.22) and (2.23) are valid for a* <

X/12.9. Figures 2.5 and 2.6 are plots of do and F*i. as a function of

A#. Equation (2.23) is plotted for a detector efficiency factor of ic

= 1.35. This value is typical for currently available intensified CCD

detector arrays.' 4 ,
1
5 Consider, for example, a value of A - X/17.5.

For this phase error the optimum subaperture size is 0.69r, and the

minimized flux requirement is 76.3/r. photons/m2 . If ro = 20 cm, the

optimum subaperture size is 13.8 cm and the required flux is 1907

photons/m2 per cycle of the adaptive optics system. If the cycle time

of the adaptive optics system is on the order of 10 ms, a natural star

producing this same photon flux when observed through a filter with a

100 nm bandwidth centered at the visible wavelengths (0.55 um) would

have an apparent magnitude of MV = 11.9.

In Sections 2.4 and 2.5 we compute the required laser

characteristics to generate guide stars in the stratosphere and in the
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Figure 2.5. Optimum subaperture diameter versus the
residual RMS wave front phase error over the
aperture.
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mesospheric Na layer. In order to perform these computations the

design curves shown in Figures 2.5 and 2.6 are used to specify the

subaperture size d and the required photon flux density F to achieve a

desired level of imaging performance specified by A+ (or S(A+)). In

particular we will consider three levels of imaging performance: A+ =

X/15, X/17.5 and X/20. The corresponding values of the Strehl ratio

for these values of A+ are S(A+) = 0.84, 0.88, and 0.91, respectively.

Table 2.1 summarizes the subaperture size and photon flux density

requirements for the three performance levels. In addition to the

design curves giving d. and Fmin, the number of required subapertures

over the telescope pupil is also of interest. Using the subaperture

size specified by Equation (2.22), the approximate number of

subapertures required to fully sample the telescope pupil N,, is given

by

D2  2.17x10-3 D2
N -- = (2.24)so 2 r 2  2/X)2 5

0 0

where A+ < X/12.9. Figure 2.7 illustrates a plot of Nsa as a function

of D/ro for the three levels of imaging performance specified in Table

2.1.

In the remainder of this section we compare the results obtained

with the formulae given above to the results from a more sophisticated

performance analysis technique presented by Welsh and Gardner in

Reference 6 and summarized in Chapter 3. They consider a wavefront

correction system consisting of an aperture, a deformable mirror, a
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Table 2.1

Optimum Design Parameters and Expected Performance for the
Wavefront Sensor and Adaptive Mirror

Simulated Performance
6

Design Parameters Simplified Analysis (Welsh and Gardner)
Optimum Photon

Subaperture Flux RMS Phase Strehl RMS Phase Strehl FWHM
Size Density Variation Ratio Variation Ratio Resolution
do  F, in (m) S(W) t (m) S(A*)

0.83r 38.7/r 2  X/15.0 0.84 /9.35 0.64 0.98X1D
0

0.69r 76.3/r 2  X/17.5 0.88 X/11.1 0.73 O.95X/D

0.59r 137.2/r 2  X/20.0 0.91 X/14.3 0.82 0.90X/D0 0
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Figure 2.7. Required number of subapertures versus
telescope diameter for three values of 64: X/15,
X/17.5, and X/20.
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wavefront sensor and a control law. The mirror surface is controlled

by a finite number of actuators which can effect zonal or modal surface

deformations. The aperture is segmented into subapertures, and the

wavefront sensor measures the average wavefront slope within each. The

control law uses the measured wavefront slope information to position

the actuators of the deformable mirror. In contrast to the simple

analysis presented above, this analysis incorporates realistic models

of both the wavefront sensor and deformable mirror. The analysis also

takes into account the statistical correlations of the subaperture tilt

measurements, as well as the influence of the mirror actuator

deformations over adjacent subapertures. Consider a wavefront sensor

configuration such as that shown in Figure 2.8. The square aperture

has a dimension D. The wavefront phase slope is sensed in both the x

and y directions within square subapertures of dimension d. The tilt

measurement accuracy for a subaperture slope sensor is described by an

expression nearly identical to Equation (2.2).6 The deformable mirror

is modeled with Gaussian deformations having an influence radius d.

The influence radius corresponds, in this case, to the e-1 points on

the Gaussian deformation. The mirror actuators are located at

positions corresponding to the corners of the subapertures. A control

algorithm uses a linear combination of the sensor measurements to drive

the mirror actuators. The optimum drive signals are computed by

minimizing the mean-square difference between the actual wavefront

phase and the reconstructed wavefront phase.
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Figure 2.8. Wavefront sensor and mirror actuator configuration.
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Figure 2.9 illustrates a plot of the average residual phase error

over the corrected aperture as a function of photon flux density. The

subaperture size ranges from d f 0.83r, to 0.59r, (corresponding to the

sizes given in Table 2.1) and D = 4d. As the photon count increases,

the effects of the slope measurement noise become negligible and the

errors introduced by the finite actuator and sensor spacing establish

the minimum possible phase error. In all three cases A+ begins to

asymptotically approach its minimum value in the 100 to 200 photon

count range. Consider the required flux levels listed in Table 2.1 for

the cases of d = 0.83r., 0.69r. and 0.59ro . The corresponding values

of A* found from Figure 2.9 are - X/9.3, Xl1.1, and X/14.3. Note that

these values of A+ are slightly larger than those given by the

simplified analysis in Table 2.1. The error is larger for two reasons.

First, the analysis presented above is for circular subapertures of

diameter d, whereas the subapertures in Figure 2.9 are square of

dimension d. The residual phase variation for a tilt corrected

circular aperture is smaller than the corresponding value for tilt

corrected square aperture. Second, the limited response of the

deformable mirror is realistically modeled in Welsh and Gardner's

analysis, whereas the deformable mirror is assumed ideal in the

analysis presented above. Inherent in the simplified analysis is the

assumption that the phase variation over the entire aperture is equal

to the phase variation of a tilt corrected subaperture. Due to the

limitations of the deformable mirror this assumption will not be true

for any system consisting of more than one subaperture. Finally note

that the results presented in Figure 2.9 are for a fixed aperture size,
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Figure 2.9. RMS residual phase error versus photon flux
(photons/r2 ) for the wave front sensor and mirror
configuration shown in Figure 2.8. The aperture
size is D=4d and the subaperture size takes on
values of d = 0.83r,, 0.69r. and 0.59r0.
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D - 4d. Welsh and Gardner also investigate other aperture sizes. They

show that A+ is nearly independent of D for photon count levels greater

than - 100. This photon count range corresponds to the range in which

the slope measurement noise becomes negligible, and the errors

introduced by the finite actuator and sensor spacing establish the

minimum possible phase error.

In addition to the residual phase error, Welsh and Gardner 6 also

present analysis techniques for investigating performance in terms of

the OTF, PSF, and Strehl ratio. Figures 2.10 and 2.11 illustrate the

ensemble average OTF and PSF for the phase corrected aperture shown in

Figure 2.8. In Figure 2.10 the magnitude of the OTF is plotted versus

pX/D where pX is related to spatial frequency v. (cycles/m) by v. =

pX /f D and fD (m) is the focal length of the telescope primary. The

P. direction corresponds to the x-direction in Figure 2.8. For this

plot d = 0.69r, and D = 4d. Each curve corresponds to a photon flux

ranging from 10/r to 500/r2. The uppermost curve is the OTF of the

unaberrated system. The bottom-most curve is the OTF for the aberrated

system assuming no wavefront correction. Even for flux levels as low

as 10/r the improvement in the OTF response is substantial. Figure

2.11 illustrates the corresponding one-dimensional (D) PSFs for the

OTF's illustrated in Figure 2.10. The 1D PSF is calculated by taking

the Fourier transform of the ID cross section of the OTF6 (as shown in

Figure 2.10). The amplitude of the 1D PSF is plotted versus the

dimensionless quantity uD/XfD, where u is the image plane coordinate.

One-dimensional PSFs are also shown for the unaberrated and aberrated
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Figure 2.10. Ensemble average OTF for the wavefront
sensor and mirror configuration shown in Figure
2.8. The photon flux ranges from 10/r 2 to 500/r .
The aperture size is D = 4d and the suraperture
size is d = 0.69r0.
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Figure 2.11. One-dimensional ensemble average PSF for
the wave front sensor and mirror configuration
shown in Figure 2.8. The photon flux ranges from
10/r 2 to 500/r 2. The aperture size is D=4d and the
subaperture size is d = 0.69r..
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systems. These curves again indicate the substantial improvement in

performance even for a flux as low as 1O/r 2 . It is also interesting to

note that resolution, as measured by the FWHM of the 1D PSF main lobe,

does not rapidly degrade from that of the unaberrated system for

decreasing photon flux levels. Figure 2.12 illustrates a plot of

angular resolution as a function of photon flux for subaperture sizes

of d = 0.83ro , 0.69ro, and 0.59ro . The angular resolution is

normalized by the FWHM angular resolution of the unaberrated system.

The FWHM angular resolution is found to be 0.88X/D from the unaberrated

PSF shown in Figure 2.11 (recall this value is calculated from the 1D

PSF). Even for a flux as low as l0/r2 and d - 0.69r , the resolution

is only 1.47 times worse than that possible for diffraction limited

imaging. The Strehl ratio, on the other hand, shows considerable

degradation in performance as the photon noise level increases.

The Strehl ratio is calculated by substituting the values of at

shown in Figure 2.9 into Equation (2.15). Figure 2.13 is a plot of the

Strehl ratio versus photon flux. The ratio shows a significant

decrease as the flux decreases. For the case of d = 0.69ro , the ratio

drops from a value of - 0.83 for 1000 counts/r 2 to - 0.66 for 50
0

counts/r
2.
0

Consider an adaptive telescope design based on a subaperture size

d of 0.69r° and a required photon flux density F of 76.3/r 2" These two

requirements correspond to an imaging performance of Af = X/17.5 as
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predicted by the simplified analysis in Equation (2.20). For the

wavefront sensor and deformable mirror shown in Figure 2.8, Welsh and

Gardner's 6 analysis technique shows that the average residual wavefront

phase error over the aperture will be - X/ll.l and the Strehl ratio

will be - 0.73. Additionally, the resolution of the system, as

measured by the FWHM of the iD PSF, will be - 1.09 times that of the

unaberrated system. Table 2.1 summarizes the performance predictions

obtained from the simplified analysis technique and those obtained from

Welsh and Gardner's 6 analysis technique for each of the listed

subaperture sizes and flux requirements.

In Sections 2.4 and 2.5 we address the design of laser guide star

systems based on Rayleigh scattering in the stratosphere and on

resonance scattering in the mesospheric Na layer. We use the results

from this section as a starting point for computation of the laser

power requirements.

2.4 Rayleigh Laser Guide Stars

Laser guide stars can be created by Rayleigh scattering off air

molecules in the stratosphere. This problem is discussed in detail by

Thompson and Gardner. 3 1 One of the principal advantages of Rayleigh

guide stars is that lasers can be purchased today with many of the

required characteristics. These characteristics include 1) pulsed

operation with repetition rates up to 200 pulses per second, 2) high

average output power, 3) excellent beam quality, and 4) long term

reliability. In particular, excimer lasers have these characteristics
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and would be ideal for producing Rayleigh guide stars in the lower

atmosphere.

For a given laser energy the brightness of a Rayleigh guide star

is proportional to the density of the atmosphere within the illuminated

volume. Because atmospheric density decreases exponentially with

altitude, Rayleigh guide stars must be produced at a relatively low

altitude. Consider the geometry of the laser projection telescope and

the laser light path shown in Figure 2.14. If the laser energy is

focused at a height of z above the telescope entrance pupil, the beam

diverges for altitudes above and below z To insure that the size of

the guide star is equal to A, the wavefront sensor must be gated so

that only the backscattered energy from the altitude region Az is

sampled by the wavefront sensor. From the geometry shown in Figure

2.14 the maximum allowable scattering layer thickness isa'

2 6% z'/D
Az = azU + zL = (2.25)

[1 + (zg Aow'D)

where Azu and azL are defined in Figure 2.14 and D is the projection

telescope diameter. Assume A takes on a value equivalent to the

angular size of a natural guide star as given in Equation (2.3). Using

the fact that bA is small, Equation (2.25) can be approximated by

4.88 X z
2

Az - 9(2.26)
D rp 0
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The detected Rayleigh photon flux density F from an atmospheric

layer of thickness 6z is given by the lidar equation32'36

F T 2a R n R(ZgZt ) Az XLE
TA  , (2.27)

4 n Z2  h c
g

where = efficiency of telescope and detector,

TA = one-way atmospheric transmission,

a = Rayleigh backscatter cross section (M2
),

zg = height of the focused guide star above the telescope

entrance plane (m),

zt = altitude of the telescope entrance plane above sea level

(M),

nR (z) = atmospheric density at altitude z (m-1),

E = laser energy per pulse (J),

XL = optical wavelength of the laser (m),

h = Planck's constant, 6.63 x 10- 34 (J s),

c = speed of light, 3 x 108 (m/s).

Note that the value of XL is different from the value of the

observation wavelength X. The product of the Rayleigh backscatter

cross section a and the atmospheric density nR is3
2'36

P(z)

aR nR(Z) = 3.6 x 10- 31 _ 4 0 117(2.28)
T(z)

where P(z) = atmospheric pressure at altitude z (mbar),

T(z) = atmospheric temperature at altitude z (K).
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Substituting Equation (2.26) for Az into Equation (2.27) and solving

for the required laser pulse energy E gives

2.58 h c F D r
E o (2.29)

1 T2 X XL as nR(zq+Zt)

where D is the diameter of the laser projection aperture which need

not correspond to the full aperture of the telescope. Since E is

directly proportional to Dp, it should be chosen to be as small as

possible. However, Dp must be large enough that the guide star

centroid is reasonably stable, as discussed in Section 2.1. We assume

D = 5 ro. (2.30)
p

Substituting Equation (2.30) into Equation (2.29) gives

12.88 h c F r
2

E- (2.31)iT2 X a% n
T XL nR(zg+z t)

The energy requirement E is for a single guide star. For multiple

guide stars Equation (2.31) must be multiplied by the required number

of guide stars N given in Equation (2.14):

12.88 h c F D
2 h2

E T = T a Z2 n(Z t) (2.32)
2A XL R z2  (Z+

where ET is the total required energy to create N stars. For an

optimum wavefront sensor design, the subaperture size d will be given

by d. in Equation (2.22), and the required photon flux density F will
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be given by F i. in Equation (2.23). Substituting F,,, into Equation

(2.32) gives

1.83x10- rl h c D2 h2
ETr = 2•a/\2/ (2.33)r ~ ( T XL > z 2 nR(z+zt)

Equation (2.33) gives the total required energy ET per atmospheric
sampling time. Note that ET is inversely proportional to r2. This

T 0

dependence highlights the importance of choosing an observatory site

with good seeing in order to minimize the required laser pulse energy.

In the stratosphere, the atmospheric density decreases

approximately exponentially with increasing altitude

R n R  ez/H, (2.34)

where H Is the atmospheric scale height. H is given approximately by

H = 30 T (meters), (2.35)

where T is the atmospheric temperature in *K. The temperature of the

stratosphere varies geographically and seasonally but is typically on

the order of 2008 K so that H - 6 km. From Equations (2.33) and (2.34)

we see that the required pulse energy can be minimized by maximizing

the expression

z2 exp[-(zg+zt)/H. (2.36)

The laser pulse energy is minimized for a guide star height of z = 2H

= 12 km. Note that z must be selected so that the majority of the
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turbulence occurs at altitudes less than (zg+zt)-d-ZL to insure

effective wavefront compensation.

For an excimer laser operating at a wavelength of XL = 351 nm, the

approximate value of aRnR(z) as a function of altitude is given by

aana (z) = 2 x 10- 4 exp(-z/H). (2.37)

By substituting Equation (2.37) into Equation (2.33) and assuming the

typical atmospheric and laser parameters listed in Table 2.2, we are

able to compute the required pulse energy ET as a function of the

imaging performance specified by &+. Figure 2.15 is a plot of ET

versus A+ for a telescope diameter D of 2m and r. = 10, 20, and 30 cm.

Figure 2.16 is a plot of ET versus D/r. for a constant value of A# =

X/17.5. Consider, for example, the following parameter values: 4+ =

X/17.5, D = 2m, and r. = 20 cm. For these conditions the total

required pulse energy ET is 330 mJ/cycle. According to Equation (2.14)

this energy is divided among 69 guide stars. The amount of energy sent

to each guide star per cycle is - 4.8 mJ. If the atmospheric sampling

rate is 100 Hz, the total laser power required is 33 W.

The calculations given above are for a zenith pointing guide star.

As the guide star is pointed away from zenith, the energy requirement

increases due to increasing propagation path loss, decreasing

atmospheric transmission and decreasing r.. From straightforward

geometrical considerations we find that the factor increase in the

required pulse energy as a function of zenith angle e is
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Table 2.2

Assumptions for the Rayleigh Laser Guide Star
Pulse Energy Calculations

ATMOSPHERE:

Atmospheric transmission, TA  0.4

Turbulence layer height, ht  10 km

Atmospheric scale height, H 6 km

Optimal guide star height, z9 12 km

Telescope entrance plane altitude, zt  2 km

aRnR(z) 2x10 - 4 exp(-z/H)

LASER AND RECEIVER SYSTEM:

Observation wavelength, X 500 nm

Laser wavelength, XL  351 nm

Laser pulse repetition rate 100 Hz

Overall optical efficiency, n 7.5 %

Centroid detector efficiency factor, nc 1.35
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ET(8) exp[2ad  1 (2.38)
ET(0) 1  1  J (cosO) 1 215

where ET(e) is the required pulse energy as a function of 0, and ad is

the optical depth of the lower atmosphere. Atmospheric transmission

TA()) is related to optical depth by TA(e) - exp(-ad/CosO). Equation

(2.38) is derived assuming the laser projection aperture diameter Dp

and the guide star angular width ba are held constant as a function of

zenith angle. Equation (2.38) is plotted in Figure 2.17 as a function

of zenith angle for T A(O) = 0.4. For astronomical observing at zenith

angles out to 30 degrees the factor increase in the required pulse

energy is 1.88. At this angle the total required pulse energy ET

increases to 622 mJ/cycle, which corresponds to a laser power of 62 W

at 100 pps. By substituting ro(e) given by Equation (2.5) into the

expression for N.. given by Equation (2.14) we find the number of guide

stars required increases to - 82.

The feasibility of using Rayleigh guide stars is dependent on the

a"ailability of lasers powerful enough to create the guide stars and on

our ability to create a large array of stars. Available today are

commercial excimer lasers which can deliver the output power required

t) produce zenith guide stars for telescopes of 2 m diameter or

saaller. 31 Since the laser power requirements scale with the square of

the telescope aperture, larger telescopes may require a multiple laser

system.
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2.5 Sodium Resonance Fluorescence Laser Guide Stars

The mesospheric Na layer provides an excellent scattering medium

for the creation of laser guide stars because of its high altitude and

its large resonant backscattering coefficient. The layer was

discovered in the late 1920s and has been explored extensively since

the late 1960s with lidar techniques. The Na layer is believed to be

created by meteoric ablation, and depleted at its lower boundary by

chemical processes. The layer lies at a mean altitude of 92 km, and

its average thickness is about 10 km FWHM. The Na column density

varies on both diurnal and annual time scales. The column abundance at

mid-latitudes in the Northern Hemisphere shows a summer minimum of

about 3x10 9 cm- 2 and a winter maximum of about 1010 cm-2 in December

and January. The seasonal and geographical variations are believed to

be related to changes in mesopause temperatures that affect the main

chemical reaction rates at the lower boundary of the Na layer. Diurnal

variations in the Na abundance are caused primarily by the influence of

atmospheric tides and gravity waves.37 '38 Gardner et al.32 provide a

good review of nocturnal and seasonal variations of the Na layer

structure at Urbana, Illinois. Figures 2.18 and 2.19 illustrate the

seasonal variation of the Na layer column abundance and centroid height

as measured at Urbana, Illinois. Figure 2.20 is a Na density profile

measured by Beatty et al. 39 The thin dense layer near 82 km altitude

is a meteor ablation trail.

In addition to Na, numerous other atomic species are deposited in

the thick layers near the mesopause by meteoric ablation. Several have
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resonant backscatter cross sections in the visible and near UV

wavelength region where atmospheric transmission is reasonably high and

have been studied using lidar techniques. These include potassium

(769.9 nm), lithium (670.8 nm), calcium (422.7 nm), aluminum (396.2

nm), calcium ions (393.4 nm), and iron (372.0 nm). However, because of

the combination of lower densities and/or lower resonant backscatter

cross sections, the laser pulse energies required to create

sufficiently bright guide stars by scattering from these other species

are significantly larger than for Na. For this reason we restrict our

attention to Na laser guide stars.

In contrast to the molecular scattering of Rayleigh guide stars,

the scattering mechanism for Na guide stars is resonance fluorescence

scattering. The backscattered energy from the Na layer is maximized by

tuning the laser to the peak of the Na D2 resonance line. The Doppler

broadened resonance line for the Na layer is shown in Figure 2.21 for

atmospheric temperatures ranging from 1500 to 5000 K. At high

latitudes in the northern hemisphere the mesopause temperature varies

from a summer minimum of 130 to 150 K to a winter maximum of 210 to

230 K.4 °

The process of selecting the laser pulse energy, pulse length and

linewidth to achieve the guide star brightness requirements given in

Section 2.3 is not straightforward, because absorption by the Na layer

is nonlinear (i.e., it saturates). Saturation arises when the energy

density within the Na layer is large enough to significantly alter the
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population densities of the atomic states. In terms of a simple

two-state system, a large energy density can significantly reduce the

number of lower state atoms while increasing the number of excited

state atoms. These altered state populations lead to nonlinear

absorption of the laser energy, which results in an increased rate of

stimulated emission and a reduced rate of fluorescence. The combined

effect is a reduction in the backscattered energy from the guide star.

To achieve the required guide star brightness, the laser pulse energy

must be relatively large. This large pulse energy, in combination with

the small si,-e of the guide star, may contribute to significant

saturation effects unless the laser parameters are chosen carefully.

Welsh and Gardner present a thorough investigation of saturation

effects for pulsed lasers in References 7 and 41. This analysis is

summarized in Chapter 4. Their analysis takes into account the

cross-sectional shape of the laser beam, the temporal shape of the

laser pulse, the line shape of the laser, and off-zenith effects. The

analysis shows that the laser design can be optimized in terms of the

pulse energy, pulse length, and linewidth.

To compute the required laser characteristics we consider the

laser backscattering geometry shown in Figure 2.22. The photon flux

density F (photons/m 2) detected from the Na layer per laser pulse

is32,36

2 C s Ot  XLE

F T A  _ .E, (2.39)
4 n z2 h c

g
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where efficiency of telescope and detector,

TA = one-way atmospheric transmission,

at = total Na backscattering cross section (m2),

Cs = Na column abundance (m-2 ),

zg = height of the guide star above the telescope entrance

plane (m),

E = laser energy per pulse (J),

X1 = optical wavelength of the laser (m),

h = Planck's constant, 6.63 x 10- 34 (J s),

c = speed of light, 3 x 108 (m/s).

In the case of negligible saturation the total scattering cross section

at is given by

- n( d
t =  

a (wd) dod (2.40)
n

where wd 
= Doppler angular frequency shift associated with a given

atom (rad/s)

n(wd) = density of Na atoms per unit Doppler angular

frequency shift (m-3 rad- IS),

n. = total integrated density of Na atoms (m-3 ),

aeff(wd) = scattering cross section as a function of Doppler

frequency (m2 ).

The scattering cross section af(wd) is a function of the natural

absorption spectrum of Na and the laser line shape:
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o()= F a(-w) g(w) do, (2.41)
f f d j. d

where (= angular frequency (rad/s),

a(w) f homogeneously broadened absorption cross section of Na

(m 2 ),

g(w) = distribution of the laser photon flux per unit angular

frequency (rad-1s).

Figure 2.21 illustrates a plot of a(w) for the Na resonance DZ line.

In the case of saturation, we can generalize the backscattering

equation given in Equatin (2.39) by incorporating the effects of

saturation into the calculation of a generalized scattering cross

section a.. Assuming the laser beam cross section is Gaussian with an

rms radius of bpr., (m), and the laser temporal pulse shape is

rectangular with a length of 6t (s), Welsh and Gardner7 find that a. is

given by

, rt n (  d 
) 2-rn a f f(Wd )

= J -rnno in ( t + 1 )dwd, (2.42)

where n is the natural decay time of Na and Ts is the saturation time

which is defined by
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2 At R 6P2  h c
rms (2.43)

a E )L TA at

The saturation time T is a measure of the characteristic time ofS

stimulated emission. The ratio T /T Indicates the level of saturation
5 n

within the layer. A large ratio implies that the natural decay time is

much shorter than the characteristic time of stimulated emission. In

this case, the rate of stimulated emission is much lower than the rate

of spontaneous emission, which results in negligible saturation effects

(i.e., a - at). On the other hand, a small ratio implies the rate of

stimulated emission is much larger than the rate of natural decay,

which results in significant saturation effects (i.e., as < at). Note

that in the limit as x,/xtn -* 0, a given by Equation (2.42) reduces to

at given by Equation (2.40).

Using Equations (2.39) and (2.43), two design equations are

derived giving the required pulse energy E and pulse length 6t as a

function of the required photon flux density F:

12.57 F z2 h c
E= - (2.44)

1 T2 XL C a
A S

2 F z 2  -r
= 

(2.45)

VT A Cs 2 (/a t )

Multiplying the energy required for a single star given in Equation

(2.44) by the number of required guide stars N (Equation (2.14))
gs

gives the total required laser pulse energy ET:
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12.57 F h c D
2 h 2

ET (2.46)
T A r2

For an optimum wavefront sensor design the subaperture size d will be

given by do in Equation (2.22), and the required photon flux density F

will be given by Fmi n in Equation (2.23). Substituting Fmin into

Equations (2.45) and (2.46) gives

1.78xi0 -3  2 h c D2 h 2
ET = r (2.47)

r(a+/x) 2 2 / 5 Vn TA 2X C
o S

2.84x10
- 4 1 2 z 2

at = q (2.48)

r2 (a/X)221 5 VI TA Cs APrs (ala)

Equations (2.47) and (2.48) express the required pulse energy ET and

pulse length At to achieve a specified level of phase error across the

aperture (Af). Note that ET is inversely proportional to r4. As in

the case of Rayleigh guide stars, this dependence highlights the

importance of choosing an observatory site with good seeing in order to

minimize the rcquired laser pulse energy. Also note that the

expressions for ET given by Equation (2.33) for the Rayleigh guide star

and Equation (2.47) for the Na guide star are similar in form except

for the additional factor of r2 in the denominator of Equation (2.47).
0

This additional factor (of r2) causes the pulse energy requirement for0

the Na guide star approach to be much more sensitive to changes in

seeing conditions (ro ) thai the Rayleigh guide star approach. The

expression for ET for Rayleigh guide stars lacks the additional factor
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of r2 in the denominator because the width of the scattering region Az
0

is inversely proportional to r. As r decreases, the column abundance0 0

of air molecules within the illuminated area increases for the Rayleigh

guide star approach, whereas for the Na guide star approach the column

abundance of Na atoms is constant, since the entire thickness of the

layer is used.

It is important to note that a. is a function of x and the width

of the laser line shape. The functional dependence on the laser line

width is evident from the expression for a. given in Equation (2.42).

By plotting a as a function of laser line width, Welsh and Gardner7

show that the line width can be chosen to maximize a , thereby

minimizing ET and At. Figure 2.23 is a plot of as a: a function of the

FVHM laser line width for the Na layer characteristics described in

Table 2.3. A line width of - 600 MHz FWHM is optimum for T,/Trn ranging

from 0.5 to 2.0. For a fixed line width, x. is chosen to obtain the

most desirable combination of pulse energy and pulse length. A large

value of x. (i.e., negligible saturation) decreases the required pulse

energy E , but requires a long pulse length At. A small value of TS

(i.e., significant saturation) decreases the required pulse length, but

requires a large pulse energy. Welsh and Gardner7 find that a value of

TS = 2xn is a reasonable choice, since it nearly achieves the minimum

possible pulse energy while at the same time requiring a relatively

small pulse length. For a laser line width of 600 MHz FWHM and =

2cn', as is equal to 5.1x10- 6 M2 .
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Table 2.3

Assumptions for the Na Laser Guide Star
Pulse Energy Calculations

ATMOSPHERE:

Width of Doppler distribution n(wd), FVHM 1.07 GHz

Natural decay time of Na, T n 16 ns

Scattering cross section, at  8.27x10- 16 m2

Scattering cross section, a 5.10x10- 6 m2

Atmospheric transmission, TA 0.85

Turbulence layer height, ht  10 km

Na column abundance, C. 5x101 3 m- 2

Nominal Na layer height, zg +zt  92 km

Telescope entrance plane altitude, zt  2 km

LASER AND RECEIVER SYSTEM:

Observation wavelength, X 500 nm

Laser wavelength, XL 589 nm

Laser linewidth, FWHM 600 MHz

Laser pulse repetition rate 100 Hz

Laser rms beamwidth, bptrm zq (0.431X/ro )

Overall optical efficiency, n 7.5 %

Centroid detector efficiency factor, nc 1.35
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We are now able to compute the required pulse energy and pulse

length as a function of 0. Figures 2.24 and 2.25 are plots of ET

versus Af and At versus A* for a telescope diameter D = 2m and r° = 10,

20, and 30 cm. Figure 2.26 is a plot of ET versus D for 6+ = X/17.5.

Consider, for example, the following parameter values: 6+ = X/17.5, D =

2m and r. = 20 cm. For these conditions the total required pulse

energy ET is 58 mJ/cycle and the required pulse length At is 54 Us.

According to Equation (2.14) this energy is sent to a single guide

star. If the atmospheric sampling rate is 100 Hz, the total system

power required is 6 W.

The required pulse energy increases for observation directions

away from zenith. Using the geometrical correction factors discussed

in Chapter 4 and by Welsh and Gardner,7 the factor change in the

required pulse energy is given by

ET(e) = exp I2ad l - COjO ]] 0() 1 , (2.49)
ET(O) I. I. cosei o (e) (cose)' 7 1 5

where e is the zenith angle and ET(e) is the required pulse energy as a

function of zenith angle. The scattering cross section a,(e) is given

by Equation (2.42) with % replaced with

2 At R 6P2 h c
t (e) = ,(2.50)

E XL TA(e) at (cose) 2

where Ao is the zenith value of the rms beam width of the laser.

Equation (2.49) is derived assuming the angular width of the guide star



78

- D= 2 mC

(~n

C4-E- 10 23r = 0 c

-.4

00 cmx

*IT

--4

E-4 1
i01 30 cm x

101
0.02 0.03 0.04 0.05 0.06 0.07

RMS Wavefront Phase Error ALq, (X)

Figure 2.24. Total Na laser pulse energy requirements
versus residual RMS phase error over the aperture.
Curves are shown for r = 10 cm, 20 cm and 30 cm.
The aperture diameter is assumed to be 2 m.



U9

03

10

4J

10

S10

x X x

20 17.5 15

10 0 J

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

RMS Wavefront Phase Error .1, (X)

Figure 2.25. Na laser pulse length requirements versus
residual RMS phase error over the aperture.



80

10~ 3

a.102

1- 101- L -

X/17.5~~ ~ ~ ~ ~ ~ an x/rne1fo705mt 3 m



81

is held constant as the observation direction is pointed away from

zenith. The factor increase in required pulse energy is plotted versus

zenith angle in Figure 2.27 for the laser and atmospheric parameters

given in Table 2.3. For a zenith angle out to 30* the factor increase

in ET is 1.52. At this angle the required pulse energy increases to 89

mJ/cycle, which corresponds to a laser power of 9 W at 100 pps.

At the present time the primary stumbling block to building a Na

guide star system is the lack of an adequate laser. Because Na D2

lasers have not been widely used in science or industry, there is

limited experience with high-power versions that might meet the laser

guide star requirements. At present, the three most common Na D2

lasers are 1) flashlamp, 2) Nd:YAG laser, or 3) excimer laser pumped

systems with a liquid organic dye solution in the lasing cavity. If

the energy density in the lasing cavity exceeds a certain limit, the

beam divergence properties deteriorate. Janes 42 at Avco Resear"h

Laboratory, working under contract to MIT Lincoln Laboratory, recently

reported a novel solution to the beam divergence problem. A pump laser

beam is optically scanned across an extended dye cell, and each laser

pulse is produced in a separate region of the cavity. This laser

appears to meet all specifications for producing laser guide stars. A

second solution is currently under development by Jeys at Lincoln

Laboratory.4 3 A pair of Nd:YAG lasers with excellent beam divergence

properties are frequency mixed in a crystal to produce the Na D2 light

directly. This laser also promises to meet all the specifications for

producing laser guide stars.
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2.6 Design Summaries for Rayleigh and Na Guide Star Systems

In this section we present the key designs parameters for 2 and 4

m diameter adaptive telescope systems. The imaging performance is

specified by the rms wavefront phase variation across the telescope

aperture, At. Assume, for the simplified analysis of Section 2.3, the

desired value of A* is X/17.5. The wavefront sensor is assumed to be a

Hartmann sensor with subapertures of diameter do given by Equation

(2.22). The deformable mirror is assumed to be of monolithic design

with an actuator spacing equal to do . Assuming r. = 20 cm, Tables 2.4

and 2.5 list the optimum design parameters for both the 2 and 4 m

apertures for the Rayleigh and Na guide star approaches, respectively.

From Equation (2.22) the optimum sensor spacing do is 13.8 cm and from

Equation (2.23) the minimum photon flux requirement is 1907

photons/m 2/cycle time. Figure 2.7 specifies the number of subapertures

N required to sample the entire telescope pupil. Approximately 210
subapertures are required for the 2 meter aperture, and approximately

840 subapertures are required for the 4 meter aperture. For

observation angles away from zenith r. decreases as (cose)3/5 (see

Equation (2.5)). Figures 2.28 and 2.29 show how the optimum

subaperture size do and the required number of subapertures Nsa vary as

a function of zenith angle. For observation angles out to 30 , the

optimum sensor diameter decreases to do = 12.7 cm. The number of

subapertures required increases to - 248 for the 2 m aperture and ~ 990

for the 4 m aperture.
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Table 2.4

Rayleigh Laser Guide Star Design Requirements
for 2 and 4 m Adaptive Telescopes*

Zenith Design Parameters: 2 m aperture 4 m aperture
Number of guide stars, N s -69 -278

Subaperture size, d 13.8 cm 13.8 cm

Number of subapertures, NSA 210 840

Laser pulse energy, ET 330 aJ 1.3 J

Laser power @ 100 pps 33 w 130 w

Design Parameters for
Observation Angles out to
30 0:

Number of guide stars, N -82 -330qs

Subaperture size, d 12.7 cm 12.7 cm

Number of subapertures, NSA 248 990

Laser pulse energy, ET 620 mJ 2.5 J

Laser power @ 100 pps 62 w 250 w

* Derived for ro = 20 cm, 60 = X/17.5 and the parameters listed in
Table 2.3.
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Table 2.5

Na Laser Guide Star Design Requirements
for 2 and 4 m Adaptive Telescopes*

Zenith Design Parameters: 2 m aperture 4 m aperture
Number of guide stars, Ngs -1 -5

Subaperture size, d 13.8 cm 13.8 cm

Number of subapertures, NSA 210 840

Laser pulse energy, ET 58 mJ 235 mJ

Laser pulse length, at 54 us 54 us

Laser power @ 100 pps 6 w 24 w

Design Parameters for
Observation Angles out to
30 *:

Number of guide stars, -1 -6

Subaperture size, d 12.7 cm 12.7 cm

Number of subapertures, NSA 248 990

Laser pulse energy, ET 89 mJ 355 mJ

Laser pulse length, at 54 us 54 us

Laser power @ 100 pps 9 w 36 w

* Derived for r. = 20 cm, A+ = X/17.5 and the parameters listed in
Table 2.4.
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For the Rayleigh guide star approach and the atmospheric and laser

parameters listed in Table 2.2, the required laser pulse energy ET at

zenith is 330 mJ for the 2 m aperture and 1.3 J for the 4 m aperture.

At a sampling rate of 100 Hz, the required laser output power is

respectively, 33 and 130 W. The number of guide stars required is -69

for the 2 m telescope and -278 for the 4 m telescope. Figure 2.17

indicates how the required laser pulse energy ET varies as a function

of zenith angle 8. For observation angles out to 30*, ET must be

increased by a factor of 1.88. At this angle the required pulse energy

is 620 mJ and 2.5 J/cycle for the 2 and 4 meter apertures,

respectively. These pulse energies correspond to laser output powers

of 62 and 250 W at 100 pps. Table 2.4 summarizes the design

parameters.

For the Na guide star approach and the atmospheric and laser

parameters listed in Table 2.3, the required laser pulse energy ET at

zenith is 58 mJ for the 2 m aperture and 235 mJ for the 4 m aperture.

In order to minimize the effects of saturation for these pulse

energies, the laser's pulse length At must be at least 54 Us. At a

sampling rate of 100 Hz, the required laser power is 6 W for the 2 m

aperture and 24 W for the 4 m aperture. The number of guide stars

required is - 1 for the 2 m telescope and - 5 for the 4 m telescope.

Figure 2.27 indicates how the required laser pulse energy ET varies as

a function of zenith angle. For observation angles out to 300, ET must

be increased by a factor of 1.52. At this angle the required pulse

energy is 89 and 355 mJ/cycle for the 2 and 4 meter apertures,
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respectively. These pulse energies correspond to laser output powers

of 9 and 36 W at 100 pps. Table 2.5 summarizes the design parameters.

For the wavefront sensor and mirror configuration analyzed in

Figure 2.8 these parameters yield nearly diffraction limited imaging.

Table 2.1 indicates that the rms value of the phase error will be

-X/11.1 and the Strehl ratio -0.73. The resolution of the telescopes

will be 1.09 times the resolution for diffraction limited imaging. For

an observation wavelength of 0.5 um, the angular resolution would be

-0.069 and -0.034 arcsec for the 2 and 4 meter apertures, respectively.

Note that these resolutions are measured from the 1D PSFs shown in

Figure 2.11.

2.7 Optical Interferometric Imaging

Although laser-guided adaptive telescopes will be capable of

achieving excellent resolution using conventional imaging techniques,

the greatest advances in angular resolution will result when adaptive

telescopes are used as the detector elements of an optical

interferometer. The interferometric techniques developed for radio

telescopes are now capable of achieving milli-arc-second resolution.

Current practice in radio astronomy is to use arrays of interferometers

to measure the magnitude of discrete Fourier components of the

brightness distribution across the source. Data processing techniques

can then be used to synthesize the source image. Radio synthesis

telescope techniques have been under development since the mid 1940s

and brought to their highest pitch in the Very Large Array (VLA).44 It
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has been suggested that these same techniques, combined with recent

advances in image processing 45'46 and electro-optics technology, can be

used to develop optical analogs of the VLA.47- 4 9 Townes and his

colleagues 50'" have already made significant progress in developing

the heterodyne interferometry technique at infrared wavelengths.

Optical synthesis telescopes will employ heterodyne detection at

several widely spaced telescopes and digital correlation techniques to

compute the Fourier components of the source brightness distribution.

Heterodyne detection at optical wavelengths for astronomical

applications has usually been considered ineffective by virtue of the

very narrow bandwidths (-1 GHz). Astronomical signals are typically

very weak, and small bandwidths can be a serious handicap for all but

the brightest sources. The interferometer signal levels are also

severely limited by turbulence, because for heterodyne detection, the

effective telescope diameter can be no larger than ro . The wavefront

tilt which reduces the resolution of large telescopes also reduces the

detection efficiency of the heterodyne interferometer. Several years

ago Swenson, Gardner and Bates 47'48 suggested that the effective

optical bandwidth of the interferometer could be increased

substantially by electronically multiplexing many parallel optical

channels with the aid of large-scale-integration techniques. If

laser-guided adaptive telescopes are also used to compensate for

turbulence, the heterodyne detection efficiency of the interferometer

will be improved substantially. In fact, the correlator signal-to-

noise ratio (SNR) will be increased by the factor (D/r0 )
2 where D is
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the telescope diameter. For ro - 20 cm, the SNR improvement is 20 dB

for a 2 m aperture and 34 dB for a 10 m aperture. Based upon the

calculations reported by Swenson and his colleagues, for D = 2 m it

should be possible to achieve excellent SNR performance at visible

wavelengths for sources of visual magnitude 10 or less with reasonable

integration times (-103 s) and optical bandwidths (_1012 Hz). Since

the interferometer baseline can be 100 to 1000 m, the potential

resolution of the optical heterodyne interferometer would be 10
- 3 - 10-

4 arc-second compared to approximately 10-1 arc-second for a single 2 m

diameter adaptive telescope.

2.8 Summary

Ground-based adaptive telescopes using laser guide stars can

produce images that are nearly diffraction limited. We have addressed

the major design issues for such a system and have presented the

expected imaging performance. A 2 m laser-guided telescope, using a

single laser that can be either bought off the shelf or built with

today's technology, can achieve imaging performance levels nearly

matching those of the Hubble Space Telescope (HST). The laser power

requirement for the Rayleigh and Na guide star approaches is on the

order of 33 and 6 W, respectively, for seeing conditions of ro = 20 cm

and zenith viewing. For either approach, near diffraction limited

imaging is achieved with a Strehl ratio of - 0.73 and an angular

resolution of approximately 0.07 arcsec at X = 0.5 um (2.09 times that

of diffraction limited imaging).
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One of the more important design issues is determining the

required laser power. The viability of building laser-guided

telescopes depends on the ability of the designer to minimize the laser

power requirements in order to achieve power levels within range of

today's laser technology. The main factors affecting the power

requirements include the expected imaging performance as specified by

A+, the subaperture diameter d, the Fried seeing cell diameter r., and

the isoplanatic angle. The dependence of total laser power on r. given

in Equations (2.33) and (2.47) serves to reinforce the importance of

choosing a site with extremely good seeing conditions (i.e., ro > 15 to

20 cm) in order to achieve reasonable laser power requirements.

Figures 2.15 and 2.24 illustrate the large increases in the pulse

energy requirements for the case of ro decreasing from 20 cm to 10 cm.

Other factors affecting the required laser power include the height of

the guide stars for the Rayleigh guide star approach and saturation

effects for the Na guide star approach. We show that the height of

Rayleigh guide stars can be chosen to minimize the laser pulse energy

requirements. For Na guide stars we show that the combination of laser

pulse energy, pulse length and line width can be chosen to minimize the

effects of saturation.

Even for laser powers considerably less than those given in Tables

2.4 and 2.5, the expected resolution of the adaptive telescope is still

on the order of that for diffraction limited imaging. For flux levels

as low as 1/7 the flux produced by the lasers specified in Tables 2.4

and 2.5, the expected resolution of the telescope degrades to only
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-1.47 times that of diffraction limited imaging. In the case of low

guide star flux levels for the 2 m telescope, the angular resolution is

still expected to be 0.09 arcsec at X = 0.5 pm. However, the Strehl

ratio decreases to a value well below 0.6. The combination of good

resolution and a poor Strehl ratio indicates the system will produce

images with a core FWHM comparable to the telescope's theoretical

resolution along with a broader halo of light surrounding the core. As

the laser power decreases, a larger and larger percentage of the light

from the image core is transferred to the surrounding halo, thereby

decreasing the Strehl ratio.
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3. PERFORMANCE ANALYSIS OF ADAPTIVE OPTICS SYSTEMS
USING LASER GUIDE STARS AND SLOPE SENSORS

3.1 Introduction

It is well known that the resolution of large ground-based

telescopes is limited by random wavefront aberrations caused by

atmospheric turbulence. Real time wavefront reconstruction systems,

commonly called adaptive optics systems, have been shown to improve the

image resolution of these telescopes.' However, the question of how

well these systems perform under less than ideal operating conditions

has been the subject of much ongoing research and discussion. These

"less than ideal conditions" can basically be summarized as the

inability to build perfect wavefront sensors and wavefront correction

devices. The accuracy of wavefront sensors is limited by photon noise

and by the finite number of sampling points over the wavefront surface.

For example, wavefront aberrations having characteristic spatial

frequencies greater than the sensor's spatial sampling frequency go

undetected. Wavefront correction devices are also less than ideal.

The ability of a correction device to cancel wavefront aberrations is

limited by the finite degrees of freedom in the device's response.

This limited response will prevent it from correcting higher order

wavefront aberrations. The response time of a wavefront correction

system also limits performance. Since wavefront aberrations evolve in

time, a delay between wavefront sensing and wavefront correction will

result in less than optimal wavefront reconstruction.
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The performance of wavefront correction systems has been treated

extensively in the literature. These performance measures have

generally fallen into two categories. In the first, performance is

measured in terms of the mean square (MS) residual error between the

phase of the reconstructed wavefront and the actual wavefront.
3 3 '5 2- 6 2

In the second, performance is measured in terms of the spatial

frequency response of the phase corrected optical system. 63-66 This

frequency response is commonly called the optical transfer function

(OTF). Of the recent works on this subject, Wallner's 5 2 analysis is

most complete in the sense that all the elements of the wavefront

correction system are included. Wallner analyzes the performance of a

wavefront correction system in terms of the MS residual phase error

across the aperture. He includes in his analysis realistic wavefront

sensor and wavefront corrector models, and a control law connecting the

two.

Much of the past work has dealt with only parts of the overall

system configuration. Several papers have addressed how to use a set

of noisy, single point phase difference measurements to reconstruct the

wavefront phase at a set of grid points in the aperture. 54 -5 9 In

general, these studies have not included the effect of finite sensor

subaperture areas, nor the effect of a realistic wavefront correcting

device. Performance is generally measured in terms of the residual

phase error at the grid points. The effects of the interpolation

between the grid points, inherent in any real wavefront corrector, are

not addressed. Additionally, the derivation of the minimum MS fit of
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the reconstructed wavefront to the actual wavefront at the grid points

makes no use of the phase statistics of the actual wavefront.

Other papers have addressed the performance limitations of

62-66wavefront correctors. In these papers the effects of wavefront

sensing are ignored and only the performance of the corrector is

considered. Gaffard and Boyer,63 for example, analyze the performance

of continuous deformable mirrors and optimize their design in terms of

actuator spacing and influence radius.

Most of the previous work has not included the effect of a time

delay between wavefront sensing and wavefront correction. Only

Hudgin 33 considers this delay in his study of optimal wavefront

estimation. He computes the residual phase error in the aperture, for

some given time delay between wavefront sensing and wavefront

correction. As in the previously mentioned work, the error is computed

at a set of grid points.

In this work we analyze the performance of a complete wavefront

correction system in terms of the optical transfer function. The basic

wavefront correction system under consideration consists of an

aperture, a wavefront slope sensor, a wavefront correcting device and a

control law. We concentrate on phase correcting systems, and assume

that turbulence induced amplitude effects are negligible. The

vavefront correcting device is a deformable mirror with a finite number

of actuators. The wavefront sensor samples the aperture plane over a
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specified number of subapertures. The wavefront phase slope is

measured within each of these subapertures. The measured slopes are

used by a control law to position the deformable mirror. A time delay

is specified between wavefront sensing and positioning of the mirror.

The advantage of using the OTF as a performance measure lies in

the wealth of information that is contained in and can be derived from

it. The OTF clearly illustrates the response of the optical system to

the whole range of spatial frequencies. High spatial frequencies are

of particular interest, since it is in this region that the magnitude

of the OTF indicates the ultimate resolution of the system. In

addition to the OTF, the point spread function (PSF) is computed. The

PSF is the image plane intensity distribution that would result from

imaging a point source and is easily computed from the OTF. This

intensity distribution is a useful performance measure, since the

resolution of the optical system can be determined directly from the

width of the distribution's main lobe. We also compute the Strehl

ratio, which is obtained from the PSF by comparing the peak of the main

lobe of the intensity distribution to that of a perfect unaberrated

system.

In Section 3.2 the basic assumptions and definitions

characterizing the wavefront sensor, deformable mirror, measurement

noise, and control law are Introduced. In Section 3.3 we summarize

Wallner's 5 2 derivations for the MS residual phase error between the

reconstructed wavefront and actual wavefront. In Section 3.4 the OTF
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is formulated in terms of the MS residual phase error found in Section

3.3. The statistical descriptions of the wavefront phase and sensor

noise are introduced in Sections 3.5 and 3.6. These statistical

descriptions are in turn incorporated in the results of Sections 3.2

and 3.3. Finally, in Section 3.7, we present computational results for

two wavefront reconstruction systems based on a Hartmann wavefront

sensor and continuously deformable mirrors. As discussed in Chapter 2,

these results are particularly important in the design of laser-guided

adaptive telescopes used for imaging in astronomy.

3.2 Definitions and Assumptions

The following system definitions and assumptions closely follow

those of Wallner.5 2 Consider a wavefront correction system consisting

of an aperture, a deformable mirror, a wavefront sensor and a control

law. The deformable mirror and aperture pupil plane are optically

conjugated. The mirror surface is controlled by a finite number of

actuators which can affect zonal or modal surface deformations. The

plane of the wavefront sensor and the pupil plane are also optically

conjugated. The aperture is segmented into subapertures, and the

wavefront sensor measures the average wavefront slope within each. The

control law uses the measured wavefront slope information to position

the actuators of the deformable mirror.

The aperture of the optical system is described by the weighting

function W (x), where x is a two-dimensional vector in the pupil plane.

W (x) is given by
A-
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k points within the aperture

A( 0 points outside the aperture

where k is defined such that

I d2x V (x) = 1, (3.2)

and fd2 X indicates integration over the entire aperture plane.

The phase of the incoming wave at x and at time t is designated

*(x,t) (rad). The phase *(x,t) is random process in time and in space.

It is convenient to define a zero mean phase *(x,t) (rad) which is

related to *(x,t) by

+(xt) - *(xt) - J d2X' W(X') *(x''t)" (3.3)

The output of the nth sensor is a noisy measurement of the average

slope of #(x,t) over a subaperture defined by W (x):

s (t) = J d2X W (X) 1V*(x,t)'d I + O (t), (3.4)
n n n
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where

s (t) = slope signal from the nth sensor at time t (rad/m),

W (x) - weighting function for the nth sensor 
(m-2),

7#(x,t) = spatial gradient of *,

d = unit vector in the direction of the sensitivity of the nth

sensor,

o (t) = slope measurement error for the nth sensor at time t

(rad/m).

The weighting function n(x) is defined in a manner similar to that of

WA(x). The slope signal can be rewritten by integrating the first term

of Equation (3.4) by parts:

s (t) = -4 d2x [VW_(x)'d.] *(x,t) + a (t). (3.5)

For notational simplicity in the development to follow we designate

Wn(x)dn with Vs(x) where the superscript indicates the slope of Wn(x)

in the direction of the sensitivity of the nth slope sensor. The

measurement error a (t) is attributed to photon noise in the slope

detection process and is assumed independent of #(x,t).

The control law generates a command for each actuator of the

deformable mirror based on the slope measurements. Using a linear

control law we define the actuator drive signal c (t)J

c(t) = Mj s(t), (3.6)

n
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where c (t) is the command sent to the jth actuator and M is thej in

weighting of the nth sensor signal in the jth actuator command.

Finally we define the reconstructed wavefront #(x,t) as

*(x,t) = c(t) rJ(x), (3.7)

J

where r (x) is the response of the mirror to a unit command at the jth

actuator.

3.3 Mean-Square Residual Phase Error

The following development summarizes the derivations and

analytical results obtained by Wallner52 and is included for

completeness. We generalize Wallner's results by including the effect

of a time delay between wavefront sensing and the wavefront correction.

This delay will be inherent in any wavefront correction system.

Since the deformable mirror is located in a conjugate plane of the

pupil, we can analyze the system as if the corrected wavefront passes

through the pupil plane. As a consequence, we can write the residual

phase error in the aperture plane as
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( ) = #(xt- ) - #(x,t)

= r(x) M M s (t-t) - *(x,t), (3.8)

where x is the delay between wavefront sensing and wavefront

correction. Note that, as defined in Equation (3.8), A+ has units of

radians. For the results in Section 3.7 the phase error is presented

in units of waves (m). Rather than define a separate notation, we use

the symbol A# to designate the error for both cases. The units of 60

should be obvious in each case. The mean-square residual error is

given by

<s (t-)s (t-x)>

j J, n n,

2 r (x) Mj <s (t- )O(x,t)> + <#2(x,t)>, (3.9)

j n

where <f> is the ensemble average of f. We assume that +(x,t) and

t (t) are wide sense stationary random processes in time. This

assumption allows us to write Equation (3.9) as solely a function of

the time delay T. Averaging <6+2(x,')> over the aperture W (x) gives

the average MS residual error
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<6+(t)2> = f d2x W(x) <A2 (x, E)>. (3.10)

Substituting Equation (3.9) into Equation (3.10) we obtain

<~~ &V -C Z n Hj n In R l'
I I, n n'

-2 M jn Aj n

j ii

+ <02 >, (3.11)
0

where S , R and A (t) are defined byn ' jj' Jn

S n <s (t)s (t)>

= n d2x' r d2x" W(x') Vn,(x") <¢(x',t)¢(x",t)>
+ <cc (t)m (t)>, (3.12)

R d2x W (x) r (x) r (X), (3.13)
Ji -A i - J,'-

Aj (t) = J d2x W (x) r(x) <s (t-)+(x,t)>

= -d2x d 2x' W (x) r (x) Ws(x')<O(x,t)¢(x',t- )>, (3.14)- j - A i -
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and the average mean-square uncorrected error <A2 > is defined as

< = d2X W (X) < 2 (x't)>. (3.15)

Note that, due to the stationarity of *(x,t) and a (t), the time

dependence t does not appear on the left-hand side of Equations (3.12),

(3.14) and (3.15).

The mean-square residual phase error given by Equation (3.11) is

valid for an arbitrary control matrix Mj . A control matrix giving the

minimum MS residual error is obtained by differentiating Equation

(3.11) with respect to M and equating the result to zero. Wallner5 2

jn

gives the minimizing control matrix Mn asjn

M () = R- A, A, ' (3.16)jjJ'j, 'n° nn , 3.

where we have used standard matrix multiplication notation to denote

the summations. Wallner states the general conditions for the

existence of R-  and S-  . Substituting this control matrix back into
ji' n'n

Equation (3.11) results in the minimum MS residual phase error:

<*(T) 2> -< '> - R-' A (T) S- 1 A (T). (3.17)
min o jJ' J'n' n'n jn

3.4 Optical Transfer Function

We now consider the OTF for the phase corrected wavefront optical

system. We start by defining the OTF in terms of the complex amplitude

field E(x) in the aperture of an optical system. Assume E(x) is
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produced by a far field point source. It is well known that the OTF

can be written as the convolution of E(x) with its complex conjugate

E*(x)"'

J d2x WA(x) E(x) W (x-p) E*(x-p)
H(P)= , (3.18)

J d2x WA (x)E(x)I2

where H(p) is the OTF, and p and x are two-dimensional vectors in the

aperture pupil plane. Note that spatial frequency, designated V

(cycles/meter), is related to the positional vector p by v = .I2/Xfo ,

where fD is the focal length of the aperture lens. Writing E(x) as a

product of a magnitude and a phase term we can rewrite Equation (3.18)

giving

T d2X 1W (x)E(x)l IW,(x-p)E*(x-p) exp{j[&(x)-&(x-p)]
I , (3.19)

H(p) = J d2x IW (x)E(x) 12

where Q(x) is the phase of E(x). Applying Equation (3.19) to the

wavefront correction system defined in Section 3.2, we find that (x)

corresponds to the residtial phase error 6t(x,r,T) defined in Fquation

(3.8). If the aperture of the optical system is in the near field

region of the turbulence we may ignore the effects of amplitude

perturbations and equate IE(x)I to 1. This near field criterion is

satisfied if the distance between the aperture pupil plane and the

turbulence region is less than D 2/Xn where D is the diameter of the
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aperture and X is the optical wavelength. 12 Equating &(x) to

6*(x,t, ), and IE(x)l to 1, and rewriting Equation (3.19), we obtain

the OTF for the phase corrected optical system:

H(p) = (3.20)

J d2x 1W (x) 12

Since 4+(x,t,T) is a random process in time and space, further progress

is impossible unless a statistical approach is taken. We continue by

defining an ensemble average OTF, <H(p)>:

d 2X W A() W:(- )  <exp a ( t, ) ( - t, ) >

<H()> = .(3.21)

f d 2 x 1W (X)12

At this point the standard approach is to assume that 6¢(x,t,x) is a

Gaussian, zero mean, random process. i s This assumptions allows us to

write

<H(p)>=

d-X A -X W: (x- P) exp M a 0(X t, )-A (X- P t, ) ] >1

(3.22)

d2x 1W (X)12
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Using the expression for <A+2 (x,t,x)> in Equation (3.9), Equation

(3.22) is expanded into the following form:

ep<(+(x't)-V( -P't))'>

<H(p)> d= d2x W (x) wA(x-P)

X [expV2 Z r (x) r(x-p)][r (x) - r (x-P) CZ Z i - - i - ji

j i

+ Y[rj(x) - r (x-p)] <cj(t-x)[+(x,t) - +(x-pt)]>] (3.23)

where

C = <c (t)ci (t)>

Z T.M M S (3.24)

n M

Gaffard and Boyer6 3 obtained a result nearly identical to Equation

(3.23) in their study of the performance characteristics of continuous

deformable mirrors. Like the approach taken here, they analyzed

performance in terms of the OTF. They concentrated their efforts on

the optimization of the mirror design, and as such, did not include the

effects of a wavefront sensor in their analysis. The difference

between Gaffard and Boyer's expressions for the OTF and the expression

given in Equation (3.23) is in the definition of the term c.(t) (h. in)
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Gafford and Boyer). In both results this term is the drive signal sent

to the jth actuator. Here c (t) is derived from the measured wavefront

slope information. In Gaffard and Boyer's analysis c (t) is derived

from complete knowledge of the phase of the aberrated wavefront (i.e.,

they assume a perfect wavefront sensor).

3.5 Wavefront Phase Statistics

Equations (3.17) and (3.23) are the main results of the previous

two sections. To evaluate Equations (3.17) and (3.23) the correlation

<+(x,t)*(x',t- )> must be computed. Both S and A ( ) depend on

this phase correlation. Wallner5 2 derives an expression for the phase

correlation as a function of the spatial phase structure function. We

make use of the slightly more general spatio-temporal phase structure

function defined as

D(x,x', ) = <[(x,t) - J(x',t-T)]2 >. (3.25)

Finding < (x,t)O(x',t- )> in terms of Equation (3.25) is a straight-

forward application of the derivation performed by Wallner. We do not

repeat the derivation here, but simply rewrite the expressions that

depend on <*(x,t)+(x',t- )> in terms of Equation (3.25). These

expressions include S , A (T) and <H(p)>. First consider Sn, and

A. (t):In

S -Y J d2x' J d2x'' Ws(x,) Ws(x,,) D(x',x'',O)

+ <c (t)c (t)>, (3.26)
n i
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A() - d2X d2X' W (x) r() W8 (X')

X [- D(x,x', ) + g(x',t)j (3.27)

where

g(x,T) = V d2x' W (x') D(x,x',r). (3.28)

The expression for A given by Wallner (Equation (28) of Ref. 52)jn

contains a sign error and does not include the second term given in the

right-hand side of Equation (3.27) above. This second term will

integrate to zero if the spatial average of the actuator response r (x)

is zero. Finally, rewriting <H(p)> as a function of Equation (3.25)

gives

exp(

<H(p)> = d2x W (X) W (x-p)

d 2X JW_ (X)12 J A- A-P

x - -

-[exp Z rjx) - p -- W - r (x-P) C

j i

+ 2 frj(x) - rj(x-P) <c (t-x)[O(xt) - O(x-Pt)I>] (3.29)

j



110

where

<c (t-t)I( xt) - *(x-P,t)]> =

Z d d2x, W8(x') [D(x,x',T)-D(x-p,x',x)] . (3.30)

n

3.6 Slope Measurement Noise

The slope measurement noise is modeled with a random slope error

signal a (t). This error signal is attributed to photon noise in the

slope detection process. We assume that slope measurements on non-

overlapping subapertures and orthogonal slope measurements on

coincident subapertures are uncorrelated. We also assume the slope

noise is white in the sense that a (t) and a (T) are uncorrelated for t

* T. This is easily justified by modeling the photon noise as Poisson

and assuming sequential slope measurements in time are derived from

nonoverlapping time intervals. Combining these assumptions results in

a noise correlation function given by

<a (t) C(T)> = 02 k (t-T) (3.31)
n n nn

where

2= mean-square slope error (rad 2 m- )

k (t-T) = cose 6(t-T) 6n,

e = the angle between the direction of sensitivity of the nth and

n'th sensors,

S(t-x) = Dirac delta function,

I nth and n'th subapertures coincide

nn' = 0 otherwise.
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The magnitude of a2 depends on the type and configuration of slopen

sensors used in the wavefront sensor. In the numerical example of the

following section we find a2 for the Hartmann wavefront sensor.
n

3.7 Computational Results for Continuous Mirrors

We apply the analytical results derived in Sections 3.3 and 3.4 to

two wavefront correction systems. Both systems employ a Hartmann

wavefront sensor and use continuous deformable mirrors. The difference

between the two systems is in the response function of the deformable

mirror. For the first system, the mirror response function is modeled

with a Gaussian deformation. For the second, the response function is

characteristic of a membrane mirror. We compute the performance of

these two wavefront correction systems in terms of the average

mean-square residual error across the aperture (Equation (3.17)) and

the OTF (Equation (3.29)). In contrast to the motivation for the

computational results presented in Chapter 2, here we are primarily

interested in demonstrating the effects of slope measurement noise in

the wavefront sensor, time delay between wavefront sensing and

correction, and finite sensor/actuator spacing. As a result, the

parameter used to describe the wavefront sensor and deformable mirror

are chosen more for convenience than to match those parameters that

might be used in an actual design.
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Mirror Descriptions.

The mirror for system 1 is a continuous mirror with a Gaussian

actuator response proportional to

j (xxI.(YY.2 d2 )r (X,y) a exp (- )- Y (3.32)

where x and y specify a point in the plane of the mirror, x and y

specify the actuator location, and d is the influence radius. The
a

Gaussian response is often used to model piezoelectric deformable

mirrors.

The mirror for system 2 is a membrane mirror. The response

function for this type of mirror must satisfy Poisson's equation:
68

V2 r (x,y) = -P (x,y)/T (3.33)

where P (x,y) is the pressure distribution on the membrane mirror

surface caused by the jth actuator, and T is the surface tension

(force/distance) of the membrane. Equation (3.33) has been solved for

a circular membrane centered at the origin6 9 (see Figure 3.1). For a

membrane of radius , the solution is
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Figure 3.1. Membrane mirror and actuator pad configuran.
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2 4 N

r (LP, ) f 0d

0
2 AT

x I 'd' { ln(1/p) - - (p')f- (P'/P)n1
J 0  n

n-=1

X cos n('-I)}

+ f'dI{ ln(I/p') - - [(_ ,) - (o/0' ]
,n

p n-I

X cos n(#'-#)}IP(III (3.34)

where (p,*) are the polar coordinates in the plane of the membrane.

The radial coordinate p is normalized by the radius m, and (x,y) is

related to (p,#) by x=apcos# and y=apsin#. For our computations we

assume the pressure distribution P (p',+') is constant over the

actuator pad. The boundaries of each actuator pad are defined by lines

of constant p and + in a fashion similar to the actuator model used by

Claflin and Bareket. Figure 3.1 illustrates the membrane geometry

and the shape of an actuator pad. The solution of Equation (3.34) for

this pressure distribution is given in detail by Claflin and Bareket

and will not be repeated here. Figure 3.2 illustrates a typical mirror

response for a series of actuator locations positioned on the x-axis.

For the following results the centers of the actuator pads are located
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Figure 3.2. Membrane actuator response for actuators
positioned along the x axis. The center of the
membrane is at x = 0 and the edge is at x = 10.
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on a rectangular grid as shown in Figure 3.3. The area of each pad is

adjusted to match the area of a d x d subaperture. This model is not

completely realistic because of the possibility of overlap and gaps

between adjacent actuator pads. For modeling purposes, though, the

computational results should not be significantly affected by the

inaccuracies.

Slope Sensor Description.

The model of the vavefront sensor is derived from the basic

characteristics of the Hartmann sensor. Figure 3.3 illustrates the

geometry of the sensor. This geometry was also treated by Wallner.
5 2

A square aperture of dimension d is divided into equal size

subapertures of dimension d. In each subaperture the slope is sensed

in both the x and y directions. The size of the aperture d is stated

in terms of the number of subapertures on a side.

The accuracy of each slope detector is related to the magnitude of

the r'ope measurement noise an. To compute an we must consider the

Hartmann sensor in more detail. Note that the derivation to follow is

slightly different from the tilt measurement error derived in Chapter

2. In this case we are interested in square subapertures and the error

in one direction (x or y direction). Consider the single Hartmann

sensor shown in Figure 3.4. The subaperture slope is measured by

sensing the position of the diffraction limited spot in the focal plane

of the lens. If the focal plane detector measures the position of the

spot within some rms accuracy x (m), the corresponding slope
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Figure 3.3. Wavefront sensor configuration.
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Figure 3.4. Single Hartmann tilt sensor.



119

measurement accuracy (rad/m) is

2 n~x
a =- (3.35)

Xf
d

where fd is the focal length of the subaperture lens and X is the

wavelength of the detected light. The focal plane detector is

typically an array of photon counting detectors (a CCD array for

example). It is common to express the positional accuracy of this type

of detector by

-=(3.36)
I/N

where nc is a parameter accounting for imperfections of the detector

array (i.e., the effects of finite size array elements and dead space

between array elements), a I(m) is the rms width of the spot on the

4*tector array surface and N is the total subaperture photon count.

Note that TC > 1 and that nc = 1 only in the ideal case of infinitely

small detector elements with no dead space between elements. The spot

size a is determined by the lens size d or the Fried seeing cell sizeI

ro . To compute a. we model the focal plane spot with a Gaussian

intensity distribution. The Gaussian distribution is matched to the

e-1 points of the diffraction limited intensity distribution from the

subaperture. The Gaussian distribution is a.reasonable approximation,

since random perturbations of the wavefront caused by the atmosphere

will tend to produce a Gaussian-shaped spot. 1 6  If d > r the Gaussian
o

distribution is matched to a diffraction limited spot from a circular
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subaperture of diameter r. If d < r the Gaussian distribution is

matched to a diffraction limited spot from a square subaperture of

side d. The rms spot size a is given by

1.22Xf
d d> r

2v2 r 0

1(3.37)

22d d<r2 v(2 d o

Substituting Equations (3.36) and (3.37) into Equation (3.35) gives

O. 86 ni1¢
d> r

VN r 0

the = 0 (3.38)
rl O. 74 nric

MNd d o

In the following computations we assume nc=1.5. This value is typical

of the minimum achievable for currently available CCD detector arrays

used in conjunction with an image intensifier. 14,15

Phase Structure Function.

Finally, we must assume the form of the phase structure function

defined in Equation (3.18). For a "frozen," locally isotropic random

turbulence field we can write
70

D(x,x',) = D(x,x'+vT)

= D(x-x'-vT) (3.39)
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where v is a velocity vector describing the speed and direction of the

turbulence region relative to the optical system. Implicit in Equation

(3.39) is the assumption that the whole turbulence region is moving

with the same velocity v. If we further assume, for computational

simplicity, that the turbulence layers are confined to a relatively

narrow vertical region in the atmosphere, and that the turbulence is

described by Kolmogorov statistics, we can approximate the phase

structure function with'
0

D(x,x',t) = 6.88 L - - ] (3.40)
r

0

Computational Results.

1) Average RMS Residual Phase Error, <6 2( )> : We now are able

to compute the average MS residual phase error <Af2(T)>4 given in

Equation (3.17). We start by assuming that the delay time T is zero

and examine the effects of sensor noise, and aperture and subaperture

size. We also assume, throughout the rest of this section, that the

actuator centers are located at the corners of the sensors (see Figure

3.3). This arrangement is nearly optimal for the case in which d -

ro. 63 First consider variations in aperture size D. Figures 3.5a and

3.5b illustrate plots of <af2(0)>4 versus N photons/subaperture for

both wavefront correction systems. The aperture size ranges from D =

2d to 7d (corresponding to apertures having 9 to 64 actuators). The

subaperture size d is held constant at a value of r . Both plots show
0

the decreasing trend in residual phase error as N increases. Recall

that the measurement noise power a2 is inversely proportional to N. As
n



122

0.40 ..

Gaussian MirrorA 0.35 da= -
D/d=6 d ro
c' a=

0.30 4

V
k 0.25
0

0.20

0.15

-4
( 0.10

c 0.05

010 0 10 1 10 2 10 3

Photons/Subaperture, N

Figure 3.5a. Average RMS residual phase error versus
photocounts/subaperture for the Gaussian mirror
response function. The aperture size ranges from
D=6d to 2d. The other parameters are constant:
d=r and T=0.0
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Figure 3.5b. Average RMS residual phase error versus
photocounts/subaperture for the membrane mirror
response function. The aperture size ranges from
D=6d to 2d. The other parameters are constant:
d=r and T=O.0
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N increases the effects of the slope measurement noise become

negligible, and the errors introduced by the finite actuator and sensor

spacing establish the minimum possible phase error. This minimum is

approximately 0.55 radians (or equivalently 0.087 X). These results

show, as expected, that as the measurement noise becomes negligible (N

> 100) the phase error is approximately the same, regardless of

aperture size.

Now consider variations in subaperture size d. Figures 3.6a and

3.6b illustrate plots of <Af2(0)> versus photons/subaperture N for

subaperture sizes ranging from d = 0.5r to 1.5r . In this case, the
0 0

aperture size D is held constant at a value of 4d. These figures show

that the residual phase error approaches increasingly lower minimums as

the size of the subaperture d is decreased. This lower limit is

determined by the sensor size d, and is proportional to (d/r )/3

Obviously, improved performance can be obtained by decreasing the

subaperture size relative to the seeing cell size r . This
0

improvement, though, is gained at the expense of increased system

complexity due to the increased number of subapertures for a given

aperture.

The effects of a time delay between wavefront sensing and

wavefront correction are studied by choosing a magnitude for the non-

dimensional quantity IvIx/r. = v /r., where v is the velocity of the

turbulence layers and T is the time delay between wavefront sensing and

reconstruction. For illustration purposes we assume v is in a
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Figure 3.6a. Average RMS residual phase error versus
photocounts/subaperture for the Gaussian mirror
response function. The subaperture size ranges
from d = 1.5r. to 0.5r o . The other parameters are
constant: D = 4d and T = 0.
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Figure 3.6b. Average RMS residual phase error versus
photocounts/subaperture for the membrane mirror
response function. The subaperture size ranges
from d - 1.5r, to 0.5r.. The other parameters are
constant: D = 4d and T = 0.
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direction perpendicular to ar edge of the aperture (see Figure 3.3).

Figure 3.7 illustrates a plot of <* 2(-r)>4 versus photons/subaperture N

for v-r/r. ranging from 0 to 2.5. The aperture size D and subaperture

size d are held constant at values of 4d and r , respectively. Not

until v /ro becomes greater than - 0.5 do we see a significant

degradation in imaging performance. This value of v /r. corresponds to

the point at which the turbulence has moved a significant fraction

(i.e., 1/2) of a seeing cell diameter r.. Assume, for example, v = 50

r./s, which corresponds to a wind speed of 10 m/s for r° = 20 cm. For

this speed, time delays on the order of 10 ms or less between wavefront

sensing and reconstruction result in minimal degradation of imaging

performance.

2) Average Optical Transfer Function, <H(p)>: We now compute

average OTF <H(p)> given by Equation (3.29). In addition to the

average OTF, we also consider the average PSF and the Strehl ratio.

The PSF is related to the OTF by the two-dimensional inverse Fourier

transform: 67

F 1(<H(x,y)>)
<s(u/Xf ,v/Xf )> = 2 (3.41)D D (Xf D)2

where s(u/Xf ,v/Xf D) is the PSF of the optical system, (u,v) areD D

Cartesian coordinates in the image plane of the aperture, (x,y) are

Cartesian coordinates in the pupil plane, and the operator F-1 is the
2

two-dimensional inverse Fourier transform. In an effort to reduce the

amount of computation time required, the one-dimensional PSF is
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Figure 3.7. Average RMS residual phase error versus
subaperture photon count. The dimensionless
quantity v /r. ranges from 0 to 2.5. The other
parameters are constant: D=4L, and L=r0.
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calculated instead. The one-dimensional PSF is related to the two-

dimensional PSF by

<s(u/Xf)> = J dv <s(u/Xf Dv/\fD)>
dx - exp 2nx

XfD  XfD

F- 1(<H(x,O)>)
I (3.42)

XfD

where the operator F-1 is the one-dimensional inverse Fourier
I

transform.

Rather than consider all the aperture sizes addressed in 1) above,

we consider only the size D = 4d in the subsequent results. The

results of the computations are presented as plots of the magnitude of

the OTF versus IpI/D . p/D. Recall that spatial frequency v

(cycles/meter) is related to p by v = p/Xf where f is the focalD D

length of the aperture lens. In all cases, the vector p is assumed in

the x or y directions giving <H(p)> = <H(x,O)>, or equivalently <H(p)>

= <H(O,y)>.

We begin by assuming the time delay x is zero and examine the

effects of sensor noise and subaperture spacing. First consider the

effects of sensor noise. Figures 3.8a and 3.8b illustrate OTF curves

for the two wavefront correction systems. Each curve corresponds to
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Figure 3.8a. OTF for the system using the Gaussian
mirror response function. The
photocounts/subaperture ranges from 10 to 500. The
other parameters are constant: D=4d, d=r., T=O.
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mirror response function. The
photocounts/subaperture ranges from 10 to 500. The
other parameters are constant: D=4d, d=r,, x=O.
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photocount/subaperture levels ranging fro- N = 10 to 500. The

uppermost curve in both figures is the OTF of the perfect unaberrated

system. The bottom-most curve is the OTF for the aberrated system,

assuming no wavefront correction. Even for a count as low as N=10 the

OTF for the partially corrected aperture demonstrates considerable

improvement over that of no correction. As the photon count increases,

the frequency responses show steady improvement until converging to an

upper limit. This same convergence was also seen in Figures 3.5 and

3.6 for the residual phase error. For our particular sensor and mirror

configurations the improvement in the OTF beyond 100 to 200 counts per

subaperture is marginal. Figures 3.9a and 3.9b illustrate the

corresponding one-dimensional PSFs for the OTFs illustrated in Figure

3.8. The amplitude of the PSF is plotted versus the dimensionless

quantity uD/Xf, where u is the image plane coordinate. The PSF for

both the unaberrated system and the aberrated system with no wavefront

correction are shown. The interesting thing to notice from these

curves is that the resolution (i.e., width of the PSF main lobe) does

not significantly degrade from that of the unaberrated system for

decreasing photon flux levels. The Strehl ratio, on the other hand,

shows considerable degradation in performance as sensing accuracy

decreases. The Strehl ratio is plotted in Figure 3.10 versus N.

Recall the Strehl ratio compares the peak of the intensity of the PSF

to that of an unaberrated system, and is an indication of how well the

peak intensity can be discerned from the surrounding intensity

distribution. The ratio drops from a value of nearly 0.8 for 500

photocounts/subaperture to - 0.54 for 10 photocounts/subaperture.
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Figure 3.9a. PSF for the system using the Gaussian
mirror response function. The
photocounts/subaperture ranges from 10 to 500. The
other parameters are constant: D=4d, d=r., T=O.
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mirror response function. The
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other parameters are constant: D=4d, d-r., C=O.
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It is interesting to note from the data shown in Figures 3.8 and

3.9 that both correction systems perform nearly identically. This was

also seen for the residual phase error shown in Figures 3.5 and 3.6.

This similarity in performance is not surprising, considering the

similarity of the two mirror response functions r (x) in the region

near the center of the actuator. The response functions differ

considerably in regions away from the actuator center, but the

contribution to the overall shape of the mirror from these distant

points is small compared to that of the center. Since the two mirrors

perform nearly identically, only the Gaussian mirror response is

considered in the subsequent computations.

We now consider the effect of varying subaperture size. Figures

3.11 and 3.12 illustrate the OTF and PSF for subaperture sizes ranging

from d = 0.Sr to 1.5r . The photocount/subaperture level N is held
0 0

constant at a value of 500 (resulting in insignificant slope

measurement noise). These results illustrate the advantage of sampling

the aperture with smaller and smaller subapertures. The peak magnitude

of the PSF improves considerably as the subaperture size is decreased.

Again, the interesting thing to notice from these curves is that

resolution (width of the PSF main lobe) does not significantly degrade

from that of an unaberrated system for increasing subaperture size.

The FWHM of the PSF main lobe is approximately the same for each value

of d. This result was also found by Smithson et al. 71. 72 in a

performance simulation of a 19-element segmented mirror. They found no

significant loss in resolution (as measured by the FWHM of the PSF) as
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Figure 3.11. OTF for the system using the Gaussian
mirror response function. The subaperture size
ranges from d = 1.5r, to 0.5r.. The other
parameters are constant: D = 4d, r = 0, N 500.
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the subaperture size was increased from approximately r to 6r . They

did find, though, that the Strehl ratio degrades rapidly as the

subaperture size is increased. We also find this true as illustrated

by Figure 3.13. The Strehl ratio drops from a value of approximately

0.9 for d/r = 0.5 to a value of approximately 0.6 for d/r - 1.5.
0 0

The effect of a nonzero time delay T on the average OTF is not

considered. Since the time domain fluctuations of the wavefront phase

are caused by the velocity of the turbulence layers, we find that

<H(p)> depends on the direction of v and p. For example, if p is in

the x-direction, <H(p)> and <H(-p)> are not equal for any v having a

nonzero x-component. The OTF is spatially invariant with respect to v,

and the meaning of <H(p)> becomes impossible to interpret.

3.8 Summary

We have derived an expression for the average optical transfer

function of an adaptive optics system using slope sensors. The

adaptive optics system consists of an aperture, a wavefront slope

sensor, a deformable mirror, and a linear control law. The nonideal

characteristics typical of these components are incorporated in the

analysis by realistically modeling the slope sensors, the deformable

mirror and the photon noise in the wavefront sensor.

A problem not addressed in this analysis is the effects of

anisoplanatism, which limits the FOV over which the wavefront

compensations are effective, thereby limiting the effective FOV
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of the adaptive telescope. The impact of anisoplanatism on the design

of laser-guided telescopes is addressed in Chapter 5.
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4. NONLINEAR RESONANT ABSORPTION EFFECTS ON
THE DESIGN OF RESONANCE FLUORESCENCE LIDARS

AND LASER GUIDE STARS

4.1 Introduction

Many areas of research rely on pulsed laser systems to excite the

resonant frequency of selected atoms in a medium. Examples include

resonant fluorescence lidars which are used to study the upper

atmosphere metal layers 3 2
,
3 6- 40 '7 3

,7
4 and laser guide star techniques

for use in adaptive imaging in astronomy. For both of these

applications the laser beam is tuned to the resonant frequency of the

atoms, giving rise to resonant absorption and fluorescence. In certain

situations these systems may experience a significant reduction in the

backscattered signal due to saturation effects. Saturation arises when

the energy density within the scattering medium is large enough to

significantly alter the population densities of the atomic states. In

terms of a simple two-state system, a large energy density can

significantly reduce the number of lower state atoms while increasing

the number of excited state atoms. These altered state populations

lead to nonlinear absorption of the laser energy, which results in an

increased rate of stimulated emission and a reduced rate of

fluorescence. The combined effect is a reduction in the backscattered

energy. Laser guide star systems are particularly vulnerable to

saturation effects because of the large energy densities required to

create a sufficiently bright guide star. The guide star must be small

enough to approximate a point source, while at the same time bright

enough to provide adequate signal-to-noise ratios in the wavefront

sensor. For both lidar and guide star applications, choosing the laser
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parameters to minimize saturation becomes an important consideration in

the system design.

Saturation effects for pulsed lasers have been quantified by

Megie,7 3 Cardinal and Measures. 76 ,7 These authors limited their

analyses to scattering media characterized by homogeneous broadening of

the atom's absorption line, or equivalently, applications employing

broad line width lasers. They also restricted their attention to

uniformly illuminated media. We build on this previous work by

quantifying saturation effects for an inhomogeneously broadened

absorption line and an arbitrary laser beam cross section. Doppler

broadening of the absorption line is an important example of

inhomogeneous broadening. This type of broadening dominates

homogeneous broadening for many media, including the mesospheric metal

layers. The importance of allowing for inhomogeneous broadening will

become evident for narrow line width lasers. The effects of an

arbitrary laser pulse shape and laser line profile are also included in

the analysis.

In Section 4.2 we introduce the rate equation describing the upper

state atomic density for a medium illuminated by a laser pulse. The

solution of the equation is used to quantify the effect of saturation

on a pulsed laser system in terms of the reduction in fluorescence

backscatter. The section concludes by evaluating the reduction in

backscattered flux for three specific combinations of laser pulse shape

and beam cross section. In Section 4.3 these results are used to
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illustrate the effect on saturation for changing values of the laser

pulse length, pulse energy, beamwidth, and line width. Finally, in

Section 4.4, laser design examples are presented for both lidar and

laser guide star applications.

4.2 Population State Rate Equation and Specific Solutions

We begin our analysis by defining a simple two-state model for the

atomic transitions associated with absorption and fluorescence. An

atom in the lower energy state is excited to the upper state by

absorbing a photon, and an atom in the upper state deexcites to the

lower state by either spontaneous or stimulated emission. Use of this

model implies that the effects of collisionally induced transitions are

negligible. This is a reasonable assumption if the mean time between

collisions is relatively long compared to the natural decay time of the

atoms. In particular, the model is an excellent representation of the

atomic transitions for the mesospheric Na layer where the mean time

between collisions is approximately 10 us compared to a natural decay

time of 16 ns.

We next consider the laser and scattering medium. The geometric

relationship between the two is shown in Figure 4.1. A laser beam

passes through a thin layer of the medium. The thickness of the layer

is &z and the density is assumed constant. The scattered energy due to

fluorescence is detected by a receiver a distance z from the layer.
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The laser pulse is described in time (t), space (p), and angular

frequency (w) by p(t,p,o) (m-2rad-1 ). The pulse p(t,p,w) is the photon

flux density per unit time and per unit angular frequency. The

magnitude of the two-dimensional vector p is the radial distance from

the laser beam center in the plane perpendicular to the beam axis. The

energy absorbed and scattered by each atom is characterized by the

absorption cross section a (m2 ). The cross section a is a function of

angular frequency and essentially represents the cross-sectional area

that the atom presents to the incident beam for scattering.

Megie 7 3 gives the rate equation for the density of upper state

atoms. Here, this rate equation is generalized to include the effects

of inhomogeneous broadening and an arbitrary beam cross section. The

distribution of upper state atoms n for an arbitrary temporal pulse
u

shape, beam cross section and line profile is given by

an (t , p, ) -n (t,p, )

at

+ (n(w d)-nU( t ,p, w)d T. Jdo~ p(t,p,w') d(,'

- n (t,p,)d ) T, Joa(0)'-(A) p(t,P,o') d(', (4.1)
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where

t = time (s),

p = two-dimensional vector describing the radial position relative

to the laser beam axis,

d = Doppler angular frequency shift associated with a

given atom (rad/s),

n (t,p,d) = density of excited state atoms per unit Doppler

angular frequency shift (m-3rad-1 s),

n( d ) = total density of atoms per unit Doppler angular frequency

shift (m-3 rad- s),

= natural lifetime of an excited state atom (s),
n

T = atmospheric transmission associated with the one-way path

from the laser to the scattering layer,

gfi g/g2, the ratio of the degeneracies for the lower and upper

states, g1 and g2, respectively,

(w) f= absorption cross section (m2).

The distributions n()d ), and p(t,p,o)) satisfy

n(o) d d = n , (4.2)

and

dt d 2 pJ dc p(t,p, w) = NL, (4.3)

-. -. -. -.
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where n is the total atomic density of scatters (m-3 ) and N is theo L

total number of photons emitted by the laser per pulse. The terms on

the right-hand side of Equation (4.1) can be attributed to the rate of

atomic transitions due to emission or absorption. In particular, the

first and third terms describe the rate of decrease of the upper state

density due to spontaneous and stimulated emission, respectively. The

second term is the rate of increase of the upper state density due to

absorption.

The effects of both homogeneous and inhomogeneous broadening of

the absorption line are included in Equation (4.1). The absorption

cross section a(w) describes the effect of homogeneous broadening,

whereas the atomic density n(o d) describes the effect of inhomogeneous

broadening. Homogeneous broadening results from the finite lifetimes

of the excited state atoms. Inhomogeneous broadening, in this case, is

assumed to be due to the thermal motions of the atoms. This motion

gives rise to the Doppler distribution n(d), which relates the

distribution of radial speeds of the atoms to a distribution in Doppler

frequency shifts. The effect of Doppler broadening is included in the

analysis by writing Equation (4.1) as a function of Doppler angular

frequency d .

When the laser pulse can be modeled as separable in time, space,

and frequency, a solution to Equation (4.1) is easily obtained. This

model is reasonable for many lasers (excluding very short pulse, narrow
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line width lasers) and is an often used simplification. Assuming

p(t,p,w) is separable, we can write

p(t,p,w) = N (t) (p) g(a), (4.4)

where

N (t) = total number of photons emitted per unit time (s-),

I(p) = distribution of the photon flux per unit area 
(m-2 ),

g(w)= distribution of the photon flux per unit frequency

(rad-1s),

and the following relationships hold:

SNL(t) dt = N , (4.5)

f I(P) d P = 1, (4.6)

g(w) dw = 1. (4.7)

Throughout the remaining sections the functions N (t), I(p) and g(w)

will be referred to as the laser temporal pulse shape, beam cross

section, and line profiles, respectively.

The separation of p(t,p,w) allows Equation (4.1) to be simplified

by defining an effective absorption cross section a.f(,d)
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a f(c(d) = ]'a( -cod) g(co) dco, (4.8)

where aff (w d) is simply the absorption cross section for those atoms

experiencing a Doppler frequency shift wo weighted by the laser energy

at the corresponding frequency. Substituting Equation (4.8) into

Equation (4.1), a compact form of the rate equation is obtained:

an (t,p,co)
= n (t,p,w ) + (l+ ) aft ( w ) T I(p) NL(t)]at u - )* 0d a -

n

+ n(wd ) c, of(A d ) Ta I(p) NLkt). (4.9)

The general solution to Equation (4.9) for zero initial conditions is

n (t,p, d) = x + (1+) cr a ( T & (p) N (r))dr]
0 n

o '

n(w d ) a ef(co d ) T l(p) NL (-) dT, (4.10)

where the laser temporal pulse N (t) is assumed zero for t<O.
L

Ultimately, we want to relate the solution in Equation (4.10) to the

reduction in backscattered energy for a lidar configuration such as

that shown in Figure 4.1. This reduction is quantified by calculating

the ratio of the actual detected counts per pulse N to the detected

counts per pulse for no saturation N . The counts N and N areRo R Ro
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given by 
3

r A T Az n r' (tp,)
Na Rrd d f Id 2~ u dd (4.11)

-- -s -- - n

and

flAT 2  z n aN
N = r a o t L (4.12)

where

A = the receiving aperture area (m2),
r

= the efficiency of the receiver,

Az = the thickness of the scattering layer (m),

z = the distance between the scattering layer and the receiver

(m),

a = the total effective absorption cross section of the atoms
2

(m 2 ).

The total effective cross section a introduced in Equation (4.12) is

related to a.f (wd) by

t= Ja ( f f((wd) dw d  (4.13)
tn

-- 0

In writing Equations (4.11) and (4.12) we have assumed that the

spontaneous emission is isotropic. Any anisostropic effects in the
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scattering are included in the calculation of the absorption cross

section a(wo). Substituting Equation (4.10) into Equation (4.11) gives

N d rJs Id exp (t-t)

(1.f f ( T aN L(P) (

+2 NLa(L ) d y

rms ft

N Rod ) I(p) NL(T), (4.14)

where I(p), N (t) and g(co) have been expressed in terms of the

dimensionless equivalents I(p'), NL (t') and g(co'):

I( ,= dP2 I(P'ap ), (4.15)
- rag - ras

At N (t'At )
N (t') = rgrs, (4.16)L N

L

g(W') = aw g(W'&A ). (4.17)

rms rms

The arguments p', t' and wo' are dimensionless, and the parameters

at rs, A and Aw are the rms pulse length, rms beam radius and
ra$ rifs rag

rms line width, respectively. The distribution NRo(wd) in Equation

(4.14) is the unsaturated count as a function of Doppler frequency Wd

rl A T2 Az n(wd) a (wo) N
N (o)= r a " d (418)

o d 4nz2
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At this point it is useful to define the average photon flux density I

and the saturation time T

NT
- L , (4.19)

nAP2
rms

2/12 At iT Ap2

rms rms (4.20)
N T a
L a t

The saturation time x was first defined by Megie 7 3 and is a measure of
9

the characteristic time of stimulated emission. The ratio T IT
S n

indicates the level of saturation within the layer. A large ratio

implies that the natural decay time is much faster than the

characteristic time of stimulated emission. In this case, the rate of

stimulated emission is much smaller than the rate of natural decay,

which results in negligible saturation effects. On the other hand, a

small ratio implies the rate of stimulated emission is much larger than

the rate of natural decay, which results in significant saturation

effects. Incorporating T and I into Equation (4.14) and taking the
S S

ratio N IN give
R RO

N r 2 1 n(w d e (d

N d i i 2112 T n
Ro -. -U-U 0 0 n o

exp[l- a (t-t) + (1+0C) n af (W ISI(P)JN(y)dy

n t

N (1) I(p). (4.21)L-
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Equation (4.21) is the main result of this section. It describes the

effect of saturation on a pulsed laser system for an arbitrary pulse

shape NL (t), beam cross section I(p) and spectral line profile g(W)

(recall a (d) is a function of g(w)). The ratio NR /NRo is

equivalent to the ratio as/at, where a. was introduced in Chapter 2 to

designate the generalized scattering cross section in the case of non-

negligible saturation. If the functional forms of I(p), NL (t) and g(W)

are known, Equation (4.21) becomes a function of only x , I and &w

(a (w ) is also a function of Aw ). As will be seen later, the
f f d rm

dependence of Equation (4.21) on I becomes negligible for At >> -C
S rms n

In this case, the two remaining parameters, T and 6w , completely

determine the effect of pulse length, pulse energy, beamwidth and line

width on saturation. To illustrate this dependence, Equation (4.21) is

evaluated for three specific combinations of beam cross section and

pulse shape.

CASE 1. Uniform Beam Cross Section and Rectangular Pulse Shape.

For this case N (t) is given by a rectangular pulse and I(p) isL

given by a uniform beam cross section

NfNLO<t<At
NL(t) = at (4.22)

0 elsewhere,

1

I(P) n~p, 0 < 1I < ap (.3(l) = (4.23)

0 elsewhere,
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where At is the length of the pulse and Ap is the radius of the beam.

The rms length of the rectangular pulse is At = At//12. For our

purpose we define the rms radius of the beam Ap as the second moment
rms

of the distribution that results from integrating I(p) over one

dimension of the plane defined by p. The rms radius of the uniform

beam cross section is Ap = Ap/2. Substituting Equation (4.22) into
rms

Equation (4.16) and Equation (4.23) into Equation (4.15) gives the

dimensionless functions

t 0 < t' < 112
(t) (4.24)

0 elsewhere,

and

1
0 < I'1 <2

I(p') = 4n (4.25)

0 elsewhere.

Substituting Equations (4.24) and (4.25) into Equation (4.21) and

performing the integration over T, t and the plane defined by p gives
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N 1 n w d I) a f f (0) dN 1

o t no + n ( o

J-0 - S cyt
1+La (w

s t S S t

- 1+(X

W ) t + -n eef fd

Ixp0 +n°(d 2 - dw .  (4.26)

1 2

If the pulse length At is much greater than the natural decay time

, it can be shown that -T a I /T >>l and Equation (4.26) is closely

approximated by

N 1 n((A) (d)
d (ff do . (4.27)

N atn1 + (I+¢)o( ( d) 1 d2
N 0r a

Ro t f off(W

-m St

CASE 2. Gaussian Beam and Rectangular Temporal Pulse Shape.

In this case, the rectangular laser pulse shape NL (t) is again

given by Equation (4.22), and I(p) is given by a Gaussian beam cross

section
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I(P) exp - (4.28)

) 2 lt ex P J
ras rms

where Ap is the rms radius of the beam and p = P1. Substituting

I(p) into Equation (4.15) gives the dimensionless function

I(P') = exp (4.29)
2nt 2

Substituting the dimensionless functions for (p') and NL (t') given in

Equations (4.29) and (4.24) into Equation (4.21), and performing the

integration over and t, we obtain

N 1 [n(o) o (w ) exp(-p 2 /2)
2' =- - do d dp -- d off d2

N T +(x) a. ff (w d)exp(-p /12)

J- O j1 nj Cr t

2(1p- )exp(- P /2)

I St W -d t + Tion (P 2 /2) (4.30)fp ff~~I 2T co(W) 2 i~i]

If At is much greater than the natural decay time x then again

SI t 1 and the second term of Equation (4.30) can be neglected.

In this case
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N ld nf di nf "f (o d( d a ( ) exp(-p'/2) ( .1

d 2- dod  Il .d(4.3l)
I (1+) (s )exp(-p 2 /2)

No at i a t

Performing the integration over p gives the final form of the ratio

N IN
R Ro

N 1 [-r San(w d (l+ c)T a* f(Wd)1 atnd in + d + 1 dwo d (4.32)
N ar 2- 2 n 1,,

Ro t n o S t

CASE 3. Gaussian Section and Realistic Temporal Pulse Shape.

In this case the Gaussian beam cross section I(p) is again given

by Equation (4.28), and the laser pulse NL (t) is given by the more

realistic pulse shape

N
N (t) --L t exp(-t2 /2t2), (4.33)

L 2 rt
r

where t is the risetime of the pulse. The rms length of the pulse is
r

at r = t (2-n/2) / 2. Equation (4.33) is plotted in Figure 4.2.rms r"

Substituting Equation (4.33) into Equation (4.16) gives the

dimensionless function

NL (t') = (2-n/2) t' exp(-t' 2 (1-n/4)). (4.34)
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Figure 4.2. Realistic pulse shape, tr =1.
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Substituting NL (t') and I(p') given in Equations (4.34) and (4.29) into

Equation (4.21) and performing the integration over the plane defined

by p gives

NR 1 T S tn(o d) f(T /T nI , d)

st d B n s d dw (4.35)
N a nT

Ro t - o n

where

f(T / , -j W dt dS exp s (T-t)

exp(-t2(l-n/4))-exp(- (1-n/4))

x exp(-T 2 (1-n/4)). (4.36)

This result, as in the previous cases, is independent of I for At
S

>> n . The analytical results of Cases 1, 2 and 3 are summarized in

Table 4.1.

4.3 Interpretation and Comparison of Results

Unfortunately, the results summarized in Table 4.1 are not easily

interpreted in terms of the laser pulse length, pulse energy, beamwidth

and line width. To illustrate the influence of these parameters on
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TABLE 4.1

Saturation Effects (NR/N R) for the Laser Beam Cross
Sections and Pulse Shapes Assumed in Cases 1, 2 and 3

Case 1: Uniform Beam Cross Section and Rectangular Pulse Shape.*

N R 1 n(wd) aeff(d)d
NRo at Jn o  (+C) a'(Od)

-0 S t

Case 2: Gaussian Beam Cross Section and Rectangular Pulse Shape.*

N R 1 3 atn(wod) (l+a) T naef(Od) +1Jw

- n + 1 dwd
N Ro a t  _,2Tnno ITI s a t I

Case 3: Gaussian Beam Cross Section and Realistic Pulse Shape.

NR 1 [TS atn(Ad) f(s's/'ns d)

N Ro a t n o 0 Tn

where

f(TS/-CIS ) 1- 14 dt dtc exp T (t-t)
,/12 j ff2v(12"t

0 0 n

exp [ af ( d)I exp(-t2(1-n/4))-exp(-_T2 (1-n/4)) 1

exp(- t2 (1-n/4))-exp (-T2 (1-n/4))

* Valid only for At >>
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saturation, the results in Table 4.1 are evaluated for two limiting

circumstances: a very broad laser line width and a very narrow laser

line width. To perform these computations, the form of a(w) and n(wd)

must also be known. For simplicity and illustration purposes the

absorption cross section a(w) is assumed to be given by a single

Lorenzian profile

C (A/2) 2 '0( 2 2 (4.37)

(0 -w) + (6w/2)

where Aw is the FWHM of the spectrum, o is the peak cross section, and

is the center frequency. The distribution of atoms in Doppler

frequency n(w d) is assumed to be given by a Gaussian profile which is

characteristic of thermal broadening. We write

n(w = ° n) exp •I- I 2 (4.38)

d d

where A is the FWHM of the distribution. Doppler broadening is

assumed to dominate natural broadening, implying d >> &w. Recall

a(() is the result of homogeneous broadening (namely the finite decay

time of the atoms) and inhomogeneous broadening is characterized by

n(wd ).

First consider the situation in which the laser line width is

large compared to Ad . It follows that g(w) will be approximatelyd

constant over the frequency range of the absorption spectrum a(c).

The effective cross section o (wd ) reduces to
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a = g(cO) J a(- d) dw

g(w )o w R
0 0 (4.39)

2

where w is the center frequency of a(w). Substituting Equation (4.39)
0

into Equations (4.27) and (4.32) and noting from Equation (4.13) that

a = 0 , gives the following results for Cases 1 and 2 (assuming the

degeneracies g and g2 are equal)

Case 1:

N a ' ( T1 -

-_ i+-i + (Broad laser line width) (4.40)
N
Ro n n

Case 2:

N 2T~
R _ In 1 + I (Broad laser line width) (4.41)
N 2t t
Ro n n

Equations (4.40) and (4.41) are plotted in Figure 4.3 versus the ratio

r P . The Case 3 results given by Equation (4.35) were computed
S fl

numerically and are also plotted in Figure 4.3.

Now consider a narrow line width laser of frequency w (i.e., g(w)
0

= 6(w-w )). By substituting g(w) = 6(wa-w ) into Equation (4.8) we
0 0

obtain

a= f(Wo-0 d) (4.42)
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Figure 4.3. Saturation effects for broad and narrow
laser line widths: N /NRo versus ts/tn for Cases
1, 2 and 3.



165

The corresponding results for Cases 1 and 2 are

Case 1:

N { T a (nln2)h A ( nl2)]+1 + 1.. (4.43)

Ro n d n d

Case 2:

N R w (nln2) 2t xA d
1 + - 1 (4.44)

NRo Tn awd s1'~w nn

Equations (4.43) and (4.44) are plotted versus the ratio *r /T in
sn

Figure 4.3. The Case 3 results are also plotted in Figure 4.3.

The six curves plotted in Figure 4.3 iL.ustrate the effects of
saturation on N IN as a function of the ratio x IT . Recall from the

R Ro 8 n

definition given in Equation (4.20) that x is proportional to pulse
S

length and beamwidth, and inversely proportional to pulse energy.

These curves show that saturation effects decrease (i.e., N IN
R Ito

increases) for one or more of the following actions: increasing pulse

length, increasing beamwidth, or decreasing pulse energy. The gross

effects of laser line width are also demonstrated in Figure 4.3. For a

given value of x /I , the effects of saturation are obviously worse for
3 n

a narrow line width than for a broad line width. This fact is

explained by realizing that the total energy of the laser is absorbed

by only a fraction of the Doppler shifted atoms for a very narrow laser

line width. The saturation effects derived here for the broad line
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width are equivalent to the results of Megie73 and Measures. This

equivalence is due to the fact that all the atoms at a point in the

laser beam see the same laser energy density. Whether the absorption

line is homogeneously or inhomogeneously broadened makes no difference.

As a result, the form of the equations describing saturation are the

same. For the narrow line width situation, however, the saturation

effects derived here are different from those of Megie and Measures.

In this case, inhomogeneous broadening results in a situation in which

the atoms at a point in the beam do not all experience the same laser

energy density. In particular, for the preceding narrow line width

example, only those atoms with a zero Doppler shift see the full energy

of the laser, and as a consequence, the functional form of the narrow

line width equations differs considerably from those of Megie and

Measures.

4.4 Design of Pulsed Lidar Systems

The results of the previous section show that saturation effects

are determined by the choice of laser pulse length, pulse energy,

beamwidth and line width. In the following section we illustrate, by

example, how these results affect the design of pulsed lidar systems.

In general, lidar systems such as those described in References 32, 36-

40, 73 and 74 are designed to achieve a specified range resolution and

signal-to-noise ratio. Range resolution is related to laser pulse

length At by br = cbt/2 where 6r is the range resolution, and c is the

speed of light. Decreasing At, while maintaining a fixed pulse energy,

improves range resolution but may result in a significantly reduced
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signal level due to saturation effects. The expected signal-to-noise

ratio, on the other hand, is affected primarily by the pulse energy.

For negligible saturation, the backscattered signal level increases

linearly with pulse energy. At the onset of saturation, however, the

backscattered signal increases at a lesser rate, reducing the signal

from that expected for negligible saturation. The signal-to-noise

level is also affected by the laser beam divergence. The ratio of

signal-to-background noise is maximized by matching the field-of-view

(FOV) of the receiving telescope to the divergence of the laser beam.

For the case of negligible saturation, decreasing the beam divergence

and receiver FOV together reduces the background noise while

maintaining the signal level. However, as the beam divergence is

decreased, the onset of saturation will reduce the signal level, and

thus reducing the signal-to-noise ratio. The choice of laser line

width also affects the backscattered signal by determining the

efficiency with which the atoms absorb the incident laser energy. In

the case of inhomogeneous broadening, the laser line width also

determines the percentage of atoms within an illuminated volume that

can resonantly absorb the laser energy. A narrow line width implies

that only a fraction of the atoms in the volume can absorb the energy.

This situation, as shown in Section 4.3, has a lower threshold of

saturation, possibly resulting in a significantly reduced backscattered

signal from that expected for negligible saturation.

In the following design examples we consider three sodium (Na)

lidar systems: a daytime lidar system used to measure the mesospheric
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Na layer's vertical density profile, a mesopause temperature

measurement system based on Na lidar, and a pulsed lidar system for the

creation of laser guide stars in the mesospheric Na layer for use in

adaptive imaging in astronomy.

1) Daytime Mesospheric Na Lidar System

The mesospheric Na layer was discovered in the late 20's and has

been explored extensively since the late 1960's with lidar techniques.

Meteoric ablation is believed to be the dominant source of the layer.

The vertical density characteristics of the layer have received

considerable attention In recent years. Much of the past and current

experimental research of the density characteristics has been conducted

using monostatic lidar systems. 3 2
,
3 6- 40 ,

7
3 These lidar systems measure

the vertical structure of the layer by transmitting a short laser pulse

and recording the return flux as a function of time. These profiles

are calibrated and scaled to provide measurements of the Na layer

density as a function of altitude. Figure 2.20 is a typical Na layer

density profile showing a meteor trail measured with the CEDAR lidar

system.3 9 Daytime measurements of the Na layer's vertical density pose

special problems to the lidar designer. Foremost of these problems is

the large background noise associated with the bright daytime sky. To

achieve an acceptable signal-to-noise level, the FOV of the receiving

system must be matched to the laser beam divergence and the beam

divergence itself should be as small as possible. Unfortunately, the

beneficial effects of decreasing the beam divergence are limited by the

onset of saturation. Since saturation effects tend to limit both the
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range resolution and the expected signal-to-noise level, it is

reasonable to require negligible saturation. This condition implies

that the ratio N /N must be nearly unity, and this in turn imposesR Ro

limits on the combinations of pulse energy, pulse length, beamwidth,

and line width. To illustrate these limitations we consider the CEDAR

lidar system operated by the University of Illinois at the Urbana,

39
Illinois field site. This system is presently being operated as a

nighttime system, but is also being modified for daytime use. The

major system specifications of the CEDAR lidar are listed in Table 4.2.

For daytime use, beam expanding optics will be added to decrease the

outgoing beam divergence. We are interested in the minimum allowed

beam divergence for negligible saturation. We also wish to know how

this minimum varies for changes in either the pulse energy or pulse

length.

The minimum beam divergence (or equivalently minimum beam width)

is found by computing N IN given in Equation (4.21), versus rms beam
R Ro

width 6p (recall T and I are functions of Ap ). The minimum
rms S 8 rms

allowed beam width is specified as the point in which N IN falls
R Ro

below some threshold (0.9 for example). For computational simplicity

we approximate the beam cross section I(p) by a rectangular profile and

the pulse shape N L(t) by a rectangular waveform. These approximations

allow us to use the Case 1 results of Section 4.3, Equation (4.26). We

have found that it is the values of the rms beam width and pulse length

that are most significant in the computation. Computations using the

more realistic beam cross section and pulse shape models in Cases 2 and
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TABLE 4.2

CEDAR Lidar Specifications
39

LASER:

Wavelength 589 nm

Line Width 1.4 pm (1.2 GHz)

Pulse Energy 25 mJ (typ)

Pulse Rate 200 pps (typ)

Pulse Length 25 ns

Beam Divergence 1 mrad

RECEIVING SYSTEM:

Telescope Area 1.17 m2

Field-of-View 3 mrad

Optical Bandwidth 20 A FWHM

Range Resolution 75 m
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3 of Section 4.3 have given results essentially identical to the Case 1

results for equivalent rms parameter values. Note that the simplified

result in Equation (4.27) may not be used in this case since the pulse

length of the CEDAR lidar is on the order of T . We model the fine
n

structure of Na's absorption cross section a(w) with the weighted sum

of six Lorenzian profiles. Each profile corresponds to one of the six

atomic transitions within the Na D line. 2 The cross section a(w) is2

plotted in Figure 2.21. The Doppler distribution n(wd) is assumed

Gaussian with a FWHM of 1070 MHz. This width is the expected value for

the Na layer at an altitude of 95 km and a temperature of 2000 K. The

Doppler broadened absorption spectrum is also plotted in Figure 2.21.

The natural decay time T of Na is assumed to be 16 ns. We also assume
n

that N IN must be greater than 0.9 for negligible saturation.R Ro

Combining these assumptions and the laser wavelength and line width

specified in Table 4.2 with Equation (4.26) results in the design

curves shown in Figure 4.4. These curves were obtained by setting

Equation (4.26) equal to 0.9 and solving for the beam width for various

combinations of pulse energy and pulse length.

The general trends in the curves are as expected from the

discussion in Section 4.3. Increasing the pulse length or decreasing

pulse energy lowers the minimum allowed beam divergence. Obviously,

lasers with very short pulse lengths and large pulse energies are

limited the most by the minimum allowed beam divergence. In terms of

the use of these curves for design, operation in the region above and
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configuration).
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to the right of a curve (N I/N o > 0.9) will insure negligible

saturation effects for the listed pulse energy. For the CEDAR lidar

system with a rms pulse length of 7.2 ns (pulse length of 25 ns) and a

pulse energy of 25 mj we find that the beam divergence can be no

smaller than 0.18 mrad.

2) Na Temperature Lidar System

High resolution temperature profiles near the mesopause can be

obtained by active probing of the Doppler broadened hyperfine structure

of the Na D2 resonance line.3 6 '7 4 The ratio of the absorption cross

section at one of the peaks to the minimum between the peaks is a very

sensitive indicator of temperature (see Figure 2.21). This ratio can be

measured by alternatively tuning a narrowband lidar between the peak

and the minimum of the resonance line. A narrowband lidar is

required because of the bandwidth resolution needed to accurately probe

the fine structure of the resonance line. We observed in Section 4.3

that for a given pulse energy, pulse length, and beam divergence,

saturation effects can be significantly worse for a narrowband laser

than for a wideband laser. To illustrate the effects of saturation on

the design process, we again consider the CEDAR lidar specifications in

Table 4.2 and investigate modifications to the system for a temperature

measurement system. As in Example 1, we are interested in daytime as

well as nighttime operation. Basically, the same design considerations

and assumptions as in Example 1 are valid for this problem. The

primary difference between the two systems is the line width of the

laser. In this case the laser line width is reduced to 0.13 pm so that



174

the fine structure of the Na absorption line can be probed.7
4

Performing the same computations as in Example 1, but for the narrow

line width, we obtain the design curves shown in Figure 4.5.

These results are similar in form to those of the previous

example, but differ in magnitude. This difference can be attributed to

the difference in line width between the two examples. As before,

operation in the region above and to the right of a curve (NR /NRo >

0.9) will insure negligible saturation effects for the listed pulse

energy. For the CEDAR lidar system with an rms pulse length of 7.2 ns

(pulse length of 25 ns) and a pulse energy of 25 mj we find that the

beam divergence can be no smaller than 0.5 mrad. This minimum

divergence is -2.5 times greater than that allowed for the wide line

width laser in the previous example.

3) Laser Guide Stars in the Mesospheric Na Layer: Off Zenith Effects

A potentially important application of pulsed Na lidars is the

creation of bright artificial guide stars in the mesospheric Na layer

for adaptive imaging applications in astronomy. The basic design

equations giving the required Na laser parameters are derived in

Chapter 2 (see Equations (2.47)-(2.49)). These equations include the

effects of saturation by incorporating the generalized scattering cross

section a . Here a is related to the ratio NR/NRo by the simple

relationship

NR

a. = at -(4.45)
NRo
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Figure 4.5. Minimum allowed beam divergence versus rms
pulse length for the narrow line width (0-13 pm)
CEDAR lidar system (atmospheric temperature
measurement configuration).



176

where the ratio NR /N Ro is given by Equation (4.21). Recall that at is

the scattering cross section for negligible saturation. Since the

laser-guided telescope must work for a range of zenith angles, the

effects of scanning the guide stars away from zenith must also be

considered. This is done by first finding the laser requirements for a

zenith pointing guide star and then computing the percentage change in

pulse energy required for the largest zenith angle of interest. This

percentage change is given by Equation (2.49) of Chapter 2. Here we

discuss the factors that lead to Equation (2.49).

The geometry for the off zenith effects is shown in Figure 4.6.

The effects of pointing the laser off zenith are manifested through

several geometrical correction factors. These factors must be

incorporated into the expression for the required laser pulse energy ET

given by Equation (2.47). The rms beam radius at the scattering layer

for an arbitrary zenith angle is

APo
AP 0 (4.46)

rms cose

where Ap is the rms beam radius at zenith. At angles away from zenith
0

the atmospheric transmission will decrease due to the increased p i

length through the lower atmosphere. The transmission at zenith is

written

T (1=0) = exp(-a ), (4.47)a d
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where a is the optical depth of the lower atmosphere. For angles away

from zenith the optical depth must be increased to account for the

increased path length to the layer giving

T (e) = exp(-a /cose). (4.48)a d

The distance from the telescope to the turbulence layer ht increases

with zenith angle. It is easy to see from Figure 4.6 that ht varies as

h
t

ht(e) = (4.49)
cosO

At zenith the column abundance will simply be the vertical column

abundance of the layer. The column abundance for an arbitrary angle is

C (e) = C /coSe. (4.50)

s a

The seeing cell diameter r. also varies with zenith angle (see Equation

(2.5))

r (0) = r (cose)3/5 (4.51)
0 o

Incorporating Equations (4.46)-(4.51) into Equation (2.47) we find

1.78x10- 3 n2 h c D
2 h2

E T((8 ) = C - - (4.52)
r 4 (af/x)2 2/5  Yl T2( )) XL C a.,() (cos)17/ 5

where ET (6) is the required pulse energy as a function of zenith angle.

The scattering cross section a,(e) is given by Equation (4.45) where

T , used in the evaluation of NR /NRo, is replaced with
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2 At n AP2 h c
(e) = E.LT ) t(OO (4.53)

S E k T (e) t (cose) 2

Finally, the ratio ET(e)/ET(O) is found to be

- exp 2ad 1 - c () 1(4.54)
ET(O) as (0) (cos9)' 7 / 5

which is the same as that given in Chapter 2, Equation (2.49).

4.5 Summary

Nonlinear resonance absorption (saturation) effects for pulsed

laser systems have been quantified in terms of the laser's pulse

energy, pulse length, beamwidth and line width. Saturation effects

arise when the atomic population densities in the scattering medium are

altered by large laser energy densities within the layer. These large

energy densities can reduce the number of lower state atoms giving rise

to significantly reduced backscattered signal levels. The fundamental

parameters describing the saturation effects are the saturation time T

and the laser line width A . The ratio T /t is a measure of the
rmfs n

level of saturation and is proportional to pulse length and beamwidth

and inversely proportional to pulse energy. The choice of T /T
S n

involves tradeoffs of these laser parameters. The line width, on the

other hand, can be chosen to minimize laser power requirements. For

negligible saturation, a narrow line width at the peak of the

absorption spectrum of the atoms is optimum. For appreciable

saturation, the optimal line width is on the order of the width of the

Doppler broadened absorption spectrum.
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5. EFFECTS OF TURBULENCE INDUCED ANISOPLANATISM ON THE
IMAGING PERFORMANCE OF ADAPTIVE ASTRONOMICAL TELESCOPES

USING LASER GUIDE STARS

5.1 Introduction

The performance of adaptive optics systems has been studied

extensively during the last 15 years, and several fundamental

limitations preventing ideal imaging performance have been identified.

One of these limitations is anisoplanatism. An adaptive optical system

consists of two fundamental components: the wavefront sensor and

wavefront correction device. The wavefront sensor measures the

turbulence induced phase perturbations across the aperture of the

optical system, and this information is in turn used to drive the

wavefront correction device. The perturbations are detected by

measuring the shape of a wavefront from a reference source. The

reference source may coincide with or be adjacent to the object being

imaged. In the case of an adaptive telescope used for astronomical

imaging, the reference source is typically a bright, natural star

(guide star) adjacent to the celestial object of interest or, as

suggested more recently, a laser guide star created in the upper

atmosphere. Regardless of the application, anisoplanatism degrades the

imaging performance of the adaptive optics system for nonzero

separations between the object and reference sources. The effects of

anisoplanatism arise because of the distribution of the turbulence

along the optical path. An angular separation between the reference

source and the object results in two optical paths traversing different

regions in the turbulence. The turbulence effects in one path are only

partially correlated with the turbulence effects in the other path.



181

This partial correlation degrades the accuracy of the wavefront

compensation in the adaptive optics system. In the case of

astronomical imaging, effective wavefront compensation is limited to an

angular region surrounding the position of the guide star. This

angular region is quantified by the isoplanatic angle. For

astronomical imaging using laser guide stars, anisoplanatism has an

additional impact on imaging performance due to the relatively low

altitude of the guide stars. The spherical wavefront from the guide

star in combination with the effects of anisoplanatism increasingly

degrade the wavefront compensation for points farther and farther away

from the center of the aperture (i.e., those points not directly in

line with the guide star and object). The degradation is caused by the

increasing difference between the incidence angles of the laser guide

star and object wavefronts. For large telescopes, multiple laser guide

stars are required to sample the entire aperture. 3 These astronomical

applications highlight the importance of being able to quantify

anisoplanatic effects on the performance of an adaptive imaging system.

The effects of anisoplanatism on adaptive optics systems have been

treated extensively in the literature. 26-30,3578 These past studies

characterize the effects of anisoplanatism by calculating how the

optical transfer function (OTF) of an adaptive optics system changes as

a function of the angular separation between the reference and the

object sources. The previous analyses depend ultimately on the ability

to calculate the wavefront phase correlation between the two
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propagation directions. Inherent in the past analyses is the

assumption that the adaptive optics system is capable of perfectly

measuring and reconstructing the perturbations of the reference

wavefront. The nonideal characteristics of the wavefront sensor and

wavefront correction device are not included. The accuracy and spatial

frequency response in any real wavefront sensor is limited by photon

noise and by the finite number of sampling areas over the wavefront

surface. For example, wavefront aberrations having characteristic

spatial frequencies greater than the sensor's spatial sampling

frequency, go undetected. Wavefront correction devices, such as

deformable mirrors, are also less than ideal. The ability of a

deformable mirror to cancel wavefront aberrations is limited by the

finite degrees of freedom in the device's response. This limited

response will prevent it from correcting higher order wavefront

aberrations. Another limitation of the previous analyses is that, in

effect, only the measured perturbations of the reference wavefront are

used to compensate for the perturbations of the object wavefront. No

attempt is made to use the statistical correlation between the object

and reference wavefronts in the wavefront compensation process.

We present an analysis technique for characterizing the effects of

anisoplanatism on adaptive optics systems using slope sensors. The

technique is developed in a very general sense, allowing for an

arbitrary geometry between the reference source, the imaged object and

the aperture of the optical system. Imaging performance is quantified

by two measures: the residual mean-square phase error over the
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aperture and the OTF. The wavefront correction system consists of an

aperture, a wavefront slope sensor, a wavefront correcting device and a

control law. We concentrate on phase correcting systems, and assume

that turbulence induced amplitude effects are negligible. The

wavefront correcting device is a deformable mirror with a finite number

of actuators. The wavefront sensor samples the aperture plane over a

specified number of subapertures. Each subaperture sensor makes a

noisy measurement of the phase slope of the reference wavefront. The

control law uses the slope measurements in addition to the phase

correlations between the reference and object wavefronts to calculate

the actuator control signals for the deformable mirror. The control

signals are adjusted to minimize the mean-square difference between the

reconstructed wavefront and the object wavefront.

In Section 5.2 a general framework is introduced to describe the

geometry between the reference source, the imaged object and the

aperture of the optical system. Section 5.3 introduces the basic

assumptions and definitions characterizing the adaptive optics system.

These assumptions encompass the wavefront sensor, deformable mirror,

and control law and are similar to the assumptions of Chapter 3. In

Section 5.4 we calculate the mean-square residual phase error between

the reconstructed wavefront and object wavefront. In Section 5.5 the

OTF is formulated in terms of the results found in Section 5.4.

Sections 5.4 and 5.5 are brief, since the basic analysis approach has

been treated in Chapter 3 and in References 6 and 52. In Section 5.6

the statistical correlations of the reference and object wavefront
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phases are derived in terms of the generalized phase structure

function, which is then introduced in Section 5.7. Finally, in Section

5.8, we present computational results showing how anisoplanatism

affects the design and performance of the laser-guided telescopes

discussed in Chapter 2. The computational results indicate how many

guide stars are required for a given telescope size and how imaging

performance degrades as the observation direction is separated in angle

from that of the laser guide stars.

5.2 Geometry

A critical component of the analysis presented in Sections 5.4-5.6

is the statistical correlation between the wavefront phase at two

arbitrary points in the aperture. The two points are associated with

two optical paths through the turbulence. The paths may originate from

two separate sources, as in the case of an adaptive telescope using a

guide star, or may originate from a common source, as in the case of a

system using the object itself for the reference wavefront. In either

case, to calculate the phase correlations, we must characterize the

transverse distance between the two paths as a function of position

along the paths.

Consider two point sources within the field of view (FOV) of an

optical system. The wavefronts from both sources pass through a

turbulence region in the atmosphere. Figure 5.1 illustrates the
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geometry between the point sources and the aperture of the optical

system. Assume the two sources are located at the vector positions r

and rr. The z-components of the vectors r. and rr are designated zo

and z., respectively. Let the vectors x. and xr describe the points of

incidence in the aperture plane (xy plane) for waves traveling from the

two sources. The subscripts "o" and "r" are arbitrary, but are later

related to the object and reference wavefront sources. The uv plane is

defined to be parallel to the image plane and located on the z-axis at

z = z'. The vectors po and Rr lie in the uv plane and describe the

points of intersection between the plane and the optical paths from the

sources o and r. The vector p. is given by

= + [(r-xo)-RJ* + [(ro-x).-2Jj (5.1)o = o 1 - _,

where k and 2 are unit vectors in the x and y directions. The vector

Rr is given by Equation (5.1) with the subscript "o" replaced with "r."

Of particular interest is the distance between the intersection points

p. and pr as a function of the position of the uv plane on the z-axis.

Let the vector APor be defined by

apor = o - Pr. (5.2)

Substituting Equation (5.1) into Equation (5.2) gives
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Aor(Xor ,z') = xo - r

([°-x°)'Rl [(r-)] -Rz

zo

- rZ~ .(53

Equation (5.3) is applicable for any reference-object-aperture

geometry. In the case of astronomical imaging using laser guide stars,

the source of the reference wavefront is a laser guide star, and the

source of the object wavefront is a celestial object. The guide star

is modeled with a point source located on the telescope axis (z-axis)

with a height corresponding to that of the guide star. The wavefront

from the celestial object is assumed to be a plane wave and is modeled

with a far field point source located at a zenith angle e. By letting

the subscript "g" designate the optical path from the guide star and

the subscript "o" designate the optical path from the celestial object,

we find that Equation (5.3) simplifies to

APo (xox ,z') = x - x -1 11
I g

+ z'(tane x k + tanOy j), (5.4)

where ex and 0 are angular offsets in the x and y directions and are

related to the zenith angle 0 by

e = tan-'[tan29) + tan2e]. (5.5)
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If e << 1, Equation (5.4) is well approximated by

AP. o ( o, , z' _o -- - [7 11 + ek + ). (5.6)

The geometry of two optical paths emanating from a single source

is also of interest. In this case the two points in the aperture are

designated x and x' and the source positional vectors satisfy r. = r.

For the laser guide star geometry described above we find that

9R (x,x',z') = (x - x') - (5.7)

and

ap(X,X',z') = x - X'. (5.8)

5.3 Adaptive Optics System Definitions and Assumptions

The following system definitions and assumptions closely follow

those of Chapter 3 and References 52 and 6. Here the definitions and

assumptions are generalized from those given previously to account for

the possibility of separate reference and ohject wavefronts sources.

Consider a wavefront correction system consisting of an aperture, a

deformable mirror, a wavefront sensor and a control law. The

deformable mirror and aperture pupil plane are optically conjugated.

The mirror surface is controlled by a finite number of actuators which

can effect zonal or modal surface deformations. The wavefront sensor
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and the pupil plane are also optically conjugated. The aperture is

segmented into subapertures, and the wavefront sensor measures the

average phase slope of the reference wavefront within each. The

control law uses the measured wavefront slopes in addition to the phase

correlations between the reference and object wavefronts to position

the actuators of the deformable mirror.

The aperture of the optical system is described by the weighting

function WA(x) where x is a vector in the pupil plane. It is

convenient to normalize VA(x) such that

Sd2X WA(X) I, (5.9)

where fd2x indicates integration over the entire aperture plane.

The phase perturbation of the object wavefront at a point x in the

aperture plane is designated %po(x) (rad). The phase perturbation of

the reference wavefront is designated *r(X) (rad). The geometry

between the object and reference sources is arbitrary at this point and

is not specified until the we consider the laser guide star geometry in

Section 5.7. Since any uniform phase perturbation over the aperture

does not affect optical performance, it is convenient to define zero

mean phase perturbations t_(x) and *r(X) which are related to *o(x) and

*r(x) by

oc(39 = 4o,r(3) - { d2x' WA(-') or(3')" (5.10)
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The output of the nth wavefront sensor is a noisy measurement of

the average slope of *r(x) over a subaperture defined by Wn(x):

Sn = d2' x Wn(x) [vr (x)d nI + a n (5.11)

where

sn = slope signal from the nth sensor (rad/m),

Wn(x) = weighting function for the nth sensor (m-1),

V r(x) = spatial gradient of #r?

dn = unit vector in the direction of the sensitivity of the nth

sensor,

an = slope measurement error for the nth sensor (rad/m).

The weighting function Wn(x) is defined in a manner similar to that of

WA (x). Welsh and Gardner6 show that sn can be rewritten as

sn =-n d 2 x [VW_ (x)-d ]  (x) + a (5.12)

For notational simplicity we let Ws(x) designate VW_ (x).d , where the

superscript "s" indicates the slope of Wn (x) in the direction of the

sensitivity of the nth slope sensor. The measurement error c is
n

attributed to photon noise in the slope measurement and is assumed

independent of the wavefront phases *r(x) and *o(x).
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The control law generates a command for each actuator of the

deformable mirror based on the slope measurements. Using a linear

control law we define the actuator drive signal c

C = in n (5.13)

n

where c is the command sent to the jth actuator and M is thej in

weighting of the nth sensor signal in the jth actuator command.

Finally we define the reconstructed wavefront +(x) as

(x) c c1 r ix), (5.14)

where r (x) is the response ot the mirror to a unit command at the jth

actuator.

5.4 Mean-Square Residual Phase Error over the Corrected Aperture

Since the deformable mirror is located in a conjugate plane of the

pupil, we can analyze the system as if the corrected wavefront passes

through the pupil plane. As a consequence, we can write the residual

phase error between the estimated wavefront phase * and the object

wavefront phase +o as
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SZ r (x) 7 ns - *(X) (5.15)

jn

Note that, as defined in Equation (5.15), A has units of radians. For

the results in Section 5.8 the phase error is presented in units of

waves (m). Rather than define a separate notation, we use the symbol

a# to designate the error for both cases. The units of A should be

obvious in each case.

We are interested in calculating the average mean-square residual

error defined by

<o'> = d2x W(X) <+2(X)> , (5.16)

where the operator <> designates an ensemble average. Substituting

Equation (5.15) into Equation (5.16) gives
6
,52

<42€ =M M S R

jn j'n' nn' jj'
j j' j'

- 2 7 Mn A n

Sn

+ <A 2>, (5.17)
0

where S n, R j and A jnare given by

nn' ...a 3n
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S <s s >
nnl' n n'

Fj, d2c- FA d r''W(x) r 5,(x)_' x'4
+ <cc cc >(5.18)

Rd'x WA (x) r i(x) r I(x), (5.19)

A. = 2X W (x) r(x) <s

jn A () no-)

=-[d 2x F d2 x' W (x) r (x) W5 (x')<.(x)*r(x')>, (5.20)J J - A j- n _

and the average mean-square uncorrected error <6+2> is
0

= 2 d x W_(x) < 2 (x)>. (5.21)

The terms Sn, and Ajn given in Equations (5.18) and (5.20) are nearly

identical to the terms derived in Chapter 3 and by Wallner, 5 2 and Welsh

and Gardner.6 The subtle, but important, difference between the terms

shown above and those derived earlipr is the generalization of the

expressions to include the effects of separate reference and object

wavefronts. The previous analyses only consider the possibility of a

single wavefront source. The additional generality in Equations (5.18)

and (5.20) allows us to investigate the effects of anisoplanatism on

the performance of the adaptive optics system.
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The mean-square residual phase error given by Equation (5.17) is

valid for an arbitrary control matrix M . A control matrix giving the

minimum mean-square residual error is obtained by differentiating

Equation (5.17) with respect to Min and equating the result to zero.

Wallner5 2 gives the minimizing control matrix M* as
Jn

M* () = A S-  (5.22)

jn jj' j'n' n'n

where we have used standard matrix multiplication notation to denote

the summations. Wallner states the general conditions for the

existence of R-1  and S- n. Substituting this control matrix back intoJJ' n'n

(5.18) results in the minlmum mean-square residual phase error:

<0 2 > <6 2> - R-' A S-' A . (5.23)
min jj' j'fn' n'n jn

5.5 Optical Transfer Function

The OTF is defined in terms of the complex amplitude field E(x) in

the aperture of the optical system. Assume E(x) is produced by a far

field point source. It is well known that the OTF can be written as

the convolution of E(x) with its complex conjugate E*(x):
67

d2X (x) E(x) W*(x-p) E _(-p)

H(p) (5.24)

J d2X 1W (x)E(x)l 2
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where H(p) is the OTF, and p and x are two-dimensional vectors in the

aperture pupil plane. Spatial frequency is related to the positional

vector p by v = 1_2l/XfD, where v is spatial frequency (cycles/m) and f-- D

is the focal length of the aperture lens. Using the results given in

the previous section and the derivation introduced by Welsh and

Gardner6 (see Chapter 3, Equations (3.18)-(3.24)), we can show that the

ensemble average OTF of the phase corrected aperture, <H(p)>, is

<"(P)>(=)- d xx-P(x-J

<(p)> = d2x ()2 _ (x) W(X-P)

X [exp -_r(x) - r.(x-p)J[r.(x) - r (x-)1 C
j - -- 1 i -- ji

j i

+ [rj(x) r,(x-p), <cj+,o(x) - * (x-p)ij] (5.25)

where

C =<cc>
ji j i

)) M in S (5.26)

n M
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and

<c [+o(x) - *o(X-p)I> =

Mm fd2X, W" ')<r() O(x)> - <r(30'o( -)> (5.27)

n

Just as in the case of <&+2>, the expressions given in Equations

(5.25)-(5.27) are nearly identical to the expressions derived in

Chapter 3 and by Welsh and Gardner.6 The difference is in the

generalization of the equations to include the effects of separate

reference and object wavefronts.

5.6 Waefront Phase Statistics

Equations (5.23) and (5.25) are the main results of the previous

two sections. To evaluate these equations the phase correlations

<+r(x)+t(x')>, <*_(x)+r(x')> and <+_(x)+ (x')> must be computed.

These correlations can be written as a function of the generalized

phase structure function Dor(x, x'). The structure function Dor(x,x')

is defined by

D__(x,x') = <[W(x) - *r(x')] 2> , (5.28)

where the vectors x and x' are positional vectors in the aperture plane

of the optical system. Calculating the phase correlations in terms of

Equation (5.28) is a straightforward application of the derivation

introduced by Wallner.2  We do not repeat the derivation here, but

simply state the result:
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<+_(x)+,(x,)> = - D_ (x,x') + g_ (x) + go(x') - (5.29)

where

g_ (x) = d2x"'' WA('') Dr(xx''), (5.30)

and

f - i dx'' I dxI'" WA(X'') WA (x''') Dor(x'',x'''). (5.31)

Substituting Equation (5.29) into the expressions for S and A

given by Equations (5.18) and (5.20) results in

S =- [ d~x' [ d2x'' Ws(x') W8(x'') D (x',x')
nn - n n

+ <O a , (5.32)
n n'

and

=- J d 2
x J d 2

x' W(x) r(x) WS(x')Ajn A _ VAX i _ n _

X [- Do,(x,x') + gro(X')), (5.33)

where it is assumed that f d2x Ws(x) = 0. Also substituting Equation

(5.29) into the expression for <H(p)> given by Equation (5.25) results

in
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__ _ __0 __ _ (x (x)

<H(p)>_ d2X V (X) V - )f d2X IW (X)12  j -A- A-X

X [exp(- Z r (x) r i(x-p)][r i(x) - r M-01) Cji
j i

+ irj(x) - r (x-p)] <c i[,(X) - ,(X-P)]>l, (5.34)

where

<cj [*o(x) - *_(x-P)J> =

M f 2X, WS (x') [Dor(xEx')-Dor(X-P'x')]" (5.35)

n

5.7 Phase Structure Function

For homogeneous isotropic turbulence with a Kolomogorov spectral

density, Lutomirski and Buser 79 show that the phase structure function

Dor is given by

r ain

D_ (x,x') = 2.91 k2 C(z') IC2 ( , ')15 / 3 dz' (5.36)

0

where Cn (m
- 2/ 3 ) is the structure constant of the refractive index

fluctuations and z in is the minimum of the z components of the

source's positional vectors r. and rr. Lutomirski and Buser7 9 obtain

the expression in Equation (5.36) by assuming that the magnitudes of

the vectors x, x', p0 and pr are much smaller than z and zr. Also, in
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the case of separate vavefront sources, Equation (5.36) is valid only

if the turbulence effects are negligible for z > zmin (i.e., Cn(z) = 0

for z > zain). In the case of astronomical imaging, the first

restriction is satisfied for «zh << I and D << zh where e is the

angular offset from the telescope axis of the direction of interest and

z h is the maximum height of the turbulence. The second restriction is

satisfied if the guide star height z9 (=Zr) is greater than zh.

Rewriting Equation (5.36) in terms of the Fried seeing cell diameter r.

gives

mo
r i n

6.88 fCn(z') I'Ror(-xx',ZP)1 5 /3 dz'

Dr(x,x,) = 0 (5.37)

r5/ 3  C2( z') dz'

where we have used the following definition of r0 :28

[ 2 9 min

r = 68k 2  C(z) dz (5.38)

In the computational results of the following section we consider

the laser guide star geometry discussed in Section 5.2. In this case

the subscript "r" (reference source) is replaced with "g" (guide star)

in the equations of Sections 5.3-5.6. The expressions for APoq 9 Pg9

and Ap.o given by Equations (5.6)-(5.8) are substituted into Equation

(5.37) to obtain



2oO

6.88
D 0, 9 ( x , x ' ) = r /o- n C

r I/  C2 (z') dz'
0 nf

0

X C(zI) + z'(e8 + e2) dz,, (5.39)X c2( ' ) x-x' l

in Z 5/

6.88 Ix - x' 5 3  C(z') 1 - dz

D 9(x,x') = f , (5.40)

r5/3 C 2(z') dz'

and

Ix - x' IS/3
Doo(x,x') = 6.88 (5.41)

0

Note that Equations (5.40) and (5.41) are commonly referred to in the

literature as the spherical and plane wave phase structure functions,

respectively.

5.8 Computational Results

One of the key design parameters that ultimately determines the

laser power requirements for a laser-guided adaptive telescope is the

number of guide stars required to fully sample the telescope aperture.5

Due to the small size of the isoplanatic angle at visible wavelengths,

multiple guide stars are required to correct a large telescope

aperture. This was first pointed out by Foy and Labeyrie.3 Thompson
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and Gardner 3 1 and Gardner et al.5 calculate the required number of

guide stars by specifying that each point in the aperture of the

telescope must lie within the isoplanatic angle of a guide star.

Figure 2.4 illustrates a diagram of the isoplanatic angle superimposed

on a cross section of the telescope aperture. The points in the

aperture that lie within the isoplanatic angle are encircled by an area

of diameter DrP where Dp is given by
3'

DIP = 2 z. e1 , (5.42)

Z is the height of the guide star above the telescope entrance plane,

and eP is the isoplanatic angle. For aperture diameters D > Dip,

Gardner et al.5 calculate that the approximate number of guide stars

(N gs) required is

D 2  D 2

N = - (5.43)gs D2  
4 Z2 

92

IP g I p

The value of OP substituted into Equation (5.43) depends on the

definition used and the desired imaging performance. Gardner et al.,

rather arbitrarily, chose a definition given by Fried:
28

r. f 1 - h]C() d(

p = 6.88)/3(5.44)

C2(&) &5/3 d&

Modeling the atmosphere with a single turbulent layer at an altitude ht

and using Equation (5.44) they find that
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r
p =-. (5.45)

3ht

In this case N is given bygs

D2 ht
2

N =2.25 - . (5.46)
gs Z2 r2

9 0

Fried's definition of 0., is based on the assumptions that the object

and reference wavefronts are plane waves and the adaptive optics system

is capable of perfect wavefront compensation for the case of coincident

object and reference sources. For these assumptions Fried finds that

when the angular separation between the object and reference wavefront

is e, the Strehl ratio of the adaptive optics system degrades to a

value of - 0.4 for aperture sizes larger than r .

The calculation method used to obtain Equation (5.46) does not

take into account the nonideal characteristics of the wavefront sensor

and deformable mirror, nor the effects of photon noise on the wavefront

measurements. Additionally, the approach fails to take into account

the spherical nature of the wavefront from the laser guide star. In

the first half of this section we present computational results that

indicate how many guide stars are required for a given aperture size

and guide star height. We also show how imaging performance varies as

a function of the number and height of the guide stars. In addition to

the requirement of multiple guide stars, the effects of anisoplanatism

also limit the FOV of the adaptive telescope. In the last part of this
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section we quantify the degradation in imaging performance as a

function of angular separation between the laser guide star and

observation direction. These results also indicate the maximum FOV of

the laser-guided telescope.

Performance Measures

The performance measures used in the following results include the

residual phase error across the aperture, the Strehl ratio, the

ensemble average OTF, and the ensemble average point spread function

(PSF). The residual phase error <6 2> and the OTF <H(p)> are given by

Equations (5.23) and (5.34). The Strehl ratio is a general indication

of how well the peak intensity of the image due to a point source can

be discerned from the surrounding intensity distribution. For <6,2>4 <

2n/lO radians the Strehl ratio S can be approximated by'

S(<A 2>) = exp(-_<af2>). (5.47)

The ensemble average PSF <s> is related to <H> by the two-dimensional

inverse Fourier transform:
67

F -1(<H(p)>)

<s(y/Xf)> 2 (5.48)
D (Xf D)2

where s is the unaveraged PSF, y and p are vectors in the image and

pupil planes respectively, and the operator F- 1 is the two-dimensional2

inverse Fourier transform. As in Chapter 3, the computational

requirements are reduced by calculating the one-dimensional (lD) PSF

instead. The 1D PSF is related to the 2D PSF by
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<s(u/ Xf D)> dv <s(u/Xf Dv/Xf D)>

J x<H(x, 0)>exi2x(i.]dx - exp 2nx

fD u f

F-I(<H(x,O)>)

1 , (5.49)
Xf0

where (u,v) and (x,y) are Cartesian coordinates in the image and pupil

planes respectively, and the operator F-1 is the iD inverse Fourier1

transform.

Description of Deformable Mirror and Wavefront Sensor

The mirror is assumed to be of monolithic design with an actuator

spacing equal to d. Figure 5.2 illu-trates the actuator geometry. The

actuator response r (x) is assumed Gaussian:

r (x,y) o exp 2 (5.50)

a

where x and y specify a point in the plane of the mirror, x and y

specify the actuator location, and d is the influence radius. The
a

Gaussian response is often used to model piezoelectric or membrane

deformable mirrors.
6

The model of the wavefront sensor is derived from the basic

characteristics of the Hartmann sensor. Figure 5.2 illustrates the
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Figure 5.2. Wave front sensor and mirror actuator
configuration.
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geometry of the sensor. A square aperture of dimension D is divided

into equal size subapertures of dimension d. In each subaperture the

slope is sensed in both the x and y directions.

The following model for the second-order statistics of the slope

measurement noise an is presented in Chapter 3 and by Welsh and

Gardner:
6

< t > = 2 k , (5.51)
n n' nn'

where

2 2 - 2
a2 = mean square slope error (rad m ),

k = cos* ,p

= the angle between the direction of sensitivity of the nth and

n'th sensors,

( 1 nth and n'th subapertures coincide

6nn'= 0 otherwise.

The magnitude of a2 depends on the type and configuration of the slopen

sensors used in the wavefront sensor. Consider the single Hartmann

sensor shown in Figure 3.4. The subaperture slope is measured by

sensing the position of the diffraction limited spot in the focal plane

of the lens. The spot centroid is sensed with an array of photon

counting devices such as a CCD detector array. In Chapter 3 we showed

that a can be writtenn
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I 0.86n d
d> r

r (5.52)

n 0.74nri
d < r

VNd

where rl is a parameter accounting for imperfections of the detector

array (i.e., the effects of finite size array elements and dead space

between array elements), and N is the total subaperture photon count.

Note that 11 > 1 and that V = 1 only in the ideal case of infinitely

small detector elements with no dead space between elements. In the

following computations we assume n=1.35. This value is typical of the

minimum achievable for currently available intensified CCD detector

arrays. 14,15

Turbulence Model, C

Two models are used to characterize how the turbulence is

distributed in the lower atmosphere. In the first model the turbulence

is confined to a single layer at an altitude ht . The structure

constant C2 is given byn

C'(z) = C' 6(z-ht), (5.53)

where 6(z) is a Dirac-delta function. This model was chosen for two

reasons. First, the use of Equation (5.53) simplifies the expression

for the phase structure function Dor given in Equation (5.37). The

simplification results in one less integral to evaluate and greatly

reduces the amount of computation required to calculate <A,2> and

<H(p)>. Secondly, in the past analyses, the atmosphere is frequently
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modeled with a single turbulent layer. For comparison purposes, this

model matches that assumed by Gardner et al.5 for their calculation of

the required number of guide stars.

In the second model, the turbulence is distributed continuously

from ground level to an altitude of - 20 km. The structure constant

C2 is assumed to be given by the Hufnagel model80n

C2(Z) = A[2.2 Xlo-21 z10 e' + 10-16 e'"is]5 (5.54)

where A is an arbitrary scaling constant. Figure 5.3 is a plot of C2
n

normalized by its integrated area. The Hufnagel model is included

because it represents a more realistic model of the atmosphere than the

single layer model.

Results

1) Number of Guide Stars Required for a Laser-guided Adaptive

Telescope: The required number of guide stars is computed by first

studying the imaging performance of an adaptive optics system for the

case of a single laser guide star on the axis of the aperture. The

results are then extended to multiple guide stars. For a fixed

aperture size, the altitude of the guide star zg is varied, and the

change in imaging performance is computed. The object wavefront is

modeled with a far field point source on the axis of the aperture

(i.e., at a zenith angle e = 0). To indicate that the calculations are
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for a single guide star we let Di designate the dimension of the

aperture. The results are computed for relatively small apertures

(i.e., apertures with 4 to 36 subapertures) in order to minimize the

computation requirements. The small aperture calculations are

generalized for larger apertures by using a simple scaling

relationship.

The results indicate, as expected, that as the altitude of the

guide star decreases the imaging performance degrades in a continuous

manner. The mean-square wavefront phase error <6#2> asymptotically

approaches a minimum as the distance between the aperture and guide

star goes to infinity. The value of <6,2> is dependent on the height

of the guide star, the size of the aperture, the subaperture/actuator

spacing, and the photon noise level in the wavefront sensor. For a

fixed subaperture/actuator spacing and a fixed photon noise level, the

dependence of <6+2> on the two remaining parameters, z q and D., is

reduced to a dependence on the ratio D1 /z . This dependence verifies

the applicability of the scaling relationship discussed above. For

example, the computed results for a given aperture size are valid for a

larger aperture as long as the ratio D1 /z 9 , the subaperture/actuator

spacing, and photon noise level are all equal for the two apertures.

In the following results both the subaperture/actuator spacing and the

photon noise level are fixed, and only the effects of varying D/z 9 are

examined. The effects of varying the subaperture/actuator spacing and

the noise level have been investigated in Chapter 3 and in Reference 6.
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For the two turbulence models, Figures 5.4 and 5.5 show the

residual rms phase error <A 2>4 as a function of DI/Do, where Do is

defined to be

z r
Do= r (5.55)

h ht

The ratio Di/D. is simply the ratio of an aperture of diameter Di to an

aperture of diameter D., where Do can be interpreted as a measure of

the largest telescope diameter requiring only one guide star. From

Equations (5.42) and (5.45) we see that Do = 3Dz,/2, where DP is

interpreted by Gardner et al.5 as the largest telescope diameter

requiring a single guide star. In the case of the Hufnagel model, ht

is equated (somewhat arbitrarily) to the altitude of the upper peak of

the C2 distribution (see Figure 5.3). The upper peak occurs at an

altitude of - 10 km. The parameter ht for the Hufnagel model is

defined in this way to make the data in Figures 5.4 and 5.5 comparable

for the specific case in which ht = 10 km for the single layer model.

The results were computed for a photon flux level of 76 counts/r2

and a subaperture/actuator spacing of d = 0.69ro . These parameter

values where chosen to match the values used in the telescope design

examples presented in Chapter 2 and by Gardner et al.5 The results

show that as D/D. decreases, the rms phase error decreases

asymptotically to a minimum value of - 0.09 X. This minimum error is

the limiting value caused by the slope measurement noise and the finite

subaperture/actuator spacing. Results are shown for aperture



212

0.24

0.21 - Do= zr/h t
3d

A 0.2 00 0g t D,=2d

< 0.18 -
V

0.15 -
0
$4 0.12

0.09 -

__0.06 -
:: Single Layer Model

- 0.03 - d = 0.69 r o  2
Photor, flux density: 76/r

0 I

0 0.25 0.50 0.75 1 1.25 1.50 1.75

DI/D

Figure 5.4. Residual RMS phase error over the aperture
versus DI/D0 for the single layer turbulence model.
Curves are shown for aperture dimensions ranging
from D, = 2d to 5d.
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Figure 5.5. Residual RMS phase error over the aperture
versus DI/D. for the Hufnagel turbulence model.
Curves are shown for aperture dimensions ranging
from Di = 2d to 5d.
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dimensions ranging from Di 2d to 5d. These various aperture sizes

were investigated to verify the general applicability of the scaling

relationship discussed above. The curves in each plot show a

convergence to a single locus of points as the aperture dimension

increases. The convergence verifies the applicability of the scaling

relationship for large telescopes (i.e., those having more than - 5

subapertures across the aperture). The slight differences between the

curves are due in part to edge effects. As the size of the aperture

increases the edge effects play less and less of a role in the total

phase error, and the curves converge to a single locus of points.

Photon noise in the vavefront sensor also contributes to the slight

differences between the curves. Welsh and Gardner6 show that the

photon flux level must be greater than 100 to 200 photons/r2 before the

phase error becomeq completely independent of aperture diameter.

Notice that 0,e results for the Hufnagel model, shown in Figure 5.5, do

not exted to large values of Di/D o as they do in Figure 5.4. This

limitation is an artifact of setting ht = 10 km for the Hufnagel model

and requiring the height of the guide star z to be greater than the

highest turbulence (in our case we assume that Cn - 0 for z > 20 km).

The largest values of D1/D° plotted in Figure 5.5 represent the points

in which the height of the guide star is 20 km. This limitation is not

encountered for the data in Figure 5.4, since ht is not fixed as it is

in the case of the Hufnagel model.

In addition to <6+2>, the variation of the Strehl ratio as a

function of D1/D. is also computed using Equation (5.47). Figure 5.6
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Figure 5.6. Strehl ratio versus DI/Do for both
turbulence models.
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is a plot of the Strehl ratio calculated from the data in Figures 5.4

and 5.5 for the case of Di = 4d. The curves for the other aperture

sizes are similar to that shown. Notice that the Strehl ratio starts

to significantly degrade as DI/D. becomes larger than - 2/3.

Interestingly, this point corresponds to the case in which D./D., = 1.

Recall that DrP is derived from Fried's definition of the isoplanatic

angle.

In order to calculate the number of guide stars required for a

given telescope, the desired imaging performance of the telescope must

be specified by choosing the maximum allowed phase error <A+2>max (or

equivalently the minimum allowed Strehl ratio Smi n from Figure 5.6).

Choosing <A+2>max from Figures 5.4 or 5.5 corresponds to specifying a

maximum allowed value of DI/D0 = (D1 /D0 )max . The aperture dimension Di

must satisfy

z r ((.
D, D. (DI/D) max- (5.56)

in order to achieve a phase error less than <6+2>mx . To maintain a

phase error of <A+2>max over an aperture dimension D > D1 , an

additional guide star is required for each subaperture area of

dimension D1. The total number of guide stars required then becomes

D2  D2  D2 h2

N o - = (5.57)D, 2  D2 (D /D )2 r2 Z
2 (D/D )2

1 o 1D/Da m0x o 0 ax

where D, is assumed to satisfy the equality in Equation (5.56).
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Comparing Equation (5.57) to the expression found by Gardner et

al.5 in Equation (5.46) reveals that the two are equivalent if

1/(D 1/D. 2x = 2.25 (i.e., (D1/D.)... = 2/3). Gardner et al. derived

this value of (Di/Do)max from the definition of OIP given by Fried. 2S

In the approach presented here, (D1/Do)max is related directly to the

maximum allowed phase error across the telescope aperture. Figures 5.4

and 5.5 indicate that (D1/Do)., X can be increased from 2/3 without

significantly increasing <6,2>.a . For example, if the phase error is

allowed to be as large as - 0.11 X (or equivalently the Strehl ratio as

small as 0.62) then (DI/Do).a x can be as large as unity. In this case,

the required number of guide stars decreases by a factor of 2.25 from

that calculated by Gardner et al. Equivalently, the value of the

isoplanatic angle e1p increases from Fried's value of r./3h t to r./2h t .

The factor decrease in the number of required guide stars translates

directly into an equivalent factor decrease in the required laser power

for the laser-guided adaptive telescope. For a 2-meter diameter

telescope, Gardner et al. calculate that the required laser powers for

Rayleigh and Na guide stars are 75 W and 13 W, respectively. With

these power levels and a subaperture/actuator spacing of 0.69r., the

rms phase error across the aperture would be - 0.09X = X/11, which

corresponds to a Strehl ratio of 0.73. If the number of guide stars is

decreased by a factor of 2.25, then the power requirements are reduced

to 33 W and 6 W for Rayleigh and Na guide stars, respectively. The

number of Na guide stars required decreases from 3 to 1, and the number

of Rayleigh guide stars decreases from 156 to 70. Note that the
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required number of guide stars must be an integer. The penalty paid,

though, is a loss in imaging performance. The rms phase error across

the aperture increases from a value of --O.09X = X/11 to -0.11X = X/9.

Recall that the comparison between Figures 5.4 and 5.5 is valid

for the case in which ht = 10 km for the single layer model. The close

similarity between the data in Figures 5.4 and 5.5 indicates that the

turbulence effects of the smoothly varying Hufnagel model are well

characterized by a single layer of turbulence at an altitude of 10 km.

This conclusion is very important since it implies that it is possible

to characterize the effects of an arbitrary C2 profile with a simpler,n

single layer model.

The OTF <H(p)> of the laser-guided telescope is also computed as a

function of Di/D.. The expression for <H(p)> given by Equation (5.34)

is evaluated for both turbulence models. Rather than consider all the

aperture sizes addressed above we consider only the aperture dimension

DL = 4d in the subsequent results. The results of the computations are

presented as plots of the magnitude of the OTF versus IpI/D, = p/D1 .

Recall that spatial frequency v (cycles/meter) is related to p by v =

p/Xf where f is the focal length of the aperture lens. In all cases,
D D

the vector p is assumed in the x or y directions giving <11(p)> =

<H(x,0)>, or equivalently <H(p)> = <H(O,y)>.

Figures 5.7 and 5.8 illustrate the OTF of the corrected aperture

for the two turbulence models. The OTF is calculated for D1 /D. ranging
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from 0.2 to 2.0, DI = 4d, d = 0.69r., and a photon flux level of 76

photons/r.. The uppermost curve in both figures is the OTF of the

perfect unaberrated system. The bottom-most curve is the OTF for the

aberrated system assuming no wavefront correction. As DI/D. decreases,

the frequency responses show steady improvement until converging to an

upper limit. This same convergence was also seen in Figures 5.4 and

5.5 for the residual phase error <A,2>. In Figures 5.4 and 5.5 we saw

that Di/D. could be as large as unity before significantly degrading

imaging performance. This same behavior is illustrated in Figures 5.7

and 5.8. The degradation in the response of the OTF is relatively

insignificant until Di/D. becomes larger than 1. Just as in Figures

5.4 and 5.5, there is very little difference between the results of

Figures 5.7 and 5.8. Again, this points to the feasibility of modeling

the continuously distributed Cn profile with a single layer of

turbulence at an appropriate altitude.

Figures 5.9 and 5.10 illustrate the corresponding one-dimensional

PSFs for the OTFs illustrated in Figures 5.7 and 5.8. The amplitude of

the PSF is plotted versus the dimensionless quantity uD1 /Xf , where u

is the image plane coordinate. The ID PSFs for both the unaberrated

system and the aberrated system with no wavefront correction are shown.

The interesting feature to notice from these curves is that angular

resolution (i.e., FWHM of the PSF main lobe) does not rapidly
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Figure 5.7. OTF of the phase corrected aperture for
D./D. ranging from 0.2 to 2.0 and the single layer
turbulence model.
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Figure 5.8. OTF of the phase corrected aperture for
Di/D. ranging from 0.2 to 2.0 and the Hufnagel
turbulence model.
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Figure 5.9. PSF of the phase corrected aperture for
Di/D 0 ranging from 0.2 to 2.0 and the single layer
turbulence model.
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Figure 5.10. PSF of the phase corrected aperture for
D1/D0 ranging from 0.2 to 2.0 and the Hufnagel
turbulence model.
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degrade from that of the unaberrated system for increasing values of

D/D,. Figure 5.11 illustrates a plot of FWHM angular resolution as a

function of D1ID o . The angular resolution is normalized by the FWHM

resolution of the unaberrated system, which is 0.88X/D (calculated from

the unaberrated 1D PSF in Figures 5.9 or 5.10). Only one curve is

shown, since the results are nearly identical for both turbulence

models. Figure 5.11 indicates that for D/D. as large as /2, the FVHM

angular resolution is only 1.2 times that of diffraction limited

imaging. This resolution represents a modest increase from the

limiting value of - 1.07 times diffraction limited imaging at D/D=

0.0. For DI/D° = 12, the number of guide stars required decreases by a

factor of 4.5 from that given by Gardner et al., with an equivalent

decrease in the laser power requirements. Even though the angular

resolution is only modestly degraded, the value of <6+2> increases to

-O.13X = X/7.7, resulting in a significant decrease of the Strehl

ratio.

2) FOV of the Laser-guided Telescope: In addition to the

degradation in imaging performance caused by the finite altitude of the

guide star, imaging performance also degrades as the angular separation

between object and guide stars increases. The degradation in imaging

performance is computed as a function of the angular offset between the

object source and the guide stars. In order to reduce the

computational requirements we considered only the single layer

turbulence model in the subsequent results. The OTF is not considered

for this problem since <H(p)> does not satisfy the condition <H(p)>

<H(-p)> for any nonzero 8. In this case the OTF is undefined.
67
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Figure 5.11. Normalized angular resolution of the phase
corrected aperture versus Di/D o . The normalizing
resolution is 0.88X/D and is computed from the
unaberrated PSF in Figure 5.10.
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Figure 5.12 is a plot of the rms phase error <6+2> versus ex/e o

(or equivalently 80/60), where e. is the proportional to the

isoplanatic angle given by Equation (5.45):

r
60 (5.58)

o h
t

Recall O is the angular offset in the x-direction between the object

and the telescope axis. Curves are shown for DI/D o ranging from 0.0 to

2.0. The other parameters have fixed values of D, = 4d, d = 0.69ro and

a photon flux density of 76 photons/ro. Computational results for

other aperture sizes indicate that the results shown in Figure 5.12 are

generally applicable for all aperture sizes.

The FOV of the adaptive telescope is quantified by specifying the

maximum allowed increase in phase error as the observation angle is

increased from zero. Figure 5.13 is a plot of the change in phase

error, As, as a function of eO/e0 . Let the maximum allowed increase in

<6+2> be designated Umax. Specifying a value of cmax corresponds to

specifying a maximum allowed value of ex/e o = (9 /lo) ax .  The maximum

radial FOV of the telescope then becomes

Gro v =0 0 _ - (5.59)
o hmax t m ax

If, for example, the phase error is allow to increase by Ac.ax = 0.03X

over the FOV of the telescope, then (Ox/Oo) mx is approximately one for
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Figure 5.12. Residual rms phase error versus e e
for D1 ID ranging from 0.0 to 2.0. 9is the
angular offset in the x direction between the
object and axis of the telescope.
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Figure 5.13. Change in the residual rms phase error Ac
versus e /9 for D /D ranging from 0.0 to 2.0.
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D,/Do = 1. In this case the radial FOV is 0. For the specific case

of r. = 20 cm and ht = 10 km, the radial FOV becomes 20 prad (- 4

arcsec). These values of r° and ht correspond to those assumed by

Gardner et al.5

Consider a constant value of 0./9 0 . From Figure 5.13 we see that

6E increases with Di/D ° and then decreases as D,/D ° becomes greater

than 2. This trend may be unexpected at first glance. Figure 5.12

shows that as D1/D0 increases, the wavefront phase error increases. At

some point the phase error attributed to the effects of increasing

D1 /D. begins to dominate the phase error attributed to 0. > 0. As a

result, the increase in the phase error, 6c, decreases as D./D °

increases beyond approximately two. Finally note that the curves for

Di/D ° = 0 in Figures 5.12 and 5.13 are applicable for the case of

astronomical imaging using natural guide stars (i.e., the wavefront

from the guide star is a plane wave).

5.9 Summary

We have presented an analysis technique for characterizing the

effects of anisoplanatism on adaptive optics systems using slope

sensors. The technique is developed in a very general sense allowing

for an arbitrary geometry between the reference source, the imaged

object and the aperture of the optical system. The adaptive optics

system consists of an aperture, a vavefront slope sensor, a deformable

mirror, and a linear control law. The nonideal characteristics typical

of these components are incorporated into the analysis by realistically
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modeling the slope sensors, the deformable mirror and the photon noise

in the vavefront sensor.

The effects of anisoplanatism on the design of laser-guided

telescopes are investigated. In particular, the issue of determining

the required number of laser guide stars for a given telescope diameter

is addressed. Numerical results are also presented, indicating the

maximum FOV of the adaptive telescope. The results show explicitly how

the imaging performance of the adaptive telescope varies with the

number and height of the guide stars, and with the angular separation

between direction of the object and guide star wavefronts. Two

fundamental parameters result from the computations. The first

parameter, D,, is a measure of the diameter of the largest telescope

requiring a single guide star. The diameter D. is related to the

height of the guide star z , the Fried seeing cell diameter r. and the

height of the turbulence layer ht by the simple relationship Do =

zq ro/h t. The second parameter, 0 , is a measure of the radial FOV of

the adaptive telescope and is given by e0 = ro/h t. The numerical

results indicate that the number of guide stars can be decreased from

that first derived by Gardner et al.5 without significantly decreasing

imaging performance.
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6. THE BISTATIC IMAGING LIDAR TECHNTOUE
FOR UPPER ATMOSPHERIC STUDIES

6.1 Introduction

The structural characteristics of the mesospheric sodium (Na)

layer have received considerable attention in recent yeai-. rhc

impetus for much of the current Na layer measurements is the study of

the mesopause dynamics. Knowledge of the Na layer dynamics has proven

to be particularly useful for studying the influence of gravity waves

and tides on the structure of the mesosphere. Much of the past and

current experimental research on the mesospheric Na layer has been

conducted using monostatic lidar systems. '3 ,' '7 4 Bistatic lidar

techniques have also been proposed for upper atmospheric studies.
8'

These lidar systems measure the vertical structure of the layer by

transmitting a short laser pulse and recording the return flux as a

function of time. These profiles are calibrated and scaled to provide

measurements of the Na layer density as a function of altitude. The

vertical resolution of a monostatic system is proportional to cat/2,

where At is the pulse length and c is the speed of light. An alternate

approach is to use a bistatic lidar configuration, consisting of a long

pulse or cw laser and an imaging system. The laser illuminates the Na

layer while the imaging system records the spot created by the resonant

Na scattering. In contrast to the time domain approach this approach

measures the density characteristics of the layer by a direct spatial

measurement. One advantage of this approach is the use of relatively

simple transmitting and receiving equipment. The laser transmitter can

be a cw or long pulse laser and the receiver can be a simple narrowband
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telescope with a one-dimensional detector array. In contrast, the time

domain approach requires a short pulse laser and a wide bandwidth, time

gated receiver. Another advantage of the imaging technique is the

possibility of improved spatial resolution. In the following sections

we demonstrate that vertical resolution on the order of 10 meters is

feasible.

In Section 6.2 we discuss the configuration of the bistatic

imaging lidar and derive the fundamental equations describing the image

data as a function of the layer density profile and laser beam cross

section. These results are discussed in Section 6.3 in terms of

familiar linear systems concepts. The limits imposed on the system

resolution by atmospheric turbulence and shot noise are discussed in

Section 6.4. Finally, in Section 6.5, experimental data are presented.

6.2 Analysis

Figure 6.1 illustrates the configuration of the bistatic imaging

lidar. The telescope and laser are separated by a distance d. The

laser is pointed in the vertical (z) direction and the telescope is

pointed at the center of the spot created by the resonant scattering.

The imaged laser spot will be elliptical in shape due to the separation

between the telescope and laser. A zenith angle ( ) profile through

the recorded image contains information about the sodium layer's

vertical structure, while an azimuth angle (a) profile contains

information about the laser beam cross section. From the geometry
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Figure 6.1. Imaging lidar configuration.
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illustrated in Figure 6.1 we see intuitively how vertical resolution Ar

is affected by laser beamwidth and separation distance d. The

resolution can be improved by decreasing the laser beamwidth or

increasing the separation d. Exactly how much the resolution is

improved by these two actions is quantified in the following analysis.

The theoretical system performance is found by starting with an

expression describing the measured image data as a function of the

layer density profile and the laser beam cross section. This

expression is derived by applying the lidar equation 32 to the geometry

illustrated in Figure 6.1. To facilitate the analysis, we first assume

the angular extent of the laser spot is very small. For the nominal

altitude of the Na layer (90 km) and a reasonable beam divergence this

assumption is justified.

Applying the lidar equation to the geometry illustrated in Figure

6.1, we can write the photon flux distribution y at the telescope

detector as a function of observation angles # and t as

00 'A T Ti X P at

4 n h c

X I(r sin* cost - d, r sin+ sina) n,(r cos ) r 2 sin
X r2 dr

+ Yb (6.1)
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where

= zenith angle,

= azimuth angle,

r = radial distance from the imaging system in the

observation direction (m),

n,(z) = sodium density as a function of altitude z (m-3),

I(x,y) = laser beam cross section at the nominal sodium layer

height (m-2),

= overall imaging system efficiency,

T, = atmospheric transmittance for the imaging system,

T1 = atmospheric transmittance for the laser,

X = optical wavelength (m),

P = laser power (W),

A = telescope aperture (m2 ),

at = effective backscatter cross section (m2 ),

h = Planck's constant (6.63 x 10- 3 4 J s),

c = velocity of light (3 x 108 m/s),

yb = flux due to background and detector dark counts (s-1).

Also note that the laser beam cross section I(x,y) satisfies the

following relationship:

J J I(x,y) dx dy = 1. (6.2)

Equation (6.1) describes the total flux intensity for a particular

observation direction (+,a). In deriving Equation (6.1) we have
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assumed that the altitude dependent absorption losses within the Na

layer are negligible. At this point we can estimate the constant noise

term 7b and subtract it from the total flux giving the "signal" flux

Y.. The flux T
b can be estimated by measuring the flux levels when the

laser is turned off. For the remainder of this section we base our

analysis on this signal flux y,( ). If the layer density does not

change for small variations in azimuth (a), the only information

contained in the azimuthal data is the shape of the laser beam cross

section. Since we are primarily interested in the vertical structure

of the layer, Equation (6.1) can be simplified by integrating over Z.

Assuming the laser beam cross section I(x,y) is separable, and using

the small angle approximations for coso and sina, the integration over

a gives

Ar Ti T1 X P ct
Y, () =

4 n h c

I(r sin# - d) ns(r cos*)

x dr (6.3)
r

where I(x) describes the laser beam cross section in one dimension.

The integration along the observation path r can be converted to an

integration along the vertical path z' by making the change of

variables: z' = r cos+. Carrying out this change of variables we

obtain
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Ar Tii i X P Ct

4nhc

Xr I(z'tan# - d) n (z')XJZ dz' . (6.4)

The flux distribution y. can be written as a corresponding distribution

in altitude by relating the observation angle # to the altitude z by

the geometric relationship tan+ = d/z (see Figure 6.1). We transform

the flux distribution y.(#) to the flux distribution ,(z) using

d (sin+) 2  d
(6.5)

dz d d2 + Z2

and the constraint &,(z)dz = ys()d*. This transformation yields

= Ar Ti T1 i P at d

4 n h c (d2+z2)

X z/d j (z)
dz'. (6.6)

Equation (6.6) is approximated by replacing the factor 1/z' in the

integrand with 1/z. This is a reasonable approximation if the width of

the kernel I(z'd/z) is small compared to the magnitude of z. The rms

width of I(z'd/z) is equal to a1z/d where al is the rms width of the

laser beam cross section. This rms width is small compared to z when

ai/d << 1. We further simplify Equation (6.6) by replacing the

quotient d/z in the argument of the kernel I(z'd/z) with the constant
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d/z,, where z. is the nominal centroid height of the layer. This

approximation is a reasonable one since the width of I(z'd/z) will vary

by roughly 10 percent for the typical altitude range of interest (z i

80 to 100 km). Making the described replacements results in the

following convolutional form:

rA T. T1 XPat d
4 n h c (d2+z2) z

I - n,(z') dz'. (6.7)
JO z./d )

6.3 Discussion

The convolution in Equation (6.7) can be interpreted using

familiar concepts of linear system theory. The flux distribution &,(z)

may be regarded as the output of a linear filter with input n,(z) and

impulse response I(zd/z.). To obtain the most accurate representation

of n,(z) from E,(z), the spatial bandwidth of I(zd/z.) should be at

least as large as the spatial bandwidth of n.(z). In other words, the

width of I(zd/z.) must be small compared to the smallest structure in

n,(z). If this condition is satisfied, the estimate of the density

profile ns(z) is given by K&.(z), where K is simply a normalizing

constant.

Since the width of I(zd/z s) determines the vertical resolution of

the imaging lidar, we would like to equate some measure of this width

to the system resolution Ar. In many cases I(x) will be well
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approximated by a Gaussian beam cross section. The Gaussian beam cross

section is completely described by its rms width, and we use this width

as a measure of system resolution At. We can easily show that the rms

width of I(zd/z,) is

U1 Z s

Ar = (6.8)
d

where a, is the rms width of the laser beam cross section. Two

approaches to improve resolution are evident from Equation (6.8). The

first is simply decreasing the width of the laser beam. The second is

increasing the separation d between the laser and telescope. Figures

6.2 and 6.3 show how the resolution given in Equation (6.8) varies with

separation distance d and rms beamwidth a, (or equivalently, beam

divergence). For example, to achieve a resolution on the order of 100

meters with d = 1000 meters and z = 90 km, we must have an rms beam

width of 1.11 meters which corresponds to a FWHM beam divergence of

roughly 50 prad.

In addition to the detailed structure of the layer, the gross

characteristics of the layer, such as centroid height and the rms

width, are also of interest. Using the altitude profile &,,(z) in

Equation (6.7) we compute the profile's centroid height and rms width.

This computation reveals the centroid height of the image profile &,(z)

is equal to the centroid height of density profile ns(z). In a similar

manner, computing the rms width a. of the image profile ,(z) we find
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= d + ( z 
2

= (&2 + 02)h (6.9)

where a. is the true rms width of the Na layer. If ar << a the

measured rms width ai will closely approximate the true rms width a..

For cases in which the vertical resolution 6r is larger than the

smallest spatial structure of n (z), then a simple scaling of the image

data will not give an accurate representation of n,(z). To obtain a

more accurate representation we could mathematically invert Equation

(6.7) by performing a deconvolution. This approach is less desirable

because of the inherent problems encountered when attempting to recover

high frequency information from shot noise contaminated data. Shot

noise effects arise because of the random nature of photon arrival

times at the telescope receiver. In practice the telescope receiver

cannot determine the instantaneous flux &,(z) given in Equation (6.7).

Instead, the receiver counts photons over an integration time x and

estimates E9(z). The deconvolution process is very sensitive to the

shot noise inherent in this estimation process.8 2 As a result, small

perturbations in the estimated values of &.(z) due to shot noise will

cause large perturbations in the deconvolution result.

6.4 Factors Affecting Resolution

For a given separation d, Equation (6.8) implies vertical

resolution is limited only by the size of the laser spot. If the
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optics of the laser system are large enough, atmospheric turbulence

will ultimately limit the minimum spot size. Once this minimum size is

reached, resolution can be improved only by increasing d. Atmospheric

turbulence limits the minimum spot size to a full width angular

diameter of 2.44X/r° where r° is the atmospheric seeing cell diameter.

The seeing cell diameter r° was first introduced by Fried,
10 and it

represents the diameter of the largest aperture achieving diffraction

limited performance in the presence of atmospheric turbulence. Also

note that r. is wavelength dependent, varying as X6/ 5 . Calculating the

smallest possible rms beamwidth in the presence of atmospheric

turbulence we obtain

a0 = z V _ (6.10)

Substituting Equation (6.10) into Equation (6.8) gives the following

lower bound on ar

0.43 X z2

6r > (6.11)
r d

0

The right-hand side of the inequality Equation (6.11) is plotted versus

r. in Figure 6.4 for a range of separation distances d. In this plot

we have assumed z. = 90 km and X = 589 nm. Consider, for example, a

desired resolution of 100 m. For an offset distance of 1000 m, the

seeing cell diameter r° must be greater than 2 cm (poor seeing

conditions). On the other hand, for a resolution of 10 meters, the

seeing cell diameter ro must be greater than 20 cm (excellent seeing
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conditions). Values of r. greater than 20 to 30 cm can be achieved

only at the best observatory sites.

Up to this point resolution has been discussed in terms of the

smallest vertical cell size the system is able to resolve. We can also

speak of resolution in terms of the system's ability to observe the

vertical structure of mesospheric gravity waves. If the imaging system

has an adequate vertical resolution in the sense discussed above (i.e.,

Ar < 100 m), then the system's ability to measure short-wavelength

gravity waves is ultimately limited by shot noise. Gardner and Voelz 3
7

found that to detect vertical wavelengths as short as 1 km, the shot

noise levels in the power spectrum of a typical image profile &,(z)

must be on the order of -50 dB or equivalently the number of signal

counts/profile must be on the order of 105. The total expected signal

count per profile is obtained by integrating Equation (6.7) over z

giving

YA r Ti Ti X P at Cs .1
N = , 9(6.12)

s 4 n h c (d2+z2)

where x is the exposure time and C. is the sodium layer column

abundance. Consider, for example, the nominal atmospheric and lidar

system parameter values listed in Table 6.1. The listed atmospheric

parameter values are typical of those expected for a low altitude site

like Urbana, Illinois. 37  The receiver efficiency I is representative

of currently available telescope and detector equipment. Substituting

these nominal values into Equation (6.17) and imposing a maximum shot
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TABLE 6.1

Atmospheric and Imaging System Parameters

Atmospheric Parameters: T=T= 0.3

C= 5 X 1013 M-2

Z. = 90 km

a= 9 X 10-16 MI

(FWHN laser linewidth < 0.5pm)

Imaging System Parameters: X = 589 nm

Ii = 0.075

d = 1000 m
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noise level of -50 dB (i.e., N. > 105) gives

P Ar x > 10. (6.13)

If, for example, the product PAr is 0.1 w m2 (i.e., a 1 m diameter

receiving aperture and a 130 mw laser) the integration time T must be

greater than 100 s. A system with these characteristics will be able

to observe gravity waves having wavelengths as short as 1 km.

6.5 Experimental Data

Initial tests of the imaging lidar were conducted in January of

1987 at the University of Hawaii's Mauna Kea Observatory. The laser

spots were generated by the University of Illinois monostatic lidar

system and imaged by the University of Hawaii 2.2 meter telescope. 4

The horizontal separation between the laser and telescope was 117 m.

Figures 6.5 and 6.6 illustrate contour plots of two imaged laser spots.

The images in Figures 6.5 and 6.6 were taken on Jan. 20 and 21,

respectively. The spot dimensions were approximately 0.87 mrad x 1.4

mrad FW at e- 2. The thin horizontal contours in the images were caused

by stars drifting through the telescope FOV during the 8 minute

exposures. Consider integrated photocount profiles of the imaged spot.

These integrated profiles are obtained by first summing the data over

the axis perpendicular to the profile axis and then plotting the

resulting one-dimensional data. A profile through the narrow axis of

the spot corresponds to the azimuth (t) direction and is a measure of

the laser beam cross section. A profile through the broad axis of the
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spot corresponds to the zenith (*) direction and is a measure of the Na

density profile. Figures 6.7 and 6.8 illustrate these narrow and broad

axis profiles for the image shown in Figure 6.5. The profile in Figure

6.7 is equivalent to integrating Equation (6.1) over + and plotting

versus a. The profile in Figure 6.8 is equivalent to integrating

Equation (6.1) over a and plotting versus +. Computing the rms

beamwidth from the narrow axis profile gives a, = 20.5 m. Substituting

ar, d = 117 m, and z. = 95 km into Equation (6.8) gives an rms vertical

resolution of 16.6 km for the imaging lidar. Figures 6.9 and 6.10

illustrate Na density profiles obtained by performing a simple scaling

of the image profiles. Also shown are Na density profiles derived from

simultaneous monostatic lidar data. In contrast to the relatively poor

resolution of the image data, the monostatic lidar data had a vertical

resolution of 150 meters. Comparing the image data to the monostatic

data reveals the large amount of smearing and loss of spatial detail

resulting from the poor resolution of the experimental configuration.

The poor resolution was caused primarily by the small separation (117m)

between the laser and telescope.

The centroid height and rms width of the Na density profiles were

also computed and compared. The centroid heights computed from the

image profiles were 105 km and 100 km on the 20th and 21st,

respectively. The centroid heights computed from the monostatic lidar

data were 94.8 km and 93.8 km. The difference in these results is due

partly to the uncertainty in the pointing angle of the telescope and

partly to the varying width of the kernel I(z'D/z) in Equation (6).
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The width of the kernel increases with increasing altitude z. Normally

this effect would be negligible for high resolution systems (6r << .),

but in this case the resolution is comparable to the total width of the

layer. Since the width of the kernel is so large, the small

percentage increases in the width with increasing altitude have the

effect of shifting the observed centroid higher in altitude. A similar

effect was noted for the rms width calculations. The rms widths ai of

the image profiles were 18.1 km and 18.5 km on the 20th and 21st,

respectively. Substituting these values into Equation (6.9) and

solving for the rms width of the layer a., resulted in values of 7.21

km and 8.17 km. In contrast, the rms widths a. computed from the

monostatic lidar data were 5.35 km and 5.28 km.

The scaled photocount profiles gave a very poor estimate of n.(z)

for our particular configuration of the imaging lidar. This conclusion

is immediately obvious from Figures 6.9 and 6.10. We alternately

considered inverting Equation (6.7) by performing a deconvolution.

Since the solution obtained by a deconvolution is very sensitive to

shot noise, we first quantified the shot noise level over the spatial

frequency range of interest. Figures 6.11 and 6.12 illustrate

comparisons of the power spectra of the imaging and monostatic lidar

data. The image data were obviously shot noise limited for spatial

frequencies greater than 0.1 km-1 (i.e., for spatial structures having

characteristic dimensions less than 10 km). The image data shot noise

level was approximately -65 dB. This level matched the expected shot

noise level computed from the total signal photocount N.. The
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photocount N. was equal to 5.01 X 106 and 3.06 X 106 on the 20th and

21st, respectively. Comparing the spectra of the image data to the

monostatic data reveals that the frequency components greater than

0.1 km-1 were suppressed by at least 30 dB. This high frequency

suppression was a result of the narrow frequency response of the kernel

I(zd/z.). The theoretical frequency response of I(zd/zs ) is also

illustrated in Figures 6.11 and 6.12. This response was derived

assuming a Gaussian laser beam cross section with an rms width of a=

20.5 m. From these results we concluded that a deconvolution would be

infeasible.

Before concluding this section, we comment briefly on the

calibration procedure employed for our experiments. In this type of

measurement the measured flux levels must be calibrated to determine

the absolute magnitude of the density profiles. The imaging system was

partially calibrated by measuring the flux levels from a natural star.

This calibration procedure eliminated the unknowns associated with the

telescope and atmospheric transmission but did not eliminate the

unknowns in the laser. The laser characteristics must be known

precisely for complete calibration of the flux levels. For our

particular configuration the laser power was not known precisely, thus

preventing an absolute calibration of the measured density profiles. As

a result, the density profiles computed from the image data were

normalized to the column abundance computed from the monostatic data.
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6.6 Summary

We have shown theoretically that bistatic imaging lidar can

achieve or exceed the vertical resolution of pulsed monostatic lidar

systems without the use of wideband pulsed lasers and time gated

receivers. The simplicity of the imaging lidar's transmitting and

receiving equipment, in contrast to that of pulsed lidar systems, is

the main advantage of the bistatic imaging technique. In terms of

analysis, the operation of the imaging lidar is easily expressed in

terms of linear systems. The image profiles can be interpreted as the

output of a filter having the Na density as the input and an impulse

response which is related to the laser beam cross section and imaging

geometry. From this linear systems interpretation we found vertical

resolution was proportional to the laser beam width and inversely

proportional to the separation between the laser and telescope.

The vertical resolution of the imaging lidar is ultimately limited

by atmospheric turbulence effects. Atmospheric turbulence limits the

size of the focused laser spot in the Na layer. Once this limit is

reached, resolution can be improved only by increasing the laser and

telescope separation. For a site with poor seeing conditions (r. = 2

cm) and laser-telescope separation of 1000 meters, the best possible

resolution is approximately 100 m. If this same site has excellent

seeing conditions (r. = 20 cm), 10 meter resolution is possible.

Resolution can also be thought of in terms of the smallest

observable vertical wavelength of mesospheric gravity waves. Shot
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noise effects ultimately limits the system's ability to detect short

wavelength waves. To detect wavelengths as short as 1 km the shot

noise level must be down by at least 50 dB (i.e., N. > 105). The laser

power, receiver aperture, and integration time are the main system

parameters we can choose to set the shot noise level. For typical

atmospheric conditions (see Table 6.1) and PAr = 0.1 w m2
, integration

times greater than 100 s are required to observe vertical wavelengths

as short as 1 km.

The experiments described in Section 6.5 were conducted primarily

to test the feasibility of creating laser guide stars for adaptive

imaging in astronomy.4 The imaging lidar concept was developed after

these experiments. Unfortunately, the experimental configuration

resulted in such a poor resolution (Ar = 16.6 km) that the measured

data failed to demonstrate the imaging lidar's full capability. The

experimental data did show, however, the feasibility of creating and

imaging a laser spot on the mesospheric sodium layer for use in the

bistatic imaging technique.
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7. CONCLUSIONS

7.1 Conclusions

Ground-based adaptive telescopes using laser guide stars can

produce images that are nearly diffraction limited. The major design

issues have been addressed and the expected imaging performance

predicted. The optimum design of a laser-guided telescope depends on

the ability to predict the imaging performance of the telescope as a

function of all of the factors which degrade imaging performance.

These factors include photon noi-e in the wavefront sensor, finite

sensor/actuator spacing, finite response time of the deformable mirror

and control system, and anisoplanatism. A new performance analysis has

been presented which takes into account these factors and includes

realistic models of the physical characteristics of the wavefront

sensor and deformable mirrors. The results of the performance analysis

are used to specify design requirements for the wavefront sensor,

deformable mirror, and laser. For laser guide stars created in the

mesospheric Na layer, the effects of nonlinear absorption (saturation)

must be well understood to specify the characteristics of the laser. A

new analysis of resonance backscattering from pulse lasers is

presented. This analysis is crucial for choosing the optimum

combination of laser characteristics for the laser guide star

application.

Combining the results of these two analyses into a specific design

indicates t. a two-meter laser-guided telescope, using a single laser
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that can be either bought off the shelf or built with today's

technology, can achieve imaging performance levels nearly matching that

of the Hubble Space Telescope (HST). The laser power requirements for

the Rayleigh and Na guide star approaches are on the order of 33 and 6

W, respectively, for seeing conditions of r° = 20 cm and zenith

viewing. For either approach, near diffraction limited imaging is

achieved with a Strehl ratio of - 0.73 and an angular resolution of

approximately 0.07 arcsec at X = 0.5 Um (2.09 times that of diffraction

limited imaging). The FOV of the telescope is approximately 8 arcsec.

The bistatic imaging lidar has been shown to achieve or exceed the

vertical resolution of pulsed monostatic lidar systems without the use

of wideband pulsed lasers and time gated receivers. The simplicity of

the imaging lidar's transmitting and receiving equipment, in contrast

to the more complex transmitting and receiving equipment of pulsed

lidar systems, is the main advantage of the bistatic imaging technique.

The vertical resolution of the imaging lidar is ultimately limited by

atmospheric turbulence effects. For a site with poor seeing conditions

(ro = 2 cm) and laser-telescope separation of 1000 m, the best possible

resolution is approximately 100 m. If this same site has excellent

seeing conditions (r, = 20 cm), 10 m resolution is possible.

Resolution can also be thought of in terms of the smallest observable

vertical wavelength of mesospheric gravity waves. Shot noise effects

ultimately limited the system's ability to detect short wavelength

waves. To detect wavelengths as short as 1 km, the shot noise level

must be down by at least 50 dB (i.e., N. > l0). The laser power,
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receiver aperture, and integration time are the main system parameters

we can choose to set the shot noise level. For typical atmospheric

conditions (see Table 6.1) and PA = 0.1 w m2 , integration times

greater than 100 s are required to observe vertical wavelengths as

short as 1 km.
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