
____ USAISEC &
SUS Army Information Systems Engineering Command

PFort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

j COMMUNICATIONS, AND COMPUTER SCIENCES
(AIRMICS)

00
00
00

TECHNOLOGY ASSESSMENT
OF

N DISTRIBUTED SYSTEMS

O (ASQBG-C-89-015)

February, 1989

DTIC
EL.CTE

c ,,
AIRMICS
115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

",,' f__,PA& 90 01 17 018



This research was performed as an in-house project at the Army Institute for Research in
Management Information, Communications, and Computer Sciences (AIRMICS), the
RDTE organization of the U.S. Army Information Systems Engineering Command
(USAISEC). This effort was performed under the AIRMICS Technology Insertion
Program to support the U.S. Army Information Systems Command (USAISC) in the
development of a report entitled "Long Range Planning Guidance - Objective
Configuration." An initial meeting was held in early December in Atlanta to coordinate
the task. Twenty-six topics were selected for consideration, with AIRMICS agreeing to
conduct technology assessments on fifteen of the topics. Planning Research Corporation
(PRC) was assigned responsibility for conducting the remaining assessments and
consolidating all the assessments for use in the planning document. In a two-week period,
AIRMICS completed the assessments and provided the results to ISC-DCSPLANS and
ISEC-SID. This research report is not to be construed as an official Army position, unless
so designated by other authorized documents. Material included herein is approved for
public release, distribution unlimited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

~4 For
s/_" s/ W X7]

John W. Gowens John R. Mitchell 0
Division Chief Director itio _

SCNSD AIRMICS

Availability Codes

t vail apndo/o r
Dit Special



Distributed Systems

I. Historical Review

A computer network is not a distributed system. In a simple (nondistributed)

network, a user has the capability of logging into any of the computers in the network and

using the resources which reside there. However, a given resource is tied to a physical

location; for example, a data file in the directory 'data', is physically stored on a particu-

lar hard disk, and every other file in the directory 'data' will be stored on the same hard

disk. Thus it is possible to fill the hard disk associated with the 'data' directory while

another hard disk that is tied to a different directory remains well below capacity. Thus,

the logical structure of the network -- the user directories -- is directly mapped onto the

physical structure of the network. The idea behind a distributed system is to completely

separate the logical system topology from the physical. Continuing the previous example,

in a distributed system the user would enter the 'data' directory for his files, however, the

data files could be stored on any of the hard disks in the network.

>. There are multiple advantages to configuring the available resources as a distrib-

uted system as opposed to a simple network. Performance is improved with a distributed

system since the storage space, processors, and communications devices are equally

loaded. By taking advantage of all of the resources available, it is possible to significantly

increase system response times and the availability of resources. In addition, the system

is more flexible. For example, if each node in a distributed system contains a single

modem, it is possible to assign high priority data to one of the modems. This is not

possible in a simple network because the node that has the priority modem will not be

able to send out nonpriority traffic. Reliability is also improved. If a resource is not

available due to failure or maintenance, an equivalent resource will be used to service a

user's request without requiring the user to have any knowledge of the failure. Finally,

- I -



the distributed system is easily expandable. The addition of a resource at any node will

* improve the functionality of the entire system.

The success of a distributed system, also known as a loosely coupled system, is

tied to the following technology areas: computer networking, the Distributed Operating

System (DOS), programming languages which will take advantage of the distributed envi-

ronment, design tools to aid in the building of distributed systems and the software for

those systems, and application packages to fully exploit the additional versatility of a

distributed system.

The function of the DOS is to manage the available resources, for example, it

would handle the resource allocation, interprocess communications, error control and re-

covery, and naming. Naming refers to the methodology that the operating system uses to

find the location of a particular resource. In the past, operating system3 have been de-

signed to support at a minimum a single user, single processor machine such as an IBM

AT running a Disk Operating System, and at a maximum a multiuser, multiprocessor

computer. In the multiprocessor computer, or tightly coupled system, the communication

between processors is usually effected through a shared memory space, and the proces-

sors are located in close proximity to one another. There is nothing to preclude incorpo-

rating a tightly coupled system as a node in distributed system; however, the multiproces-

sor is not itself a distributed system.

In the case of the Sequent Balan ,)mputer, a hybrid Unix operating system

called DYNIX is used to support the multiplL , ocessors (Thakkar et al., 1987). A multi-

processor operating system such as DYNIX would not be useful as a DOS. If a Sequent

Balance computer was integrated into a distributed system, the DOS would have to reside

on top of DYNIX, or directly on the computer's hardware. In the latter case, the DOS

could either replace the existing operating system or supplement it.

-2 -



Similarly, most programming languages have been developed to, at most, support

a multiprocessor computer. A distributed programming language must not only provide

mechanisms for partitioning processes and handle reentering code, but also must coordi-

nate interprocess synchronization and communication. Synchronization and interprocess

communication are more difficult in a distributed system than in a tightly coupled com-

puter due to the lack of a shared memory and higher communications cost relative to a

tightly coupled computer. Thus, as in the case of operating systems, the design methodol-

ogy used to develop tightly coupled computer languages is not useful in a distributed

system.

Ideally, a distributed system could be designed to operate on a global level as well

as on the local level. One metric that may be used to determine the feasibility of config-

uring a distributed system on a given network level is granularity. Given a set of proc-

esses which can be executed in parallel, the granularity of the system refers to the opti-

mum process size relative to system performance. Fine granularity implies that the aver-

age process is fairly small; for example, the size of an instruction as opposed to a subrou-

tine. The granularity of a system can be defined in terms of the internodal communica-

tions rate and the speed of the processing elements in the network. The internodal com-

munications rate can be defined in terms of the network media, communication protocols,

and the communication rates of individual devices.

On the local level, Local Area Network (LAN) technology has improved signifi-

cantly in the past few years both from a technology standpoint and a standards stand-

point. Three LAN standards have been defined by the IEEE 802.3, 802.4, and 802.5

standards; CSMA/CD (Ethernet), token bus, and token ring, respectively. These protocols

define networks that are capable of supporting coarse-grained distributed systems.

Wide area network communications protocols are not as advanced in that the mini-

mum data rate required for a global distributed system is not readily available to users.

- 3 -



In the past, dedicated lines have been set up between computer nodes which usually run

at rates ranging from 1200 bits per second (bps) on a fairly slow modem to 64 Kbits per

second (Kbps) on the Defense Data Network (DDN). More recently T1 services have

been provided by the telephone companies which allow for internodal communications

rates of 1.5 Mbits per second. These rates are insufficient considering that only very

coarse granularity can be achieved in distributed systems where the nodes are fairly close

together and the data rate is 10 Mbits per second (Mbps).

The complex dependencies on the hardware and software that make up a distrib-

uted system require that a developer have access to design and analysis tools. Such tools

will allow for specific aspects of an operating system to be tested with a set of applica-

tions on a target hardware architecture. This will then allow for adjustments in the oper-

ating system, applications software, or hardware configuration in order to meet the design

objectives. These tools will be developed by advancing the approaches used in developing

modeling tools for network and telecommunications system design.

II. Currently Available

Currently, there are approximately ten Distributed Operating Systems designed for

LANs which are beyond the experimental stage; they can be transported to other sites and

are fairly well documented. However, since most of these systems come from university

projects, they are not supported to the degree that would be expected if they were avail-

able commercially. Most DOS use a construct known as an object in order to permit

transparent network-wide access to all resources. As an example, the object in the

Clouds DOS (Dasgupta et al., 1988) contains user data and code segments for user pro-

grams and databases; system data and code segments to handle the synchronization of

processes, recovery from faults, and data consistency; and permanent and volatile heaps

- 4 -



to support memory allocation. In this manner, an object could represent a file, a subrou-

tine, or a device driver.

The Cloud's objects are "inactive" in that a "thread" process enters an object,

executes the code, and, collecting an appropriate set of parameters, continues to another

object as a result of a procedure call. After the called object has been executed, the

thread returns to the original object.

Another approach, using "active" objects, consists of associating each object with

an object manager. In this paradigm, a message is directed to an object from a client

process with the appropriate parameters, the manager then performs the desired opera-

tion using the object that was cited, and returns a message to the client process. The

Cronus DOS operates in the latter manner (Schantz et al., 1986).

Both approaches have their advantages and disadvantages with respect to commu-

iications overhead, support of concurrent processes, and system maintenance and con-

trol. In both paradigms an object is defined as a part of a global address space which

encapsulates all of the storage space in the network, thus allowing any object to be called

from any node.

There are also some significant barriers which impede a DOS from functioning

effectively in a heterogeneous environment which have to do with standardizing communi-

cations protocols for support of distributed systems. At this time, the Open Systems

Interconnect (OSI) protocols do not support distributed communications, while IBM's Sys-

tem Network Architecture (SNA) has defined session level as well as higher level proto-

cols for distributed processing under the Advanced Program-to-Program Communica-

tions protocol.

The lack of universal standards precludes using a straightforward approach for

fielding a heterogeneous DOS. However, fielding such a DOS is possible if gateways are

- 5 -



developed between the DOS and each resident operating system. The gateways translate

the system communications requests into a form that is recognized by the resident operat-

ing systems. This method was used successfully in a Cronus test bed.

Conventional languages can be used for developing the basis of an object in all of

the available DOS. However, the complete object requires the appropriate system code

and data. In other words, the language must be appropriately augmented so that the DOS

can support the program. This is necessary since both the language and the operating

system are involved in synchronization and communication procedures.

Some of the languages that have been augmented are Modula H, Ada, and Pascal.

For example, Modula II is used as the basis for the Honeywell Object Oriented Program-

ming System (HOPS) (Badarinath et al., 1988). HOPS uses the active object paradigm or

an object management system and a Distributed Runtime Support (DRS) kernel. The

kernel is simply a program that runs in conjunction with the resident Unix operating

system to form the equivalent of a distributed operating system. Included as part of DRS

is a preprocessor for programs written in the HOPS language which separates out the

information required by the system to manage the remaining Modula II code. The

Modula II code is then compiled using a conventional compiler. Since the augmented

languages are, by definition, dependent on the operating system, a program developed in

one distributed system is not portable to another.

Available tool support can be broken down into two areas: distributed software

development and distributed system design. In the distributed software development,

there are a few commercially available packages. One of the oldest of these types of

systems is the Distributed Computing Design System (DCDS) developed by TRW for the

Army Strategic Defense Command (Baker, 1987). DCDS provides a structured methodol-

ogy for designing software for a distributed system. In DCDS the user is guided through

a set of procedures which enable complete specification of the system requirements,

-6 -



specification of the software requirements, definition of the processing environment and

data distributions, and perform unit and system level test and verification. At this time

the state-of-the-art multicomputer design tools are not out of the experimental stages.

III. Near Term (1995)

The principle factor blocking the development of a distributed system from Non-

Developmental Item (NDI) software and hardware is the lack of a commercially available,

well-supported operating system. Within the next five years, a distributed UNIX operat-

ing system will be available for users which have already installed a homogeneous LAN

of UNIX machines. This operating system will most likely be built to support some

special-purpose applications packages that would take advantage of the distributed stor-

age and data access capabilities available with a distributed system. In this form the

network will not be entirely transparent -- the user will have to maintain some knowledge

of the architecture and the location of resources. The degree to which the distributed

aspects of the system can be utilized will be limited by the lack of applications software.

In the next five years, some progress will be made towards defining a set of speci-

fications for Broadband ISDN (BISDN). This issue will be addressed by the next study

session (1989 to 1992) of the International Telegraph and Telephone Consultative Com-

mittee (CCITT). The committee is expected to recommend a user-network interface of

approximately 150 Mbps (Handel, 1989). However, the higher rate will relieve only one

of the problems associated with fielding a wide area distributed system. Some other

problems associated with system performance, naming, and network transparency on a

global scale are expected to be addressed on a applied research level.

Distributed system development tools will be available to some degree. The design

packages will offer the capabilities currently being integrated into experimental packages.

One example of an experimental tool is the Parallel Architecture Research and Evaluation

-7 -



F'ool (PARET) being developed at AT&T (Nichols & Edmark, 1988). PARET uses di-

rected flow graphs to represent the flow between processing elements, communication

elements, and switching elements. This flexibility allows the user to model user pro-

grams, the system functions, interconnection routines, and the interaction between the

three levels. With this particular tool, the graphics interface is well developed enabling a

user to run simulations interactively in addition to collecting post simulation statistics.

The effort to allow for finer granularity within a distributed system will be impeded

by the relatively long message processing times for internodal traffic. The long process-

ing times will be primarily due to the software handling the protocols and the rate at

which the traffic can be switched. The latter condition will be alleviated by the integra-

tion of electro-optic devices into networks. The former condition will :mprove as the

operating systems improve and distributed systems communication protocols become bet-

ter defined.

IV. Long Term (2010)

In the long term, there will be no discernible separation between the operating

system of the individual machines and the distributed operating system. The standardized

distributed operating system will be a variation of UNIX. As a direct result of this devel-

opment, the physical orientation of the system will be completely transparent to the user,

and software packages will be fully transportable. Software venders will then be able to

begin offering packages designed to take advantage of all the capabilities offered by dis-

tributed systems.

A number of factors will enable local area distributed systems to achieve fairly fine

levels of granularity. These factors include improved compiler technology, improved

software development methodology, faster processor technology, and the integration of

all-optical processors into networks. The next set of advances for distributed systems will

- 8 -



involve the development of methods for interconnecting local distributed systems using

the Broadband Integrated Services Digital Network (ISDN).

In the next ten to twenty years, tools for the modeling and analysis of distributed

systems will be available which will enable the designer to optimize operating systems,

applications packages, and hardware configurations relative to one another against a set

of design requirements. The tools will utilize a library of databases and modules which

the user will be able to access via an expert system. The user will be able to quickly

model the system under consideration by answering a set of questions which will become

more detailed as the design process progresses. The analysis tools will also be comprised

of an expert system, which will aid the user in identifying potential bottlenecks.

-9-



V. References

Badarinath, N. et al., (1988). HOPS User's Manual. Honeywell, Inc.

Baker, L. (1987). "Distributed computing design system." Technical Overview. TRW.

Dasgupta, P., LeBlanc, R., & Appelbe, W. (1988, June). "The Clouds distributed operat-

ing system". Proceedings of the Eighth International Conference on Distributed Comput-

ingystema (pp. 2-9). San Jose, CA.

Handel, R. (1989, Jan). "Evolution of ISDN towards broadband ISDN". I e ,3,

7-13.

Nichols, K. & Edmark, J. (1988, May). "Modeling multicomputer systems with PARET".

CQnpter, 21, 39-48.

Schantz, R., Thomas, R. & Bono, G. (1986, May). "The architecture of the Cronus distrib-

uted operating system". Proceedings of the Sixth International Conference on Distributed

Computing Systems (pp. 250-259). Cambridge, MA.

Thakker, S., Gifford, P. & Fielland, G. (1987, May). "Balence: A shared memory multi-

processor". Proceedings of the Second International Conference on Supercomputing (pp.

56-63). Santa Clara, CA.

- 10 -


