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ABSTRACT

Control system design for structural dynamics requires instrumenting the structure
with sensors and actuators, the effectiveness of which depends strongly on spatial position.
For the long duration missions typical of spacecraft, the possibility of failures must be
considered and coverage provided for with redundancy and a reconfiguration strategy. To
support these, it is mandatory that sensors and actuators be located such that sufficient
controllability and observability of the flexible dynamics is assured in the presence of
failures. This thesis develops a systematic procedure for finding such configurations of
sensors and actuators for large-scale systems.

Norms on the controllability and observability open loop Gramian are taken as an
index for optimization. The control objectives are reflected by truncating the time interval
over which the Gramian is defined, and by scaling the state basis with respect to a
normalizing, or reference, signal path.,_A convex programming problem is posed by
taking, as independent variables, the power gain (linear gain squared) at a Set of discrete
locations. While the resulting optimal distribution is, in general, non-integer, it serves as
an upper bound and to delineate a search neighborhood for a fixed number of (integer)
quantized sensors or actuators with failure combinations. The Gramian is an attractive
expression for controllability and observability properties because, in addition to posing a
reachable or detectable volume of state space, it is linear in the contributions of individual
sensors or actuators so does not require computation in the main recursion.

Examples with a simply-supported beam and a large-scale model (ACOSS Model
No 2) illustrate the operation of the algorithms developed in the thesis. With the beam
model, the effect on the optimal distribution to changes in the basis scaling and relative
weightings are illustrated. Results for the ACOSS model show the ability to select actuator
locations which generally improve the performance of a LQ regulator over those locations
determined in previous work with an algorithm based on the span of modal influence
coefficients, and to mitigate the effect of failures on those locations.
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Nomenclature

(A,B,C) Matrix triple forming state space representation of a strictly
proper linear system.

b Columns of control influence matrix, B
cT Row of output influence matrix, C

Wo Observability Gram matrix
Wc Control Gram matrix

T State transformation
oZI Second order modes, and diagaonal matrix of a.

x State vector of system (A,B,C)
y Output vector of systems (A,B,C) and 2nd order modal.
u Control input vector of systems (A,B,C) and 2nd order

modal representation
z Controlled variable output of systems (A,B,C) and 2nd

order modal representation
w distubance input to system (A,B,C)
n1 Modal displacement vector of 2nd order structural system
n dimesion of state vector, x
n dimension of 1

m dimension of control vector, u
1 dimension of output vector, y

M,K Mass and Stiffness matricies of structural model
M, mi Total power and individual site power constraints

q physical displacement variables in structural model
cOn COd modal frequency, natural and damped respectively

,D mode shape and modal matrix of structural model,
generalized eigenvectors of (M,K) with eigenvalue wn2 .

diagonal matrix of )n2

modal damping ratio

Z diagonal matrix of
Ji, J2, J3 , JLQ Scalar performance index, norm of

controllability/observability or LQG cost functional
independant variables representing sensor/actuators
placement or authority/sensitivity distribution

f failure mode vector of parameters

HL probability distribution of failure modes
X, X(A) eigenvalue of matrix A

v, V eigenvector and matrix of eigenvectors
tr(A) Trace of matrix A
IA Deteminant of matrix A

Po, PC Riccati equation solutions, observation and control
QxRu State and control weighting for LQ regulator
Qw,R State disturbance and measurement noise intensities

a Control feedback gains
H Kalman gain matrix
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g(s), G(s) Transfer function, scalar and matrix
g gradient of scalar index J

E[ ] Expectation operator
Pr( ) Probability of event ()

Tf Time of failure, random
FTf(t), pTf(t) Probability distribution and density functions of Tf

Xf(t) Failure rate
r(t) Reliability function
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Chapter 1. Introduction

Active control of flexible structures has been an area of fruitful research, but flight

hardware applications remain rare. A general consensus of research in the field is that a

control system which must contend with structural modes within its bandwidth must be

significantly more complex, in terms of hardware and software, than current generation

control systems, in which the rigid body dynamics dominate the bandpass. Complexity is

usually detrimental to the high reliability requirement typical of flight vehicles; and in the

case of space systems, detrimental to the requirement of long mission life with essentially

no maintenance as well. Reliability and life are particularly stressing problems for

spacecraft. After thirty years of flight operations, industry and government have developed

a set of engineering practices and standards that allow confidence in meeting these demands

with a new vehicle design, confidence high enough to embark on some programs with only

one or two flight units. Contrast Ranger, which in 1964 returned the first close-up lunar

photographs on the seventh mission after six consecutive failures with the Hubble space

telescope or Magellan Venus mapper, with only one vehicle fabricated each. These

practices are codified, in the forms of MIL-STD-1543A for military [1] and NASA

Handbook 5300.4 for civil [2] programs, stating certain basic requirements such as no

single-point-failures, and a whole system reliability analysis enumerating failure modes and

effects. Examining the control system architectures typical for a flexible space structure in

light of these standards reveals a number of issues; one of them - sensor and actuator

selection - is the focus of this thesis.

1.1 Reliability Issues in Control of Flexible Space Structures

We first wish to distinguish between issues of reliability and of robustness. The

latter is commonly interpreted as that desirable property of controllers that are, at a mini-

mum, stable in the presence of certain bounded variations in the physical dynamics

(stability robustness), and may satisfy performance objectives as well (performance robust-

ness). These variations are commonly taken to be uncertainties, say in knowledge of

modal frequencies, and possibly degradations of component performance within anticipated

limits over mission life. Component failures, on the other hand, may be thought of as

operations outside of anticipated limits. Failures are usually considered out of the scope of

any robustness requirement; otherwise, excessively conservative or even unrealizable
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design constraints may result. Failures are also characterized by an unpredictable time of

occurrence, and, for active control system components, generally require some accom-

modating action, even if it is as simple as removing power from the failed component.

While passive redundancy techniques are particularly attractive for spacecraft

because of their 'no-action required' operating idea, they are not generally applicable to

active, power-consuming hardware such as that incorporated into flight -control systems.

The two main steps of active redundancy management are:

-1 Failure detection and isolation (FDI),

-2 Reconfiguration to accommodate failure effects.

Each step has been a focus of research, and we note some results as applied to

structural control.

The high order of structural dynamics imposes stressing requirements on failure-

detection methods exploiting a dynamic model (analytic redundancy). We also desire,

however, to avoid simple replication of components just to support a voting method for

FDI. Reference [3] examines analytic redundancy methods for structural systems, noting

how unmodeled dynamics adversely affects detection signatures. Continuing in this line,

references [4,5] examine the Failure Detection Filter, which is a particular implementation

of analytic redundancy. While it is clear from these that FDI may be a challenging problem

for structural control, there are a variety of approaches available. Current practice for

spacecraft relies heavily on monitoring instrumentation signals from the telemetry stream

for broad ranges of anomalies, so including dynamic criteria such as those represented by

analytic redundancy is certainly feasible. We will therefore assume, for this thesis, a

functional FDI system exists.

Reconfiguration is likely to involve bringing a redundant unit on line to replace the

function of a failed unit. If, for a sensor or actuator failure, the redundant unit is

functionally equivalent, then reconfiguration involves power, telemetry, and command

signals, but not changes to the control law. If, however, the redundant unit has functional

differences, such as a different geometric alignment, then the reconfiguration will involve

the control law algorithms as well. In particular for control of structural dynamics, in-

corporating a spare in a different location, or, if there is not a standby pool, just accom-
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modating the failure, should require a re-tuning of the controller in some manner. With

failure states modeled by Markov chains, and the Linear-Quadratic-Gaussian (LQG) cost

functional for a performance index, the optimal control problem for jump-parameter' linear

systems represents a reconfiguration strategy. Sworder [6], Siljak [7], Birdwell [8] and

Mariton [9] have contributed to this line, the main results of which are a 'hedging' of

optimal gains by the possibility of transition to another mode and an idea of stochastic

stability that may include transitions through modes that are not necessarily stabilizable.

This framework is a solution to the problem where the number of failure modes is relatively

small and the system under control must continue operating across failure-mode transitions:

a higher degree of autonomy than may be necessary for spacecraft. The 'control mixer'

concept developed in the self-repairing flight control system program of the Air Force

Flight Dynamics Lab takes the objective of approximating the forces and moments of the

unfailed control surfaces with those remaining or degraded after failures [10]. A similar

line of reasoning in the frequency domain is pursued by Weiss, et al. [11] They seek to

recover the original loop transfer function through compensator redesign, possibly

reflecting increased plant uncertainty with the robustness bounds that are tractable with

LQG theory. Joshi [12,13,14] also takes the LQG control objective and investigates the

influence of non-linearities confined to a conic sector (including failures) in the sensor or

actuator signal path, developing an example for the special case of flexible dynamics as

well. Joshi's idea is to rely on passive robustness for failure accommodation, generating

stability guarantees but not explicitly optimizing or recovering performance. Vander Velde

[15] sets down general guidelines for reconfiguration strategy, emphasizing the flexibility

of eigenstructure assignment and the desirability of retaining the original control objectives

of the unfailed system. A common characteristic of all of these is they essentially pose the

question of how to accomplish a re-design, given some change in the plant has occurred.

For aircraft, this question may need immediate answers [16], though a viable option may

be establishing a reduced level of flight performance for return to base. For spacecraft,

near-real-time action is generally simpler, since some form of independent, coarse-

pointing, controller is a common feature for initial attitude acquisition. For coverage of

failures, the primary mission control system may be shut off, and coarse pointing

maintained with the secondary system until commanded differently. Considerable ground-

based engineering resources may then be brought to bear on reconfiguration over periods
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of time from hours to days. Return-to-base, however, is not an option, and even for those

few spacecraft in low-altitude, low-inclination, orbits, the revisit interval for maintenance is

years. It is mandatory, then, that reconfiguration strategies for spacecraft deliver the

performance required of the mission, and that the ,.maining unfailed components allow

such a reconfiguration.

The control system of modern spacecraft generally consists of a collection of

dedicated sensors and actuators, and a flight computer which may have other functions as

well. We will exclude here considerations of the reliability of the computer, since insights

from dynamics and control theory are not directly relevant for that major component. For

current-generation vehicles, the total number of flight-control components and operational

permutations is small, so it is relatively easy to construct a reliability diagram of the control

system. Single-point failures can be identified, redundant components incorporated, and

the system reliability estimated as required by specification [1,2]. Much of the hardware

for a control system for structural dynamics is similar, but there is an important dynamic

difference. The vector space for rigid-body rotational motion is R3, where there are clear

physical and geometric properties. Structural dynamics, on the other hand, are approxi-

mated in a larger-dimensioned Rn, which is a truncation of an infinite-dimensional process.

Control system effectors for rigid-body control commonly have only one or two directions

of effectiveness, and, for pure torque devices, are not affected by location, so it is

straightforward to insure an adequate level of redundancy for each of a roll, pitch, or yaw

direction. For structural control, effectors may couple into all modes to some degree, and

the coupling is a strong function of spatial location. It is not entirely obvious how to insure

adequate measurement and control authority for important modes even without considering

failures, and redundancy requirements are more obscure. We would like to use as few

components as necessary. In the case of rigid-body control, geometric insights result in

some elegant arrangement of sensors or actuators [17,181 for general, or 'm-out-of-n'

sparing with some level of fault detection and isolation, but direct extension to the higher-

ordered dynamics of flexible structures does not seem possible.

The advantage of general sparing becomes stronger as the number of components

increases. It is possible to decouple reconfiguration considerations from sensor and

actuator placement for structural control. We could determine, assuming no failures, the
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number and placement of a configuration of sensors and actuators necessary for the control

objectives, then provide whatever level of sparing is necessary for each component to

insure at least one per site is functional over the mission life. This is a particularly expen-

sive approach, as will be illustrated by the following example. Suppose we need 10

components (sensors or actuators) to function over the mission life with some specified

probability; but the probability any one component operates for the full mission life is 0.9.

Table 1-1 contrasts the level of individual redundancy (multiplicity of components at a site)

necessary to meet a range of system reliability levels with the number of additional

components required if any component could operate in place of any other.

Table I-1. Comparison of Simple Redundancy and General Sparing.

Simple Redundancy General Sparing

Spec. System Components No. of System Components
Reliability Level Reliability Total S Reliability Total

0.9 2 0.904 20 3 0.966 13
0.99 3 0.990 30 4 0.991 14

It seems sensors and actuators for structural control should be well suited for

general sparing if they are properly located since each one may interact with several (or all)

of the important modes. The main focus of this research is developing an efficient method

to find locations such that the degradation from failures is minimized. General sparing is
I nplicitly assumed.

1.2 Thesis overview

Chapter 2 presents some results concerning sensor and actuator selection for

distributed parameter systems in general, and specialized applications to structural dynamic

systems. Algorithms based on finite-dimensional approximations to structural dynamics

are also reviewed, but none are found entirely satisfactory when the combinatorial

complexity of failures is introduced. Chapter 3 formulates an open loop

controllability/observability optimization problem that is amenable to failure-induced

complexity. Norms on the control-lability or observability Gramian are selected as an

optimization parameter because the Gramian adequately reflects system properties, and its

linearity permits incorporating failure modes with a minimum of computational effort. A
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pair of algorithms are developed in Chapter 4: one is a purely combinatorial search and the

second solves a continuous 'relaxation', providing a good starting point for the

combinatorial algorithm as well as some means of limiting the search neighborhood.

Applications examples are discussed in Chapter 5 for a simply-supported beam model, and

then for a large scale-space optical structure. Chapter 6 summarizes the results and

contributions of the thesis.

The main contribution of this research is a practical approach to placement of

sensors and actuators accounting for possible failures. An unwieldy combinatorial problem

is broken down into a sequence of economical steps; the key one is posing a 'relaxation' of

the commonly adopted constraint that a sensor or actuator need be considered in integer

quantities only. Application results demonstrate the ability to select actuator locations that

are generally superior, in terms of the cost of a stochastic LQ regulator as an evaluation,

than those by a method based on modal influence coefficients not considering failures, and

the ability to minimize the impact of failures. The feasibility of general sparing, as opposed

to simple redundancy, is illustrated.
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Chapter 2. BackgEound

In this chapter, we review previous work directly relevant to the problem of fault-

tolerant sensor and actuator selection. With increasing focus on that particular problem, we

consider first some significant results on sensor and actuator selection for distributed

parameter systems (DPS) modeled by partial differential equations (PDE), then algorithms

specialized for structural dynamics modeled by ordinary differential equations (ODE), and

finally criteria for sensor and actuator selection considering possible failures.

2.1 Sensor and Actuator Selection for DPS Control

Control of structural dynamics is properly posed within the theoretical framework

of distributed-parameter systems and their infinite-dimensional spaces. It is widely

recognized that the spatial location of inputs and outputs, and possibly the temporal

scheduling as well, are important design issues. Kubrusly and Malebranche [ 19] recently

conducted a survey of over 50 papers on this topic. We will note some general

observations from their survey, and examine the results of one particularly complete paper.

While applications were directed toward any of three objectives - system

identification, state estimation, and optimal control - the primary theoretical distinction

noted by Kubrusly and Malebranche was the decision of where to shift analysis from the

infinite-dimensional space (L2 or 12) to a finite-dimensional space (RN) by the 'N-modal'

Fourier expansion of eigenfunctions [19]. For example, some authors carried out the

approximating truncation first, then posed sensor or actuator criteria, while others defined

infinite-dimensional controllers and approximated at a later stage. None of the works were

concerned with practical issues such as computational costs or efficient algorithms, and

none of them included examples involving more than four sensors and/or actuators.

However, they develop a theoretical underpinning which offers some assurance that the

problem has no fundamental pitfalls.

One of the latest and most complete papers in the survey was by Omatu and

Seinfeld [20] and we will cite their main results. For a linear DPS of the form

dx(t) = A(t)x(t)dt + B(t,4)u(t)dt + dw(t) 2-1

state x evolves in a Hilbert space, H, with inner product <, > and outer product, 0. We

will not precisely account for the properties of H and operators in H because we only wish
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to comment here on some results, but the interested reader might consult [21] for a concise

summary of such analysis. A(t) is a bounded differential operator, from and into H, while

bounded operator B(t,.) is parameterized by actuator (controller) spatial locations, L, and

is a mapping from the finite dimension of control, u(t) r Rm, to H. Disturbance w(t) is an

infinite-dimensional Wiener process with intensity

min tlt 2

E [w(tI)ow(t)] = f Qft) d. 2-2
• to

A finite number of measurements, y(t) r R1, are taken from x(t) with C(t,.s), an

operator from H to R1, parameterized by sensor spatial locations, s,

dy(t) = C(t,t)x(t)dt + dv(t) 2-3

and the measurements are corrupted by the finite-dimensioned Wiener process v(t) with

intensity

min tIt 2

E[v(t)ov(t2)] f R,(t) dc. 2-4
to

Omatu and Seinfeld [20] consider optimal control of the stochastic DPS,

represented by equations 2-1 and 2-3, with respect to the LQG cost functional

= E<x(t,),Q~x(t ')> + Jo <x(t),Q(t)x(t)> + Ku(t),Rjt)u(t)> dt 2-5

The optimal control, in an extension of finite-dimensional results, is given by full-state

feedback of the estimated state which evolves in H. The optimal feedback and observer

gains involve infinite-dimensional Riccati operators, Pc(t,) and Po(t,Ls), respectively.

Note that while the dimensions of u(t) and y(t) are both finite, the resulting model-based

compensator is not.

The main results of reference [20] are existence theorems of an optimal actuator

location, L*, and an optimal sensor location, s*, along with necessary and sufficient

conditions for the optimal locations. Proof of existence centers on showing operators
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Pc(t,La) and Po(t,ts) are continuous in L and L, respectively, with the further

assumptions that L and L are compact and B(tW) and C(tt) are continuous with respect

to the sensor or actuator locations. Sufficient conditions for optimal locations are

cT(t4R;lC(t,4s) C(t,.o)R;C(to), V ts 2-6

B(t,.,iT) BT(,-*) >  , 2-7

where the operator ( )T represents the adjoint. The necessary condition takes the form

a(totf,tt) -0, Vt*t: t , * 2-8

where

=(t0,tf) tr Ru(0)F T(t,to, t ) -B(t,,R.1BT(t,.)]-FT(t,to,) dt+

-JB~t~.*)R-B(t,dR)

-,d

to

tf

to

Operators F 1, F2 , GI, and G2 are, in effect, weighting functions for the sufficient

conditions, They involve the Riccati operators at optimal locations ,* as well as other

locations t, the evolution operators of the filter and regulator dynamics, and the control

effectiveness and measurement sensitivity maps, B(ta) and C(t,.). For example,
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T

T2-10

F2(t,T,,t,) = ~,,)F~,)o%,C(, )v (0(r-sP(, 2-11

where 'Pc is the evolution (state transition for ODE systems) operator of the LQ regulator at

the optimal actuator locations, -*. Weighting functions GI and G2 have a dual structure.

Further results include corollaries of the existence, necessary, and sufficient

conditions for f'mite-dimensional (N-modal) approximations of the DPS system represented

by equations 2-1 and 2-3. An example using the parabolic heat equation in one dimension

places two sensors and actuators by checking the sufficient conditions, but neither a general

algorithm nor an application of the necessary condition is suggested. The results are

important because they are derived with respect to a measure of closed-loop performance

for linear distributed parameter systems subject to stochastic disturbances and measurement

noise, and are extended to a finite-dimensional approximation of the system. Perhaps the

only significant theoretical point to add might be to show the sensor and actuator locations

that are optimal with respect to the N-modal approximation converge to the optimal

locations of the DPS. From an engineering point of view, however, the ability to compute

optimal locations for large-scale systems is also necessary, so we turn next to research

which has focused on algorithms with specific applications to structural systems.

2.2 Agoidthms for Structural Dynamics

While for theoretical purposes, the step to specialization for structural dynamics is

just focusing on a particular class of hyperbolic self-adjoint operators, an important

engineering detail is the fact that, for practical purposes, dynamic analysis of flight

structures requires finite-element methods. Only the simplest spatial domains are tractable

with a direct application of assumed modes (or Fourier expansion), and for most

structures, identification of independent spatial variables, 1, with suitable continuity

properties may be unacceptably difficult. A common pattern in the literature for sensor and

actuator selection is to a suggest a criterion, several of which we will review in Chapter 3,

and plot it over a simple structural model. Few researchers have stepped up to the

difficulties imposed by complex spatial domains and the required finite-element

approximations on a large scale. We review next results from two who have.
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One approach to a discretized spatial domain is to consider only the finite number of

nodes, or combinations of nodes, for sensor and actuator locations. In principle, there is

no loss of generality, since the finite-element mesh can be selected as small as desired, and

since devices with a distributed effect are reflected to the nodes as external point forces.

This casts the problem, formally, as one of integer programming, but even for linear

problems these are known to be intrinsically difficult. Since the effect of adding sensors or

actuators to a structure is generally monotonic- that is, more is better from a controllability

or observability point of view- sequential elimination (or addition) is a viable strategy for an

algorithm. Hegg [22] and DeLorenzo [23] have developed algorithms for large-scale

structures with sequential elimination, and implemented them as shown in Figure 2-1.

Start

4=1, 
i=1,N

Compute J(.t)

min I,& J(QI
Eliminate

Figure 2-1. Sequential Elimination Algorithm.

In this case, components L- are Boolean variables indicating presence or absence of

a sensor or actuator on one of N potential sites. The algorithms start with a device in all

possible sites and then identify the site which will cause the least reduction (AJ) in a

performance index, J(t). DeLorenzo [23] uses the LQ performance index, equation 2-5 for
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for finite-dimensional systems, and selects a site for elimination by computing, for

actuators,

T

A~J() =(~J- u,2-12

exploiting the 'Component Cost Analysis' of Skelton [24] for the gradient of the LQ cost in

direction of control ui. Hegg [22], on the other hand, considers columns of the control

influence matrix, B, and their ability to span the sub-space of the modal influence vectors

of a disturbance. We will revisit both of these particular performance indices in more detail

in Chapter 3. For now, we note both Hegg and DeLorenzo demonstrated their algorithms

on a version of the 'CSDL Model No. 2' from the ACOSS problem: Hegg considering as

many as 485 potential sites and DeLorenzo about 10% of that number. Since we have

Hegg's results in some detail, we use them to compare with the results of this thesis in

Chapter 5. Neither Hegg nor DeLorenzo claimed their algorithm produced an optimal

result with respect to any criterion, although each appeared to be a practical and useful

heuristic approach. We should also note DeLorenzo included a modification for the case of

noisy actuators, in which elimination of a site might actually improve (decrease) the LQ

cost. Both developed corresponding criteria for sensor selections.

Some structures may present a particular axis or direction where a continuous

spatial variable may be introduced and a hybrid approach, with numerical estimates of

mode shapes at discrete nodes smoothed by a continuous interpolation, may work. An

example of this by Johnson, et al. [25] considers placement of control surfaces for gust

load alleviation along the wing of a transport aircraft. Cubic splines interpolated finite-

element derived mode shapes so that modal influences of two pairs of ailerons were

approximated as continuous functions of their locations in one dimension along the wings.

The optimization criteria was the minimum LQG functional weighted for wing root stresses

and control surface deflections of the ailerons, the locations of which were independent

variables. Geometric simplifications such as this are not general, however, and likely to be

particularly uncommon for flexible spacecraft.

If we now consider the possibility of failures, the combinatorial nature of failure

enumeration makes sequential approaches, particularly elimination, expensive. To the
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author's knowledge, there are no examples of sensor and actuator selection algorithms for

large-scale structures which account for failures. There are, however, some useful results

for measures of performance including failure effects, and we take these up next.

2.3 Criteria for Fault-Tolerant Sensor and Actuator Selection

Given some criteria for sensor or actuator placement, say J(.), where t represents

spatial locations, we may introduce an additional parameter, fi, which represents a

particular failure mode, and pi(t) to represent the probability the configuration, .t, is in

failure state fi at time t. We may then compute a failure-weighted performance index with

the expected value,

E[J] = wJ( )' pi(t) 2-13

which is defined at a particular time, but could be averaged (integrated) over a mission time

interval. This approach, by Vander Velde and Carignan [26], also develops a particular

performance index, J, based upon an optimal open-loop control or observation problem.

Another criterion, the LQ optimal cost, was employed in a similar manner in reference [27].

We will examine both measures in Chapter 3 for algorithm suitability, but note here the

application approaches and results.

With the expected value of the optimal LQ regulator as a criterion, Montgomery and

Vander Velde [27] compared two configurations of five actuators each on a grid structure

for time durations up to twice the mean-time-to-failure (MTF) of an individual component,

i.e., 0 < t/MTF < 2. One configuration was clearly superior if no failures were possible,

e.g., t = 0, but for t/MTF > .5, the other one was preferable. Vander Velde and Carignan

[26] fixed t = MTF and considered placement of up to four actuators on 11 possible sites on

a free-free beam, seeking the best locations via exhaustive search. Again, the optimal

location was shown to change when the possibility of failures was included. For no

failures, sites were favored that might only control a few modes, strongly influencing those

they did, while if failures were admitted, sites that interacted to some degree with all modes

were favored. Even for the limited number of sites and actuators considered, there are 330

ways to place four devices in I I potential locations, and for each placement there are 12

21



failure modes (including all-fail) so the performance index must be computed 3,630 times

in the search. Exhaustive enumeration quickly becomes impractical for larger problems.

In the next chapter we examine in more detail criteria for sensor and actuator

placement, select a particular class, and formulate an optimization problem for algorithms.

An important motivation is computational economy for applications to large-scale

structures.
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Chapter 3. Problem Formulation

From the rather broad goals of sensor and actuator selection for fault-tolerant active

compensation, this chapter develops an optimization problem which strikes a balance

between computational economy and precise representation of the actual objectives. We
review structural dynamics and probabilistic failure modeling. Optimization requires an

objective function; so several candidate classes are reviewed and a particular one, based

upon open-loop system controllability and observability, is selected and motivated.

Finally, the sensor/actuator selection process is posed as a non-linear integer programming

problem with a 'relaxation' as a first step in its solution, which is reserved for the next

chapter.

3.1 Failure modeling

Without considering the possibilities of component failures, most of the work

reviewed so far may be thought of as a solution to the beginning-of-life (BOL) problem.
That is, for some independent parameterization of the sensor/actuator suite, , and the

deterministic performance index, J( ), the optimization of J over t is a useful result only

for mission durations short enough to preclude planning for component failure, or BOL for

conventional long-duration space systems. In order to account for failures, it is useful to
introduce the additional parameter, f, to represent distinct failure modes, and FI, the

probability law of f. The evolution of the probability law is often modeled with Markov

chains. The now-stochastic J(a,f) may be formed to express the goal of good

performance in the presence of failures. Indeed, the definition of failure modes and their

probability law can be a complex undertaking for even a relatively simple control system

[28, 29]. At the top system level, reliability modeling includes FDI, reconfiguration,

grouping of simple failure effects into 'modes', which are possibly distinguished by the

history or order of failures and resulting actions, all in order to make a probabilistic

estimate of system performance. For this application, however, we seek a number of

simplifications.

We assume the problem of optimizing controllability and observability of a

structural system may be done independently of the particular closed-loop control, FDI,

and reconfiguration systems. The failure modes, f, are restricted to the sensor/actuator
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suite alone, and the evolution of its probability law is based on the reliability of the

components. Furthermore, the nature of the failure modes for each component will be

idealized as bi-modal, either fully operational or fully failed and turned off. A system-level

failure mode is defined to be a unique list, f, of the operational status of sensors or

actuators- 0 for failure, 1 for operational. We further define F to represent a particular set

of failure modes, according to some criterion such as probability of occurrence. A

bi-modal assumption is supported by considering the electro-mechanical hardware

commonly envisioned as sensors and actuators for structural control. Unlike aerodynamic

control surfaces, their influence upon the structural dynamics may be entirely eliminated

(save for mass) by command and switching upon signal from a FDI system. Note that
these simplifications on f do not restrict the modeling of its probability law, 11. In

particular, there is no requirement that the components' individual reliabilities be

independent.

Even with simplifying assumptions, the large number of components typical for a

structural control system results in the possibility of even larger numbers of failure modes.

In the example of Table 1-1, if 14 components are required at BOL to ensure 10 continue to

function over the mission duration, there are 1471 combinations of up to 4 failures. This

combinatorial nature of the problem adds significant weight to computational economy for a

performance index and its parameterization, J(4,f).

Several basic ideas useful for fault-tolerant systems are now defined [30-32]. For a

simple component that is either failed or operating, the time to failure, Tf, is a random

variable with a probability distribution function, FTf(t) = Pr(Tf < t). Another commonly

used event is that failure has not occurred at time t, and its probability is the reliability of the

component

r(t) = Pr ( t < ) = 1 - FTf (t). 3-1

The failure time has a probability distribution (mass) function,

p(t) F (t) = - dr(t). 3-2d t d

The expected value of the failure time is the mean time between failures (MTBF). For

systems that are not maintained, such as spacecraft, a better term is mean time to failure

(MTTF), which will be used here and is computed
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MTF - E [Tf] =ftt Pn(t) dt. 33
f .

Expressing the density in terms of the reliability, and integrating by parts, the

MTIF may be calculated:

N=F = lira -Ltr(t) + r(r) d] 3-4

which shows a finite MITF is not defined for some reliability histories. Another important

event to characterize is the time of failure conditioned on the functioning of the component

at some earlier time, 0 < to < t. Applying the definition of conditional probability, this

event may be related to the unconditional failure time:

Pr(T:5t~f~t) =Pr(to<Tf< 5t) Fff (t) FTf (to)3-
P(Tf~tITf>to) -- Pr(Tf>to) = r(to)

Differentiation results in the conditional distribution, which may be expressed in terms of

the (unconditional) reliability:

!F(t) r(t)
p (t Ito) = t rt 3-6r (to ) r (to )

The hazard, or failure, rate is the value of this conditional distribution for the special

case to = t, Xf(t) = prf (t I t ); and can be experimentally estimated in practice. It is often the

starting point for reliability analysis, but does not itself have the properties of a probability

density function. The reliability may be calculated from the failure rate by solving the

differential equation

-dr(t)
YO=dt 3-.7

r (t)

Subject to the initial condition r(0) = 1, the solution is

r (t) = exp Xf() . 3-8
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A constant failure rate is a commonly used simplification, which is often acceptable

after a 'burn-in' or 'infant mortality' period and before wear-out phenomena dominate. For

Xf(t) = Xf, reliability has the explicit form, r (t) = e" f t, and the MTTF definite integral

(eqn. 3-8) evaluates to MTrF = lfXf.

Included among the parameters to select for an index incorporating failures is the

mission duration and the manner it is reflected in J(4,f). Common practice is to specify

system-level requirements at end of life (EOL) for those functions that generally degrade

over the mission duration. Electrical power is a particularly good example, since both

battery charging depth and solar-cell output fall steadily with time and use. Implied in the

EOL-type specification is the assumption that the particular system will deliver performance

up to or better than specification at all times prior to EOL. Another specification approach

is to average performance over the life, or sections of the life, of the mission. This is done

when there may be large fluctuations in performance during the mission, but not

monotonic degradation. Examples include time between momentum desaturation

maneuvers or high-level mission objectives, such as coverage of a multi-spacecraft

network. With the assumptions that maintenance is not available during the mission and

control system component failures are permanent, the EOL approach is adopted as most

appropriate for sensors and actuators.

3.2 Measures of Controllability and Observability

The control authority of actuators and measurement sensitivity of sensors may be

cast formally in terms of system controllability and observability. Optimization requires

some scalar index, and in this section we develop and motivate a particular class that

reflects the properties of the open-loop fixed-final-state control problem and an observation

dual.

3.2.1 Gramians: Control and Measurement Interpretations

For a vector-valued function, g(t) = [gl(t), "", gn(t)]T to be linearly independent

on the interval [to, t1], Gram's criterion [33], [34], is that the determinant of a matrix of

inner products not vanish:
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ti

IW(tl,t0 )l * 0, where Wii(tl,tO) = j i tr)gj x) & 3-9

The Gram matrix is symmetric and non-negative definite, so has real non-negative

eigenvalues and orthogonal eigenvectors. In deterministic control applications, if we are

interested in transferring the initial state, x(to), of system (AB) to any terminal state, x(tl),

in finite time with a control of finite energy, then this is possible if and only if [35] the

rows of the convolution kernel, [eA(tl0)B], are linearly independent on the interval [to,til.

Similarly, if we are interested in determining the initial state, x(to), of a system (A,C) from

(noise-free) measurements y(t) = C x(t) on a finite interval, [to,tl], then this is possible if

and only if the columns of the free response, [C eAq, are linearly independent over the

observation interval. Furthermore, we may be interested in scaling or weighting the control

and output signals to reflect particular objectives. We introduce positive definite

weightings Ru and Ry for this purpose. In order to assess the linear dependence of the

rows of [eA(t1"0B] or columns of [C eAt], we may compute Gram matrices with all

combinations of inner products:

tt A ) T I to T

W(t 1,tO) = e BtrT (trB d = eBUB e d , 3-10

t o 
-1

and

tl -to T

A r T -1 Ar
Wo(te~t) e CR Ce drt 3-11

The second form of the Gram matrix for control results from a change of variables

of integration. While the term 'Gramian' has as an older definition [33] the determinant of

the Gram matrix, the control literature commonly applies the name to the matrix itself, and

that convention is adopted here. The 'Controllability Gramian', then, is represented by

equation 3-10 and the 'Observability Gramian' by 3-11. Weightings Ru and Ry are non-

standard, but the effect is equivalent to including them directly in B or C with the standard

Gramian forms: B = BRu"1/2 and C = Ry'l12C. Differentiation shows the Gramians are

solutions to the Lyapunov equations with t = tl - to,

dW t) = AWgt) + Wt)AT+BR;B ,  We(O)=0, 3-12
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d Wo(t) = ATWo(t) + Wo(t) A JCRy1C, Wo(0) = 0, 3-13

and for strictly stable systems, Re(ki(A)) < 0 V i, have bounded solutions in the limit as

t - *. The controllability of (A,B) and observability of (A,C) may be defined in terms of

a full rank condition on the appropriate Gramian, and is equivalent to the more common us,.

for time-invariant systems of the controllability matrix, [A AB ... Ar'B]. Early work

[35] referred to the (control) Gramian as the controllability matrix of the first kind, while

their 'second kind' is the now commonly cited form. More useful to this work, however,

is the manner in which the Gramians enter into open-loop optimal control and observation.

For the objective of sending x(0) = 0 to x(t) = xf, the min-norm (12) control that

accomplishes this is
T

u(x) = R-1 BT e A (t-T)Wl(t) x 1  
3-14

and the norm of the control is

u IR T - -T(Ac)R-u(c) d-

[x- W e t) BRuIIRu[R B e A t' )W- (t) Xf] dr

xT W-1
S wC(t)xf. 3-15

In a dual manner, given observations of the free state response, y(r) = CeA T x(O),

the initial condition, x(0) = xO is observed bytoT
I1 3-16 -ol(t)feA CT - 'Y1 ..~XO= W W e C. Ry y () d -T 3-16

and the output signal norm is

2 Ac T
13' 2.1 = fx TeA CTR [ Ce'xodr = x0TWo(t)x 0 . 3-17
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The quadratic form in the norm expressions have a geometric interpretation as the

reachable and observable sets, and the eigenstructure of the Gramians displays the

properties of those sets. Let Xi be a (real) eigenvalue of W, and vi the corresponding

eigenvector normalized to unit length, viTvi = 1. Note the eigenvectors are orthogonal by

the symmetry of W. For a final state in the direction of an eigenvector for the control

problem, xf = aVcj, or for an initial state aligned with an observability Gramian

eigenvector, x0 = avoj, the minimum control norm and signal norms are, respectively,

2
2 T -1 T -1 aUull2 = xfWC(t) xf = vcjWC (tVcj = X 3-18

Xci

2 TT 2

Uy 12 = x0TWo(t) X0 = a0 oWo(t) oavo = aOj 3-19

Therefore, the set reachable by a unit norm control is the interior of a hyperellipsoid with

major axes of lengths Xc1 2 pointing in the directions of the eigenvectors of We. The set

detectable with a signal output of at least unit norm is also a hyperellipsoid with axes

aligned to the eigenvectors of the observability Gramian, but the lengths are Xo1/2 and the

set includes the exterior of the ellipsoid. The minimum eigenvalues and eigenvectors

represent the most expensive direction to control and the least sensitive direction to detect

for the respective cases. For 'good' controllability and observability properties, we desire

larger eigenvalues of both Gramians distributed in the important directions of state space.

This qualitative objective is made more precise later in sections 3.2.2 and 3.3.2.

It may be the case that the control objective is a fixed final point in the output space,

say yf. The min-norm control driving x(O) to x(t) such that y(t) = yf = Cx(t) is:

I1 T A (t-r) T T -u(t) = RU B e C[Cw(t)C] 'y f. 3-20

The (weighted) control norm is given by

2 =l T T
= yfw[CW(t) cT] Yf. 3-21

An output reachable set may be defined and studied with the eigenstructure of the Gramian

CWcCT, which may be of considerably lower order than the full-state controllability
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Gramian, particularly for structural systems. There is a dual to this case, and it may be

physically motivated by considering the problem of determining the input which is known

to be an impulse delivered at t--O, u(t) = u0 8(t), from the output response of a system

initially at rest. The initial state is then x(O) = Buo, and the problem is a variation of the

initial state observation case. The minimum-length initial input, calculated by the free

response output is

-1 Af T -
U.=[BTWo(tB]BTf e Ar~ RP y(,) ci

.0

and the (weighted) norm output is

l R, = u[BTw(t) uo. 3-23

The geometry of the 'input observable' set may be described by the Gramian BTWo(t)B.

A change in the state basis affects the structure of the Gramian. For the non-

singular transformation x = Tx, the system (A,B,C) for x is transformed to (T-IAT,T' 1 B,

CT) for x. The Gramians are transformed:

W 1t) = T- W(t) TT 3-24

Wo(t) = TT W(t) T 3-25

which are congruent transformations. While the signs of the eigenvalues are preserved,

their size and the directions of the eigenvectors are not. Note the output controllability

Gramian (CWcCT) and input observability Gramian (BTWoB) are independent of the state

basis, since they describe the linear dependences of input-output properties. This may be

verified algebraically:

CWCT = CT(T'twr'TTC = CWCT 3-26

and likewise for BTWOB.
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The explicit dependence on a terminal time can be settled by choosing an infinite

horizon. In this case, the Gramians may be computed as the solutions to the algebraic

Lyapunov equations:

0 =AWgtj+ Wgt.)AT + BRUIBT 3-27

0 =ATNWo(t.W(t.) A + CTRC. 3-28

For lightly damped structural systems, this choice has two significant shortcomings. They

are best illustrated by an example of a lightly coupled, lightly damped two-mode system,

such as the pair of identical pendula in Figure 3-1. There is a single input, a torque about

the pivot of pendulum 1, and the coupling is represented by the spring, k. Viscous drag,

b, at the pivots damps the system.

u(t), -bO 1(t) -b 2(t)
so + +

F k

Figure 3-1. Coupled Pendula

Selecting as unit displacement the static deflection of the linearized equations from a

unit torque input, (mgl + klk2), and as unit time the inverse of the undamped natural period,
[gil +(k/m)(/0/)21 /2, the non-dimensional equations of motion may be written

[01]]+ 2  [ -el =lu" 3-29
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The normal mode shapes provide a basis for decoupling the equations and are the solution

to the eigenvalue problem

~~[i ~ ~ -[e~P 3-30

with eigenvalues

O)= + I2= -) 3-31

and corresponding normal mode shapes (eigenvectors)

k][ = -L [ - 1] 3-32

Note the effect of the coupling, e, is to split the identical natural modes of the independent

oscillators into two distinct system modes. With the change of basis, D = 1 , the modal

equations are

n+2 
33 +3le 3 

T
which have as a first-order representation for xT= [1i 11111212]

0 1 0 0

0 1 F

( --( e) -2

In this basis, the infinite-time controllability Gramian may be computed explicitly

by solving the algebraic Lyapunov equation (3-27), 0 = A Wc + Wc AT + b bT:
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S1 0_ _ __

8 (I+F) 2 2 2 2
2(4 +E ) 4(4 +e)

1 -E

8 2 2 2 2
WC= 4(4 +e ) 2(4 +e)

2 2 2 2 8 (1-e) 3-35
2(4 +E ) 4(4 +E )

F, 0_ 1

22 22 8
4(4 +e ) 2(4C +e)

We may see now the first difficulty with the infinite-time horizon: the Gramian is inversely

proportional to the damping ratio and all non-zero terms grow without bound as -- 0.

For structural dynamics, viscous damping is the least accurately known parameter of the

linear model, and it is desirable to not allow damping such a direct influence on the results.

The second problem has to do with the shape of the reachable set.

Taking as an 'output' the physical displacements, 0, they may be written as a

combinatic - of the modal states:

-'Cx, with C=[ 1 0 t201 = [ [10 1 3-36

The control Grarnian for O is then

E 2 2+ ---) (A)t2

T QI-E 2I+0 5-A-
Wee = C W.X CT -  42 I 3-37

E2~ 212

Some limiting cases are of interest. As the coupling vanishes, all terms go to zero except

the upper left, corresponding to 01, which approaches 1/(4Q). The 01 diagonal term (upper

left) is always larger than the 02 term (lower right), but the proportional difference tends to

zero as the damping decreases for any finite coupling:
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2 0,E>Olir W[1,11 - W[2,2] C 3-38
-0 W[1,1] 2) 2 1, e=

This says that for any coupling at all, the system is nearly as controllable in the 02 direction

as in 01. Truncating the time horizon is necessary to express what is physically obvious in

this example: part of the system is much easier to control than another. Selecting values of

1% for damping and 10% for coupling (4--0.01, e = 0.1), the displacement Gramian is

solved for several characteristic times. Figure 3-2 shows plots of the reachable set for unit

norm control, that is plots of 1 = .T W-1 I .

As time increases, the reachable volume becomes 'rounder', and the Gramian

reaches the steady-state solution
W0[13.1070 1.2626 1

1.2626 12.1455]

which has eigenvalues X1, 2 = (13.98, 11.28), so the lengths of the steady state axes are the

square roots, 3.74 and 3.36. The envelope of the Gramian grows approximately as

(1- e-2 ) for large times. For t=50 we would expect the envelope to be about 63% of full

size with axes of length 2.36 and 2.12, and this corresponds with Figure 3-2b.

For control intervals on the order of the characteristic time, the reachable volume

clearly reflects the asymmetric distribution of control authority. Furthermore, a bounded

control interval more closely represents the actual closed-loop objectives of command

following or disturbance rejection than does the infinite horizon. A logical interval is the

inverse of the desired closed-loop bandwidth. For this reason, and because of the

sensitivity to the damping parameter, results based on the infinite horizon Gramian, which

are common in the literature, may be misleading.

3.2.2 Scalar measures of Controllability and Observability

A reachable (or detectable) volume is an intuitively satisfying notion for control-

lability/observability analysis; however, we must still assign some scalar measure, J, to

those sets to pose an optimization problem. This section reviews some candidate measures

and motivates the selection of a particular class.

34



REACHABLE D ISPLACEMIENT
2

Timne: 2,4,68,10

(non-dimensionao

0

()2

-2

-2 -1 0 i 2

Figure 3-2a,

REACHABLE D ISPLACEMIENT
3

2 Time: 10,20,30,40,50

()2 (non-dimensional)

0

-2

-3
-4 -3 -2 -1 0 1 2 3 4

DIRECTLY CONTROLLED STATE, (01)

Figure 3-2b. Growth of Reachable Set.

35



The manner in which the eigenstructure of the controllability and observability

Gramians describes the reachable and detectable volumes makes their use an obvious

choice. Kalman, Ho, and Narendra originally suggested [35] the determinant and

minimum eigenvalue of the Gramian as a scalar measure. MUller and Weber [36] amplified

these ideas with the introduction of some additional requirements; and their results are

reviewed now.

A scalar index, J(W), defined on a class of non-negative definite matrices W should

have the following properties [36]:

J(W) = 0 for rank(W) < n 3-40

J(W) > 0 for rank(W) = n 3-41

J(aW) = aJ(W) for scalar a 3-42

J(Wl) > J(W 2) + J(W 3) for W, = W2 + W3. 3-43

These properties define a norm for W. The first two state J(W) is non-zero only for fully

controltable/observable systems. Properties 3-42 and 3-43 result in J being concave for a

combiiiation of controls (sensors); that is

J[ccW 1 + (1-a)W2] > aJ(W1 ) + (1-a)J(W2), a G [0,1]. 3-44

Concavity becomes particularly useful in developing an optimization algorithm.

The minimum eigenvalue of We or Wo satisfies all four properties, and has the

geometric property of defining the volume of the largest sphere inscribed within the

ellipsoidal reachable set, 1 = xfTWo lxf. The spherical volume, Vs, is exactly kXminn/ 2,

where k depends on n (k= t for n=2 and k--47/3 for n=3). The proportionality constant is

not important, so we may define Vs = (Xmin) n/2 . However, the exponent of n/2 is

inconsistent with the desired linearity in property, equation 3-42, so we take as the first

performance measure the minimum eigenvalue itself:

J I n Xmin(W) 3-45

Another physically meaningful measure is the average control effort expended to

drive the final state in any direction on the unit sphere, IjxfII2 = 1. Kalman, et al. [35]

compute an expression for this average, which is
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x TW1 x dx2 f11x11 w -1  -

Hu1 2 = = tr(W-). 3-46
f 2 d x  

n

We are interested in making the average small, so we take the inverse as a second

performance index. By expressing

n2 ,3-47

i=l

where iw()1 are the principal minors of W, J2 is shown [36] to satisfy all four requirements

for a useful measure. Proving the convexity property, equation 3-43, requires [36], [37]

Bergstrom's inequality and Minkowski's inequality of order -1.

The determinant of a Gramian has the useful geometric property that it is related to

the ellipsoidal volume of the reachable set. Dropping the proportionality constant involving

x again, we may define Ve as that volume:

1/2 1/2
V ' I 1W1 3-48

i= 1

Ve does not, however, satisfy the homogeneity property, equation 3-42, but can be made to

do so with the exponent l/n rather than 1/2. A third performance measure is then,

J3 1W 1/n' 3-49

The sign definite properties of equations 3-40 and 3-41 are plainly satisfied, and the

convexity property is precisely another inequality of Minkowski, [36], [37].

The Lyapunov equations governing the evolution of the Gramians are linear.

Therefore, if Wci is the control Gramian of actuator b1 , the system Gramian of m inputs is

the sum,
m

WC = 1Wei, 3-50
i=I

since BB T -  _bibi for B =[bI b2 ... bn. 3-51
i=l

While the scalar measures are non-linear functions of the eigenvalues, the linearity of the

Gramian is computationally convenient if the number of candidate actuators is finite. It can
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be advantageous to pre-compute and store the contributions from each site, Wi, since the

number of possible combinations an algorithm might process can easily exceed the number

of sites. This is particularly true when the combinatorial complexity of failures enters the

problem.

It is certainly possible to define meaningful measures of controllability and

observability without strictly adhering to the formal properties of a norm. Vander Velde

and Carignan [26] define a 'degree of controllability' (Dc) that explicitly incorporates the
'out-of-roundness' of the recoverable set. The 'elliptical volume', Ve, is proportional to

the volume of a 'recoverable' set, and Vs is the largest inscribed 'spherical volume':

Dc= Vs + VV _ V)] 3-52

where the 'recoverable' volume refers to the set of initial states that can be driven to x(t) = 0

under an (L2) optimal control. The control that does this is

T
-1 T - At -I

u(t) = -RU B e WAW(t)xO. 3-53

The 'recoverable' control Gramian, WC* is related to the 'reachable' form, We, by

T ft "T

Wc*(t) = e-AtWgt)eA t = eA(tt)BRuIBTe "A (t't)d 3-54

which is governed by the Lyapunov equation

d T -IT- dWc,(t) = AWc,(t) + Wc,(t) A BRUB T  Wc,() = 0. 3-55

The norm of the optimal control is

2 T -II uI = X0 Wc,(t) X0 3-56

which defines a recovery region. Note that for strictly stable systems the recovery region

becomes unbounded as t-4 -c since the state decays exponentially to the origin and

timW-t) = 0. 3-57
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A 'degree-of-observability' (DO) is defined based on the Fisher Information matrix,

which is equivalent to a form of the observability Gramian. Note that these measures are a

combination of J1 and J3 for WC., but do not satisfy the desired homogeneity property of

equation 3-42 precisely, i.e., DctaW) = faD W) for scalar a. While this is just an

inconvenience, Dc and Do are more difficult measures to incorporate into an algorithm than

the simpler J1, J2 or J3 forms. The issue of 'roundness' is somewhat qualitative, and will

be addressed in part by scaling the state basis.

There are other criteria upon which to base a recovery or reachable region. A

recovery region defined by time and fuel optimal control is developed by Lindberg [38]

based on Viswanathan, et al. [39]. The constraints

lui(t):l 1 i=l,m 3-58

Ef lUi()l dct - F 3-59

where F represents here the 'fuel' limit, can be traded off between purely time-optimal, for

F2mT, and fuel-optimal for large T, in the solution of the control via Pontryagin's

minimum principle. While the recovery region does not generally have an analytical closed

form, these researchers develop polytope approximations and define a scalar controllability

measure as the smallest dimension in the recovery region. Lindberg [38] also considers the
,energy' optimal control and a scalar measure equivalent to J1 = k-min(Wc*) for the

recoverable form of the Gramian as previously discussed. The polytope approximations of

the recovery region for lightly damped structural systems are not, however, easy to

incorporate into a recursive algorithm.

The size of the models commonly required when dealing with structural systems

provides a strong motivation for computational efficiency. Structural dynamics have a

special form and may be represented by the second-order model

M(t)+ D(t)+ Kq(t) = Bu(t), M=MT> 0, K=K%0 3-60

y(t) = Cdq(t )+ C,,cq(t) 3-61

where q is the physical displacement.. Hughes and Skelton [40] have exploited the

properties of this form to define controllability and observability measures for undamped,
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damped, and gyric systems. These are extended [41] to rigid and multi-body modes as

well. The modal form of the dynamics with the transformation q--ft is

+ 2Z + 0' = (TB 1 3-62

Y =Cdftl + CA'n 3-63

T T
DB =[bI ... b] .  3-64

Note that bi represents here the rows of (!TB, and not the columns as defined elsewhere.

Each row is, of course, m elements long for the m control signals in u. For the case of

distinct modal frequencies, the controllability index for each mode is defined as

T
Ji = bib/  i=l,n 3-65

and the system is controllable if and only if Ji > 0, V i. An observability index is defined

based on the column norms of C(Y, again for each mode, and a generalization for identical

frequencies is also developed. Skelton and Hughes [40] also suggest the set of

controllability indices as suitable optimization parameters, but a scalar measure

incorporating more than one mode is not defined. It does not follow, however, that good

controllability properties for each mode imply good properties for the system. Consider

again the coupled pendula example. For e > 0, there are distinct eigenvalues, although

closely spaced, and close spacing is certainly a common characteristic of structural

dynamics. Each mode is individually as well controlled as the other by the single input, but

the system as a whole is not. This near linear dependence between the modes is precisely

what is captured by the Gramian.

Faced with a sensor and actuator selection problem of large scale in the ACOSS

(Active Control Of Space Structures) program, Fogel [42] proposed an approach exploiting

the directions represented by the vectors of modal influence coefficients. Including a

disturbance input, w, and a control objective vector z, the structural dynamics in second

order form is:
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2 T T

1 + 2Zfll+Q = (D Bu 4-DBdw 3-66

y =[Csp]n + [Csv(l]l 3-67

z =[Cz4D]n 3-68

cl 3-69
LC2j.

Control of a two dimensional optical line of sight in the presence of a specified wide-band

random disturbance is the particular ACOSS problem. The actuator selection problem is to

include a relatively small number of actuators in Ba from a larger set, BA, so there is good

control authority in the directions (modes) strongly contributing to z. Sensor selection is

based on a similar criterion so the rows of Cs 'match' the directions represented by the

columns of Bd. For actuator selection, we seek a coefficient vector, ai, such that

T
cz.=[43BA]ai i=1,2 3-70

which almost certainly does not have an exact solution if the number of actuators is less

than the number of modes. A criterion for minimization is then the error

T

J =m I cZ [ BA]ai 3-71a i  i "i '

With the least-squares solution for ai, the minimum value is

T T #2
J=II- [DBt[J4 BA] 3-72

where # is the Moore-Penrose inverse. In their algorithm, Hegg and Kissel [22] exploit the

properties of Householder transformations and 'QR' decompositions to identify columns of

BA that can be eliminated with minimal growth in J. Their algorithm starts with a large

number of actuators, and proceeds with a sequential elimination process until a

predetermined threshold in the error is exceeded for either LOS output influence coefficient

vector. Admittedly heuristic, the method does not account for the spectral distribution of

modes; but has been applied to a large scale model, the 'C.S. Draper Model No. 2', [22].

The setting of the threshold is also subjective, and the researchers noted a sharp growth in J
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as the number of actuators (sensors) was reduced below the number of modes in the

control design model.

All of the performance measures reviewed so far characterize the open-loop plant,

although the control objective will ultimately be satisfied by closed-loop compensation. In

general, multi-variable compensator design is a labor and engineering judgement intensive

process not amenable to rapid recursion, say in an algorithm for sensor or actuator

selection. A notable exception, if it can be properly posed, is the LQG approach.

3.2.3 LOG Design

Linear-Quadratic Gaussian (LQG) optimal methodology has become so ubiquitous

in multi-variable control problems it is worthwhile to outline some of the basic relations

between what are essentially open-loop properties, controllability and observability, and

closed-loop performance, as reflected by the value of the LQG functional, JLQG. A

representation of the stochastic form of the cost for time invariant systems is

JLQj~t~tI = tjx TT )R(z c+xT
SE{f t)tl) + uT()Ruu( ) ct+ x (t1 )Pcix(ti) 3-73

The optimal control and observer gains follow from the solutions to the independent Riccati

equations:

-Pg(t) = ATPgt) + P(t)A - Pjt)BRl'BTPgt) + Qx p(t 1) = pcI 3-74

Po(t) = APo(t) + Po(t)AT- Po(t)CTRYlCPo(t) + Qw P0 (0) = E~x(0)xT(0)] 3-75

with Qw the intensity of the state disturbance and Ry the intensity of the measurement

noise. In the limiting steady state case (to-+ -o and tl-* 0a), the value of the cost

functional may be expressed

Jh =- tr[PQw+ PoGTRJ] = tr[PcHRyH T + PoQx] 3-76

where G is the regulator gain matrix, G = Ru-IBTpc, and H is the optimal observer

(estimator) gain matrix, H = PoCTRy-1, [43]. The LQG cost is certainly a viable scalar

measure by which to judge sensor and actuator placement, as is pointed out by the results
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of Omatu and Seinfeld [20] reviewed in Chapter 2. For the finite-dimensional case, we

may illustrate here some of the steps involved.

Suppose the control influence matrix, B, is continuously parameterized by a vector,

, representing actuators, B(.). The gradient of JLQG may be computed for each

component in by
a 3 J = tr P >T] X-h. 1 f R/2E c he h= column jof HR"' 3-77

a T~

where the matrix aPc/a4i satisfies the equation obtained by differeiiiiating the (control)

algebraic Riccati equation

0=a Ta T]
0 = [ PJ[A - B(QG] + [A - B()G] iPc - Pc B(.)R u B.) P -L~ ~i C[--i U c. 3-78

This is a Lyapunov equation and by inspection its solution is symmetric. The matrix [A-

BG] is recognized as the closed-loop dynamics matrix and for fully controllable systems is

known to have eigenvalues in the open left-half plane, hence solution DPe/a3i is unique

[33]. In order to compute the gradient of J with respect to t, one such Lyapunov equation

must be solved for every component of t. The solution for the Riccati equation, Pc, is

required as well, and in an algorithm cannot be summed from contributions of individual

devices (columns of B) since that equation is non-linear. This may not be prohibitive for a

problem of small dimensions that seeks only one solution, but if the combinatorial

complexity of failures is introduced, the computational cost grows rapidly.

There are other issues that can reduce the practicality of the LQG cost functional as

a measure of controllability or observability. It may be that minimization of JLQG is not the

actual control objective, but the LQG solution is used as a means to achieve some other

property, such as loop transfer function shapes in the frequency domain. The results are

highly sensitive to the particular weights chosen, and the weights are yet another set of

parameters to specify, in addition to scaling and model selection. These parameters may

not be well justified early in a design effort. For several reasons it may be more

appropriate to measure the fundamental system properties of controllability and

observability directly rather than against the LQG functional.
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There is, however, a close relation between the controllability and observability

Gramians and the important (non-negative definite, symmetric) Riccati equation solution.

For the special case of Q = 0 (process noise for the estimator or state weighting for the

filter) and P(tI) or P(0) -+ ** (large terminal state weighting or no knowledge of the initial

state) a version of the Gramian is exactly P-1. Consider the estimator Riccati equation for

this case (Qw = 0 for E[x(0)xT(0)] - **) so Po(0) = 0

T Ti-P0 
= APO + P oAT PoCTRylCPO. 3-79

With the relation

d [Po(t)-,] = .Po(t)' [dPo(t)o(t)- 3-80

the inverse propagates by

dr[-l - -1 TR-1 -Id [pol =PolA+ATPo -C R;C PO (0) = 0 3-81

which is the same equation that governs the 'final -time' observability Gramian,

T

PO(t) = Wo0(t) = e"A t Wo(t)e'Ai 3-82

where Wo(t) is the 'initial-time' observability Gramian (3-11). The distinction is motivated

by the form of the deterministic observer equation. The 'final' state, x(t), given

observations y(jr), r e [O,t], and with no unknown inputs may be computed by

f
t -T

x(t) = Wo4 t(t) dt 3-83

which is similar to the form for initial state x(0) with Wo(t) in equation 3-16. The final-

time Gramian is also equivalent to the Fisher Information matrix, and it was with this

interpretation Vander Velde and Carignan [26] defined their scalar 'degree of observability'

for sensor placement. It is interesting to note how process noise modeled by Qw requires

feedback of residuals in the model-based estimator and changes the Lyapunov equation to a

Riccati equation.

The dual relation for the regulator Riccati equation is
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PC 01 - t) = W (t) = - BRB T e & 3-84

where ti is the terminal time in the regulator cost functional and Wc* is the 'recoverable'

control Gramian (3-54).
This relationship with a special case of the Riccati equation leads to a handy method

for computing the Gramians. The (control) Riccati solution may be obtained from the

Hamiltonian system:

d[X(t) = A -BR-I B Tr [X(t) H 38
dtX gt) Q -AT  LxC(t)I

where xc(t) is the co-state. Defining 'f(t) as the solution (transition) matrix to the

Hamiltonian system (AH) and the corresponding partitions,

T(t) =e A t [11(t) Pt )] 38

-(t) T (t) _3-86

the Riccati solution [431 may be expressed with partitions of TP(t) and the terminal time

state weighting, Pci:

P (t) '' 2 1(t-t1) + T 2 2(tt )Pc T I 1(t-t + .2(t4OP 1] 3-87

In the special case Qx = 0 and Pci"1 - 0, the solution to the ('recoverable')

controllability Gramian is

-ltlt -1
PC (t1 -t) = WC*(t) - 1(-t) P2(-t) 3-88

with

At fT

'l(t) = 3-89

0 e-A t
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Notice how the Gramian propagates forward in time as the inverse Riccati solution

propagates backwards from the terminal time. Laub [44] has reported this approach for the

'reachable' form using -AH.

For the general case of non-zero process noise and state weightings, Joseph and

Bucy [45] develop bounds for the (estimator) Riccati solution:

-1

[W-1(A) + Wo.(A)] < Po(t) < [Wo.' (A) + Wco(A)] 3-90

where WCQ is the 'controllability' Gramian of the process noise:

WCQ(A) e fAd, Ar 3-91

0

and Wo* is the Information matrix (or 'final-state' form of the observability Gramian).

Integration limit A is any such than O A <t. For the more general time-varying case in [45]

the interval for the Gramians is (t,t-A) for any A _(tl-t0). A dual form exists for the control

Riccati equation, Pc(tj - t), with Wc* dual to Wo* and WOQ, the 'observability' Gramian of

the state weighting, dual to WCQ. A useful implication of these bounds [46], is if the

Riccati equation is too burdensome for incorporation into an algorithm, sensor and actuator

optimization based upon a measure of the appropriate Gramian indirectly optimizes the

respective Riccati solution, and hence the value of the LQG cost functional.

3.2.4 Optimization Parameter

Of the several scalar measures of controllability and observability reviewed, we

select the class defined by Miller & Weber [36] computed with the Gramian eigenvalues

for developing an algorithm. The several physical interpretations of the Gramian, including

the relative linear dependence of the rows of eAtB (or columns of CeAt), the quadratic form

representation of the reachable (detectable) volume, and the bounding of the closed-loop

Riccati equations partially motivate this choice. Computational economy considerations

complete the motivation, particularly for the case of combinatorial failure modes. No other

measure considered was as satisfactory with respect to both physical meaning and

economy.

Within the class selected, however, a further decision of the particular form

remains. Indeed MUller & Weber [36] took up the question of posing the problem such
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that the particular index selected (within their class) did not affect the sensor or actuator

optimal locations. This situation occurs if at the optimum the Gramian is a hypersphere,

which would be a fortunate accident in our problem. Intuition suggests the minimum

eigenvalue measure, equation 3-45, is not as desirable as the others since it depends

entirely upon one direction in the reachable/detectable volume. While both the

average-energy based (3-47) and total-volume based (3-49) norms depend on all directions

in the state space, a subtle problem exists with the latter and scaling. In the next section we

will develop an approach to scaling the state basis so that control and sensing are equally

important in all directions, motivated by the idea that a measure of controllability or

observability is useful only if we accomplish such a 'calibration' of the basis. Suppose *

represents some optimal location of actuators such that J3a*) = IWc(L*)i 1/n is maximized.

Then suppose we rescale the state basis with a nonsingular transformation, T. While the

value of the measure at t* is changed by the rescaling, J3 -+ IT-2/n IWc(*)l 1/n, t is still

the maximizing argument. This negates the intended effect of scaling. We are left with the

average-energy form, (3-47), but rather than adopting it exclusively, we will experiment

with all three on the examples in Chapter 5, keeping in mind the theoretical shortcomings of

the minimum eigenvalue and total-volume measures.

3.3 Model Selection

In addition to the usual issues of model selection for structural dynamics

(dimension in particular) reviewed in this section, scaling the state basis is fundamental to

qualitative analysis of controllability and observability properties. We have already pointed

out how relative input and output weightings are dealt with by Ru and Ry, respectively, so

a 'unit-norm' control or output signal is properly interpreted. Since controllability and

observability are both defined pointwise with respect to the state, we must also necessarily

settle on a similar interpretation for unit displacement in the state basis.

3.3.1 Scaling the State Basis

If there is sufficient meaning given to each component of the state it is possible to

choose a scaling directly. This may very well be the cai, f,r rigid body modes. Following

the reasoning in [26], if Ixireql is the maximum excursi,. 'ate component xi is required to

reach over the control interval, then the transformation, x = Tx with T = diagIxireql),

results in a basis for x where unit deviations are equally important in all directions. Notice
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that directions requiring large excursions shrink in the scaled space, since x = T-x. The

control Gramian is scaled from Wc for x to Wc for x with Wc = T-lWcT-T; the reachable

envelope has been divided by Ixirql in direction i. The sensitivity (gradient) of the selected

scalar measures are all highest for the smallest cigenvalues (smallest dimensions in

reachable volume), so optimization based on these measures will attempt to improve control

authority in those directions more than in the directions of the larger eigenvalues. The

scaling also defines a normalization surface, which contains the reachable volume in the

original basis that is transformed to the unit sphere in the scaled basis. This surface is

described by the matrix TTT = diag( Ixjireq 2 ). Directly scaling for observability may be

justified in a similar manner. Recall the detectable volume was that region in state space

outside the ellipsoid defined by the Gramian which produced at least a unit-norm signal. If

Iximaxl is the state displacement in direction i that is required to produce a unit-norm output,

then that distance may be thought of as the maximum tolerable error in direction i. The

scaling x = Tx where T = diag ( Ixima} results in a basis of equal required sensitivity. The

observability Gramian transforms Wo = TTWOT, so the ellipsoid contracts in directions

requiring greater sensitivity, i.e., small values of Iximaxi. Scalar measures based on the

observability Gramian eigenvalues will have a steeper gradient for improved sensor

sensitivity in these directions as a result. The scaling also describes a required detectable

volume, which in the original basis is T-TT "1 = diag(IximaXI-2), that scales to the unit

sphere.

A shortcoming of direct scaling is the need to explicitly select the scale factor for

each state. For structural dynamics, the states are commonly amplitudes of normal modes,

but can be in a basis with no physical interpretation. It is not easy to imagine how to select

a maximum modal amplitude excursion for each mode. We seek a scaling approach that is

handier, with fewer parameters, but accomplishes the intent of direct scaling.

3.3.2 Normal Forms

With the motivation of model reduction, Moore [47] investigated several particular

basis selections, focusing in particular on 'balanced realizations' that have equal and

diagonal Gramians, Wc = Wo = Z = diag(ai). Balanced realizations are useful for

displaying the relative importance of modes with respect to signal throughput, since in that

realization the system may be thought of as equally controllable and observable. Two other
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special forms are defined: 'input normal' with Wc = I, Wo = 12, and 'output normal' with

Wo = I, Wc = Z2. Similarity transforms for stable controllable and observable systems to

these realizations are simple. Define matrices of orthonormal eigenvectors, Vc and Vo, and

diagonal matrices of eigenvalues, Ac and AD, such that

VcWcVeA c and V'W 0V 0=A,0 3-92

Then with U, an orthogonal matrix of the eigenvectors, and Z2 ,a diagonal matrix of the

respective eigenvalues resulting from applying the diagonalization transformation for the

controllability Gramian to the observability Gramian,

T[U 1/2)T J 1/2)] 2 393U-LV~ C wova C U = I39

the state transformation given in [44]

1/2 -k

T 1= VcAC U1 3-94

results in the realizations of input normal for k=O, balanced for k=1/2, and output normal

for k=l. The construction of this transformation starts by normalizing the control

Gramian, with VcAc 1/2, then rotating the results of that transformation on the observability

Gramian to principal axes with U, and finally scales both to equal shapes with Z-1/2. It is

equally valid to construct the transform the other way, starting with the observability

Gramian. The numbers ai2 in diagonal 12 are called the 'second-order modes' [47] and

are system invariants. The product WcWo (or WoWc) transforms to T-lWcWOT (or

T"'WoWcT') and these are similarity transforms, so the eigenvalues are invariant and are

the a1
2. Indeed, if we are not interested in the controllability or observability properties

separately, a balancing transform may be established by taking T as the modal matrix of

WcWo. The ai are also the singular values of the Hankel operator [48] if they are defined

for the infinite horizon interval, t e [0, -c), so while all the above properties hold for a

truncated interval, t e [0, tf], ai may then not have any other system interpretations.

Gregory studied balanced realizations for lightly damped structural systems in [49], and

developed approximations for the required transforms that are asymptotically correct as

damping vanishes. A useful result is that the basis for a balanced realization is a particular
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form of modal coordinates, provided the frequency separation of modes is not too small,

i.e., Ioi-0jI >> max( i,Cj)max(Qi,Ocj) for all distinct modes, iaj. Despite the theoretical

usefulness of balanced realizations, their direct exploitation for sensor and actuator

placement is complicated by the explicit dependence of such realizations on both the input

and output signal paths, which we are trying to form. There are, however, other possible

signal paths with which we may define a balanced realization, such as disturbances and the

regulated variables we seek to control.

Consider a structural dynamic system with two classes of inputs, actuators and

disturbances (u and w), and two classes of outputs, sensors and regulated variables (y and

z), as represented by Figure 3-3.

Distbanc T Regulated

DB Cz Variables z

11+ 2ZSIU+ Q I1

Conto_ T C Sensor

u BaSignals Y

Figure 3-3. Structural Dynamic Signal Paths

This system is modeled by the equations

2 T T
+2Z7_ + 0f 1= [D B3]u + [0 Bdiw 3-95

y = [Cs¢D]fI + [Csd ]nl  3-96

Z [CzvA]I1 + [CZAI. 3-97

The overall design objective is to control the regulated variables to follow

commands (including the regulator case of zero set-point) in the presence of disturbances.

The sensor-actuator selection problem is to provide the control authority (Ba) and

measurement sensitivity (Cs) so a compensator may be designed to accomplish the control

objective. We assume here the disturbances and regulated variables are fixed and out-of-

scope of the control engineer's design effort. Direct scaling of the state basis produces, in

effect, a required, or reference, reachable control volume that is aligned with the original
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state basis (principal axes) with dimensions Ixireql. The signal paths displayed in Figure 3-3

show two other choices for a reference reachable volume. The first is the reachable volume

of the disturbances, since control authority ought to be distributed in some manner

proportionally to the disturbances. The second is the inverse of the detectable volume of

the regulated variables, which is a dynamic analogy to Hegg and Kissels' selection

algorithm for actuators [22]. This may be thought of as normalizing the controllability

Gramian by the shape of the observability Gramian, with the result that the optimization

parameters in this basis have steeper gradients in the most sensitive output directions.

A scaling to 'input normal coordinates' by T = VcAc 1/2 effects the first approach,

where Vc are the (normal) eigenvectors, and Ac the eigenvalues, of the disturbance

controllability Gramian for the first order state x=[rLT d/dt nIT]T. In this basis, the

disturbance Gramian represents the 'required volume' and is scaled to the unit hypersphere.

This transformation is a generalization of direct scaling; the dimensions of the disturbance-

reachable volume, Xcl/2, enter the transform as Ixireql in the direct case, but there is now a

rotation so the principal coordinates of the required reachable volume need not be aligned

with the original basis.

Similarly, the scaling T=VoAo I/2 , where Vo and Ao are the eigenvectors and

eigenvalues, respectively, of the regulated-variable observability Gramian, results in a basis

that scales control effort by the degree it affects the regulated variables. The 'required

volume' is represented in this scaling by the observability Gramian, and the label 'output

scaled' is appropriate. This is a direct analogy to the idea implemented by Hegg & Kissel

[22], except the use of the Gramian now accounts for dynamics. Note this basis is not
'output normal', for the observability Gramian is scaled to TTWOT = A0

2 * I. Indeed, the

basis 'output normal' results in a scaling that emphasizes adding control in directions least

important to the output, which is exactly the opposite of the desired effect. This distinction

motivates the order chosen for the balancing transformation, e.g., starting with the

normalization with respect to the control Gramian, which is in the 'right' direction for the

scaling objectives, rather than with the observability Gramian, which is not.

We may also wish to scale by some combination of the disturbance reachability and

the regulated variables sensitivity. The 'balanced coordinate' basis is a natural starting

point, and it is tempting at first to try T = 1/2, since the controllability and observability
Gramians in this basis are both Z. The result, however, is equivalent to the previously-
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defined 'input-normal' basis (plus a rotation, U) and the effect of the output weighting is

exactly cancelled. We may see what to do by considering a signal from the input, to a point

in state space, then to the output. Suppose over the control interval, t C [O,tl], we

command the final state to point in direction xf = aei in the balanced basis subject to the

constraint II u 112 = 1, where ei is a fundamental basis vector, with 1 in place i and 0

otherwise. We know the largest excursion reachable is oi1/2 in this direction. Now if we

start the observation interval and allow free response of the system, the output signal norm

over t e [tlt2], with (t2-t) the integration interval of the observability Gramian, is II y II =

Oil/21xf = ai. There is another factor nf oi1/2 to scale by. We adopt as a 'required volume'

the product of W¢ and We in the balanced realization, which is Z2, and we adopt the label
Ithroughput-scaled' for this basis. A transformation that implements this rule from the

'balanced' realization is T=I, and from any realization is

T = VcAcll/2UM. /2  3-98

where U is the rotation defined in the transformation to balanced coordinates. The required

volume in the original basis is represented by

Wreq = 7rT = VcAcl/2uIjTAc I/2VcT  3-99

and is observed to be close to a symmetric square root of (WcWo)(WcWo)T for the

structural systems considered. That is, WreqWreqT = (WcWo)(WcWo)T; however this

observation was not pursued to any formal bound. There are certainly other ways to

construct a scaling weighting both inputs and outputs, but it is important to make the

scaling directly proportional to both the disturbability and observability, and not inversely

with respect to one as is done in construction of balanced realizations.

A similar process guides definition of observability scalings. In an extension of the

direct scalings, we seek more general 'detectable surfaces' based on the disturbance to

regulated variables signal path. Since the 'output-normal' realization is now in the

appropriate direction for scaling, the balanced realization construction proceeds in the

opposite order as for control scaling. The 'output-normal' transformation is T=VoAo" ' 2 ,

so the square roots of the eigenvalues of the observability Gramian are inversely analogous

to the direct scaling IximaxI, the maximum acceptable error or excursion. Recall an initial

state of length Xo-1 /2 in the direction of the associated eigenvector produces a unit norm
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output signal. Also in opposition to control authority scaling is the interpretation of 'input-

normal' basis. In this basis, the disturbability volume dimensions, Xc1/2, would associate

with the maximum permissible error,lximaxl, and the proper relation is the inverse. Table

3-1 summarizes the several scalings discussed.

Table 3-1. Scaling Summary.

Actuators

Normal surface Transform from x orig-
(W for 1=xTWx inal to x scaled basis

Scling..yM original basis except as noted x = Tx

Direct diag ( Ixireql2) diag{Ixireql}

Input Normal We of Disturbance VcAc1/2

Throughput Scaled 2 in Balanced Realization VcAc1/2UI /2

Output Scaled Wo of Regulated Variables VoAo 1/2

Sensors
Direct diag{IximaxI-2) diag{IximaxI}
Input Scaled Wc of Disturbance VcAc -1/2

Throughput Scaled Z2 in Balanced Realization VoAo'1 /2U2Z1' /2

Output Normal Wo of Regulated Variables VoAo-1/2

where: UIT[(VcAcl/2)TWo(VcAcl/ 2 )]U1 = 2; U1 Tu 1 = I

U2T[(VoAol/2)TWc(VoAol/2 )]U 2 = 2 2 ; U2TU2 = I

Since the transformations must be non-singular, all require a completely

controllable and/or observable system, and the eigenvalues of the normalizing Gramian, &

or _o, are strictly positive. This topic is taken up again in section 3.3.3 on model order

reduction.

The issue of scaling for the state basis can be dispensed with entirely for the case of

point-wise output control or impulsive input observation. Recall the output controllability

Gramian, CWc(t)CT, and the input observability Gramian, BTWo(t)B, do not depend upon

the state basis. The dimensions of these Gramians can be considerably smaller than the

state order, although their computation requires the full order Wc or Wo. We could base an

algorithm entirely on output controllability or impulsive input observability, placing

actuators to control the regulated variables and sensors to observe the disturbance inputs.
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Such an approach leaves open, however, the possibility of placing actuators, for example,

that while they do affect the regulated variables strongly, propagate to the output through

structural modes which could well be orthogonal to the modes the disturbance affects.

Pointwise control, state or output, is not the objective itself, but merely a computationally

tractable method which has properties, we hope, that carry over into the actual closed-loop

objectives. Therefore, this appealing simplification is rejected in favor of pointwise state

control and estimation with attendant scaling requirements.

Use of a reference signal path to define a basis scaling significantly reduces,
compared to direct scaling, the quantity of free parameters. There still remains, however,

several choices and no clearly motivated manner of distinction. Intuition suggests

'throughput-scaling' should, by reflecting both the disturbance reachable set and regulated
variables detectable set, be somehow superior to the others, but we do not have a precise

way to measure that. Instead, we will try several scalings, along with other permutations

of the overall approach, in the examples of Chapter 5 and note the results.

3.3.3 Model Order Selection

Creating a mathematical model of a structural system is a significant exercise in its
own right before issues such as controllability, observability, state basis, and scalings can

even be discussed. The computational steps are briefly reviewed here to provide a context

for the more formal model order reduction problem. References for structural dynamic

modeling and analysis include Meirovitch [50], and Strang and Fix [51].

A first result of a modeling process for structural analysis and response dynamics,

as opposed to control synthesis, is a set of equations with at least the form

Mq + Kq=Bu M>0 3-100
y = Cdq + Cq K>0 3-101

where q is a vector of physical displacements (translation and rotation) at a discrete set of

node points, including possible rigid body displacements. Positive definite mass and

positive semi-definite stiffness matrices M and K are taken as the result of finite element

modeling of a spatial discretization of the structure by patch functions, such as elemental
rods, beams and plates. Linearization of spinning masses results in skew-symmetric rate

and displacement coefficient matrices, but their inclusion does not materially affect the

54



conclusions reached here, so we stick with the simpler case. Input u, including possibly

distributed forces, are integrated over the patch functions and reflected as discrete nodal

forces and torques with influence coefficients B for actuators and disturbances. Specified

outputs, such as the regulated ,ariables of the control problem, or sensor outputs are

modeled in y as a combination of physical displacements, q, and rates. Computation of M,

K, and the input and output influence matrices may be carried out by a code such as

NASTRAN. The dimensions of q can be large, such as 6v where v is the number of

structural nodes, and in the case of the Draper Model No. 2 used for this thesis, v = 59

nodes so 6v = 354. We form an eigenvalue problem from equation 3-100,

2
oii~i= K- i  3-102

where (% are the real modal frequencies and j the mode shapes, which are orthogonal with

respect to the mass and stiffness matrices and can be normalized such that:

T
SMj = ji=j 3-103
T 2 0 ij = 10, i j

P . = O 8 3-104

Note that while there are up to 6v eigenvalues and vectors, only a small fraction,

usually less than 1/2, are actually computed, and an even smaller fraction commonly

demonstrate good correlation with hardware. The eigenvectors represent a basis for R6v,

and it is formally correct to express q as the expansion q = ft where ( is a square matrix

of all 6v eigenvectors. However, what is done of practical necessity is to express q

approximately in the subspace spanned by a truncated set of eigenvectors:
n

q(t)-= I iTli(t) =Din v<6v, 01 =It 3-105
i=1

This first truncation may still employ all the eigenvectors actually computed. Truncation is

by frequency, retaining the lower n modes, and the vector il. e Rn is the modal amplitudes.

In this subspace the structural dynamics may be represented by the uncoupled equations
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2 T
11+ f l=4)1 Bu 3-106

y = CdOfn+Cvin + Du. 3-107

The 'feedthrough' term may be thought of as the input-output correction for

eliminating of part of the static stiffness, K, by modal truncation. The static deflection, y,

from a steady load u to the system is y = CK-1Bu (assuming an elimination of the rigid

body modes resulting in K>0). Partitioning the modal matrix, 4D, into the n retained

modes, (Di E R6vxn and the 6v-n truncated modes, 02, 4) = [11 421, and compatibly

partitioning the (diagonal) eigenvalue matrix, the inverse stiffness matrix may be written:

1 T -2 T -2K = (1I2 4I)l + 41)20"2 (I2 "3-108

The second term is the portion of the static gain lost by modal truncation, so a

representation of D is C4)2T[f22]-2 2 B. Though modes 02 may not be computed, D may

be computed with equation 3-108, recognizing the columns of the matrix [K- 1B] as the

(force) influence coefficients, which may be computed by NASTRAN or other finite

element coding,

T -2
D=C[K'IB] - C4)10 14) 1B. 3-109

Including a feedthrough results in a plant that is not strictly proper, and is

inconvenient for control synthesis, so the feedthrough is often dropped. Non-inclusion of

D may be justified, however, if fidelity of static deflection is not as important as dynamic

response. This is often an acceptable situation for disturbance rejection and vibration

damping as a part of command following for a relatively small number of regulated

variables, exploiting perhaps high DC gain in the loop as compensation. It may not be

acceptable for static shape control where a limited number of measurements are used to

infer distributed deflections. For feedback control synthesis, one may invoke a frequency

separation argument to solve the dynamic problem separately from the steady state

problem, which is further supported by the often distinct hardware implementations of

nearly-static and dynamic devices. Controllability and observability properties pointwise
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with respect to a state basis do not involve the feedthrough, and this research concentrates

on the dynamic problem alone.

Structural dynamics analysis of spacecraft is required for launch loads and transient

shock response whether a control-structure interaction problem exists or not. To compute

the response to a random loading, usually specified in terms of a power spectral density, a

damping estimate is necessary. A viscous damping model is convenient, since it enters as a

linear term. If a damping matrix, introduced to equation 3-100, as a coefficient of dq/dt, is

a linear combination of the mass and stiffness, say aiM + a2K, then the undamped normal

modes used in the decoupling transformation also decouples the damped system, which is

particularly convenient. A diagonal modal damping matrix, Z = diag(i) may be computed

by:

27_M = DlIT[ctlM + a2K] 1 = all + a21 2  3-110

so = (a,/cmi + cia2)/2. While some physical damping properties are adequately modeled

in this way, the overall validity of linear and proportional damping is controversial and a

subject of current research and engineering interest [52]. Damping mechanisms and model-

ing are also out of scope for this research. We assume some level of linear modal damping

can be specified to adequately represent the important phenomena, say amplitude and phase

change at a resonance. The shortcomings of linear damping assumptions, however, further

motivates the use of the truncated time horizon Gramian. It is well defined for a range of

damping including zero, and relatively insensitive to the details of the damping mechanism,

while the infinite horizon case is not.

At this point, a first order model (A,B,C) and its associated transfer function, G(s)

= C(sI - AYIB may be computed and a formal model-reduction problem posed. A

formulation is: Find a Gr(s) of specified order that in some sense minimizes the error

I Gr(s) - G(s) ip, where p represents some norm. The first point is that a significant

amount of 'model reduction' takes place for structural dynamics before this formal problem

can be dealt with. The second is it is well posed only over a specific input-output signal

path. An important path for control design is the one we do not have and are interested in

forming through actuators and sensors. Finally, this statement of the model reduction

problem does not have, to our knowledge, a general solution. Nevertheless, it is neces-
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sesary to start somewhere and the disturbance to regulated variables signal path is specified

and a natural point of departure. We review briefly some results in model order reduction.

The balanced realizations of Moore [47] are useful for reduction. Partition such a

realization of fully controllable/observable system, (A,B,C), with Wo=Wc= 2 as follows:

d [xi=A 1 A12] [x 1 [B,]u

1x2 J1 A21A22  X2 B 3-111

y = CIXl+C 2x 2

3-112

then this partitioning may be thought of as rept- senting two interconnected subsystems,

(A1 1,BI ,CI) and (A2 2,B2,C2 ). Moore has shown [47] for asymptotically stable systems

any partitioning in this manner results in asymptotically stable subsystems. The 'second

order modes' may be ordered so a12 > "" >n 2 > 0, and I partitioned:

-= 1 3-113

so

l1 = diag[a; 2, ., Cr2 ] 3-114

Y-2=diag[ar+12 , ... , n2]  3-115

If there is an r such that Gr 2 >>Or+12, then the subsystem (AI1 ,BI,C 1) is said to be

'internally dominant', and represents a viable reduced-order model. Moore's balancing

algorithm requires starting with a fully controllable and observable system, which is not

hard to do for structural dynamics in modal form. Any distinct mode is uncontrollable if its

row of [DTBI is identically zero and is unobservable if its column in [CdC] (displacement)

and [CO] (rate) are identically zero. For non-distinct modes, there is the additional

requirement [401 the associated rows of [(DTB] and columns of [CO] be linearly

independent. Elimination of all uncontrollable and unobservable modes results in positive

definite controllability and observability Gramians, and the scalings discussed in 3.3.2 will

not have any singularities. The degree of controllability and observability among the

modes is then reflected in the ai. While such a reduction by balanced partitioning was not

shown to have any particular optimality properties, Enns [53] showed the error is bounded:
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I Gr(s) - G(s) II< 2 tr[ElJ, where the infinity norm IIF(s)L. is the maximum singular value

of F(jo)) over all frequencies. Glover [48] studied all reduced-order Gr(s) (of order r) that

minimized the Hankel norm, 1IF(s)IH = Xmaxl/2(WcWo), where the Gramians of F(s) are

defined over the infinite horizon. The H-optimal Gr(s) includes a feedthrough, D, and the

error is bounded by IIGr(s) - G(s)UIH - (r+1[G(s)], where the ai are the Hankel operator

singular values and/or the balanced realization eigenvalues of full order G(s). The H-

optimal Gr(s) also satisfies IIGr(s) - G(s)II. :tr[Z2], which is half the bound on the Gr(s)

resulting from partitioning the balanced realization, but does not include a feedthrough,

while the H-optimal Gr(s) does. In this case Z2 represents the equivalent partitioning of

G(s), but it should be noted the H-optimal G(s) is not simply the (All,B 1,C1) system.

Enns [531 developed a recursive algorithm for G(s) to minimize a weighted error

IIU(s)[Gr(s) - G(s)]Y(s)ll.. The choice of the infinity norm is motivated by stability

robustness sufficient conditions, viewing the model error as the perturbation, and

weightings U(s) and Y(s) emphasize modeling fidelity for frequencies in the crossover

region. Weightings were constructed with a loop closing compensator, K(s): U(s) =

K(s)[I+Gr(s)K(s)] " l or Y(s)=[I+Gr(s)K(s)]'IK(s), also with closed loop stability

robustness motivations. While these details are not important here, Enns' computation

involved frequency weighted Gramians, which are useful from a scaling point of view and

will be discussed further in 3.3.4.

Lightly-damped modal dynamics imparts some additional structure to balanced

realizations with useful results for model reduction, and have been studied by Gregory

[491, Blelloch, et al., [54] and Jonckheere [55], the latter for the single-input-single-output

(SISO) case. Asymptotically as j - 0 Gregory showed the second order modes (aj)

approach identical pairs for each structural mode j, j=l,n where n is the number of

structural modes,

T T T 2 1/2
2 [bbj (vjC vj-CdjCdj/ Oj)] 3-116

0 .i = -4 
j o

where bj is a row of [DTB]; Cdj and Cvj the associated columns of the respective

displacement and rate output matrices, [CO]. If the modes are separated enough in

frequency,
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I) i - O)j >> 1, i*j 3-117
max( i, ) max(wi - w)

for all distinct modes, the transformation to balanced coordinates preserves the decoupling

of the modes, again asymptotically as Cj -+ 0. The balancing transform, T, has the

structure T = block diag[Tjj] j=l,n where Tjj is a 2x2 non-singular block for each mode,

and depends on the particular basis the transform operates upon. The balanced Gramians

have the form I = block diag[OjI2x2] j=l,n illustrating the pairing mentioned. Model

reduction is therefore equivalent to modal truncation with ordering by 7j, which is not, of

course, the same as ordering by frequency, coj. Blelloch, et al. [54] showed these results

hold for second-order systems with skew-symmetric gyric terms as well. Gregory

suggests select-ing modes by considering all four possible signal paths from disturbances

and actuators to sensors and regulated variables, and retaining modes if they are significant

in any path as measured by the aj computed for that particular path. The pairing of aTj has a

potentially significant practical implication in an algorithm for optimizing controllability and

observability based on reachable and detectable volumes, which are generally of order

n=2n. If the eigenvalues of Wo or Wc occur in pairs, then an ellipsoid of order n with

distinct dimensions aj/1 2 conveys the same information about the reachable/detectable

volume as the order 2n ellipsoids with paired dimensions.

In this work, we res,." the dilemma of requiring the signal path to be specified

before model reduction in the following way: We construct a model by including modes in

the balanced ordering of Moore [47] and Gregory [49], and the ordering is determined by

the (fixed) disturbance to regulated-variables signal path. The model is then scaled by the

procedures outlined in 3.3.2, and remains fixed for the optimization of a sensor or actuator

signal path. No implication toward later modeling for compensator design is intended; it is

more likely than not a revised model should be used then. Note this requires we always

start with a fully controllable and observable model.

3.3.4 Frequency-Weighted Gramians

Construction of frequency weighted balanced realizations were motivated by Enns'

idea that model reduction error is more important near the crossover frequency [53]. While

that is not the same problem dealt with here, the idea that controllability and observability

properties could be weighted explicitly by frequency, in addition to the scalings previously
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discussed, is useful. Weighting transfer functions, U(s) at the input and Y(s) at the output,

are assumed to be square, asymptotically stable, with representations (Au,Bu,Cu,Du) and

(Ay,By,CyDy), and are in the configuration shown in Figure 3-4 with system (A,B,C).

Figure 3-4. Input and Output Dynamic Weightings.

With state vectors xu and Xy for U(s) and Y(s) and x for (A,B,C), and with the composite

state xT=[xT XuT XyT] the connected systems are represented by (AB,C) and

xu  [ Au  0 xu + u u
Xy ByC 0 Ay. xy 3-118

y =[DyC 0 Cy]x. 3-119

For Wc(t) and Wo(t) representing the Gramian of the entire system, we are interested in the

Gramians of the first partition alone,Wc(t) and Wo(t), which characterize the controllability

of x through U(s) and observability of x through Y(s), respectively. We assume we do not

introduce pole-zero cancellations, and the resultant loss of controllability or observability

with the weightings. Writing with some significant abuse of notation,

G(@)---' ((sI-A)' 1 BU(s)), and F(T) = £-1 (Y(s)C(sI-A) - I where 1 denotes the inverse

Laplace transform,

I.t

W(t) = JoG()G T (r)d = [I00= WC, 3-120

where the Gramian for the entire system is partitioned.
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Well Wcl 2 Wc1 3 1T

We= Wc12 Wc 2 2 Wc 2 3  3-121
T TWc13 Wc23 Wc33j

The observability Gramian we are interested in is simply the same partitioning:

Wo(t) f FT(,r)F()d=[I O0]Wo 0 WO 1 3-122

We are interested in finding a balancing transform for the Gramians Wc and Wo

defined with respect to x alone, which is not the same thing as balancing the entire system.

A transform that does not affect U(s) or Y(s) at all has the form:

[TI
T I 3-123

which transforms the (controllability) Gramian of the connected system:

T-1 WcI11 TT TI We 12 T' 1 13
T -T

WW -T'WCT Wc 1 2 Tl Wc22 Wc23 3-124
T -T T

Wc 23 Wc 33

so x Gramians Wc and Wo transform Wc -* T11"IWcIITII "T and Wo -+ T1 lTWol1 T11 .

We are interested in choosing TI1 such that

I1 -T T
TilWe IT 1 = T, 1WO IITI = I = diag(ai), ai>0, i=l,n 3-125

which is precisely the same linear algebra problem as balancing the entire system, operating

now on partitions Well and Wo 11 alone instead of the entire Gramian. We may compute

the balancing transform as the modal matrix of [WcIIWo I], since

TII-[WcIjW0 I]TiI =12 3-126
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represents an eigenvalue decomposition. Note the product WcllWo1 1 is not the [1,1]

partition of full order [WcWo]. This has just been a book-keeping exercise showing that a

part of a system can be balanced and scaled as desired and that pointwise state control or

observation can be characterized with respect to that part alone. Since the controllability of

x is independent of Y(s) and observability is independent of U(s), we need not incorporate

both weightings if only one property or the other is of interest.

Weightings may be chosen to emphasize the directions in the reachable and detectable

volumes corresponding to modes in the desired crossover frequency region, in parallel with

Enns' original motivations. Alternatively, U(s) might represent a spectral shaping filter on

the disturbance signals, and the disturbability Gramian is then computationally equivalent to

the covariance of the system driven by correlated noise. Y(s) can represent output

dynamics of sensors or the regulated variables. The attraction of 'externally' appending

sensor or actuator dynamics is computational economy for an algorithm optimizing sensor

and actuator authority, since we retain and operate only on the [1,11 partition of the

connected systems. Even though the scalings previously developed do depend upon

frequency insofar as each mode is at a discrete frequency, they do not depend explicitly

upon frequency, and the additional freedom introduced by a dynamic input or output

weighting may more accurately reflect the control problem at hand.

3.3.5 Order n vs. 2n

The first-order representation of a structural dynamic system (A,B,C) has a certain

computation and data storage inefficiency from the 2n order of the state vector, where n is

the number of modes in the model. Results of Jonckheere [55] and Gregory [49] show as

damping diminishes, the second-order modes (cri) tend to pairs, and each pair associates

with a structural mode. Measures of observability and controllability based on reachable

volumes of a balanced realization, therefore, may need only include one Gi since the

measures are algebraic functions of these eigenvalues. While there is no savings in the

computation of the Gramians in the first place, the control and sensor optimization

algorithms developed in this work could benefit significantly by a 50% reduction in order.

Exploiting this property requires the balancing transform for an unscaled model with a

block diagonal dynamic (A) matrix to approximately have the structure,

T -- [tlt21)... {tlit2i}...{tlnt2n)]- diag[Tij]  Tile 2x2 i--,n 3-127
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The off-diagonal blocks, Tij, are not indentically zero, but satisfy II Tij II <<II II

for some matrix norm. The directions in each Tii are not orthogonal, but do make each

block non-singular. The balanced Gramian then has the structure.

I = dia[i] Z-[= i 0 ] 01i, 02i 3-128
L 0 2iJ i= 1,n

The columns of T may be exchanged, including sign changes, without affecting the

balancing properties of the transform, since the transform may be constructed with

eigenvector matrices without regard to order. We may specify an ordering of the columns

so there are two partitions, each with one column from each modal block, Tii.

T = [tl -.t tr'" tin) {t2l ...-t2i... t2,,)] 3-129

The balanced Gramian now has the form

Zi Z 1 =diag[G i=ln Z Is Z 2 3-130

0 12J Z2 = dag [ 2 ]

so a norm on 11 or Z2 is approximately equal to that based on Y. The ability to partition T,

however, hinges upon the relative linear independence of the individual modes. The

approximate block structure is not at all apparent for Gramians computed over time

intervals on the order of the modal periods rather than the infinite horizon used by Gregory

[49] in his derivation.

The underlying reason lightly damped modal dynamics exhibit this structure is that

within a mode during free response, the rate signal, d/dt[rj(t)], leads the displacement

signal, 1"(t), by + ic/2, and C is small (C << 7c/2) for the class of systems of interest.

Within a modal block of a Gramian, with symbol W here, there are three different terms,

represent-ing the three possible permutations of inner products of scalar rate and

displacement signals over the time interval:

W(t)= . where <f,g> f(?r)g(t)d'r. 3-131
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For zero damping, the signals may be scaled and phased so 1(t) = sin(wt) and d/dt TI(t) =

ocos(ot), and the three terms have the form

Wi 1(t) = ,T  > = J (o cos(dr)d -2 + O4. ]3-132

0
f~t 1 2 1

W 12(t)-=(r1,12 €sin(or) cos( i) d = ]-[sin(wt)] ] V t 3-133

00 ft sna )2 dr sin(2cot) 3-134
W2 2(t) = ,31,i1? sinf r) d 4=o

The secular growth of the diagonal terms force the 'diagonal dominance' within a

block. Between modal blocks, terms like < ili, 1j > and < T i, i >, i~j, exhibit near-

secular growth for coi - (oj over time intervals short compared to 1/(wi - (oj). The cross

terms, such as <Tli, 11 > and < Ti, T1i>, integrate more like W 12 above. Near-linear

dependence between modes is captured with either <Ili, i1j > or < lil>, so we can

define reachable and detectable volumes over the modal displacement or velocity subspaces

alone. Furthermore, we saw, in the previous section, how to define a transform

(balancing, scaling, or otherwise) that operates only on a certain part of the system.

Therefore, we may partition the state first, then apply scaling transforms with a structure

that preserves the partition, and compute a scalar controllability or observability measure

with the associated order nxn partition of the 2nx2n full order of the Gramian. For

example, suppose we cast the structural dynamics in the first order form:

d nit] [.2Zn 2] [,,it)] + [4 Ba]Ut 3-135tdt[l(t)J "- O tU(t) 0

y(t)- CA f(t) + CJDW) . 3-136

Then for Gramians (control or observation) partitioned into equal dimensioned blocks,

[WIW 1 2
1  We R2 nx 2 n

W-IT 3-137

LW12W22J Wjje R x
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the W11 block involves the product of rates < 11,1>; the W12 block, the cross products

<I, I i>; and the W 22 block, the product of displacements <i, I>. If a non-singular

transform has the structure imposed

T TI [ 0lo 3-138

then the control and observation Gramians are transformed:

Ti WIIT1I Ti WI2
WC= T -T1 3-139W12T1 l W22

T T
W 1T 11III T1 1W1 2
0] 3-140W°- W12T, 1 W22

We may construct Tll with the same method and for the same scaling objectives as were

reviewed originally for the full state space using the [1,1] partition in the same manner as

the full Gramian. The reachable and detectable volumes may be defined by the

eigenstructure of this partition alone.

To summarize, the order-n partitioning may be entirely justified by defining the

reachable and detectable volumes in terms of modal displacement or velocity alone, or some

other combination that equally represents each mode in the partitioning. Such a definition

is reasonable for lightly damped oscillatory systems, since the phase difference in rate and
velocity signals is always in a narrow range: close to Xc/2 for all modes. Balanced

coordinates are a special case that makes such a partitioning transparent to the scalar metrics

selected in section 3.2.2 since each partition of the Gramian has nearly equal eigenvalues.

As will be seen in the development of algorithms in Chapter 4, this partitioning is useful

because the most expensive step in the recursion is solving a symmetric eigenvalue problem

of the order of the reachable/detectable volume.

3.4 timization Problem Statement

After reviewing principles of reliability analysis, me res of controllability and

observability, and model definition and scaling, we are almost in a position to pose the

sensor/actuator optimization problem we wish to solve. The last issue to resolve is
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selection of the independent variables, t. A natural and common idea is for t to represent

spatial coordinates, since that is the form of the desired solution. For simple spatial

domains, such as a simply-supported beam of length I with normal mode shapes, Oi(4) =

sin(ir/), for 4r [0,1], this is easy to do. For complex structures where a simple spatial

dimension can be identified, such as the spanwise positioning of control surfaces for

aeroelastic vibration suppression on an aircraft wing, successful algorithms can be operated

with numerical approximations to mode shapes [25]. Consider the computation involved in

determining the finite-dimension modal influence matrix, [4TBa]. Assume the influence of

control component j is separable in space and time and can be written 3(P)uj(t), which

captures a wide range of potential actuators since separability is a reasonable assumption

for most hardware. Then for modes indexed by i, the ij entry in [CDTBa] is represented by

S(DBi.j Ji( )Pj()d 3-141

where integration is over the spatial domain. Computation of these integrals is non trivial,

and is carried out by structural analysis codes such as NASTRAN. Note that the spatial

influence 3(.) is not restricted to point devices, although the integral simplifies nicely in

practice to the mode shape or mode slope (curl) for point forces or point torques,

respectively, at the modeling nodes. If t is the dependent variable, then in an algorithm we

will want to compute the spatial gradient, which, for component k, is by Leibniz's rule:

(DBa ~ = ' -[(WI3 ()] dt 3-142

and is as difficult as computing [cDTBa] in the first place. It is worthwhile to avoid insert-

ing this kind of computation into a recursive algorithm. Furthermore, the architccture of

the kind of spacecraft that present control structure interaction problems is notoriously non-

continuous, defying geometric simplification, as can be seen by inspection of the ACOSS

example used in Chapter 5. Even if the spatial gradient were computable, exploitation in an

algorithm remains a demanding problem.

An alternative is to restrict t to a finite set of points, say t E a , = {tj , ""i }.

We may then re-define the independent variables, which were the vector-valued positions
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themselves, to a set of integer scalars representing how many devices are at one site. The

set . is now 4. = N, 1, with 0 54i, 4i integer (or 0,1 if sites are restricted to one

device each), and the spatial position is represented entirely by the index i. The number of

potential sites, N, may be chosen as large as is necessary and computationally affordable.
With failure modes, f, enumerated over a prescribed set, say f r F, as defined in section

3.1, the problem statement is:

Max J[W('), f- 3-143

subject to an integer constraint M, on the total number of devices:

!5 M. 3-145
11

J is one of the scalar measures defined by equations 3-35, 3-46, or 3-49, and is a

function of the eigenvalues of Gramian W(.), which in turn is a linear function of integer
'selection variables' ,i, and the Gramians of each site i alone, Wi,:

N
W*. ) 4i Wi 3-145

i=l1

Failure weighting, as set down in section 3.1, is computed either as the expected

value or the worst case:

E[J] f Pr(f.) J(W,fj)

J(W,f) j=1 3-146

min J(W,f) fr F
F

where the probability functions of the failure states are determined by the reliability model.

Even without failures, this is a difficult combinatorial problem, and is in the form of

a non-linear integer program. Linear integer programs are known to be intrinsically

difficult to solve exactly, but may be amenable to heuristic rules and approximate methods.

A useful starting point for linear integer programs is the solution of the 'relaxation' problem
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which is defined by removing the integer constraint on the independent variables. In the

linear case exact solution methods exist, such as the Simplex algorithm. This idea is useful

here as well.

We define a 'relaxation', without failure weightings, as

N

max J[W(. )] with W() -X iWi 3-147~i=l1

e RN (continuous) and subject to the constraints

N
:5 < M, 0 4 i: <- mi •3-148

i= 1

Clearly the individual constraints must satisfy mi < M, and mi = 1 is an important special

case. This relaxation has a physical interpretation. Suppose, using actuators for example,

the columns of B are computed for all N possible sites and are scaled to represent the

influence of some 'unit' device. Then 4i represents a 'power gain' of each device, since

for a linear gain, ai, on each device the Gramian for site i is ai 2Wi, where Wi is the

Granian computed with column bi (of B) alone. The solution then represents the optimal

sizing of actuator authority subject to a constraint on total power, as represented by the

square of the linear gain. The selection of a 'power' weighting is rationalized in two ways:

Like the selection of the L2 functional norm for optimal control and estimation, the power

gain is expedient for computation and algorithms. Also, the exponent, 2, is a better

representation of the real hardware marginal costs in terms of weight and (electrical) power

than a linear (exponent 1) model. For sensors, the analogy is not quite so direct: 4i may be

thought of as representing sensitivity at a required quality. The relaxed problem has the

useful property of no local maxima, which implies, like the Simplex algorithm for linear

programs, the ability to compute the global optimum.

The scalar measures of the Gramian W are concave and homogeneous [36], so for

any representative W1 and W2,

J[(1-c)W 1 + aW2] > (1-o)J[W] + aJ[W2], t E [0,1] 3-149
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Now the set W() is all possible linear combinations of the Gramians of each site,

W(i), subject to the constraints on t, 0 < t(i) < mi and 14(i) < M; and this set is convex.

That is, if W1 = W(.l) and W2 = W(k), where , and t are admissible (satisfy the

constraints), then the convex combination of ti and t2, t3 = (1-a).l +at2, a e [0,1]

also satisfies the constraints,

N N N N
. 3(i) = 24J(1-a 1 (i) + a. 2(i)] = (1-) ,(i) + ~,~ 2(i) (1-a)M + aM = M

i= i=1 i=l i=l

N

I 3i) < M 3-150
i=1

= (1-a).,(i) + aP2(i) < (1-a)m i + ami = m i, i=[1,N]

0 <t 3(i) <m1i . 3-151

W(43 ) is then a feasible Gramian. For notational economy, we will write J(.) in lieu of

J[W(.)], since the underlying set of individual site Gramians, W(i), do not enter directly

into the argument, but form the 'instance' of the problem. We may now call upon a basic

result of optimization theory: local maximal points of concave functions on convex sets are

globally maximal [56]. Suppose ,* is a point at which J(L*) is globally (over all

admissible .4) maximal. Then assume we identify a local maximum at Fo in some

neighborhood around .o. On the line from. * to o, concavity of the measure implies

J[(l-a)* +a ] (l-a)J[t*] + aJ[t], a e [0,1] 3-152

which, since J[*] _ J[ LI, contradicts the assumption L, is a local maximum.

Finally, we note that E, the feasible region in RN for t, is compact (simple

inequality boundaries), and J is a bounded, continuous function of the eigenvalues, , of

W(Q,). The eigenvalues, [W()], are bounded continuous functions of parameters, t [57],

so J is a bounded continuous function of .t as well. We know from analysis, then, that

J(. ) attains its maximum (and minimum) at some * e B. There is no guarantee of a

unique maximum, however.

Returning to the original problem, with 4i constrained to the non-negative integers

and a set of failure modes enumerated, we lose the convenience of continuity which
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eliminated local maxima. Furthermore, to even enumerate the failures and state their

probability distribution requires specifying the specific number of 'active' (& > 0) devices

in the configuration, a number that is only constrained from 1 to N in the relaxed problem.

It does not seem feasible to define a failure-weighted relaxation. However, the solution of

the relaxed problem is useful for setting an upper bound on the solution of the no-failures

integer problem, and for locating a neighborhood for the failure-weighted problem we are

actually interested in. Algorithms for solving the relaxed problem and approximating the

integer problems are the subject of the next Chapter.
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Chapter 4. Algorithms

This chapter presents details of two algorithms: for the relaxed problem and for the

combinatorial failure-optimum problem. Since the relaxed problem is continuous and

convex, a straightforward application of a gradient-ascent approach worked well for the

particular examples included in the next chapter. A conjugate-gradient modification

accelerates terminal convergence, and some bookkeeping of active and inactive constraints

is also required. With the additional constraints of integer device 'power', for each

potential site (most often 0-1) and including failure combinations, the problem becomes

purely combinatorial and is not known to be convex. The geometry of the relaxed problem

along with the example results in Chapter 5 suggest the failure optimum solutions are not

likely to be far from the relaxed solution, and a neighborhood search approach has been

satisfactory. We start with the continuous formulation.

4.1 Relaxed Problem

At the end of Chapter 3, after settling modelling and scaling issues, we defined a

continuous relaxed problem for N 'power variables', t,as:

N
max J[W(.)], t e R N  W. - iWi 4-1

~i=l1

subject to the total power, M, and individual, mi, constraints

N :i M, 0: 4- i <. mi. 4-2
i=l1

The scalar metric J is computed from the eigenvalues of the Gramian W, and is either the

minimum eigenvalue (J1, eqn. 3-45), the inverse of the average of the eigenvalues (J2 , eqn.

3-47) of W-1, or the geometric mean of the eigenvalues (J3, eqn. 3-49).

4.1.1 Implemented Constraints

To pose a meaningful problem, some constraint on the size of t is necessary. The

scalar, J, is homogeneous in ., J(&iWi) = 4iJ(Wi) V i, and as will be seen in the
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computation of the gradient, the unconstrained derivative of J with respect to each 4i is

non-negative

d J[W.2]O V i. 4-3

The total power constraint is, therefore, always active, and we replace it with equality, so

the constraints as actually implemented in the algorithm are

N

MX 5 O<4i:m5 • 4-4
i= 1

With one linear equality constraint, it is easy to set one component of L say 1, as a

dependent variable, and solve for it in terms of the remaining components and the total

constraint:

N

4d = M- 4i" 4-5
i=1

i*d

The problem may be recast in N-1 dimensions and treated as unconstrained, except

for the individual component inequality constraints that are at equality, which may be none

or all for the non-zero components of t. We partition the full (N) order t into three parts:

the 'active' components within all of the inequality constraints, and two 'inactive' partitions

for components at either the upper (mi) or lower (0) inequality bounds:

1a N a active components with O < a i<in
=. I N inactive components at upper limit 4,d i M i 4-6

L t lL NII inactive components at lower limit 4, i = 0 .

One of the components in the active partition is dependent to enforce the total power

constraint, and the gradient computation is restricted to this subspace of dimension Na - 1.

The size of all three partitions varies during convergence, and any may have no members at

all, although the sum of all components must equal the total constraint, M.
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4.1.2 Steepest-Ascent Algorithm

The overall flow of the hill-climbing algorithm is diagrammed in Figure 4-1. The

main steps are discussed in the following sections, not with the intent of providing a

tutorial on classical parameter optimization, nor formal software documentation, but only to

point out salient details so the results of this research may be repeated or applied to other

problems. The implementation coding remained experimental, using the non-compiled

"Control-C" instruction language; and we recommend any interested user apply some

standard (compiling) programming language which allows easy matrix-vector

manipulation. The only advanced function required is a symmetric eigenvalue-eigenvector

routine. A reference for all of the techniques used in the relaxed algorithm is Luenberger

[56].

4.1.2.1 Gradient Comutation

The algorithm is principally a steepest-ascent approach modified with conjugate-

gradient directions for terminal convergence. We state here the form of the gradient for the

active partition, L, including the modification for a dependent component, and refer the

interested reader to Appendix 1 for details. The primary linear algebra result called on is an

expression for the first order perturbation of the eigenvalues of a symmetric matrix in terms

of its eigenvectors.

For the minimum eigenvalue metric (J1), the gradient is computed with at least

n2 (n+l) multiplies:

vT(wl- Wd)VI1

V T(w Na - Wd)V 1

where vl is the unit-norm eigenvector associated with the minimum eigenvalue, X1, of the

Grarnian W(.). Wi is the Gramian of site i alone, and Wd is the Gramian of the site

corresponding to the dependent component in t. Note that while not mathematically

meaningful, a formal computation of the dependent component of the gradient is zero.

Rather than removing 4d from a in the implementation, we include it and simply keep
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track of the dependent component with a pointer. Since the other norms involve all n of

the eigenvalues, Xi, their expressions are more complex with at least an additional factor of

n more multiplies, but share the basic form:

-2
TT

2 vi(W -Wd)V1 ... Vn(W 1 -Wd)V n

VgJ 2 = - : 4-8

T T -2
vLV(WNa- Wd)Vl ... Vn(WN- Wd)Vn Xn
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T. .VT v'
vl(WI- Wd)VI ... Vn(W - Wd)Vn

J3V 4J 3 = n- • . : 1 4-9
T T-T

V (WN" Wd)V I "' Vn(WNa- Wd)Vn Xn

L In

For all three cases, the unconstrained gradients may be obtained by deleting the Wd

entry in the above expressions. Since all of the individual Gramians, Wi, and all the

eigenvalues, ,, are non-negative definite, none of the components of the unconstrained

gradient can be negative. The projection of the unconstrained gradient onto the plane of the

total power constraint is useful in the algorithm if the active partition becomes completely

depleted. If that occurs it becomes necessary to see if the projection for any of the inactive

components points into the feasible region. If so, those components may be returned to the

active list and, if not, the solution has been found at that particular corner. Otherwise we

use the constrained form of the gradient (eqns. 4-8 and 4-9) in the algorithm and not the

unconstrained form nor its projection.

If we were interested in the Hessian (matrix of second derivatives), we would need

the second perturbation of the eigenvalues, which may be expressed as an expansion

including the first perturbation of the eigenvectors. As shown in Appendix 1, each of the

latter may be expressed in an orthogonal series of the other eigenvectors [34], but the

computational burden has grown considerably over that of the gradient alone. We elected

to try an algorithm without the Hessian, which worked, so a direct estimation or

computation of the second derivatives was not pursued. The purpose of the Hessian is to

accelerate convergence, especially near the solution. Another option for improving the

terminal convergence of a steepest-ascent algorithm is the conjugate-directions method.

Very little additional computation is required beyond that of the basic algorithm, and this

modification was incorporated.

4.1.2.2 Conjugate-Gradient modification

The conjugate-directions method as implemented is a cycle of Na -1 steps, starting

with a pure steepest-ascent step. For this section only, we introduce subscript k a a

counter for the steps within a cycle and gk as a symbol for the gradient at step k. Vectors

g, t, and d lie in the Na -1 dimensional space of the active partition without the dependent
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variable. Employing the Polak-Ribiere approach, the conjugate gradient cycle is, as

described in reference [56],

1) Start at t 0, compute go = VJ() and set do = go

2) Fork= I toNa- 1,do:

i) Line Search over a: max[J(.4.1 + a dk-lI)] and set . = tk- + adk..I

ii) Compute gk = VJ(LO
JT

iii) Set dk = gk+ Pdk-1, where 0 = (Tk - 4k-9k-10T 41

gk-tgk-l

3) Restart: at k = Na- 1, replace to with .k, reset k = 0 and go to step 1)

The cycle starts whenever the line search terminates inside the feasible region, that is,

no component of the active partition, including the dependent component, is at an inequality

boundary. If during a cycle any component is driven into a boundary and removed from

the active partition, the conjugate gradient cycle is restarted after the next steepest-ascent

step remains within the feasible region. In the first several steps of the algorithm the line

search almost always reaches an edge of the feasible region, and the conjugate gradient

cycle does not start until most of the components of t have been placed into the inactive

partitions. The Fletcher-Reeves form of the cycle was briefly experimented with, which

has

T13= gkgk

T 4-11
gk-lgk-1

and is otherwise identical. Convergence on this problem appeared to be superior with the

Polak-Ribiere method, although a detailed comparison was not made. Polak-Ribiere's

approach was employed for all of the examples.

4.1.2.3 Line Search

With a direction identified from the conjugate-gradient computation, the algorithm

searches along that line for the maximum. Concavity of the metric helps here, insuring no

spurious local maxima. Since the constraint plane is bounded, the interval to search is also
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bounded. Because of the simple form of the equality constraint, it is expedient to compute

the change in the dependent variable, da(d) from differential steps in the Na -1 independent

components, dA(i), so with equation 4-5,

d%=(d) - (i). 4-12
i=1, i~d

Although the conjugate-gradient direction, d, is of dimension Na -1, we may think of an

augmented direction of dimension Na which has a dependent component, d(d), constrained

by equation 4-12, so we set

d(d) =- d(i). 4-13
i=l, iaed

This 'effective direction' component may replace the zero at the dependent

variable's place in the conjugate-gradient direction for the purpose of the line search step

only. It does not enter the update equation (4-10) for the next direction. The result is a

search direction of the same dimension as the active partition, Na, which lies entirely in the

constraint plane of the total power. With search direction, d, augmented by the dependent

component, we determine the maximum step length before encountering a boundary:

a =maxczl 0<a(i)+ ad()<mi, i =1,Na. 4-14

The individual-component constraint values, mi, are not necessarily equal and, if

the fully-relaxed solution is sought, are each effectively just the total constraint, mi = M.

With the step size bounded, we search

maxJ(ax) with J(c) = J[W( + a W(dk)] and (x e [0,a] . 4-15
a

Evaluation of J(cz) over the interval requires repeated eigenvalue solutions. The

method chosen for the search is three-point quadratic fit starting with J at both ends of the

interval and the midpoint. The two points on either side of the quadratic fit maximum are

chosen as the new interval, unless the maximum is computed to lie outside the original

interval, then the corresponding half of the original interval is selected for the next step.

The effect is to 'capture' the maximum between two of the search points, or else discover
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that the maximum is at the boundary of the interval. The line search terminates when the

proportional difference between all three values of J in the remaining interval is below a

threshold. The ot corresponding to the maximum J of the last three points is then selected

as the result. Experience with example problems shows that the line search becomes quite

flat as the global solution is approached, and a search threshold of 10-5 to 10-6,

proportional difference between any of the three values, is required.

The line search terminates with three possibilities, a = 0, a = a, or 0 < ax < a.

If a = a, we know at least one component of the active partition has been driven into a

constraint, and must be transferred to the appropriate inactive partition. If a = 0, to the

resolution of the line search, the solution has converged. This did not happen often in

practice because another convergence criterion, the size of the gradient, would take effect

first. Finally, if 0 < a < a, the algorithm continues for another step. If, after step(s)

which did not converge within the line search interval, the line search for a step does

converge within the interval, that step is taken as the first (pure steepest ascent) step in the

conjugate gradient cycle and the conjugate directions modification is initiated on the next

step.

4.1.2.4 Starting Points

Although the convex nature of the relaxed problem makes the starting point

formally irrelevant, for computational economy it may be desirable to start close to the

eventual solution. For small order problems, such as the simply-supported beam example

in Chapter 5, a good starting point is to set all components equally to t(i) = M/N.

Algorithm runs from such an initial distribution tend to spend the first several steps placing

components into the zero inactive partition; after initial convergence very few components

are later returned to the active partition. Larger problems, such as the ACOSS example,

can be shortened by guessing a starting active partition, then setting equal each of those

components. In this way the solution can converge quickly, but the guess is 'checked' at

convergence by inspecting the gradient of all of the inactive components. Criteria for

guessing are taken up in section 4.2.4 for the more expensive combinatorial algorithm.

4.1.2.5 Stopping Criteria,

There are two distinct criteria for stopping the algorithm and accepting the

solution. First, the steepest-ascent steps for the active partition, as diagrammed in Figure
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4-A, must converge. Second, at convergence the gradient components of all the inactive

components must point out of the feasible region. That is, for a gradient computed over all

the partitions of.t, those components in the lower-limit inactive partition, /l, must be non-

positive and all the components in the upper inactive partition, -Lu, must be non-negative,

as shown in Figure 4-lB. To prevent 'chatter', components are transferred to an inactive

partition when they are driven into a constraint, but are not considered for removal from an

inactive partition until the remaining active partition has converged. Convergence of the

active partition is accepted by three possible tests, shown by the "Converged" label on

Figure 4-IA. The primary test is if the magnitude of the gradient falls below some fraction

of the first gradient computed in the algorithm. Ratios of 10
-4 for starting points far from

the expected solution to 10-2 for runs started near the solution have been successful. Since

"e active partition may converge several times in the course of one run, it is computation-

aily expedient to initially try a coarse convergence test, then restart the algorithm near the

solution with a finer test. Most of the algorithm's steps are spent sorting components into

the inactive partitions if the starting point is an equal value in all components. The second

possible 'good' convergence is if the line search drives the last two components (one

independent, one dependent) of the active partition into the constraints. If none of the

inactive components may be removed from their partition, this comer is the exact solution.

A counter on the conjugate-gradient cycles prevents run-on of a poorly-converging

instance, and three full cycles of Na -1 steps were seldom reached. Slow convergence at

that level could often be cured by a smaller line search criterion.

If the active partition ever became fully depleted, a slight modification was required

to cLeck the inactive partitions. Normally, one of the components in the active partition is

identified as dependent, and the gradient for the inactive partitions may be computed, just

as the gradient for the independent components of the active partition are. If there are no

members in the active partition, we must first decide which components of the inactive

partitions, if any, should be transferred to the active partition. To do this, we compute the

unconstrained gradient, and project it into the total power constraint plane. The

components of the projection are then used to identify members of the inactive partitions for

transfer to the active partition.

Upon final convergence of the relaxed solution, the result may be interpreted as

the optimal distribution of sensor/actuator authority. If the designer could vary the power
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gain of actuators or the sensitivity of sensors, then the solution shows how to do that,

possibly subject to the additional individual site constraints on the maximum proportion of

the total weight (M) that may be accumulated at a single site (mi). We do not believe,

however, the controllability or observability norms used for the optimization are sharp

enough indicators of potential closed loop performance to justify implementing such an

exact interpretation of the result. We use the solution as a starting point for searching for

the best possible distribution with respect to a failure-weighted norm under the additional

constraint that the authority at each site is set at an integer level representing equal hardware

units, with 0-1 an important special case.

4.2 Integer Solutions

With the addition of an integer constraint on the independent variables, 4i = 0,1,2,..,

mi, the continuity and convexity that lead to the efficient solution of the relaxed problem

are lost. Since the feasible region for .t under integer co- 'aints is a strict subset of the

feasible region for the relaxed problem, the value of the optimal solution for the latter, say
J(*), represents an upper bound to the integer solution, J(I). Furthermore, we hope the

integer-constrained solution, tI, will be close to *, where 'close' will be made more

precise later. From linear integer programming we know that the solution may be quite far

from the relaxed solution, but such instances are rare and the result of 'narrow' feasible

regions. While all of the development to follow allows the integer constraint for each site,

mi, to range from 0 to the total constraint, M, we will concentrate in the application

examples exclusively on the special case of mi = 1, which implies M is the total number of

effectors in the problem. This simplifies the algorithm since a site can then be moved

between a '0' list and a '1' list. More than one unit at a site would require a bit more

complicated bookkeeping.

4.2.1 Failure Weightings

In addition to introducing integer constraints to the relaxed problem, the other major

modification is to compute the optimality index over failure modes. Section 3.4 set down

two approaches to failure weightings: the expected value and the worst case over a specific

set of failures, i. e.,
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~N

E[J] = Pr(fj) J(W,fj)

J(W,f) =.j= 1  4-16

minJ(W,f) feF
F

A particular failure mode, fj, is defined in Section 3.1 to be a unique list of the

operational status of each active device (non-zero 4), with 0 assigned for failure and 1 for

operational, and are restricted to some feasible set, F. The probability of each failure

mode, Pr(fj) results from the reliability model of the devices, and the controllability or

observability index J(W,fj) is, for a particular failure mode, simply the sum of the

Gramians of the operational devices in the suite:

W ,f) = 7 t(i) fj(k) W i  4-17
i=1,N
k= 1,M

where index i for t ranges over all N potential sites and index k for fj ranges over the M

total devices in a particular configuration. Another representation that will be useful for

estimating the change in J due to failure state fj is to write Wa,fj) as the Gramian of the

failures subtracted from the unfailed Gramian:

W ,f) = W(.t) + AW 4-18

AW= -Y t(i)[1-f fk)]W.4
i=1,N 4-19

k= 1,M

Th, linearity of the Gramian makes computation of W(.,fj) trivial, but the computation of

J(W,fj) requires the eigenvalues of W(,fj) for every failure mode, fj, since J is not linear

in the component contributions, Wi. With the computation of J(W,f) set down as an

optimization parameter, we need a method to look for improvement, since the continuous

gradient of the relaxed problem is no longer available.

4.2.2 k-Exchange Neighborhood Search

A combinatorial analogy to steepest ascent is the 'k-exchange' neighborhood search

[58]. The 'k-exchange' neighborhood is defined as all combinations of ki that differ from

some nominal L, in at most k entries, and those k range over a larger, possibly global,

neighborhood. All members of the 'k-exchange' neighborhood are enumerated, the
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optimization parameter computed, and the maximum identified. If the maximum is an

improvement over the nominal, the maximum is adopted as the new nominal and the cycle

repeated. If no improvement can be located in the local search, then the solution is said to

be 'k-exchange' optimal. This process will not ensure, however, that the global optimum

is ever reached, unless k is the same dimension as the solution. In our problem, where the

number of potential sites (global dimension) is large-485 for the Draper Model No. 2

examples- and the desired number of effectors is relatively small- on the order of 10- then

'k-exchange' for any k > 1 becomes prohibitive. The k=1 neighborhood for M = 10

retained sites out of 485 may be as large as 4750, but the k=2 neighborhood has up to

20,263,500 members, and each member may still require failure enumeration. We use in

an algorithm, therefore, only a '1-exchange' search.

We write the result of exchanging site i for site j (assuming t(i) 0) as

W(.) = W(o) + AW 4-20

AW = Wj-W i . 4-21

This structure, along with the similar representation for failures, is motivated by the desire

to estimate, rather than compute directly, the eigenvalues of the Gramian resulting from

failures or exchanges.

4.2.3 Eigenvalue Estimation for Exchange and Failures,

After summing the perturbation to the nominal Gramian, from either failures, an

exchange, or a combination of both, computing the optimization norm, J(W), requires

computing the eigenvalues of W. This is the expensive computation in the algorithm, and

we would like to minimize the number of times it is required. If we have the eigenvalues,

Ao, and the orthonormal eigenvectors, Vo, of some nominal W(.L), and we are interested

in the eigenvalues of W, 1, where W = W(,O) + AW, then, to first order,

T
- + VO[AW]V 0. 4-22

Appendix A illustrates the steps involved in this well-known result. For all n eigenvalues,

a total of n2 + n multiplies and n additions are required, in contrast to approximately 2/3 n3

operations [59] for the eigenvalues alone with a symmetric QR algorithm or about 5n 3 if the

eigenvectors are computed as well. This economy allows us, after the additional overhead

of the eigenvector computation, to compute the failure-weighted measure and estimate the
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effect of an exchange cheaper and faster than simply computing the eigenvalues directly at

each stage. Since the 'step size' of the failure or exchange is fixed, there is no motivation

for linearizing J(), as is done in the gradient computation. J() is computed directly each

time.

Norm JL.,) is concave in the relaxed solution, so we expect the '1-exchange' search

to to turn up more candidates for improvement of J than are correct. We modify the search

to accept a new solution only if J computed with the actual eigenvalues is an improvement,

but search over J computed with the estimated eigenvalues to identify the strongest

candidate. The combinatorial algorithm may now be assembled with these pieces: Figure

4-2 shows the sequence. Additional details required are to specify (and limit) the global

neighborhood and the stopping criteria.

4.2.4 Starting Points and the Global Neighborhood

Even with the computational savings of estimating the result of failures and

exchanges with first-order eigenvalue perturbations, the 'l-exchange' search can still be an

expensive procedure, and examples with the Draper Model No. 2 required up to 10 times

more run-time than to compute the relaxed solution. Two methods of mitigating the

computational requirements are starting the search near the eventual solution (hence the

relaxed solution), and restricting the number of candidates considered for a specific

exchange to some fraction of the global dimension. Both techniques are heuristic.

After successful convergence of the relaxed algorithm, the solution is partitioned

into three parts. For an individual upper limit constraint mi < 1, the members of these

partitions satisfy

ta N a active components with 0< a i< 1

t= td Nd inactive components at upper limit 4, i= 1 4-23\ tt NI, inactive components at lower limit =0 .
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Figure 4-2. Combinatorial Algorithm
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The upper and lower partitions clearly satisfy the integer constraints, so the

question for starting points is how to lump the solution distributed over the active partition.

There are M - Nu1 'units' of authority to be placed in the Na1 possible members Qf ., but

lumped into entries of 0 or 1. Note Nal > (M - Nul) strictly. In many instances Na will be

quite small, even zero, and nearby integer candidates may be seen by inspection. It is

possible to enumerate all possible integer representations of the active partition and rank

them in terms of 'distance' from the active partition. The 'distance' we would like is the

resulting controllability/observability norm, but a 'distance' we can afford to compute for a

large number of cases is the Euclidean geometric distance. The author wrote an algorithm

that sequentially placed 0 or I in the Na members of the active partition, and checked, via a

least-squares fit of the places remaining, whether the geometric distance between the

developing integer representation and the relaxed active partition could remain within an

error bound. The closest candidates were taken as starting points for the failure-weighted

algorithm.

Another approach for managing the computational burden is to restrict the search in

the 'l-exchange' step to less than the global dimension. This is motivated by the fact that

many potential sites may be weak, and not likely to be included in any selection. Clearly

we want to include those members of the active partition that were rounded to 0 in the

integer representation, but this may not leave a very large list. One method of ranking the

remaining sites is the controllability/observability index of each site alone. Experience with

the Draper Model No. 2 example has shown no instances in which a site in the bottom half

of individual rankings remains in the converged relaxed-solution. This method is

potentially flawed, because the index for any site may be driven to zero if a single mode is

unobservable or uncontrollable from that site, even though all the others might be strongly

affected. Another possible ranking is the maximum eigenvalue, since it represents

influence in the single strongest direction. Again, experience has shown no instances

where a site ranked in the bottom half by maximum-eigenvalue remains in the solution. A

third possibility is to inspect the components of the gradient projected onto the constraint

plane after convergence, and eliminate those components in the zero inactive partition, F.1,

whose gradient is most negative. Finally, all of these restrictions may be hedged by

checking a '1-exchange' over the global list after the combinatorial search is believed to be

concluded.
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4.2.5 Stopping Criteria

Unlike the relaxed algorithm, the combinatorial search has a simple terminal

criterion: When no improvement can be found over a '1-exchange' search, the algorithm

stops. A check can be conducted with the optimal index of the relaxed solution, J(L*), to

see the degradation induced by the integer constraints and/or failures. If the failure

weighting is the 'worst case', then the relaxed metric can be linearly attenuated by the

proportional failure level (e. g., if worse case- is 2 failures out of 5, attenuate to 0.6 of

initial value) to compare against the best possible performance without integer constraints at

the lower level of total authority. Admittedly, it is hard to calibrate what is an acceptable

level of degradation. It seems desirable that the performance should fall off proportionally

slower than the number of devices fail, and this was commonly observed.

4.3 Overall Seuence

We have now developed all the pieces of the overall sensor/actuator selection process and

may review them all as steps in a larger algorithm or process. Table 4-1 illustrates the

sequence, referencing the sections in which each piece was developed. Note that the

process is certainly not an automatic one, but it has reduced a difficult combinatorial

optimization problem to a sequence of manageable and verifiable stages, each with an eye

towards computational economy.

4.4 Computational Points

The single most important numerical requirement in this work is the ability to

compute the truncated-horizon Gramian. The method chosen, as noted in reference [44]

and Section 3.2.3 for 'recoverable' We*, is to compute the transition matrix, P(t) =

exp(AHt), for the Hamiltonian system:

-A BRU B4-
AH = 0 AT 4-24

With the partitions,

AHt _T [ (t) T (t)
"(t) = 4-25
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Table 4-1. Overall Sequence.

1. Identify signal path for modeling and scaling.
Disturbance to regulated variables, y(s)/w(s)

2. Compute (Ti and rank modes, select truncation 3.3.3
3. Select time horizon and full (2n) or half (n) order 3.3.5

reachable/detectable volume dimension

4. Scale state basis 3.3.2

5. Define relative device scalings and any dynamic 3.3.4
input/output filters, U(s) and/or Y(s)

6. Compute and store individual Gramians, Wi 3.2.3, 4.4

7. Select optimization parameter, J(W) 3.2.3

8. Specify constraints: total authority M, and individual site, mi 4.1.1

9. Compute relaxed solution 4.1

10. Identify neighboring integer initial points 4.2.4

11. Enumerate failure modes and select failure-weighted index 3.1, 4.2.1

12. Specify search list (global or restricted) 4.2.4

13. '1-Exchange' combinatorial search for failure-optimal solution 4.2.2, 4.2.3

the (controllability) Gramian may be computed:

t T T

W = eA eBRuB e 'dc = 'I 2 (t)20 1 2(t) . 4-26
°0

The observability Gramian may be computed with (AT,CT) in place of (A,B). Since

the Hamiltonian system has symmetric eigenvalues about the imaginary axis, there is some

upper limit for the time interval, t, beyond which exp(AHt) will not numerically converge.

For the lightly damped modes over time intervals which remain short compared to the

damping decay envelope, this has not been noticed as a problem. With the introduction of

input and output frequency weightings, however, which may have real poles about the

same radius from the complex origin as the structural modes, we may get stuck. A

resolution, noted in reference [60] is to cut the time horizon in half and exploit the relations,

A At

We(2t) = Wejt) + e t Wgt) e AL4-27
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This may be done several times. Again, substituting AT for A gives the relation for the

observability Gramian. These are noted to be similar to the equations for the discrete time

state covariance or estimate error covariance propagation.

Gawronski and Juang [61] recently developed a representation of the truncated time

interval (and truncated frequency interval) Gramians, which for the former, requires only

the algebraic Lyapunov equation solution and the state transition over the interval. While

this appears a considerably improvement to the method used in this thesis, the author

became aware of it too late to experiment with it.

Another, more minor, point has to do with the total volume metric, J3 . While we

express
1

J3(W) = = nx 4-28

if we were to actually compute it this way, we may find an underflow or overflow of the

product of the eigenvalues. Taking the root of each eigenvalue first, then computing the

product alleviates this difficulty:

J3 (w ) . 4-29
i=1

The price paid, however, is increasing the number of nth root (logarithm) calculations by a

factor of n, and is worth avoiding if the condition of the Gramian allows it.

The numerical properties of the overall sensor/actuator selection algorithms have not

been investigated, and an understanding of the limitations imposed would be a valuable

addition to this work. Van-Loan's paper [60] on computing the matrix exponential

integrals has a wealth of material in this direction.
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Chapter 5. Application Examples

In this chapter we exercise the ideas developed in Chapter 3 and the algorithms of

Chapter 4 on two flexible structural systems. The first, a simply-supported beam, is

chosen for its combination of obvious modal dynamics and non-obvious optimal effector

placements, while the second, the Draper Model No. 2 from the ACOSS program, was

selected as a representation of the large-scale system class that motivated this research.

Although at opposite extremes in terms of complexity, results from the two examples show

two common themes of practical engineering signricance. From among a large potential

number of sites, the continuous relaxed solutions tends to converge toward relatively few

sites, even though it is certainly feasible to distribute authority over all sites. Second, the

failure-weighted search algorithm tends to stop at a distribution quite close to that resulting

from the relaxed solution, indicating the relaxed solution is a good guess for the more

computationally expensive combinatorial problem.

5.1 Lateral Vibration of a Beam

The simply-supported (pinned-pinned) Bernoulli-Euler beam model is useful for

illustrating the controllability and observability programming algorithms for two reasons.

The first reason is that the solution to the governing PDE is easily expressed analytically as

an expansion of normal modes, and the second is that the best placement of sensors and

actuators is not obvious for these boundary conditions. The latter is in contrast to a beam

with a free end; the mode shapes are all at their maximum at the free end, making the

placement of (lateral translational) devices trivial, without considering failures.

x
E I, p-7

X = 0 Figure 5-1. Simply Supported Beam. X - 1
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5.1.1Modling

Figure 5-1 is a sketch of a beam of length 1 and mass per unit length p. We are

interested in the lateral deflection, y, as a function of time and spatial dimension, x, and

distributed forcing, u(x,t). With the material elasticity modeled as usual by Young's

modulus E and the cross section moment of inertia I, both constant for this example, the

PDE for y(x,t) is

[EI y(x,t)"I" + u(x,t) = p Y(x,t) 5-1

where y' represents the spatial derivative with respect to x, and j the temporal derivative

with respect to t. The simply-supported ends impose the boundary conditions:

y(O,t) = y(l,t) = 0 deflections 5-2
y"(O,t) = y"(l,t) = 0 moments

Assuming the solution is separable in space and time, y(x,t) = (I(x) 1l(t), the unforced case

(u = 0) admits the eigenvalue problems:

f 2
IV 4 4 0 p 5-3

IV (I (x) + 2 (D(x) = 0 with =
E ( (Xx) 2 = (t) E

p (x) TI(t) 1(t) + CO T1(t) = 0 5-4

From the general solution of the spatial equation, we apply the boundary conditions and

obtain the characteristic equation which has a sequence of solutions:

sin(13/) = 0 P[ ni =' i- 1,2,.. 5-5
1'1

For each Pi, the solutions to the spatial equation are the mode shapes, which are orthogonal

with respect to mass and stiffness on the interval x e [0,1] and can be normalized:
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0i ) = a sir('I3x) = a sn(1 5-6

KOi(x), p~j(x)) f pOi(x) 0j(x)dx = with a 57

0W 1=J

KOi(x), E10j (x) { 5-8
0 i; j

The corresponding temporal solutions at discrete natural frequencies include real parameters

aji that may be determined from initial conditions, if desired:

T7'i(t) = aIi sin(o)it) + a2 icOs(O0it) 5-9

2

(0i- "Vj = -~ 5-1G

Returning to the forced response, we assume we may expand the particular solution

in an orthogonal series of the normal modes:

y(x,t) = £ ix)11 (t). 3-11
i~ I

Substituting this into the governing PDE, (eqn. 5-1), taking the inner product with one
mode oj(x) at a time, and exploiting the orthogonality relations (eqns. 5-7 and 5-8) results

in an infinite sequence of ODEs:
2

T,(t) + wili(t) = i(x),u(xt)) i= 1,2,... 5-12

If we also assume the forcing, u(x,t), is separable in space and time, u(x,t) = b(x)u(t), the

inner product on the right hand side of eqn. 5-12 simplifies to the spatial domain only:

K.,(x),u(x't)) = Kd?3(x),b(x)) u(t) i = 1,2,.. 5-13

If, furthermore, the spatial influence of the forcing is concentrated at m discrete points,

each with a corresponding component in the vector input u(t), then we may idealize b(x) as
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a vector of Dirac delta functions, bT(x) = [8(x-xl) ... 8 (x-xm)], and the inner product on

the right side is particularly easy to evaluate:

(0i(x),b(x) [0
1 (X) ... Ai(Xm)] 5-14

Another class of forcing inputs of interest is the 'point moment' device, Figure 5-2, which

may be idealized as the limit of a couple applied by point forces around xo:

A
A Xt)

Xo S (x -Xo -A) u(t)

A

Figure 5-2. Point Moment

b(x) = EM 8(x -x0 -A) - 8(x xo)] 5-15

xb(x) .iXO+A) - = dj(x)X 0  5-16
jA -40 A() =X0x!-

The influence coefficients for torque inputs, then, are the mode slopes evaluated at the point

of application.

Finally, we assume the dynamics may be adequately represented as a truncated

modal expansion, introduce proportional damping, Ci, and write the model in the usual

second order matrix form:

2
11(t) + 2Z(t) + QZ nl(t) = Bu(t)

= diag(coi), Z= diag() 5-17
y(t) = C 1 l(t)+ C,,9l(t)
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2

Si=1,.n 5-18

The forcing influence matrix is constructed by

B [ [ 1(x) ... On(x)] point force
bBk = [ .1(xj) ... 4 (x)] point torque

(x) =' si(la) i=l, ", n 5-20

For a prescribed set of k general outputs, y(t), the output influence matrices are the

coefficients of Tli(t) in the truncated modal expansion of the solution

C= : c T [ 1 (W .. On(xP] lateral displacement or rate at j52
T 0(xj) ... ' n(xj)] rotational displacement or rate at xj

What we are not going to do with this example is to treat the m or k locations of

actuators or outputs, xj, as continuous independent variables, since this approach is

impractical with a more complicated geometry. Instead, we will fix a finite set of sites over

half the beam (exploiting the symmetry in the mode shapes), designate as the independent

variables the squared 'gain' or 'power' of the devices, and compute the optimum

distribution of authority for these sites. First, we will specify a disturbance and regulated

variable to establish a signal path for scaling as described in Chapter 3, Section 3.2.

A point-torque disturbance at one end of the beam is interesting because it excites all

the modes, and compared to a translational force type input, excites the higher modes more.

In conjunction with this input, we will consider two regulated variable outputs: z1, an

angular displacement colocated with the torque input, and z2, a lateral displacement at the

center of the beam. Figure 5-3 illustrates disturbance, w(t), and the two outputs.
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+ w(t), zI(t) •z2(t)

x=O x =112 x = l

Fig. 5-3. Disturbance, Regulated Variables, and Actuator Sites.

We also fix an evenly-placed distribution of 25 potential sites for lateral force

actuators over half the beam, and define new independent variables, 4j, j = 1, 25, as the

power gain (square of the linear gain) at each actuator site. We may now rank order the

modes in terms of the eigenvalues of the balanced Gramian (ai) for a z(s)/w(s) path. Since

the lower modes are well separated in frequency, we may estimate ai, i =1, n with

Gregory's [49] approximation. Considering first the z1(s)/w(s) (end rotation output) signal

path the a, fall off as the square of the mode number.

bici 2 forbi=ci=y co ) 1 5-22

4Cioi 2CEI(in) 
-c

The second signal path, z2(s)/w(s), excludes all the even modes because they have no

displacement at the center of the beam, and we estimate

12 frd i c (4)i+ -  iodd

i 2EI(i~c) orbdi= lNPI (i W TP 5-23

0, i even, since ci = 0

These estimates are accurate, by equation 3-117, [49] for modes, i, satisfying

_<< 1 5-24
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so for the purpose of these examples, with 10 modes modeled, damping of 0.02 or less

satisfies this inequality with a ratio of 10.

We plot the ratio of a(i/(l in the order of modal rankings by a i for a specific

damping, i = 0.001, in Figure 5-4. The ordering in this case is also the same as the

frequencies, coi. Model reduction is here simply modal truncation at an upper frequency,

and, for the case of the z2(s)/w(s) signal path, elimination of all even-numbered modes as

well. It will be interesting to compare this to a similar plot for the Draper Model-2 large-

scale example used later.

0.

-1.

log (M9) -2. -

-3.
x +

-4.

-6. x

X

-7.
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

Mode Nurmber

Figure 5-4. Mode Rankings for zl/w (+), and z2 /w (X),
reference signal paths

For convenience we fix parameters so
2

2= and (1 5-25

and pick input and output scale factors (for the rotational output only):
2

Rw= RZI5-26

This makes the coefficients of the normal modes and their slopes unity, and also

sets the coefficient in the sequence of modal frequencies, eqn. 5-18, to unity. Physically,
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this could be the case of a square aluminum beam (density = 0.1 Ibm/in 2 , E = 107 psi =

12x10 7 slug/sec2/in) of width h = 0.9417 in (p = 0.1h 2/32.2 slug/in, I = h4/12 in4 ) and I =

726 inches long. The parameters are selected here for convenience only, and will be less

arbitrary in the Draper Model No. 2 example later. We will not use zi and z2 at the same

time in these cases, so their scale factors may also be different for convenience.

We truncate the order of the model at n=10 for computational purposes, but will

experiment with smaller values. The nodal spacing for the 10th mode is 1/10, which is five

times longer than the actuator site spacing of 1/50.

5.1.2. Relaxed Solutions

Exploiting the continuity introduced by selecting the 'power gain' of the discrete

actuator sites as independent variables, we compute the optimal distribution of actuator

authority for several cases of scalings, model order, controllability norms, and constraints.

The example cases are grouped into three broad classes. The first class is actually an array

that examines simultaneously the relaxed solution for several combinations of full- vs half-

order Gramians, scalings, constraints, and measures of the Gramian. A particular case is

selected for the second class of examples: the scaling signal path, model order, time

horizon, and input frequency weighting are varied one at a time. In the third class, failures

are introduced and the combinatorial neighborhood-optimal integer-constrained solution

found for the expected value and worst-case failure weightings.

In order to provide some means of evaluating the results we introduce a LQG

regulator which weights the output variable and control effort in the cost functional:

J Lq = lim E Z(,c)i + ruUT(x)U(,c)dc i= 1,2. 5-27
t --- 00 tf

To compute the regulator for a particular actuator authority solution, P, we assemble

an input matrix, Ba, from the up to N columns of the potential actuator sites weighted by

the square roots of the non-zero 4i

B= [... ibi ... 9 for i N with 4i > 0 5-28
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The basis scalings are not used in the regulator evaluation model after a particular solution,

t, is reached; however, the input and output constant scale factors, Rw and Rz (eqn. 5-26)

are retained for numerical convenience. The solution to the regulator requires full state

feedback, and the states are the modal displacements and velocities. For expediency, we

evaluate the stochastic response of the closed-loop system to a wide-band disturbance of

unit intensity assuming the modal signals are available for feedback. This represents an

upper bound to the performance obtained with sensors and and estimator in the loop. The

ratio of (scaled) output to control weighting was fixed by setting ru = 0.001 for all cases; in

physical units, this weights radians of tip rotation to pounds of lateral force in the ratio of

[ru Rz] 1/2 = lS = 1.37 x 10 4 for the physical parameters mentioned. This resulted in a

little added stiffness and closed-loop damping, , in the range 0.03 - 0.15, up from the

open-loop of = 0.001 for all modes.

The first step is to compute scalings based on the disturbance to regulated variables

signal path, per Table 3-1, and we compute the 'input-normal', 'throughput-scaled', and
'output-scaled' transformations and store these. Next we compute the controllability

Gramian of each actuator site for the system in modal coordinates over a truncated interval

and store them. The interval is selected for the first class of examples as one period of the

lowest mode, which results in the highest mode integrating over 100 cycles, and is about

one time constant for the steady-state value of the Gramian in the direction of the ninth

mode. The scalings will be applied individually to each Gramian before running the

relaxed algorithm, rather than to the system model before computing the Gramians. This

allows the expensive computation of all the Gramians to be done once for a particular time

horizon.

The purpose of the first class of cases is to experimentally evaluate the effect of the

scaling rule, the particular optimization parameter measuring the Gramian, and the validity

of the hypothesis that the reachable volume may be adequately characterized in

n-dimensional space rather than 2n, where n is the number of modes in the model. The

disturbance torque to collocated rotation output, zl(s)/w(s), signal path defines the scaling

normalizations. The total actuator power is constrained to M < 5 in all cases, which only

serves to make the relaxed solution comparable, in terms of power, to a set of five identical
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'unit' actuators. A total of 36 cases of the relaxed solution are computed, corresponding to

all possible combinations of the parameters detailed in Table 5-1.

Table 5-1 Cases
Parameteretin Number

Gramian order n, 2n 2

State Basis Input Normal 3
Scaling Throughput Scaled

Output Scaled

Optimization Jl: Xmin(W) 3
J2: n/tr(W-1)
J3: IWIl1/n

Individual Power mi /M s 1 2
Constraint mi /M 0.5

Total Cases I = 36

In all cases we start the algorithm for the relaxed solution with actuator power

distributed uniformly across all 25 sites at a level so that the sum equals the total power

constraint, which is 4i = M/25 = 0.2. As a point of departure, we evaluate the LQG

regulator for this solution and the resulting stochastic response of the closed-loop system,

and compare it, in Table 5-2, to the open-loop response

Table 5-2. Open-Loop and All-Actuators Closed-Loop Response.

root-mean-square: Close0-Loop Qen-Loqp

JLQ (rmJ) 1.076 19.7
Regulated Variable (rmZ) for z1 0.8029 19.7 (angle scaled by Rz)

Control Effort (rmU) 22.659 0 (lbf)

Again, for physical units, all of the above are with respect to a disturbance torque of

intensity Rw -1/ 2 in-lbf, rms, which is approximately 231 in-lb, rms, for the particular

parameters identified. The overall mean-square open-loop response, then, is

19.7(RwRz) 1/2 rad, rms, or about 3.7 x 10-4 rad for the particular parameters noted.
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The two most important features looked for in these results is 1) the ability of the

relaxed solution to distribute actuator authority in a manner that produces good regulator

performance, and 2) the ability of the order-n solution to produce solutions (t) close to the

order-2n solutions. Hopefully, these two effects occur together, and in fact they do. We

will not review all cases here, but describe the general trend and show selected cases. The

strongest single observation is that the 'output-scaled' cases were all unable to produce any

correlation between the order-n and order-2n solutions, except for the determinant cases

where the scaling does not matter. The second major observation was that there was a

greater difference between the use of the minimum-eigenvalue norm (J1) and the trace norm

(J 2 ) than there was between the 'input-normal' and 'throughput-scaled' cases. Another

observation was that scaling did not in fact affect any of the solutions based on the

determinant norm. The only reason these cases were run at all is because that is how this

particular detail was discovered in the first place.

The first half of the cases were under a total power constraint only (M < 5, so

mi<_M); that is, the constraint on any particular site was just the total constraint. Three

distinct distributions of actuator power turned up. Figures 5-5 through 5-7 illustrate an

example of each of these patterns, and Table 5-3 lists the parameters for each group. The

LQG regulator evaluation line shows the root-mean-square value of the LQ cost functional,

'rmJ', regulated variable 'rmZ', and control effort 'rmU'. The 'station' variable represents

the equally-distributed actuator sites, with station 25 at center-beam and station I at 1/50

from the end, as shown in Figure 5-3.

Scaling: Throughput
5 -Optimization: 2

Order: n

LQG rmJ: 0.838
rmZ: 0.537
rmU: 20.3

1 -

5 10 15 20 25

Station (i)

Figure 5-5. Group I Example.
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The first group (Figure 5-5) produced the best regulators of the cases considered,

so a particular case- 'throughput-scaled', J2 (trace) norm for order n- was selected for

further experiments. Notice that all three groups were able to enhance performance by

concentrating actuator authority from the starting even distribution. The best level of

improvement (for Group 1) was only about a 22% reduction from the starting solution, but

the number of actuators was reduced from 25 to 4 in most cases in the group and down to

only the two strongest sites of Figure 5-5 in one case

Table 5-3. Parameters for Groups

Basis Gramian Number of
Grou Scaling Order optimization Cases

1 Input n & 2n 2
Throughput n & 2n 1&2
Output n 2 7

2 Input n&2n 1
Output n 1 3

3 All n&2n 3 6

Common to all Groups:
Constraints: M< 5 and mi < 5
Model Order n = 10
Scaling Signal Path: zl(s)/w(s)

Scaling: Input
5 -Optimization: 1

Order: n

LQG rmJ: 1.020
rmZ: 0.740
rmU: 22.0

5 10 15 20 25

Station (i)

Figure 5-6. Group 2 Example.
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Scaling: Throughput
5 Optimization: 3

Order. 2n

LQG rmJ: 0.943
rmZ: 0.657

1,I , , i ., rmU: 21.4

5 10 15 20 25

Station (i )

Figure 5-7. Group 3 Example.

While these cases do not conclusively show this particular combination of

parameters to be superior to all other, there are several heuristic arguments suggesting just

that. Throughput scaling' weights the input and output of the disturbance to regulated

variables signal path, and that is a more thorough representation of the problem than the

input or output alone. The J2 (trace) norm is a function of all the dimensions in the

reachable volume rather than just one for J1 (minimum X). Furthermore, the stochastic

LQG cost is computed as a weighted trace of the mean-square closed-loop system response

which is the solution of a Lyapunov equation closely related to that of the Gramian. Since

we are able to produce essentially the same solutions with the algorithm operating on the

half-order (modal-velocity) reachable volume, we will continue to exploit that for

computational economy. The determinant norm (J3) results of Figure 5-7 are interesting

because they are independent of any (non-singular) scaling, and also add confidence to the

use of the order-n approach. It appears that solution generally distributes authority on the

peaks of mode 10, which has nodes at stations 5, 10, 15, 20 and 25. Toward the center of

the beam (station 25) the nodes of mode 9 are closer to the peaks of mode 10, so the

distributions tend to favor the ends, since the particular scaling was chosen to emphasize

the high modes more than the low ones.

Introducing an individual power constraint of mi <- 1 to every potential actuator site

modifies the solutions of Figure 5-5, and for the case selected ('throughput-scaled', J2, and

order-n) Figure 5-8 plots the new solution over the shadow of the previous solution.

Notice the LQG performance is still superior to the Figures 5-6 and 5-7 class (Groups 2

and 3) solutions. Appropriate distribution of actuator authority can decrease both control
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effort and regulated variable excursions, rather than the trade-off between them as we are

accustomed to when dealing with a regulator problem with fixed inputs (or outputs).

Scaling: Throughput
Optimization: 25 Constraint for 5-5 Order n

LQG rmJ: 0.912
rmZ: 0.616_ rmnU: 21.3

New Constraint

5 10 15 20 25

Station (i)

Figure 5-8. Individually Constrained Solution.

The emphasis on the highest modes is also clear here. Recall that this is deliberate

by selecting a torque input and rotational output for the scaling signal path. To illustrate

how we might alter the results, we carry opt three examples: reducing the order of the

model, introducing a frequency-dependent input weighting, and changing the scaling signal

path. First we reduce the order of the model from 10 modes to 6 then 3, and compute the

relaxed solution with the individual (and total) power constraint set at five. Figure 5-9

shows the results; predictably, the actuator authority is placed where it will emphasize the

highest modes in the model.

Since this research is focused on structural dynamics applications, we cannot forget

the fundamental limitations of model order. The torque-to-rotation scaling signal path used

so far was deliberately selected to emphasis high modes, and it did so. As the last

examples showed, the solution is very sensitive to the highest mode in the model. Recall,

too, that the disturbance was not band limited. We can emphasize intermediate frequencies

by introducing a frequency-dependent input weighting in the signal path as shown in

Figure 3-4. For an example, set

U(s) - C = 10 rad/sec . 5-29

U(s) + 05
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Scaling: Throughput
5 -Optimization: 2

Order: n =6 1..

3 3

5 10 15 20 25

Station ( i)

Figure 5-9. Reduced Models.
This changes the reachable volume of the disturbance, contracting it progressively

more for modes above wc, mode 3 in this example, than for modes below O0c. The
detectable volume of the regulated variable is unaffected. Recomputing the 'throughput-
scaled' transformations based on the new reachable volume of the disturbance through U(s)
and the unaltered detectable volume of z1 results in a shift of optimal actuator authority
toward lower modes. We could accomplish approximately the same objective by
introducing a direct scaling based upon the magnitude response of the desired filtering at
each modal frequency, but would then lose the direct dynamic interpretation of the filter.
Figure 5-10 plots the new solution with 10 modes in the model.

Scaling: Throughput
5 -Optimization: 2

Order. n

_/
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5 10 15 20 25
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Changing the scaling signal path from the rotational output to the displacement at

the middle of the beam (z2(t) = y(1i2,t)) results in the elimination of all even-ordered modes

from the model and a predictable shift in actuator authority. The optimal location with

respect to all controllability norms tried (JI, J2 , J3) and all scalings (input, throughput, and

output) was at the center of the beam (station 25). All the odd modes have a peak at that

point, and it is the only such point. Since this is not too surprising these cases are not

pursued further or plotted. Note that the fact the determinant norm (J3) also produced a

mid-beam solution is not in conflict with the claim that the solutions for this norm are

unaffected by scaling. There is no non-singular scaling which will eliminate half the modes

from the model.

Before turning to the combinatorial failure-optimal problem there is another

important parameter to investigate: the time interval over which all the Gramians are

defined. We had mentioned in Chapter 3 that the interval should probably be related to the

inverse of the desired closed-loop bandwidth. Returning to our example of Figure 5-5, in

an attempt to characterize the effective bandwidth, the open-loop and closed-loop poles for

the evaluation regulator are plotted in Figure 5-11, and the minimum and maximum

singular values of the loop transfer function, GLQ = G(sI-A) 1IBa, are plotted in Figure

5-12. Not unexpectedly, since there was no explicit attempt to shape the singular values of

the forward loop, it does not have a well-defined bandwidth and, indeed, the 'crossover'

region is not well defined. We could modify the state weighting and generate a control law

that does have a narrow crossover region, but the physical interpretation of the output-

weighted regulator and the ability to make a simple rms comparison between cases would

be lost. Rather than introduce a new method of comparison, we will leave the evaluation

regulator formulation as it is, and experimentally vary the time horizon over which the

Gramians are defined. The ill-defined crossover band of Figure 5-12 suggests a significant

variation of the horizon is necessary to note changes in the solution, and this in fact turned

out to be true. In particular, we compute the Gramians for an infinite horizon and then for

a shorter one. Numerical problems occurred in the scaling transformations for time

horizons of 0.01 and 0.1 because the disturbance Gramian became effectively singular. An

interval of 1.0 was successful, and is somewhat shorter than the nominal interval of 6.28

(one period of the lowest mode). The optimal actuator authority distributions for these two
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Figure 5-12. Singular values of GLQ (w)
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cases were computed with the J2 norm, 'throughput scaling', order-n Gramians, and are

plotted in Figure 5-13. The infinite-horizon case shifts emphasis toward lower modes, and

the resulting regulator is poorer than the examples in Figure 5-5. The shorter interval

produces a result that does not make sense physically, since the peak for mode 10 is

between stations 2 and 3. Most likely, the order-n assumption breaks down for the short

time horizon. To investigate, we compute the spread of the second order modes (a =

J(WcW0 )) for the full-order (2n) to the half-order (n) Gramians of the scaling signal path

and compare them in Table 5-4. We see that, while for the infinite and 27t time horizons

the half-order block has comparable extreme dimensions to that of the full order, in the

short-horizon case it does not.

Table 5-4. Full- and Half-Order Y over Three Time Intervals

Omax/Omin for zl(s)/w(s) signal path

Gramian Order
Time Horizon 2n n

1.0 2.25 x 108 5.5736
6.28 3.4786 3.0471
00 1.11 x 104  1.00x 104

The infinite-horizon example supports the assertion that some truncation of the

interval is a better way to represent the problem, and generally reflects the fact that the

lower modes become relatively more controllable over a longer interval. The short horizon

case, however, points out numerical problems and limitations that are not well understood.

Scaling: Throughput
Optimization: 2

5 Order- n

Time Horizon: Infinite Short

LQG rmJ: 0.981 1.260
rmZ: 0.699 0.806
rmU: 21.8 30.7

5 10 15 20 25

Station (i)

Figure 5-13. Infinite and Short Time Horizons.
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5.1.3 Fault Tolerant Solutions

Turning finally to the fault-tolerant integer solution, we start with the constrained

solution of Figure 5-8. Retaining the scaling and optimization parameter of that case, Table

5-5 lists additional specifications.

Table 5-5. Fault-Tolerant Problem

Number of actuators at BOL: 5

Required at EOL: 3 (94% probability)

Individual Reliability: 0.8

Enumeration of Failure Modes:

Number Failed Probability Distinct failure modes

0 0.3277 1
1 0.4096 5
2 0.2048 10

>3 0.0579 16

The reliability of each actuator is assumed to be independent of the others. For a

constant hazard rate, the end-of-life reliability represents a MYIF 4.5 times longer than the

'mission' duration. Failure modes of three or more failures are lumped and the

controllability norm is assigned to zero for the expected-value computation. The worst-

case is defined with respect to the failure modes with two failures.

The combinatorial search algorithm is started with four candidate configurations of

actuators that are close to the distribution in Figure 5-8. These starting points and their

geometric distance from the distribution in Figure 5-8 are listed in Table 5-6. Increasing

the allowable distance to 1.2 resulted in 21 candidates, which was more than desired for

computational-cost reasons.

Table 5-6. Initial Search Points

Configuration Distance

2 3 4 8 13 0.5885
2 3 4 8 18 0.9189
2 3 4 8 23 1.0097
2 3 4 8 9 1.1526
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The algorithm was executed twice, once for each of the failure weightings. In the

case of the expected value weighting, the search of the '1-exchange' neighborhoods

revealed no improvements and identified the first starting point as the best. For the worst-

case weighting, one improved distribution was located and added to the list; the '1-

exchange' search around it revealed no improvements. The two solutions differed by one

actuator. The algorithm also keeps up with the best no-failure solution encountered, and it

happened to be the same as the best expected-value solution. Also, since the algorithm had

searched the neighborhood around that candidate, we know in this case that the best no-

failure solution is also at least as strong a combinatorial opLmum as the failure weighted

solution. Table 5-7 lists the two solutions and the three methods of weighting the

optimization norm, J2, for each. Also listed are the failure-weighted regulator stochastic

performances to a unit intensity wideband signal at the disturbance. To compute the

closed-loop performance over failures, the regulator gains and the stochastic response are

computed for every failure mode (16 in each case) and then the worst case identified or the

results for all (failure) modes are weighted by their individual probability for the overall

expected value. This presumes, in effect, reconfiguration after failure by resolving the

same LQG optimization problem.

Table 5-7. Failure Weighted Results

Best for Expected Value Best for Worst-case
(and no-failures)

Solution (stations): [2 3 4 8 131 [2 3 4 9 13]

Trace Norm, J2  (relative to Fig 5-8)
No Failures: 0.9951 0.9845
Expected Value: 0.7646 0.7570
Worst-Case: 0.4893 0.5019

LQG Response (rms, relative to Fig 5-8)
JLQ Zl U JLQ ZI U

No Failures: 0.9977 0.9950 1.0000 1.0021 0.9938 1.0089
Expected Value: 1.0013 1.0058 0.9969 1.0063 1.0070 1.0052
Worst-Case: 1.2822 1.3915 1.1831 1.2940 1.4045 1.1938

Comparing the expected-value and worst-case controllability norm between the two

results shows that the algorithm did correctly differentiate the two. The worst-case failure
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mode for both solutions in terms of either the controllability norm or LQ cost was the loss

of actuators at stations 3 and 4. There is a monotonic degradation from the relaxed solution

of Figure 5-8 through the best no-failure integer, expected value, and worst-case best

distributions (ratios of J2 norm are less than one). The closed-loop response, however,

does not follow this ordering exactly, nor do we have any theoretical reason to believe it

should. Ratios of greater than one for LQ cost indicate poorer performance. In fact, the

'Expected-Value' solution of the right column is superior to the 'Worst-Case' solution on

the left for all three closed-loop evaluations, and it is better with no failures than the Figure

5-8 relaxed distribution. However, even without knowing the best solution exactly for

either the controllability norm or a closed-loop cost, these are likely to be very close to the

global optimum, as we can show by a Monte-Carlo numerical experiment.

There are a total of 53,130 combinations of five actuators placed on 25 sites with at

most one device per site. We construct a pseudo-random sample of these by generating

sets of five random variables, each distributed uniformly over the interval [0, 25] and

rounded up to the next integer. Sets with any duplicate integers are eliminated, as are any

completely duplicate sets. A total of 100 sample actuator configurations were generated

this way, and the controllability norm and regulator stochastic response were computed for

each over the failure modes listed in Table 5-5. This required a total of 1600 Riccati

equation solutions for the regulator and the same number of Lyapunov equation solutions

for the response. The scaled Gramians were combined in as many combinations from a

precomputed file, as is done in the algorithms, but the eigenvalues were computed for each

combination to provide the exact value of the controllability norm.

The significant result is that none of the 100 samples in this Monte-Carlo exercise

produced a better actuator distribution, either in terms of the closed-loop regulator or open-

loop controllability norm, than the algorithm's solutions of Table 5-7. We might have

expected the latter, but the former is an indication the overall approach is worthwhile.

Figures 5-14 through 5-16 are histograms of the regulator cost functional for no failures,

expected value and worst-case failures. The bins are equal increments, and range from a

low of the best 'Expected-Value' solution's cost to twice that. Most of the cases fell in bins

2 and 3, with costs higher than the candidate best by 1.2 to 1.4 for all failure weighting

methods. Figures 5-17 and 5-18 illustrate the expected value of the regulated variable (end
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Figure 5-14. J .Q for No-Failures
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Figure 5-15. LQ, Expected Value over Failures
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rotation) and control effort. The output is the dominant term in the cost functional, so its

distribution in both cases is similar. The rms control effort ranged from 0.975 to 1.18 that

of the candidate 'best' solution, which would fit into bin 2 on Figure 5-18. The open-loop

norm, J2 , was distributed entirely below that of the best found for all failure weightings,

and Figures 5-19 and 5-20 show the expected value and worst-case histograms for the 100

samples. Note the bins in Figure 5-19 range from half of the 'Expected-Value' solution's

J2 up to that value, while the worst-case bins in Figure 5-20 are from zero to the best

Worst-Case' solution at the upper end.
60.

50.

40.

CO)

o 30. - X

20. .X

10.-,

Best to twice Best

Figure 5-16. J LQWorst Case Failures

While these results do not prove anything rigorously, they are a strong indication

that the algorithm's solutions are close to the global optimum, and this is often the best

practical solution for combinatorial problems. Furthermore, the Monte-Carlo experiment

took about five times more CPU time than did the algorithms to reach the solutions of

Table 5-5 in the first place, including computing the Gramian file. This is a crude

comparison because all of the coding was implemented in the non-compiled 'CTRL-C'

instruction language, which excessively penalizes the multiple iterations through failure

modes. About 100 minutes of VAX-8650 CPU time was required for the Monte-Carlo
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Figure 5-19. J2 norm, Expected Value over Failures
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Figure 5-20. J2 norm, Worst Case Failures
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run, compared to 18 minutes for the algorithms, 15 of which were spent on the

combinatorial search for the failure weighted solution.

We turn next to a large-scale structural model more representative of the kind of

flight vehicle that motivated this research.

5.2 Draper Model No. 2

As a part of DARPA's (Defense Advanced Research Projects Agency) Active

Control of Space Structures (ACOSS) program, the C. S. Draper Laboratory developed a

model of a hypothetical optical system requiring active structural control [62]. Later, under

the Vibration Control of Space Structures (VCOSS) program, the model was revised [63]

to include additional kinematic and rigid-body detail in the optical elements and the

equipment bay (Rev 1), and two variations of stiffness and weight; a lighter and less stiff

version (Rev 2) and a heavier and stiffer version (Rev 4). These models were disseminated

to participants in DARPA's programs and to academia; thus they represent a reasonably

well known system which has many of the features that make control of lightly damped

structures a difficult engineering problem. Revision 1 was selected for these examples;

Figure 5-21 is an illustration of the overall configuration.

The particular control problem posed in the VCOSS program was regulation of the

line-of-sight (LOS) pointing (x and y rotations) and maintenance of the focal length

(defocus) in the z direction in the presence of a broadband disturbance acting upon the

structure at nodes 37 and 46, as shown in Figure 5-21. The disturbances are statistically

independent with a power spectrum as in Figure 5-22.

Specifications for the LOS were also imposed, and are listed in Table 5-8 along

with the open-loop stochastic response of the model to the disturbance of Figure 5-22. We

assume a modal damping ratio of i = 0.001 for all modes in order to compare results to

those of Hegg and Kissel [66].
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Figure 5-22. Disturbance Spectrumn
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Table 5-8. Control Requirements and Open-Loop Response

Transverse Defocus
u.-radl, rms ram. Tns

x y. z

Requirement: 0.05 0.05 1

Open-Loop: 75.5 771.4 6.7 x 10-3

Note that while the structure presents more than adequate stiffness for elongation along the

optical axis, as seen by the small defocus response, 64 to 84 Db of disturbance rejection is

required for pointing. We next summarize some modeling details in preparation for

computing sensor and actuator distributions.

5.2.1 Modeling

The Model No. 2 is essentially a truss structure supporting several discrete rigid

bodies which comprise most of the mass. Joints on the truss, however, are solid, so

member forces may include shears and moments as well as tension and compression.

Overall dimensions are about 28 meters from the upper support truss (for the primary and

tertiary) to the equipment section, and 52 meters tip to tip across the solar panels. The rigid

masses supported by the truss include three optical (mirror) segments, a focal plane

assembly, and the lower equipment bay. There are a total of 58 nodes in the model, each

with six degrees of freedom. Total mass is approximately 9337 kg, of which 1023 kg are

structural and 8314 kg are non-structural and rigid. Reference [63] contains further details,

including the NASTRAN run deck for producing a finite-element model of the structure.

From a finite-element analysis, mode shapes and eigenvalues are computed. Table 5-9 lists

the first several frequencies, and sketches of their corresponding mode shapes are in

Appendix B.
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Table 5-9. Low Frequency Eigenvalues of Draper Model No. 2 (Rev 1)

System Mode Frequency System Mode Frequency
Number (Hertz) Number (Hertz)

1-6 0 (rigid body) 14 0.673
7 0.148 15 0.960
8 0.282 16 1.092
9 0.319 17 1.839

10 0.335 18 1.844
11 0.468 19 1.889
12 0.583 20 1.990
13 0.601 21 2.060

Also computed by the NASTRAN code are the modal influence and output matrices

for several signal paths. We will require these matrices for the disturbance input, [ZTBd],

the line-of-sight output, [Czc], and a large class of potential actuators, [CbTBa], and/or

sensors, [CsD]. Three classes of transducers are considered in this example, all discrete-

point devices for computational expedience. At each of the 58 structural nodes are three

orthogonal translation (external force) devices, which could be idealizations of proof mass

actuators or accelerometers. Three orthogonal rotation (torque) devices are also modeled at

each node, which could represent momentum wheels, control moment gyros (CMG) or

instrumentation gyros. There are 174 devices each in the rotational and translational class.

A third class of devices is the linear extension of the 134 beams distributed through the

truss. Sensors in this class would measure the relative displacement (strain) between the

nodes linked by a beam, or actuators would generate a tension or compression across the

member. We will reconsider the issue of sensor and actuator dynamics in the context of

relative weightings between the three classes in 5.2.2, but for these examples all devices

are idealized as broad-band. The influence coefficients, and later the Gramians, for all 485

candidate devices are computed and stored. Appendix B lists the first significant figures

for the first 18 flex modes of some of the input and output matrices we will use with this

example. The numerical data is furnished to allow a partial check of the model by a

researcher interested in verifying the results to follow, but the model should be transferred

on magnetic tape or generated from an original NASTRAN run with the data in reference

[63] to be accurate.
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For the LOS regulated variables,

[LOS x (rad)
z=[ LOS y (rad) 5-30[defocus z (m)

an output scaling, Rz as described in section 3.2.1, is introduced so the effective output

units are in terms of the specified performance listed in Table 5-8.

(0.05 x 10- rad) 2

RZ= (0.05 x 10.6 rad) 2  5-31

(I x 103 m)2

The effect of this weighting, since the defocus is alrendy wel' below the specification listed

in Table 5-8, is to sharply attenuate the impact of the defocus performance on the basis

scaling.

The spectrum of the disturbance, Figure 5-22, motivates a frequency-dependent

input weighting, U(s), (section 3.3.4) which, with a unit intensity 'white' process input,

produces the required spectrum. A two-state realization that does this is given by (Au, Bu ,

Cu) with parameters

A u=  (c0 Bu = VZ C 0 Cu= 10 1 Co~C= l10 se-'d. - 32

We are now in a position to produce an economical model by selecting modes

according to their significance in the disturbance to (weighted) regulated variables signal

path. Since we are not interested in rigid-body control for this example; we first delete the

six corresponding zero-eigenvalue modes. A total of 50 flexible modes, ranging in

frequency from 0.148 Hz to 32.83 Hz, and the corresponding mode shapes were computed

by NASTRAN, and we would like to rank order all of them. While we could try writing a

first-order system of order 102, (including two states for the input shaping filter), and

computing the 'second order modes', y2.= eig[WcWo], as described in section 3.3.3, the

software available would not manage a task of that size. Gregory's approximation,

equation 3-116, is not directly applicable either, since it does not account for a frequency-
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dependent weighting. What we can do, however, is represent the signal path of interest

with input and output scalings, in the form of Figure 5-23, and assume (temporarily) that

the modes are completely independent. We may check the confidence of the independence

assumption (over an infinite horizon) with a check of Gregory's bound (equation 3-117).

T ~ 1T

w(s) s2, T 
+  Z(S

s 2+ 2 j ojS + (oj LOS

Disturbance 1
TJ T

s2 + 2 4as + G)N

Figure 5-23. Scaling Signal Path.

We may now compute the controllability and observability Gramians of the signal

path through each mode separately, which is inexpensive since the order of the system for

each channel is four, two states for the mode and two for U(s). A realization of a modal

channel is:

2 T
• -2 jw -oj OjBd 0

d Tlj 1 0 0 0 Tj+ W(t)

XU0 AU x
U x5-33

ZW(t) R z1 2 CZlj1 j(t)
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where Au and Bu are realizations of input filter U(s) from equations 5-32 and Rz is the

output scaling, eqn. 5-31. With the ordering of equation 5-33 for the four-element state of

each modal channel, we partition the corresponding infinite-horizon Gramians so the upper

left, or [1,1] bloc of dimension 2x2, corresponds to the modal variables, [i ']T

T T

(dim=2) 5-34

We may then estimate the ai for each mode by computing

112 = eig(Wc[1,1] Wo[1,1]) 5-35

and, as noted by Gregory [49], within a lightly damped mode the two eigenvalues ( oil and

Gi2) are very nearly equal, so we take their geometric mean as a modal index. As a check

on the validity of such an independent ranking, we also compute Gregory's bound

(equation 3-117) between adjacent modes. With a significant change in interpretation, but

very slight change in computation, we may interpret the upper left partition of the

controllability Gramian, Wc[1,1], which corresponds to the modal variables, as the steady-

state covariance from a broadband disturbance with the spectrum of Figure 5-22.

Removing the output scaling, Rz, we compute the regulated variable output covariance by

E[zjzJ= [0 C. WC[1,1][0 C. t  5-36

where zj is interpreted here as the contribution of mode j to the regulated variables z.

Table 5-10 contains a ranking of the flexible modes by both criteria, the

deterministic ai ('second order modes' or 'Hankel singular values') and the stochastic

contribution of each mode to the total (rss of x and y directions) line-of-sight error

response.
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Table 5-10. Modal Rankings.

Rank Flex Mode ai Rank Flex Mode Lc-

Number Number (ji-rad)

1 1 19.705 x 104 1 1 600.97
2 18 3.193 2 18 455.85
3 7 1.508 3 17 105.90
4 6 1.196 4 7 92.65
5 17 8.495 x I03  5 16 77.04
6 16 6.206 6 6 72.43
7 10 3.919 7 10 32.47
8 2 2.901 8 8 15.91
9 4 2.820 9 4 12.94

10 8 2.446 10 2 12.22
11 3 1,130 11 3 5.06
12 5 2.195 x 102  12 33 5.02
13 9 1.186 13 34 4.29
14 33 1.644 14 49 3.28
15 34 1.333 15 46 3.21

21 15 6.33 x 101 30 15 0.72
29 14 2.20 34 14 0.25

35 11 8.55 x 100 35 11 0.09

38 12 0.49 38 12 5.3x10 -3

48 13 9.00 x 10- 19  49 13 0

Modal truncation will be based on the cri criterion, as discussed in section 3.2.2,

but it is interesting to note the similarity to the covariance contribution Hegg used [66] for

mode selection. We plot logailmax] in the order listed in Table 5-10 along with

Gregory's bound (eqn. 3-116) in Figure 5-24. We see clearly there are two logical

truncations, one at 11 flex modes and the other at about 36. The dotted line in Fig. 5-24,

showing Gregory's bound, is much smaller than unity (0 on the log scale) for the modes

through the candidate truncation points and assures us that the independent estimates of the

(infinite horizon) ci are accurate. That is, if we had the computational power to determine

the ai's for all 50 modes simultaneously, we would find similar results for all but a couple

of modes. We elect to truncate the model at the first 11 modes listed in Table 5-10, noting

this is not a contiguous, but an interlaced, model by frequency. It is also interesting to note

that with truncation at 11 modes, we would include the same modes whether we selected

them by the ci criterion or their contribution to the LOS error, even though the ordering is

not exactly the same.
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MODAL ORDER

Figure 5-24. Second Order Modes with Gregory's limit.

Figure 5-24 can be compared to Figure 5-4 from the beam example. Notice the

modal contributions to the signal path fall off more quickly for the beam by mode number,

but less so by frequency. The significant differences between the two structures is that the

modal density, by frequency, is far higher for the ACOSS structure than for the beam; and

that the ordering by ai and qj is the same for the beam, but as shown in Table 5-8 is not for

the ACOSS structure. The modal density and the fact that the second-most important mode

is of relatively high order (18th flex mode) are among the primary causes of the control

challenge this system presents.

With a model, a scaling signal path, and a global class of sensors and/or actuators

specified, we are prepared to scale the state basis, and find optimal distributions of effector

authority.

5.2.2 Relaxed Solutions

One of the first results from the relaxed problem and the global class of 485

actuators was finding a strong distinction in overall authority between the three device
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classes. The translational force devices are the strongest and, if they are admitted to the

problem, no other type of device will remain in the converged solution. The extensional

force devices, in contrast, were the weakest and, if any other class was admitted, no

extensional devices would remain. Therefore, we initially exercise the algorithm for each

of the three classes of actuators alone. The model basis is scaled to 'throughput-scaled' in

accordance with Table 3-1, and the average energy (J2) norm operating upon the half-order

(n) Gramian is selected for the optimization parameter. The time horizon over which all

Gramians are integrated is set at one period of the first flex mode, or 6.76 seconds. For

each class of actuators, we first compute the fully relaxed solution with a total power

constraint of unity, M < 1, then compute one or two further constrained solutions holding

the individual constraints to unity, mi -1, while raising the total power to some higher

level. The levels are not chosen completely arbitrarily, but correspond to the total number

of devices in some similar selections by Hegg and Kissel [66] by their algorithm (section

3.2.2 ) for the same Model No. 2. Recall that the absolute magnitudes of the constraints

are not as important as their proportions. Figures 5-25 through 5-33 illustrate the

configuration of these solutions, and Tables 5-11 through 5-13 list the actuators in the

solutions with their distributions of authority for the several constraint cases imposed.

NV

Figure 5-25. Extensional Actuators, Fully Relaxed
Distribution
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Table 5-11. Extensional Actuator Solutions.

Figures: 5-25 5-26 5-27
Constraints: Total Power M: 1 10 14

Individual mj: (n/a) 1 1
Actuator No (i) Nodes Distributionl(t

25 6 10 .734 1 1
68 10 16 .170 1 1
70 9 15 .096 1 1
7 4 6 1 1

66 8 14 1 1
75 13 19 1 1
78 14 28 1 1
86 19 30 1 1
82 15 26 .596 1
23 6 13 .462 1
28 9 910 .361 1
18 3 8 1
3 2 3 .363 .949

73 12 18 .219 .564
88 17 31 .352
71 , 17

Th, .Devices in Soln, Na + Nu: 3 13 16

A significant result emerges from the fully-relaxed (individual constraints mi not

active) solutions for all classes, and that is the optimal distribution of authority is
concentrated in relatively few devices. There are 137 potential extensional actuators, but
only three remain in the fully relaxed solution of Figure 5-25. Somewhat more
translational and rotational actuators are included in their respective fully-relaxed solutions

(Figures 5-28 & 5-31, but still only a fraction of the 174 total of each class. This is a
particularly practical result, since we would like to be able to control the structure with as

few as necessary. Notice that while the structure has some symmetry, the disturbance

entering the reference signal path is not symmetric, hence symmetric mode shapes are not
equally weighted. As we bring into effect proportionally smaller individual site constraints,
the total number of devices increases, but not dramatically. Notice also as the total power

increases, devices reach the individual constraints and new ones enter from the inactive
partition. A few translation devices apparently defy this expected behavior: devices 260
and 266 as shown in Table 5-12, in particular. Inspecting the figures corresponding to the

extensional solutions shows a strong preference for the members linking the upper and
lower support trusses. This is not too surprising, since there are mass concentrations on
both ends of the main truss, which the optical line of sight traverses several times. We will

put off discussing the actual controllability norms associated with these solutions for the
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moment, but suffice it to say now that the degradation from the fully relaxed solution to the

1/14 constrained (M=14, mi=l) solution is about 74% of the initial value.

Most of the structural modes retained as significant in the disturbance-to-LOS signal

path are either solar panel motions or modes of the lower equipment bay with the stiffer

upper truss across the relatively soft isolator springs between them, as can be seen in the

sketches in Appendix B. There were no strong extensional devices for the solar panel

modes, so they appeared largely ignored. However, there are translational actuator sites

that do affect those modes strongly and they emerge in the next series of solutions, listed in

Table 5-12, with corresponding Figures 5-21 through 5-23. Another interesting

observation about these solutions is the strong emphasis in the 'z' direction, which

supports control of modes across the isolators. There also appears to be a roughly even

split b-,tween authority for the lower equipment bay with its solar panels and the trusses.

Again, we will put off more quantitative discussions for the moment.

Table 5-12. Translational Actuator Solutions.

Figures: 5-28 5-29 5-30
Constraints: Total Power M: 1 5 12

Individual mi: (n/a) 1 1
Actuator No(i) Node Direction Distribution(til

281 34 Z .528 1 1
303 57 Z .074 .461 1
254 1 Z .060 .850 1
260 7 Z .021 1
266 13 Z .016 1
261 8 Z .003 .828 1
282 35 Z .512 1
273 26 Z 1
294 48 Z .077 .291 .811
147 10 X .767
288 42 Z .054 .279 .712
296 50 Z .077 .279 .620
301 55 Z .022 .225 .601
140 3 X .035 .146
143 6 X .030 .114
269 16 Z .328
202 7 Y .124
236 48 Y .001 .010 .033
245 57 Y .0.05.005

Total Devices in Son, Na + Nj: 14 13 17
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Distributions for rotational actuators are shown in Figures 5-31, 5-32, and 5-33,

which accompany Table 5-13. The emphasis on the solar panel tips appears again. Note

the preponderance of authority in the 'y' direction. In the upper support truss the solutions

have found the primary and tertiary mirror masses (nodes 1001 and 1003), which may not

be physically admissible. We could go through the model and purge any inadmissible sites

then rerun the solutions without them, but did not do so for any of the examples presented

here.

Table 5-13. Rotational Actuator Solutions.

Figures: 5-31 5-32 5-33
Constraints: Total Power M: 1 5 11

Individual mi: (n/a) 1 1

Actuator No(i) Node Direction Disibution (

421 1001 Y .492 1 1
419 57 Y .216 1 1
410 48 Y .164 .908 1
426 2830 Y .487 1
391 28 Y .483 1
393 30 Y .483 1
418 56 Y 1
411 49 Y 1
373 4 Y 1
352 48 X .082 .273 .604
361 57 X .027 .273 .604
423 1003 Y .326
468 48 Z .018 .095 .216
395 32 Y .084
396 33 Y .084
427 3233 Y .084

Total Devices in Soln, Na + Nul: 6 9 16

Returning to the issue of relative strength among the three classes of devices, we

know it is possible to add a weighting among the classes in order to reflect their relative

effectiveness. After all, an extensional member device reacting entirely against the structure

ought to be a stronger device than an equivalent 'unit' translational force device, which is

idealized as reacting against inertial space. In the current scaling we are in effect stating

than 1 Newton of force reacting between two nodes comes at the same price as I Newton

reacting against free space, and at the same price as 1 Nt-m of torque also reacting against

free space. Furthermore, any relative weighting ought also to depend upon frequency,
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since the translational and rotational devices are idealizations of hardware that has no DC

authority, while the extensional class very well might.

References [64], [65] and [66] contain summaries of a broad range of actuator

dynamics and their incorporation into a structural dynamics model. Actuators are divided

into two broad classes: transmission and reaction. The distinction stems from the

mechanics exploited to generate the control force. Reaction devices directly force some

small mass, and the reaction force against the structure is the control force, while

transmission devices drive some displacement which elastically transmits a control force.

Examples of reaction devices are translational proof-mass actuators or reaction wheels.

Figure 5-34 illustrated the signal flow of this class.

Reaction Force

D _T SDisplacementDrive Force -Dslctn

G(s)

Figure 5-34. Reaction Actuator.

The driven mass has inertia, I, and feedback G(s) represents a combination of

device-particular dynamics, such as damping elasticity and non-linear limits, as well as

local active compensation. The main point of Figure 5-34 is that the reaction force from

accelerating the actuator mass, which always has physical limits on displacement and rate,

is the output force, and none can be generated at DC. Note also there is not intrinsically

any high-frequency roll-off from the signal path in Figure 5-34, but this would be present,

of course, from other dynamics such as electrical driving circuits. For transmission

devices, on the other hand, a displacement is important and we diagram the signal flow of

this class in Figure 5-35.
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q structuralq displacement

Drive Force s I Control Force
Stiffness

Figure 5-35. Transmission Actuator.

Examples of transmission devices include jack screws, cable-tendon devices, and

piezo-electric actuators, the latter having particularly small moving mass, and all of which

react against the structure. A structural displacement signal, q, enters Figure 5-35 and

represents the fact that the control force depends upon relative displacement. The actuator

stiffness, Ka, may be a part of the structure, but the main point is there is authority at DC

and a mechanically-induced high-frequency roll-off. Control-moment gyros are a

particularly important class of device which do not quite fit either classification. They are

closer to a transmission device than to a reaction device, with the interpretation of Figure

5-35 that the gimbal rate and structural rates replace the mass and structural displacements,

and the actuator stiffness represents the rotor momentum. More like a reaction device,

however, is the fact that a CMG does not have DC authority, but this may be captured in

the actuator stiffness by making it a function of the gimbal angle, specifically Ka = h

cos(x), where x = 0 represents the nominal gimbal angle with rotor momentum h

perpendicular to the CMG output axis.

The role of local compensation, G(s), in Figures 5-34 and 5-35, is often

overlooked in analyses of sensor and actuator dynamics for structural control. It is not

likely that the control signal from the vehicle will be the actual drive voltage for an actuator,

which 'sees' the electro-mechanical dynamics of the device itself. Flight hardware

incorporates local compensation to make the unit appear as a simple linear gain over a

specific bandwidth, and the high-frequency roll-off may also be significantly sharper than

that of a simple model. For control synthesis, then, it may well be justified to model

sensors and actuators as all-pass constant gains, but evaluation then should include the
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locally-compensated device dynamics as well as the most significant unmodeled structural

modes. This does not imply, however, that local compensation eliminates the usefulness

of frequency-dependent weightings for sensor and actuator selection. The fundamental

physical differences of the device classes or different point-designs within a single class

imply favoring some frequencies over others. We could construct frequency-dependent

weightings, such as shown in Figure 5-36, for devices applicable to the examples of this

section.

These weightings may be derived from actuator dynamics, but may reflect other

information as well. The roll-on rates of the reaction devices (and the CMGs) model

excursion limits of the reacting mass, not linear dynamics. The steeper roll-off of the CMG
represents the effect of a gear train commonly used to drive the gimbal. With a family of

plots such as in Figure 5-36, we may construct approximating input or output filters, U(s)

CMG

Reaction Wheels,
Proof-Mass Act.

Controlled Modes

Figure 5-36. Relative Weightings.

and Y(s), respectively, and append them to the sensor or actuator signal paths as shown

Figure 3-4. This was done for the reference signal path from which we derived basis

scalings, with U(s) representing a spectral filter for the disturbance, but it may also be

done, with different U(s), for computing the individual site Gramians.

Deciding what the relative weights ought to be is a bit of an aside, so we continue

by considering a simple case with the weights assigned in proportion to the controllability

norm of the relaxed solution for each class alone, and no frequency dependence. That is,
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the controllability norm of the best solution from Table 5-12 (translational force devices) is

about 780,000 that of the fully relaxed solution of the extensional devices, so we weight

(up) all the extensional devices by the precise ratio. Likewise, the translational solution's

norm is about 37 times larger than that of the rotational devices, so the latter are weighted

by that amount. Weightings are actually applied to the individual Gramians, or equivalently

the square roots of the weights are applied to the corresponding influence coefficients. We

expect the result will be to bring all classes of devices into the solution, and this is in fact

the case, as detailed in Table 5-14 and Figure 5-37. Notice that the strongest devices from

the fully-relaxed solutions of each class are not present in Figure 5-37, but the emphasis on

solar panels and main truss extension and bending remains. The effect of including all

classes, albeit with some positive weightings, is a controllability norm 4.1 times larger than

that of the fully-relaxed translational solution alone, which was the class retaining unity

weighting in this example. We would expect exploitation of the different classes to yield

better solutions than a single class, but interpretation requires more engineering meaning

behind the relative weights rather than just to create an interesting result as in this case.

Table 5-14. Combined Actuator Solutions.

Figure: 5-37

Constraints: Total Power M: 100

Actuator No (i) Node(s) Directio QM Distribution (ti)

236 48 Y Translation 60.39
71 11 17 Extension 14.01

294 48 Z Rotation 13.37
303 57 Z Extension 10.62
361 57 X Rotation 1.19

68 10 16 Extension 0.42

Total Devices in Soln, Na: 6
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Figure 5-37. Fully Relaxed Distribution for AUl Classes

We would like some evaluation of these solutions, other than their respective controllability

norms, before proceeding with the expensive step of combinatorial search for fault-tolerant

configurations. We turn to the LQ regulator for such a check, motivated as in the beanm

examples by its simplicity and the fact the stochastic performance of the full-state feedback

regulator is an upper bound to the performance of an LQG model-based compensator

operating on noisy measurements. Furthermore, we have the opportunity to compare

results with actuator selections by Hegg and Kissel [66] using Fogel's [42], [22] modal-

influence coefficient algorithm, as reviewed in section 3.2.2. Five of their selections are

extracted for comparison here- 'Examples A, B, C, E-5 and E-l 1', in their nomenclature-

and are plotted on Figures 5-38 through 5-42, respectively. For each of their examples,

Hegg and Kissel computed the full state feedback regulator based on LOS output weighting

and uniform control weighting, with a cost functional in the form

urn imE z( )z( + ruUT( uz z5-37

where Qz = diag [qx qy qz] for the three components of the optical line of sight, and ru is a

scalar. For each of their examples, Hegg and Kissel experimented with the state

weightings until the stochastic response of the system to the disturbance spectrum of Figure
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Figure 5-42. FK, Example E-II

5-15 met the pointing requirement of Table 5-8, of which the transverse requirement of

0.05 prad was the stressing specification. Later they experimented with more modes in the

evaluation model than the design model and more sophisticated (and realistic)

compensators, such as those resulting from the LQG/LTR methodology, and considered a

host of other important concerns with control of flexible structures. We will use their LQ

regulator results as a point of departure for experimenting with different actuator

configurations, specifically the various relaxed solutions. We fix their LQ weights for a

class, and compare the closed-loop pointing performance, including control effort and the

overall LQ cost. Only the I11 controlled modes are included in the regulators. Several

reasons justify this. First, the purpose of the comparison is the relative performance of

different actuator configurations. Suppose we design the regulator with respect to the

controlled modes only, then evaluate it against some larger model. The unmodeled modes

cannot be destabilized, since they are not feedback in the idealization of the regulator. They

will respond to control signals (control spillover) and to the disturbance, and the latter

response is the same for any actuator configuration. Some checking reveals the dominant

term for these examples in the LQ cost (eqn. 5-37) is the control signal, and the value of the

cost varies only a few percent as more modes are introduced into the evaluation model in

the order of Table 5-10. More important, however, is the fact that the relative ordering
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between the different actuator configurations does not change by including more modes.

Second, we wish to conduct some Monte-Carlo experiments and some evaluations which

enumerate every failure mode, and are interested in computational economy. We are

assuming, in this case, that the mode selection done by the reference disturbance-to-LOS

signal path is an appropriate choice for regulator design, and in this case it appears to be so.

If not, it is certainly possible to revisit the mode selections, using the new actuator-to-LOS

signal path as well as the disturbance-to-LOS signal path for mode rankings. Finally,

while a more realistic evaluation might be feedback from the linear estimator and physical

signals rather than direct modal feedback, this would be a significantly longer sequence of

steps for which the LQ regulator represents an upper bound of performance.

Table 5-15 is a summary of LQ regulator closed-loop comparisons of the several

relaxed solutions of Tables 5-11, -12, and -13, and five comparable cases, 'A', 'B', 'C',

'E-5', and 'E- 11', from reference [66], plus a few other actuator selections we will discuss

momentarily. The first columns list the total and individual device power constraints,

which while strictly applicable to the relaxed solutions only, show that they match the total

authority of the examples of Hegg and Kissel. The third column shows how the solutions

differ, with continuous admissible power levels there are almost always more active devices

in the relaxed solutions than the minimum. The output weightings chosen by Hegg and

Kissel are listed, and their control weight, ru = 10-17, was fixed for all cases. Notice how,

in order to obtain roughly the specified pointing performance, the output weights are

reduced for the weaker actuator classes. The stochastic pointing performance and control

effort are listed in the central columns in physical units. The LQ cost, JLQ, is not

comparable across classes of devices because different weightings were used for each

class, so the relative cost with respect to the best solution among those listed within a class

is displayed. In the same manner, the relative reachable volume controllability norms are

listed in the right-hand columns with one last caveat, they are also scaled by the total

power, M, as well as with respect to the best (always the fully relaxed) solution in the

class. Dividing the norms by M allows comparison of configurations with differing total

power within a class. For a fixed distribution, the absolute size of the norms always

increases linearly with the total power. We list both the average energy related norm (J2)

and the total volume norm (J3) for the extensional cases, because one solution using the
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latter is included. For a total power constraint of M<10 and individual constraints of mi

1, the optimal distribution with respect to the total volume norm happenes to be in a
'corner', resulting in an all-integer solution with an empty active partition (Na = 0 and N.1

= 10) at convergence. This is a curiosity, but the reason the solution was included is that it

happens to be better, with respect to the LQ cost, than any of the other M = 10 class

configurations encountered, so it is of interest to inspect that controllability norm (J3) for

the other sets of 10 extensional actuators as well. The design and evaluation model for all

cases was the same 11 modes selected by the disturbance-to-LOS signal path ranking, and,

since the state weighting is defined in terms of physical outputs, the LQ results are

independent of the basis. A reader comparing Table 5-15 with the original results by Hegg

and Kissel (Table 6-1 in [66]) will note the LOS pointing reported by the latter is not

exactly the same. We suspect the discrepancy stems from the use of larger evaluation

models than 11 modes, but are not certain, and the differences are small. With this

somewhat lengthy list of details in mind we may now discuss some findings from these

comparisons.

One question worth posing from the results on Table 5-15 is whether or not the

additional computational cost of using the Gramians of dimension n2 instead of influence

vectors of dimension n is worthwhile in terms of producing superior solutions. The

answer, at least with respect to the particular LQ regulator used for the evaluation is
'sometimes, but not always'. The translational and rotational cases illustrate how actuator

distributions of Tables 5-12 and 5-13 allow better line-of-sight pointing with lower control

effort than the comparable selections of Hegg and Kissel. In the case of the translational

configurations of Table 5-12 (and Figure 5-30), an overall LQ cost reduction of a factor of

2.5 is obtained with respect to Example 'C'. This was the largest margin noted with

respect to any of the selections by Hegg and Kissel [66]. For the extensional actuator

class, however, distributions based on the average energy (J2) norm are not any better,

although the total volume (J3) optimal distribution is. There was no general superiority

observed for solutions using that norm for other actuator classes, however.

Under the 'Controllability Norm' columns of Table 5-15 we may see the relative

measures of the reachable volume within the three actuator classes. The 'fully-relaxed'

solutions are, of course, always the best within a class, and the comparisons are
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normalized to that solution. Note how, as the proportion of the total power allowed at an

individual site is lowered, i.e., as the ratio of m/M decreases, the optimal size of the norm

falls. The worst-case loss imposed by the individual constraints noted was 26% when any

extensional actuator was restricted to 1/14 of the total power, and the minimum impact was

for the translational class. While we knew the controllability norms could not increase as
the feasible region of actuator authority is constrained, the resulting regulator performance,

in all cases noted here, actually improved (JLQ reduced) as the individual site constraints

tighten. We may also see that all of the selections by Hegg and Kissel had controllability

norms from 22% to 52% that of the relaxed solutions, with one notable exception. The

five-rotational actuator selection 'E-5' had a controllability norm of less than 1% that of the

fully-relaxed solution. The resulting regulator performance was quite a bit closer, though

still inferior to the performance of the fully-relaxed distribution. Apparently the

controllability norms do not follow the LQ regulator performance particularly closely. In

an effort to see a bit more into just how the two parameters correlate we turn again to a

Monte-Carlo experiment.

In a manner similar to that used for evaluating the fault-tolerant actuator

distributions for the beam, we select three random sets of actuators. Each set has 100

unique configurations of actuators, and the number and class of actuators within a set are

comparable to examples 'A', 'C', and 'E-1 1' of Hegg and Kissel [66]; that is,

configurations are of 10 extensional, 12 translational and 11 rotational devices. The

probability of selecting any particular site for inclusion in any particular configuration was

uniform, although configurations with any duplicate sites were later eliminated, as would

have been any entirely identical configurations, had the latter occurred. Using the output

weights of Table 5-15, the closed-loop performance of the LQ regulator and the open-loop

controllability norms were computed for all 100 configurations within a set. Unlike the

earlier Monte-Carlo experiment, these do not include actuator failures. We plot the

controllability norm against the regulator cost in Figures 5-43, 5-44, and 5-45.

Specifically, the average energy norm (J2) in the 'throughput-scaled' basis is plotted,

which was the parameter used for most of the solutions presented. Normalization of both

axes is with respect to the best case encountered in the particular set, and the logl0 scale

was employed for the controllability norms of the translational and rotational sets for
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illustration only. Notice that while there is no clear functional relation between the LQ cost

and the controllability norms, nor had we a theoretical expectation of one, there does appear
to be a useful correlation. The relatively dense populations of instances in the lower left
comer of these plots indicate 'missed-opportunities', configurations which, while having a

low controllability norm, still allow a good regulator. The empty upper right corner is
more important, however, illustrating how a good controllability measure appears to insure

against a bad LQ regulator. The best configurations, with respect to the LQ cost, are

illustrated in Figures 5-46, 5-47, and 5-48, and a summary of these is also included on
Table 5-15. None of the randomly selected extensional or translational configurations
produced better regulators than either the fully-relaxed or constrained distributions;

however, for the rotational class, 3 of the 100 produced a lower LQ cost than the

corresponding best relaxed solution (with 1/11 individual constraints). On the other hand,
11 of the rotational actuator configurations resulted in lower LQ cost than example 'E- 11'

by Hegg and Kissel, and nearly all, 96 of the 100, translation configurations had lower

cost than example 'C. It seems if the LQ cost (for no failures) is truly the parameter to be
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Figure 5-48. Rotational Actuators, Monte-Carlo Best

optimized, a little random searching may turn up about as good or better a configuration for

this system as either the approach in this thesis or Fogel's algorithm [42] as implemented

by Hegg and Kissel [22,66], although the latter fared worse against the Monte-Carlo

experiment. Notice, also, that with respect to the controllability norms, the best of the

random samples ranged from about 40% to 50% of the theoretical best represented by the

individually-constrained solutions. Of coure, if the LQ cost is the parameter, then one

could construct an algorithm with it as noted in section 3.2.3.

It is relatively easy to change the basis of the controllability Gramian for any

particular actuator configuration and recompute the norms. Since the output-weighted LQ

regulator is independent of basis, this provides a means to examine the effect of the basis

scaling and the norm selected. This was in fact done, and a few cases are reviewed here.

While the correlation between LQ cost and the J2 controllability norm may appear coarse in

Figures 5-43 through 5-45, it is possible to make it much worse with an inappropriate basis

scaling. For example, in developing several candidate scalings in Chapter 3 we pointed out

the basis called 'output-normal' (with Wc=E2 and Wo=I) was quite inappropriate for

actuator optimization. Figure 5-49 is a plot similar to 5-45 except the controllability norm

has been computed in the 'output-normal' basis. Notice the loss of correlation and

presence of some 'upper right corner' instances of configurations with a large
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controllability norm but particularly poor regulator performance. The basis 'output scaled',

which selects the disturbance observability Gramian as the normalizing surface, results in a

plot, Figure 5-50, as well correlated as that of 'throughput-scaled'. Indeed, all of the basis

scalings of Table 3-1 suggested for actuator selections (input normal, throughput scaled

and output scaled) produced reasonably well correlated plots with the minimum eigenvalue

(J1) and average energy (J2) norms, the latter appearing slightly sharper. Several

inappropriate basis scalings were also examined, such as the unscaled modal variables, the

'balanced' basis, and 'output normal', and most of them produced poor to bad correlations.

One of the most nicely correlated plots was for the total volume (J3 ) norm and the

extensional actuators, as shown in Figure 5-51. As can be seen from Table 5-15, the

optimal distribution for this norm also produced the best regulator performance in its class,

and Figure 5-51 indicates that norm is a particularly sharp indicator for extensional

actuators. Recall, however, that the J3 norm is unaffected by basis scaling, and while

Figure 5-51 was actually computed in the 'throughput-scaled' basis, the plot looks the

same for any other basis scaling. For the class of rotational actuators, the J3 norm is not as

sharp as the J2 norm, as can be seen by comparing Figures 5-52 to 5-45, and no rescaling

can change it. Considering all of the combinations of scaling, controllability norms, and

actuator classes examined, no selection of norm and basis appeared consistently better than

the average energy norm (J2) and 'throughput scaling'. This result was also observed in

the beam examples.

We have spent some time examining the relaxed solutions because they are

relatively inexpensive to compute and allow the development of some confidence in their

relation to one form of closed-loop compensation. All of the configurations used for

comparison, either those of Hegg and Kissel or from the random selections, were 0-1

integer-constrained, so to make the comparisons entirely even it would have been

appropriate to search for the best 0-1 integer-constrained solutions from the relaxed

solutions. This is a relatively expensive step, however, and it is an attractive feature of the

overall approach of this thesis is that some useful insights can be obtained before initiating

a combinatorial algorithm.
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5.2.3 Fault Tolerant Solutions

We turn next to considering two examples of fault-tolerant and 0-1 integer-

constrained actuator selections: the 10-element extensional and 5-element rotational

classes. We will search for distributions that are best for the worst-case of up to two

failures. In the case of the five rotational actuators, the component reliability and

end-of-life (EOL) requirements could be similar to those detailed in Table 5-5. We have

not carefully addressed the question of determining just what the minimum number of

functional components need be at EOL, but assume it has been determined, perhaps with a

sequence of individual site constraints on the fully relaxed solution coupled with some

other evaluation such as was done with the LQ regulator for Table 5-15. For the

extensional case, requiring a minimum of eight out of 10 to be EOL functional could be the

result of a system reliability requirement of 0.95 with independent actuators of reliability

0.9113, which in turn is representative of components with a MTTF 11 times longer than

the mission duration. We elect to consider only the worst-case failure weighting here,

because these are expensive searches. Furthermore, with the expected-value weighting and

for failure levels a small fraction of the total, the optimal distribution tends to follow the no-

failures distribution closely. In the case of the five rotational actuators there are 10 failure

modes of two failures to be examined for each potential exchange, and 45 modes for the

extensional case.

Starting configurations are derived from the '1/5-constrained' relaxed solution of

Table 5-13 for the rotational class, and the '1/10-constrained' relaxed solution of Table

5-11 for the extensional class. The non-integer components of the active list are lumped

into candidate 0-1 distributions, and the Euclidean distance from the relaxed solution used

as a metric. Since the search algorithm is 'l-exchange', we also eliminate the starting

candidates that are 'l-exchange' apart; that is, we require at least two sites to be different

between all starting configurations. A limited search neighborhood is specified based upon

the size of the components of the projected gradient of the relaxed solution for the lower

inactive partition, t1, and the top several sites according to their individual ranking by the

controllability norm or maximum eigenvalue. The latter indicates the relative strength of a

site in its single strongest direction. These criteria are quite heuristic, but after identifying a

candidate optimum from the limited neighborhood search, the solution can be verified over
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a larger neighborhood. In no case was further improvement noted over the initial search.

We are interested in two distinct types of solutions, the first is the worst-case failure

weighted configuration, labeled 'F-Opt', and the second is the no-failure but 0-1 integer-

constrained solution for which we adopt the label 'I-Opt'. The 'F-Opt' solution is also 0-1

integer-constrained, of course. The 'I-Opt' configuration is a by-product of the algorithm

in the sense that the algorithm keeps track of the best no-failure configuration encountered,

but does not modify the search in any way -or it. We may, and did in fact, run the

algorithm with no failure modes to explicitly search for the 'I-Opt' configuration. Table 5-

16 summarizes some of the results of the combinatorial searches, including the VAX 8650

CPU time required with the non-compiled 'CTRL-C' instruction language coding. While

the total time expended could (and should) be significantly reduced with compiled code, the

relative time between the cases is interesting and the price paid for searching over failure

modes is apparent. Figures 5-53 and 5-54 illustrate these configurations, noting the

devices that appear uniquely in the 'F-Opt' or 'I-Opt' result.

Table 5-16. Combinatorial Solutions.

Class: 5 Rotational 1 Extensional

No. of Starting Configurations: 3 14 4

Initial:
Neighborhood Size 37 49 33
CPU time 21 min 16 min 150 min

Verification:
Neighborhood Size 149 149 79 137
CPU time 20 min 8 min 74 min 13 rin

Node/Direction Site Site Site Sie Nodes

57 X 361 3 2 3
30 Y 393 7 7 4 6
48 Y 410 410 23 6 13
57 Y 419 419 25 6 10

1001 Y 421 421 27 8 10
2830 Y 426 66 66 8 14

57 Z 477 68 68 10 16
70 70 9 15
73 12 18
75 75 13 19
78 78 14 28

82 15 26
86 86 19 30
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All four of the solutions shown were identified only '1-exchange' distant from one

of the initial starting configurations. The '1-exchange' neighborhood around each of them

revealed no further improvement. While this might have been expected for the no-failures

'I-Opt' solution, it was unexpected good fortune for the failure-weighted cases and

confirms the usefulness of the relaxed algorithm for limiting the search of the combinatorial

algorithm. For the rotational actuators the no-fail best that was noted during the initial

search for the T-Opt' solution was about 28% poorer in terms of the controllability norm

than the upper limit represented by the relaxed solution, so a separate search was conducted

explicitly for a no-failures 'I-Opt' solution. A better one turned up with about half that

degradation and is listed in Table 5-16. On the other hand, the best no-fail solution

encountered during the search of the extensional actuators was only 0.2% below the

theoretical limit, and was simply verified over a larger neighborhood.

For an evaluation of these solutions, we use again the LQ regulator as was done for
the several relaxed solutions. The weightings are fixed for each class of devices, and the

gains are recomputed for each failure mode as a simple reconfiguration scheme. We

compare examples 'A' and 'E-5' by Hegg and Kissel to the 'I-Opt' and 'F-Opt' solutions

for each class, and, since we have it, the best (with respect to LQ cost and no failures) from
the Monte-Carlo search with the extensional actuators. Table 5-17 summarizes the LQ cost

and average-energy controllability norm (J2) for these cases, noting the no-failure

performance and worst-case with respect to two failures. The LQ cost is listed with respect

to the no-failures best case considered here, but the controllability norm is listed with

respect to the upper limit represented by the appropriately constrained relaxed solution from

Table 5-15. That is, the theoretical upper limit for the configurations of five rotational

actuators is the '1/5-constrained' relaxed optimum and the corresponding limit for the

extensional actuators is the norm associated with the '1/10-constrained' solution.

For a better look at the effect of failures on the several configurations, we plot in

Figure 5-55 the controllability norm against the LQ cost for each failure mode, and in the

case of the rotational actuators include the five 1-failure modes as well. Figure 5-56 is the

corresponding plot for the extensional devices. Also included on each plot is the unfailed

mode, which may be identified by the point lying furthest toward the the top left for each
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configuration. A loglo scaling is necessary for the rotational actuators, and the strong

degradations indicate three point torque devices are too few to control the structure to the

specified levels, but that detail does not detract from the point of the example.

Table 5-17. Performance with Failures.

J LQ Controllability Norm
relative to no-failures best relative to upper limit

Solution No-Failures Worst-Case No-Failures W t-Cas

Hegg & Kissel-A 1 1.42 .646 .302
F-Opt 1.14 1.89 .988 .682
I-Opt 1.20 2.25 .998 .497
Monte Carlo (J2) best 1.49 4.72 .317 .147

Hegg & Kissel-E5 1.60 255 .00413 3.55xi0-8

F-Opt 16.7 38.4 .716 .00396
I-Opt 1 38.4 .863 .00264

Both the 'I-Opt' and 'E-5' configurations have a single particularly important

torquer, the loss of which causes a significant degradation in performance with respect to

either the J2 or JLQ measures. This may be seen in Figure 5-55 by the widely split groups

of points for these configurations. In the case of E-5', the strong site is at node 35 on the

upper support truss in the X direction, and for the 'I-Opt' configuration it is at node 57 on

the solar panel tip, also in the X direction. With a similar configuration, differing for only

two of the five devices, the 'F-Opt' set is able to improve the worst-case controllability

norm by about a factor of 1.5, but with a price of about a 17% degradation in the norm for

no failures. The coarse correlation between the controllability norm and LQ cost is

apparent in Figure 5-55. While only the single worst failure mode of the 'I-Opt' and 'F-

Opt' configurations degrades, with respect to J2 , to that of 'E-5' for no failures, if ordered

instead by LQ cost, the 'F-Opt' configuration for no failures is markedly poorer, by a

factor of 10, than either the 'I-Opt' or E-5 configurations.

With proportionally fewer failures, the extensional actuators exhibit far milder

degradations over failures, so a linear scale is used in Figure 5-56. Notice again how the

"F-Opt' solution has improved the worst-case performance of the 'I-Opt' configuration,

both with respect to J2 , which is a direct result of the search, and with respect to the LQ

cost indirectly. All of the 'F-Opt' failed configurations are stronger, with respect to J2 ,
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than configuration 'A' for no failures, however, the latter offers slightly lower LQ cost than

either the 'F-Opt' or 'I-Opt' configuration. This example is included in part to illustrate an

open issue in this research: the relationship between the open-loop controllability and

observability properties as an indicator of closed-loop performance. All three

configurations- 'A' by Hegg and Kissel, 'F-Opt', and 'I-Opt'- are superior to the best of

the small Monte-Carlo search, indicating they may well be close to the best possible for the

LQ regulator. Note that if we are interested in fault-tolerant performance, random

searching becomes quite unattractive, since each case must be evaluated over an exhaustive

enumeration of failure modes.

What has not been particularly obvious in examining the individual actuators in a

configuration is spotting a clear indication of why some were included and others

eliminated in the 'F-Opt' configurations. One consistent trend emerges if we compare the

rankings of the sites with respect to the J2 norm and with respect to the maximum

eigenvalue, both defined on the individual site Gramian Wi. The maximum eigenvalue is

an indication of the strength of an actuator in one particular direction regardless of any

poorly-controlled directions, while the J2 norm, with which we are now familiar, is only

large if all directions are well controlled. We list in Table 5-18 the sites in each

configuration and these rankings, putting the two differing sites at the top of the list.

Table 5-18. Comparison of 'I-Opt' and 'F-Opt' Configurations

Extensional Ranking Rotational Ranking
Actuator Nodes 12 2anax Actua Node/Direction 12 2nax

'I-Opt' only: 3 2 3 1 26 361 57 X 158 70
82 15 26 38 7 427 3233 Y 148 127

'F-Opt only: 23 6 13 18 49 393 30 Y 107 162
73 12 18 11 35 477 57 Z 10 4

Common: 7 4 6 10 2 410 48 Y 2 10
25 6 10 91 16 419 57 Y 1 9
66 8 14 60 34 421 1001 Y 116 166
68 10 16 88 29
70 9 15 5 5
75 13 19 71 39
78 14 28 64 10
86 19 30 50 9

159



Considering only the two differing sites, on the average the 'F-Opt' solution
includes sites with better J2 rankings than max rankings. For the extensional actuators the

'F-Opt' configuration uniquely includes two actuators with an average J2 rank of 14.4 and

average Xm rank of 42 while the 'I-Opt' configuration includes two sites with an average

J2 rank of 19.5 and average kmax rank of 16.5. The same change in ordering may be seen
for the rotational configurations. This is consistent with physical intuition. For a fault-

tolerant configuration, actuators that control well in all directions (lower J2 rank) should be
favored over actuators that are strong in single directions (lower Xmax rank) which in a

configuration with no failures ('I-Opt') can collectively generate more authority than a

collection of devices each required to have good individual authority in all directions. The
hazy view of these distinctions, as illustrated by the broad range of rankings shown in

Table 5-18, is even less distinct when inspecting modal influence coefficients, and

underscores the value of a systematic method such as developed in this thesis.

5.2.4 Sensor Placements

So far all of the examples have dealt strictly with actuator selections. In part this is
because the procedure is identical for sensors, and in part to avoid adding yet another major

variation to what is already a lengthy series of examples. For lightly damped structural
systems, it may highly desirable for compensator robustness that actuators have co-located

sensors [67], insuring a 'strictly positive real' forward path. Using Popov's concept of
'hyperstability', Stieber relaxed the requirement of co-location somewhat, and produced a

more general criteria for the relative location between actuators and sensors [68]. We will

stick here with co-location as representing a particular constraint on sensor locations after

actuator locations have been fixed. Under some conditions, the relaxed solution for

sensors will in fact be exactly the same distribution as for actuators. The conditions are that

the actuator and sensor be duals, that is b = cT, and the relative weightings, including any
with frequency dependencies, also be dual. This is not the case for the Draper Model 2

examples, since the input weighting filter, U(s) for the z(s)/w(s) signal path, does not have

an output dual. It is even further from the case if sensors measure directly linear
combinations of modal displacement, 1(t), and not rate, which would be the dual to force

type actuators. Also, there may be measurements available, such as the of the LOS itself,
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that cannot physically have an actuator dual. Suppose co-location is physically possible,

but displacement measurements are taken, not rate. It is interesting to consider what the

observability loss from enforced co-location of displacement sensors to optimal actuator

locations might be, so the relaxed solutions for extensional, translational and rotational

displacement sensors were computed and are listed in Table 5-19 along with illustrations of

their distributions in Figures 5-57, 5-58, and 5-59.
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Table 5-19. Displacement Sensor Optimal Distributions.

Extensional, Fig. 5-57 Translational, Fig. 5-58 Rotational, Fig. 5-59
Sit Nodes YA Sit Notde/Dirction Y& Site Node/Direction /

9 5 6 32.2 236 48 Y 35.1 477 57 Z 32.6
3 2 3 30.0 196 1 Y 25.5 468 48 Z 30.3

71 11 17 20.1 147 10 X 13.0 410 48 Y 17.8
70 9 15 14.6 294 48 Z 11.2 419 57 Y 10.3
73 12 18 2.6 303 57 Z 7.8 431 4 Z 4.9
68 10 16 0.5 245 57 Y 3.4 395 32 Y 1.3

281 34 Z 2.8 396 33 Y 1.3
288 42 Z 1.2 427 3233 Y 1.3

361 57 X 0.2

Relative J2 : 5.54x10-9  I 6.030x10-3

Notice again the translational class is the strongest (most sensitive), followed by the

rotational and extensional classes. We have not modified the relative scaling of the physical

units here, which are extension across a beam in meters, nodal displacement with respect to

inertial space in meters, and nodal rotation with respect to inertial space in rad/sec.

Compared to the relative sizes of the fully relaxed norms for actuators, extensional sensors

are poorer than extensional actuators, but physically the extensional class may not have the

same attraction for sensors as it does for actuators. While many of the same sites show up

in Table 5-19 as in the relaxed solutions for the actuators, the distributions are clearly

different. We then compute the J2 observability norm for sensor configurations with

authority distributed identically to that of the relaxed actuator configurations of Figures

5-18, 5-21 and 5-24. A summary of the degradations is listed in Table 5-20.

Table 5-20. Observability Degradation from Co-locations

Relaxed Degradation if Co-located Relaxed
ea D (relative to fully relaxed) Actuator Dis

Extensional Fig 5-57 0.2019 Fig 5$-25
Translational Fig 5-58 0.0215 Fig 5-28
Rotational Fig 5-59 0.0687 Fig 5-31

If we must have co-located (displacement) sensors and actuators, we may face a

significant loss of observability. The implication of this in a feedback loop has not been

explored, but there are some other facets of the overall problem that affect sensor
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placement. Assuming an actuator selection has been made, we now have an additional

input path through the actuators that we may care to reflect in the basis scaling, so we may

wish to revise the basis scaling for sensor selection. Sensors suitable for instrumenting

structural dynamics are physically smaller and lighter than functionally dual actuators, so it

is likely to be the case that there may be more of them than actuators. If so, we may

constrain some to be co-located with the actuators, then optimize the distribution of the

remainder. The only change required in the algorithm is to add a fixed bias observability

Gramian representing the co-located constrained sensors. Examining issues such as these

should provide fruitful avenues of research.

5.3 Summary

This chapter has exercised the overall sensor and actuator selection algorithms

developed in Chapters 3 and 4 on two types of structural models. The first, the simply-

supported beam, has obvious mode shapes and allowed a clear view into the effect of

varying the particular optimization problem being solved. The second illustrated the utility

of the approach on a large-scale system. In both cases an evaluation of the distributions of

actuator authority revealed a coarse, but useful, correlation with the stochastic LQ regulator

cost. Also, in both cases, the failure-weighted combinatorial search terminated near the

relaxed solution, illustrating the value of the latter to reduce the cost of the former.
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Chapter 6. Conclusions

6.1 Thesis Summary

This thesis reports applied research toward the general problem of reliable active

control of space structures over missions of long duration. We reviewed, in Chapter 1,

current approaches to FDI and reconfiguration as might be applicable to a structural control

system and identified the underlying problem of sensor and actuator selection as a critical

design step. While FDI asks what has failed, and a reconfiguration strategy asks how best

to employ hardware after failures, sensors and actuators must be positioned on the structure

such that, for some specified level of failures, sufficient controllability and observability

remains to allow sLccessful reconfiguration. Chapter 2 reviewed some results in sensor

and actuator placement for control of distributed parameter systems, noting that algorithms

for the special case of large-scale structural dynamic systems were few. Considering the

possibility of failures added the need to evaluate a placement criterion over an enumeration

of the possible failure modes. While no examples of large-scale algorithms that do account

for failures were previously known to the author, two examples were reviewed of

suggested criteria with results showing the possibility of failures does alter the best

locations.

In Chapter 3, we examine several possible performance criteria for sensor and

actuator locations. Norms on the controllability and observability Gramians were selected

because they strike a balance between capturing essential features of functional linear

dependence of the dynamics and computational economy. Since controllability and

observability is characterized by the Gramians with respect to a particular state basis, the

basis must be properly scaled. A novel approach to scaling using a reference signal path,

such as from the disturbances to regulated variables, was proposed, along with frequency

dependent (dynamic) input and output weightings. The potential sensor and actuator

locations were restricted to a finite number of discrete sites, in keeping with the use of

finite-element methods for practical analysis of structural dynamics. However, the

resulting integer programming problem is still difficult, and an exact solution is not known

to the author. Relaxing the constraint that a sensor or actuator must be considered in

integer quantities (typically 0 or 1) to considering a non-negative, continuous quantity of

authority or sensitivity resulted in an attractive convex programming problem. Chapter 4

165



developed an algorithm for this 'relaxed' problem, the solution of which was a starting

point and upper bound for a combinatorial search for the failure-weighted, 0-1 integer-

constrained solution we desired. A simple 'l-exchange' search algorithm for the latter

problem was also described in Chapter 4.

Two different structural models were taken for example results in Chapter 5: a

simple system in the form of a pinned-pinned beam, and a large scale structure- the Draper

Model No. 2 from DARPA's ACOSS program. With the beam model, we were able to

experiment with a wide range of the free parameters in the problem, such as the particular

basis scaling or the form of the optimization parameter. The solutions were easily

interpreted in terms of the mode shapes, and illustrated how changes in the posing of the

problem shift the optimal distribution. The large-scale example, on the other hand

illustrated the practicality of the overall approach, considering sensor/actuator

configurations on the order of 10 devices from up to 485 potential sites. Comparisons with

actuator selections by another method generally showed the approach developed here was

superior when evaluated by the cost of a stochastic regulator, though not in every case.

While the correlation between the controllability and observability measures of optimality

and the LQ stochastic cost was somewhat coarse, optimal configurations with respect to the

former were always among the best with respect to the latter. Finally, the ability to

improve the performance of a configuration of devices against the possibility of failures

was demonstrated. The solution of the relaxed problem tended to include sites that

provided good authority to all modes, so the changes made when explicitly searching with

respect to failure-weighted performance tended to be minor. Changes made for fault-

tolerant performance tended to exchange out devices contributing strongly to only a few

modes and replace them with devices that were more evenly distributed in authority.

6.2 Conclusions and Contribution

The main contribution of this thesis is a practical, sequential approach to a difficult

combinatorial problem that must be addressed for reliable, long-duration missions of

actively controlled structures. The most important step in the overall approach is posing a
'relaxed' problem which is easy to solve and provides guidance, in terms of an upper limit

and a domain for search, to a more expensive combinatorial optimization algorithm. By

expressing actuator authority or sensor sensitivity in terms of controllability or
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observability Gramians, we obtain a strong system interpretation of the optimization

objective, which is closely related to techniques of model reduction. A minor contribution

is the development an expedient approach to reflecting overall control objectives into the

open-loop measures of controllability and observability, in part by appropriate scaling of

the state basis with respect to a reference signal path. The ability to count on general

sparing of sensors and actuators, as opposed to simple redundancy, while not guaranteed

by any results of this thesis, appears reasonable.

6.3 Suggestions for Further Research

This thesis opened more issues than it settled. Suggestions for future work can be

grouped into two broad themes. The first is given that combinatorial programming based

on norms of Gramians is a reasonable approach for sensor and actuator selections, how

might algorithms be improved in terms of speed and efficiency; while the second is more

system-theoretic in nature, questioning how to better reflect the design issues and, in

particular, modelling uncertainty.

6.3.1 Incorporation of Modeling Uncertainty

Given parameter variations in mass, M, and stiffness, K, references [69,70]

develop estimates for the second moments of the eigenvalues and mode shapes from the

eigenvalue problem,

2
0OiMti = Kti 6-1

and the second-moments of interest are

E [WTW.]= A O  6-2

E1 i j = Ai i=l,n; j=l,n . 6-3

Assume there are v structural nodes represented in equation 6-1, each with six degrees of

freedom; then the second moment for each pair of mode shapes is a 6vx6v matrix, while

for the frequencies, it is an n x n matrix where n is the number of modes in the model, and

n << v, typically. Expressions 6-2 and 6-3 are by no means trivial to obtain, but they are

only intermediate results if we are interested in the statistics of the Gramians. Mehta [71]
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has studied the distribution of the eigenvalues of Hermitian matrices with random elements,

and developed expressions for the joint density of the eigenvalues with considerably fewer

degrees of freedom than the numbers of elements in the matrix. However, even if we

settled on approximating a random perturbation to the nominal Gramian as a matrix of

random elements, the issue of the distribution of the eigenvectors still remains. The latter

are particularly important in this problem because the condition number of the Gramians at

an individual site tend to be large, 105 to 108 in the ACOSS problem, so minor changes in

their directions make a significant difference in how any one contributes to a configuration

of sensors or actuators. The important idea is seeking to differentiate between

configurations of sensors or actuators. If we weight them in some manner related to

relative uncertainty, then we may be able to obtain useful results without dramatically

increasing the complexity of the problem.

One idea is to form a pair of simple (diagonal) scaling transforms for the structural

dynamics in modal form, such as equation 3-62. In the first scaling, we weight the

directions in modal space inversely with uncertainty in frequency. Referring to the 'direct-

scaling' discussion in section 3.3.1, if for controllability we take as a required reachable

state excursion of mode i

1
riircq -)ii 6-4

where &o2 is the variance of modal frequency co about its mean,

&0H = E coi - E(coi)) 6-5

or, for observation if we take as a maximum tolerable error of that mode for unit norm

output,

1 limax 2 &tii 6-6

then for both cases we may scale the modal coordinates, n -+ Twfl, with

TO) = diag ( &0ii} . 6-7
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The effect of scaling 6-7 is to seek more control authority or measurement

sensitivity in the directions which have lower uncertainty in frequency. Since this is a

'direct scaling', based on physical insights in a particular basis (modal coordinates), it must

be implemented before any other scaling, such as one based on a reference signal path, is

applied. Uncertainty in the mode shapes is probably more important for sensor and

actuator effectiveness than uncertainties in the frequencies, and it is not generally

reasonable to assume uncertainty in frequency is well correlated with uncertainty in mode

shape. A second transform, unique to each device site, is suggested to reflect mode shape

uncertainty.

The mode shape, !M-, for the discrete eigenvalue problem of equation 6-1, has

dimension 6v, and each element represents a displacement or rotation of a node for that

particular mode. For each point type actuator, such as translation force or rotational torque,

we can associate a particular element in !0i, say !41(k), and the corresponding diagonal

element from Atli, equation 6-3. Defining 2Ski(k) as the variance about the mean, as in

equatio, 6-5 for frequency, we may define an effective transform,

Tk = diag{8tii(k)} i=l,n 6-8

which i- generally unique for each site, k. Some device types, such as the extension force

class of actuators, would actually involve more than one entry from t and A!Oii, but in

principle several entries could be combined for an uncertainty weight for each particular

device. Equation 6-8 is the simplest case; we actually need a Tk for each device. This

transform is not properly a state transform, but a relative weighting for each site which is

applied is if it were a site-specific state transform, which again has the effect of attenuating

the auti. rity of sites if they have high uncertainty is some mode shapes. With transform

6-7 and relative weightings 6-8, we may seek optimal distributions which should be

desensitized to the modes and sites with high uncertainty, in proportion to the uncertainty.

An attractive feature of this idea is that once all the weightings are determined and applied,

the problem is not any more complicated, and the algorithms of Chapter 4 may be applied

without modification. We may not even have, however, estimates of the modal

uncertainties in as much detail as represented by the second moments, equations 6-2 and
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6-3, but may be able to specify some extreme limits for a few important parameters in the

model.

Suppose as a result of structural analysis we have a small collection of extreme-case

parameters, such as the upper and lower limits of stiffness, Kmax and Kmin, or the heaviest

and lightest mass matrices, Mmax and Mmin, or some similar extremes of damping.

Indeed, estimates of 'worst case' extremes such as these are often all the information

available to structural dynamicists early in the development of a flight program, which is

the stage sensor and actuator placement is likely determined. One possible method of

exploiting such information is to determine several distinct models, each one representing a

particular combination of the extreme cases. The performance index for a particular

distribution, , can be determined for each particular model, j,

N

J(',j) = J IW 6-9

This could be implemented by computing and storing the individual site Gramians, WiJ, for

each site i and for each particular model j. We could then seek distributions to maximize J,

as usual, but for the worst-case j,

ar a min ii j 6-10

In the relaxed algorithm, for instance, J could be computed for each model, j, but

the gradient computed and step taken based upon the worst one. In the combinatorial

algorithm, the search would examine the effect of an exchange over not just failures, but

over different models. Any investigator who wishes to experiment with this idea, should

note the suggestion to compute the relaxed solution for each model alone, then apply a

relative weighting scalar to all the site Gramians from each particular model such that the

optimal J has the same value for all models. If this is not done, then simply because the

reachable and detectable volumes are smaller for stiffer, heavier, or more damped models,

the solution will likely depend entirely upon that particular combination alone.

If there are very many model combinations to examine, the computational effort and

expense grows rapidly, and we have already noticed in the examples of Chapter 5 how the

combinatorial algorithm is computationally more burdensome than the continuous relaxed

170



algorithm, so another area of useful research would be directed toward more efficient

algorithms, particularly the combinatorial algorithm.

6.3.2 Algorithms

If we accept the idea that the combinatorial optimization problem of equation 3-146

or 6-10 is a valid representation for sensor and actuator placement, then it seems that

somewhat more efficient algorithms should be possible than the simple '1-exchange'

approach employed in this thesis. It was a disappointment that no more headway was

made in this area than it was. Much of the literature of combinatorial optimization appears

centered on certain standard problems, and many of them are linear forms[58]. While we

exploited the linearity of the Gramian to avoid having to recompute it at every step, the

norms used as an optimization index are not linear, so heuristics developed on other

problems, such as for integer linear programming, did not seem much help. The problem

looks like it might work well with the 'simulated-annealing' idea of taking occasional non-

improving steps. An important first step in further work on algorithms is coding in an

efficient language. Computing a large number of matrix quadratic forms is required for

exchanges, and at least once a step, solving a symmetric eigenvalue/eigenvector problem.

Having an estimate of the eigenvalues of the Gramian of a new configuration as a

perturbation of the previous step ought to allow a faster converging eigenvalue routine than

starting with no knowledge of the eigenvalues.

6.3.3 Theoretic Insights

This suggestion for further research is the compliment of the previous one; that is,

given it is relatively easy to optimize the locations of sensors and actuators with norms on

Gramians, what are system-theoretic interpretations, if any, beyond those of energy-

optimal open-loop control or no-disturbance state estimation discussed in section 3.2. 1?

Bucy and Joseph's [45] bounding of the Riccati equation solution, equation 3-90, is an

example, but there ought to be others outside of the context of LQG theory. Good control

and measurements of important modes ought to make the forward-loop signal path

proportionally stronger, and hence compensation less sensitive to modeling errors and

unmodeled modes in particular. In section 3.2.1 we gave an illustration of why truncation

of the integration interval of the Gramian is important to capture relative linear dependencies

between closely-spaced modes. Truncation of time or frequency intervals has a broader
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context, and reference [61] examines this for model reduction tools, which should also

offer some background for deeper insights into our problem.
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Appendix A

Derivation of Gradients

Each of the scalar controllability or observability metrics exploited as an

optimization parameter are functions of the eigenvalues (k) of the appropriate Gramian.

n I

J IXmin(W) J2 n n J3- /w' = IIxk n

tr(WV-1)  nI

i=1 X

where Gramian W is a linear combination of components

N

w 4i= wi

The main mathematical tool required is eigenvalue perturbations for self-adjoint

systems, and a reference is by Courant and Hilbert, [34]. Gramians are real symmetric

non-negative definite matrices, so they have real non-negative eigenvalues and a full

complement of (n) orthogonal eigenvectors which may be normalized to unit length.

Wv i =Xivi i=l,n vivj= (0

We perturb W by 8W, and are interested in the resulting perturbations to X and v.

Writing the eigenvalue problem for the perturbed matrix,

W j = V
(W + 8W)(v i+ 8vi) = (;Li + Bi)(vi + vi)

Retaining terms to first order in the perturbations and removing the original

eigenvalue problem,

W SV i + S + Si vi " A-I

For the eigenvalue perturbation, we take the inner product of each side of equation

A-1 with vi and obtain the needed result:

173



i ~ +vT 8 i XVT sv xvT

vI T SW Vi1

i = i A-2

For distinct eigenvalues, a similar result may be obtained for the eigenvector

perturbations. Since the eigenvectors span n-space, we may express the perturbation of

any eigenvector as a linear combination with coefficients a of the other eigenvectors.

Excluding a perturbation in the same direction as the eigenvector simply reflects the fact that

length may be indeterminate for an eigenvector

n
svi = X'a(j) vj. A-3

j=1
j*i

Substituting equation A-3 into A-i and taking the inner product with all other

eigenvectors allows for solution for the coefficients. Substituting those back into A-3

results in
n T

5= vj Wv i .
3Vi 1vj i A-4

j*i

For non-distinct eigenvalues see references [34] and [72]. Computationally, the

eigenvector perturbations are at least n- 1 times more expensive to obtain than the eigenvalue

perturbations. We do not need them for the gradient computations, but would if we wanted

the Hessian, thus the motivation for a gradient-only algorithm.

Since the J1 norm is the minimum eigenvalue, its gradient is particularly simple.
For component i of 1, the perturbation to the nominal Gramian W from differential di is

Widi, since the nominal is a linear combination of the N contributions. The ith component

of the gradient is then:

=Jl vTWivl A-5

where vj is the eigenvector associated with Xmin. The other norms are functions of all the

eigenvalues, and an application of the chain rule results in
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V tJ2 = (vt2T)(V,J 2) and V443 = (V 42'T(V14)

For the average energy-based metric (J2) a component of the gradient with respect

to the eigenvalues is

2
_J2 n J2

axi 2 1 2 nX2 A-6

and a component for the same gradient of the total-volume metric, J3, is:

n 1

1/n -I n I
aJ 3  n Xj -( J3 A-7

a n i. lej I n ,j n j

The gradient of 2T with respect to the independent variables, t, is an N x n matrix

with elements

a. T[ vJ A-8

For our applications, the active partition of is not independent, but must satisfy

the total power constraint:
N

i=1

We may select one component, 4d, as dependent and solve for it in terms of the

others:
N

i=1, i*d

The nominal Gramian, expressed in terms of the remaining independent

components, is

175



N N
W() = dWd + I 4iwi -I EXiWi-Wd) + MWd A-9

i=1, i~d i=1

With respect to an independent perturbation, d~i, the perturbation to the nominal

Gramian is now (Wi - Wd)d~i. The gradient in the constraint plane and as employed by the

algorithm may be obtained from the previous results by substituting (Wi - Wd) for Wi in

equation A-8. For J2 and J3 they are:

-2
T 1

2 v(W - Wd)v1 ... vn(W - Wd)vn
V tJ2 = J2": A-10

WT -2

V1(WN- Wd)V1  ... Vn(W N - Wd)Vn

-1

T T 1 "X1v1(W- Wd)Vl ... Vn(Wl -Wd)vf
J3

V J3 = n I I : A-11
TT ] 1

VI, - TdV ... V TN(' - Wd)V n  1l(WN- Wd)V I (WN IXn I

The simple manner in which this constraint is incorporated into the gradient

computation is a direct consequence of the fact the constraint is linear in the independent

variables. If we had chosen the linear gain of the devices rather that the power (linear gain

squared) the constraint equation would have been a quadratic form. This further motivates

the selecting the 'power gains' as independent parameters for the relaxed algorithm.
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Appendix B

This section lists the essential numerical data which comprises the ACOSS 'Draper No. 2'

structural model used in Chapter 5. For the NASTRAN run deck, and details on the

construction of this model, consult references [62] and [63]. The purpose of the listings

here is to allow another investigator to roughly verify his own version of this model.

We assume the structural dynamics are in modal form,

2 [T]'
L+ Q 1= 1B u

z = [CzD] n

where input u is in units of Newtons for forces and Newton-meters for torques, and

displacement outputs are in units of meters for translation and radians for rotation. The

mode shapes, t, are normalized with respect to the mass and stiffness matrices as usual,
(DTM(D = I and (DTKD = Q2 . The optical line-of-sight is taken as the regulated variables,

z, and has three elements,

LOS - X,rad
z = [LOS - Y, rad

LDefocus, Z, meters

Its output coefficient matrix, [Cz(DI) is listed later and reference [63] contains details on

developing those coefficients. For brevity here, we restrict the number of modes to the

first 18 flexible modes, which are listed in Table B-1 in slight variation of the order

presented in Table 5-10.

Table B- I

Flex Freq Rank in Disturbance to LOS Flex Freq
Mode (Hz) Signal Path. out of 50 Mode (Hz) Rak

1 0.1480 1 10 1.0922 7
2 0.2824 2 11 1.8387 35
3 0.3187 11 12 1.8435 38
4 0.3352 9 13 1.8892 48
5 0.4678 12 14 1.9904 29
6 0.5835 4 15 2.0601 21
7 0.6006 3 16 2.4516 6
8 0.6734 10 17 2.4718 5
9 0.9601 13 18 3.2421 2
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Figures B-i through B-11 plot the corresponding mode shapes of the 11 modes

incorporated into the dynamic model. Most of the interleaving deleted modes were solar

panel modes, although one was the X-rotation of the equipment bay.

A total of 485 sensors or actuators were considered, 137 axial extension devices

and 174 each of point-translational and point-rotational devices. We list next the

enumeration of these devices; that is the nodes the axial members connect and the nodes

and directions of action for the point devices.

Figure B-1. Mode 1, 0.148 Hz, Equip. bay Y-rotation.
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Figure B-2. Mode 2, 0.282 Hz, Equip. bay Z-rotation.

Figure B-3. Mode 3, 0.319 Hz, I1st Solar Panel in X-Z plane.
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Figure B-4. Mode 4,0.335 Hz, 1st Solar Panel in X-Y plane.

Figurc' R-5. Mode 6,0.583 Hz, EquAp. bay Y-translation.
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Figure B-6. Mode 7, 0.601 Hz, Equip. bay X-translation.

Figure B-7. Mode 8, 0.673 Hz, 2nd Solar Panel in X-Z plane.
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Figure B-8. Mode lot 1.092 Hz, 2nd Equip. bay Y-Rotation.

Figure B-9. Mode 16, 2.452 Hz, Torsion.
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Figure B-10. Mode 17, 2.472 Hz, 1st Bending

Figure B- 11. Mode 18, 3.242 Hz, Upper Truss rotation.
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Table B-2 Extensional Devices

Deie Nodes Deie Nodes Deie Nodes

1 1 2 47 29 30 93 26 32
2 1 3 48 29 31 94 27 32
3 2 3 49 30 31 95 27 33
4 2 4 50 27 29 96 29 33
5 3 4 51 27 30 97 31 33
6 4 5 52 282830 98 323233
7 4 6 53 27 36 99 26 34
8 3 6 54 28 37 100 28 34
9 5 6 55 30 39 101 30 34

10 5 7 56 29 38 102 30 35
11 6 7 57 29 36 103 31 35
12 1 8 58 27 37 104 34 35
13 2 9 59 28 39 105 32 36
14 3 10 60 30 38 106 33 38
15 5 11 61 36 37 107 34 37
16 5 11 62 37 39 108 35 39
17 7 13 63 39 38 109 26 37
18 3 8 64 36 38 110 26 36
19 2 8 65 37 38 111 31 39
20 4 9 66 4 14 112 31 38
21 4 11 67 10 14 113 48 49
22 5 13 68 10 16 114 49 50
23 6 13 69 16 9 115 50 51
24 1112 3 70 9 15 116 51 52
25 6 10 71 11 17 117 52 43
26 8 9 72 11 18 118 45 53
27 8 10 73 12 18 119 53 54
28 9 910 74 12 19 120 54 55
29 9 40 75 13 19 121 55 56
30 910 40 76 13 17 122 56 57
31 11 40 77 14 26 123 8 157
32 1112 40 78 14 28 124 6 40
33 9 11 79 16 28 125 2 40
34 10 12 80 16 27 126 2830 30
35 11 1112 81 15 27 127 3233 33
36 11 13 82 15 26 128 3 40
37 12 13 83 17 29 129 5 40
38 14 15 84 18 29 130 9101112
39 14 16 85 18 30 131 2 910
40 16 15 86 19 30 132 3 910
41 17 18 87 19 31 133 51112
42 17 19 88 17 31 134 61112
43 18 19 89 15 32 135 12 910
44 26 27 90 16 34 136 910 10
45 26 28 91 17 33 137 1112 12
46 27 28 92 18 35

184



Table B-3. Translational Devices

Device # for Direction: Device # for Direction:
SX X Z Node X I z

1 138 196 254 36 167 225 283
2 139 197 255 37 168 226 284
3 140 198 256 38 169 227 285
4 141 199 257 39 170 228 286
5 142 200 258 40 171 229 287
6 143 201 259 42 172 230 288
7 144 202 260 43 173 231 289
8 145 203 261 44 174 232 290
9 146 204 262 45 175 233 291
10 147 205 263 46 176 234 292
11 148 206 264 47 177 235 293
12 149 207 265 48 178 236 294
13 150 208 266 49 179 237 295
14 151 209 267 50 180 238 296
15 152 210 268 51 181 239 297
16 153 211 269 52 182 240 298
17 154 212 270 53 183 241 299
18 155 213 271 54 184 242 300
19 156 214 272 55 185 243 301
26 157 215 273 56 186 244 302
27 158 216 274 57 187 245 303
28 159 217 275 910 188 246 304
29 160 218 276 1001 189 247 305
30 161 219 277 1002 190 248 306
31 162 220 278 1003 191 249 307
32 163 221 279 1004 192 250 308
33 164 222 280 1112 193 251 309
34 165 223 281 2830 194 252 310
35 166 224 282 3233 195 253 311
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Table B-4. Rotational Devices

Device # for Direction: Device # for Direction:
Node X Y Z Node X -Y z
1 312 370 428 36 341 399 457
2 313 371 429 37 342 400 458
3 314 372 430 38 343 401 459
4 315 373 431 39 344 402 460
5 316 374 432 40 345 403 461
6 317 375 433 42 346 404 462
7 318 376 434 43 347 405 463
8 319 377 435 44 348 406 464
9 320 378 436 45 349 407 465
10 321 379 437 46 350 408 466
11 322 380 438 47 351 409 467
12 323 381 439 48 352 410 468
13 324 382 440 49 353 411 469
14 325 383 441 50 354 412 470
15 326 384 442 51 355 413 471
16 327 385 443 52 356 414 472
17 328 386 444 53 357 415 473
18 329 387 445 54 358 416 474
19 330 388 446 55 359 417 475
26 331 389 447 56 360 418 476
27 332 390 448 57 361 419 477
28 333 391 449 910 362 420 478
29 334 392 450 1001 363 421 479
30 335 393 451 1002 364 422 480
31 336 394 452 1003 365 423 481
32 337 395 453 1004 366 424 482
33 338 396 455 1112 367 425 483
34 339 397 456 2830 368 426 484
35 340 398 456 3233 369 427 485

For each of the devices listed in Tables B-2, B-3 and BA, corresponds a column of

modal influence coefficients in the matrix [OTBa], which is too lengthy to be listed here.

Finally, we list the output coefficients for the optical line-of-sight, [Cz(D], and the

modal influence coefficients of the disturbance, [4TBd]. As developed in reference [42],

the disturbance acts on node 37 on the upper support truss, and on node 46 on the

equipment bay, and at each node are taken to act in the X, Y, and Z directions

simultaneously. The influence coefficients at node 37, then, is the sum of the influence

coefficients of actuators 168, 226, and 284, while at node 46 the disturbance is equivalent

to devices 176, 234, and 292.
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Table B-5. Line-of-Sight and Disturbance Infuence Coefficients

[CczID [4DBdj

Flex Line-of-sight Component Structural Node
Mode X Y Defocus 37 46

1 2.9443D-08 -3.8978D-04 4.9407D-07 8.8943D-03 -1.0599D-02
2 1.0187D-06 1.6846D-04 2.9026D-07 -8.6572D-05 -1.7154D-03
3 -2.9944D-05 -2.6540D-07 3.5972D-06 -4.7018D-03 -9.4432D-04
4 -2.3175D-04 6.6579D-10 -1.9974D-06 1.0715D-03 -1.3330D-03
5 -3.5017D-06 -7.8167D-07 1.1903D-05 -9.2474D-03 1.4010D-02
6 8.3206D-04 6.7386D-07 2.1978D-05 -6.1456D-03 -2.7354D-04
7 2.6354D-06 -7.2596D-04 4.2508D-06 6.5602D-03 6.7649D-03
8 -4.5593D-05 8.5189D-07 -9.3845D-06 -1.6338D-03 3.0606D-02
9 3.2269D-06 1.1370D-04 1.8749D-06 6.5796D-04 -1.8033D-03

10 -6.2449D-07 2.1420D-04 7.3255D-07 -2.2441D-04 -2.7890D-02
11 -1.2146D-05 -1. 1460D-07 -2.5343D-06 4. 1176D-05 3.1676D-03
12 1.3614D-06 -2.2848D-07 2.4190D-06 -8.4283D-05 1.6087D-03
13 1.1808D-14 5.6450D-16 3.9406D-18 8.8476D-14 3.5105D-13
14 -1.2235D-05 -5.3384D-07 2.0708D-06 7.9942D-05 -9.5648D-03
15 5.7025D-06 3.2102D-04 3.5795D-06 2.7832D-04 -1.0963D-03
16 -3.8700D-05 -2.2725D-03 -2.5783D-05 -1.4606D-03 -2.2776D-02
17 3.8312D-05 3.0975D-03 3.1076D-05 4.2141D-04 -2.3335D-02
18 3.4799D-06 -1.9824D-02 -1.4602D-04 2.5158D-02 -1.3257D-03
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