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AAbstract (Cont)
with any membrane structures. Molecular weight distribution of the
serum dextran revealed no significant metabolism over the 6 h post-
infusion period assayed. After 96 h, radiolabeled dextran in liver
showed some degree of metabolism and dextranase activity in liver
was markedly higher than in the other tissues assayed. Other than
in the lung, no significant differences in dextranase activity were
observed between the two groups of rabbits. These studies indicate
that dextran infused as HSD does not associate with any protein
fractions, is found only in low concentrations in tissue, and has a
serum half-life adequate to serve as a useful plasma volume
expander.



ABSTRACT

Dextran metabolism was evaluated in euvolemic and
hemorrhaged rabbits following administration of a 7.5%
NaCl/6% Dextran-70 (HSD) solution. Control rabbits and
those bled 8 ml/kg body weight were infused i.v. with 4
ml/kg of HSD or HSD containing 1 gCi/ml of 1 C-Dextran-
70. Blood samples were withdrawn prior to and 0.17,
0.5, 1, 2, 4, 6, 24, 48, 72 and 96 hours after HSD
infusion. Although peak serum dextran concentrations
were about 29% higher in hemorrhaged rabbits than in
controls, in both groups of rabbits dextran was
cleared from serum with a half-life of about 7.4 h. In
addition, dextran was distributed throughout the blood
volume and did not bind to serum proteins. At the end
of the 96 h experimental period, concentrations of
radiolabeled dextran were 20-fold higher in liver from
both groups of rabbits, in comparison to spleen, lung
and kidney. The 14C-dextran in liver was associated
with the cytosolic fraction and was not associated with
any membrane structures. Molecular weight distribution
of the serum dextran revealed no significant metabolism
over the 6 h post-infusion period assayed. After 96 h,
radiolabeled dextran in liver showed some degree of
metabolism and dextranase activity in liver was
markedly higher than in the other tissues assayed.
Other than in the lung, no significant differences in
dextranase activity were observed between the two
groups of rabbits. These studies indicate that dextran
infused as HSD does not associate with any protein
fractions, is found only in low concentrations in
tissue, and has a serum half-life adequate to serve as
a useful plasma volume expander.
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Plasma clearance and tissue distribution of dextran
following infusion of 7.5% NaCl/6% Dextran-70 to
euvolemic and hemorrhaged rabbits -- Dubick et al.

INTRODUCTION

Since the introduction of dextran solutions as
plasma volume expanders over 40 years ago, a number of
studies have been concerned with its metabolic fate.
Histological evaluations in laboratory animals and
Korean battle casualties observed the primary tissue
distribution sites of dextran to be the kidneys, liver,
leukocytes and spleen (1-3). Initial reports into the
clearance of intravenously infused dextran solutions
observed that in normal children and adults, plasma
disappearance and urinary excretion of dextrans were
inversely proportional to their average molecular
weight (4-8). Subsequent investigation found that
dextrans were primarily excreted through the kidney (4-
6). Glomerular filtration of dextrans with molecular
weights >50-60,000 was very low and dextran was neither
reabsorbed nor secreted by the renal tubules (4-6,9).

Previous studies with Dextran-60 in newborns and
young children observed a plasma clearance that
appeared biphasic in nature, with a half-life (t1/2) of
3 h in the initial phase, and 52 h in the second phase
(10). In contrast, Arturson, et al. (4) reported a
serum t1/2 of 10.7 h infants and 6.2 h in children. In
addition, 31-47% of a dose of Dextran-60 or 70 was
excreted in urine in the first 24 h (7,11-13).

Despite a large body of literature, few studies
have addressed dextran metabolism in the hypovolemic
states in which it would be employed. In a controlled
hemorrhage study in humans (bled 1 liter over 15 min),
no significant differences in plasma dextran
concentrations or urinary dextran excretion were
observed between these individuals and their
normovolemic counterparts at the times assayed (14).
In a recent study with a new hypertonic saline
(7.5%)/Dextran-70 (HSD), Holcroft, et al. (15) reported
that approximately 30% of the dextran remained in
plasma 24 h following infusion of HSD to trauma
victims, but no controls were included in this study
for comparison.

Dextran preparations have varied over the years
with regard to the bacterial strain synthesizing the

-0
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dextran and the narrowing of its molecular weight range
(16). Consequently, variable results have been
reported in experimental animals regarding the tissue
distribution and metabolism of dextran
(17-21). In addition, since Gray (22) suggested that
dextrans can be metabolized by mammals and the
components utilized, a number of investigators have
reported the presence of dextranases in mammalian
tissue, including human (23-25).

With a lack of information concerning dextran
metabolism in the hypovolemic state, and renewed
interest in hypertonic resuscitation fluids containing
Dextran-70, the present study investigates dextran
clearance, tissue distribution and dextranase activity
following administration of HSD to both euvolemic and
hemorrhaged rabbits.

MATERIALS and METHODS

Animals and treatment
Adult, female New Zealand white rabbits (Elkhorn

Rabbitry, Watsonville, CA) initially weighing 2.5 to
3.5 kg, were randomly assigned to either the hemorrhage
(n=10) or control (n=8) group. Rabbits were
catheterized via the middle ear artery and in the
hemorrhaged group, bled 8 ml/kg body weight over a 15
min period to mimic a moderate hemorrhage. After a 30
min stabilization period, rabbits in both groups were
infused intravenously with 4 ml/kg body weight with the
HSD solution (Lot No.: NC 54845) (AB Pharmacia,
Uppsala, Sweden) or the same volume of HSD containing 514
ACi/kg carboxyl- C-Dextran-70 (Lot No.: 2275-289, sp.
act. 0.8 mCi/g); DuPont-New England Nuclear, Boston,
MA). Blood samples were withdrawn prior to and 0.17,
0.5, 1, 2, 4, 6, 24, 48, 72 and 96 h after the HSD
infusion. In experiments where no radioactive dextran
was infused, a blood sample was also drawn 7 days after
HSD infusion. After each blood sample, an equivalent
volume of saline was infused back into the animal to
help maintain plasma volume. During the experimental
period, rabbits were individually housed in metabolic
cages. Serum samples were frozen at -200C until
assayed.

Dextran Measurements
Total carbohydrate concentrations in serum and

urine were determined by the anthrone reaction (26)
following precipitation of serum with 10%
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tricholoacetic acid (TCA) and oxidation of endogenous
glucose with glucose oxidase (27). The resultant
product represented dextran concentrations. Final
concentrations were corrected for hemodilution induced
by HSD during the first 6 h after infusion by
multiplying the concentration by the ratio of the
hemoglobin concentration prior to and at the specific
time after infusion. Previous studies using Evan's
Blue Dye to estimate plasma volume (28) confirmed that
in both euvolemic and hemorrhaged rabbits, plasma
volume returned to pre-HSD infusion levels by 24 h
after its administration (data not shown). In
addition, in the experiments employing 14C-dextran, an
aliquot of serum and deproteinized serum was counted
for radioactivity by liquid scintillation. Data were
expressed as dpm/ml serum or dpm/mg dextran.

Gel Filtration
Serum samples were deproteinized with TCA,

neutralized and the protein-free aliquots applied to a
0.9 x 87 cm column of Sephadex 200/100 equilibrated
with 0.3% NaCl and eluted with the same solution (29).
Fractions were collected and assayed for anthrone-
reactive substances as described above or counted for
radioactivity by liquid scintillation. These studies
quantitated the molecular weight distribution of the
dextran fractions to detect metabolism of HSD following
its infusion.

Tissue Distribution
The tissue distribution of 14C-dextran in liver,

lung, kidney and spleen was determined at the end of
the 96 h experimental period. These tissues have been
shown previously as primarily involved in dextran
metabolism (16-18). Tissues were oxidized in a Packard
Tricarb Oxidizer (Packard Instruments, Downner's Grove,
IL) and data expressed as dpm/g tissue. In other
experiments, the uptake and binding of 14C-Dextran-70
to crude membrane fractions Vere determined in vitro
with liver. Crude liver membrane fractions were
prepared according to the method of Dangott, et al.
(30). Membranes were then incubated with the
radiolabeled dextran in the absence or presence of a
100 fold excess of cold Dextran-70, for 0, 5, 10, 15
and 30 min. After centrifuging in a microfuge, the
resultant pellet was washed 4 times with saline. The
final pellet was resuspended in the membrane buffer and
an aliquot counted for radioactivity by liquid
scintillation. In other studies, liver slices in organ
culture were incubated with the radiolabeled dextran
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for 0, 15, 30, 60 and 90 min. Liver was then
homogenized in 5 volumes of 0.2 M Tris-HCl buffer, pH
7.4 and an aliquot of the whole homogenate, 10,000 x g
supernatant (centrifuged 10,000 x g for 30 min) and the
resultant pellet was counted for radioactivity.
Protein was determined by the method of Bradford (31)
and data expressed as dpm/mg protein to evaluate
dextran uptake by liver.

Dextranase Activity
To further evaluate dextran metabolism, dextranase

(E.C.3.2.1.II) activity in liver, lung, kidney and
spleen was determined at the end of the 96 h
experimental period according to the method of Janson
and Porath, as described in the Worthington Manual,
1988 (Worthington, Freehold, NJ). Activity was
expressed as mU/mg protein.

Statistical Analysis
The radioisotope dilution technique was employed

to evaluate pharmacokinetic parameters of HSD
metabolism in both the euvolemic and hemorrhaged
rabbits. The best-fit for 14C-Dextran-70 disappearance
curves were plotted on a semilog scale and analyzed by
least squares non-linear regression (32) to determine
half-life and apparent volume of distribution. A BMDP
non-linear regression program was employed for kinetic
analysis (33). The best fit of the data was described
by a 1-compartment model defined by the equation:
Y=Ae At, where "A" is the amount of drug administered at
time 0, "k" is the rate constant of elimination, and
"t" is time. Statistical comparison of the kinetic
parameters derived, dextranase activity, and tissue
distribution between the two groups was by Student's t-
test (32). Analysis of variance was used to analyze
liver membrane binding and liver uptake of dextran with
time as the independent variable (32).

RESULTS

Dextran Concentrations and Clearance
In the present study, rabbits were weight matched

so that similar amounts of dextran as HSD were
administered to both the euvolemic control and
hemorrhaged groups. Nevertheless, maximum serum
dextran concentrations were 29% higher in hemorrhaged
rabbits than in controls (Table I). In both groups of
rabbits, serum dextran concentrations were generally
undetectable after 48 to 72 h.
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In both the euvolemic and hemorrhaged rabbits,
dextran concentrations in serum were highest at the
initial sampling time and disappeared from serum at a
rate corresponding to a half-life of 7.4 h (Fig. 1,
Table I). Clearance rates of the radiolabeled Dextran-
70 paralleled the disappearance of dextran in HSD (data
not shown). As shown in Fig. 2, 14C-Dextran-70
contained lower molecular weight components than the
Dextran-70 in HSD. Therefore, only the HSD data are
presented. Further evaluation indicated that dextran
was not associated with serum proteins. In addition,
the apparent volume of distribution (Vd) calculated
suggested that dextran was distributed throughout the
blood volume, and the observed differences in Vd
between the hemorrhaged and control rabbits reflected
differences in blood volume due to hemorrhage (Table
I).

Gel filtration chromatography was employed to
detect changes in the molecular weight distribution of
the administered dextran for up to 6 h after infusion.
At each time point assayed, no differences in molecular
weight distribution were observed in serum between
hemorrhaged or euvolemic rabbits. In comparison to the
native 14C-Dextran-70 infused, the molecular weight
profile of 14C-dextran at 6 h post infusion, showed a
decrease in low molecular components (Fig. 2).

Tissue Distribution
At the end of the 96 h experimental period,

concentrations of 14C-Dextran-70 were determined in
liver, kidney, spleen and lung from both groups of
rabbits. As shown in Fig. 3, concentrations of labeled
dextran, expressed as dpm/g tissue, were similar in
lung, spleen and kidney, whereas they were about 20-
fold higher in liver. In liver these concentrations of
dextran were approximately 39 Ag/g or < 1% of the
infused dose. Again no significant differences were
observed between the 2 groups of rabbits (Fig. 3).

Since 14C-dextran concentrations were markedly
higher in liver, other experiments examined the binding
of dextran to liver as well as its uptake. 14C-
Dextran-70 bound rapidly to crude liver membrane
preparations, but the degree of binding at each time
point was not higher than the background bound-to-free
ratio (B/F) (Table II). In addition, the binding could
not be displaced by over 100-fold excess cold Dextran-
70, further suggesting that the binding was non-
specific in nature. Studies of 14C-Dextran-70 uptake
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into liver observed that the highest radioactivity was
found in the cytosolic fraction and was not associated
with protein or membrane structures (Table II). In
addition, in vitro uptake did not increase
significantly over time. Evaluation of the molecular
weight distribution of 14C-Dextran-70 in liver 96 h
after Dextran-70 infusion indicated that the peak
molecular weight was around 40,000, suggesting some
degree of metabolism.

Dextranase Activity
Additional experiments determined the dextranase

activity in liver and the other tissues assayed. The
highest dextranase specific activity, expressed as
mU/mg protein, was found in liver and kidney (Fig. 4).
Of the tissues assayed, the lowest activity was found
in lung. Dextranase activity in liver and spleen from
hemorrhaged rabbits was about 25% higher than in tissue
from control rabbits, but the differences were not
statistically significant (Fig. 4). In contrast, lung
dextranase activity was 19% lower in hemorrhaged
rabbits than in controls (Fig. 4).

DISCUSSION

Recent years have seen renewed interest in the use
of hypertonic solutions to treat hemorrhagic shock. In
dogs (34) and sheep (35), hypertonic (7.5%) NaCl
improved cardiovascular function following hemorrhage,
presumably by inducing a shift of intracellular fluid
to the vascular compartment (36), although neural
mechanisms may also be involved (37). This hemodynamic
effect of 7.5% saline was only transient, and Smith, et
al. (38) demonstrated that this effect could be
sustained longer by adding dextran to the hypertonic
saline solution. Subsequent studies in experimental
animals have shown that small volume infusion of a
hypertonic saline/dextran (HSD) solution was effective
in restoring cardiovascular and renal function, and
tissue blood flow, thereby improving survival following
potentially lethal hemorrhage (36,39,40). In human
field trials, HSD has also been reported to improve
survival of trauma victims (24). Currently, HSD is
being evaluated in clinical trials at 4 ml/kg body
weight; a lower dose than that employed for either
Dextran 40 or 70 in physiological saline (13,41).

Few studies have examined dextran metabolism
following administration of HSD, and particularly in
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the hypovolemic state. In the present study, dextran
concentrations in serum peaked early and were
significantly higher in the hemorrhaged rabbits in
comparison to the euvolemic control. These results are
consistent with our previous observations following
administration of HSD at a dose of 4 ml/kg to
hemorrhaged and euvolemic swine (40), and probably
reflect differences in blood volume due to the
hemorrhage. In addition, we observed the typical shift
to higher molecular weight dextran components in serum
over a 6 h period, consistent with previous reports
that low molecular weight components are rapidly
excreted by the kidney (7). This observation also
suggests that the circulating dextran is not altered
during this time period and agrees with reports that
dextranases do not exist in serum (24). Thus, it
appears that, at least in the 6 h period monitored,
serum anthrone-reactive material represents the native
Dextran-70 infused, and not metabolites of Dextran-70.

Despite the difference in serum concentrations,
dextran clearance rates from serum were not
significantly different between control and
resuscitated hemorrhaged rabbits. The best fit of a
graph depicting the change in serum dextran
concentrations over time was described by a 1-
compartment model and is consistent with the
observation that dextrans distribute rapidly following
i.v. administration (16,21). These data indicated that
the serum tl/2 of Dextran-70, administered as HSD, was
7.4 h and is consistent with previous reports in young
children (4); but lower that the >12 h reported in
normal adults following infusion of dextrans with
molecular weights of 55,000 to 69,000 (7). It should
be noted that this dextran preparation differs from
clinical Dextran-70 and may account, at least in part,
for the differences in serum t1/2 observed.

As previously mentioned, studies with other
clinical dextrans indicate that dextrans are primarily
cleared through the kidney (5,6) which reflects the
major route of metabolism. Thus, if renal function is
not impaired by an induced hypovolemic state or
corrected following resuscitation (40), it seems
reasonable to assume that dextran clearance would be
similar in both groups of rabbits.

It should be mentioned that some authors have
reported that dextran clearance follows a biphasic
pattern (10). In these situations it appears that the
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first phase represents renal clearance, while the
second phase presumably denotes dextran metabolism in
tissues (10). It is reported that dextran metabolism
is a slow process (16) and is insignificant with
respect to the rate of renal clearance. Therefore, in
the context of HSD as a resuscitation fluid for use in
the field prior to transport to the hospital, this
second phase of dextran clearance can be ignored.

The results from the present study indicated that
after the 96 h experimental period, concentrations of
14C-dextran were significantly higher in liver than in
kidney, spleen, or lung. Previous studies in
experimental animals reported that dextrans accumulated
in liver, kidney and spleen (17-19), and that dextran
concentrations in liver declined rapidly when plasma
concentrations fell to undetectable levels (17).
Swedin and Aberg (20), however, found that 18 h after
an i.v. injection of Macrodex (6% Dextran-70 in normal
saline; Pharmacia AB, Uppsala, Sweden), dextran
concentrations were high in spleen, but low in liver
and femoral muscle. In rabbits infused with Macrodex,
dextran accumulated in polymorphonuclear leukocytes (1)
with maximum amounts observed 3-4 h after injection; it
appeared that the reticuloendothelial system, including
that of the liver and spleen, played a major role in
dextran metabolism (1,18,19). In mice it was also
shown that 6-25% of 14C-dextran of unspecified average
molecular weight was expired in air as CO , 24 h after
an i.v. injection (21). In addition, following an i.v.
infusion of 3H-dextran, the greatest accumulation was
found in liver, spleen, kidney, and the
gastrointestinal tract after 30 min, while after 24 h,
most of the labeled dextran was in liver (19). Thus,
results from the present study are consistent with
previous observations on dextran accumulation in
tissues. Although some storage of dextran in tissues
has been observed by us and others, it does not appear
to be associated with any toxic effects (16,42).

Gray (22) reported that the half-life of the 14C
carbon of an unspecified sized dextran was 6.1 days in
mice after an i.v. infusion, suggesting that dextran
can be metabolized by mammals, and its components
reutilized by incorporation into the body's carbon
pool. In the present study, dextranase activity was
detected in all tissues assayed, with the highest
activity, expressed as mU/mg protein, in liver,
followed by kidney, spleen and lung. Although
dextranase activity in lung from hemorrhaged rabbits
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was significantly lower than in euvolemic controls,
overall, dextranase activity did not appear to be
significantly affected by hemorrhage. In agreement
with previous reports (43), tissue dextranase also did
not appear to contribute significantly to the observed
rate of dextran clearance from serum. Thus, the data
from the present study indicate that Dextran-70
infusion as HSD does not bind to proteins nor
significantly accumulate in tissues. In addition it
can be metabolized by tissues and in the hypovolemic
state has a serum t,/2 suitable for its use as a pre-
emergency room volume expander.
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TABLE I

Effect of HSD Administration on Peak Dextran Concentrations
and Half-Life in Serum and Apparent Volume of Distribution

in Euvolemic and Hemorrhaged Rabbits
I

Euvolemic HemorrhaQed

Dextran Concentration 504+36(8) 639+25*(i0)
(mg/dl)

Half-Life 7.36+0.49(8) 7.36+0.32(10)
(hours)

Volume Distribution 140.9+8.3(8) 116.5+6.7*(10)
(ml)

IData expressed as mean + SE (n).

*P<0.05 from euvolemic control
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TABLE II

Binding of 14C-Dextran-70 to Rabbit Liver Membranes

Time After Addition of 14C-Dextran-70 (min)
0 5 10 15 30

Binding 3.71+0.59 2.85+0.75 3.60+0.70 1.75+0.32 6.02+1.34
(n=4)

(Bound/Free/
mg protein)Xl0

4

Uptake of 14C-Dextran-70 in Rabbit Liver

Time After Addition of 14C-Dextran-70 (min)
0 15 30 60 90

Fraction
Whole Homo- 124+33 134+44 93+10 245+15 233+41
genate (n=4)
(dpm/mg prot)

10,000 xg 120+27 129+24 108+14 281+33 267+64
supernatant (n=4)
(dpm/mg prot)

pellet (n=4) 36+5 50+5 39+4 96+10 96+7
(dpm/mg prot)

Data expressed as mean ± SE of quadruplicate

determinations in duplicate experiments.
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Figure Legend
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Figure 1: Dextran clearance from serum of euvolemic (solid line)
and hemorrhaged rabbits (dashed line). Data represent
mean + SE of 8 euvolemic and 10 hemorrhaged rabbits.
The SE are contained within the size of the symbols.
Other details of the parameters that define the line
are presented in the methods section.
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Figure 2: Molecular weight distribution of 
14C-Dextran-70 in

serum from euvolemic and hemorrhaged rabbits. Profiles

at 6h post infusion are compared with initial profiles

of the native 14C-Dextran-70.
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Figure 3: Tissue distribution of 14C-dextran in euvolemic (n=5)
and hemorrhaged (n=7) rabbits after 96h experimental
period. Data expressed as mean +SE of DPI4/g tissue.
Euvolemic, open bar; hemorrhaged, hatched bar.
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Figure 4: Tissue dextranase activity in euvolemic (n=7) and
hemorrhaged (n=8) rabbits after 96h experimental
period. Data expressed as mean + SE of mu/mg protein.
Euvolemic, open bar; hemorrhaged, hatched bar.

*P<0.05 from euvolemic control
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