
(0O RADC-TR-89-192
Final Technical Report

' October 1989

DATABASE CONSISTENCY AND
SECURITY

Sytek, Inc.

Sponsored by
Strategic Defense Initiative Office

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The vi.ww and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the Strategic
Defense Initiative Office or the U.S. Government.

DTIC
ELECTE

ROME AIR DEVELOPMENT CENTER J O 9Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

j,1 0 "9

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Services (NTIS) At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-89-192 has been reviewed and is approved for publication.

APPROVED: .LA L

EMILIE J. SIARKIEWICZ
Project Engineer

APPROVED:

RAYMOND P. URTZ, Jr.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

IGOR G. PLONISCH
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your
organization, please notify RADC (COTD) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

DATABASE CONSISTENCY AND SECURITY

B.T. Blaustein, A.P. Buchmann, U.S. Chakravarty - Computer Corp.

of America
J.D. Halpern, S. Owre - Sytek, Inc.

Contractor: Sytek, Inc.

Contract Number: F30602-86-C-0263

Effective Date of Contract: 19 September 1986
Contract Expiration Date: 31 July 1988
Short Title of Work: Database Consistency and Security
Period of Work Covered: Sep 86 - Jul 87

Principal Investigator: Alejandro P. Buchmann, CCA
Phone: (617) 492-8860

RADC Project Engineer: Emilie J. Siarkiewicz
Phone: (315) 330-2158

Approved for public release; distribution unlimited.

This research was supported by the Strategic Defense Initiative
Office of the Department of Defense and was monitored by
Emilie J. Siarkiewicz, RADC (COTD), Griffiss AFB NY 13441-5700.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A

2a.S5CURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release;

2b DECLASSIFICATION OOWNGRADING SCHEDULE dist ribut ion unlimited.
N/A

4 PERFORMING ORGANIZA'ION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-89-192

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Sytek, Inc. (if applicable) Rome Air Development Center (COTD)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

1225 Charleston Road Griffiss AFB NY 13441-5700
Mountain View CA 94043

8a NAME OF FUNDING 'SPONSORING 8b OrFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZAFION Strategic (If applicable) F30602-86-C-0263

Defense Initiative Office I

8r ADDRESS (City, State, and Z!P Code) 10 SOURCE OF FUNDING NUMBERS

Office of the Secretary of Defense PROGRAM PROJECT TASK WORK UNIT
Wash DC 20301-7100 ELEMENT NO NO NO ACCESSION NO

11223C B413 02 18
1 1 TITLE (include Security Clasiication)

DATABASE CONSISTENCY AND SECURITY

12 PERSONAL AUTHOR(S) B.T. Blaustein, A.P. Buchmann, U.S. Cnakravarty - Computer Corp. of Ameri'ca

J.D. Halpern, S. Owre - Sytet-, inc.

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COU:T

Final I FROM _pp _ TOJuj.l__7 October 1989 82

16 SUPPLEMENTARY NOTAT ON This work was actually performed by one of the subcontractors;
Computer Corp. of America (now Xerox Advanced Information Technology), Four Cambridge
Center. Cambridge MA 02142.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necesary and identify by block number)

FIELD GROUP SUB-GROUP Distributed Databases Specification/Verification
12 07 Multilevel Secure Database Consistency

19. ABSTRACT (Continue qn reverse if nces~ry and ideptify by block number
4Mis report addresses the issues ofconsistency in Secure Distributed Systems (SDS) and
focuses on the special relationship between consistency and security in an SDS, their

conflicts and possible trade-offs. It establishes a unified framework for treatment of
consistency and security in a coherent and flexible manner. It identifies approaches to
consistency from a variety of disciplines and proposes how these approaches may be useful

in the realm of Secure Distributed Systems. Finally, attempts at formally specifying
consistency conditions are reported. These specifications have highlighted strengths and
weaknesses of some existing tools for formal specification and have led to the identifica-
tion of new features that are required for the successful formal specification of

consistent secure distributed systems. /I

20 DISTRIBUTION/AVAILABIL IY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0OUNCLASSIFIED/UNLIMITED M SAME AS RPT [3 DTIC USERS UNCLASSIFIED

22& NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
Emilia jJSArkiewicz (315) 330-2158 1RADC (COD

D Form 1473, JUN 86 Previous editions are obsoete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Database Consistency and Security Accession for Page
NTIS GRA&I
DTIC TAB
Unannounced

Justifioiatio

D stirbution/

Availability Codes

Avail and/or

CONTENTS Dist Special

Page

Preface .. v

1 Introduction 1

2 Consistency 3

21 Specification of a Database 3
2 2 The Structure of Consistency Conditions 4

2 2 1 Consistency under Validation 6

22 2 Consistency under Concurrent Transactions 7

2 2.3 Consistency under Replication 8

22 4 Consistency under Failure Recovery . 8

2 3 Flexible Schemes for Consistency Condition Evaluation 8

3 A Framework for Security and Integrity Policies 11

3 1 Security and Integrity Policies 11

32 Policies as Database Constraints 12

3.2.1 The Use of Database Constraints 12

3.2.2 Policies and Types of Constraints 12

33 Conflicts Between Security and Consistency 13
3 4 An Example of Security and Integrity Polic'es 16

3.4.1 Basic and Restrictive Policies 16
342 Basic Security Constraints 18
34 3 Policies Involving Dynamic Ratings 18

3.4.4 Policies Involving Trusted Agents 19

3.4 5 Use of Weak Constraints .. 20

4 Security Issues and Transaction Processing 23

4.1 Transaction Model for Specifying Consistency under Concurrent Execution 23
4 1.1 T ransactions 24

4 1.2 Histories 25

4.1 3 Serializability Theorem fBERN87J 25

4.1.4 The Effects of Serializability 26

4.2 Concurrency Control Mechanisms 26

42.1 Locking 26

4 2.1.1 Two Phase Locking 27
4 22 Non-Locking Strategies 27

4.2.2.1 Timestam p Ordering 27
4.2.2,2 O ptim istic Protocols 28

4.2.3 Deadlock and Livelock 28

Page -ii- Database Consistency and Security
Contents

4.2.4 Verification of Serializability 29

4.3 Security Issues in Centralized Transaction Processing 29
4.3.1 Correctness with Respect to Security and Consistency 29

4.3.1.1 Correctness of Individual Transactions 30
4.3.1.2 Correctness of Interleaved Execution of Transactions 32

4.4 Security Issues in Distributed Transaction Processing 33
4.4.1 Types of Distributed Systems 33
4.4.2 Database Consistency Issues 34
4.4.3 Security Issues 35

4.4.3.1 Special Cases of Consistency 35
4.4.3.2 Special Security Considerations 35
4.4.3.2.1 Inference Problem s 35
4.4.3.2.2 T im e O rdering 36
4.4.3.3 Security Con'sequences of Non-Serializability 36
4.4.3.3.1 Advantages 37
4.4.3.3.2 Problems .. 37

4.5 Flexible Evaluation of Consistency Conditions 38
4.5.1 Timing of Consistency Condition Evaluation 38

4.5.2 Alternate Responses to Consistency Violations . 39

S. SYSPECIAL: Extensions and Examples 41

5.1 Formal Specification Examples 41

5.2 Modeling a Database in SYSPECIAL 42
5.3 Modeling a DBMS in an Experimental Extension of SYSPECIAL45

5.3.1 The Top Level M odule 47
5-3.2 The Second Level Specification 48

6 Summary 53

7 . R E F E R E N C E S 55

Database Consistency and Security Page -iii-

ILLUSTRATIONS

2 .15

Page -v-

PREFACE

In September 1986 Rome Air Development Center awarded a contract to Sytek, Inc., of Mountain View,
California, to investigate techniques and tools for the specification and verification of secure
distributed systems. The effort consisted of three phases. During the first phase distributed systems
;ssues, such as temporal properties, database consistency, fault-tolerance, and adaptation, were

studied with respect to the specification requirements for distributed systems. During phase two,

existing specification/verification, database design, and other software engineering tools were to be
ana!yzed in light of 'he results of the phase one studies and a near-term workbench designed and
implemented Phase three was to look at the requirements and design of the next generation of tools.

In mid-1987 Sytek decided to divest themselves of the their research and development contracts
division. As a result, and despite many months of negotiation, it was decided to terminate the effort.

This report, written in July 1987, documents the database consistency study. The remaining studies
and the work done on the workbench design will be doc.mented elsewhere as a result of two very small
contracts to two of the subcontractors to do some clean-up work.

Database Consistency and Security Page -I-
Introduction Section 1

1. Introduction

The design of complex Secure Distributed Systems requires the use of sophisticated software
tools to ensure the reliability of the software for demanding applications such as SDI Reliability of
software can be enhanced by careful specification and verification It is fair to say that no single
specification and verification tool, at present. can meet the taxing demands of a complex Secure Distri-
buted System Therefore, an integrated workbench of software tools is needed and will be developed
in the context of the present contract. Understanding the requirements of Secure Distributed Systems
is a prerequisite to the actual evaluation of existing software design tools and their selection for
integration in the workbench Therefore. the first phase of the present contract calls for three con-
current studies on temporal properties consistency and fault-tolerance of Secure Distributed Systems
This report addresses the issues of consistency in Secure Distributed Systems and focuses on the spe-
cial relationship between consistency and security in an SDS. their conflicts and possible trade-offs It
es:ablishes a unified frameviork for treatment of consistency and security in a coherent and flexible
manner ;t identifies approaches to consistency from a variety of disciplines and proposes how these
approaches may be useful in the realm of Secure Distributed Systems Finally attempts at formally
specifying consistency conditions are reported These specifications have highlighted strengths and
weaKnesses of some existing tools for formal specification and have led to the identification of new
features that are required for the successful formal specification of consistent secure distributed sys-
tems.

A basic condition for the reliable operation of a secure distributed system is the consistency of the
data Equally important is the requirement that data be handled in accordance with security policies
which determine who may access and modify data Since this report considers the interaction of data
consistency and security and their formal specification it is essential to introduce first a common ter-
minology Unfortunately many terms are used with different meanings in the security the formal
specification and the data management communities Because data management issues are mostly
confined to this report while formal specification and security issues are common themes throughout
the contract. we adapt conflicting terms from the data management realm and preserve the meaning a
term has originally in the security or formal specification realms We only depart from this approach
when we propose changes to the traditional meaning of some of these terms

Section 2 of this report introduces the notation for consistency and discusses the different types
of consistency conditions. their structure and evaluation. Consistency is analyzed in the context of a
database. Therefore. we introduce the model of a database. establish the notions of consistent data-
base states and the need for consistency conditions as an integral part of a database description We
look at consistency under different points' of view consistency under validation of database constraints
or consistency conditions. consistency under concurrent transactions consistency under replication
and consistency under failure recovery.

Section 3 expands on the conflicts that arise between consistency and security, particularly
integrity as used by the security community Many problems arise from the diffuse definition of
integrity. Therefore. the notion of integrity is refined and. building on the consistency conditions intro-
duced before. it is shown how security policies can be formulated in terms of constraints, thereby
establishing a common framework for consistency and security In such a framework security policies
can be adapted to the requirements of a particular environment or can be exchanged as security
requirements evolve. It is beyond the scope of this report to attempt the formulation of a complete

Page ,2- Database Consistency and Security
Section 1 Introduction

new security policy. Instead. we present only the basic elements of a policy and cast them in the com-
mon framework for security and consistency.

Consistency is a dynamic property that has to be attained at the end of a given action or sequence
of actions performed on the database. Therefore. in Section 4 we discuss transactions as a means of
achieving atomicity and analyze their function in a database environment. For the sake of clarity. we
analyze first a single transaction on a non-distributed database and introduce the basic notions. In
subsequent portions we analyze the case of multiple transactions executed against a single database
and. finally, the case of multiple transactions in a distributed environment.

We discuss the notions of commit and the effect of evaluating constraints at the beginning of a
transaction (as required for security reasons) in contrast to doing it before committing the transaction
(as required for database integrity). We review the notions of a log. recovery and rollback. We
analyze the impact of external effects and consider necessary extensions to this notion caused by the
security requirements. We also look at some recent proposals for flexible consistency handling, both
through deferral of evaluation of consistency constraints . and through special actions that may be
required in response to certain database constraint violations These notions are just emerging in the
database literature and are included in the hope that they may trigger some discussion of these issues
in the context of secure systems.

In Section 5 we present examples of a database and some basic functions of a DBMS described in
an experimental extended version of SYSPECIAL. This specification language is extended with the
notions of a multilevel specification and a trace. With the help of these two constructs it is possible to
model database transactions and serialization protocols. such as two-phase locking. SYSPECIAL
proved to be a powerful tool for specifying consistency and security conditions in terms of
SYSPECIALs invariants and constraints. The specification of databases proved to be easy and the
specifications readable.

The main contributions that we discuss in this report are:

A unified framework for consistency and security. This framework encourages adaptability in the
sense that new security policies can be inserted by substituting sets of constraints, By using the same
representation for security and consistency. we lay the groundwork for checking compatibility of secu-
rity and consistency constraints. During an analysis of conflicts between consistency and security. we
detected that the notion of integrity. as used in the security community, appears to be ambiguous
Therefore. we divided the old notion of integrity into write-sensitivity and trustworthiness. This dis-
tinction avoids problems of downgrading write sensitivity when trustworthiness is degraded.

Security issues are analyzed in the context of transaction processing. both for the centralized case
and the distributed case. The focus on the processing of the transactions and the unified view of con-
sistency and security constraints is novel. This analysis is also carried out for the distributed case and
a discussion of non-serializable protocols and their security implications is presented.

A close look at concurrency control helped identify extensions that are desirable for specification of
consistent databases and the elements of a database management system. SYSPECIAL was experi-
mentally extended to include the notions of a two-level specification and of a trace. The novelty con-
sists in using the notion of a trace to support procedural constructs and the mappings between levels.
Using the extended SYSPECIAL. it was possible to specify a database and the rudiments of a DBMS
that uses two phase locking to provide serializability The initial success with the extensions warrants
further development

Database Consistency and Security Page -3-
Consistency Secton 2

2. Consistency

Consistency is a correctness property that is attained whenever data comply with a set of con-
straints or correctness conditions that are defined for a given collection of data To avoid confusion a
brief discussion on terminology is necessary

The terms consistency and integrity are used in the database realm almost interchangeably A
database possesses integrity (is consistent) if ail the integrity constraints defined for the database are
met and whenever individually correct transactions complete execution according to a consistency
preserving schedule. In the security realm. integrity has been used as a dual to security and usually
refers. in an ifl-difTerentiated manner both to write access rights and to trustworthiness We will not
belabor the usage of the words at this point this section will deal with database aspects of integrity
whereas the next section (Section 3) will use the term integrity as understood by the security com-
munity At this point we only intend to state the differences to justify our terminology and usage
Integrity will be reserved throughout this report for use in a security context. Consistency will be useri
whenever referring to database integrity. At the same time. if the usage of a term is unambiguous for
the context. then we prefer to use the term befitting the context without imposing any artificial restric-
tion.

Similarly, the terms constraint and invariant are well-defined terms in the SYSPECIAL
specification language. invariants being conditions defined on states. while constraints are defined on
operations. Unfortunately. these terms are commonly used in the database realm both when a correct-
ness condition is defined assertively on database states and when it is defined as a trigger associated
with an operation. To avoid confusion. we shal! use the term consistency condition instead of con.
straint whenever there is the possibility of confusion Otherwise. we shall use the term consistency
constraint since this term is best understood in a database context.

In this section we classify consistency according to four criteria validation of consistency con-
straints. consistency under execution of concurrent transactions. consistency under replication and
consistency after failure recovery. Before we proceed with the discussion of consistency. it is neces-
sary to introduce first a model of a database on which the correctness conditions can be defined

2.1 Specification of a Database

A database is the representation of a portion of the world through a structured collection of data
The valid structures are determined by the data model that is being used In the case of the relational
data model the valid structures are flat, tables composed of n-tuples. Each table or relation has an
intension and an extension. The intension of a relation is given by the attributes that comprise a rela-
tion. The extension of a relation is the set of ordered n-tuples in which each attribute is instantiated
A relation is defined as a subset of the cartesian product of the domains corresponding to the attri-
butes of the relation. That is

R C A1XA2X...XAn

The intention of all the relations comprising a database is called the schema of the database.

Page -4- Database Consistency and Security
Section 2 Consistency

For illustration purposes we will use the following database throughout this report:

Employee (SSN. Emp-name. Emp-address. department)

Employee-security (SS. clearance)

Projects (Proj-id. Mgr-SSU. department, classif. location. travelfunds)

Trip (Trip-id, origin. dest. d-left, d-arrived. contact, charges)

Proj-Empl (SSN. Proj-id)

Proj-Trip (Proj-id. Trip-id)

This database schema can be formally specified using SYSPECIAL and is shown in Section 5.
where all the Syspecial examples are consolidated and discussed.

For secure environments it is necessary that data in the database carry a classification tag There

are different forms in which tags can be assigned to data the same classification tag for all the data in
a relation. the same classification for all the instances of an attribute in a relation. the same
classification for all the data values in a tuple. or individual classification tags for each atomic value (at
the attribute level) in the database. We chose the last form for flexibility reasons. Each data value
can be tagged The values that a given tag can take are constrained through invariants defined on the
schema For reasons that are explained in the next section. each tag consists of a triplet of security
attributes: a read-sensitivity label a write-sensitivity label. and a trustworthiness label. The triplet is
specified using the notation <r. w. t>. where r. w. t can be viewed as functions representing the
read-sensitivity. write-sensitivity, and the trustworthiness respectively. The following is an example of
the specification of a relation with its security tags:

Employee (SSN<st>, Emp-name<st>. Emp-address<st>.department<st>)<st>

where each attribute as well as the relation Employee itself is associated with security tags It is also
possible to group the attributes in an arbitrary way to associate a security tag with the set of attri-

butes instead of individual attributes. A SYSPECIAL example of security tag representation for the
database shown above is described in Section 5.

At any given time the database is in a state that can be consistent or inconsistent. A database
state is consistent if all the data stored in the database conform to the consistency conditions defined
on the database and the operations that map one database state into another preserve consistency.

2.2 The Structure of Consistency Conditions

When analyzing the consistency conditions that can be enforced on a database and the transitions
from one database state to another we can identify essentially four groups of consistency conditions

that correspond to four different aspects of consistency Figure 2.1 summarizes the different aspects
of consistency and the types of consistency conditions

Database Consistency and Security Page *5-

Consistency Section 2

Structure of Consistency Constraints

Domain

Under Validation 5 Relationship
Security Policies

Strict Serializability (2PL)
>% Under Concurrency Timestamp Ordering
C Non-Serializable

Approaches

0

Under Replication Total

Partial

Hardware

Under Component - Software
Failure

Figure 2.1

Page -6- Database Consistency and Security
Section 2 Consistency

2.2.1 Consistency under Validation

Consistency under validation encompasses the validation of consistency conditions defined on the
database. such as domains of attributes and relationship consistency conditions among two or more
attributes in the database. and structural consistency conditions that are often data-model dependent.

Domain consistency conditions can be described either as ranges or by explicit enumeration

Range consistency conditions determine acceptable values for an attribute and are expressed
through lower and/or upper bounds. for example. the lower bound for wages is given by the minimum
wage. or legal age values for employees may be between 18 and 65.

Enumeration consistency conditions determine acceptable values for an attribute by explicit
enumeration of the members of a set of discrete values for example the available classes on an air-
plane are coach. and first class. The values in the constraining set are constants like those used in
defining ranges

Relationship consistency conditions determine the relationship that exists among values of two or
more attributes in the database They are often extensions of the previous constraints, since those by
themselves prove to be too restricted in their expressive power. For example. the available flight
classes are a function of the origin and destination of the flight, since for national flights only coach
and first class are available on international flights however, the classes are economy, business and
first class. Relationship consistency conditions are also used to express other validation criteria among
attributes, such as those involving aggregates over an attribute or a direct rlationship between attri-
bute values in the database An example of a consistency condition detined over an aggregate could be
that no employee may receive a salary that is not within 5.000 dollars of the average for that job
description A consistency condition establishing the relationship among attributes can be as simple as
saying that no employee may earn more than his/her manager or as complex as a simulation of an
integrated circuit

Certain structural consistency conditions are intimately related to the database model that is being
used For example. the relational data model requires that each tuple in the database be uniquely
identified through a key A key-uniqueness consistency condition is important in the relational model
but is meaningless in other data models that do not depend on the notion of a key for identification of
tuples or records. Models that do not enforce the key-uniqueness property have other consistency
conditions. such as the number of component oblects or subordinate records Another example of
structural consistency conditions that have to be validated is the referential integrity constraint, which
specifies that an external key may not exist if the corresponding tuple with that same value as the pri-
mary key is not in the database.

Typically. consistency conditions are validated whenever a data value is written into the database.
In this respect. any security validation concerned with writing values to the database falls into the
same category. Security criteria ought to be expressed and validated in the same form as the other
consistency conditions that we have listed above. In addition to the validation at the time of writing
values into the database. security considerations also require a validation at the time of reading data
However, any security criterion can as well be expressed in the same format as the other consistency
conditions How this can be done is detailed in Section 3.

Uataoase ionsistency ano -ecurity Page 7
Consistency Section 2

2.2.2 Consistency under Concurrent Transactions

While consistency under validation deals with consistency conditions that are defined on the data-
base and have to be enforced for a new database state to be valid (i e. a transition from one state to
another has to be validated), consistency under concurrent transactions is concerned with ensuring
consistency under simultaneously executing processes Retrievals and updates to a database can be
grouped into transactions. A correct transaction takes a database from cne consistent state to
another consistent state However. if two or more correct transactions are executed against the same
set of data. and they are interleaved at random. the final result may not be the same as if the trans-
actions were executed sequentially one after the other The database may not end up in a consistent
state in spite of satisfying the individual consistency conditions

As an example. let two transactions modifying a bank account try to access the balance of an
account. one to add $100 and the other to subtract $200 from the same account. If the transactions
do not interleave correctly. then one of the two updates may be lost and the account may end up
either with $100 missing or with $200 in excess This will happen regardless of whether a static con-
sistency condition (e g final balance may not be negative) is met.

The solution is to impose dynamic ordering constraints that have to be satisfied during the execu-
tion of the concurrent transactions. The basic ordering is known as serializability and insures that the
effect of two or more transactions executed in parallel on the same data is the same as the effect of
executing the transactions sequentially. The problem one faces in formally specifying these constraints
lies in the nature of database processing Queries and update transactions are composed spontane-
ously by the user and the formal specification and verification of arbitrary transactions is beyond the
current state-of-the-art in formal specification and verification However. there is a large class of appli-
cations that require the data manipulation capabilities of a DBMS but have fairly stable data require-
ments that can be served by predefined queries and transactions. The problem is somewhat simplified
if the transactions executed over the database are fixed in number enabling their individual verification
as well as the mix using detailed static analysis

The theory of serializability for concurrent execution of transactions is at a mature stage both for
centralized and distributed model of database management systems. Many protocols that ensure seri-
alizability have been developed and proven by model-theoretic means We shall use them without
attempting to prove their correctness However, most of these protocols rely on the notion of read-
and write-locks which are potential information channels through which information can be tapped out
by locking data in a given pattern. Alternate protocols based on eventcounts have been proposed to
solve this problem. Given that the vast majority of concurrency control mechanisms are based on
locking schemes and that additional safeguards are required in the architecture of any functional sys-
tem. we will analyze concurrency control mechanisms based on locking in this report.

Other classes of non-serializable protocols that are based on timestamping or the notion of relaxa-
tion of consistency conditions are discussed in the next subsection. consistency under replication.
They are mostly applicable to distributed database systems with total or partial data replication

Page -8- Database Consistency and Security
Section 2 Consistency

2.2.3 Consistency under Replication

The third type ot consistency that needs to be considered is consistency of replicated data This
is a problem most common in distributed systems where multiple copies are maintained for reliability
and performance and inconsistencies arise when one copy is modified asynchronously To ensure con-
sistency of multiple copies of data additional synchronization mechanisms have to be defined and
enforced

The basic synchronization mechanisms assume strong consistency conditions. i e the consistency
conditions must be met by all copies of the replicated data or the transaction will be blocked The
underlying assumption is that communication channels are stable and that the network will not be par-
titioned. For environments in which this assumption is not met and where high availability is essential
(for example in military command and control systems). alternative notions of consistency have to be
defined and enforced One such mechanism is to defer the enforcement of consistency conditions with
the guarantee that eventually a consistent state will be established when communication is reesta-
blished

When serializability is not guaranteed. it becomes important to take compensating actions If we
assume that a transaction caused an effect on out-of-date data or because a consistency condition
could not be evaluated a compensating action is required For example if a previous booking of an
airline seat did not come through from a remote location a later booking may actually overbook the
flight in a given class. The airline can take compensating actions by either rebooking the passenger on
another flight, upgrading him to another class, or not doing anything hoping for a no-show

2.2.4 Consistency under Failure Recovery

A fourth aspect of consistency is related to failures of hardware or software in the system. In this
case the transactions against the data may be suspended before completion leaving the data in an
inconsistent state. To restore consistency, an older but consistent copy of the database has to be
activated and the recent changes have to be reexecuted satisfying the constraints as before To be
able to reconstruct the exact sequence of operations a log of all the transactions that were executed
from the last available consistent state has to be kept

The recovery problem entails a reexecution of the constrained actions that are discussed as con-
sistency under validation, concurrency and synchronization However. it is the maintenance of the log
that causes potential security threats.

2.3 Flexible Schemes for Consistency Condition Evaluation

The higher the degree of consistency one wants to enforce on a database. the higher is the price
in terms of performance and availability In a secure environment, additional conflicts arise between
consistency conditions and security requirements These are described in more detail in Section 3
These conflicts further reduce the availability of the database and it appears convenient to explore
ways of trading-off between consistency. availability, and security This can be done through the use
of flexible mechanisms for consistency condition evaluation

The flexibility consists in modifying two aspects of the currently used mechanisms for con-
sistency enforcement the timing of evaluation and the actions that are taken in response to a violation

Database Consistency and Security Page -9-
Consistency Section 2

Commercially available database management systems offer. usually, one mode for constraint

evaluation constraints are precompiled with the schema definition and they are always enforced
Enforcement occurs when a modification is tentatively performed in the buffer and before a transaction
is ready to be committed to disk. If a consistency condition is violated the DBMS automatically

aborts the transaction This mechanism appears to be adequate for most conventional applications

but not for the secure distributed systems we are concerned with

In Section 4 we discuss the different timing needs of secure distributed systems and how deferred

evaluation of consistency conditions can alleviate some conflicts between consistency and security and
how that mechanism can increase availability even if this occurs at the expense of consistency These
trade-offs may be necessary in crisis situations when it is more important to get to the data in time

than protecting them or guaranteeing their consistency. We also discuss what alternative actions are

desirable, particularly in secure environments

Database Consistency and Security Page -11-
A Framework for Security and Integrity Policies Section 3

3. A Framework for Security and Integrity Policies

3.1 Security and Integrity Policies

The essence of any secure computer system is the protection of sensitive data. and claims that a
system protects its data from improper accesses must be demonstrated with as high a level of
confidence as possible (see [DOD85] for the Department of Defense evaluation criteria.) Therefore. a
number of formal models which attempt to capture the tjndamental protection requirements have been
proposed [LAND81 BELL73. BELL74 BELL75. BIBA77. FEIE77. FEIE79 FEIE8O, KSOS781. Most
formal discussions of secure computer systems divide the problem of protecting sensitive data into two
parts. security - protection from improper disclosure and integrity - protection from improper
modification (including creation and deletion)

Within the restricted notion of security, there is another distinction mandatory vs discretionary
controls Mandatory controls are those that are enforced by lavw stating that only individuals with
appropriate clearances may have access to certain data The restrictions on data are expressed by the
sensitivity level (e.g.. TOP SECRET). and possibly by compartment names (e g.. NATO) and caveats
(e g.. NO FOREIGN). Discretionary controls are those that rest with the person releasing particular
information, usually based on perception of the recipients "need to know.-

The issue of security is better understood than the more complicated one of integrity Studies
have concentrated more on formal security models than on integrity models Bonyun JBONY86].
Schell and Denning ISCHE86. and the working group on database integrity [NCCS861 have discussed
at length various aspects of integrity which translate into formal properties that are quite different
from those addressed by the traditional security policies. The thrust of our work is to provide a
unified framework for expressing security and integrity properties and for integrating these properties
into a database model that enforces the various aspects of consistency

One of the stated requirements for the Strategic Defense System [DRC86a DRC86b is the need
for security policies that are situation-dependent It is assumed that for peace-time operation the dis-
tributed computing system would not be stressed to capacity and that delays derived from security
enforcement are tolerable. On the other hand, any intruder has plenty of time to attempt to penetrate
the secure system. In a crisis situation the opposite is true: the computing system is stressed to its
capacity and an intruder has only a limited time to attempt penetration Therefore, it may be desirable
to use alternate. or adaptable. security policies. By modeling the security policies as constraints we
provide a flexible framework that allows the specification of alternate policies, the verification of these
policies, and the mapping of the policies into the underlying implementations

In designing an automated system to enforce security controls. the key issue is the formal com-
plexity of the rules to be enforced. Whichever aspects of integrity are considered important require-
ments for a particular application, and whichever types of controls are needed. the essential problem
from the system designer's point of view is the way in which the rules are to be expressed and
enforced. The analysis of the rules' complexities depends on the language used to express them. the
data model. the particular data schema. and the power of the software that will enforce the rules. It is
not our goal here to recommend specific security or integrity policies, indeed, it would be less useful to
develop a system that could accommodate only a single set of security and integrity properties
Instead. our goal is to describe the problems of security and integrity from the viewpoint of database
consistency and to investigate general techniques for enforcing whatever security and integrity policies

Page -12- Database Consistency and Security
Section 3 A Framework for Security and Integrity Policies

are chosen for a particular application. In addition to providing a general basis for a group of systems
with different or changing requirements. this approach allows designers to identify and weigh the
consequences of different security or integrity requirements.

3.2 Policies as Database Constraints

3.2.1 The Use of Database Constraints

Early information and database management systems offer no support for centralized consistency
verification. Instead. each transaction has to include. interleaved in the application code. the necessary
consistency verification procedures. This approach simplifies the database management system but
places the burden of consistency enforcement on the applications programmer. is error-prone. and can-
not be used for enforcement of data access restrictions

A more sophisticated approach. and the one we develop here. views transactions as partial
descriptions of the proposed operations- The rules and policies that may affect the data access and
other operations on the data described by the transactions are expressed separately and are automati-
cally enforced by the system While this approach requires a language for expressing rules. software
for enforcing the rules. and an architecture which accommodates system-invoked additions to the origi-
nal transaction. it also results in many advantages. Rules that describe data accesses and data con-
sistency criteria are consolidated in one place. and they are expressed uniformly. This allows for
checking of mutual consistency among different rules that apply to the same data- Most important in
the context of our current project is the fact that expressing both consistency constraints and security
policies as sets of constraints defined on the database greatly increases verifiability In general. this
approach makes for both tighter control over data accesses and greater flexibility in the addition or
modification of rules.

3.2.2 Policies and Types of Constraints

The security and integrity policies for a particular application can be expressed as database con-
straints These constraints may be designated as strong or weak constraints Strong constraints.
which impose strict controls on data accesses act as enforcers of policies that limit unauthorized or
improper retrievals and updates. They filter out unauthorized transactions. letting only authorized
transactions proceed through the system. Strong constraints are used to enforce critical security and
integrity policies.

What. then. is the role of weak constraints in implementing security and integrity policies? Secu-
rity and integrity policies are. by nature. strict controls It doesnt make sense to allow "relaxations"
of these rules -- as it may. for example. in traditional database consistency enforcement However
weak constraints can play a very useful role within the context of security and integrity policies

The traditional dichotomy inherent in security and integrity policies can be refined instead of
merely describing allowable and disallowed events. the policies can describe disallowed events, allow-
able routine or expected events, and allowable exceptional or unusual events. Events in this added last
category. while meeting the strict security and integrity requirements of the application. may bear
watching For example. it might be allowable for certain trusted users. using certain transactions. to
violate the strict "no-write-down" integrity policy (Such a policy is mentioned in JFEIE77. KSOS78
LAND811 and discussed in more detail in a subsequent section). While these actions are explicitly
allowed, it might be desirable to mark these actions for later review Should an unexpected or suspect
pattern arise, a security official may decide to revise the policy or the classifications of some users or

Database Consistency and Security Page -13-
A Framework for Security and Integrity Policies Section 3

transactions

The ability to monitor certain events enhances the security policy, by allowing less restrictive poli-
cies where appropriate without relinquishing the opportunity of observing their use Together with the
use of a flexible framework for specifying policies the ability to monitor events provides a good basis
for adaptable and responsive policy designs While strong constraints express policies which describe
unallowable actions weak constraints can be used to capture those policies which describe events to
be monitored Thus. weak constraints provide an automated means of handling legal but nonetheless
exceptional. events

To summarize security and integrity policies are defined through the statements of the policies
and also through the determination of which policies will be modeled as strong constraints -- requiring
strict enforcement -- and which as weak constraints -- suggesting monitoring An example of how
strong and weak constraints can be used together follows in Section 3 4 5

3.3 Conflicts Between Security and Consistency

While it is extremely useful to vie,, security and integrity requirements as paralle! to the more
traditional database consistency requirements there may be some conflicts between the two Security
requirements mandate st'ict restrictions on data flow and strong separation of data while database

consistency motivations tend toward increased analysis of complex relaticnships across broad ranges
of data Enforcing a database consistency con...aint will typically involve reading data items that are
not explicitly mentioned in the given update being tested In the database consistency world this is a
good thing -- the user need not be aware of the many important relationships that constitute database
consistency In the security world the same approach represents the potential for serious security
breaches

With some information about the constraints that the system enforces a user may be able to
infer much about specific data values and the presence or absence of data with certain values by sub-
mitting updates that cause a given constraint to be checked Suppose. for example that in the project
database there is a constraint that Department HQ-87 has no more than $200000 in total available
travel funds Suppose furthermore. that Department HQ-87 sponsors a number of projects some of
which are classified SECRET and some of which are classified TOP SECRET A user vith a

SECRET clearance may know that the total available travel funds shown for SECRET projects !s
$80 000 Suppose that this user submits an update (either innocently or maliciously) to add a new
SECRET project to the database This new project has a value of $5.000 for avail travel. If the
update is denied with the user either being told directly or inferring that the denial is based on exceed-
ing the departments total available travel funds then the user knows -- despite the SECRET clearance
-- that there must be between $.15 000 and $120 000 in travel funds allocated to TOP SECRET pro-
jects in Depdrtment HQ-87

Consistency constraints are metadata i e data that describe the data Whether these database
consistency constraints are described by clauses or in a parameterized form in a constraint base they
have to be treated exactly like all the other data in the system with the added precaution that. because
of their higher degree of abstraction. they may convey general information about whole segments of
the database. Therefore. more information may be transmitted by reading a constraint than by a sin-
gle, less abstract, data value. An immediate conclusion that can be drawn from this conflict is that
constraints, since they carry information, have to be subjected to at least the same classification as
the data to which they apply.

Page -14- Database Consistency and Security
Section 3 A Framework for Security and Integrity Policies

This solution highlights another problem. namely. as soon as a constraint spans more than a sin-
gle level of classification it will enter into conflict either with the secrecy policy of 'no read up" or with

the integrity policy that will not allow a t:.-nsaction of a higher level of integrity to commit because it
used in the constraint validation process data of lower integrity. Thus. in the case of the user with
SECRET clearance attempting to add a nev, SECRET project. the update would be barred because
enforcing the constraint on total available t.ravel funds may require reading TOP SECRET data.

The only safe solution to this problem appears to be the limitation of constraints to a single level

of classification. This limitation may. however. impair the overall consistency of the database in two
forms. First. constraints that are defined on aggregate values, as is the constraint on total available
travel funds. can only be enforced if all the instances of a given attribute or data element have the
same classification, and second. no constraints defined on types are legal if the types may contain
instances of a lower classification.

If security is to be enforced through views, i e a mechanism that presents to the user only those
data for which he or she has clearance and gives the illusion that those are all the data again the con-
straint may not span more than one classification level If a constraint is defined globally. i e on the
.hole database but is applied only to the data in a view inconsistencies may arise

The solution to the previous problem lies in the decomposition of constraints in such a way that it
reflects the composition of the underlying data and can be aggregated upwards For example. suppose

that in addition to the constraint that total available travel funds be limited to $200.000 there is
another constraint that iimits total available travel funds for SECRET projects to $125 000. The need
to restrict users with SECRET clearances from learning about TOP SECRET data implies then. that
there must also be a constraint that no more than $75.000 of travel funds can be at the TOP

SECRET classification Otherwise. users with SECRET clearances might see a situation in which an
update is disapproved although the total available travel funds at the SECRET level would remain less
than $125 000 The SECRET user could then still infer the travel funds at the TOP SECRET level
Even if the SECRET user does not know the global travel fund constraint. I e . even if the restriction
of all travel funds is classified at the TOP SECRET level, problems can still arise If there is no
separate restriction of TOP SECRET travel funds. the SECRET user can still infer partial information
about TOP SECRET projects whenever updates that would leave SECRET available travel funds at
less than $125 000 are denied. This simple example illustrates the need for testing of constraints for
internal consistency

The possibility to infer something from the denial of service raises the question as to what should

be the appropriate action if a constraint is violated. Even seemingly innocuous constraints, such as
those specifying the uniqueness of keys. may cause inferences by denial of service. For example the
constraints that every key has to be unique. allows a user with lower clearance to infer that another
object with the same key but higher level of classification already exists. based on a rejection of an
insertion because key uniqueness is violated.. Thus. a malicious user could try to insert a number of
new projects with low classifications, in an attempt to "guess' the project id of a highly-classified pro-
iect.

A solution that is generally recommended for this kind of problem is to use poly-instantiation

allowing the insertion of objects with the same visible identifier but modifying the identifier by con-
catenating the visible identifier with the classification. This solution. however, causes another con-
sistency problem. The instances at the different levels may contain different values for a given attri-

bute and additional constraints would be needed to make the copies compatible

A Framework for Security and Integrity Policies Page -15-
Sect ion 3

The main conclusions which can be drawn from this discussion of conflicts are.

1. Constraints have to be classified at the highest level of the data they touch

2 Certain constraints, for example key uniqueness produce covert channels that have to be
blocked by techniques. such as poly-instantiation [DENN86

3 Denial of service can result in a covert channel. therefore it is necessary to specify actions that
are adequate as response for a violation of a given constraint The definition of a constraint at
database design time should include the definition of the proper action to be taken upon viola-

tion of the constraint

4 The design of a database has to include the design of the database consistency constraints
defined on that database. Database design tools have to include support mechanisms that help
the database designer to spot potential conflicts between consistency and security constraints

5 When security and other database consistency requirements conflict, the precedence of con-
straints has to be established For sensitive applications, security should have precedence over

other consistency considerations Other applications may have different requirements Note
that .-,hen constraints are selectively enforced. ie when not all constraints are satisfied at all
times. there may be serious problems raised by the presenct of suspect or inconsistent data
If this data is read by later transactions or by the constraint enforcement module. there may
be a cascading effect Whole segments of the database may become questionable In an appli-
cation designed to selectively enforce constraints, it is imperative to specify the actions to be
taken when suspect data is introduced.

6 Compatibility of consistency constraints and security policies should be tested as far as possi-
ble. at database design time

7 Given the trade-offs between database consistency and security and the need for evaluation of
compatibility it appears most convenient to have a common format for security and other con-
sistency constraints. Constraints should be expressible in some language based on logic for
conversion into theorems and automatic proof of correctness

While pointing out the advantages of expressing security policies as database constraints, we must
also emphasize the critical differences between security classification data and other data The secu-
rity classification information, or "tag." that is associated with each controlled data item (be it a whole
data type a single record. or an individual field) has a special role The values of these tags determine
access to the associated data items When the tags are changed. so are the access rights to data in
the database Access to the tags is. of course, subject to the same controls as other data accesses
However. updates to classification tags must be even more carefully limited and synchronized to
prevent even momentary anomalies in the access rights.

It is too restrictive to require that all security policies employ completely static classification tags
For a secure DBMS to successfully meet the demands of a given application, changes in security
classifications must be allowed. In addition to the strong requirement to handle sanitizations and
classification downgradings. security classifications must be able to change as situations change
While it is possible to define a security policy that assumes that tags only change as the result of
infrequent specialized transactions. such a policy must be very restrictive, A less restrictive policy that
allows for special circumstances. on the other hand. may need to mandate changes in the tags to
reflect the special actions taken

Page -16- Database Consistency and Security
Section 3 A Framework for Security an4 Integrity Policies

A policy with static integrity classifications. for example. may not allow a subject to write data
with an integrity tag value lower than that of the data read. Another policy may allow this "write-
down' in special cases (e.g. if requested by a highly trusted user). but might increase the integrity tag
value of the written data to match that of the read data In this case. the policy itself would specify
the action to be taken

In the next section. we give some examples of static and dynamic security and integrity policies

and show how they might be expressed as database constraints. We define a model that divides the
standard notion of 'integrity' as used in the security literature into two parts. using this extra preci-
sion to define a number of possible policies. By dividing the integrity classification tag into two tags.
we can allow changes to a single tag while requiring the other to remain static. This type of policy can
accommodate some useful special cases without relaxing important integrity requirements. In the next
section. we discuss the significance of dividing "integrity" into two components

3.4 An Example of Security and Integrity Policies

3.4.1 Basic and Restrictive Policies

To illustrate the use of weak and strong constraints as stdtements of security and integrity poli-
cies. we have formulated a sample policy that is similar to the models in [BIBA77. FEIE77. KSOS781
We have relied on the formulations in [LAND81]. These models ascribe two types of ratings. or sensi-
tivity levels, to users. functions. and data security and integrity. We believe that the notion of
integrity in these systems is very broad and so our model explicitly divides this notion into two parts
Therefore. our policy involves three types of ratings for all controlled users. functions. and data.

"Integrity. as it is used in the security literature, is a measure of the value and criticality of the

data Data with high integrity must be protected from compromising write operations. There are.
however, two aspects to a data item's integrity. The first is its sensitivity, the amount of damage that
could be caused by malicious (or erroneous) modifications. The second is the reliability of the data
item as a correct reflection of the real world. The two aspects are often difTerent. and they have been
separated explicitly in the model below

A discussion of the ways in which the separation of these aspects leads to more precise security
policy statements follows the definitions of the three types of ratings used in our model

Types of Ratings

1. Read-sensitivity (Security): a measure of the amount (type) of damage that could be caused
by improper disclosure.

2. Write-sensitivity (part of the notion of 'integrity' as it appears in the security literature), very
similar to read- sensitivity -- a measure of the amount (type) of damage that could be caused
by improper modification.

3. Trustworthiness (also usually included in standard literature as part of "integrity'): a measure
of the reliability of the user. function. or object.

If a subject (a user or function) has a high read-sensitivity rating. the understanding is that the

subject is not likely to disclose secure information improperly. Then. such a subject might be trusted
to read highly secure data and write less secure data (ie.. if it wanted to disclose the highly secure
data it could anyway.) Of course. the problem is not so much that the subject might deliberately

Database Consistency and Security Page -17-

A Framework for Security and Integrity Policies Section 3

disclose data (even to a confederate), but that it might unknowingly use this data in such a way that
some other malicious user with a (deservedly) lower security rating might get or infer the data This.
then. is where a separate trustworthiness rating comes in Think of trustworthiness here as being an
indicator of 'smartness" or "subtlety" Although it seems highly impractical and imprudent to rate
users 'smartness- as such. it might actually be that it is useful to assign users trustworthiness rat-
ings based on their knowledge of the system Thus, those with a very good idea of (and access to)
large portions of the database would likely have high trustworthiness ratings The trustworthiness rat-
ings might be based in part on understanding of the workings of the DBMS and/or on depth of under-
standing of the application

The key to this model is that a subject or object may well have different values for the three
types of ratings For example. an employees salary might have a read-sensitivity rating of CONFI-
DENTIAL but a write-sensitivity rating of TOP SECRET Missile targets could have very high read-
and write-sensitivity ratings, meaning that improper disclosure or modification could be extremely
detrimental to national security but a particular entry could have a relatively low trustworthiness rat-
ing (meaning perhaps. that the target was picked on the basis of incomplete intelligence reports) We
show how different policies can exploit this distinction between write-sensitivity and trustworthiness

The three types of ratings may be expressed using three different scales or domains of values or
they may be expressed using the same scales The choice depends largely on the policies and pro-
cedures already in place and on the system-enforced policies to be defined In some applications read-
and write-sensitivity and trustworthiness may be closely related. for example information that is
regarded as highly trustworthy may be more write-sensitive than its less trustworthy counterparts In
this case trustworthiness ratings may be some function of read- and write-sensitivity ratings In other
applications, complicated security policies may involve other combinations or cross-comparisons, sug-
gesting a single scale for all ratings

We use r- w- and t-rating to abbreviate read-sensitivity write-sensitivity, and trustworthiness
ratings. respectively

To demonstrate the use of these types of ratings we begin with the formal properties described
and used by the KSOS project [KSOS781 as described in [LAND81] and reformulate them in terms
of r- w-. and t-ratings The reformulated properties highlight the different roles of write-sensitivity
and trustworthiness in what was originally the single "integrity" quality We then discuss some useful
expansions and modifications of these policies and show how they can be expressed through some sim-
ple additions to the basic constraints

The policies described below ensure four basic and fairly strict, restrictions

1 READ AUTHORIZATION. A subject has read access to an object only if the subjects r-rating
is greater than or equal to the r-rating of the object. (Essentially the simple security property
of Bell and LaPadula fBELL74I.)

2. WRITE AUTHORIZATION: No subject has write access to any object that has a w-rating
greater than the w-rating of the subject. (The exact dual to the preceding property)

3 NO WRITE-DOWN: A subject can modify an object 02 in a manner dependent on an object
01 only if the r-rating of 02 is at least that of 01.

Page -18- Database Consistency and Security
Section 3 A Framework for Security and Integrity Policies

4. TRUSTWORTHINESS: A subject can modify an object 02 in a manner dependent on an
object 01 only if the t-rating of O1 is at least that of 02. (Information may not flow from less
trustworthy data to more trustworthy data.)

3.4.2 Basic Security Constraints

We will use r(f). w(f). t(f) to refer to the read-sensitivity. write-sensitivity, and trustworthiness
ratings (respectively) of a function reference f. Similarly. r(v). w(v). and t(v) refer to the ratings of a
state variable v. In what follows. we will assume that the three types of ratings use the same
domains. We use <= to refer to the partial ordering over this domain In an application with different
domains for the three ratings, specialized comparators would of course have to be used.

READ CONSTRAINT If function reference f depends on state variable v. then

r(v) <= r(f). AND t(f) <= t(v)

Note that in the read constraint the KSOS use of integrity is replaced by our use of trustworthi-
ness (not write-sensitivity).

WRITE CONSTRAINT. If function reference f may affect the value of state variable v then

r(f) <= r(v) -- same as in KSOS
AND w(v) <= w(f) -- as in KSOS. buy divided into write authority
AND t(v) <= t(fo -- and trustworthiness here

READ/WRITE CONSTRAINT If function reference f may cause the value of state variable v2 to
change in a way dependent on state variable vi. then

r(vl) <= r(v2) -- same as in KSOS
AND t(v2) <= t(vl) -- trustworthiness for KSOS' "integrity' here

The necessary read and write authorizations are covered by applying the preceding two constraints
to this situation This constraint is very similar to the read/write constraint in the KSOS model, with
the notion of integrity divided into write-sensitivity and trustworthiness Some variations that lessen
the restrictions of this constraint are discussed below

3.4.3 Policies Involving Dynamic Ratings

One major way of changing the security and integrity policies of an application is to allow
system-invoked changes to objects* ratings 'in some cases In these cases. the system would allow
selected operations that would have been blocked by the strict policies, but it would also ensure that
relevant ratings are changed.

For example. rather than the strict controls on the flow of trustworthy data given above, it may
be desirable in some applications to allow less trustworthy data to affect more trustworthy data In
these cases. it is probably reasonable to make trustworthiness a more dynamic property The con-
straints used to enforce the policies might have associated actions that would automatically change an
object's t-rating. The policies used to determine the new t-rating would be expressed as a mathemati-
cal formula. The trustworthiness of a changed variable may be the minimum of all relevant
trustworthiness levels, for instance, or it may be higher if the function reference that changed it had a

Database Consistency and Security Page -19-
A Framework for Security and Integrity Policies Section 3

high trustworthiness rating (The assumption is that such a trustworthy function would not use less
trusted data unless it had other reasons to do so

The framework we propose is well-suited to this approach In the sample constraints given above.
each constraint had an (implicit) associated action to disallow an operation that violated the constraint
This same mechanism can be used to define automatic changes to ratings by relaxing the definitions of
the constraints somewhat. and adding new actions An illustration is given in the following version of
the read/write constraint and its associated action

READ/WRITE CONSTRAINT: If function reference f may cause the value of state variable v2 to
change in a way dependent on state variable v1. then

r(vl) <= r(v2) -- same as in KSOS
r(vl) <= r(f) -- read authorization included explicitly

here for completeness of example

w(v2) <= w(f) -- write authorization included explicitly
here for completeness of example

ACTION t(v2) = min(t(f) t(vl).t(v2))

3.4.4 Policies Involving Trusted Agents

The division of the "integrity" rating into w- and t-ratings allows for the definition of policies that
are more responsive to special situations Here we discuss policies that include special privileges for
trusted users. or agents.

A subject with a high r-rating. but a lesser t-rating might not be allowed to "write-down". If the

subject has a high t-rating. though. it may be allowed to write-down. The trustworthiness rating may
be a way of capturing the different types of write functions -- one function might simply copy some
data (this is the quintessential "write-down") while another function might retrieve some information
for a general. and record the generals changes to other information. The assumption here is that the
general has sufficient knowledge of the database to ensure that the data written will not betray the
higher level information retrieved earlier and the software correctly implements these changes. The t-
rating of a function will typically depend on the t-rating of the user invoking the function and the

degree of verification of the implementation of that function.

The version of the read/write constraint given here illustrates one policy that allows trusted func-
tions to violate the trustworthiness policy. This formulation is meant only to suggest how such a pol-
icy might be expressed: other variations are of course possible That is the goal of describing a gen-
eral framework for the enforcement of security and integrity policies.

READ/WRITE CONSTRAINT: If function reference f may cause the value of state variable v2 to
change in a way dependent on state variable vi. then

w(v2) <= w(9
AND r(vl) <= r(f)
AND { [r(vl) <= r(v2) AND t(v2) <= t(vl)]

OR max(t(v),t(v2)) <= t(f) }

Page -20- A Framework for Security and Integrity Policies
Section 3

This constraint expresses the policy that the function f must always have a sufficiently high w-
rating to write v2 and a sufficiently high r-rating to read v1. Furthermore. information should not flow
from more r-sensitive to less r-sensitive. nor from less trustworthy to more trustworthy unless the
function is at least as trustworthy as the most trustworthy data involved

3.4.5 Use of Weak Constraints

The policy just described involves a relaxation of the strict constraints, but only in the case of
sufficiently trustworthy functions. This is exactly the type of situation mentioned earlier in the discus-
sion of strong and weak constraints. Up to this point, all the constraints defined have been treated as
strong constraints This is natural. in that security and integrity policies must be strictly enforced if
they are to be useful at all However. when policies are defined to allow special cases (such as trusted
functions). the role of weak constraints becomes very important.

Perhaps surprisingly, the inclusion of weak conditions in our framework serves to strengthen
rather than weaken control over a system s security and integrity The key point here is to view weak
constraints not as unenforced constraints but as descriptions of events to be monitored The interplay
of strong and weak constraints is critical all the necessary restrictions are expressed as strong con-
straints and therefore strictly enforced. and any special cases or questionable situations are expressed
as weak constraints and therefore monitored The way that these situations may be monitored
depends on the application When a weak constraint is violated for example the relevant information
may be added to a log the changed data may be marked or a message may be immediately sent to a
responsible authority

In the example of the policy involving trusted functions it may be desirable to keep a log of the
function id (including user id). data involved, and timestamp of all Functions which were allowed to act
only because of their trusted status. This log could then be reviewed periodically to find suspicious
patterns If this log were itself part of the controlled data in the database. certain types of additions
to the log could themselves be described as weak constraints and these constraints in turn could be
responsible for sending warning messages to authorities

To illustrate the way in which weak constraints could be used to monitor specific situations sup-
pose we express a policy using the strong read/write constraint given in the previous section

STRONG READ/WRITE CONSTRAINT: If function reference f may cause the value of state
variable v2 to change in a way dependent on state variable vi. then

w(v2) <= w(9
AND r(vl) <= r(f)
AND { (r(vt) <= r(v2) AND t(v2) <= t(vl)l

OR max(t(vl).t(v2)) <= t(f) } -

This strong constraint will ensure that no violations of this policy are allowed However. we might
want to augment our system by monitoring which functions would have violated the policy had they
not been sufficiently trustworthy. Therefore. we would define the following weak constraint.

WEAK READ/WRITE CONSTRAINT If function reference f may cause the value of state vari-
able v2 to change in a way dependent on state variable vi. then

NOT [r(vi) <= r(v2) AND t(v2) <= t(vl)I
AND max(t(vI).t(v2)) <= t(f)

Database Consistency and Security Page -21-
A Framework for Security and Integrity Policies Section 3

Notice that there is no need to do any testing of read and write authorizations in the weak con-

straint: read and write authorizations are strict requirements and are enforced through the strong con-

straint. The only situations ever tested by the weak constraint are those that satisfy the strong con-

straint. To reiterate. the strong constraints are the barriers to improper reads and writes. while the

weak constraints are observers of particular allowable events,

Database Consistency and Security Page -23-
Security Issues and Transaction Processing Section 4

4. Security Issues and Transaction Processing

In this section we study the interaction of security constraints with the interleaved execution of
transactions We highlight the new problems that surface when the interplay of security constraints
and processing of transactions is investigated for a variety of contexts. centralized database systems
and distributed database systems with and without data replication Our aim is to use th, common
framework that has been proposed in this report (for specification. verification and enforcement of
database consistency constraints as well as security constraints) for modeling the synchronization
mechanisms that take into account the security as well as data correctness aspects

We first introduce the notions of a transaction. atomicity. commit and then review several con-
currency control mechanisms that are currently used for the interleaved execution of a set of trans-
actions in the centralized database context. We then discuss the interplay of security issues with
transaction processing in centralized databases The discussion is extended to the distributed case.
and in the last subsection we present flexible concurrency control mechanisms and discuss some of the
implications of relaxing basic consistency notions

4.1 Transaction Model for Specifying Consistency under Concurrent Execution

A database system may be viewed as a triple <D. C. T>. where D is the set of database entities.
C is the set of constraints over D. and T is the set of all programs that may access D A program is
a sequence of actions. A program when executed alone is assumed to preserve consistency. that is.
transform a consistent state of D to another consistent state In order to run programs with maximal
concurrency (to increase performance). actions from several programs are interleaved and allowea to
simultaneously operate on the entities of D Unless some control is exercised to restrict the way in
which concurrently executing actions of several programs are interleaved, the actions may interfere.
resulting in various anomalies (lost updates. inconsistent retrievals, inconsistent updates) and leave D
in an inconsistent state

Hence. it is important. in the context of a database. to guarantee that an action or a sequence of
actions (referred to as a program above) appears to be executed in isolation and in its entirety or not
executed at all This concept is expressed using the notion of atomicity. A transaction is defined as a
program which is executed atomically that is

a) the transaction accesses shared data without interference from other transactions. and

b) if the transaction terminates normally. then all its effects are made permanent. otherwise it has
no effect at all.

Note that a transaction is assumed to satisfy the consistency constraints at the beginning and
after the transaction executes to completion (vacuously true for abnormal termination under atomi-
city) Note also that one purpose of grouping a sequence of actions into an atomic transaction is that
the consistency constraints may be violated temporarily before the termination of the transaction For
example. in an electronic fund transfer the account is debited before the other account is credited (or
vice versa) and the condition that the sum of account balances before and after the transaction is the
same is temporarily violated. Commit is an operation executed by the DBMS that indicates the

Page -24- Database Consistency and Security
Section 4 Security Issues and Transaction Processing

normal completion of a transaction and that all its effects should be made permanent. Similarly. abort
signifies an abnormal termination of a transaction and that all of its effects should be ooliterated.

In a multi-user system it is unreasonable to assume that the transactions are executed in isolation

one after the other (serially) from the performance point of view. However. if transactions are exe-
cuted concurrently interleaving actions from a set of transactions in an arbitrary manner. the actions
are likely to interfere with each other resulting in a database state that does not belong to the set of
valid states that result from executing the transactions serially At the same time if a transaction
were to terminate abnormally (program failure. system failure, intentional abort). the effect of that
transac!'on needs to be undone in some way.

Hence. the notion of atomic execution of transactions gives rise to two problems. namely. the con-
currency control problem and the recovery problem. Concurrency control ensures that each trans-
action submitted to the system executes atomically This is achieved by controlling the interleaving of
concurrent transactions, to give the illusion that transactions execute serially, one after the next. with
no interleaving (and hence no interference) at all. On the other hand. recovery control monitors and
controls the execution of each transaction so that the database includes only the results of trans-
actions that run to normal completion If a failure occurs while a transaction is executing. and the
transaction is unable to finish executing. then the recovery control must wipe out the effects of the

partially completed transaction Moreover. it must ensure that the results of transactions that do exe-
cute to completion are never lost.

Security issues influence both the strategies chosen for concurrency control as well as for
recovery We concentrate mostly on concurrency issues in this section without going into the details
of recnvery control.

A variety of concurrency control mechanisms are currently used for the interleaved execution of a

set of transactions. Proving the correctness of a given concurrency control mechanism (such as lock-
ing. timestamp ordering etc.) requires showing that the mechanism produces only serializable execution
histories An execution is serializable if it produces the same output and has the same effect on the

database entities D as some serial execution of the same transactions. Since serial executions are
correct (assuming that the individual transactions are correct) and serializable executions correspond to
a serial execution. it follows that serializable executions are correct

The theory of serializability is concerned with achieving this illusion without executing transactions

in isolation. Serializability is the definition of correctness for concurrency control in database manage-
ment systems. It gives precise rules and conditions for the correctness of concurrent execution of

several transactions. A concurrency control algorithm is correct if all of its possible executions are
correct. Since execution of transactions is modeled by histories (also known as logs or schedules) and
serializability conditions are stated in terms of histories over transactions. we examine the characteris-
tics of histories and transactions below

4.1.1 Transactions
A transaction T. is a partial order with ordering relation <. where

I I
1. T. is asubset of {ri[x]' wifx] x is a database entity} U {a. c.}.

Page -25-
Security Issues and Transaction Processing Section 4

2. a. is a member of T. ifi c. is not a member of T..I I 1 1

3. if t is c., or a. (whichever is in Ti). for any other operation p in Ti.p <., t:

4 if ri[x]. wi[x] is a member of T.. then rI[xj <I wi[x] or wi[x] <i ri[x

The above model of a transaction from [BERN87] captures the database operations (such as read
(r). write (w). commit (c) and abort (a)) and not other details of a transaction such as initial values
assignments. etc The notation o[xJ stands for the operation o on the database entity x. where o can
be any of the database operations mentioned above We will later introduce additional database opera-
tions

4.1.2 Histories

A history indicates the execution order along with the interleaving of the actions of a set of trans-
actions. A history is again a partial order as the operations can be executed in parallel A history is
also required to preserve the order of operations as specified by an individual transaction

In addition. a history captures the order of all conflicting operations that appear in it. Two opera-
tions are said to conflict if they both operate on the same database entity and at least one is a write
Thus rjxj conflicts with w[xJ whereas w[y] conflicts with both r[y] and w[y].

Formally a history H corresponding to a set of transactions T = {T1 . T 2 ' .Tn} is a partial order
with ordering relation < h where

1 H is the union of elements in T.

2 <h is a superset of the union of <". and

3 for any two conflicting operations p q belonging to H either p <h q or q <h P

A history represents a possibly incomplete execution of transactions

4.1.3 Serializability Theorem [BERN87J

It is possible to determine whether a history is serializable by analyzing the graph derived from the
history called the serialization graph Let H be a history over T = {T 1. T 2''... Tn} The serialization
graph (SG) for H. denoted by SG(H). is a directed graph whose nodes are the transactions in T that
are committed in H and whose edges are all Ti - T. (Ti < > Tj) such that one of Tis operations pre-
cedes and conflicts with one of Tj's operaltions.

A history H is serializable ifT SG(H) is acyclic.

Page -26- Database Consistency and Security
Section 4 Security Issues and Transaction Processing

4.1.4 The Effects of Serializability

There are basically two approaches to concurrency control. each addressing different sets of

requirements. The first approach. serializability, was defined above. The advantage of this approach
is that the database consistency can be guaranteed by requiring that each transaction individually
preserves consistency. The disadvantage of serializability is that it requires analyzing each transaction

as it is submitted. and backing-out (undoing the effect of the transaction) or blocking (disallowing)
transactions which would conflict with other transactions Serializability also often has an adverse
effect on transaction throughput. because a transaction must wait until a conflicting transaction com-
mits and releases loc- before it can execute. Deadlock detection and resolution and deadlock
avoidance are other problems that coexist with concurrency control mechanisms proposed in the litera-
ture

An alternative approach is to allow transactions to run non-serializably. providing high transaction
throughput. An example of this is one developed by CCA for the RADC- and DARPA-sponsored SAC
C3 project [SARI85] Under this approach transactions are never blocked due to concurrency controls
Interdependent transactions may be run concurrently on different processors. and database incon-
sistencies may result. Should any inconsistencies arise, each processor analyzes the log of executed
transacticns and takes appropriate steps to restore consistency These steps may involve undoing and
redoing some transactions or running new transactions which compensate for the inappropriate actions
of other transactions When serializability is not enforced. although database consistency is not
guaranteed at all times (unlike the previous approach) it is guaranteed eventually The advantage of
the approach is that it allows a large number of transactions to be processed without the immediate
imposition of concurrency controls. and consequently it allows transactions to be processed in a distri-
buted environment even when some processors cannot communicate with each other

4.2 Concurrency Control Mechanisms

Various mechanisms have been developed to enforce the conditions of the serializability theorem

during the execution of a set of transactions They include locking. timestamp ordering serialization
graph testing. optimistic strategy and synchronization with eventcounts and sequencers In each case

it has been shown that a scheduler. using a particular technique. generates only serializable schedules
Informally a scheduler is a program or a collection of programs which controls the concurrent execu-
tion of transactions It exercises control by restricting the order of execution of actions (read. write.

commit. abort) associated with concurrently running transactions The goal of the scheduler is to
order and execute the actions of transactions in such a way that the resulting schedule is serializable
(and recoverable)

Among the available techniques for concurrency control. locking has been studied extensively and
has been widely used in extant database management systems Below. we briefly examine some of

the strategies.

4.2.1 Locking

Locking is a mechanism commonly used to solve the problem of synchronizing access to shared
data In this scheme every database entity has associated with it a unique lock. A transaction must
lock an entity before it can access it Basically by locking an entity. a transaction ensures that it is
inaccessible to other transactions while it is being modified If an entity is not already locked then a
transaction can lock it with a 'lock action If a transaction attempts to locK an entity which is already

Database Consistency and Security Page -27-
Security Issues and Transaction Processing Section 4

locked, then it either waits for the entity to be unlocked, aborts itself. or preempts the transaction
holding the lock. A transaction can relinquish the lock on a entity by an 'unlock* operation.

Transactions access database entities either for reading or for writing them. Hence two types of
locks are assumed. namely. read locks and write locks. Let Readlock[x] and Writelock[x] denote the
read lock and the write lock on database entity x. respectively Similarly. Readunlock[x] and
Writeunlock[xJ are used for unlocking the database entity x. The definition of a transaction is
extended to include the lock and unlock operations.

Two locks plijx] and qI.[yJ conflict if x = y. i <> j. and the operation p and q are of conflicting
type That is. two locks conflict if they are on the same data item, they are issued by different trans-
actions and one or both operations are write locks

4 2.1.1 Two Phase Locking. In this scheme, restrictions are imposed on the acquisition and relin-
quishment of locks in order to produce only serializable histories by a scheduler which follows the res-
trictions. The rules for two phase locking are.

1. Before scheduling an operation the scheduler tests if pl.[x] conflicts with some ql.[x] that is
already set. If so. it delays p;[x]. forcing T. to wait unth it can set the lock it needs If not.
the scheduler sets pli[x]. and then schedulesipli[xj

2. Once the scheduler has released a lock for a transaction, it may not subsequently obtain any
more locks for that transaction on any database entity.

The first rule prevents two transactions from concurrently accessing a database entity in
conflicting modes It is assumed that setting and releasing the locks themselves are guaranteed to be
atomic. The second rule enforces the two phase property - a growing phase in which locks are
acquired without releasing any lock and a shrinking phase which starts with the first unlock operation
and during which a transaction releases locks without acquiring any more locks.

It can be shown that all histories generated by any scheduler which conforms to the rules of tvio
phase locking stated above are serializable.

4.2.2 Non-Locking Strategies

Locking protocols involve the overhead of requesting a lock every time a database entity is
accessed. Transactions may get blocked and have to wait for the locks to be released by other trans-
actions. As an alternative to locking, a variety of synchronization protocols have been proposed which
produce serializable schedules.

4.2.21 7 mestamp Ordering. A timestamp is a unique system wide number which is assigned to
a transaction and is chosen from a monotonically increasing sequence. Usually it is generated by a
clock (with an appropriate least count) or a number that is incremented at the time of its generation.

A timestamp is essentially used in two ways. First. it is used to determine the currency or out-
datedness of a request with respect to the data it is operating upon. Second. it is used to order
events (requests) with respect to one another.

Page -28- Database Consistency and Security
Section 4 Security Issues and Transaction Processing

In timestamp ordering, a unique timestamp (ts) is assigned to each transaction as it enters the
system (or when its first operation is scheduled). The timestamp associated with a transaction is
attached to each operation of the transaction Therefore the timestamp of an operation o.[x] is noth-
ing but the timestamp of the transaction Ti. A scheduler following the timestamp ordering protocol
simply orders conflicting operations according to their timestamps. More precisely, it enforces the fol-
lowing rule:

if pi x and qj[x] are conflicting operations then pi[x] is processed before qj[xj if" ts(Ti) < ts(T)

It can be shown that if H is the execution history produced by a scheduler obeying the above rule.
then H is serializable

4222 Optimistic Protocols. Optimistic approaches to synchronization offer maximum con-
currency with the underlying assumption that the conflicts among transactions are rare and conflicts
are exceptions rather than routine. A transaction always executes (albeit tentatively) concurrently
with other transactions without any synchronization check. However. before a transaction s updates
are made final (visible to other transactions). it is certified (or validated). It is the certification phase
that determines vhether there is a conflict and the transaction should be aborted and backed out or if
it can be committed.

In most of the optimistic methods [KUNG81I the execution of a transaction is divided into three
phases read phase. validation phase and write phase. Read phase corresponds to the execution of a
transaction making local changes Validation phase precedes the write phase (making changes visible
to other transactions). Improvements. in the form of transaction analysis. have been proposed to clas-
sify transactions into read-only and update categories

4.2.3 Deadlock and Livelock

These situations occur potentially in systems where some form of synchronization is used in exe-
cuting transactions (processes in general) concurrently. Deadlock is a situation in which two or more
transactions are in simultaneous wait state each waiting for one of the other to release locks before it
can proceed Livelock is a situation where a transaction T waits forever, waiting for a lock. even
though there are unlimited number of times when T might have been given the lock it needed
Livelock is also equated with cycle restart where a transaction is aborted every time it tries to acquire
a lock only to be restarted to encounter the same situation

Two phase locking does not guarantee freedom from deadlocks. A deadlock condition is com-
pletely characterized by wait-for graphs IHOLT72. RYPK791. Two philosophies are generally used in
overcoming deadlocks- deadlock prevention and deadlock detection and resolution Timestamp order-
ing and optimistic protocols do not have to deal with the problem of deadlock as deadlock is impossible
in these cases.

Livelock can occur in all the concurrency control mechanisms discussed above and must be
avoided using suitable techniques

The above succinct summary is provided for the sake of completeness A parallel study on tem-
poral properties is being conducted along with this study which will address deadlock and livelock
issues in greater detail

Database Consistency and Security Page -29-Security Issues and Transaction Processing Section 4

4.2.4 Verification of Serializability

Verification of serializability even by model-theoretic means. has turned out to be a non-trivial
task as illustrated by the proof of the SDD-1 protocols [BERN80 Formally specifying and verifying
serializability appears even more difficult. As a first step. we make an attempt to formally specify a
well-understood and widely used concurrenc.j control mechanism, namely, two-phase locking using an
experimental extension of the specification language SYSPECIAL This result is presented in Section
5 In that section we also discuss the experimental extensions that were introduced to SYSPECIAL to
model the two-phase locking protocol namely. a multilevel specification capability and the notion of a
trace

4.3 Security Issues in Centralized Transaction Processing

As discussed in the above sections the major thrust of transaction management :.as been from
the viewpoint of maintaining database consistency by avoiding interference caused by arbitrary inter-
leaving of transactions Strategies for synchronization have been developed for maximizing transaction
rate throughput and making the database highly available Security constraints and a need to enforce
them in an environment of shared access add a novel perspective to the problem of simultaneous pro-
cessing of transactions Since security considerations were not a factor that was considered in the
design of most concurrency contro mechanisms it is useful to analyze their behavior under the addi-
tional requirements of security We shall assume in this discussion that security policies can be
expressed in the form of constraints as illustrated in Section 3

In contrast to the abundant work on protocols for synchronization and their correctness little
work has been reported in analyzing security issues during concurrent execution of database trans-
actions As demonstrated in the literature on security. e.g [DENN86 DENN79. DENN85J. security
breaches can be very subtle and their total avoidance may not be possible Special engineering solu-
tions, such as encapsulation of certain functions may be required. Even so. a complete elimination of
security threats through such mechanisms as inference, may not be possible

Recent work [DENN861 on security issues pertaining to relational databases has concentrated on
mandatory security policies Multilevel derived relations (defined using the notion of a view supported
by a majority of systems based on the relational model) are presented as a means of separating the
base object (which is a base relation) and accesses to it through a reference monitor which is pro-
tected Various other aspects of relational databases such as the need for poly-instantiation. and the
need for the classification of consistency constraints themselves are also discussed

In this section we focus on the concurrency control mechanisms and try to identify their
shortcomings from a security point of view We try to identify what assumptions that underly the
traditional concurrency mechanisms are not valid in a secure environment and whether these mechan-
isms can be recast under security-related'constraints

4.3.1 Correctness with Respect to Security and Consistency

Concurrent processing of transactions satisfying security conditions/protocols poses a range of
problems that may void techniques traditionally used for enforcing correctness of database constraints

Page -30- Database Consistency and Security
Section 4 Security Issues and Transaction Processing

The problem of correctness for security can be expressed as two subproblems:

a) Correctness of an individual transaction from the security viewpoint. and

b) Correctness (with respect to security) when consistency and security preserving transactions
are interleaved in an arbitrary manner (the interference problem)

4.3.1.1 Correctness of Individual Transactions. The first problem is that of showing that an indi-
vidual transaction does not violate any security constraints/policies if it is executed individually as an
isolated transaction. Before any effects of concurrent execution can be discussed. the correctness of
individual transactions has to be guaranteed.

The notion of atomicity can be extended to include security correctness in a straightforward
manner. This is the classical program verification problem and some of the techniques and automated
tools developed for that purpose are applicable here. Verification of a transaction [GARD79. SHEA86]
before its execution presupposes that the security requirements can be stated as pre- and post- condi-
tions using a formal declarative language (such as first order logic). It is evident from the discussion
of security policies (in section 3). that our approach enables us to capture security policies (mandatory
as well as discretionary) as constraints on an appropriate model of the database thereby making it
amenable to verification using the same tools for verification of consistency and security. Such a com-
mon framework is necessary if one intends to show compatibility between the security and the con-
sistency constraints.

It should be pointed out that any data access including read (not just the update) is sensitive to
security restrictions. Therefore. existing tools used for verification of individual transactions [SHEA86]
have to be modified.

It is obvious that not all restrictions can be stated as pre- and post- conditions that can be verified
statically at compilation time. As in database correctness. it is essential that one can express con-
straints that have condition(s) and compensatory action(s) associated with the conditions which need
to be applied when the conditions are violated. Situation action rules and triggers belong to this
category These provide alternatives to the default action of aborting a transaction once the condition
is violated As an example. if a referential consistency constraint were to refer to two attributes (in
different relations) with different security classifications, insertion of new tuples may have to be han-
dled using poly-instantiation which can be specified as the action.

An approach to the verification of security constraints is to partition the constraints into two
classes: those that are verifyable on the database state at compile time and others that have to be
verified at run time. Techniques that have been developed for program verification can be employed
for verifying compile time constraints. Ruh time verification of constraints (specified as situation
action rules or triggers) is currently an active database research area. Run time verification is compli-
cated by its interaction with synchronization mechanisms as well as recovery aspects Many of the
proposed solutions are application-specific. Hence. one has to approach this problem with caution, but
the techniques developed for database correctness will be extremely useful in the context of security
At the end of this section we discuss some of the implications of triggers and the corresponding
actions further.

Database Consistency and Security Page -31-
Security Issues and Transaction Processing Section 4

A second class of problems is derived from intermediate feedback given during the execution of a
transaction. Any response (output from the transaction. querying by the system. feedback produced
by a transaction. or any external action) produced during the execution of a transaction before its nor-
mal completion may provide a channel which may be used to compromise security. This entails that
the output of an active transaction (which has not committed yet) may have to be either seriously lim-
ited. delayed or undone in a manner consistent with security policies. This has ramifications in
interactive environments if the transactions cannot be verified to be correct (with respect to security)
prior to the start of the transaction.

There has been considerable interest in the area of informative answering [JANA81] wherein the
user is guided by the system which provides answers that are meaningful (have more context and
information) based on inferences the system draws about the intention of the user. The -extended"
queries are obtained via query modification techniques from semantic information usually stored in the
form of constraints. The opposite problem of "secure answering is related to the inference problem
that has been identified in secure environments and has received less attention. An interesting possi-
bility would be to use the unified framework for consistency and security together with techniques
employed in informative answering to identify better the threats derived from feedback to users and
the pattern of queries made by a user

In order to analyze the effect of outputs. it is useful to classify intermediate actions as internal

actions (that are reversible) and external actions (in turn divided into those that can be compensated
and those that are irreversible). Internal actions those that did not produce any visible action can
always be undone or compensated. Some external actions can be compensated for, although the cost
of doing so may be variable. For example compensating for overbooking a flight in economy class by
upgrading a passenger to first class is inexpensive. Having to blow up a missile that was fired by mis-
take is not. A case of irreversible external action would be the firing of a missile that has no self-
destruction mechanism. Unfortunately. external actions that violate security fall into the class of
irreversible external actions.

Internal actions of a transaction can be rolled back. External actions can be suppressed until their

effect is clear. For example. it is possible to suppress the sensitive parts of the output. An alternative
approach is to delay any feedback produced by a transaction until the transaction commits Though

this approach is suitable for 'batch' transactions. for transactions requiring user inputs, it is essential
to determine whether the output is security-sensitive or not.

The notion of transaction classes and their analysis may provide a means for determining -whether

to suppress or delay feedbacks produced by a transaction. If it is possible to classify transactions

based on the outputs and feedbacks embedded in the transaction. then policies can be stipulated for a
transaction rather than individual actions. This presupposes that a preanalysis of a transaction is
viable, as discussed before under transaction-class analysis. This class concept can also be used to

determine the mix of transactions that are being executed concurrently. The work of Stemple
[SHEA86] is relevant in this context since it provides the means to verify a transaction with respect to

a set of complex (but static) consistency constraints at compile time. If a common framework for
consistency and security constraints is used. then it is conceivable to use the same tools for
verification of consistency and security constraints.

Page -32- Database Consistency and Security
Section 4 Security Issues and Transaction Processing

4.3.1.2 Correctness of Interleaved Execution of Transactions.

The second subproblem is that of defining synchronization mechanisms that eliminate interference
with respect to security when transactions are executed concurrently. Interference can arise both from
dynamic changes in the security rating and through normal access (read and write) to common data
Dynamic changes to classification can happen through a) sanitization and b) explicit change of
classifications (reclassification). It may be unreasonable to assume that all sanitization and
reclassifications take place in isolation in a shared database environment. Assumptions to the contrary
will simplify the interference problem but will not eliminate it.

To guarantee database consistency. the order of execution of transactions is not critical as long as
each transaction is consistent and interference among transactions is eliminated. Hence. serializability
does not have to guarantee the order of the execution of transactions. However. this assumption may
not be valid in secure environments in which on-line modification of any aspect of the security rating of
an object (r.w. or t) is required. In this case. alternate concurrency control mechanisms will be needed
that preserve the exact order of execution of transactions. for example. time-stamping mechanisms.

The very act of aborting a transaction may serve as a covert channel conveying some information
about the database entities accessed by that transaction (a change in the classification of data during
interleaved execution may abort a transaction that executed to completion earlier, or even the insertion
of a new tuple that impacts a constraint that has to be satisfied by that transaction)

It has been pointed out [Reed79] that the synchronization protocols using read- and write-locks are
potential inforrr -ition channels through which information can be tapped out by locking (or trying to
lock) data in a ,.jen pattern. This observation has serious ramifications. as most current implementa-
tions of database management systems use locking as a synchronization mechanism and a large
number of studies have analyzed variations of this generic method and their performance characteris-
tics. An alternative protocol based on event counts and sequencers [Reed79] has been proposed to
overcome this problem, Unfortunately. this method does not guarantee that a reader process will not
be starved To guarantee that a reader will not be starved, again an arbiter process would be required.
It appears that specially engineered solutions are required.

The use of locks acting as an information channel is predicated on the assumption that the locking
pattern is visible and somehow accessible to an unauthorized or malicious subject. One way to over-
come this problem is to encapsulate the monitor that manages the locking protocol and the lock table
itself in a secure module thereby making the locking pattern invisible. Also. it implies that the opera-
tions of locking and unlocking not be available as primitive operations at the user interface level, nor
that any information about the cause for an unsuccessful termination of a transaction be transmitted
to the user.

There is a parallel between optimistic protocols (described in Section 4.2.2.2) and the secure
readers-writers problem using eventcounts and sequencers for synchronization. In both cases serializa-
tion is relaxed and transactions execute without getting blocked initially. If a conflict is detected. then
one of the transactions is aborted (the reader in the case of event-counts). However. since this
method also depends on an arbiter during the validation phase. an engineering solution that isolates the
validator may be required. The advantage over locking protocols may be mostly a reduction of channel
bandwidth, not the complete elimination of the channel.

Both sequencers and optimistic protocols can benefit from transaction-class analysis. During
transaction-class analysis. similar transactions are studied as a class to identify other transaction
classes with which a given transaction-class is compatible. Compatibility in this context means that
the generic transactions touch only attributes which are non-conflicting with the attributes that are

Database Consistency and Security Page -33-
Security Issues and Transaction Processing Section 4

touched by the transactions in another transaction-class. Since no instances are analyzed and the
analysis can be performed off-line, the potential for tapping out information is greatly reduced Early
attempts of using transaction-class analysis are part of the SOD-1 system [BERN80. BERN81J

It appears that among existing alternatives, the safest approach is transaction-class analysis with
concurrent execution of non-conflicting transactions and serial execution of any potentially conflicting
transactions in time-stamp order. Any transaction that cannot be matched with a preanalyzed class
has to be treated as potentially conflicting with all others. Unfortunately. such an approach may
greatly degrade performance.

We have discussed above problems that arise during the concurrent execution of transactions in a
centralized environment. In the next subsection we extend the discussion to the distributed case

4.4 Security Issues in Distributed Transaction Processing

4.4.1 Types of Distributed Systems

There are a number of reasons for impiementing a particular application on a distributed system
one that incorporates and coordinates several distinct processor and storage sites. rather than on a
centralized system: high availability of data. quicker local responses. reliability and survivability.
integration of separate existing systems and accommodation of different local requirements. These
benefits can be realized by careful designs that respond to application requirements A good distri-
buted system design must take care to.

1. partition data correctly among the different sites.

2. maintain backup or redundant copies of critical data.

3 assign prime processing responsibility for particular requests to most efficiently use the
systems resources

4. minimize communications overhead.

5 efficiently analyze requests. decompose them for distributed processing. and integrate the
results.

6. make processing and data distribution as transparent to the users as possible. and

7. provide the option of a uniform user interface wherever possible.

There are different types of distributed systems, each suited to different requirements. Some sys-
tems are homogeneous -- all the local sites have identical (or very similar) configurations. while other
systems are heterogeneous -- the system consists of sites with different configurations Homogeneous
systems present far fewer problems of design and minimize the overhead in assigning processors
decomposing requests. and integrating results: heterogeneous systems allow the distributed system to
incorporate existing systems and to use specialized processors when needed Both homogeneous and
heterogeneous systems raise many of the same issues with respect to database consistency and secu-
rity. and in this section we will not distinguish between the types of systems unless specifically men-
tioned.

Page -34- Database Consistency and Security
Section 4 Security Issues and Transaction Processing

Another difference among distributed system designs is the presence or absence of replicated data.
data which is stored redundantly at more than one site. Again. the choice of whether or not to include
replicated data must be made on the basis of tile application's requirements. Replicated data can pro-
mote higher data availability and survivability When one site or communication link fails. backup
copies of replicated data may be available at a different site. However, the presence of replicated data
introduces opportunities for inconsistencies and increases the overhead needed to process updates
These problems are particularly critical for sensitive SDI BM/C31 applications, the very applications for
which high availability and survivability are so necessary. This section will focus on the security
ramifications of the database consistency problems caused by replicated data.

First we discuss the general database consistency issues raised by distributed systems, then the
security issues raised by distributed systems. After a brief overview of existing standard database
approaches to distributed concurrency control. we discuss the consequences of a non-serializable
approach for a secure system

4.4.2 Database Consistency Issues

Database consistency constraints in a distributed system must be able to take into account data
at all the local sites The definition of consistency for a distributed database may involve complicated
relationships among data stored at different sites Distributed database concurrency control and repli-
cated data make the task of preserving database consistency even more complex in distributed sys-
tems.

Concurrency control is one of the fundamental issues in designing and implementing a distributed
system. While the key advantage of a distributed database system lies in the ability to simultaneously
process queries over the database. the problems of concurrency control found in a centralized system
are magnified in a distributed one. In addition to the general concurrency control problems described
above for centralized systems, a distributed system introduces communications delays and encourages
higher transaction volume

The mere presence of replicated data in a distributed database adds a new database consistency
issue: mutual consistency of the replicated copies. The motivation for replicated data was to provide
backup copies of data so that local site or communication failures would not halt processing: this goal
can only be realized if the backup data are accurate copies. In essence. this means that for every repli-
cated data item there is a new consistency constraint that mandates equality among all the copies

The interplay of concurrency control and replicated data is important for maintaining database
consistency. In weighing the relative importance of strict concurrency control against the need for fast
response and simultaneous processing. one of the prime factors is an applications need for strict
enforcement of database consistency constraints. Replicated data adds the constraint of mutual con-
sistency. so concurrency controls must be sensitive to the need for propagating replicated updates
The increased processing and communications necessitated by replicated updates increases the over-
head and delays introduced by the concurrency control procedures On the other hand, if concurrency
controls are relaxed, the enforcement of mutual consistency and other consistency constraints will also
be relaxed. The consequences of these trade-offs are discussed in the next section.

Database Consistency and Security Page -35-
Security Issues and Transaction Processing Section 4

4.4.3 Security Issues

In our framework. security policies are expressed as special database constraints. Therefore. most
security issues raised by the use of distributed systems can be seen as special cases of the database
consistency issues raised Security constraints. however, have a special role in a secure distributed
system. and so security issues merit special consideration. Unfortunately, the key role that security
plays may often make database consistency problems even more critical and complex. Security
requirements also pose some special problems of their own for distributed system design. We first
discuss discuss security issues as special cases of consistency and then outline the special problems
that they raise.

4 4 3.1 Special Cases of Consistency Security issues complicate the choice of a concurrency con-
trol strategy. In most systems that deal with security at all. security policies must be guaranteed to
be enforced at all times Partial or intermittent security enforcement is tantamount to no security
enforcement at all. To enforce any consistency constraints, including security constraints, synchroni-
zation among sites and the concurrency controls that go along with it must be very tight Security
violations may result from any improper read/write interleavings. even those that occur only momen-
tarily and are later repaired Of course. tighter concurrency controls will adversely affect availability
and response time

Similarly if requirements for mutual consistency are relaxed in order to allow for faster responses
and increased availability, security policies that refer to replicated data cannot be enforced with a high
level of confidence. If. for example. two copies of the same data item have different security
classification tags. even if just for a short while. a query at one site may be granted improper access
to the data item. Mutual consistency of critical replicated data. or limited blocking is imperative for
absolutely strict global security Great care must be taken in determining which data should be repli-
cated

4432 Special Security Considerations In contrast to standard database consistency security
enforcement is threatened by the use of covert channels and inferences based on system activities
Therefore. not all the security problems that a distributed system must address can be seen as special

cases of standard database consistency

443.2.1 Inference Problems When a database management system implements concurrency
controls and enforces consistency constraints some action must be taken to deal with improper trans-
actions. If a transaction is blocked by conflicting transactions already in progress. or if one of its
actions would violate a consistency constraint, the transaction is aborted (or possibly delayed) In the
traditional database system. transaction abortions and delays are tolerated as long as they dont lead
to a pattern of deadlock or starvation. In a secure database system. however, transaction abortions
and delays may take on a new significance. The mere fact of a transactions abortion or delay may
convey information about other transactions and about data not referenced explicitly within the trans-
action. If any information is stored in a system log about the reason for the abortion or delay. then
inferences may be made even more easily. A secure distributed system design. therefore. must make
sure that all logs. tra'es and return codes are suitably restricted

Page -36- Database Consistency and Security
Section 4 Security Issues and Transaction Processing

A similar problem is presented when transactions invoke external actions i.e interactions with the
external world, An automatic teller withdrawal transaction that causes money to be dispensed. or an
update transaction that sends notification to a particular user or mailbox. gives information about its
progress to the outside world directly. Just as clever sequences of queries to the database may yield
information which can be used to infer more sensitive data. external effects of transactions can also be
used as a basis for inferring information about other transactions and data.

4.4.3.22 Time Ordering. A user's access to certain data may change when the data (or other
data referred to in a security constraint) changes. A user that may be allowed access to specific data
during normal operation may be denied access if that data becomes more sensitive during a crisis.
Therefore. implicit in the security policies is the stipulation that users only be granted access to certain
data at certain times. This largely hidden dependence on time may pose special problems for the con-
currency controls in a distributed database system

Serializability guarantees a result that appears the same as some serial execution L. 3nsactions
but it does not guarantee a strict time ordering. There is no reason to assume that the system will
not execute transactions out of the order in which they were submitted. In normal database applica-
tions. modifications of the actual time ordering may not present great problems. but sensitive applica-
tions may be affected.

The problem is particularly evident wlen looking at transactions which change security
classification tags as well as other data Suppose that a transaction changes a missile s status and
raises its security classification from SECRET to TOP SECRET. Slightly later. someone with a
SECRET clearance submits a query to read the missile's location. The system, in serializing the trans-
actions. executes the read before the status/level change Thus. the user with the SECRET clearance
can find out the location of a missile which should be TOP SECRET at the moment. This type of
scenario is probably not too likely with a single database system, but is more likely in a distributed
system. Because of communications delays, the increased possibility of essentially simultaneous trans-
action submission, and clock synchronization problems. transactions may well be run out of "real-world
order.' During a communications delay, the malicious SECRET user could get a telephone call (or
simply overhear a conversation) telling of the missile status upgrade and immediately submit a query
to read the missile's location, hoping for a serialization in which the query is processed first.

The problem with time-ordering and the need for high availability may suggest a non-serializable
concurrency control approach in the long term. The consequences of using non-serializable con-
currency control in a secure system are explored in the next section.

4.4.3.3 Security Consequences of Non-Seriqlizability. Some of the general advantages and disad-
vantages of non-serializable approaches to concurrency control have been mentioned above, but the
particular implications for a secure distributed system are discussed here. This line of thought is a
promising one for the medium and long term. and one that requires more work.

Database Consistency and Security Page -37-
Security Issues and Transaction Processing Section 4

4.43.3. 1 Advantages. The chief advantage of a non-serializable approach to concurrency control
is high local availability of data. Local access to data is allowed even when global serializability cannot
be guaranteed. Such high availability, including availability in the face of network partitions and
remote site failures, can be of tremendous importance in SDI BM/C31 applications. If data is assigned
to particular sites in accordance with real-world divisions such as security classifications and compart-
ments. the lack of guaranteed coordination with other sites may not pose large security problems.

The non-serializable approach to concurrency control is also a good candidate for use in a flexible
system. It is possible that a system may be designed so that it is able to switch concurrency control
procedures when the situation warrants. For example. it may be desirable to choose local datz . vaila-
bility rather than global consistency when the local system is operating in a crisis When normal
operation resumes. the system could revert to a serializable concurrency control strategy in which glo-
bal consistency would be assured at the expense of small delays in availability. Thus. if a threat is
perceived in the Pacific theater. the site containing relevant data may temporarily stop trying to syn-
chronize transactions with the site containing data about the Atlantic The high local availability for
the Pacific data may be of the utmost importance. even if it means that some replicated data at the
sites become mutually inconsistent

Another advantage of the non-serializable concurrency control in SHARD is that it imposes a strict
time-ordering on transactions While it allows for temporary inconsistencies, due to the lack of seriali-
zation, these inconsistencies are repaired to reflect the strict order of transaction submissions

4 4 3.3 2 Problems Serializability theory was developed precisely to avoid the type of interleav-
ings that can cause consistency constraint violations, Therefore. when serializability is not used. or
when it is given up temporarily, consistency constraints may well be violated. In particular. mutual
consistency of replicated data is likely to be comprom-sed As mentioned before. mutual consistency is
very important for global security. In designing a secure distributed system, then. it is important to
determine which parts of the schema the security constraints will need to read and to weigh the impli-
cations of replicating the relevant data. While it may be tempting to replicate such critical data to
increase availability and performance. the price of such a decision may be either blocking (in the case
of serializable concurrency control) or occasional inconsistencies (in the case of non-seriafizble con-
currency control).

When a non-serializable concurrency control strategy is used. there must be some way of repairing
or handling the database inconsistencies that may arise. This need leads to a number of possible secu-
rity problems.

In order to repair inconsistencies, a database system may need to store a significant amount of
information about which transactions have taken place and what their results were. Therefore. the
possibility of covert channels and inference may be more serious when non-serializable concurrency
control is used. Furthermore. to repair inconsistencies transactions may need to be undone and re-
executed. If these actions are observed, whether through a log or through a clever sequence of reads.
there are new possibilities of inference.

The methods used to repair inconsistencies may themselvei create problems in a secure distri-
buted system Undoing and re-executing transactions significantly later than the initial execution may
always present apparent anomalies that may be disconcerting to users. When sensitive data is
involved, users may feel even less comfortable with and confident in the system,

Page -38- Database Consistency and Security
Section 4 Security Issues and Transaction Processing

Inconsistencies among data can have a cascading effect, making dependent data accessed by other
transactions questionable. The algorithms used to reconcile inconsistencies may need to access many
data items (especially logs) that were not directly read or written by the original conflicting trans-
actions. If the system must restrict its analysis to certain subsets of the database. because of security
considerations. the algorithms may be complicated further. The actions taken to analyze the trans-
actions. and the intermediate results. must be protected from unauthorized observation. Furthermore.
the additional overhead for analyzing, logging. undoing. and re-executing transactions will add even
more delays to those already caused by the overhead for security checks.

The theory of serializability has provided the formal framework for proving correctness of
schedulers in database management systems. To demonstrate the correctness of a scheduler which
can generate schedules that are correct both from the consistency and the security points of view. a
sin,lar theory for security/consistency correctness is needed.

4.5 Flexible Evaluation of Consistency Conditions

in Section 2 3 we proposed flexible evaluation of consistercy conditions as a way of avoiding

conflicts between security and consistency and also as a mechanism that ensures higher availability
Possible conflicts between security and consistency are identified in Section 3. Here we discuss in
more detail the issues of deferred evaluation of consistency conditions and of alternate actions.

4.5.1 Timing of Consistency Condition Evaluation

Traditional consistency condition evaluation calls for the evaluation of consistency conditions at
update time and before commit of the transaction. In previous subsections we noted the need for

additional specification of timing in the evaluation.

A more drastic departure from typical consistency condition enforcement is the notion of deferred

evaluation of consistency conditions. In deferred evaluation, consistency conditions are not evaluated
as data are updated Instead. the update is performed but the data that were touched are marked as
"unreliable". since no guarantee exists that they are in conformance with the consistency conditions

Unreliable data can be cleaned later by applying the consistency verification.

Several advantages are derived from deferred consistency condition evaluation:

Databases that are populated incrementally may have consistency conditions defined over data
that have not yet been input. With traditional consistency condition enforcement methods. this would
mean that data could either not be input, or that a long transaction would have to be defined, possibly
spanning days. while the necessary data were all input. This is unsatisfactory. because it doesn't allow

population of the database by several subjects that have to supply data independently, Every time the
consistency condition is evaluated as partial data are input, the evaluation fails A long transaction
blocks the database for too long a time. Therefore. consistency validation can be deferred until the
time when all the data have been supplied, without bl-cking other users from accessing the data that
are already available. There is. however, a danger inv,..,ed in inserting unverified data. In engineering
design, the solution that was proposed [BUCH861. depends on marking unverified data. The database
is slowly populated as data become available. Data that could not be validated are inserte.d but they
are marked as 'unreliable". Once all the elements necessary for consistency verification are available.
the consistency conditions can be tested and the mark can be removed, thereby upgrading the quality

status of the data If a consistency condition evaluation fails then all the data involved in the condi-
tion are reported as inconsistent and the intervention of an external agent may be required

Database Consistency and*Security Page -39-
Security Issues and Transaction Processing Section 4

In a secure environment it is desirable to have consistency conditions defined over only one level
of classification. If this is not possible, then population of a database may present the same problems
as above, since some data are not accessible to the process or person inserting data. Deferring evalua-
tion and marking data is a possible way of inserting data without compromising security. Consistency
condition verification can be performed by a trusted subject at a later stage. The same trusted subject
would be responsible for resolving conflicts. The user need not be aware of certain constraints for
which he is not cleared. and by performing the transaction as if no violation had occurred, the user
cannot infer any information through denial of service.

In a distributed environment in which high availability is critical, such as some command and con-
trol systems. deferred evaluation of consistency conditions can improve availability. For example. a
consistency condition may require for its verification data that reside on another node. Again. the
update may proceed but the data involved are marked as unreliable until the consistency condition is
evaluated and found correct. If the consistency condition test fails. then the need for undoing the
transaction arises, possibly with a ripple effect. Also. any transaction that uses unreliable data to
obtain new data should propagate the mark to the data it generated. In this scheme, data must be
cleaned at reasor..bly short intervals, to mitigate the risk that contaminated data could corrupt the
whole database.

It has been suggested that for certain applications, such as SDI. different security policies may
have to be enforced at peace time and during a battle [DRC861 The rationale is that during peace
time the timeframe for penetration is large but the load on the system is low therefore. security
mechanisms can be slower and consume more resources than during a battle when the timeframe for
penetration is small and the load on the system is high Deferred evaluation of consistency conditions
is certainly an area in which performance during a crisis situation can be boosted without compromis-
ing security. Unfortunately. existing database systems do not allow for selective deactivation of the
consistency enforcement mechanisms. and the danger. as described above. is a gradual degradation of
the databases consistency.

Determining when consistency conditions have to be evaluated is both a policy and a database
design issue The design tools for such a system should be able to capture timing information associ-
ated with a consistency condition and whether enforcement can be deferred or not

4.5.2 Alternate Responses to Consistency Violations

Existing database management systems provide only one standard response to violations of con-
sistency conditions namely the abort of a transaction It is interesting to look at how alternate actions
can improve the flexibility of a system. how this is especially useful in a secure environment, and what
the implications are for specification tools.

In the previous subsection we saw how deferral of evaluation can boost performance and how it

can provide a mechanism to circumvent conflicts between security and consistency Another mechan-
ism that is useful is the invocation of alternative actions in response to a consistency condition viola-
tion.

When a security condition is violated by a transaction and the system traps the attempted access.
alternate actions are useful. Responses may range from the notification of the security officer. or the
system may consult the subjects history of attempted violations to determine what further action to
take. This action could be simple recording of the attempted violation or. if a pattern was detected. it
could trigger more serious action.

Page -40- Security Issues and Transaction Processing
Section 4

Recently. proposals were made concerning the relaxation of consistency conditions in response to
a violation [BORG85. BUCH86]. The motivation for defining exceptions is that consistency conditions
are only useful if they are narrowly defined. For example. a consistency condition on salary that spans
from 1.000 to 1.000.000 will most likely be useless to detect errors. Therefore. it has been proposed
to define consistency conditions narrowly but allow for exceptions.

Another reason for allowing exceptions is the conflict between two consistency conditions. Since
consistency conditions capture the semantics of the data. these conditions may conflict. For example.
in a design environment, two design rules. expressed as consistency conditions on the database. may
be generally valid. However. when they are both applied to the same case. they result in a conflict. In
such a case. one of the two rules may have to be violated. It is important to note that not all con-
sistency conditions are amenable to violation. It is necessary to distinguish between violatable con-
sistency conditions and non-violatable consistency conditions.

In a secure environment it is feasible to relax a consistency constraint in favor of security con-
straints. This means that a constraint hierarchy may be needed, or at least some ordering by priority

The implication of the previous discussion for any specification tools is that it is highly desirable
to have the possibility to specify for each consistency condition what actions ought to be taken in case
the condition is violated, and also for the constraints whether it is acceptable that it be relaxed

Database Consistency and Security Page -41-
SYSPECIAL: Extensions and Examples Section 5

5. SYSPECIAL: Extensions and Examples

5.1 Formal Specification Examples

In this section we present the results of our attempts to formally specify database and DBMS
constructs. We found that the database was easy to specify and that the resulting specification was
natural and readable. DBMS properties such as serializability were much more difficult. In the end we
did not specify serializability directly. Instead we were able to specify two phase locking and state
appropriate invariants. In this approach we rely on proofs in the literature that two phase locking, if
done correctly. insures serializability.

We chose to specify the examples in SYSPECIAL. extended as needed to express the necessary
concepts To accomplish the specification of two phase locking, we introduced the notion of a mul-
tilevel specification and of a trace Both of these notions. in the context of SYSPECIAL. are as of now
experimental However our success ,,ith them indicates that additional development is warranted
The multilevel specification is based on the original concept of HDM. Our approach is novel in that it
uses the notion of a trace to support procedural constructs in the mappings between levels

The first example describes a database and security level assignments It is specified using
SYSPECIAL without extensions The second describes a DBMS with a simplified database in order to
illustrate how transactions can be specified by means of a two-level specification and how the notions
of serializability and atomicity can be examined by means of a trace and two-phase locking

Some explanation of SYSPECIAL is in order. SYSPECIAL is a specification language derived
from HDM s SPECIAL [SILV79. SILV81]. It is a typed first-order language. with constructs to sup-
port integer arithmetic. sets. sequences and structures A specification describes a state machine by
describing the components of the state. called state-functions or VFUNs. and the state-changing
operations also referred to as OFUNs (which dont return a value) and OVFUNs (which do) A
SYSPECIAL specification consists of a number of (optional) sections TYPES PARAMETERS
DEFINITIONS ASSUMPTIONS. LEMMAS. INVARIANTS. CONSTRAINTS. and FUNCTIONS

The TYPES sections introduce the types In these examples. there are only two type classes
used - PENDING and STRUCTures PENDING introduces an abstract data type STRUCT OF
introduces a record type akin to PASCAL's records The PARAMETERS section introduces functions
and constants whose values dont depend on the state. Parameters are frequently used to give struc-
ture to PENDING types. DEFINITIONS provide a mechanism by which auxiliary (mathematical) func-
tions may be defined

ASSUMPTIONS. LEMMAS. INVARIANTS and CONSTRAINTS are all statements about the
state machine (and its implementation). The ASSUMPTIONS section is used to specify requirements
on the implementation which are then available as axioms when reasoning about the system Lemmas
are statements that follow from the rest of the specification and may be useful in verifying invariants
and constraints Invariants are statements that are valid for all possible states of the state machine
They are proved inductively starting from the initial state and considering all the operations for the
inductive step Constraints are statements that are valid for all the operations. Constraints typically
describe a relation that holds between the old state and the next state of the state machine

Page -42- Database Consistency and Security
Section 5 SYSPECIAL Extensions and Examples

The FUNCTIONS section declares the state-functions (VFUNs) and operations of the
specification The VFUNs can be viewed as arrays indexed by their arguments VFUNs may have an
INITIALLY section which describes constraints on its initial value. Operations (OFUNs and OVFUNs)
are the state-changing functions Oper.tions have arguments. a return value (for OVFUNs) and four
optional subsections DEFINITIONS. ASSERTIONS. EXCEPTIONS and EFFECTS. The definitions
section is identical to the global definitions, but can refer to the input arguments The assertions sub-
section specifies a list of conditions that must be guaranteed by any program calling the given opera-
tion. in reasoning about the operation. these conditions can be assumed The exceptions section is a
list of exception conditions: if any of the exception conditions is true when the operation is invoked.
the operation returns immediately with a notification of the raised exception.

5.2 Modeling a Database in SYSPECIAL

This example illustrates one way of modeling a database in SYSPECIAL The database schema
we chose to model is

Employee (SSN. Emp-name. Emp-address, department, clearance)
Projects (Proj-id. Mgr-SSN, department. classification.

location, travelfunds)
Trip (Trip-id. origin, destination, date-left, date-arrived,

contact, charges)
Proj-Empl (SSN. Proj-id)
Proj-Trip (proj-id, Trip-id)

In addition to modeling the above database. we model security level assignments to the database
entries These assignments are provided for each data item. not for records. attributes databases or
types. We chose this approach because it has the highest granularity, lower granularities can be
specified by means of assumptions. as illustrated toward the end of this example.

The records of the database have STRUCTure types. and the database is modeled as five VFUNs
corresponding to the five relations given above. Each of these takes as input a record of the appropri-
ate type and returns a boolean value indicating whether the record is in the database Note that there
are no operations. so we are modeling only a database. not a DBMS

Note that the database model is natural and direct. The record types correspond to the intention
of the specified relation. The associated VFUNs correspond to the extension of the relation The set
of all the specified record types forms the database schema, the set of VFUNs constitute the actual
database.

TYPES

San. Name. Address. Dept, ProjID, TripID. Date : PENDING:

Employee: STRUCTOF(ssn:Ssn; name:Name; address:Address;

dept:Dept; clearance:SL);

Database Consistency and Security Page -43-
SYSPECIAL: Extensions and Examples Section 5

Project: STRUCTOF(proj:ProjID; mgr-ssn:Ssn; resp-dept:Dept;
classification:SL; location:Address;

avail-travel: IITEGER);

Trip: STRUCTOF(trip:TripID; origin. destination:Address;
date-left, date-arrived:Date;
contact:Name; cost: INTEGER);

Project-Employee: STRUCTOF(pessn:Ssn; peproj:ProjID);

Project-Trip: STRUCTOF(pt.proj:ProjID; pt-trip:TripID);

FUN CTIONS

VFUII employeedb(e:Employee) -> b:BOOLEAN;

VFU:: projectdb(p.Project) -> b:BOOLEA:7.

VFUN trip-db(t:Trip) -> b:BOOLEAN:

VFU!! project-employeedb(pe ProjectE-ploy°ee) - bBOOLEAII;

VFUII project.trip-db(pt:ProjectTrxp) -> b:BOOLEAH;

For secure environments it is necessary that data in the database carry a classification tag. There
are different ways of assigning security levels to data depending on the desired granularity: the same
classification tag for all data in a relation, the same classification for all the instances of an attribute in
a relation the same classification for all the data values in a tuple, or individual classification tags for
each atomic value (at the attribute level) in the database. We chose the last form for flexibility rea-
sons For reasons that are explained in earlier sections. each tag consists of a triplet of security attri-
butes a read-sensitivity label. a write-sensitivity label, and a trustworthiness label.

In order to specify security level assignments for each atomic value, we have declared an associ-
ated attribute type for each database record type. This type merely indicates the field names of the
associated records In the ASSUMPTIONS section we demonstrate how to specify security level
assignments at lower granularities by asserting that the security level for a given item is the same as
that of another related item. There are other kinds of assumptions specified. these are explained by
comments preceding them,

The security level assignments are specified as VFUNs instead of PARAMETERS. this is to allow
for upgrading and downgrading of data Note that an employee's clearance is not necessarily equal to
the security level assigned to the clearance field, for instance, if badge color is used to indicate the
clearance of employees, then the security level assigned to the clearance information is unclassified

The specification of a relation with its security tags is the following,

Page -44- Database Consistency and Security
Section 5 SYSPECIAL Extensions and Examples

TYPES

RS PENDING; /* Read-sensitivity */

WS PE!DI1G, /* Write-sensitivity */

TW PENDING; /* Trustworthiness -/

SL STRUCT.OF(rs:RS; ws:WS; tw:TW); /* Security tags */

Employee-Attributes: {ssn. name. address, dept. clearance}

Project-Attributes: (proj. mgrssn, resp.dept. classification,

location. avail-travel};

TripAttributes: {trip. origin, destination, date-left,
date-arrived, contact, cost),

ProjectEmployeeAttributes: {pe-ssn, pe-proj};

ProjectTripAttributes: {pt-proj, pt-tripY:

PARAMETERS

unclassified: SL

FUNCTIONS

VFUN employee-sl(e:Employee; a:EmployeeAttribute) -> sl:SL;

VFUN projectsl(p:Project; a:Project.Attribute) -> sl:SL;

VFUN trip-sl(t:Trip; a:TripAttribute) -> sl:SL;

VFUN project-employeesl(pe:Project.Employee.

a:ProjectEmployeeAttribute) -> sl:SL;

VFUN project.trip.sl(pt:Project.Trip;
a:ProjectTripAttribute) -> sl:SL;

ASSUMPTIONS

/* If an employee works on a project.

his clearance - project's classification ./

FORALL p:Project; e:Employee;

project-employee-db(STRUCT(pessn:e.ssn. pe.proj:p.paroj)) =>

project.db(p. classification) a employee-db(e, clearance)

Database Consistency and Security Page -45-
SYSPECIAL: Extensions and Examples Section 5

/* Uniqueness of key (ssn) for employees */

FORALL e., e2:Employee;
el.ssn n e2.ssn => el a e2;

/* Modeling security level assignments for employee-db

at the database level */

FORALL e:Employee; a:EmployeeAttributes;
employee.sl(e. a) a unclassified;

/* Modeling security level assignments for trip,

project-employee and project-trip records.

These security levels are assigned

at the record (ro-.s) ie'e! /

FORALL t:Trip; a:TripAttributes;
tripsl(t. a) - trip-sl(t. trip);

FORALL p-ProjectEmployee; a:ProjectEmployeeAttributes;
projectemployee.sl(p, a) - project.employee.sl(p. pessn);

FORALL p:ProjectTrip; a:ProjectTripAttributes;

Project-trip-sl(p. a) - Projecttrip-sl(e. pt-proj);

/* Modeling security level assignments for the project.db
at the attribute (columns) level. */

FORALL pt, p2:Project; a:ProjectAttributes;

project-sl(pl. a) - project-sl(p2, a);

5.3 Modeling a DBMS in an Experimental Extension of SYSPECIAL

In this example we show how to model a mechanism for ensuring serializability for transaction
processing. The mechanism is two phase locking.

Treatment of serializability seems to require concepts that go beyond the basic ingredients of a
state machine, i.e.. state variables and state changing operations. It is concerned with a scheduling
problem and therefore is at heart procedural. It seems that a natural way to model such problems in

the context of a state machine is to enhance the state machine concept with the notion of an execution
history or trace.

Page -46- Database Consistency and Security
Section 5 SYSPECIAL: Extensions and Examples

A trace captures the history of the machine. We will think of it as a sequence of operations with
a first (dummy) operation which initializes the state How are the "sequence" and "operations" i.e..
elements of the sequence to be modeled 7 For purposes of specification. the concrete representation is
unimportant, We will view the trace as an abstract data type with operations and relations.

Besides < < for modeling the time ordering and NEXT for modeling the immediate successor in
this ordering we will have the concept of an identifier for an instance of an operation and we will have
the concept of process or transaction identifier for grouping operations Below we suggest constructs
for such modeling in the context of SYSPECIAL We have introduced some extractor operations on
trace elements. Others may be introduced as we see the need for them

TRACE ELEMENT is a new built-in type for elements of the trace.

ID(te TRACE-ELEMENT) models the unique identifier of te

PID(te TRACEELEMENT) -> pid Pid
models the process (transaction) identifier of te

OP(te:TRACE_ELEMENT)
returns the name of the operation of te if the operation was successful If not it
returns information about the exception

ARG(te TRACEELEMENT. argARG)
returns the value of the input argument named arg for the operation of te (ARG
will be a built-in type consisting of the formal arguments of OFUNs in the
specification.)

IN STATE(te TRACE ELEMENT. vf.VFUN)
returns the value of vf in the oldstate component of te. (VFUN is a new built-in
type consisting of the names of the VFUN's in the specification

We believe an infix notation will be more convenient so we experiment with te-vf
as an alternative for INSTATE(te. vf) in the specification below

OUTSTATE(te TRACE ELEMENT. vf VFUN)
returns the value of vf in the newstate component of te.

We also introduce two additional specification concepts: TRACE ASSUMPTIONS and
TRACE INVARIANTS. TRACE ASSUMPTIONS are axioms concerned with the trace They are
requirements on the implementation and can be used as axioms in reasoning about the specification
TRACE INVARIANTS are properties of the trace that are provable from the specification The follow-
ing is an example of a two-level specification. The top level defines a state machine with a single.
state-changing operation. a database transaction called "move". We've chosen this transaction rather
than one like "modify" because it involves changes to two records in the database and thus allows us
to better exemplify two phase locking.

In this example. besides experimenting with the trace concept we are also experimenting with
development of multilevel specifications as envisioned by HDM. HDM views each level of a
specification as a state machine, a higher level is implemented by the levels below it. For purposes of
this discussion we will assume that a level is implemented by the next lower level. The levels are

Database Consistency and Security Page -47-
SYSPECIAL Extensions and Examples Section 5

connected by mappings which describ ne impkementation. These mappings are to be written in a
language with procedural constructs. 1.- procedural constructs can be used to provide the implemen-
tation for operations at the top level ii terms of operations at the lower level In this example we
experiment with only one procedural construct. SEQ. which models sequential invocation.

The intention of the top level specification is that the implementation has only one kind of state-
changing operation and that any state change occurs as a result of a completed invocation of this
operation Another way of saying the latter is that the operation is atomic.

The second level includes locks and implements "move" in terms of more primitive operations.
Serializability (implied by the locking mechanism) at the second level yields atomicity at the top level.

The requirement of atomicity on the higher level operations translates to a requirement of serial-
izability at the lower level. More precisely. one has to show that for every sequence of state changing
operations at the lower level there is a legal trace of the upper level machine such that the state
changes induced on the upper level state through the mappings by the lower level sequence is
equivalent to the state changes recorded in the legal trace. This description assumes that the mapping
from an upper level state variable to a lower level state variable induces a function from values of the
lower level variable to the values of the upper level variable. Thus a change in the lower level variable
induces a unique. possibly trivial, change in the upper level variable.

5.3.1 The Top Level Module

Our specification is divided into two levels The top level models a database as a sequence of
data indexed by the type. Surrogate This view of the database assumes that every surrogate has a
slot in the database. The parameter nonexistent, is used to indicate unused slots. The exact form of
the data is unimportant for this example so we leave it unspecified. The top level has only one state
variable. db. the database, and only one state operation, move. mo~e(surI.sur2) copies the contents
of the surl to sur2 and deletes the contents of surl

,MODULE top-level

TYPES

Surrogate: PENDING.
Data: PEIDING,

PARAMETERS

nonexistent: Data, /* indicates an unused surrogate in the DB.
Both the DB and buffers are modeled as
containing records for all surrogates /

FUNCTIONS

VFUNJ db(sur:Surrogate) -> data Data,

OFUN move(surl,sur2:Surrogate)
EXCEPTIONS

db(surl) - nonexistent;
EFFECTS

Page -48- Database Consistency and Security
Section 5 SYSPECIAL: Extensions and Examples

'db(sur2) - db(surl);

'db(surl) - nonexistent;

ENDMODULE top-level;

5.3.2 The Second Level Specification.

This level specifies the rudiments of a DBMS The DBMS uses two phase locking to achieve
serializability for transactions which may run concurrently. The mapping from the top level to the
second level is trivial in the sense that everything at the top level except the OFUN. move. is repeated
at the second level. The OFUN move is implemented at the secondlevel using the experimental SEQ
construct.

The only new type at this level is Pid. Pid will be used to identify transactions. It will be passed
as a parameter to every state changing operation This parameter passing is only one way of keeping
track of operations done on behalf of a transaction Another would involve setting a VFUN. but the
approach we have adopted seems more likely to extend to the context of a distributed database

Three additional state variables. readlock. wntelock and buffer are introduced at this level
Readlock is a two dimensional array modeled as a Boolean Since many transactions can simultane-
ously read the same data. we need both a surrogate and pid index. Writelock is a unary function on
surrogates which returns a pid We use this representation since only one transaction at a time can
have a writelock on any particular data item. Buffer is similar to db. but every transaction is entitled
to its own buffer. so buffer is indexed by both Surrogate and Pid.

Two additional PARAMETERS. free and empty are introduced here. Empty is like nonexistent.
It indicates that a data item corresponding to a surrogate has not been written into a buffer. Free is a
dummy value of Pid to indicate the absence of a writelock.

Under ASSUMPTIONS we indicate some of our intention for the PARAMETER empty. namely
that it is not used as a value for the db VFUN

As for our state changing operations (OFUNs) setreadlock and set writelock. clear readlock and
clear writelock are self-explanatory.

Read(sur. pid) reads a data item from the database to a buffer.

Modify(sur. data. pid) sets buffer(sur. pid) = data

Delete(sur. pid) sets buffer(sur, pid) = nonexistent.

Commit(pid) updates the database with the appropriate contents of the buffer corresponding
to pid.

The exceptions on these operations ensure that the locks have their intended effects.

Database Consistency and Security Page .49-
SYSPECIAL: Extensions and Examples Section 5

MODULE second-level

TYPES

Pid: PENDING;
Surrogate: PENDING;

Data: PENDING;

PARAMETERS

free: Pid; /* free is a dummy value used to indicate the

absence of a writelock */

empty: Data; /* indicates an unused surrogate in the buffer.

The commit OFUN will leave db items unchanged
if their surrogates correspond to empty data

in the buffer. /

nonexistent: Data;

ASSUMPTIONS

empty nonexistent,

FORALL s:Surrogate; db(s) -= empty;

FUUCTIONIS

VFUI readlock(sur:Surrogate, pid.Pid) -> set:BOOLEA:,

INITIALLY set = FALSE;

VFUN writelock(sur:Surrogate) -> pid Pid,

INITIALLY pid - free;

VFUN buffer(sur:Surrogate; pid:Pid) -> data:Data;

INITIALLY data - empty;

VFUN db(sur:Surrogate) -> data:Data.

OFUN set-readlock(sur:Surrogate pid.Pid).

ASSERTIONS

pid -- free;

EXCEPTIONS
writelock(sur) -- free;

EFFECTS
'readlock(sur, pid) - TRUE,

OFUN setwritelock(sur Surrogate. pid:Pid);

ASSERTIONS
pid - free;

Page -50- Database Consistency and Security
Section 5 SYSPECIAL Extensions and Examples

EXCEPTIONS
writelock(sur) -a free);
EXISTS p:Pid (p - pid AND readlock(sur, p) = TRUE);

EFFECTS
'writelock(sur) = pid;

OFUII read(sur:Surrogate; pid:Pid);
ASSERTIONS

pid -- free;
EXCEPTIONS

db(sur) - nonexistent;
"readlock(sur. pid);

EFFECTS
'buffer(sur.pid) a db(sur);

OFUN modify(sur:Surrogate; data:Data: pid:Pid);
ASSERTIO!S

pid -a free;

EXCEPTIONS
data - nonexistent OR data = erpty,
db(sur) - nonexistent;

EFFECTS
'buffer(sur,pid) z data;

OFUN delete(sur:Surrogate; pid:Pid);
ASSERTIONS

pid -a free;

EXCEPTIONS
db(sur) - nonexistent;

EFFECTS

'buffer(sur.pid) a nonexistent;

OFUN commit(pid:Pid);

ASSERTIONS
pid -a free;

EXCEPTIONS
EXISTS s:Surrogate;

writelock(s) -- pid AND buffer(s.pid) -= empty;

EFFECTS
FORALL s:Surrogate;

IF buffer(s.pid) -- empty

THEN 'db(s) - buffer(s,pid)
ELSE 'db(s) - db(s);

OFUN clear-readlock(sur:Surrogate; pid:Pid);
ASSERTIONS

pid -a free;
EFFECTS

'readlock(sur, pid) - FALSE;

Database Consistency and Security Page -51-
SYSPECIAL Extensions and Examples Section 5

OFUN clear-.writelock(sur:surrogate; pid:Pid);
ASSERTIONS

pid '- free;
EXCEPTIONS
writelock(sur) -upid;

EFFECTS
.writelock(sur) free;

TR.ACE.ASSUMPT IONS

/* Pid arguments *PID of trace *
FORALL x: TRACE.,ELEMEIT;

ARG(x~pid) a PIDWx;

INVARIANTS

' 10 read-,..rite conflict/
FORALL s:Surrogate; pl:Pid.-

C(EXISTS p2 Pid:
(p2 -- p1 AN1D readloc.'-(s, p2)) a.ritelock~s) -=p1);

INO write-write conflict -/
FORALL s:Surrogate; pl~p2:Pid;

(pi - writelock(s) AND p2 -wrijtelock(s) -> pi - p2);

TRACE.,INVARIANTS

FORALL s:Surrogate. p.Pid, x.TRACE-.ELEMEI:T
((OPWx - read AND PIDWx - p AND ARG(x.sur) - s)
Z> xhreadlock(s, p)):

FORALL p:Pid, .: TRACE-ELE:E: T.
(COPWx- commit AND P10(x - p)

=> FORALL s:Surrogate;
(butfer(s,p) -- empty AND buffer(s.p) -udb(s))

Z> x'writelock(s) - p))

TRANSACTIONS

move(surl.sur2:Surrogate, pid:Pid) IS
ASSERTIONS

pid -a free,-
EXCEPTIO0NS

db(surl) a nonexistent;

SEQ
set-.readlock(surl .pid),
set..writelock(sur2.pid);
read(surl .pid);

Page -52- Database Consistency and Security
Section 5 SYSPECIAL: Extensions and Examples

modify(sur2.buffer~surl) ,pid);
set-.writelock(surl .pid);
delete(surl .pid);
coinmit(pid);
clear..readlock(isurl .pid);
clear-writelock~surl .pid);
clear-.writelock(sur2.pid);

ENDSEQ;

Database Consistency and Security Page -53-
Summary Section 6

6. Summary

In this study we analyzed the problem of database consistency and its interactions with security
and applied a powerful specification tool. SYSPECIAL. to obtain initial specifications of a database and
the rudiments of a DBMS To do this SYSPECIAL was extended to include some additional general
constructs.

Database consistency was studied in its full range. from declarative consistency constraints to
transaction processing. both in a centralized and a distributed environment. The security implications
of newer concurrency control techniques that do not rely on the weil-studied principle of serializability
have also been discussed. A framework for integrated handling of database consistency and security
was proposed and notions. such as integrity, were refined for use in the context of secure databases

The major accomplishments are:

I A unified framework for database consistency and security was established through declarative
specifications of database and security constraints. This unified framework will allow easier
testing for compatibility of consistency and security constraints and will make it possible to
use the same tools for analyzing consistency and security policy specifications

2 The unified declaration of security and consistency constraints encourages the use of adaptive
policies, since policies can be substituted by exchanging sets of constraints

3 The notion of integrity was refined for use in secure databases by splitting it into its two com-
ponents: write sensitivity and trustworthiness This division allows more precision in specify-
ing complex security policies.

4 The interaction of security and transaction management was studied. for centralized as well as
distributed systems Security implications were evaluated for serializable and some non-
serializable protocols.

5 SYSPECIAL was extended with the notions of a multilevel specification and a trace The mul-
tilevel specification is based on the original concept of HDM. The use of a trace is novel and
supports the mapping of procedural constructs between levels

6. Using the extended SYSPECIAL. it was possible to specify databases with their security and
consistency constraints in a natural way

7 The rudiments of a DBMS could be specified using the multilevel specification and the notion
of a trace. It was possible to specify a two phase locking protocol to guarantee serializability
The extensions are also useful for definition of other DBMS components. such as the log

8 Additional specification tool features that would be desirable have been identified. mainly a
technique for specifying alternate actions in response to database constraint violations and
mechanisms for specifying the exact timing of constraint evaluation within a transaction As a
support of the design process. tools that support the evaluation of compatibility among data-
base constraints both security and consistency. would be most useful

Database Consistency and Security Page -55-
REFERENCES Section 7

7. REFERENCES

[BELL73I D. E. Bell and L. J LaPadula. -Secure computer systems: A mathematical model." MTR-
2547. Vol.2. MITRE Corp. Bedford. MA. Nov. 1973.

[BELL741 D. E. Bell and L. J. LaPadula. -Secure computer systems: Mathematical foundations and
model.' M74-244. MITRE Corp. Bedford. MA. Oct. 1974.

[BELL75I D. E. Bell and L. J. LaPadula. "Unified Exposition and Multics Interpretation." Mitre Cor-
poration. July 1975.

[BERN8OJ P.A. Bernstein and D.W. Shipman. "The Correctness of Concurrency Control Mechanisms
in a System for Distributed Databases (SDD-1).- ACM Trans Database Systems 5. 1 (March
1980).

[BERN81I P A Bernstein and N Goodman "Concurrency Control in Distributed Database Sys-
tems." ACM Computing Surveys 1. 2 (June 1981). 185-221.

[BERN871 P A. Bernstein V Hadzilacos and N Goodman. Concurrency Control and Recovery in
Database Systems. Reading MA Adison Wesley. 1987

JBIBA77J K J. Biba. "Integrity considerations for secure computer systems." MTR-3135. MITRE
Corp.. Bedford. MA. Apr 1977

(BONY861 D Bonyun. 'A New Look at Integrity Policy for Database Management Systems."
National Computer Security Center Workshop on Database Management System Security. Bal-
timore. MD. June 1986

[BORG851 A Borgida. "Language Features for Flexible Handling of Exceptions in Information Sys-
tems." ACM TODS 10 (1985). 565-603

[BUCH861 A P Buchmann R.S Carrera. and M A Vazquez-Galindo. 'A Generalized Constraint and
Exception handler for an Object-Oriented CAD-DBMS". Proceedings of the International
Workshop on Object-Oriented database Systems. Pacific Grove. pp 38-49. 1986

[DENN79] D E Denning and P Denning. -Data Security'. ACM Computing Surveys Vol 11. No 3
pp 227-249. 1979

[DENN85J D.E Denning. "Commutative Filters for Reducing Inference Threats in Multilevel Data-
base Systems". Proceedings of the 1985 Symposium on Security and Privacy

[DENN86] D.E Denning. T F. Lunt. P.G. Neumann. R.R. Schell. M Heckman. and W Shockley
'Secure Distributed Data Views" Interim Report: A002. SRI Computer Science laboratory
1986.

[DOD851 Department of Defense. Department of Defense Trusted Computer System Evaluation Cri-

teria National Computer Security Center. 1985 DOD 5200 28-STD

[DRC86a] 'SDI and Distributed Systems." Dynamics Research Corporation. (15 April 1986)

Page .56- Database Consistency and Security
Section 7 REFERENCES

[DRC86b] "Distributed Systems Technology Assessment for SDI " Dynamics Research Corporation.
(30 September 1986)

[FEIE771 R J, Feiertag. K. N. Levitt. and L. Robinson. "Proving multilevel security of a system
design " in Proc 6th ACM Symposium on Operating Systems Principles. ACM SIGOPS Op
Sys Review 115. Nov 1977.

IFEIE791 R. J Feiertag and P G Neumann "The foundations of a provably secure operating system
(PSOS)." Proc AFIPS Nat. Computer Conf. Vol. 48. AFIPS Press. Arlington. VA. 1979

[FEIE80 R J. Feiertag. 'A Technique for Proving Specifications are Multilevel Secure.' SRI Com-
puter Science Laboratory, January 1980.

[GARD791 G. Gardarin and M Melkanff. "Proving Consistency of Database Transactions." Proc. Int
Conf. Very Large Data Bases. October 1979 pp 291-298.

[HOLT721 R. C. Holt. "Some Deadlock Properties in Computer Systems". ACM Computing Surveys.
Vol 4. No. 3. pp 179-196. 1972

[JANA8IJ J M Janas. "On the Feasibility of Informative AnsweTs'" Advances in Database Theory
(eds J Minker and J. M. Nicolas). Plerum Press 1981.

[KSOS78] "KSOS Verification Plan." WDL-TR7809 Ford Aerospace and Communications Corp
Western Development Lab Div Palo Alto CA. and SRI Intl. Menlo Park. CA. 1978

[KUNG81J H T. Kung and J T Robinson "On Optimistic Methods for Concurrency Control" ACM
Trans on database Systems. Vol, 6 No 2. pp 213-226. 1981

[LAND811 C.E Landwehr. "Formal Models for Computer Security.' Computing Surveys 133. Sept
1981

[NCSC85 "Draft Trusted Network Evaluation Criteria". National Computer Security Center. 1985

[NCCS86j National Computer Security Center Workshop on Database Management System Secu-
rity Baltimore. MD. June 1986.

IREED791 D.P Reed and R.K Kanodia. "Synchronization with Eventcounts and Sequencers". Com-
munications of ACM. Vol 22. No. 2. pp 115-123. 1979

[RYPK79I D J. Rypka and A.P. Lucido. "Deadlock detection and Avoidance for Shared Logical
resources". Trans on Software Engineering. pp. 465-471. 1979

[SARI851 S.K Sarin. B T Blaustein. and C.W. Kaufman. "System Architecture for Partition-
Tolerant Distributed Databases." IEEE Transactions on Computers C-34, 12 (December 1985).
pp. 1158-1163.

[SCHE861 R.R Schell and D.E. Denning. "Integrity in Trusted Database Systems. National Com-
puter Security Center Workshop on Database Management System Security. Baltimore. MD.
June 1986.

[SHEA86J T. Sheard and D. Stemple. "Automatic Verification of Database Transaction Safety"
Coins technical Report 86-30. University of Massachusetts. Amherst. 1986.

[SILV791 B.A. Silverberg. L. Robinson. and K.N. Levitt. "The HDM Handbook." Volumes I-Ill. SRI
Computer Science Laboratory. June 1979

Database Consistency and Security Page -57-
REFERENCES Section 7

[SILV81] B.A. Silverberg. W.D. Elliot. and D.F. Hare. 'Revisions to HDM and its Tools.- SRI Com-
puter Science Laboratory. October 1981.

DISTRIBUTION LIST

ad cres ses number
of copies

Emilie J. Siarkiewicz 15

RADC/COTD

RADC/DOVL 1

GRIF FISS AFB NY 13441

RADC/CAP
GRIF FISS AFB NY 13441

ADMIKISTRATOR 5
DEF TECH INF CTR
AT TN: DTIC-DDA

CAMERCN STA PG 5
ALEXANDRIA VA 22304-e145

RADC/COTD I

BLDG 3, ROOM 16
GRIF FISS AFB NY 13441-5700

HQ USAF/SCTT I
Pentagon

Wash CC 2C33C-5150

I) R ECTOR 1

0 VAHTC
ATTN: SCSIM
W ash CC 2C315-0C30

Director. Info Systeis 1
OASD (C31)
Pm 3E1F7
Pentagn
wash DC 2C101-'G40

Fleet Analysis Center 1

Attn: GIDEP Creraticrs Center

Code 30GI (E. Richarcs)
Corora CA 9172C

DL-1

HQ AFSC/XRAE
AN IRE6S F9 CC ?C3 54-5000

h& SC/XRk

A R E~S A Fq D 2C334-500

rF -UrT AF NE r 1P -To 1

F A 1/ RS E E

ATTN: LtIPPY G.Nfl'ANLS
'5"I Y.LF 3T RE ET SE
A rIcrt Ft-z3, Su ite 102
ALqLQUF R, LP N 871 6

'qr T CIEy

At tn: Mr. Westerman

LangIey AF3 VA 23665-5001

H O TAC/DRCA
LANGLEY AF9 %A 2766 -5001

ASOI EEMS
Wrigt-Pat terscn AFB CH 45433-65C3

ASD-AFALC/AXF
WRIGHT-PATTERSCN AFB CH 45433

ASD/ PFALC/ AXAE
Attn: W. H. Dungey
Wri ght-Fat terson AFE OH 45433-6533

A AMRL/HE

WRIGPT-PATTERSCN AFB CH 45433-6573

DL-2

A FIT/LDE E
BUILDING 640, AREA B
WRIGHT-PATTERSCN AFB CH 45433-6583

AFWAL/MLFC

WRIGHT-PATTErSCN AF8 CH 45433-6533

Air Fcrce Humar Resources Laboratory

Technical Documents Center
A FHRL/LRS-TDC
Wright-Patterson AF8 CH 45433

'750 ABW/SSLT
8Idg 262
Post 1 IS
Wright-Pat terson AFB CH 454433

AU L/LSE

1

MAXWELL AFB AL 36112-5564

Deferse Ccmmunications Ergineerirg Ctr

Techrical Library
1860 6iehle Avenue
Restcr VA ?2C90-5500

COM MAND CONTROL AND COMMUNICATIONS DIV

DEVELCPMENT CENTER
mARINE CCRPS DEVELOPPENT & EDUCATION COMMAND

ATTN: CCCF DICA
(.'UANTICO VA 121 34-50PO

AFL'C/Lr Y

AT TN: CP, SYS ENGR DIV

%bNTER AFS AL W61 14

U.S. Army Strateqic Ceferse Ccmmand

At n: DPSrH-F- PL
P.O. Pox ISOC

kuntsvilte AL 25R07-!-01

COMMANDING OFFICER

NAVAL AVICNICS CENTER
LIqRARY - 0/765
INDIINAPCLIS IN 4671'-?1'9

DL-3

CO" *4AND I NC OF FICFR

NAVAL TRAINING SYSTEMVS CENTER
TECHNICAL INFORMATION CENTER

9U ILCIN 296R
CRLANDO FL 32813-710C

C 0mVAN ER
,A'AL OCEAN .YSTEMO CENTER

ATTN: TECHNICAL LIBFARY, CODE 9642B
SAN "IFGC CA ! 2 -5C:)0

CO:frANDER (CCDF 743)
ATTN: TECHNICAL LIBFAPY

% AVAL WEAPON CENTER

CHINt LAKE, CALIFORNIA 9 555-6nlO

SU ERINTENDENT (CODE 1424)

N; AVL A DOST GRArUATE SCHOCL
,ONTEREY CA S3 43-500C

C G0'IAN.,DING OFFICER
NAVAL RESEARCH LABORATORY
AT TN: CCDE 2627

'wASHINGTCN DC 20375-5000

SPACE & NAVAL 6ARFARE SYSTEMS COMMAND
PMW 153-7DP

AT TN: R. SAVARESE
'4A SHINGTCN DC 20763-513 0

CDR, L.S. AR10Y MISSILE COMMAND
REDSTCNE SCIENTIFIC INFORMATICN CENTER
ATTN: APSMI-RD-CS-R (DOCUMENTS)
REISTCNE ARSENAL AL 35898-5241

Adviscry Group or Electron Devices

Hammcrd John/Technical Irfo Coordinatcr
201 Varick Street, Stite 114C

New Ycrk NY 1OC14

UNIVERSITY OF CALIFCRNIA/LOS ALAMOS

NATICOAL LABCRA7CRY
ATTN: DAN BACA/REPOFT LIBRARIAN
P.O. 2OX 1663, MS-P364

LOS PLAMCS NP 87545

RAND CORPCRATICN THE/LIBFARY

HELFER DORIS S/HEAD TECH SVCS
P.O. EOX 2131
SANTA MONICA CA 9040f-2138

DL-4

AEDC LIBFARY (TECH REPORTS FILE)1
m S -10C
ARNOLD AFS TN 37389-9998

U S AG1
At tn: ASH-PCA-CRT
Ft HuachLCa AZ 85613-6000

JI FPv.C1
Attn: Director/Acvanced Technctogy
1500 Ptanring Research Drive
McLear VA ?210e'-5099

A FEWC/ESRI
SA% ANTONIO TX 7P243-5000

4; EIG/EIER (V C) 2
CGRIFFISS AFB NY 13441-6348

AT TN: A C SYS DEV
HANSCCOm AFR kA 01731-500C

HASCC?, flFR NA 61l731-500C

~A %S 'CY PF NA 01731-500C

1i E £CC SYS-?

f-A1SCC' AFm "'A 1)1731-503r-

T heP c f tirp Erj;in,-oririq Insti tute

A t t n: 'V~jor Can ertcno U33AF
J c)nt Pr ; r arr Cf f i ce
Ca rr--io ?'otcr Lrivprsity
P it tsturr?, PA (5;1 ")-"F'9

DL- 5

DI I ? F R1
N S A / CS "
aT T': T.13/TDL (DAVIC V.ARJARUM)
FC 0 T r:CF P "E4DE k L 2C755-600 C

NS I CS C

T TN: N 4
FORT G~OfC C E,)F % 2C7S5- 6 0')

')I R EC I

, I CS C
AT T'4: p?7
9?. 1G SAVtC-cC .C1D
FORT r]cOP C - M EASDE f 7'0755-4J00

DIRECTOR

P.S A/ CS C
AT TN: R5
FORT SEORE C NFAnE IC 2755-6)flO

DIRECTOR

.S A/ CS S
AT TN: RP
FORT GFORC C NPAD E ?4C 2 r775-6rofl

DIRECTOR
I"S A/ CS S
AT TN: S C31
FORT GPOREF C EADE NC 2C755-6000

DIRECTOR
NS AI CS S

AT TN : S21
FORT CEORCE C PEADE WD 20755-6000

DIRECTOR
NSA/CS S
ATTN: V33 (S. Friedrich)
FORT GEORCE G READE PC 2C755-600C

DIRECTOR

NS A/ CS S
AT TN: W3
FORT GEORCE C PEADE liC 2C755-6000

DL-6

DoD COMPUTER SECLRITY CENTER

AT TN: C 4/ T IC
W10 SAVAG-E ROAD

FORT C-EORC-E C P'EADE PD 2C75S-6000

Syteko Irc.
1225 Clhartestor Rd.
Mountain Vie6 CA 94043

Unisys Ccrp
Attin: Lorraire 1). Martin
5151 Camino Puiz

CamariL (c CA 9?011-6064

Harris Ccro.
G-cverrrnert Irfcrwfaticn Systemrs Divisicn
Attn: Rorca P-enning
P.O. Eox 9R0fl0
Npelbcurnep F1 32902

Ford Aprcsoace & Comirunications Corp.
At tn: Peter eaker (MaiL Stop 29A)
lC44r State- Hichway A3
Colorado Sprinqs.. CO P0908

MITR~E rorp.
At tn: rDte M. Johnso' (MS P330)
RurL in~tcn Rc.
,iedfcrd o MA 017?3 0

-ons-ywo-Lt I nc .
Spcure Ccmputi rq Tpc~notcgy Center MlN5S-7282
At tn: J. Thorras V-aigt
2 15 Anthony Lane SoLth (Suite 130)
St. hn'thcny, Mk 5 541S

I Interr'atiorat
Caoutor Sc ience Lab
At tn: Taresa Lunt

i ') averswocd "ve.
fvPntc Dark, CA r,4025

I/IT~ k "r) rr. '

A~t t r, J u-s.j a Gut triman Y~S A45 5)
u r L i r, it c R .

P -:f cri -1 0 17 0

DL- 7

Co-.-itat iCna1 LoqL c p I rc.
• t in: "r. ")or a l 1 . Good

I ' ?t St.

,u~t ir, "X ? 9 n -

jys sPy s e s r c h A s scc
At tn: ')r* Richarc PLate k

?(IA F r r s 0. 9at s Cr
ithac , NY 148 F,-1313

N-t icn L S cur ty Agency 1
At n: L3rry IatcF / 5

? ava e oa
tor t Y, : e, D r75 5

nt tl: y1 v3n Pinsky / C33
9 -nq Savag P O2 o

Cort Yeace, '.D 075 9

NavaL Reseirch Lboratory
At fn: C r L E. Lardwe r (Cede 759)

A s jhingtcr, '.C 20375

LS Arrry (EC C/CENTACS

A e SE L - R D - CO M - T C-?
At tn: Joihr o. Freusse
Fort cnitcut', NJ ?77)3

'eferse Irtet Ligence Agercy
At tn: Richarc N yren (RSE-4)
,*a shinqtcrn , DC 2)3 .1

Oeferse Commuricatiors Ergineering Certer
attn: Core RP2C (Peter Fcnash)
1 96,3 * i P,L', e Avs!.

Restcr, VA 22(9r-5 50C

5emini Ccmouters Inc.
At in: Roger ScPet t
AO Garder Court (Suite 110)
monterey, CA 93940

9opirg Aerospace Co.
Attn: Daniet Schrackenberg (PH-35)

P.o. O.ox 7919
S- at t 1 A 9 F 12D4

DL-8

University of Delaware

Electrical Ergineerirg Dept.
Attn: Peter C. vcn Glahn

14C Evans Hall

Newark, CE 19716

BBN Laboratories Inc.

Attn: Steve Vinter

10 Moul tcn Street
Cambridge , fA C223f

University of California

Computer Science Dept.
Attn: Prcf. Richard A. Kemmerer
Santa 9artara, CA 93106

Institute for tefense Analyses

CompLter & Software Ergineering Division

Attn: Wil liafr vayfieLo
18ql N. Eeaurecard St.

ALexardria, VA 22311

Research Triancle Institute

At tn: Johr Mch.gI

CDSR Fprtert E1oq., F.O. Box 12194

Research Trianale Park, NC ;7709

Urisys Ccrp.
At tn: Detcra" Cocper (TpS 91-1 1)
?5?5 Cclcradc 'vp.

%anta Morica, CA 904C6-Q99

Trjsted Informations Systems

6t tn: Stepher. T. Walker
77, kashington Rd.
rL wnoo J, MD 2173A

IR I Interraticra(

Computpr Sci fnce Lab
At tn: Jokr Rus~by
33 Raverswocd Ave.
VpLt Park CA q42?5

Unisys Ccrr.
-ttn: LotAnna Notarliacorro
P21 Greprs jcrc !r, Suite 100C

VcLear Vje 21Cr

DL-9

At n: o' Jo rsor / C33
9 O sivagp Pa.

Ft il'de Yr) ?C75 9-(O(C

t fin: iotard StainPr C C

t h3 IVa

A t ti: LCr Tkorras Taytr

Alyssey Pese3rch Asscciat.es Irc.
Ltt n Pa y iftcr,

I.9 j)][Pf i t
Ve L C Ojr k C C, r

XeroX t,jdv)cpd Irfornat ion lechncLogy
t tn: 7)r. A lejancro F. Buchmann
Four Camtriaqe CEnter

Ca Lride MA C ;1, 2

Xerox A1jvancFd irforwat ion TechncLogy
At tn: r . 9 artara T. Etausteir,
1 8 3 Ciacc-a t Jd, Suite 30J

A L x rr 3 V1 p2314

Strategic Defense Initiative Office

Office of the Secretary of Defense
Wash DC 20301-7100

DL-10

