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Priority Arbitration with Busses

(Extended Abstract)

Shlomo Kipnis

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

October 16, 1989

Abstract Z '

This paper explores priority arbitration schemes that employ busses to arbitrate
among n modules in a digital system. We focus on distributed mechanisms that
employ m busses, for Ig n,< m -'n, and use asynchronous combinational arbitration-
logic. A widely used distributed asynchronous mechanism is the binary arbitrationL
scheme, which with m = lg n busses arbitrates in t = Ig n units of time. We present
a new asynchronous scheme - binomial arbitration - that by using m = Ig n + 1
busses reduces the arbitration time to t = ig n. Extending this result, we present
the generalized binomial arbitration scheme that achieves a bus-time tradeoff of the /-
form m = Q(tn/1*) between the number of arbitration busses m and the arbitration
time t (in uits of bus-settling delay), for values of 1 < t <'lg n and lg n _ m < n.
Our schemes are based on a novel analysis of data-dependent delays and generalize -41
the two known schemes: linear arbitration, which with m = n busses achieves t = 1
time, and binary arbitration, which with m = Ig n busses achieves t = Ig n time. Most
importantly, our schemes can be adopted with no changes to existing hardware and
protocols; they merely involve selecting a good set of priority arbitration codewords.

Keywords: arbitration, arbitration priorities, asynchronous arbitration, binary ar-
bitration, binomial arbitration, busses, bus-settling delay, combinational logic, data-
dependent delays, generalized binomial arbitration, linear arbitration, open-collector
busses, priority arbitration, resource tradeoff, wired-OR.

This research was supported in part by the Defense Advanced Research Projects Agency under Con-
tract N00014-87- K-0825.



1 Introduction

In many electronic systems there are situations where several modules wish to use a com-
mon resource simultaneously. Examples include microprocessor systems where a decision is
required concerning which of several interrupts to service first, multiprocessor environments
where several processors wish to use some device concurrently, and data communication
networks with shared media. To resolve conflicts, an arbitration mechanism is required
that grants the resource to one module at a time.

Numerous arbitration mechanisms have been developed, including daisy chains, priority
circuits, polling, token passing, and carrier sense protocols, to name a few (see [5, 6, 10,
14, 18, 19, 22, 26]). In this paper we focus on distributed priority arbitration mechanisms,
where contention is resolved using predetermined module priorities and the arbitration
process is carried out in a distributed manner at all the system modules. In many modern
systems, and especially in multiprocessor environments and data communication networks,
distributed priority arbitration is the preferred mechanism.

Many distributed arbitration mechanisms employ a collection of arbitration busses to
implement priority arbitration. To this end, each module is assigned a unique arbitration
priority, which is an encoding of its name. An arbitration protocol determines the logic
values that a module applies to the busses, based on the module's arbitration priority
and on logic values on other busses. After some delay, the settled logic values on the
busses uniquely identify the contending module with the highest priority. In particular,
the asynchronous binary arbitration scheme, developed by Taub [23], gained popularity
and is used in many modern bus systems, such as Futurebus [7, 25], M3-bus [9], S-100
bus [13, 24], Multibus-II [14], Fastbus [15], and Nubus [28]. Other priority arbitration
mechanisms that employ busses are described in [5, 6, 10, 12, 17, 18, 19, 22, 26].

The asynchronous binary arbitration scheme arbitrates among n modules in t = Ig n
units of time, using m = Ig n open-collector (wired-OR) arbitration busses.' The technol-
ogy of open-collector busses is such that the default logic value on a bus is 0, unless at least
one module applies a 1 to it, in which case it becomes a 1. Open-collector husses, thus, OR
together the logic values applied to them, with some time delay called bus-settling delay.
In asynchronous binary arbitration, each module is assigned a unique (lg n)-bit arbitration
priority. When arbitration begins, competing modules apply their arbitration priorities to
the m = lg n busses, each bit on a separate bus; the result being the bitwise Oit of their ar-
bitration priorities. As arbitration progresses, each competing module monltors the busses
and disables its drivers according to the following rule: if the module is .plying a 0 (that
is, not applying a 1) to a particular bus but detects that the bus is carrying a 1 (applied by
some other module), it ceases to apply all its bits of lower significance. Disabled bits are
re-enabled should the condition cease to hold. The effect of this rule is that the arbitration
proceeds in Ig n stages from the most significant bit to the least significant bit. Each stage
consists of resolving another bit of the highest competing binary priority, which leads to a
worst-case arbitration time of t = Ig n (in un. ts of bus-settling delay).

'Throughout this paper we count only arbitration busse that are used for encoding the priorities.
Several additional control busses are used by all schemes and are therefore not counted.



Stage 1 Stage 2 Stage 3 Stage 4

02 C.I C 9 C 21 0 C 9 C,0 OR 2 C5 C9 C,0 OR c0 2 C9 C10 OR

Bus b3 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1

Bus b2  0 1 0 0 1 [& 1 0l 0 0 1 0 0 0o 1 00

Bus b, 1 0 0 1 1 0 o A 0 1 1 0 0 1 1

But . 0 1 0 a I 1 0 0.Ol I  1 1. 0 1 lO 1o o , 0 0

Figure 1: Asynchronous binary arbitration process with 4 busses. The competing modules are
c2, c5, c9, and cl 0 , with corresponding arbitration priorities 0010, 0101, 1001, and 1010. Bits in
shaded regions are not applied to the busses. The process takes 4 stages.

For example, consider a system of n = 16 modules that uses m = Ig 16 = 4 arbitration
busses, with the 16 arbitration priorities consisting of all the 4-bit codewords {0000, 0001,
0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}.
Figure 1 outlines an asynchronous binary arbitration process among four such modules c2,
c5 , c9 , and c10, with corresponding arbitration priorities 0010, 0101, 1001, and 1010. The
arbitration process begins by bitwise ORing the four arbitration priorities. After one unit
of bus-settling delay (stage 1), bus b3 settles to the value 1, where it will remain for the
duration of the arbitration. By the above rule, each of modules c2 and C5 disables its last
three bits. In the meantime, however, each of modules c9 and cl0 disables its last two bits,
because of the 1 on bus b2. At the end of stage 2, bus b2 settles to the value 0, where it will
remain for the rest of the process. As a result, modules cg and cl0 now re-enable their low
order bits (stage 3), which results in bus b, settling to a 1 at the end of stage 3. Finally, in
stage 4, module c9 ceases to apply its last bit, because of the 1 it detects on bus b1 , which
results in bus bo settling to a 0 at the end of stage 4. This arbitration process required
t = lg 16 = 4 stages to complete.

In this paper we show that the asynchronous binary arbitration scheme can in fact
be improved. We introduce the new asynchronous binomial arbitration scheme, that uses
one more arbitration bus in addition to the lg n busses of binary arbitration, but, most
surprisingly, reduces the arbitration time to -1 Ig n. In asynchronous binomial arbitration,
we use (lg n + 1)-bit codewords as arbitration priorities and follow the same arbitration
protocol of asynchronous binary arbitration. Our binomial arbitration scheme guarantees
fast arbitration by employing certain codewords that exhibit small data-dependent delays
during arbitration processes. For example, by using the following set of 5-bit codewords
{00000, 00001, 00010, 00011, 00100, 00110, 00111, 01000, 01100, 01110, 01111, 10000,
11000, 11100, 11110, 11111) as arbitration priorities, we can arbitrate among 16 modules
using 5 busses in at most 2 stages. Figure 2 outlines an asynchronous binomial arbitration
process among four such modules cl, co, c1l, and c12, with corresponding arbitration priori-
ties 00001, 00111, 10000, and 11000 from the above set, that completes in 2 stages. It turns
out that for any subset of the above 16 codewords, the corresponding arbitration process
takes at most 2 stages. In Section 3, we show how to design a good set of codewords for
general values of n by using binomial codes as arbitration priorities.
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Stage 1 Stage 2

C €i C ,1 C 12 OR 1 C6 011 C12 OR

Busb 4  0 0 1 1 1 0 0 1 1 1

Busb3 0 0 0 1 1 0 [ 0 1 1

Busb, 0 1 0 0 1 0 1 0 0 0

Bus b, 0 1 0 0 l 0 1 0 0 0

Busbo 1 1 0 0 1 1 [ 0 0 0

Figure 2: Asynchronous binomial arbitration process with 5 busses. The competing modules
are cl, c6, c1l, and c12, with corresponding arbitration priorities 00001, 00111, 10000, and 11000.
Bits in shaded regions are not applied to the busses. The process takes 2 stages.

The remainder of this paper explores priority arbitration schemes that employ busses to
arbitrate among n modules. In Section 2 we discuss priority arbitration and formally define
the asynchronous model of priority arbitration with busses. Section 3 describes the two
known asynchronous schemes: linear arbitration and binary arbitration, and presents our
new asynchronous binomial arbitration scheme, which with m = ig n + 1 busses arbitrates
in t = I Ig n units of time. In Section 4 we extend binomial arbitration and present the
generalized binomial arbitration scheme that achieves a spectrum of bus-time tradeoff of
the form m = O(tnl/t), between the number of arbitration busses m and the arbitration
time t, for values of 1 < t < lg n and Ig n < m < n. The established bus-time tradeoff is of
great practical interest, enabling system designers to achieve a desirable balance between
amount of hardware and speed. We present a variety of extensions to the results of this
paper in Section 5.

2 Asynchronous Priority Arbitration with Busses

In this section we discuss priority arbitration and formally define the asynchronous model
of priority arbitration with busses. The definitions in this section model typical implemen-
tations of asynchronous priority arbitration mechanisms that employ busses.

Arbitration is the process of selet.ting one module from a set of contending modules. In
asynchronous priority arbitration with busses, each module is assigned a unique arbitration
priority - an encoding of its name - which is used in determining logic values to apply
to the busses during arbitration. An arbitration protocol determines the logic values that
a competing module applies to the busses based on the module's arbitration priority and
potentially also on logic values on other busses. The beginning of an arbitration process
is identified by a system-wide signal, usually called REQUEST or ARBITRATE. The
resolution of an arbitration process is the collection of settled logic values on the busses at
the end of the process, which should uniquely identify the competing module having the
highest arbitration priority.
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Throughout this paper we use the following notations and assumptions. The set C =
{co,cj,...,c._} denotes the n system modules (chips), which we assume are indexed
in increasing order of priority. The m open-collector (wired-OR) arbitration busses are
denoted by B = {/b, b,...,bm._}, where the busses are indexed in increasing order of
significance (to be elaborated later). The set P = {p0, ,.. ., p,- i} consists of n distinct
arbitration priorities, with pi being the arbitration priority of module c,. Arbitration
priorities are only a convenient mechanism of encoding the modules' names, and in many
asynchronous schemes arbitration priorities are m-bit vectors that competing modules
apply to the m busses during arbitration. When necessary, we denote the bits of an
arbitration priority p by p(0),P p in order of increasing significance. We assume
that each module is connected to all busses and can thus read from and potentially write
to any bus. All modules follow the same arbitration protocol in interfacing with the busses
and reaching conclusions concerning the arbitration process. Finally, we assume that only
competing modules apply logic values to the busses; noncompeting modules do not interfere
with the busses. All our assumptions are standard design practice in many systems.

In asynchronous priority arbitration with busses, we restrict the arbitration process
to be purely combinational by requiring that the arbitration logic on all the modules
together with the arbitration busses form an acyclic circuit. Using combinational logic with
asynchronous feedback paths may introduce race conditions and metastable states, which
can defer arbitration indefinitely (see [1, 20, 21]). The acyclic nature of the arbitration
logic imposes a partial order on the busses, which can be extended to a linear order. The
significance of the linear order on the busses is that logic values on higher indexed busses
can be used to determine logic values of lower indexed busses but not vice versa. We
formalize this idea in the following definition of an acyclic arbitration protocol.

Definition 1 Let P be a set of arbitration priorities. An acyclic arbitration protocol of size
m for P is a sequence F = (fi,... f ,fo) of m functions, fj: P x {0, 1 }-j-' --+ {0, 1},
for j = 0,1,...,m- 1.

In asynchronous priority arbitration with busses, every module has arbitration circuitry
that implements the same acyclic arbitration protocol, but with the module's arbitration
priority as a parameter. The m arbitration busses are ordered from b,,_i down to b0,
in accordance with the acyclic nature of the circuit. Informally, function f, takes an
arbitration priority p E P and m - j - 1 bit values on the highest m - j - 1 busses bi,_1
through bj+,, and determines the bit value that a competing module c with arbitration
priority p applies to bus bi, for j = 0, 1,... , m - 1. An arbitration process among several
contending modules consists of the competing modules applying logic values to the m
busses according to the acyclic arbitration protocol of size m.

Measuring the arbitration time of asynchronous mechanisms is somewhat problematic.
We follow a standard approach taken in many bus systems (see [6, 10, 11, 14, 16, 24, 25])
and measure the arbitration time in units of bus-settling delay. Bus-settling delay, Tb,,, is
the time it takes for a bus to settle to a stable logic value, once its drivers have stabilized,
which includes the delays introduced by the logic gates driving the bus, the bus propagation
delay, and any additional time required to resolve transient effects such as the wired-OR

5



glitch. In effect, we model an open-collector bus as an OR gate with delay Tbu,, the time
it takes for the output of the gate to stabilize on a valid logic value, once its inputs have
reached their final values. An arbitration process is modeled as a sequence of stages, each
taking Tb. time, and the arbitration time is defined as the number of stages it takes
until all busses stabilize. This approach models the situation in many bus systems rather
accurately. (More discussion of measuring the arbitration time in units of bus-settling
delay is deferred until Section 5.)

We next formally define the notion of an arbitration process of an acyclic arbitration
protocol on a set of competing arbitrztion priorities. We characterize the arbitration
process by the collection of the logic values on the m busses at the end of each computation
stage. We use vj[/] to denote the logic value on bus bi at the end of the lth computation
stage, for j = 0, 1,. .. , m - 1 and I = 0, 1, ... Without loss of generality, we assume that
an arbitration process begins with all busses being in logic value 0.

Definition 2 Let P be a set of arbitration priorities, F be an acyclic arbitration protocol
of size m for P, and Q C P be a set of competing arbitration priorities. The arbitration
process of F on Q is the successive evaluation of

Vi t] = 0,
Vj Y + 1] = V Ap . 1, V+111

pEQ

forj = 0, 1,. .. , m - 1 and 1 = 0, 1, ... We say that the arbitration process takes t stages

if t > 0 is the smallest integer for which vi[t] = vj[t + 1), for j = 0, 1,...,m - 1. The
resolution of the arbitration process is the sequence of values (v,,-,Ilt],... , vijt), v0It]).

Definition 2 characterizes an arbitration process as a successive application of the
acyclic arbitration protocol F to the set of competing arbitration priorities Q and the
current state of the m busses. The arbitration process terminates when no more changes
in the state of the busses occur, at which point a resolution is reached. It is relatively easy
to verify that any arbitration process of an acyclic arbitration protocol F of size m takes
at most m stages. This is the case because at each computation stage of an arbitration
process, at least one more bus stabilizes on its final value.

A better upper bound for the number of stages taken by arbitration processes is given
by the depth of the acyclic arbitration protocol. As discussed above, the acyclic nature
of the arbitration logic imposes a partial order on the busses. We can therefore statically
partition the m busses into d levels, such that the computation for a bus in a certain
level only uses the values of busses in previous levels. More formally, given an acyclic
arbitration protocol F of size m, we simultaneously partition the m functions of F into d
nonempty disjoint sets F0, F1,..., Fd-l, and the m busses of B into d corresponding sets
Bo, Bi,..., Bd-l, with fj E Fh if and only if bj E Bh, for 0 < j < m - 1, and 0:< h < d- 1.
The partition must have the property that the computation of a function fj E Fh depends
only on the arbitration priorities and on values of busses in sets B 0, Bl,..., Bh- 1. The
depth of an acyclic arbitration protocol F of size m is defined as the smallest d, for which
a partition as above exists. The depth of an acyclic arbitration protocol is never greater
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than its size. The next theorem shows that any acyclic arbitration protocol of depth d
reaches a resolution after at most t = d computation stages.

Theorem 1 Let P be a set of arbitration priorities, F be an acyclic arbitration protocol
of size m for P, and d be the depth of F. Then, for any subset Q C P of competing
arbitration priorities, the arbitration process of F on Q takes at most d stages.

Proof. By induction on d, the depth of the acyclic arbitration protocol F.

Base case: d = 0. For depth d = 0, there are no arbitration busses and the claim holds
immediately for arbitrary Q.

Inductive case: d > 0. Given an acyclic arbitration protocol F = (fr-,..., fi, fo) of
size m and depth d for P, we can partition F = Ud-Fh and B = Ud:1Bh as above. Without
loss of generality, we assume that the last level consists of the r functions and busses with
indices 0, 1, ... , r - 1. The first d - 1 levels of F constitute an acyclic arbitration protocol
F =o Fh = (fm-i,...,fr+ifr) of size m - r and depth d- I for P. By induction, the
arbitration process of F' on Q takes at most d - 1 stages. That is, for any r < j < m - 1
and I > d - 1, we have vj[l] = vj[d - 1]. In addition, according to the acyclic arbitration
protocol F, we also have that for any 0 < i < r - l and k > d > 0,

vi[k] V fi(p,v,-I[k - 1,. .. ,V[k - 11)
PEQ

= V f(p, v.i[d 1],...,v[d- 1])
pEQ

= vi[d,

because the dth level depends only on busses bm-i down to b, and because k - 1 > d - 1.
This proves that the arbitration process takes at most d stages. U

Theorem 1 shows that the number of stages that an arbitration process takes is bounded
by the depth of the acyclic arbitration protocol F. This bound represents a standard static
approach in the analysis of delays in digital circuits, namely, that of counting the number
of gates on the longest path from the inputs to the outputs. In this paper, however, we
introduce and use a novel dynamic approach of bounding the number of stages that an
arbitration process takes by a careful analysis of the data-dependent delays experienced
in the arbitration circuits. In doing so, we exhibit arbitration schemes that guarantee
termination of any arbitration process in a circuit of size and depth m after a fixed number
of stages t, for values of 0 < t < m.

To complete the definition of asynchronous priority arbitration schemes, we need to
introduce the notion of an interpretation function. Suppose we have a set of arbitration
priorities P and an acyclic arbitration protocol F of size m for P. An interpretation
function for P and F is a function WIN : {0, 1}" -- P, such that for any Q C P, with
p E Q being the highest arbitration priority in Q and (vmi, .. , v1vo) being the resolution
of the arbitration process of F on Q, we have WIN(v,mi,...,vj,vO) = p. Informally,
WIN interprets the resolution of any arbitration process of F by identifying the highest
competing arbitration priority. We are now ready to define an asynchronous priority
arbitration scheme for n modules, m busses, and t stages.

7



Definition 3 An asynchronous priority arbitration scheme for n modules, m busses, and
t stages is a triplet A(n, m, t) = (P, F, WIN), where

* P is a set of n arbitration priorities;

* F is an acyclic arbitration protocol of size m for P;

* WIN is an interpretation function for P and F;

such that for any Q C P, the arbitration process of F on Q takes at most t stages.

Definition 3 emphasizes the role of the arbitration priorities, which are just a mechanism
to distinguish between different modules. It will become apparent, however, that careful
design of the codewords used as arbitration priorities has a significant impact on the
arbitration time. In the next Section, for example, we demonstrate that by using the set
of (lg n + 1)-bit binomial codes as arbitration priorities, we can achieve an arbitration time
of t = lg n.

3 Asynchronous Priority Arbitration Schemes

In this section we first use our framework to describe two commonly used asynchronous
priority arbitration schemes: linear arbitration, which with m = n busses arbitrates in time
t = 1, and binary arbitration, which with m = lg n busses arbitrates in time t = lg n. We
then present our new asynchronous scheme, binomial arbitration, which with m = Ig n + 1
busses arbitrates in time t = Ig n.

The Asynchronous Linear Arbitration Scheme

This scheme uses m = n busses and arbitrates among n modules in t = 1 stages. To
arbitrate, contending module ci applies a 1 to bus bi, for 0 < i < n - 1, and does not
interfere with other busses. This translates to module cj having an n-bit arbitration priority
pi, such that p j ) = 1 if i = i and p$j) = 0 otherwise. After t = 1 units of time, all the
busses stabilize on their final values, and the module with a I on the bus with the highest
priority is recognized as the winner. This scheme can also be implemented with tri-state
busses, since at most one module writes to any given bus. The scheme is also known
as decoded arbitration and is used in a number of bus systems and interrupt arbitration
mechanisms (see [10, 12, 18, 26]).

Formally, we define this scheme as LINEAR(n, n, 1) = (P, F, WIN), where

p = 1p, = 01 - IOi : for i = 0,1,... ,n - 1}.

SF= (f,- 1 ,...,f,fo), where f(p,v,,,-...,vj+)= p(), for j = 0,1,...,n- 1.

WIN(0 t 1a) = O" 1 0 - - = P,8-k-1, for 0 < k < n - 1 and any a E {0,11



Notice that although the size of the acyclic arbitration protocol of LINEAR is rn = n,
its depth is only d = 1, which according to Theorem 1 shows that the asynchronous linear
arbitration scheme takes at most t = 1 stages to arbitrate.

The Asynchronous Binary Arbitration Scheme

This scheme uses m = [ig n] busses and arbitrates among n modules in t = [ig n] stages.
The arbitration priority pi of module ci is the binary representation of i, for 0 < i < n - 1.
To arbitrate, contending module c drives its binary priority p onto the m busses, from
p(m--) (the most significant bit of p) onto bus bin_ 1, down to p(0) (the least significant bit
of p) onto bus b0; the result being the bitwise OR of the binary priorities of the competing
modules. During arbitration, each competing module c monitors the busses and disables
its drivers according to the following rule: let p(') be the lth bit of the binary priority p,
and let v, be the binary value observed on bus b1, for 0 < 1 < m - 1. Then if p(') = 0 and
vi = 1, module c dis.bles all its bits p(j) for j < 1. Disabled bits are re-enabled should the
condition cease to hold. After t = [ig n] units of time, all the busses stabilize on their final
values, and the module whose arbitration priority appears on the busses is the winner.
This scheme was developed by Taub [23], and is also known as encoded arbitration (see
[6, 10, 14, 24, 25]).

Formally, we define this scheme BINARY(n, fig n] ,fig n]) = (P, F, WIN) as follows. For
simplicity of notation we use m = jig n].

* P = {Pi = .m-1 ""ceo : where c,-1" -. f is the binary representation of i, for
i = 0,1,..n- 11.

* F =(f--l,...,fi,fo), where

0 if v(,-1) -0 A v, =)0PV- ifvtl)= =j+, ()O v~

{ p(j) otherwise ,

forj = 0,1,...,m - 1.

e WIN(a) = a, for any a E {0, 1} .

Notice that the size m and the depth d of the acyclic arbitration protocol of BINARY are
equal, specifically m = d = [ig nl. This can be verified by noticing that the computation
for each bus bj, where 0 < j < m - 1, takes into account values on busses b, for j < 1 <
m - 1. This implies, according to Theorem 1, that the asynchronous binary arbitration
scheme takes at most t = [lg n] stages to arbitrate. On the other hand, it has been
shown in [2, 10, LL, 24, 25, 27] that there are examples where a binary arbitration process
takes exactly ig n] stages. These examples consist of arbitrating among bad subsets of
arbitration priorities, where at each stage the binary value of exactly one more bit of
the highest competing binary priority is resolved. Our asynchronous binomial arbitration
scheme, presented next, guarantees fast arbitration by employing certain codewords that
exhibit small data-dependent delays.

9



The Asynchronous Binomial Arbitration Scheme

This scheme uses m = [lg n + 1] busses to arbitrate among n modules in t = [i lgnj
stages. This scheme's acyclic arbitration protocol and interpretation function are identical
to those of the binary arbitration scheme, and thus the same hardware can be used. The
only difference is that binomial codes are used as arbitration priorities rather than all
the 2" possible m-bit codewords of binary arbitration. Alternatively, with m busses, this
scheme can arbitrate among 2 -1 modules in t = [(m - 1)1 stages. We next describe the
binomial codes and begin by defining the interval-number of a binary codeword.

Definition 4 The interval-number of a binary codeword p is the number of intervals of
consecutive l's or O's that it contains, disregarding leading O's.

Thus, for example, the interval-number of 001011 is 3, the interval-number of 0000 is
0, and the interval-number of 10101010 is 8. In general, an m-bit binary codeword p with
interval-number r, has the form p = 0 O1 m10 m21 M 3 ... 6 M, where 8 E {0, 1}; m0  0;
mj > 0 for 1 < j < r; and =0 mi = m. We next define the binomial codes of length m.

Definition 5 The set of binomial codes of length m, denoted by D(m), is the set of all

the m-bit binary codewords that have interval-number at most [ (m - 1)].

The binomial codes of length m are in fact all the m-bit codewords, that, after deleting
leading O's have at most 4(m - 1)] intervals of consecutive l's or 0's. For example, the

binomial codes of length 4 is D(4) = {0000, 0001, 0010, 0011, 0100, 0110, 0111, 1000, 1100,
1110, 11111, consisting of 11 codewords that have interval-number at most 2. As another
example, the binomial codes that were used in the introduction are D(5) = {00000, 00001,
00010, 00011, 00100, 00110, 00111,01000, 01100, 01110, 01111, 10000, 11000, 11100, 11110,
111111, consisting of the 16 codewords of length 5 with interval-number at most 2. For
general values of m, Corollary 3 in Section 4 shows that there are at least 2 1- binomial
codes of length m. By taking m -[lg n + 11, this translates to at least 2 gn+11-1 > n
binomial codes, which means that there are enough arbitration priorities for n modules.

Formally, we define this scheme BINOMIAL(n, [lg n + 1], [ lg n]) = (P, F, WIN) as fol-

lows. We use m = [lg n + 11 and t = [I lg nj for simplicity of notation.

* P = D(m).

* F = (fn fl,..., fo), where
I { ~) i "(rn-l) (p) =0Av =1)

0 ifvfnf I Vp(l)O 1=3+
fj(P, Vm-... ,V.+ --- p otherwise ,

forj = , 1,. .. ,m-1.

" WIN(a) = a, for any a E {0, 1} .
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It remains to show that the asynchronous binomial arbitration scheme indeed arbitrates
among n modules in at most t = [ ig n] stages. Notice that a standard static analysis
of the arbitration circuitry, as given for example in Theorem 1, does not give the desired
result, since both the size and the depth of the acyclic arbitration protocol F of binomial
arbitration are m = d = [lg n + 1]. In Section 4, we use a novel dynamic approach of
analyzing the data-dependent delays experienced in arbitration processes, and prove the
correctness of our scheme as a special case of our generalized binomial arbitration scheme.

4 Generalized Binomial Arbitration

In this section we extend the ideas of the asynchronous binomial arbitration scheme of
Section 3 by presenting the generalized binomial arbitration scheme that with m busses
and in at most t stages, arbitrates among n = = (7) modules. By Stirling's approxi-

mation, the asymptotic bus-time tradeoff of the generalized binomial arbitration scheme
is approximately m = ltnl/t. This bus-time tradeoff is of great practical interest, enabling
system designers to achieve a desirable balance between amount of hardware and speed.
The performance of the generalized binomial arbitration scheme is based on an analysis of
data-dependent delays.

We first define the set of generalized binomial codes of length m and diversity r.

Definition 6 The set of generalized binomial codes of length m and diversity r, denoted
by G(m, r), is the set of all m-bit binary codewords that have interval-number at most r.

Generalized binomial codes serve as arbitration priorities in the generalized binomial
arbitration scheme. The next lemma determines the cardinality of the set of the generalized
binomial codes of length m and diversity r.

Lemma 2 The set G(m, r) contains E=0 (7) distinct codewords.

Proof. To simplify the counting, we take all the codewords in G(m, r) and append a 0 at
their beginning. This results in a set of (m + 1)-bit words, that begin with a 0 and have at
most r switching points from a consecutive interval of O's to a consecutive interval of l's
and vice versa. The number of such words is ' (7), since there are exactly that many

possibilities of choosing at most r switching points out of m possible positions. U

Corollary 3 There are at least 2 -1 binomial codes of length m.

Proof. By our notation, the set of binomial codes of length m, D(m), is defined by
D(rn) = G(m, [1(m - 1)]). According to Lemma 2, we have

ID(m)l = -1) M

1=0



The sum includes the first [1(m - 1)] + 1 binomial coefficients, which constitute at least
a half of all the m + 1 binomial coefficients. The partial sum is therefore at least a half of
the full sum, which is 2". We therefore conclude that ID(m)l > 1 • 2,m = 2"_1.

The Asynchronous Generalized Binomial Arbitration Scheme

This scheme uses m busses and arbitrates in at most t stages, for t < m. With the m
and t parameters determined, this scheme can arbitrate among at most n = ,=0 (I)

modules. The acyclic arbitration protocol and the interpretation function of this scheme
are identical to those of the binary arbitration scheme of Section 3, and thus the same
hardware can be used. The only difference is that generalized binomial codes from G(m, t)
are used as arbitration priorities.

Formally, we define this scheme GENERALIZED-BINOMIAL(n, m, t) - (P, F, WIN), for
= Ef=o (7), as follows.

* P=G(m,t).

* F = (ffl,...,f, fo), where

fj (A vm.I ... )v3+1) ~0 if Vl=+l (() =0 A v=)

f p(s) otherwise ,

for j=0,1,...,m- 1.

* WIN(a) " a, for a E {0, 1}m.

The idea behind generalized binomial arbitration is that the interval-number of the
highest competing arbitration priority bounds the number of arbitration stages. In binary
arbitration, where all the 2 ' m-bit codewords are used, arbitration processes can take as
many as m stages, where at each stage one more bit of the highest competing arbitration
priority is resolved. For generalized binomial arbitration, however, we select codewords
that have at most t intervals of consecutive l's or O's. The following theorem uses data-
dependent analysis to argue that any arbitration process takes at most r stages, where r
is the interval-number of the highest competing arbitration priority, by showing that at
each stage the arbitration process resolves at least one more interval of consecutive bits.

Theorem 4 Consider a generalized binomial arbitration process on m busses. Let Q be
the set of competing arbitration priorities, p be the highest arbitration priority in Q, and
r be the interval-number of p. Then after s stages, for any s > r, bus bi carries the logic
value p(j), for 0 !5 j < i - 1.

Proof. We prove the theorem by induction on r for arbitrary values of m. We use the
notation v,[kJ to denote the logic value on bus bj at the end of stage k, for j = 0, l,...,rn-1
and k = 0,1.

12



Base case: r = 0. The codeword p consists of m consecutive 0's, that is, p(j) = 0 for
i = 0, 1,... ,m - 1. Since p is the highest arbitration priority in Q, then any q E Q must
also have q(J) = 0 for j = 0,1, ... , m - 1. By our assumption that all the m busses are
initially in logic value 0, and since according to the acyclic arbitration protocol no module
ever applies a 1 to any of these busses, the m busses remain in logic value 0 forever. In
other words, after s stages, for any s > r = 0, we have vj[s] = vj[0] = 0 = p(J), for
j = 0, 1,... ,m - 1, which proves the claim.

Inductive case: r > 0. The codeword p has m bits and interval-number r, and is thus
of the form p = 00 ° I 1,0m21m3 ... b"', where 6 E {0, 1); m0 _: 0; mj > 0 for 1 < j < r;
and Er m = M. We first concentrate on the first r - 1 intervals of p, and define the
set R of reduced codewords of length 7' = m - m = _ 1mj, by ignoring the last rnr
bits of the codewords of Q. It is easy to verify that P, the reduced version of p, is the
highest codeword in R, because we discarded the m,. least significant bits of codewords in
Q. Furthermore, the interval-number of P is r - 1, since the last interval of p of the form
6' was ignored. By applying the claim inductively with rh busses, the set of competing
arbitration priorities R, and the highest arbitration priority P of interval-number r - 1, we
find that after r - 1 stages the most significant 7h = m - m, busses stabilize to the bits of
P5. That is, for any k > r - 1, we have vjfk] = vj[r - 1] = W(') = p(j), for m, < j S m - 1.
We now consider the last mr, busses, bm,-1,.. . I bl, bl . There are two cases to consider:

6 = 1 The rth interval of p is an interval of mr consecutive l's, that is, p(') = 1 for i =
0, 1,... ,r, - 1. After k stages, for any k > r- 1, the most significant in-m, busses
carry the bits of p, and therefore there is no 1 in the range 0 < 1 < m - 1, with
vl[k] = 1 and p(') = 0. As a result, the module with arbitration priority p applies
all its last Mr consecutive l's. Therefore, for any s >_ r and i = 0, 1,... ,mr - 1, we
have vi[s] = vi[r] = 1 = p(), since the busses implement a wired-OR in one stage.

6 = 0 The rth interval of p is an interval of m, consecutive O's, that is, p(i) = 0 for
i = 0, 1,... , m,. - 1. Since p is the highest arbitration priority in Q, then for any arbi-
tration priority q E Q, q # p, there must exist an 1 in the range m, < I < m - 1, with
p(0 = 1 and q(') = 0. After k stages, for any k > r - 1, the most significant m - m,
busses carry the bits of p, and therefore any module with arbitration priority q #6 p
disables at least its last n, bits. As a result, for any s > r and i = 0, 1,. . , mr - 1,
we have vi[s] = v,[r] = 0 = p(i), because the busses implement a wired-OR in one
stage and no module applies a 1 to busses b0 through bm_- anymore.

Thus, after s stages, for s > r, the m busses carry the corresponding bits of p. U
The following corollary shows that by taking G(m, t), the generalized binomial codes

of length m and diversity t, as arbitration priorities, we guarantee that any arbitration
process completes in at most t stages.

Corollary 5 Consider GENERALIZED-BINOMIAL(ni,m,t), the generalized binomial arbi-
'tration scheme. For any subset of arbitration priorities Q C G(rn, t), the corresponding
arbitration process takes at most t stages.
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Proof. Let p be the highest arbitration priority in Q. Since the interval-number of p is
at most t, Theorem 4 guarantees that the arbitration process on Q, with p as the highest
arbitration priority, takes no more than t stages. U

The Generalized Binomial Arbitration Tradeoff

The generalized binomial arbitration scheme achieves a bus-time tradeoff of the form n

0=o )' which by Stirling's formula exhibits asymptotic behavior m = ltn',t . Figure 3

presents this bus-time tradeoff for a system consisting of n = 64 modules. The number of
busses varies from Ig n = 6 to n = 64, and the arbitration time is in the range 1 to ig n = 6

stages. Generalized binomial arbitration reduces to binary arbitration with m = [ig nl = 6

busses, to binomial arbitration with m = [lg n + 11 = 7 busses, and to a modified version

of linear arbitration (see Section 5) with m = n = 64 busses.

t

6.

51
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Arbfitration

2 4 61 012 14 11822242S 30 223436 3I6404244448S525SO5M 26 m

Figure 3: Bus-time tradeoff of the generalized binomial arbitration scheme for n = 64 modules,

using 6 < m < 64 busses and 1 < t < 6 stages.

Figure 3 demonstrates that neither linear arbitration nor binary arbitration efficiently

utilize the resources. For example, increasing the number of busses used in binary arbitra-

tion by one, results in speeding up the arbitration process by a factor of 2, as exhibited

by our binomial arb" -,tion scheme. On the other hand, allowing another time unit over

linear arbitration enables reducing the number of busses from n to approximately v/n.

Notice, however, that in order to achieve another factor-of-2 improvement in the arbi-

tration time, adding another constant number of busses to the lg n busses is not enough.

Asymptotically, as n grows without bound, we need to use more than (1 + c) lg n busses,

for f > 0.232, in order for the sum Z=0 (7), with t = 1 lgn, to be at least n. This

can be verified by Stirling's formula, since when m is greater than Ig n but smaller than

1.2321gn, and when t = I lgn < m/4, the sum of the first m/4 binomial coefficients (7),
for 0 < I < m/4, does not exceed n. This demonstrates that our binomial arbitration

scheme, which uses ig n + 1 busses, exhibits a most economic balance, much more so than
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the binary arbitration scheme. Other authors [11] have also discovered that by excluding
certain codewords, the arbitration time of binary arbitration can be reduced. We, however,
give the first general scheme that provides a full spectrum of bus-time tradeoff.

5 Extensions

This section contains some discussion, additional results, and directions of research con-
cerning priority arbitration with busses.

Bus Propagation Delay, Settling Time, and Wired-OR Glitch

High-speed busses are commonly modeled as elect-ical transmission lines, where it takes
some finite amount of time for a signal to propagate through the bus and bring the bus to
a stable logic value. In addition, there are the response time of logic gates and the effect of
the wired-OR glitch that need to be considered. In particular, the effect of the wired-OR
glitch on bus-settling time and the use of special integration logic at module receivers to
reduce this effect (see [3, 8, 16, 25]), seem to support our model.

Some authors carry out a more elaborate analysis of high speed busses (see [2, 8,
23, 24, 25]), which takes into account the distances between modules on the bus and
imposes certain assumptions on the arbitration priorities. In [24, 251, for example, Taub
assumes geographical ordering of module priorities and equal distances between modules
on a backplane bus. Counterexamples to Taub's analysis, where these requirements are
not met, have been found [2, 27]. Our model, on the other hand, is applicable to a wider
classes of systems, such as data communication broadcast channels and bus systems were
priorities and module locations are not predetermined and fixed.

The Asynchronous k-ary Arbitration Scheme

The linear arbitration and binary arbitration schemes of Section 3 use n-ary and binary
representations, respectively, of module priorities. We can also use radix-k representation
of module priorities, for other values of k, to arbitrate among n = k modules in t units
of time, using m = tik busses. We sketch the asynchronous k-ary arbitration scheme here
due to its simplicity and because it generalizes the linear and binary arbitration schemes
rather straightforwardly. This scheme exhibits a bus-time tradeoff of the form m = tn / ,
which is a factor of e worse than our generalized binomial arbitration scheme.

Asynchronous k-ary arbitration, for 2 < k < n, can be described as follows. Each
module is assigned a unique k-ary arbitration priority consisting of t radix-k digits. We
divide the m = tk busses into t disjoint groups, each consisting of k busses. During
arbitration, competing module c applies the t radix-k digits of its arbitration priority p to
the t groups of busses, using linear encoding of its digits on each group of k busses. As
arbitration progresses, competing module c monitors the t groups of busses and disables
its drivers according to the following rule: let p(') be the Ith radix-k digit of p and d, be the
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highest index of a bus in the lth group of busses that carries a 1. Then if p() < di, module
c disables all its digits p(J) for j < I. Disabled digits are re-enabled should the condition
cease to hold. Arbitration proceeds in t stages, each of which consists of resolving the
value of another radix-k digit of the highest competing k-ary arbitration priority.

Modified Linear Arbitration

A modified version of linear arbitration, which uses the same acyclic arbitration protocol of
binary arbitration, achieves the same bus-time tradeoff as linear arbitration. This version
is the generalized binomial arbitration scheme with m = n busses and t = 1 time, where the
arbitration priority of module ci is pi = 0 - i- 16+ l, for i = 0, 1,. . . , n- 1. This observation
poses an interesting question regarding the universality of the acyclic arbitration protocol
of binary arbitration.

Lower Bound for Asynchronous Priority Arbitration

The asynchronous generalized binomial arbitration scheme achieves a bus-time tradeoff of
the form n = E=0 (7), where n is the number of modules, m is the number of busses, and
t is the arbitration time. We conjecture that this tradeoff is optimal for our asynchronous
priority arbitration model, in that no more than n = E=0 () modules that can be
arbitrated with m busses in at most t stages.

Synchronous Priority Arbitration Schemes

In this paper we discussed the asynchronous model of priority arbitration with busses and
presented several asynchronous schemes. Considering synchronous priority arbitration
scheme that use clocked arbitration logic, we can show that a synchronous version of k-ary
arbitration achieves a bus-time tradeoff of the form m = n1/t and that this tradeoff is
optimal in a related synchronous model of arbitration. We can also demonstrate how to
combine asynchronous combinational schemes with synchronous clocked schemes to achieve
a wide spectrum of bus-time tradeoff.

Resource Tradeoffs

Resource tradeoffs of the form rn = 0(tnl/t), based on multiway trees and the special class
of binomial trees, are discussed in [4] for a variety of problems such as parallel sorting
algorithms, searching algorithms, and VLSI layouts. Asynchronous priority arbitration
with busses can in fact be considered as a selection process on trees. Asynchronous k-ary
arbitration corresponds to a selection process on regular trees of branching factor k, while
asynchronous generalized binomial arbitration corresponds to a selection process on the
more economical "modified binomial trees" of [4].
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