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FOREWORD

The work described herein is part of the Characterization of Transformation-
Toughened Ceramics Program which is a subtask of the Department of Energy (DOE)
sponsored, Oak Ridge National Laboratory (ORNL) monitored, Ceramic Technology
for Advanced Heat Engines Project (Interagency Agreement No. DE-AI05-840R21411).
The purpose of this subtask is to examine commercial and experimental
transformation-toughened ceramics for potential application in advanced heat
engines.
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INTRODUCTION

Tetragonal zirconia polycrystal (TZP) materials have been considered for
structural applications because of an unusual combination of high strength and
toughness at room temperature. In addition, the thermal expansion is closely
matched to cast iron and some other steels, thus reducing potential thermal expan-
sion mismatch problems in ceramic/metal attachments. The excellent mechanical
properties are the result of a "martensitic" type transformation where metastable
tetragonal grain's transform to the stable monoclinic grains under an applied
stress. 1- 3 Although TZP materials have this unusual combination of properties,

little has been done to examine the time-dependent behavior of the properties at
elevated temperatures. 4 ,5 Most of the elevated temperature work has concentrated
on compressive or tensile creep behavior at l200°C relating to the phenomenon of
superplasticity. 6 - 15 This lack of data generation can be attributed to the well
defined polymorphism of zirconia.16 The monoclinic phase is stable at room tem-
perature while the tetragonal phase becomes the stable phase above -950 0 C. Thus,
as the temperature increases so does the stability of the tetragonal phase, with
a corresponding decrease in the chemical driving force for the t-4m transforma-
tion, resulting in a significant decrease in strength and toughness at tempera-
ture. Because of this inherent problem, the use of monolithic TZP materials for
high temperature (2 I000 0 C) structural applications (i.e., heat engines) have
been severely limited. This report summarizes a study to examine the time-
dependent strength of several TZP materials at temperatures between 800 0 C and

1200 0 C.

EXPERIMENTAL PROCEDURE

Bend bars were machined from the seven different yttria-tetragonal zirconia
polycrystal (Y-TZP) materials listed in Table 1. The first six materials were
machined to the following dimensions: 3 mm x 4 mm x 50 mm. Due to material

limitations, the seventh material (AC) was machined into smaller bend bars,
1.5 mm x 2 mm x 25 mm. In both cases, the bars were carefully ground by a sur-
face grinder such that the surface striations are parallel to the long axis. All
four edges were chamfered to -45 0 . The bars were machined according to the
details specified in Reference 17.

Table 1. EVALUATED MATERIALS

Mole %
Code Manufacturer Material Process Y203

Japanese

KY Kyocera Z-201 Sintered 2.8

TOSH Toshiba TASZIC Sintered 2-3

HIT Hitachi 1985 Hot Pressed (?) 2.0

NGK NGK Locke Z-191 Sintered 3.0
KS Koransha 1986 Sintered 3.0

KH Koransha 1986 HIPed 3.0

Domestic

AC AC Sparkplug TZP-110 Sintered 2.6

1



Stepped-temperature stress-rupture (STSR) testing was used to analyze the
time-dependent strength of these Y-TZPs between 800 0 C and 12000 C. STSR testing
was done following the procedure outlined by Quinn and Katz. 1 8 This type of test
allows for rapid screening of the materials' stress-rupture behavior over a wide
range of temperatures while using a small number of specimens. This procedure
involved loading a bar onto a four-point bend fixture that is in a furnace and
heating the furnace to 8000 C in 2 hours, in air, with no applied stress to the
bar. Upon reaching the temperature, a predetermined stress is applied and the bar
allowed to soak for up to 24 hcurs. If the bar survives this step, then the fur-
nace is heated to 900 0 C (in,10 min) while under the same applied stress and
again the bar is allowed tb soak for 24 hours. This cycle is repeated for 1000 0 C,
11000 C, and 12000 C. If the bar fractures or excessive creep occurs, the power to
the furnace is automatically shut off by a microswitch. The time of fracture is
denoted on the STSR plot using an arrow, with the applied stress that caused
fracture above the arrow. The symbols for the STSR plots are: (-) failure
occurred upon application of the stress at 800°C; ( ) survived full test cycle
through 1200°C; and ( $ ) denotes time of failure between application of the stress,
but before the full cycle is complete.

RESULTS AND DISCUSSION

Material Characterization

Table 2 lists the base line room temperature properties of each TZP material.

Table 2. BASE LINE ROOM TEMPERATURE PROPERTIES

HIT NGK KH KS KY AC TOSH

Density (g/cc) 6.0 5.9 6.1 6.0 5.9 5.8 5.9
MOE (GPa) 213 208 214 210 201 204 200
MOR (MPa) 1169 873 1261 640 745 753 633

Kic (MPa*ml/ 2 ) 4.6 7.4 5.0 5.6 7.0 5.6 8.0

Average Grain
Size (ium) 0.4 0.2 0.4 0.5 0.7 0.8 0.5

Further details on the techniques used to determine the base line properties and
the microstructure of each TZP can be found in Reference 19.

Stepped-Temperature Stress-Rupture

It can clearly be seen from Figures I through 7 that none of these TZPs
will be able to handle the combination of high temperature (>9820 C) and stress
(>800 MPa) which are desired of materials for advanced heat engine applications. 2 0

These STSR results are in excellent agreement with the STSR results for two other
yttria partially stabilized zirconias which were examined in Reference 4.

For all TZPs, the strength at any of the temperatures is significantly below
the room temperature strength and this difference grows as the temperature
increases. This strength loss is due to the previously mentioned decrease in the
chemical driving force for the t-.m transformation as the temperature increases.
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Therefore, as this driving force decreases, the strength at temperature will

become increasingly dependent on the microstructure. Since previous studies 1 9 ,2 1

have shown that there is little or no grain boundary phases present in any of
these TZPs, the important microstructural parameters will be grain size, grain

size distribution, and size and amount of strength limiting flaws.

Table 2 shows that HIT, NGK, and KH have the finest grain size and it has
been shown that they have the narrowest grain size distribution21 and the smallest
strength limiting flaws. 19 Thus, it is expected that they will perform better
than the remaining TZPs. This is true for HIT (Figure 1) and NGK (Figure 2) but
not KH (Figure 3). The performance of HIT is slightly better than NGK even though
its grain size is twice as large. This is due to the narrow grain size distribu-
tion, which shows that over 90% of the grains are between 0.2 and 0.5 Pm and the
remainder are no larger than 0.7 pm. NGK also has a narrow distribution but a
small percentage of the grains are in excess of I um. The other contributing fac-
tor is that HIT is hot pressed while NGK is sintered. Hot pressing helps to main-
tain this fine grain size and narrow distribution by inhibiting grain growth, and

it reduces the amount and size of porosity related flaws. Sintering does not
reduce porosity as much as hot pressing, and grain growth is commonto this
technique.

The KH has a grain size distribution similar to NGK but its poor performance
is a result of oxygen deficiency that arises when the TZP is HIPed in an inert
atmosphere. The details of this phenomenon are described elsewhere. 5  If the KH
is oxidized in air to restore stoichiometry, then the STSR performance in this
temperature range becomes similar to NGK.

The performance of the remaining TZPs (Figures 4 through 7) is similar and is
a result of their larger grain size, broader grain size distribution, and larger
amount of bulk porosity. In addition, the room temperature strength of these TZPs
is limited by large porous regions (50 to 1001im).1 These porous regions are
3 to 4 times larger than encountered in the other TZPs.

A final point is that at the higher temperatures (1100 0 C and 1200 0 C) there is
evidence of creep in all TZPs. Because of the fine grain size of each TZP, this
is probably the occurrence of Nabarro-Herring or Coble creep since these types of
creep dominate in fine-grained polycrystalline materials. An analysis to deter-
mine if these mechanisms are present is beyond the realm of this study and is prob-
ably inconsequential since the performance of these materials is well below what

is required for application in advanced heat engines.

CONCLUSIONS

Stepped-temperature stress-rupture testing of seven Y-TZP materials in the

800 0 C to 12000 C range shows that these materials are not suitable for use as a high
temperature structural ceramic. In this temperature range, the strength is signi-
ficantly lower than at room temperature due to a decrease in the chemical driving
force for the t-.m transformation. At these temperatures, the strength is con-
trolled by microstructural parameters such as grain size, grain size distribution,

and porosity.
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Figure 1. Stepped-temperature stress-rupture results for Hitachi 1985 (HIT).
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Figure 2. Stepped-temperature stress-rupture results for NGK-Locke Z-191 (NGK).
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Figure 3. Stepped-temperature stress-rupture results for Koransha HIPed (KH).
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Figure 4. Stepped-temperature stress-rupture results for Koransha Sintered (KS).

5



*YRENGTH AT 25°C = 745 MPa

50*

150 . 100 .5
150. loot" 50 -

200. 1 2 0 0
200

250 110

300
300 250 1000

350
350Q100

0 CREEP FRACTURE

800 *TEST TERMINATED DUE TO CREEP

CREEP PRESENT

STRESS IN MPa

TEMPERATURE IN 'C

24-HOUR HOLD AT EACH STEP

10 MINUTES BETWEEN STEPS

Figure 5. Stepped-temperature stress-rupture results for Kyocera Z-201 (KY).
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