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Abstract

Usually speech systems are one-dimensional. One feature or representation

of speech is processed using a specific design methodology. In contrast, the human

perception system is multi-dimensional; humans process more than just the sound

of the word. Any speech recognition system that mimics human speech perception

will need to be multi-dimensional. This methodology formed the basis for the

design approach used in this research effort. Linear Predictive Coefficients (LPC)

and formants were used as distinct and independent inputs into a recognition

system consisting of a Kohonen neural network and a dynamic programming word

classifier A feature-fusion section and rule-based system were used to integrate

the two input feature sets into one output result.

The first half of this research effort involved extensive testing of the Kohonen

network. Using a speech input signal, different Kohonen gain reduction methods,

initial gain values, and conscience values were tested for various iteration times

in an effort to quantify the response and capabilities of the Kohonen network.

Three-dimensional Kohonen-Dynanic Programming surfaces were developed that

graphically showed the effects of gain, conscience, and iteration time on the speech

recognition response of a Kohonen neural network. A new standard iteration time

called a multiple was used during training of the Kohonen networks.

The results of tbe basic research on the Kohonen network produced an op-

timized Kohonen configuration that was used in the multiple-feature recognition

system. A 70-word vocabulary of F-16 cockpit commands were used to evaluate

the new feature-fusion method. The feature-fusion section performed well and was

able to correctly classify words even when each individual input feature gave an

incorrect answer.

xii



A STUDY IN SPEECH RECOGNITION

USING A KOHONEN NEURAL NETWORK

DYNAMIC PROGRAMMING AND MULTI-FEATURE FUSION

I. Introduction

The ability to communicate by speech seems fundamental to our nature.

From prehistoric times to the present, speech has increased our chance of survival

and has contributed to our development as social animals. It is not surprising

that people would want to communicate with machines by speech, especially since

machines have become such an integral part of our environment.

The benefits of an accurate voice interface between humans and machines,

that approaches the capabilities of human speech perception, would be enormous.

Most service industries, small businesses, and large corporations would share in

the multiple potential uses of automatic speech machines. Whether adjusting a

television set, preparing a meal, or driving an automobile; controlling machines

by voice would be quick and nearly effortless. With the computer controlling

the generation and transfer of information in today's society, the effect of having

a speech recognizer that replaces the keyboard as the primary human-machine

interface would be revolutionary.

Military applications of speech recognition systems, although potentially

widespread, focus on today's advanced combat aircraft environment [5:311]. A

recent study of F-15 and F-16 aircraft accidents indicates that speech recognition

systems would have prevented many of these accidents. Pilots became preoccupied

or distracted by the myriad of tasks within the cockpit and lost their "situational

1



awareness" [10:95]. The results of this study show the importance of continued re-

search and development of adequate speech recognition systems within the military

research community. Continued research will eventually allow us to fully compre-

hend our own ability to process and decode human sounds. The question now

is not if but when will humans fully understand and replicate speech and human

speech perception.

Background

The growing realization that the human-machine interface within today's ad-

vanced fighter aircraft has reached the limits of efficiency and reliability prompted

the Air Force to include a Voice Interactive System in the Advanced Fighter Tech-

nology Integration (AFTI) program. The AFTI program, which uses an F-16 test-

bed aircraft, seeks new technological answers to tomorrow's combat environment

[10:88].

Although state-of-the-art recognizers were used, the AFTI Voice Interactive

Systems attained accuracies only in the 85% range under operational conditions

[10:961. More accurate systems are now available, but overall, current speech recog-

nition systems are inadequate to the task of decoding and processing human speech

sounds with accuracies that approach human speech perception.

Most people easily perceive what is being said regardless of the speaker or the

time interval between words if they know a common language. Speech recognizers

have not reached this level of maturity. The complexity involved in speech recogni-

tion has forced researchers to seek intermediate solutions by classifying recognizers

according to the speaker and according to the time relationship between words.

A recognizer that is accurate only with voice input from one speaker is termed

a speaker-dependent recognizer. A recognizer requiring pauses between adjacent

words is termed an isolated-word recognizer. The most accurate existing speech

recognizers are speaker-dependent, isolated-word systems [21:1].
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A speech recognition system will be accepted by the user community only

if the system allows for the natural flow of information between humans and ma-

chines. This fact effectively precludes the widespread use of isolated-word systems

or their acceptance by many potential users. The solution space for a connected-

word system, however, is significantly more complicated. Connected-word systems

that are speaker-dependent would offer an acceptable compromise between our de-

sire to mimic human speech perception and the complex nature of the problem.

A speaker-dependent system would eliminate a significant number of recognition

errors due to cross-speaker variability. A speaker-dependent system does not have

to account for cross-speaker differences related to the acoustic effects of dissimilar

vocal-track lengths, or differences related to variations in spoken phonetic units

due to dialect or idiolect [15:305].

A speaker-dependent system would also be practical. For example, Air Force

pilots could carry a plastic card imprinted with their voice patterns or acoustic

sounds that represented all the phonetic sound units present within the recognizer's

vocabulary. The pilot could place the card into the generic Voice Interactive System

available in every aircraft thereby making the system unique for that pilot. If the

aircraft developed problems prior to take-off, the pilot could switch aircraft and

utilize its generic recognizer. This technology could be used with other machines,

including office computers and land vehicles.

Typically, recognition systems process a single feature or representation of

the speech signal. Methods, that are used to represent speech, attempt to preserve

the relationship between time and frequency inherent within every spoken word.

Processing methods usually use pattern-matching techniques in determining the

correct word or utterance. The recent introduction of neural networks in speech

research is an attempt to mimic the human recognition process.
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Problem Statement

The primary purpose of this thesis is the development of a recognition sys-

tem using a Kohonen neural network, dynamic programming, and multi-feature

fusion. The recognition system will be speaker-dependent, and will be capable of

recognizing both isolated and continuous speech.

Several features or representations of the speech signal are used in determin-

ing the correct word or utterance. Features are processed using a neural network

and a word classifier based on dynamic programming. The Kohonen network

organizes the speech data onto a two-dimensional grid. Dynamic programming

then fuses together the two-dimensional output of the Kohonen network and the

speaker's formant frequencies to produce the desired output.

The response of a Kohonen neural network to speech input is not well known.

In order to optimize the accuracy of the recognition system, a significant amount

of this thesis effort is spent testing the various parameters that affect the response

of the Kohonen network to speech.

Scope of This Research

Initially, the response of the Kohonen neural network to speech data is ascer-

tained. Parameters are tested that affect the ability of a Kohonen network to group

sounds into discrete regions on its surface. Various gain reduction methods are

evaluated along with different levels of conscience. The size of the two-dimensional

Kohonen network grid remains constant along with the range of the initial weight

values for the Kohonen network.

The vocabulary of the final speech recognition system consists of the 70 word,

F-16 command vocabulary shown in Table 1. Al the words are included in the

recognition system. Also, all 70 words are used to test the final recognition system.

The system is speaker-dependent.

4



Table 1. F-16 Cockpit Commands

1. Advise 25. Five 48. Profile
2. Affirmative 26. Flares 49. Radar
3. Aft 27. Forward 50. Range
4. Air-to-Air 28. Four 51. Report
5. Air-to-Surface 29. Foxtrot 52. Rhaw
6. Alpha 30. Frequency 53. Search
7. Arm 31. Fuel 54. Select
8. Backspace 32. Gun 55. Seven
9. Bearing 33. Heading 56. Six
10. Bravo 34. Hundred 57. SMS
11. Cancel 35. Knots 58. South
12. Chaff 36. Lock-On 59. Station
13. Change 37. Map 60. Strafe
14. Charlie 38. Mark 61. Tail
15. Channel 39. Miles 62. Target
16. Clear 40. Minus 63. Thousand
17. Confirm 41. Missile 64. Threat
18. Degrees 42. Negative 65. Three
19. Delta 43. Nine 66. Two
20. East 44. North 67. Waypoint
21. Echo 45. Nose 68. Weapon
22. Eight 46. One 69. West
23. Enter 47. Point 70. Zero
24. Fault

5



ASsumptions

All speech data are digitized by a Digital Sound Corporation (DSC) Analog

to Digital convertor. To preclude the effects of aliasing, this research assumes

the DSC signal convertor correctly low-pass filters and samples the data at or

higher than the Nyquist frequency before the analog-to-digital conversion process,

otherwise the effects of aliasing would corrupt the data and invalidate the test

results.

Standards

This research effort uses the F-16 command vocabulary. Except for Captain

Peter Kim's thesis work, which included research on merged templates using the

F-16 command vocabulary [14], other thesis efforts at the Air Force Institute of

Technology (AFIT) considered only the spoken digits zero through nine as possible

vocabulary words. The digits are a subset of the F-16 vocabulary.

Barmore used this subset of the F-16 vocabulary in his Kohonen based speech

recognition system [4]. As a means of gauging the performance characteristics of

the Kohonen network during gain reduction and network conscience testing, the

vocabulary of the recognition system in Phase I of this thesis consists of the digits

zero through nine only. These digit sounds or utterances consist of the same data

set used in the Barmore thesis. Using Barmore's speech files in Phase I allows

for easy comparison between the various gain reduction methods evaluated in this

thesis and the reduction method used in Barmore's system.

The entire F-16 command vocabulary is included within the recognition sys-

tem during Phase I1. Although Kim's system contained a 70 word vocabulary, only

20 of the total 70 words were used to test the final recognition system. This thesis

effort, however, uses all 70 words to test the final recognition system.
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Approach

The project is divided into two phases. Improvements or capabilities realized

in Phase I are incorporated into Phase II testing. The first phase investigates

methods to optimize the performance of the Kohonen network used by Barmore

[4]. The vocabulary consists of the isolated digits zero through nine from Barmore's

speech files. Both isolated and connected speech data are used. The areas covered

in Phase I include:

" Investigating different gain reduction methods as applied to Kohonen neural

network training of speech data.

" Determining the effect of varying conscience on the output performance of a

Kohonen neural network.

* Investigating the effectiveness of a Kohonen network to organize speech data

by determining the minimum training cycle time required for adequate speech

recognition.

" Investigating the effect of average subtraction on the output performance of

a Kohonen neural network.

The entire F-16 command vocabulary is added to the system in Phase II.

Materials and Equipment

The following materials and equipment were used:

* Digital Sound Corporation (DSC) Analog to Digital convertor.

* VaxWorkstation II running the VMS operating system.

* MicroVax III running the VMS operating system.

* VAX 'C' Language Complier using the Graphics Kernel System (GKS).

7



9 Symbolics 3600 Lisp Machine running SPIRE software.

9 Noise Reducing Microphone (SHURE Model SM54).

Sequence of Presentation

Chapter II provides background information about the variable nature of

speech and design approaches used in currently available speech recognitions sys-

tems. Dynamic programming and Kohonen artificial neural networks, as integral

parts of this thesis effort, receive additional coverage.

Chapter III describes the hardware and software environment required to

develop the recognition system.

Chapter IV describes the system used to test the Kohonen network in Phase I

and the speech recognition system in Phase II. Additional coverage is given to

Kohonen network structure and dynamic programming.

Chapter V discusses the results of testing different configurations of Kohonen

network structure and also testing of the final speech recognition system.

Chapter VI provides the conclusion and recommendations for further appli-

cation of the recognition system developed in this thesis.

8



II. Literature Review

Introduction

The computational ability of the digital computer has given researchers the

tool needed to process many of the unique features of speech. As a result, a number

of speech re cognizers have been developed over the last several years. The early

hope, however, of approximating human speech perception has become an elusive

goal. A glance at the session headings of the 1988 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP)(New York City, April 1988)

is a good indicator of our current ability to recognize speech by machine. Three

sessions representing over 30 papers were devoted solely to isolated speech recog-

nition. Clearly, much still remains to be learned about the structure of speech.

This section starts by discussing some of the difficulties encountered in recog-

nizing speech sounds by machine. Various kinds of speech variability are described

along with their effects on the speech signal. Next, the two main approaches to

the problem of speech recognition are presented. Starting with the Conventional

or Traditional approach, both dynamic programming and Hidden Markov Models

are described with emphasis given to dynamic programming. After briefly looking

at the biological evocation of artificial neural networks, attention is then focused

on the two primary artificial neural networks used in speech recognition research

today. The Kohonen neural network along with thoughts on human speech process-

ing in the brain by Dr. Teuvo Kohonen is delineated. Finally, speech recognition

research using artificial neural networks at AFIT is reviewed.

Variability of Speech

Variability within the speech signal is the primary reason why current ma-

chines cannot decode speech as well as people. This signal is inherently noisy and

9



is produced by a part of the human anatomy with a primary function of trans-

fer of air and consumption of food [9:48]. Additionally, other factors listed below

compound the problem of practical speech recognition:

" Within-speaker variability: Our own speech normally varies in pitch, loud-

ness, and quality depending on our mood, health and stress level. Also, we

pronounce words only to the extent necessary for recognition. For example,

words with the suffix "ing" are often pronounced with the "g" sound omitted

[15:304].

" Cross-speaker variability: Speech is composed of several speaker-dependent

variables that range from differing voice box characteristics to varying re-

gional dialects. For example, a person from Massachusetts would pronounce

the word "car"quite differently than would a person from Illinois [15:304].

" Coarticulation: Coarticulation is the process in which the speech organs start

the transition to the next sound while still producing the current sound. This

mutual corruption of individual sounds is subject to considerable variation

and tends to be speaker-dependent [15:304][25:341].

" Environment: The brain appears to decode and process speech sounds dif-

ferently from nonspeech sounds. This ability helps people interpret speech

sounds within noisy surroundings [25:75]. Machines, however, process the

entire signal (speech and noise) without regard to its origin [15:304].

Current speech recognizers cannot cope with these variables inherent in every

speech signal. An inadequate understanding of these combined effects is probably

the single most important factor inhibiting the development of a reliable speech

recognition system [15:304].
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Conventional .Speech Recognizers

The most successful speech recognizers employ either pattern-matching tech-

niques or stochastic modeling of speech. Pattern based recognizers may use words,

phonemes, or other features characteristic of the speech signal as the input pattern.

A word input pattern is often called a template. The input pattern is identified by

finding the closest match between this pattern and all the stored patterns in the

vocabulary file of the recognizer [20:5]. Kim gives an excellent review of speech

recognition research using pattern based recognizers at AFIT over the last decade

[14:2-1:2-21].

Dynamic Programming The combined temporal-spectral nature of speech

hindered the development of pattern-matching algorithms for many years. Speech

consists of the continuous flow of phonetic sound units. Unfortunately for the recog-

nition problem, the time duration of individual sound units is not fixed, but varies

between each recorded utterance. This temporal aspect of speech complicates the

comparison of the spectral features that are unique to each word or template.

Some type of time normalization is therefore required for accurate recognition of

an unknown utterance. One of the first techniques involved simple compression

or expansion of the unknown utterance until it was the same length as the li-

brary reference template. Even with accurate end-point alignment, the method

failed to accurately time align individual sounds. Alignment of maximum energy

points within the unknown utterance was also considered [26:354]. The introduc-

tion of dynamic programming effectively solved the problem of time normalization

in isolated-word recognizers.

Dynamic programming or dynamic "time warping" (DTW) is the method

of choice in pattern-matching machines today. With this method, the individual

spectral features of the unknown utterance are brought into alignment with the

reference template by nonuniformly distorting or warping its time axis with respect
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to the reference time axis. The input vectors for both the unknown and reference

words to DTW represent some unique feature of speech. Typical features include

signal amplitude, formants, or linear predictive coefficients (LPC) [25:297]. The

attractiveness of dynamic programming is due to the simultaneous execution of

nonlinear time alignment and recognition of the unknown word.

Hidden Markov Models The use of the hidden Markov Model (HMM) to

stochastically model speech has gained favor in recent years. Recognition accura-

cies are now similar to pattern based systems with additional improvements an-

ticipated as the model is further refined. A HMM recognizer will build a Markov

model for each word in its vocabulary. An input word matches a vocabulary word

whose Markov model gives the highest probability that the Markov model gave

rise to the input word. Hidden Markov Modeling, however, requires a detailed

knowledge of the segmentation rules within a given language [24:263]. As with

pattern based systems, HMM recognizers perform well as isolated-word, speaker-

dependent systems but perform poorly when tested with connected speech from

multiple speakers [25:307- 310](27:13].

Both pattern based and HMM recognizers by themselves lack the robustness

necessary to deal with the variability present in human speech. As a result, a

di4ferent approach to recognition modeling centers on how humans decode speech.

Biological Neural Networks

Information processing in the brain involves the interaction of large numbers

of neural processing elements connected in a highly parallel fashion. Biological

neural networks appear to process information in a manner that is different from

digital computers. At the cell level, each element acts as an analog processor of

thousands of inputs. "Threshold" levels within neurons are time variable and not

adequately stable enough to define functions that characterize the digital world.
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At the network level, this instability precludes programming (learning) in an algo-

rithmic fashion where processing is recursive in nature [16:4-6]. Teuvo Kohonen,

who developed the Kohonen artificial neural network, concludes that a biological

neural network is probably programmed (i.e. learns) in one of two ways:

* The structures of interconnections between processing elements are altered.

• The strengths or "signal transmittances" of these interconnections are changed.

How interconnections are altered is unclear and not easily quantified. Each signal

strength change between processing nodes, however, is a straightforward process

found in many artificial neural models [16:4-6].

Artificial Neural Networks

Two different neural network models have received the most interest within

the speech recognition community. They are the Perceptron and the Kohonon

net. Although both models are different in design implementation, they share the

concept of varying interconnection signal strengths between processing elements.

Each model is an adaptive structure; present weighted strength values are depen-

dent upon past weighted strength values and the input pattern. Applying an input

pattern over many iterations represents "learning."

The learning or training phase of a neural net is accomplished in either a

supervised or unsupervised fashion. In supervised mode, the network receives guid-

ance from outside the network in determining new weighted interconnection signal

strength values. In unsupervised mode, the network makes its own decisions con-

cerning new signal strength values [22:3).

Perceptron

Single-Layer Perceptron (SLP) Initial research involving single-layer

perceptrons dates back 30 years [291. The model is linear, uses a novel learn-
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ing algorithm, and is simple in parallel computational design [23:231-232]. The

linearity' of single-layer perceptrons, however, restricts its use to recognition of

simple patterns where the input can belong to one of only two decision regions or

classes. A hyperplane separates the two decision regions [20:13]. Since the decision

space is partitioned by linear boundaries, a single-layer perceptron cannot com-

pute the exclusive-OR function. This restriction probably prohibits the use of the

single-layer perceptron in speech recognizers unless other types of auxiliary neural

networks are also present. The exclusive-OR problem was finally solved with the

multi-layered perceptron.

Multi-Layered Perceptron (MLP) Multi-layered perceptrons allow for

the solution of a large class of pioblems that map as either bounded or unbounded

complex regions. This capability is provided by non-linear boundaries introduced

by the hidden layers during training of the network.

Training of -" multi-layered perceptron is accomplished in supervised mode by

setting the output nodes to a desired output pattern. For a given input, individual

nodes are activated at the input layer. Activation of nodes flows through the

hidden layers to the output layer with individual node values determined by the

weighted interconnection signal strengths.

The activations that propagate through the network are then compared with

the desired output pattern. Error terms are computed at each output node.

These error terms are then used to determine new weighted interconnection signal

strength values that will tend to minimize the output error on the next training

iteration. Depending upon the complexity of the input pattcrn and size of the

network, learning may require thousands of iterations [20:15-18][11:158].

1Linearity refers to the solution of linearly separable sets in the output decision space.
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Kohonen Network The Kohonen network reflects Teuvo Kohonen's percep-

tion of how programming or learning may take place in humans. He writes:

It is indeed very difficult to imagine how such an enormous network
could be 'programmed' at all. One possibility, especially relating to
the sensory subsystems could be that the system structure, or the dy-
namical process defined by it, in some way directly tends to image the
sensory experiences or other occurrences. One does not thereby mean
any photographic models, static representations of the environment, or
metrically faithful copies of signals; 'imaging' must be understood in
a more general and abstract sense, for example, that certain feature
dimensions of the observations are imaged, or that there appear events
in the behavior of the network, the temporal, or logic, relationships
between some events of the exterior world or its history. [16:4-5]

Biological neurons do not respond to external stimuli in isolation. Interac-

tions between neighboring neural elements that excite close neighbors and inhibit

far neighbors helps to explain the relationship between the Kohonen network and

biological responses to speech input. Kohonen describes this type of neural cou-

pling as the "Mexican hat function." These Mexican hats or "bubbles" form local

clusters in locations solely dependent upon the input stimulus (17:111.

The "imaging" surface of the Kohonen network (see figure 1) is a two-

dimensional array of output nodes. Each node represents a neuron that is con-

nected to every input node with a interconnected weight value [20:18-19][22:6-7].

An input stimulus (feature of speech) applied to the network will produce a re-

sponse at each output node that depends on the summation of the individual input

signal values and their associated weights:

N
y= r-nm,3x3  (1)

j=1

where y, represents the i" output node, rn,,, is the weight connecting the 2 th

component of the input to the i t h output node, and z is the input stimulus value

of the j"h component. The winning neural output node with index i = c is the

15



X, X

OUTPUT: Zr -fj
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Figure 1: Kohonen Neural Network 4:2-7
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absolute valued minimum attained from equation 1. In terms of distance, the

winning node has a smaller distance between the winning node's weight vector and

the input vector than between any other node's weight vector and the input vector

(4:3-7].

The "bubble", or neighborhood N,, centered on output node c is then trained

according to the equation:

M,(t + 1) = m,,3(t) + a(t)(x,(t) - M,) (2)

if i is contained in N,. A node's weight value remains unchanged if i is outside of

N,. a is a positive scalar gain factor that initially starts with a value near unity.

As training progresses, a decreases gradually toward zero. During each training

iteration, equation 1 and equation 2 are applied alternately as new interconnection

signal strength values are computed within the neighborhood [17:13-17]. In short,

the learning algorithm for a Kohonen network is a two-step process. For each

iteration:

" Locate the winning node.

" Increase the match at this node and its topological neighbors with the set of

input vectors.

Eventually, a unique pattern is obtained for each word or phoneme [20:18-19].

AFIT Speech Research with Neural Networks

In 1988, two AFIT theses were completed using neural networks to model

speech [4,3,22]. Captain Gary Barmore used a Kohonen network that created tra-

jectory patterns for the spoken digits zero through nine. Recognition was speaker-

dependent and both isolated and connected words were analyzed. The output
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of two-dimensional coordinate vectors from the Kohonen net was fed into a con-

ventional dynamic time warping (DTW) algorithm for word recognition. Testing

was aLko conducted with a second Kohonen network for recognition of the test

utterance.

With DTW, isolated and connected recognition rates were 99.17% and 90.7%

respectively. Word recognition rates were lower when the recognizer used the

second Kohonen net for word recognition. The results with a second Kohonen net

were 96% for isolated words and 81% for connected words [4:5-1].

Using the same vocabulary, Captain Mark Lutey developed an isolated-word

recognition system using a Kohonen network and a multi-layer perceptron. Three

speakers (two male and one female) recorded speech digits for both training and

testing of the network. Recognition rates were highest when a network was tested

using a second utterance from the original speaker and when the starting and

ending locations of a word were known. The recognition rates, however, decreased

sharply when the starting and ending points of a word were unknown and when

utterances between speakers were compared. Overall recognition rates ranged from

32% to 80% for the three speakers.

Conclusion

This brief review of the speech signal and of the methods used in the recog-

nition process highlights the difficulty in developing adequate and reliable speech

recognition systems. Indeed, research in this field has continued for more than 40

years.

This research effort merges a Kohonen neural network and dynamic program-

ming into a hybrid system similar to the recognition system designed by Barmore.

The next chapter provides a discussion of the programming environment for this

system.
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III. System Environment

Introduction

The purpose of this chapter is to describe the hardware and software envi-

ronment used to design the recognition system. There are three sections. The first

section describes the method used to obtain and digitize speech sounds. The next

section describes a dedicated speech processing tool used to extract the appropri-

ate features of speech. The last section describes the software environment for the

recognition system.

Sound Generation

Because human sounds are analog in nature, initial processing must convert

this analog signal into a digital format required by a computer. This conversion

was performed by a DSC-200 Analog to Digital converter at a 16 KHz rate. This

system accurately provides the necessary signal processing environment required

for conversion of speech signals.

The DSC-200 was connected to a VaxWorkstation II via UNIBUS interface.

With a noise reducing microphone, a user can easily generate and convert the

speech sounds necessary for training and testing the recognition system. A to-

tal of five sets of 70 isolated words were processed along with several connected

utterances. The DSC-200 has a maximum processing buffer size of 20 seconds.

Each recorded word buffer was usually one or two seconds in duration while

each actual isolated utterance was approximately 0.7 seconds in length. A larger

recording buffer guaranteed that the start and end of each word was captured

for further processing. Large recording buffers, however, required considerable

amounts of computer memory. All word buffer files were then sent to the Speech
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and Phonetics Interactive Research Environment (SPIRE) for further processing

which included trimming off excess recording buffer on either side of each word.

SPIRE

SPIRE is a software program which allows a user to process and evaluate

speech signals. The capability also exists to extract the multiple features of speech

required in the recognition process. SPIRE was developed by the Speech Research

Group at the Massachusetts Institute of Technology (MIT), and it is available by

license through the MIT patent office. In addition to the processing ability of

SPIRE, the system provides excellent graphical representations of all recognition

features of speech. A list of graphical displays available from SPIRE is given in

Figure 4 and represents the default displays available from the system. Other

representations are possible. For example, energy values in the formant range were

required for this thesis effort. A separate software function was written within

SPIRE for this purpose.

SPIRE's graphical capabilities are illustrated in Figure 5 which shows the

utterance target and Figure 6 which shows the utterance select gun strafe

charlie. Each figure displays the original waveform, Linear Predictive Coding

(LPC) spectrum slice, formants, and energy content for the respective utterance.

Files for each of the seventy words in the vocabulary are referenced numer-

ically. Table 2 lists the numbering scheme used in naming sound files. The same

numbering scheme was used in the displayed output from the recognition system.

In Figure 5, the word target is the forty-eighth word in the vocabulary. The

original waveform (top graph) shows the normalized amplitude of the utterance

plotted against time on the horizontal axis. The time axis has a duration of 0.65

seconds. SPIRE allows evaluation of speech parameters at specific points in time

which are specified by the user. In Figure 5, a time slice at approximately 0.4

seconds was chosen (see vertical line in top graph). The LPC Spectrum slice at 0.4
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Table 2. F-16 Cockpit Commands (Numerical Cross-Reference Listing Used in File
Names, Display Output of SPIRE and Recognition System)

0. Zero 24. Tail 48. Target
1. One 25. Clear 49. Weapon
2. Two 26. Profile 50. West
3. Three 27. Report 51. Air-to-Surface
4. Four 28. Affirmative 52. Charlie
5. Five 29 Frequency 53. Fault
6. Six 30. Waypoint 54. Gun
7. Seven 31. Advise 55. Knots
8. Eight 32. Bearing 56. Miles
9. Nine 33. Cancel 57. North
10. (Space) 34. Degrees 58. Range
11. Aft 35. Foxtrot 59. Select
12. Arm 36. Lock-on 60. Forward
13. Chaff 37. Missile 61. Alpha
14. Delta 38. Radar 62. Change
15. Flares 39. Station 63. Channel
16. Hundred 40. Threat 64. Confirm
17. Negative 41. Bravo 65. Heading
18. Air-to-Air 42. Echo 66. Minus
19. Backspace 43. Enter 67. Rhaw
20. Thousand 44. Mark 68. SMS
21. East 45. Nose 69. Strafe
22. Fuel 46. Search 70. Point
23. Map 47. South
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seconds is shown in the second graph from the top. This graph, which plots an LPC

spectral slice against frequency, shows an envelope generated by LPC coefficients.

The peaks within the envelope correspond to resonant peaks of the vocal track.

The third graph shows the formant tracks for the first four formants plotted

against time. The value of each formant is displayed at the position specified by

the user (0.4 seconds). The value of the first formant at this position is 468.8Hz.

The formants, which represent the resonant frequencies of the vocal track,

characterize the shape of the oral cavity during sound production. The most basic

sounds are called phonemes. The phonemes in the English language' are shown

in Figure 2. The vowels are produced by a combination of vocal cord vibration

and fixed cavity shape. For each vowel, the tongue, jaw, and lips are positioned

to allow the unrestricted flow of air through the oral cavity. There is a definite

relationship between each vowel sound and the formant frequencies. The vowel

formant frequencies are shown in Figure 3.

The areas of the formant graph in Figure 5 with vertical spikes represent

consonant-type sounds (fricatives, stops etc.) within the spoken word. The vocal

track is constricted at some point during the production of these sounds. The

location of the constriction determines which sound is produced [28:43-54]. The

constricted air flow creates enough broadband energy to cause erratic formant

tracking. These areas contain unreliable formant information.

The bottom graph shows the energy of the signal contained in the frequency

region from 250Hz to 3000Hz. The energy value specified at 0.4 seconds is -

63.58 dB. A threshold value of - 75.0 dB2 was used in this thesis effort. Formant

data was zeroed out if the energy value for the corresponding time slice was below

- 75 dB.

'There is not universal agreement as to the total number of phonemes in the English language.
2An internal SPIRE defined energy reference.
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PHONEMES

Vawi Consonants

Front mid Back Ochithangs

UI)I aA) u (00) al (AI
I tI 1 3 (E R) U (U) 31 (01)
0 CE) *a(Uif 0(0) oUC(AU)
(a AE) 3 (OW) e I (E I) ou aU/ Whisper

Voiced Unvoiced
senivoweis -) j

b (8) a (P) Attricates~d (0) Ct M j(D

Liquids Glides g (G) k (K) tf(TSH)
( W) r (R)
(L) M(Y Fricatives

Voiced Unvoiced
Nasals V (V) (f)M

mn M l (T ) 9(THE)

n N ) z" Z K sC fS H

Figure 16: Phonetic and Orthographic Representation of American English
Phonemes 28:43

____FORMANT FREQUENC3ES FOR THE VOWELS

Symbol ta Symbol word F Z F

Vowel ___

ly (beet) 270 2290 3010
1 (bit) 390 M99 2550

E E (bell 530 1040 2410
AE cc (bM) 640 1 ?20 2410
U" A (but) 520 1190 2390
A a (hoirl 730 log0 2440
OW a (bMod) 570 8340 2410
U U (foot) 440 1020 2240
00 u (boot) 300 870 2240
ER 3 1Cbird) 1490 L1350. 16901

Figure 17: Average Vowel Formant Frequencies 28:45
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SPIRE requires specialized hardware for correct operation. At AFIT, SPIRE

is run on a Symbolics 3600 Lisp machine. The Symbolics 3600 provides the neces-

sary interactive and graphical environment required by SPIRE software. Further

information on SPIRE is available from [12,13,1,2].

Software Development

Except for the SPIRE software program which is written in LISP, all software

is written in the 'C' programming language on a MicroVax III system running the

VMS version 5.1 operating system. All programs are written in a modular fashion

with adherence to software engineering principles. Emphasis is placed on adequate

documentation of the code for easy maintainability.

Several modules froi i Barmore's thesis effort are used in modified form. Also,

the file naming convention used is the same one that Barmore used in his thesis.

All unprocessed sound files are denoted as *.snd files and all processed sound files

are denotcd as *.trn files.

Programs were normally run in batch mode on the MicroVax III using a

.com file. A batch run is initiated by the 'SUBMIT' command. Figure 7 gives

an example .com file that executes a dynamic progranmming program. A .com file

requires a '$' before any command while lines without a '$' are used for data or

other input requests. Note in Figure 7, the last line initiates another batch run

when the current batch job is complete.

Conclugion

This chapter described the software and hardware operating environment re-

quired for system development. The next chapter describes in detail the mythology

used to realize the complete system.
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Energy, Total
Energy, 0 to 5000 Hz
Energy, 120 to 440 Hz
Energy, 640 to 2800 Hz
Energy, 3400 to 5000 Hz
Formants, All
Formant, First
Formant, Second
Formant, Third
Formant, Fourth
Frication Frequency

LPC Gain Term
LPC Center of Gravity
LPC Spectrum Slice
Narrow-Band Spectrogram
Narrow-Band Spectral Slice
Narrow-Band Spectrum Slice
Narrow-Band Spectrum
Original Analog Waveform
Orthographic Transcription
Phonetic Transcription
Pitch Frequency
Wide-Band Spectrogram
Wide-Band Spectral Slice
Wide-Band Spectrum Slice
Zero Crossing Rate

Figure 4. Standard SPIRE Displays
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0.4023

0.0048 Original Waveform 0.6500

0. 48 LPC Spectrum Slice 8000.

0.4025

.8

0.0000 48 Energy -- 250 Hz to 3000 Hz 0.6500

Figure 5. SPIRE Display for Utterance 'TARGET'
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0.3189

0.000SETS Original Waveform 210

4327.

0. SETS LPC Spectrum Slice 8000.

0.31 85

7.00

0.0000 SET5 Energy -- 250 Hz to 3000 Hz 2.1100

Figure 6. SPIRE Display for Utterance 'SELECT GUN STRAFE CHARLIE'
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$ on warning then exit
$ rum autodtv2Ob
lib7Olf a
b7Oa1f

.75

.75

.65

.65
3

.2
0

0

v32a
v2a

$ submit /noprinter/notify/restart/noog-f ile dv4a

Figure 7. Sample .COM File for Batch Processing
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IV. System Design

Introduction

By themselves, the conventional techniques described in chapter II have

proven inadequate to the task of mimicking human speech perception. Neural

networks show great promise, but further refinement of existing algorithms may

be required to keep track of the temporal aspects of speech. The multi-layered

perceptron (MLP) falls in this category. New research is attempting to introduce

some form of temporal reasoning within a multi-layered perceptron [21:151. A

breakthrough in this area would allow use of the MLP in connected speech recog-

nizers.

A Kohonen neural network offers the advantage of significantly reducing

the complexity of the input problem space. Indeed, the recognition system de-

scribed here reduces the input speech signal from a 15-dimensional vector space

to a two-dimensional vector space; therefore, a Kohonen network will reduce the

computational complexity of any post-processing system. Dynamic programming

is capable of discerning and separating word sounds within connected speech, but

the algorithm is computational intensive. A Kohonen neural network and dynamic

programming may compliment each other in a hybrid system.

This research effort will attempt to combine a Kohonen neural network with

dynamic programming. The Kohonen network will create trajectory patterns for

each word. The output of the Kohonen network will then feed into a one-stage

dynamic time warping algorithm for both isolated and connected speech.

The system designed in Phase I is identical with the Barmore recognizer. This

design provides the vehicle for learning more about the Kohonen structure and its

response to speech signals. The Phase II design is the outgrowth of knowledge

gained during Phase I testing along with the use of multiple feature sets.
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This chapter is divided into five sections corresponding to the main areas of

the recognition system. The basic system found in both phases includes the pre-

processor, the Kohonen network, and the dynamic programming output section.

Areas peculiar to each phase are noted. The last two sections describe functions

available only in the final recognition system in Phase II. Section four describes

the fusion routine where the LPC and formant based dynamic programming out-

puts are merged. The rule-based system described in section five is needed in

the final system developed in Phase II, since the processing of speech features is

asynchronous' .

Preprocessor

Digitized Speech Processing

Phase I Phase I uses Barmore's original pre-digitized sound files. Each

word file is first Hamming windowed using a 3:1 overlapping scheme. Each window

is 16 ma in duration and begins 5.3 ms after the start of the previous window

[4:3-3]. A Hamming window is chosen to minimize side lobe distortion and to

reduce a smearing effect of the processed frequencies called leakage when a Fourier

Transform is performed on a data sequence of finite length. Leakage is minimized

because the envelope of the Hamming window tapers to a small non-zero value at

either side of the Discrete Fourier Transform (DFT) processed sequence of data.

Leakage is reduced, but so is the gain envelope at both ends of the Hamming

window. Overlapping of windows provides the effect of a more uniform gain term.

Phase I( In Phase II, Linear Predictive Coefficients (LPC) instead of a

Fast Fourier Transform are used to process the digitized speech. A DFT is a general

type of processing tool. Linear Predictive Coefficients, which are based on linear

'The processing of speech features is asynchronous in the sense that fusion is performed on
features that were processed at different times.
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predictive analysis [28:3961, are used to predict the next value of a quasi-periodic

signal by analysis of a linear combination of past samples. LPC processing is there-

fore an excellent tool for speech signals. The use of the LPC model assumes the

source of the data modeled (the vocal track) is an all-pole linear system. This as-

sumption is generally valid for the vocal track except for nasals and some fricatives

[25:138].

Formant Processing The formant frequencies needed to be processed before

entering the dynamic programming routine. As seen in Figure 5 and Figure 6,

the formant plot shows areas with multiple peaks. These areas represent unvoiced

fricatives or stops. (See Table 2.) The SPIRE formant routine experiences difficulty

tracking the formants in these regions because of the broadband fricative energy

present in the signal. As a result, inaccurate formant transitions are present in

these areas. Although no feature of speech always signals when these regions are

encountered, the amount of energy present at the formant frequencies usually is

a good indicator of voiced speech. Using an energy frequency range of 250Hz to

3000Hz, the energy content of the signal is usually high during voiced speech and

lower during unvoiced speech. A energy value of -75 dB was chosen as a gate

for the formant frequencies. If the energy in the signal was below -75 dB, the

formant data were replaced with zeros. For energy values above -75 dB, the

formant data were preserved and processed by the dynamic programming routine.

An example of formant processing using an energy gate of -75 dB is shown in

Figure 8 for the connected utterance select gun strafe charlie. The top plot

shows the unprocessed formant data. The middle plot shows the processed formant

data using the energy present in the signal. The energy present at the formant

frequencies is shown in the bottom plot.

Software routines were written to reduce both F1/.F2 and Fl/.F2/.F3 for-

mant data files. The user is prompted for a formant threshold factor, formant range

31



0.6053

6.3

375.0

____ _ __ __ _ ___ .0 * _ _ _ _ _ _ _

0.0000 SETS Forrnants 2.0800

0.6053

6.32



factor, and the number of times (number of passes) the reduction routine will pro-

cess the formant data file. The formant threshold factor refers to the number of

data points in a formant data file. The formant range factor refers to the separa-

tion in Hertz between two adjacent formant data points within the same harmonic

number. The reduction routine evaluates adjacent data points only in formant

data files that have a larger number of data points than the formant threshold

factor. Each formant is evaluated separately. Within the reduction routine, if the

distance between two adjacent data points is less than the formant range factor,

the routine deletes one of the data points. The choice of which data point to delete

is arbitrary provided the formant range factor is small compared to the distance

between adjacent vowel sounds (See Figure 3). Values between 1Hz and 25Hz were

evaluated.

In general, the formant recognition accuracy decreased when formant reduc-

tion was used. The reason for the reduced accuracy is probably related to the

amount of useful formant information available for each word after initial process-

ing using the energy threshold. Often, only half the word contained useful formant

information. In this case, the actual formant file would be half the size of the

original data file. Formant reduction deleted additional useful information needed

to distinguish individual words. The formant reduction routines may prove valu-

able if the raw formant data files are processed more efficiently. The routines are

available in the final software package.

An attempt was made to process the formant data files with a Kohonen neu-

ral network before dynamic programming. Two different normalization schemes

were tested. The recognition accuracies were very low. The reason for the poor

performance was twofold. The range of measured formant data were large, but

the important formant data were concentrated within a small range around the

first two formants. Normalization decreased the resolution between these two for-

mants because of the wide overall range of the measured formant data. Secondly,
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both relative and absolute formant values uniquely determine a vowel-type sound.

Normalization has difficulty preserving both attributes. Considering the above re-

search, all formant data files were processed without formant reduction and with

dynamic programming only.

Frequency Reduction The resulting 128 frequency components from FFT or

LPC processing are then reduced to 15 component slices by frequency reduction.

Components of speech at the lower frequencies are accentuated. The rationale is

that there are fewer relevant components of speech at the higher frequencies. The

pseudo-logarithmic reduction shown in Figure 9 placed only a few low frequency

components in the first few bins thereby increasing their overall effect.

Average Subtraction A sequence of 15 component normalized vectors actu-

ally represents a trajectory through a 15-dimensional hypersphere [4:3-6]. Because

each component is positive, only the positive portion of the hypersphere is used.

Subtraction of the average value of individual slices produces both positive and

negative vector components within each slice; therefore average subtraction uti-

lizes the entire hypersphere.

Energy Normalization Individual component slices or frames are normalized

with respect to their energy content. Energy normalization cancels the effect of

gain variations in recording conditions and word volume from one recording session

to another.

Kohonen Network

Size The same square shaped Kohonen structure is used in both test phases.

The Kohonen net is a two-dimensional surface that consists of 225 output nodes.

There are 15 input nodes with each input node connected to every output node

via a variable weight.
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Initialization The same range of randomized weight values are used in both

test phases. Weight values are uniformly distributed between -0.05 to +0.05 with

the actual range and mean dependent on the initial seed value. Barmore used an

arbitrary initial seed value2 of #33 for the published maximum performance results

of 99.1% isolated and 90.7% connected speech. Except for test runs starting with

a seed value of #33 to verify and compare results in Phase I testing, all tests

performed in this thesis effort use an initial seed value of #72.

Training Cycle Time.,

Phase I A training iteration represents the application of a 15 com-

ponent slice or frame to the Kohonen network. The network weights within a

specified neighborhood are adjusted in response to the input vectors. The network

stabilizes and another input is applied to the network. This input represents the

next training iteration. Barmore used between 90,000 and 150,000 iterations to

train his networks (4:3-81.

A major part of Phase I testing involved determining the minimum iteration

time required to train a Kohonen network. The initial assumption was that the

recognition accuracy of a Kohonen network would gradually rise to a maximum

value determined by the gain reduction method and input data stream presented

to the network. Each test in Phase I is run on a series of 13 Kohonen networks.

Table 3 lists the number of iterative steps for each network in the series. The

13 networks listed in Table 3 actually represent one network trained for different

iteration times, because the same seed value and sequence of training vectors is

used.

'The pseudorandoni number generator within the VAX C language was used in both research
efforts.
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Phase I The training cycle times in Phase II are a function of the size

of the input data file used to train the neural networks. After preprocessing of

speech data using the LPC algorithm and pseudo-logarithmic reduction, each data

file will consist of a sequence of 15 component frames. The concept of a multiple,

which is used for Phase II testing, refers to the number of iterations required for

the Kohonen network to see all of the 15 component frames in the data file used

to train the network. The number of iterations required for the Kohonen network

to see all of the data in a file once would be one multiple. The total data file

size divided by the number of Kohonen input nodes (15) represents the number of

iterations required for the network to see the entire 70 word data file.

Two 70 word data files are used in Phase II. The 70 word data file used

to train the neural networks in Set#1, Phase II testing is 1.2 Mbytes in size and

has 139,380 data values. One multiple, (139,380/15), represents 9,292 iterations.

Neural nets trained with this data file use multiples or half-multiples of 9,292. The

data file used in Set#2, Phase II testing has a multiple of 9,454.

Neighborhoods The concept of a neighborhood is unique to Kohonen net-

works. While every node weight is updated after each training iteration in a multi-

layered perceptron, only a small region or neighborhood of nodes centered on the

winning node receives updating in a Kohonen network. Neighborhood size is vari-

able and time dependent. Neighborhoods start out large (relative to total net

area), and generally diminish in size as training progresses. Often neighborhood

reduction is coupled to the type of gain reduction employed. All five methods are

tested in Phase I while the Exponential method only is used in Phase II.

Gain Reduction The gain schedule or rate of decay of ct(t) during each iter-

ation affects how much a node's corresponding weight is adjusted. Kohonen states

that many scheduling laws can be used with his network including linear, piecewise-

linear, and exponential reduction [181. Questions arise as to how each reduction
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method performs with speech input and dynamic programming programming as a

word classifier. Research needs to quantify the performance of the different gain

reduction methods, and determine if there is a best gain reduction method for the

recognition system used in this thesis. Current literature offers little guidance in

this area.

The starting a value of a scheduling method also needs consideration. Ko-

honen suggests that a start at a value close to unity with a gradual reduction over

time to a value less than 0.01 [19]. Again, published research to date does not help

answer the question about the effect of a on recognition accuracy. Another major

goal of Phase I is to evaluate the performance of various gain scheduling methods.

A total of five methods are evaluated in Phase I. Two of the five reduction

methods are linear reduction methods. In this thesis, they are referred to as Lin-

ear Type #1 and Linear Type #2. The Linear Type #1 and Piecewise-Linear

methods were adapted from the Barmore thesis. Barmore used the Piecewise-

Linear gain reduction method with starting gains of 0.1/0.01 in his final recog-

nition system. He achieved recognition accuracies of 99.1% with isolated words,

and 90% recognition accuracy with connected speech. The Linear Type #2, Ex-

ponential, and Central-Adaptation methods were adapted from research presented

at the 1989 International Conference on Acoustics, Speech and Signal Processing

(Glaslow, Scotland)[6]. Because of similar neighborhood reduction scheme, the

Linear Type #1 and Piecewise-Linear methods are discussed separately.

Linear Type #1 and Piecewise-Linear For these two methods, node weights

within the neighborhood are updated according to the following equations:

m,,(t + 1) = m,,j(t) + a(t)(z(t) - rn,,,) if Node i E N(t) (3)

mr,,(t + 1) = rn,,(t) if Node i V No(t)

where:
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m : weight connecting output node i to the jth component of input x

a gain factor

t current iteration time

for the two reduction methods:

N.(t) = NXm,, + [(NXm.. - NXmi, + 1)(1 - t/T)]

Linear Type #1 Nw(t) = NYm n + [(NY'.. - NYmin + 1)(1 - t/T)] (4)

a(t) = C(1 - t/T)

if t < t.

N,(t) = NXmit + [(NX'.m - NXmin)(1 - t/t)]

Nv(t) = NYmin + [(NYm. - NY',n)(1 - t/t.)]

a =s a.(1 -t/tm)

Piecewise- Linear (5)
else

N.(t) = NXmt,

NY(t) = NYmi,

a = am(l-t/T)

where:

NXmin minimum neighborhood size in x direction

NXma : maximum neighborhood size in z direction

NYmin : minimum neighborhood size in y direction

NYm'.QW maximum neighborhood size in y direction

C : constant set to 0.99, 0.5 or 0.1

a, : start gain value of 1' linear portion

am : start gain value of 2' linear portion

t, :start cycle time of 2' linear portion

T : total number of iterations
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A graph showing a typical Linear Type #1 gain reduction of a is shown in

Figure 10. Piecewise-Linear gain reduction is a special case of Linear reduction.

It consists of two linear curves with the second curve starting after the first curve

ends. Kohonen asserts that training of the net or learning is a two step process

(18]. In the first step, topological ordering of the network takes place. This initial

iterative period lasts from "a few hundred" to the "first 1000 steps or so" [19].

Kohonen believes that a should stay above 0.1 during this period. The final or

convergence step is when the network is "fine tuned" [181. This last step is of long

duration. The Piecewise-Linear reduction method is designed to accommodate the

two-step learning process. Figure 11 shows an example of Piecewise-Linear gain

reduction where the second linear curve starts when 80% of the total cycle time

remains (t = 0.8T). This thesis effort will test initiation times of 20% and 80% for

the second linear curve.

The neighborhood for both methods is square in shape with a starting hori-

zontal and vertical node radius specified by the user. Each neighborhood decreases

in a linear fashion to a size specified by the user. In all cases, the starting neigh-

borhood radius is "7 by 7", and the final neighborhood size is "1 by 1." The

final neighborhood size contains nine nodes centered about the last winning node.

These start and end neighborhood sizes were used by Barmore [4:3-91. They are

used here for easier comparison of results.

Three series of 13 Kohonen networks are trained for both Linear Type #1

and Piecewise-Linear reduction methods. A different starting gain value is used

for each of the three series. The initial gain values used are 0.99, 0.5 and 0.1.

Linear Type #2, Exponential and Central-Adaptation The Linear Type #2

and Exponential methods use the same gain reduction equation with a sample gain

reduction graph shown in Figure 12. These two methods are differentiated only by

the schedule used to reduce the neighborhood size. In each case, the initial gain
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LINEAR TYPE #1
Example Gain Graph
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Figure 10. Linear Type #1 Gain Reduction

PIECEWISE -LINEAR
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Figure 11. Piecewise- Linear Gain Reduction (2nd Gain Start: 80% of Total)
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value is 0.1. Figure 13 graphically shows how each neighborhood is reduced in size.

In the previous methods, the gain value applied during the updating of each

node in a neighborhood is held constant. A node next to the winning node and the

nodes at the periphery of the neighborhood use the same gain multiplier. In the

Central-Adaptation method, the amount a node is updated depends on its distance

from the winning node. All nodes are eligible since the neighborhood remains at a

constant size.

For each of these three methods, the node weights are updated according to

equation 3 if:

rLj K R(t) (6)

where:

2= (X - xj) 2 + (Y, - yj 2  (7)

and for each of the three methods:

Linear Type #2 R(t) = Rd + (1 - Rd)tlT (8)
1 a = C(1-t/T)

Exponential R(t) = Rdlt/T) (9)
a = C(1 - t/T)

Central-Adaptation { t = d (10)t a = 2C (1 -- t/T )e - * ..1[1. 4 / Ft '+t/ Tr ,. 's- l4 / R.1)I

where:
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Figure 12. Linear Type #2 and Exponential Gain Reduction

LINEAR #2 / EXPONENTIAL
Neighborhood Reduction

R(t) Neighborhood 61

20

to

0 to 2o 30 40 60 so 70 so so 100
Training Iterations (x 1000)

- Linear Type S .- Exponential

Figure 13. Linear Type #2 and Exponential Neighborhood Reduction
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C constant = 0.1 (11)

Rd f2 y2

All three methods use a surface constant Rd which will vary only if the size of

the network changes. With a 15 x 15 size neural network surface, Rd is 21.21

from Equation 11. The neighborhood cannot be varied by the user with any of

these methods. It is time dependent on the current iteration count for the Lin-

ear Type #2 and Exponential methods and equal to Rd in the Central-Adaptation

Method.

Conscience During each training iteration, the winning node is defined solely

by the distance between the node's weight vector and the input vector computed

during that cycle. The number of times a particular node may have won during

past iterations is not considered. Depending on the input data and initial node

weight values, it is possible for a group of nodes to dominate as winning nodes

during the course of a training session. Other nodes may rarely if ever win during

the same session causing underutilization of the Kohonen surface. Underutilization

of the Kohonen nodes can cause insufficient resolution of adjacent sounds. Any

output recognition stage may not be able to differentiate these sounds.

To alleviate the problem, the concept of conscience (the memory of the num-

ber of past wins by a particular node) was introduced. There are different methods

to select the conscience threshold [4,8]; the method used in this thesis is the same

method used by Barmore. When training a Kohonen network with conscience,

before a node is allowed to be a winning node, the number of times the node has

won in the past must be less than the conscience value according to the following

equation [4:3-10]:

c(t) < ftl/n (12)
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where c is the number of times node i has won prior to the current iteration t, n is

the total number of nodes on the Kohonen surface, and 3 is the conscience factor.

As the conscience factor 3 decreases, network conscience increases. Barmore found

that a conscience factor of 1.5 gave the best performance, and a conscience factor

much above 1.5 caused the network not to implement any conscience [4:3-101.

Barmore compared results using conscience factor values of 1.1, 1.5, and no

conscience [4:4-9]. The concept of conscience is intriguing, and, because of its

effect on dividing the input vector space into discrete regions within the Kohonen

surface, further study is warranted. Research needs to investigate the response

of a Kohonen neural network to different values of conscience, and determine if a

conscience factor other than 1.5 would provide better recognition accuracy.

A major part of Phase I was to determine the response of a Kohonen network

to different values of conscience. In the process, an attempt was made to find an

optimum conscience factor value for the speech recognition techniques used in this

thesis effort. Only two gain reduction methods were tested due to research time

constraints. The Piecewise-Linear method was evaluated using a seed value of #33

and a 90K/18K training schedule, because this combination was used by Barmore

in his thesis. The Exponential gain reduction was evaluated using a seed value of

#72, because this combination was used in the final speech recognition system in

Phase II of this thesis.

Trajectory Reduction An individual word is composed of approximately one

hundred 3 15 component frames with each frame represented by a winning node

on the Kohonen surface. A word trajectory pattern represents the connection of

each winning node in time sequence. Typically, the trajectory will represent a

transition through each sound type within the word from beginning to end. Also,

the trajectory will pause at major sounds in the word depending on the length

3Assuime an average word length of 500 ms.
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of the sound. For example, there would be an extended pause in the area of the

Kohonen surface representing the e sound in the word three.

In practice, a unique trajectory is observed for each word as the word tran-

sitions through its sound types. Superimposed on this pattern, however, is a ran-

dom one or two frame wander of the trajectory to different parts of the Kohonen

surface. Kohonen observed this phenomenon in the development of his Phonetic

Typewriter [18]. Barmore developed a method that deletes the random wander

within the trajectory pattern. Each vector set representing a trajectory is passed

through a two-step reduction algorithm. In the first step, a point on the trajectory,

not within two node units of another point on the trajectory within two time slices,

is eliminated. In the second step, all points on the trajectory which are not part

of three consecutive points are eliminated [4:3-12].

Dynamic Programming

The final stage in the recognition system is the word classifier using dynamic

programming or dynamic time warping. The algorithm used in this thesis is a

one-stage dynamic programming algorithm adapted from Ney [24]. Ney's paper is

tutorial in nature. He describes the original dynamic programming algorithm for-

mulated by T. K. Vintsyuk in 1971, and various derivatives of the basic algorithm.

Ney's one-stage algorithm is the same as Vintsyuk's original algorithm except for

a more efficient use of computational resources. The algorithm is optimized for

connected speech; it is the same algorithm used in several previous thesis efforts

at AFIT [7,14,4].

Dynamic programming is essentially a rate or time normalization operation,

in which an unknown word is stretched or compressed in time until it is the same

length as the reference or library word [25:297]. In describing the operation of

dynamic programming in graphical form, the library or reference words are usually

put along the vertical axis; and the unknown test utterance is situated along the
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horizontal axis. Using Ney's notation, the library of words are referenced by the

index k = 1, ... , K, where K is the total number of words in the recognition

library. Each word in the library is referenced by the index j = 1, ... , J(k) where

k is the length of library word k. The unknown utterance consists of N time frames

equal to the reduced vector trajectory output of the Kohonen network, where the

pattern is referenced by the index i = 1, ... , N [24:264].

For purposes of discussion, the simplest case has one unknown test word

compared with two library words as shown in Figure 14. Dynamic programming

computes a distance function D as each point i in the test word is compared

with each point j in each library word where j = 1, ... ,J(k) and k = 0 or

1. The distance function V is the absolute valued difference between the library

and unknown word. For each word, the algorithm keeps track of all previous

values of the distance function from the start point S to the end point E. The

minimum distance function, min V, represents the best match between the test

word and both library words. The library word associated with the minimum

distance function is the library word output from the recognition system. The

above discussion can easily be extended to K library words where K = 70 in this

thesis effort.

Ney's algorithm extends dynamic programming in the isolated-word case

described above to connected speech. The algorithm determines the sequence

q(1), ... q(R) of library words which represents the minimum distance function

for the test utterance consisting of R words [24:264]. Dynamic programming of

connected speech is shown graphically in Figure 15 with a library set of ten words

and an input pattern consisting of seven words.

The algorithm uses two types of transition rules for recognition of each word

within a multi-word sequence. In the word's interior, there are within-template

transition rules, and at word boundaries there are between-template transition

rules. The algorithm allows the distance function to travel either up, to the right,
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Figure 16: Dynamic Programming Example (Connected Speech) 6:3-12
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or diagonally to the right from its present position. The distance function can

never travel to the left or down. For isolated word recognition or within a word

interior, (see Figure 16), the within-template transition rules apply. For connected

word recognition at the word boundaries, the point J(1) at the boundary of the

new word as seen in Figure 17 can be reached from the ending frame of any library

word k* including k itself (24:265].

Ney introduced time distortion penalties if the distance function traveled to

the right (utterance is longer than the library word at point i), or the distance

function traveled up (utterance is shorter than the library word at point i). The

computed distance function E) is multiplied by the appropriate distortion factor.

Barmore used penalty factors of 0.75 for both vertical and horizontal movement of

the distance function, and a factor of one for diagonal movement. The distortion

factors used in this thesis were 0.75 for dynamic programming using LPC data,

and 0.65 using formant data.

Ney determined that only two arrays of data were needed to recover the

unknown word or words within the input sequence. For each point i in the test

utterance, one array keeps track of the library word that has the minimum cost

function computed at point i. The other array is a backpointer that marks when

this library word began by keeping track of when the between template transition

rules were used for that word. In the isolated case, the second array always begins

at i = 0.

The input to the dynamic programming routine can be any attribute of

speech. In this thesis, two types of speech features underwent dynamic program-

ming. They are the reduced vector trajectories from the Kohonen network trained

with LPC processed speech and raw formants from the utterance under test and

library words. Both F1/.F2 and l.F/Y2/F3 formant sets are tested using dynamic

programming.

50



C J(k)

I 5'0000
w 0 0

a.'~
2 0000

LJ Lj

I- 1 i N

TIME FRAMES OF INPUT PATTERN
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Figure 18: Between Template Transition Rules 6:3-13
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Feature-Fusion Section

Two distinct outputs were produced from the dynamic programming section

for each utterance. They corresponded to the LPC-based output and the formant-

based output, where dynamic programming of each feature was performed at sep-

arate times (asynchronously). Either the LPC or formant feature of speech may

have performed better for a particular word depending upon the sounds within the

utterance. Words are never spoken the same way each time. The word spoken

may not have the minimum distance function D, because the word was spoken in

a slightly different manner than the way in which the template words were spoken;

in this case, the actual distance metric for the word was usually close to the mini-

mum. The fusion routine found the best match between the two features of speech

(LPC and formant) at any point i in the utterance that dynamic programming had

specified as the end of a word. The best match from the feature-fusion routine was

the final system output.

The feature-fusion routine treated the LPC and formant data with equal

weight. It was not possible to just add together the two dynamic programming

results because the LPC data were in processed form before dynamic program-

ming, and the formant data were inputed to the dynamic programming routine

in raw unprocessed form. The actual distance metric produced by the dynamic

programming section for each feature could vary by a factor of 20 or more which

would preclude simple summation.

The fusion process was performed in two steps. First, at each point i of

the utterance that dynamic programming specified as the end of a word using the

backtracking function, the measured distance for each library word at that point

was divided by the minimum distance at that point. As a result, within each

array the minimum distance factor was then normalized to 1.000 with all other

distance values greater than 1.000. N arrays corresponding to N words from the

test utterance were then available for fusion. Fusion took place in the second step.
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In step two, the normalized distances of each corresponding LPC and formant word

were multiplied. The end result was a fused LPC/Formant distance metric for each

word.

Fusion was not performed on every word. The reason was two-fold. A win-

ning word with an LPC dynamic programming distance that was much smaller

than the other words in the library was probably the correct answer. Fusion was

not required in that case. Fusion could produce the incorrect answer if the corre-

sponding formant dynamic programming distance used in the fusion process was

high relative to the other formant distances. Secondly, it was possible that the

LPC based dynamic programming distances would be close in absolute value to

the winning word. In that case, the fusion results were based solely on the formant

results. If the correct word had a relatively high formant dynamic programming

distance, the recognizer would output the wrong word. The LPC results were given

added emphasis by allowing only words close in LPC dynamic programming dis-

tance to the winning word into the fusion process. The recognition system would

occasionally output the correct word solely due to that windowing effect.

A threshold value was used to produce the desired size window or group of

words allowed into the fusion process. In this thesis, three fusion thresholds were

tested. They were 1.5, 2.0 and 2.5. For example, when the 1.5 fusion threshold was

specified, each normalized distance metric in the LPC normalized array between

1.000 and 1.500 was fused with its matching normalized formant distance metric.

An example using the word degrees is shown in Figure 18. The following

notation is used in the recognition system display output.

* For .trn files, each file has three items of information.

1) The first three letters specify the type of file.

LPC for lpc file and FMC for formant file.

2) The #2 in wr2 denotes the second of five series of
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words. Each series contains 70 words.

3) The last number in the prefix of the file name references

a particular word. (i.e. wr2_34 for the word degrees)

See Table 2 for a complete listing.

* The result from the recognition system and the correct word

are given numerically according to Table 2.

* The best choices displayed by the recognition system provide

the following information:

1) Word.

2) Distance value computed from dynamic programming (DP).

3) Distance factor (DP distance / minimum DP distance).

* LPC-F1/F2 denotes feature-fusion of the first two formants

with the LPC feature.

* LPC-F1/F2/F3 denotes feature-fusion of the first three formants

with the LPC feature.

* The # of words less than represents the number

of words eligible for feature-fusion.

The displayed output for the word Degrees is shown in Figure 18. For each

word, there is an LPC and formant result determined and output to the screen.

The percentage of correct words for each feature are continually updated. Within

the feature-fusion output area, three results are continually updated corresponding

to the three feature-fusion thresholds. In addition to the best match output result,

the system provides the top n choices, where n is a value specified by the user or the

position of the actual word, whichever is larger. For each word, its actual dynamic

programming distance and its normalized distance is output to the screen.
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lpc7 wr2.34.trn is: 34

Should be: 34

Best choices are:
DEGREES had a lpc distance of 90.25 and a distance factor of 1.0000

SPACE had a lpc distance of 242.50 and a distance factor of 2.6870

EAST had a lpc distance of 276.25 and a distance factor of 3.0609

correct - 1.000 cum-correct - 0.971

Total wrong lpc words are 1.00 from a total of 34.00 words

fuc7.wr2_34.trn is 174 vectors long

fmc7.wr2_34.trn is: 34
Should be: 34

Beat choices are:
DEGREES had a formant distance of 6614.00 and a distance factor of 1.0000

THREE had a formant distance of 28602.80 and a distance factor of 4.3246

EAST had a formant distance of 29239.25 and a distance factor of 4.4208

correct a 1.000 cum-correct - 0.824

Total wrong formant words are 6.00 from a total of 34.00 words

The LPC-FI/F2 fusion results for LPC distances less than 1.50 are:
The computed utterance string is: 34

Should be: 34
The 8 of words less than 1.5 are 1
Best choices are:

DEGREES had a foruant-lpc distance factor of 1.0000
correct a 1.000 cuncorrect - 1.000
Total wrong fusion words are 0.00 from a total of 34.00 words

The LPC-FI/F2 fusion results for LPC distances less than 2.00 are:
The computed utterance string is: 34

Should be: 34

The # of words less than 2.0 are 1
Best choices are:

DEGREES had a formant-lpc distance factor of 1.0000

correct - 1.000 cum-correct a 0.971
Total wrong fusion words are 1.00 from a total of 34.00 words

The LPC-FI/F2 fusion results for LPC distances less than 2.50 are:
The computed utterance string is: 34

Should be: 34

The 8 of words less than 2.5 are 1
Best choices are:

DEGREES had a formant-lpc distance factor of 1.0000
correct - 1.000 cum-correct a 0.971

Total wrong fusion words are 1.00 from a total of 34.00 words

Figure 18. Feature Fusin f Speech 'DEGREES'
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Rule-Based Section

Dynamic programming on the LPC and formant features of each word are

performed asynchronously. Sometimes the number of words determined from LPC

based dynamic programming is different than the number of words determined from

formant based dynamic programming. This word count mismatch is found more

often with connected speech, but occasionally it is found with multisyllabic words

spoken in isolation. The rule-based system was developed to align the two dynamic

programming results prior to the feature fusion process, because the feature-fusion

routine requires an equal number of words from each feature.

The coding scheme for the rule-based system is extensive because it must

anticipate every possible mismatch between the LPC and formant based outputs.

To preclude a rule-based system of infinite size, a bound was set as to the number

of words the rule-based system can process. The rule-based system will not process

utterances with lengths greater than seven. For unequal word count outputs from

dynamic programming greater than seven, feature fusion is not performed. If the

word count is the same for the two features, fusion is performed for any number of

words in the test utterance.

The rules within the rule-based system are specific and unique for the speech

recognition environment created in this thesis effort. These rules were determined

after evaluain thousands of dynamic programming results. The rule-based sys-

tem, which evaluates the LPC and formant results, is shown in pseudo-code format

below.

* Initial Rules Prior to First Feature-Fusion Calculation.

* Perform feature-fusion only if:

(1) LPC words == Formant words OR

(2) If LPC words not equal Formant words
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then only if:

number LPC words AND number Formant words ar? less than 7.

" If number of LPC words == 2 AND number Formant words == 1

then:

If one of the LPC words matches the Formant word,

then:

1) delete other LPC word.

2) set number LPC words == 1.

" If number of LPC words == 2

then:

If one of the LPC words is a space (pause)

then:

If DTW distance of space is greater than 200 AND

other LPC distance are less than 120

then:

1) delete space as an LPC word.

2) set number LPC words == 1.

" If LPC and Formant features are equal.

then:

perform feature-fusion.

else:

continue rule-based evaluation of features.

* Isolated-Word Mismatch Rules.

* If number LPC words == 1 AND

number Formant words == 2 OR 3.
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Divide all Formant DTW distances except the minimum Formant DTW dis-

tance by 2.5. Determine if the minimum Formant distance is still minimum

when compared to the other Formant distances. (If yes, the minimum For-

mant DTW distance is probably the correct word.)

If yes:

1) Delete the other Formant word(s).

2) Number LPC words == 1 AND number Formant words == 1.

3) Perform feature-fusion on equal number of words.

If no:

1) Add normalized Formant DTW distances for each word.

2) Perform feature-fusion.

If number of Formant words == 1

AND number LPC words == 2 OR 3.

Evaluate the LPC DTW distances. If the smallest DTW distance is less than

120 and the other DTW distance(s) is(are) greater then 120, then:

1) Delete the other LPC word.

2) Number LPC words == 1.

3) Perform feature-fusion.

If not true:

1) Add LPC normalized DTW distances for each word.

2) Perform feature-fusion.

The remaining rules cover connected-word mismatches. The general rule

assumes the first and last words between both features of speech are a good

match, because the effects of coarticulation are less for the beginning and end-

ing words. Matching the inner words within a connected utterance was much more

58



difficult, because there were not any guidelines to follow. The decision rules for

each connected-word case is given in general form below.

e Connected-Word Mismatch Rules.

* 1) Delete pauses from LPC results if number LPC

words is greater than number of Formant words.

2) Match first word of each feature.

3) Match last word of each feature.

4. Match number of Formant words to number of LPC

words if the word mismatch is less than 3.

5. If word mismatch between features is greater than 3,

determine a best guess for the actual number of words

which is somewhere in between the two word counts.

6. Working from the beginning of the utterance and

the end of the utterance, match the feature with

the smaller number of words to the feature with the

larger number of words by creating and distributing

duplicate words.

7. The end result will have features with an even number

of words.

8. Perform feature-fusion.

The rule-based system represents a first attempt at matching two features. It is a

baseline system. Refinements may be necessary as testing continues.

Conclusion

This chapter discussed in detail the five main parts of the speech recognition

system. The basic system consists of the preprocessor, the Kohonen neural net-

work, and the dynamic programming word classifier routine. This system is used
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in Phase I. The final recognition system tested in Phase II consists of the basic

system, plus the feature-fusion and rule-based routines. The next chapter provides

the results of testing both systems.
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Table 3. Phase I Training Schedule

Net # Training Iterations
1 5,000
2 10,000
3 20,000
4 30,000
5 40,000
6 50,000
7 60,000
8 70,000
9 80,000

10 90,000
11 100,000
12 110,000
13 120,000
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V. Test Results

Introduction

This chapter presents the test results from Phase I and Phase II. Although

the goal of each phase was different, the testing philosophy was the same. In

accordance with that philosophy, all tests were performed using at least a basic

recognition system consisting of a preprocessor section, Kohonen neural network,

dynamic programming word classifier, and a large representative group of test

words. In each phase, the words used to train the Kohonen network were different

than the words used to test the network.

As with any test, it is important to change only the variables under test. For

this thesis, parts of the system not directly under test were held constant. Parts

of the system unchanged during both test phases, except where specifically noted,

include.

" tie initial seed value for the Kohonen network.

" t e range of initial weight values for the Kohonen network.

* t1-e use of average subtraction in the preprocessor section.

" te LPC frequency reduction scheme in the preprocessor section.

Stie size of the Kohonen network (15 x 15).

* the presentation of data to the Kohonen network (sequential).

• the same post-Kohonen network trajectory reduction method.

* the LPC vertical and horizontal distortion penalties (0.75).

" the Formant vertical and horizontal distortion penalties (0.65).

" the same grading method used by Barmore.
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This chapter is divided into two main sections. The first section discusses

the tests performed in Phase I. The goal of Phase I was to learn more about the

Kohonen neural network, and in the process, to optimize the recognition system

for Phase II. The last section discusses Phase II testing of the final recognition

system.

Phase I

Introduction In Phase I, ten sets of ten digits were used in each test. These

words are listed in Table 4. Table 5 lists the connected utterances used in Phase I.

As previously noted, these are the same words used in the Barmore thesis.

Table 4. Phase #1 Test Words (Isolated Speech)

zero five
one six
two seven
three eight

four nine

Gain Reduction A large number of tests were run to find the response of a

Kohonen network to the five different gain reduction meth3ds. Starting with the

Linear Type #1 method, the results of each method are presented along with a

discussion of the results. A conscience value of 1.5 was used for all gain reduction

tests.

Linear Type #1 Gain Reduction Three series of 13 neural networks

were trained using the Linear Type #1 reduction method. The training iteration

cycle times are listed in Table 3. Each series started with a different a value.

The results for isolated and connected speech using this method are shown

in Figure 19 and Figure 20 respectively. Each graph shows the percentage of words
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Table 5. Phase I Test Words (Connected Speech)

two eight two eight two eight
two four six eight
two eight three one eight
zero one two three four five six seven eight nine

correctly identified for each of the trained neural networks.

The results show that as the initial starting gain is decreased from 0.99 to

0.1, the recognition accuracy increases significantly. An initial starting gain of 0.99

gave the worst recognition accuracy. These results appear to contradict Kohonen's

assertion that the initial starting gain value should be near unity [19:17]. An

initial starting gain of 0.1 gave the best recognition accuracy for both isolated

and connected speech. Table 6 shows the range and average percentage of words

correctly identified for each of the initial gain values. In general, networks using

Linear Type #1 gain reduction that trained below 70,000 iterations gave better

recognition accuracy.

Table 6. Linear Type #1 Recognition Accuracy

Starting Range (%) Average (%)
Gain Iso Con Iso Con
0.10 84-99 76-92 92 86
0.50 76-94 72-92 86 86
0.99 64-86 64-96 78 83

Piecewise Linear Gain Reduction Piecewise-Linear gain reduction in-

troduces two variables not present with linear reduction. They are the value and

iteration start time of the second gain value. Normally, the initial value for the

second gain is much less than the initial value for the first gain. A initial second

gain value of one-tenth the value of the first gain value was chosen. For example,
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Linear Type #1
100 Isolated Digits

Percent Correct

so-

701

SO
60- i I I

5 10 20 30 40 50 60 70 80 90 100 110 120
# of Iterations (x 1000)

- .99 - .5 "

Conscience: 1.5

Figure 19. Linear Type #1 Test Results (Isolated Digits)
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Linear Type #1
Connected Digits

Percent Correct
1001

go

80

6 0 I I I I I I

5 10 20 30 40 60 60 70 80 90 100 110 120

# of Iterations (x 1000)
.99 .5 .

Conscience: 1.5
282828 28318 2468 0123456789

Figure 20. Linear Type #1 Test Results (Connected Digits)
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with an initial first gain value of 0.5, the initial start gain value of 0.05 was used

for the second gain.

Two sets consisting of three series of 13 Kohonen neural networks were tested

using Piecewise-linear gain reduction. The first set had the second gain starting at

20% of the total iteration count; and the second set had the second gain starting

at 80% of the total iteration count. For example, a neural network trained for

a total of 100,000 iterations will have the second gain start at 80,000 iterations

for the 80% case. Table 7 shows the gain start times for both sets of tests using

Piecewise-Linear gain reduction.

Table 7. Piecewise Linear Gain Reduction Schedule

Training Iterations
Test Start Start Start

Number First Gain Second Gain Second Gain
20% of Total 80% of Total

1 5,000 1,000 4,000
2 10,000 2,000 8,000
3 20,000 4,000 16,000
4 30,000 6,000 24,000
5 40,000 8,000 32,000
6 50,000 10,000 40,000
7 60,000 12,000 48,000
8 70,000 14,000 56,000
9 80,000 16,000 64,000

10 90,000 18,000 72,000
11 100,000 20,000 80,000
12 110,000 22,000 88,000
13 120,000 24,000 96,000

The set of tests using an initial start for the second gain of 20% of the total

iteration training time are discussed first. Referring to Figure 21 and Figure 22,

the results show that using a value of of 0.1 for the first gain consistently gave

excellent recognition results. The excellent accuracy obtained for an initial first

gain value of 0.1 is clearly evident in both graphs. Neural networks trained using

67



a start gain value of 0.99 gave the worst recognition accuracy. Using a gain value

of 0.5 gave slightly better test results when compared to a gain value of 0.99. The

average accuracies for both 0.5 and 0.99 were below 70%

All three gain values gave better recognition accuracies when the second

starting gain began at 80% of the total iteration count. The results are shown

in Figure 23 and Figure 24 for the isolated and connected word case. Table 8

lists the range and average values for the Piecewise-Linear tests. The results show

that recognition rates will improve if the first gain term decreases quickly and the

second gain term is allowed to decrease slowly in value. The best accuracy rates

are possible if a starting gain close to 0.1 is used.

Table 8. Piecewise-Linear Recognition Accuracy

Starting Start 2nd Range (%) Average (%)
Gains Gain (15 of Total) Iso Con Iso Con

0.10/0.01 20% 83-93 76-88 87 82
0.10/0.01 80% 83-95 72-92 90 85
0.50/0.05 20% 50-86 48-80 70 69
0.50/0.05 80% 75-95 68-92 83 81
0.99/0.01 20% 51-74 54-88 68 67
0.99/0.01 80% 60-85 68-88 74 77

The astute observer will notice in Figure 21 and Figure 22 that Barmore's

final recognition accuracies were not duplicated when the Piecewise-Linear gain

method was evaluated. There are three reasons why recognition accuracies of 99%

for isolated and 90% for connected speech were not observed. The primary and

most obvious reason is the use of a different seed value. All gain tests were run using

a seed value of #72 while Barmore used a seed value of #33. The second reason

is number of words used to test the system. Barmore used 110 isolated words and

eight sets of connected words whereas in Phase I, 100 isolated words and four sets

of connected words were used to test the system. Four sets of connected words were
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Piecewise Linear
100 Isolated Digits

* Percent Correct

10-

80

70

60

5 10 20 30 40 50 6'0 70 80 90 100 110 120
# of Iterations (x 1000)

ConscienCe: 1.5
2th Gain o 20% of Total

Figure 21. Piecewise- Linear Test Results (2nd Gain 20%) (isolated Digits)
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Piecewise Linear
Connected Digits

Percent Correct

100

50 5 10 20 30 4050o60 70 80 90 100 110 120

# of Iterations (x 1000)

Conec~nc. 1.6.99/.1 -~.5/.05 -~-.11.01

2d Gain *20% of Total

Figure 22. Piecewise- Linear Test Results (2nd Gain 20%) (Connected Digits)

70



Piecewise Linear
100 Isolated Digits

10Percent Correct

80'

70 _ _ _ _ _ _ _ _

60

50,5 10 20 30 40 50 60 70 80 90 100 110 120

# of Iterations (x 1000)

.99/.1 ~ .5/.05 -. 10

Conscience: 1.5
2th Gain * 80% of Total

Figure 23. Piecewise- Linear Test Results (2nd Gain 80%) (Isolated Digits)
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Piecewise Linear
Connected Digits

Percent Correct

100

60

505 10 20 30 40 50 60 70 80 90 100 1120

# of Iterations (x 1000)

.99/.1 - .5/.05 -~.1/.01

Conscience: 1.5
2th Gain o 80% of Total

Figure 24. Piecewise- Linear Test Results (2nd Gain 80%) (Connected Digits)
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adequate in testing the different methods in Phase I. Note that 210 isolated words

and 10 sets of connected words were used in Phase II testing of the recognition

system.

The last reason is subtle but dramatic in its effect. Barmore, using Piecewise-

Linear reduction in his final recognition system, trained his Kohonen network for

a total of 90,000 iterations and started the second gain curve at 20,000. The test

was trained using a 90K/20K training schedule. A value of 20,000 represents 22.2%

of the total iteration count. In this thesis, a value of 20% was used for the start

of the second gain curve. Twenty-percent computes to an actual iteration count of

18,000, (90K/18K training schedule), giving a difference in second gain start times

of 2,000 iterations. Another test was conducted to show the effect of varying the

start of the second gain term by 2% and the initial seed value.

Three other neural networks were trained so that the seed values and differ-

ence in second gain start times could be compared. Two networks were trained

using a seed value of #33 and gain reduction schedules of 90K/18K and 90K/20K.

Another network was trained using a seed value of #72 and a schedule of 90K/20K.

The results are shown in Table 9.

Table 9. Effect of Varying Start of 2nd Gain Curve and Seed Value

Initial Training Results (%)
Seed Schedule Iso Con
72 90K/18K 83 76
72 90K/20K 89 72
33 90K/18K 99 96
33 90K/20K 94 84

It was expected that the gnition rates would vary when a different seed value

was used, but the large observed variation in recognition accuracy was not ex-

pected. The recognition rates varied by 16 percentage points for isolated speech

and 20 percentage points for connected speech with different seed values using the

73

• ,,,I II I



.OK/18K training schedule. For the 90K/20K training schedule, the difference was

5 percentage points and 12 percentage points for isolated and connected speech.

The other significant finding was the variation in recognition rates solely due to a

2% change in the start of the second gain reduction curve. Using a seed value of

#72, the recognition rates varied by 6 percentage points for isolated speech and 4

percentage points for connected speech. With a seed of #33 and a training schedule

of 90K/20K found in Barmore's final system, the recognition rates observed were

99% and 96%. Changing the start of the second gain curve by 2% gave recognition

rates of 94% and 84%. This decrease in overall accuracy consequent to a seem-

ingly innocuous parameter change could potentially make the recognition system

unacceptable for aircraft applications.

Linear Type #2 and Exponential Gain Reduction The Linear Type #2

and Exponential reduction methods used the same linear gain reduction schedule.

The difference between the two methods is how the neighborhood decreases as

training proceeds (see Figure 12 and Figure 13). The results of training Kohonen

networks using these two methods is shown in Figure 25 for isolated speech and

Figure 26 for connected speech. Table 10 summarizes the results for both types of

speech.

Table 10. Linear Type #2 and Exponential Recognition Accuracy

Reduction Range (/l) Average (%)
Method Iso Con Iso Con
Linear Type #2 84-94 68-100 90 87
Ezponential 83-98 80-96 91 88

Both gain reduction methods gave high recognition accuracies. Each had

isolated word recognition accuracies that averaged about 90% for the series, and

connected word accuracies that averaged in the high 80% range. Exponential re-

duction performed slightly better with recognition accuracies in the high 90'7 range
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Linear Type #2/Exponential*
100 Isolated Digits

Percent Correct

100

5

# of Iterations (x 1000)

Exponential Linear Type #2

Conscience: 1.5

Figure 25. Linear Type #2 and Exponential Reduction Test Results (Isolated Dig-
its)
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Linear Type #2/Exponential
Connected Digits

Percent Correct
100,

80 ,

90/

70

60

50 I I I I I

5 10 20 30 40 508 0 70 80 o0 00 10 120
# of Iterations (x 1000)

Exponential - Linear Type #2

Coneclence:1.5
282828 28318 246P 0123456789

Figure 26. Linear Type #2 and Exponential Reduction Test Results (Connected
Digits)
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for iteration cycle times less than 60,000. The sharper decrease in neighborhood

size used with exponential reduction appears to improve the performance of the

Kohonen network.

Central-Adaptation Gain Reduction The last gain reduction method

evaluated was Central-Adaptation. With this method, the neighborhood size is

held constant while the gain factor varies with distance from the winning node.

Except for a good recognition accuracy of 91% at 10,000 iterations using isolated

words, the Central-Adaptation gain reduction method did not provide the proper

mix of gain and neighborhood reduction necessary for speech applications.

The Central-Adaptation gain formula was evaluated for possible improve-

ment. The gain formula, which is reproduced from Chapter 4, has an exponential

argument with two terms within the brackets.

a = 2C(1 - t/T)e - ' a [1.4/Rd+t/(5.6-1.4/ RA (13)

The value of t/T in the second term of the argument determines which of the two

terms will dominate while the network is training. During the early part of training

when t/T is small, the first term (1.4/Rd) dominates. As the training progresses

and t/T - 1, the second gain term dominates.

A low iteration factor (LIF) term and high iteration factor (HIF) tcrm was

added to the basic Central-Adaptation gain equation as seen below. Note that the

LIF and HIF equal one in the basic equation. (See Equation 13).

a = 2C(1 - t/T)e-'j [.4/(RdLIF)+t/(T HIF)(5.6-1.4/R] (14)

Two additional series of tests were run using different iteration factors in an effort

to improve the performance of the Central-Adaptation method. The first series of

tests used a LIF of 2.5 and a HIF of 5.0. The second series used a LIF of 2.5 and
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a HIF of 10.0. The results for all three series are shown in Figure 27 for isolated

words and Figure 28 for the connected word case. Table 11 gives the overall range

and average recognition rates for all three series of tests.

Table 11. Central-Adaptation Recognition Accuracy

Low Iteration High Iteration Range (%) Average (7)
Factor Factor Iso Con Iso Con

1.0 1.0 74-91 60-84 80 74
2.5 5.0 79-95 70-92 87 79
2.5 10.0 75-88 54-88 79 74

The best recognition accuracy was found using iteration factors of 2.5 and 5.0. The

results, however, were not as good as the other gain reduction methods tested. It

is possible that the right mix of iteration factors could be found to significantly

improve recognition accuracy.

One final series of tests were conducted using Central-Adaptation. As previ-

ously noted, the neighborhood is held constant during training with the Central-

Adaptation method. The last series of tests combined the Central-Adaptation

gain reduction equation with the exponential reduction in neighborhood size. The

results are shown in Figure 29. No significant improvement was observed using

exponential neighborhood reduction when compared to a constant neighborhood

size.

The series of tests using the five gain reduction methods showed that the

Exponential gain reduction method gave the best overall recognition accuracy for

both isolated and connected speech. Linear Type #1 and Piecewise-Linear (2nd

gain start at 80% of total) with an initial gain of 0.1 also provided excellent recog-

nition results. Linear and Piecewise-Linear reduction starting with a gain near

unity gave the worst overall recognition accuracy. A major disappointment was

the response of the Central-Adaptation method in the various test configurations.
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Central Adaptation
100 Isolated Digits

Percent Correct

100
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-LI~oI HIF-I LIF.2.5 HIF-6 -i- LIFu2.5 HIFOO
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Figure 27. Central- Adaptation Reduction Test Result s(Isolated Digits)
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Central Adaptation
Connected Digits

Percent Correct
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Figure 28. Central- Adaptation Reduction Test Result s(Connected Digits)
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Exponential -Central Adaptation
Isolated /Connected Digits

Percent Correr'
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# of Iterations (x 1000)
-Isolated Connected

Conscience: 1.5
Isolated: 100 Digits
Connected: 282828 28318 2468 0123458789

F'igure 29. Exponential- Central- Adaptation Reduction Test Results
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_C.mn sen.c-e There was less information available concerning the effect of

conscience on a Kohonen network than the effect of various gain methods on a Ko-

honen network. Two data points, (1.1 and 1.5), were evaluated by Barmore (4:4-9].

Additional information was needed on conscience to understand its effect on Ko-

honen network training, and to optimize the performance of the speech recognition

system.

Conscience testing using a wide range of conscience factors is time and com-

puter intensive. Given these constraints, a series of tests were conducted on the

sequence 000,001,... , 111 and different conscience factor values. Each 15 x 15 net-

work was trained with this sequence for 2,000 iterations to determine the range of

conscience factor values that affected network training.

Two measures of Kohonen network usage were used for these tests. The

Maximum Node Hit Value is the maximum number of times any one node on the

Kohonen surface becomes the winning node. Node Utilization is a measure of

the percentage of nodes that win at least once during a complete training session.

Conscience factors between 1.1 and 20.0 were evaluated with the results shown in

Figure 30 and Figure 31.

The results show that node utilization is near 100% for a conscience factor

of 1.1, (maximum conscience for this test), and gradually declined to 68% for a

conscience factor of 20.0 (minimum conscience for this test). A test conducted

without any conscience had a node utilization of 63%. These results show that

conscience had an effect on network training at least up to a conscience factor

value of 20.0. This result dictated the range of conscience factor values used to

test the speech recognition system.

An in-depth analysis of conscience was performed on two of the gain reduction

methods. Time constraints precluded evaluation of every reduction method. The

Piecewise-Linear and Exponential gain reduction methods were evaluated using

the conscience factor values listed in Table 12. Each conscience factor was run on
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Conscience Test
Maximum Node Hit Value

Max Node Hit V~isue
200

150

100

50

1.1 1.3 1.5 1.7 2.0 3.0 4.0 5.0 8.0 10.0 15.0 20.0

Conscience Factor

Conscience

Input Sequence: 000-111
Iteration: 2000
Net Size: 15*15

Figure 30. Maximum Nodc Hit Value Test Results
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Conscience Test
Node Utilization

Node Utilization (%)
100

90

80

70

60

50 I I I i i
1.1 1.3 1.5 1.7 2.0 3.0 4.0 6.0 6.0 10.0 15.0 20.0

Conscience Factor

Conscience

Input Sequence: 000-111
Iteraton: 2000
Net Size: 15-15

Figure 31. Node Utilization

84



Table 12. Conscience Factor (13) Values

Piecewise-Linear Ezponential
1.0 1.0

1.25 1.25
1.5 1.5
2.0 1.7
3.0 1.9
4.0 2.3
5.0 2.7
6.0 3.0
7.0 4.3
8.0 5.0
9.0 6.0

10.0 7.5
12.0 8.0
14.0 9.0
16.0 10.0

12.0
14.0
16.0

no conscience no conscience

the series of 13 Kohonen networks listed in Table 3. The Piecewise-Linear method

had the same initial gains and training schedule used by Barmore in his thesis. A

three-dimensional surface was generated for each gain method showing recognition

accuracy on 100 isolated words plotted against network training iteration size and

conscience factor. The plots for the two methods represent more than 44,000

dynamic programming calculations.

There are two three-dimensional plots for each of the gain methods repre-

senting different orientations of the Kohonen-Dynamic Programming Recognition

Surface. See Figure 32 through Figure 35. In each plot, a conscience factor value

of 17 represents a slice through the recognition surface with no conscience. Note

that conscience is maximum at a conscience factor of 1.0.
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Figure 32. Kohonen-Dynanic Programming Recognition Surface: Piecewise-
Linear (Front View)
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Figure 33. Kohonen-Dynarrnic Programming Recognition Surface- Piecewise-
Linear (Back View)

87



'aJ

Figure 34. Kohonen-Dynamic Programming Recognition Surface: Exponential
(Front View)
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Figure 35. Kohonen-Dynamic Programming Recognition Surface: Exponential
(Back View)
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The different orientations of the recognition surface provide valuable infor-

mation about a Kohonen network's ability to segment speech sounds and about

the major role conscience plays in the recognition process. Some observations from

the three-dimensional plots include:

" Figure 32 and Figure 34 show that the worst recognition accuracy is found

at a conscience factor of 1.0 (maximum conscience). The recognition surface

drops sharply in both plots at this value. The poor recognition accuracy is

probably due to the inability of the Kohonen network to properly segment

the sounds into clearly defined regions. Too large a conscience forces the

network to determine a winning node primarily based on past wins rather

than on the relationship between the input data and node weight vectors.

" Kohonen networks tend to organize quickly. The networks trained at 5,000

iterations, along the conscience plane in the three-dimensional plots, already

had high recognition rates. Plots from both methods show that conscience

helps a Kohonen network organize speech quicker than when conscience is not

present. Other than a conscience factor of 1.1, the lowest recognition rates for

networks trained for 5,000 iterations occurred with networks trained without

conscience.

" The recognition surface does not slope upward in a continuous manner as

training iteration size increases. There is no correlation between the training

time and recognition accuracy.

" Conscience does affect a Kohonen network's ability to organize speech sounds

for conscience factor values much higher than 1.5. The effect of conscience on

the network is similar to the reults obtained with the sequence 000,001,..., 111

on a Kohonen network of the same size. These plots show that the optimum

conscience factor value for speech recognition is in the five to seven range.
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* The overall recognition surface is much higher using the Exponential gain re-

duction method when compared to the Piecewise-Linear reduction method.

The higher recognition surface means that the Exponential method is supe-

rior to the Piecewise-Linear method for speech recognition applications.

Based on the research conducted in Phase I, the recognition system designed

in Phase II uses Exponential gain reduction and a conscience factor of 5.0. Fig-

ure 36 shows a two-dimensional slice from the three-dimensional plot at this con-

science factor using Exponential gain reduction. Results from Phase I also show

that a Kohonen network organizes quickly. The number of iterations chosen to

train a Kohonen network must not be arbitrary. Some standard measure is re-

quired. The standard used for Phase II testing is the size of the data file used

to train the network. The size of the data file divided by the number of inputs

represents the number of training iterations required for the network to see all of

the data once. This method applies regardless of the size of the data file; therefore,

it standardizes the process of determining the appropriate training cycle time. An

experiment using multiples of the data file size is shown in Figure 37. These results

show that after the network has seen the data only a few times, the recognition

accuracy on ten digits was above 90%. This finding is significant. Kohonen neural

networks may need to be trained in terms of thousands of iterations rather than

tens of thousands of iterations! A complete set of neural networks will be trained

up to about 90,000 iterations in Phase II to confirm these findings.

Average Subtraction The range of data in processed sound files was much

larger when the average-subtraction routine was used in the preprocessor section.

By itself, the average-subtraction routine should not alter the range of the data

values, since this routine merely sums 15 component frames, divides the sum by

the frame size, and subtracts the resultant sum value from each component value

in the frame. In the preprocessor section, the data was processed by the average-
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Exponential Gain Reduction
Conscience: 5.0

Percent Correct
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Figure 36. Exponential Gain Reduction (Conscience: 5.0)
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Training with Multiples
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Percent Correct
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Multiple: 830 Iterations
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Figure 37. Network Trraining Using Multiples of Input Data File
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subtraction routine, and then the data was normalized. A combination of these tw.

routines working in this sequence created the change in the range of data values.

It is possible that altering the position of the individual vectors in the hyperspace

could disrupt the delicate interrelationship between the different regions of sound

on the Kohonen surface. A series of neural networks were trained to investigate

the affect of average subtraction of data on a Kohonen network.

Using the exponential gain reduction method, tests were conducted at con-

science factor values of 1.5 and 5.0. Eleven networks were processed at each con-

science value with average subtraction, and eleven networks processed without

average subtraction. The range of initial weight values for the Kohonen network

was changed to a range of zero to one without average subtraction, since the data

values were within this range.

The Kohonen networks for this test were trained using multiples of the input

data file size divided by the frame size. This value was 1,122. Odd multiples

of 1,122 from 1 to 21 were used. The corresponding iteration cycle times of the

Kohonen networks were 1,122 to 23,562. Results of isolated and connected speech

are shown in Figure 38 and connected speech in Figure 39 for a conscience factor

of 1.5. Figure 40 and figure 41 show the results for a conscience factor of 5.0.

The results show that average subtraction did improve somewhat the recog-

nition rates of the system described above. As a result of these tests, the average-

subtraction routine was employed in the final recognition system in Phase II. Note

that the recognition accuracies obtained during average-subtraction testing sup-

port the claim that a Kohonen network does train quickly using speech data.

Phase II

Introduction The recognition system developed in Phase II uses the entire

F-16 command vocabulary listed in Table 1. Three sets of these 70 words were

used to test the ability of the system to recognize isolated speech. Eleven connected
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Average Subtraction
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Figure 38. Isolated Word Average Subtraction Test Results (Conscience: 1.5)

95



Average Subtraction
Connected Digits
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Figure 39. Connected Word Average Subtraction Test Results (Conscience: 1.5)
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Average Subtraction
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Figure 40. Isolated Word Average Subtraction Test Results (Conscience: 5.0)
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Average Subtraction
Connected Digits
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Figure 41. Connected Word Average Subtraction Test Results (Conscience: 5.0)
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Table 13. Phase II Test Utterances (Connected Speech)

two eight two eight two eight
two four six eight
two eight three one eight
one seven four three
eight four six nine
five four three one
confirm cancel missile lock-on
report air-to-surface threat
report alpha bravo echo charlie delta
select gun strafe charlie
change frequency two four one

word utterances were used to test the ability of the system to recognize connected

speech. The eleven connected word utterances are listed in Table 13.

Each test in Phase II was run on a series of eleven Kohonen networks in

which each network was trained on either a multiple or half-multiple of the input

data size (9,292). Two sets of tests were completed with each series of tests using

a different data file. The number of iterative steps for each network in each set is

shown in Table 14. Within each set of tests, LPC data was processed and fused

with both F1, .F2 and Fl, .F2, F3 processed formant data files. The fusion process

was defined in terms of a feature-fusion threshold. Only library words with distance

factors less than the feature-fusion threshold value took part in the fusion process.

For a feature-fusion threshold of one, all feature-fusion results defaulted to LPC

output results.

Set #1 Test Results

Introduction The test results for F1,F 2 and F1,F 2,F 3 formants from

the 210 isolated words and eleven sets of connected utterances are presented in

both tabular and graphical form. The formants were processed only by dynamic
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programming so that there was one average formant value listed for each series of

13 Kohonen networks. The appropriate average formant recognition accuracy is

listed in the caption of each table and graph. Each table provides the range and

average values for LPC and feature-fusion results within a series.

The results of the different feature-fusion thresholds were slightly different

for the various neural networks, but the average value for each series of eleven

networks was similar. Each feature-fusion threshold is plotted with its correspond-

ing LPC input data represented in terms of recognition accuracy. For each series,

an additional graph is presented which shows individual feature-fusion plots for a

comparison between the different fusion threshold values.

Isolated Speech Figure 42 compares a feature-fusion t -eshold of 1.5

with LPC data values using F1,,'2 and F1,.'2,Y3 formants. With dynamic

programming, the average .F1,.'2 formant accuracy was 89.3%, and the average

,11,.F2, F3 formant accuracy was 84.0%.

The recognition accuracy for one-half multiple was 86.9% using only LPC

data (see Figure 43). After performing feature-fusion, the accuracy for one-half

multiple was 91.6% using F1, '2 formants. Note that the network trained on

0.5 multiple of the input data file was trained on only half of the words in the

library. A high of 97.1% was obtained when the Kohonen network had seen the

data set seven times. Using Fl,.F2,.F3 formants, the half-multiple recognition

accuracy was 92.9% with a high recognition accuracy of 95.2% obtained when the

data set was seen six times. The use of feature-fusion increased the isolated word

recognition accuracy between 3% and 8%. Table 15 shows the range and average

values using F1, .F2 formants.

Figure 43 and Figure 44 compare feature-fusion thresholds of 2.0 and 2.5

with LPC data values using F1,.F2 and F1,.F2,.F3 formants. The highest one-

half multiple recognition accuracy was 95.2% using F1,T2,.F3 formants and a
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FEATURE FUSION
Isolated Speech

Set #1: Fusion Threshold 1.5
Percent Correct

90

85

80
0.5 1.0 2.0 3.0 4.0 5.0 0.0 7.0 8.0 9.0 10.0

Multiple (x 9292)

-LPC -'-F1/F2 Formants F1IF2IF3 Formants

F1/F2 Formante - 89.3%
FI/F2/F3 Formants a 84.0%

Figure 42. Phase II, Set #1 Feature-Fusion Test Results on Isolated Speech Using

a Feature-Fusion Threshold of 1.5, LPC, and Formant Data
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fusion threshold of 2..5. It is interesting to note that this value was the highest

recognition rate achieved in the series of Kohonen networks evaluated at a fusion

threshold of 2.5 using F1, 2, F3 formants. Table 16 shows the range and average

values using F1, ,F2, F3 formants.

A comparison of individual feature-fusion threshold results is shown in Fig-

ure 45 for Fl,.F2 formants and Figure 46 for F1,.F2,.F3 formants. The feature-

fusion routine gave recognition rates above 90% on every test. AU three fusion

thresholds had similar average recognition accuracies of about 94% using Fl, F2

formants and 93% using 1,. F2, F3 formants..

The average feature-fusion recognition accuracy was slightly lower (1%) using

.F1,F 2,.F3 formants when compared to '1,.F2 formants. The lower accuracy is

probably due to the lower formant accuracy for F1,YF2, F3 formants (84% vs 89%).

Connected Speech The recognition accuracies for connected speech were

lower than for isolated speech. See Table 17 and Table 18 for the results on both

formant representations. The average LPC recognition accuracy was 60.1%. The

average formant recognition accuracies were very low. l, .F2 recognition accuracy

was 28.6%, and the F1,F.2,.T3 recognition accuracy was 20.4%. The feature-fusion

routine, which combines the LPC and formant features of speech, had outputs that

reflected the average accuracy rates of the individual input features.

Figure 47 shows LPC recognition results compared with a feature-fusion

threshold of 1.5 for Fl,.F2 and F1,.F2,.F3 formants. The low formant accuracy

actually caused a negative fusion, where the average fusion recognition accuracy

was 10% less than the average LPC recognition accuracy. The feature-fusion recog-

nition accuracy was 50.8% for a feature-fusion threshold of 1.5. The fusion results

for using the other thresholds gave slightly lower recognition accuracies. Figure 48

compares the individual feature-fusion threshold results for Fl, .F2 formants.

The recognition system displays the top choices (user specified) instead of just
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FEATURE FUSION
Isolated Speech

Set #1: Fusion Threshold 2.0
Percent Correct

85

0.5 1.0 2.0 3.0 4.0 5.0 8.0 7.0 8.0 9.0 10.0 1

Multiple (x 9292)

LPC -'-F1/F2 Formants - F1/F2/F3 Formants

FI/F2 Formants e 89.3%
FIIP2IF3 Formants e 84.0%

Figure 43. Phase HI, Set #1 Feature-Fusion Test Results on Isolated Speech Using
a Feature-Fusion Threshold of 2.0, LPC, and Formant Data
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FEATURE FUSION
Isolated Speech

Set #1: Fusion Threshold 2.5
Percent Correct

0.6 1.0 2.0 3.0 4.0 5.0 8.0 7.0 8.0 9.0 10.0

Multiple (x 9292)

-LPC FI/F2 Formants ~-F1/F2/F3 Formants

FI/F2 Formants a 80.3%
FIF2IF3 Formantsa $ 4.0%

Figure 44. Phase 11, Set #1 Feature-Fusion Test Results on Isolated Speech Using
a Feature-Fusion Threshold of 2.5, LPC, and Formant Data
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LPC F1/F2 Formants
Isolated Speech

Set #1: Threshold Comparison
Percent Correct

100

96

92 -

901
0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Multiple (x 9292)

- Fusion Threshold 1.5 -' Fusion Threshold 2.0

-- Fusion Threshold 2.5

F1/F2 Formants a 89.3%

Figure 45. Phase II, Set #1 Feature-Fusion Test Results on Isolated Speech for

Feature-Fusion Threshold Values of 1.5, 2.0 and 2.5 Using .F1,.F2 For-

mants
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LPC F1/F2/F3 Formants
Isolated Speech

Set #1: Threshold Comparison
Percent Correct
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Multiple (x 9292)
- Fusion Threshold 1.5 - Fusion Threshold 2.0

Fusion Threshold 2.5

F1/F2/F3 Formants a 84.0%

Figure 46. Phase II, Set #1 Feature-Fusion Test Results on Isolated Speech for

Feature-Fusion Threshold Values of 1.5, 2.0 and 2.5 Using F1,.F2,.F3

Formants
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FEATURE FUSION
Connected Speech

Set #1: Fusion Threshold 1.5
Percent Correct
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FI/F2/F3 Formants a 20.4%

Figure 47. Phase II, Set #1 Feature-Fusion Test Results on Connected Speech

Using a Feature-Fusion Threshold of 1.5, LPC, and Formant Data
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LPC F1/F2 Formants
Connected Speech

Set #1: Threshold Comparison
Percent Correct
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Figure 48. Phase II, Set #1 Feature-Fusion Test Results on Connected Speech

for Feature-Fusion Threshold Values of 1.5, 2.0 and 2.5 Using F'1,F2

Formants
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the best choice. Analysis of system outputs showed that the separation between

dynamic programming distances was much smaller with connected speech than

with isolated speech. The smaller separation distance was caused by the blending

or overlapping of sound features between words (coarticulation)[25:92]. Another

set of tests were conducted using smaller fusion thresholds to counter the effects

of coarticulation. The threshold values chosen were 1.05, 1.1, and 1.2. The results

are shown in Table 19 for F1, 2 formants and Table 20 for F1,.F2, -3 formants.

Table 17 thru Table 20 show that as the fusion threshold value decreased to-

ward one, feature-fusion accuracy increased. The increase in accuracy was mostly

artificial, since the fusion output defaulted to the LPC output as the fusion thresh-

old approached one. The need for a lower fusion threshold is probably needed with

connected speech because of the effects of coarticulation. It is interesting to note

that there were a few cases in which feature-fusion increased the LPC accuracy

using a fusion threshold of 1.05. Figure 49 shows a feature-fusion threshold of 1.05

plotted against LPC data for both formant sets.

Set #2 Test Results

Introduction In an effort to improve overall recognition accuracy, the

range of raw formant data files were evaluated. A few words were found to vary

significantly in formant range from other words of the same kind. Nine out of the

350 words in the system were replaced. Three of these words, map, mark, and

three were replaced from the set of 70 words used to train the Kohonen networks.

A new data file was created to test the Kohonen networks. It had a multiple of

9,454. This data file was used in the Set #2 series of tests. The iteration cycle

times for the networks trained in Set #2 are shown in Table 14. The same set of

tests performed in Set #1 are performed in Set #2 testing. The presentation of

results is also the same as in Set #1.
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FEATURE FUSION
Connected Speech

Set #1: Fusion Threshold 1.05
Percent Correct
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Figure 49. Phase II, Set #1 Feature-Fusion Test Results on Connected Speech

Using a Feature-Fusion Threshold Value of 1.05, LPC, and Formant

Data
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Isolated Speech Table 21 and Table 22 show the range and average

recognition accuracies using Fl, .F2 and Fl, .F2, F3 formants. The average for-

mant recognition accuracies were 88.1% and 87.9%. The formant accuracies are

similar to Set #1 values. The average LPC recognition accuracy, however, in-

creased from 88.4% to 94.1%.

The fusion-factor test results for all thresholds values were excellent. Both

Fl, .F2 and F1,F 2,F.3 formants had an average recognition accuracy around 97%.

The three fusion thresholds are plotted against LPC data values and formant data

in Figure 50, Figure 51, and Figure 52. Using a fusion threshold of 2.5, the feature-

fusion recognition accuracy for one-half multiple was 97.1% with both Fl, F2 and

Fl,.F2,.F3 formant data sets. A high of 98.3% was obtained for both eight and

nine multiples using F1, .F2 formants. With Fl, .F2, F3 formants, a high of 98.6%

was obtained using fusion thresholds of both 2.0 and 2.5 for multiples of nine and

ten.

Figure 53 and Figure 54 show that every fusion recognition accuracy was

above 95%. A feature-fusion threshold of 50 was also evaluated with FL, F2 for-

mants to see if the recognition rate would improve by making all 70 words in the

library eligible for fusion. A fusion threshold of 50 gave a range from 95.7% to

97.4%, and an average accuracy of 96.7%. These results are slightly less than the

values obtained for fusion thresholds of 2.0 and 2.5 using F1,.F2 formants.

Connected Speech The average LPC recognition accuracy increased from

60% to 70%. The highest LPC recognition accuracy was 83.7% for four multi-

ples. The average formant recognition accuracies for both Fl, .F2 formants and

l, .F2, Y3 formants, however, were about 20%. These rates are slightly less than

the values obtained in Set #1. These low formant recognition rates precluded

use of the formant routine with connected speech. Table 23 and Table 24 show

the range and average recognition accuracies using Fl,.F2 and Fl,YF2,.F3 for-
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FEATURE FUSION
Isolated Speech

Set #2: Fusion Threshold 1.5
Percent Correct

1001

1o

85

80 I I I I t

0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Multiple (x 9454)
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F 1F21F3 Formants a 87.9%

Figure 50. Phase II, Set #2 Feature-Fusion Test Results on Isolated Speech Using

a Feature-Fusion Threshold of 1.5, LPC, and Formant Data
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FEATURE FUSION
Isolated Speech

Set #2: Fusion Threshold 2.0
Percent Correct
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Figure 51. Phase HI, Set #2 Feature-Fusion Test Results on isolated Speech Using

a Feature-Fusion Threshold of 2.0, LPC, and Formant Data
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FEATURE FUSION
Isolated Speech

Set #2: Fusion Threshold 2.5
Percent Correct
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F1/F2/F3 Formants m 87.9%

Figure 52. Phase II, Set #2 Feature-Fusion Test Results on Isolated Speech Using
a Feature-Fusion Threshold of 2.5, LPC, and Formant Data
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FEATURE FUSION
Isolated Speech

Set #2: Threshold Comparison
Percent Correct
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Fusion Threshold 2.5
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Figure 53. Phase II, Set #2 Feature-Fusion Test Results on Isolated Speech for

Feature-Fusion Threshold Values of 1.5, 2.0 and 2.5 Using Fl, F2 For-

mants
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FEATURE FUSION
Isolated Speech

Set #2: Threshold Comparison
Percent Correct
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Figure 54. Phase II, Set #2 Feature-Fusion Test Results on Isolated Speech for

Feature-Fusion Threshold Values of 1.5, 2.0 and 2.5 Using Fl, .F2, F3

Formants
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mants. Figure 5.5 shows LPC recognition results plotted against a fusion threshold

value of 1.05 for both F1,.F2 and Y1,.'2,.'3 formants. Even with a low formant

recognition rate, Figure 55 shows a few cases in which the feature-fusion results are

higher than the LPC recognition rate. Figure 56 shows all three formant thresholds

plotted for l, .F2 formants.

Feature-Fusion Display Results

This section provides seven examples of feature-fusion. Each example shows

the display results that are normally sent to the display terminal from the recogni-

tion system. The recognition results for each word are displayed over two pages for

uncluttered viewing. The first page displays the recognition results for both fea-

tures (LPC and formants), and feature-fusion using a threshold of 1.5. The second

page displays feature-fusion results for thresholds of 2.0 and 2.5. The displayed re-

sults are for isolated speech. The seven examples (using seven words) were chosen

to show the capabilities of the feature-fusion section and rule-based system. For

each example, the correct test word is identified followed by a description of the

display results.

* negative(page 124): Quite often, when LPC-based dynamic programming

gave the incorrect answer, the correct word was the second or third choice.

This example shows that case. The LPC feature result was map, and the

correct word, negative, was the next best choice. The formant result was

correct. After fusion, the correct choice by the recognition system was made.

9 four(page 126): In this example, the LPC result was correct, but the formant

result was incorrect. Notice the effect of the threshold. Four was the only

word considered within the feature-fusion section, because the second best

choice within the LPC feature, forward, had a distance factor of 4.9882.
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FEATURE FUSION
Connected Speech

Set #2: Fusion Threshold 1.05
Percent Correct
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Multiple (x 9454)
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FI/F2 Formants a 19.4%
FI/F2/F3 Formants a 18.4%

Figure 55. Phase II, Set #2 Feature-Fusion Test Results on Connected Speech

Using a Feature-Fusion Threshold of 1.05, LPC, and Formant Data
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FEATURE FUSION
Connected Speech

Set #2: Threshold Comparison
Percent Correct
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Figure 56. Phase II, Set #2 Feature-Fusion Test Results on Connected Speech

for Feature-Fusion Threshold Values of 1.05, 1.1 and 1.2 Using Fl,.F2

Formants
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* north(page 128): The word north had a dynamic programming distance of

324.0, which was much larger than the LPC best choice of 221.0 for nose.

In fact, north was the seventh best choice. The formant feature gave the

correct result. Feature-fusion of the two features gave the correct result for

all three thresholds.

" cancel(page 130): In this example, the LPC feature result gave two words

when there was only one word spoken. Using only the LPC feature, the

recognizer thought the utterance was cancel south. The formant result was

correct. The rule-based system was used in this example. Since one of the

two LPC words matched the formant word, the rule-based system deleted

the word south. The feature-fusion section only considered the LPC word

cancel with the formant result.

* delta(page 132): This example is another case in which the LPC feature

result thought there were two words when only one word was spoken. Neither

word matches the correct word which was identified using the formant feature.

The rule-based section added the LPC results for every word. The feature-

fusion section multiplied this result and the corresponding formant result.

The word delta was correctly identified in each feature-fusion result.

* three(page 134): The real power of feature-fusion is shown in the next two

examples. In both cases, each individual feature gave the incorrect result,

but feature-fusion gave the correct result. In the first example, the word

three was output as charlie using the LPC feature, and output as degrees

using formants.

" threat(page 136): This example is the second case in which both features

incorrectly identified the test word but feature-fusion identified the correct

word. The word threat was output as search using the LPC feature and

west using formants. Feature-fusion identified the word as threat for each

threshold.
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Table 14. Phase II Training Schedule

Number of Training Iterations
Multiples Set #1 Set #2

0.5 4,646 4,727
1.0 9,292 9,454
2.0 18,584 18,908
3.0 27,876 28,362
4.0 37,168 37,816
5.0 46,460 47,270
6.0 55,752 56,724
7.0 65,044 66,178
8.0 74,336 75,632
9.0 83,628 85,086

10.0 92,920 94,540

Table 15. Phase II, Set #1 Feature-Fusion Test Results on Isolated Speech (.F1,.F2
Formants = 89.3%)

LPC (%) Feature.Fusion Threshold (%)
1.5 2.0 2.5

Range Avg Range j Avg Range Avg Range Avg

(84-92) 88.4 (91-97) 94.4 (91-96) 94.4 (92-96) 94.3

Table 16. Phase II, Set #1 Feature-Fusion Test Results on Isolated Speech
(.F1,.'2,.F3 Formants = 84.0%)

LPC (%4 ) Feature-Fusion Threshold (1%6)
1.5 2.0 2.5

Range Avg Range Avg Range Avg Range Avg
(84-92) 88.4 (90-95) 93.1 (90-95) 93.5 (91-95) 93.7
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Table 17. Phase 11, Set #1 Feature-Fusion Test Results on Connected Speech
(.F1,.F2 Formants = 28.6%)

LPC (%) Feature-Fusion Threshold (o)
1.5 2.0 2.5

Range Avg Range Avg Range Avg Range Avg
(47-71) 60.1 (43-62) 50.8 (43-60) 51.1 (41-60) 51.1

Table 18. Phase II, Set #1 Feature-Fusion Test Results on Connected Speech
(Fl,F 2,.F3 Formants = 20.4%)

LPC (1) Feature-Fusion Threshold (%)
1.5 2.0 2.5

Range Avg Range I Avg Range Avg Range I Avg
(47-71) 60.1 (44-60) 51.3 (44-56) 48.7 (44-56) 48.9

Table 19. Phase II, Set #1 Feature-Fusion Test Results on Connected Speech with
Fusion Threshold Values of 1.05, 1.1, and 1.2.(.F1,.F2 Formants = 28.6%)

LPC (%) Feature-Fusion Threshold (%)
1.05 1.1 1.2

Range Avg Range Avg Range Avg Range Avg
(47-71) 60.1 (52-71) 60.3 (48-66) 57.5 (44-64) 54.1

Table 20. Phase II, Set #1 Feature-Fusion Test Results on Connected Speech with
Fusion Threshold Values of 1.05, 1.1, and 1.2.(F1,Y'2,.F3 Formants =

20.4%)

LPC (o) Feature-Fusion Threshold (%)
1.05 1.1 1.2

Range Avg Range Avg Range Avg Range Avg
(47-71) 60.1 (52-68) 59.2 (48-64) 56.9 (45-61) 52.7
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Table 21. Phase II, Set #2 Feature-Fusion Test Results on Isolated Speech (F1,.F2
Formants = 88.1%)

LPC (7) Feature-Fusion Threshold (%)
1.5 2.0 2.5

Range Avg Range Avg Range Avg Range Avg
(92-96) 94.1 (94-98) 96.6 (95-98) 97.1 (96-98) 97.2

Table 22. Phase II, Set #2 Feature-Fusion Test Results on Isolated Speech
(Y1,YF2, F3 Formants = 87.9%)

LPC (%) Feature-Fusion Threshold (1)
1.5 2.0 2.5

Range Avg Range I Avg Range Avg Range A vg
(92-96) 94.1 (94-98) 96.4 (95-99) 97.0 (96-99) 97.4

Table 23. Phase II, Set #2 Feature-Fusion Test Results on Connected Speech
(.F1,.F2 Formants = 18.4%)

LPC (6) Feature-Fusion Threshold (%)
1.0= 1.1 1.2

Range Avg Range Avg Range Avg Range A vg
(63-84) 70.8 (61-83) 70.7 (57-83) 67.6 (52-78) 63.0

Table 24. Phase II, Set #2 Feature-Fusion Test Results on Connected Speech
(,r1,.F2,.F3 Formants = 19.4%)

LPC (%) Feature-Fusion Threshold (%)
1.5 2.0 2.5

Range Avg Range I Avg Range Avg Range Avg
(63-84) 70.8 (59-76) 68.5 (51-75) 62.9 (45-72) 57.3
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FEATURE-FUSION: NEGATIVE(#17)

lpc7_wr2_17.trn is: 23
Should be: 17
Best choices are:

MAP had a lpc distance of 438.00 and a distance factor of 1.0000
NEGATIVE had a ipc distance of 455.00 and a distance factor of 1.0388
SEVEN had a lpc distance of 479.00 and a distance factor of 1.0936

correct a 0.000 cum-correct = 0.765
Total wrong lpc digits are 4.00 from a total of 17.00 digits

fmc7_wr2_17.trn is 152 vectors long
fmc7_wr2_17.trn is: 17
Should be: 17
Best choices are:
NEGATIVE had a formant distance of 17690.60 and a distance factor of 1.0000
SIX had a formant distance of 21742.70 and a distance factor of 1.2291
KNOTS had a formant distance of 24919.81 and a distance factor of 1.4086
correct = 1.000 cum-correct = 0.853

Total wrong formant digits are 2.50 from a total of 17.00 digits

The LPC-F1/F2 fusion results for LPC distances less than 1.50 are:
The computed utterance string is: 17

Should be: 17
The # of words less than 1.5 are 36

Best choices are:
NEGATIVE had a formant-lpc distance factor of 1.0388
MAP had a formant-lpc distance factor of 1.5027
SIX had a formant-lpc distance factor of 1.7159
CANCEL had a formant-lpc distance factor of 1.7959
MISSILE had a formant-lpc distance factor of 1.9353
NORTH had a formant-lpc distance factor of 1.9629
ENTER had a formant-lpc distance factor of 1.9914
SEVEN had a formant-lpc distance factor of 2.1517
HEADING had a formant-lpc distance factor of 2.1741
AFT had a formant-lpc distance factor of 2.2610

correct a 1.000 cum-correct = 0.941

Total wrong fusion digits are 1.00 from a total of 17.00 digits
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The LPC-F1/F2 fusion results for LPC distances less than 2.00 are:
The computed utterance string is: 17

Should be: 17
The # of words less than 2.0 are 69

Best choices are:
NEGATIVE had a formant-lpc distance factor of 1.0388
MAP had a formant-lpc distance factor of 1.5027
SIX had a formant-lpc distance factor of 1.7159
CANCEL had a formant-lpc distance factor of 1.7959
MISSILE had a formant-lpc distance factor of 1.9353
NORTH had a formant-lpc distance factor of 1.9629
ENTER had a formant-lpc distance factor of 1.9914
SEVEN had a formant-lpc distance factor of 2.1517
HEADING had a formant-lpc distance factor of 2.1741
AFT had a formant-lpc distance factor of 2.2610

correct = 1.000 cum-correct - 0.941
Total wrong fusion digits are 1.00 from a total of 17.00 digits

The LPC-F1/F2 fusion results for LPC distances less than 2.50 are:
The computed utterance string is: 17

Should be: 17
The * of vords less than 2.5 are 71

Best choices are:
NEGATIVE had a formant-lpc distance factor of 1.0388
MAP had a formant-lpc distance factor of 1.5027
SIX had a formant-lpc distance factor of 1.7159
CANCEL had a formant-lpc distance factor of 1.7959

MISSILE had a formant-lpc distance factor of 1.9363
NORTH had a formant-lpc distance factor of 1.9629
ENTER had a formant-lpc distance factor of 1.9914
SEVEN had a formant-lpc distance factor of 2.1517

HEADING had a formant-lpc distance factor of 2.1741

AFT had a formant-lpc distance factor of 2.2610
correct a 1.000 cum.correct * 0.941

Total wrong fusion digits are 1.00 from a total of 17.00 digits

125



FEATURE-FUSION: FOUR_(#4)

lpc7-wr2_4.trn is: 4
Should be: 4
Best choices are:

FOUR had a lpc distance of 42.25 and a distance factor of 1.0000
FORWARD had a lpc distance of 210.75 and a distance factor of 4.9882
SPACE had a Ipc distance of 231.25 and a distance factor of 5.4734

correct = 1.000 cum-correct a 0.700
Total wrong lpc digits are 1.50 from a total of 5.00 digits

fmc7.wr2_4.trn is 182 vectors long
fmc7Twr2_4.trn is: 60
Should be: 4
Best choices are:
FORWARD had a formant distance of 16329.25 and a distance factor of 1.0000
MARK had a formant distance of 16860.30 and a distance factor of 1.0325
FOUR had a formant distance of 20132.60 and a distance factor of 1.2329

correct = 0.000 cum-correct = 0.600
Total wrong formant digits are 2.00 from a total of 5.00 digits

The LPC-F1/F2 fusion results for LPC distances less than 1.50 are:
The computed utterance string is: 4

Should be: 4
The 8 of words less than 1.5 are 1

Best choices are:
FOUR had a formant-lpc distance factor of 1.2329

correct = 1.000 cum-correct - 0.800
Total wrong fusion digits are 1.00 from a total of 5.00 digits
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The LPC-F1/F2 fusion results for LPC distances less than 2.00 are:
The computed utterance string is: 4

Should be: 4
The # of words less than 2.0 are I

Best choices are:

FOUR had a formant-lpc distance factor of 1.2329
correct = 1.000 cum-correct = 0.800

Total wrong fusion digits are 1.00 from a total of 5.00 digits

The LPC-F1/F2 fusion results for LPC distances less than 2.50 are:
The computed utterance string is: 4

Should be: 4
The # of words less than 2.5 are 1

Best choices are:
FOUR had a formant-lpc distance factor of 1.2329

correct = 1.000 cum-correct = 0.800

Total wrong fusion digits are 1.00 from a total of 5.00 digits
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FEATURE-FUSION: NORTH_(#57)

lpc7_wr3_S7.trn is: 45
Should be: 57

Best choices are:
NOSE had a lpc distance of 221.00 and a distance factor of 1.0000
KNOTS had a lpc distance of 229.50 and a distance factor of 1.0385
MILES had a lpc distance of 266.00 and a distance factor of 1.2036
MARK had a lpc distance of 278.25 and a distance factor of 1.2590
SPACE had a lpc distance of 302.75 and a distance factor of 1.3699
THREAT had a lpc distance of 322.75 and a distance factor of 1.4604
NORTH had a lpc distance of 324.00 and a distance factor of 1.4661

correct = 0.000 cum-correct = 0.906

Total wrong lpc digits are 12.00 from a total of 127.00 digits

fmc7_wr3_57.trn is 84 vectors long
fmc7_wr3_57.trn is: 57
Should be: 57
Best choices are:

NORTH had a formant distance of 5354.80 and a distance factor of 1.0000
MARK had a formant distance of 13771.05 and a distance factor of 2.5717
FAULT had a formant distance of 15717.15 and a distance factor of 2.9352

correct a 1.000 cum-correct a 0.898

Total wrong formant digits are 13.00 from a total of 127.00 digits

The LPC-Fl/F2 fusion results for LPC distances less than 1.50 are:
The computed utterance string is: 67

Should be: 67
The * of words less than 1.5 are 8

Best choices are:
NORTH had a formant-lpc distance factor of 1.4661
MARK had a formant-lpc distance factor of 3.2379
KNOTS had a formant-lpc distance factor of 3.9073
NOSE had a formant-lpc distance factor of 4.1603

THREAT had a formant-lpc distance factor of 5.0613
MILES had a formant-lpc distance factor of 8.9762
MINUS had a formant-lpc distance factor of 15.7931

SPACE had a formant-lpc distance factor of 46.7062
correct a 1.000 cum-correct z 0.949
Total wrong fusion words are 6.50 from a total of 127.00 words
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The LPC-F1/F2 fusion results for LPC distances less than 2.00 are:
The computed utterance string is: 57

Should be: 57

The # of words less than 2.0 are 18

Best choices are:
NORTH had a formant-lpc distance factor of 1.4661
MARK had a formant-lpc distance factor of 3.2379
KNOTS had a formant-lpc distance factor of 3.9073
NOSE had a formant-lpc distance factor of 4.1603
THREAT had a formant-lpc distance factor of 5.0513
FAULT had a formant-lpc distance factor of 5.1697
WEST had a formant-lpc distance factor of 6.6020
POINT had a formant-lpc distance factor of 7.1808
CANCEL had a formant-lpc distance factor of 8.8345
MILES had a formant-lpc distance factor of 8.9762

correct = 1.000 cum-correct = 0.937

Total wrong fusion words are 8.00 from a total of 127.00 words

The LPC-F1/F2 fusion results for LPC distances less than 2.50 are:
The computed utterance string is: 57

Should be: 57
The 8 of words less than 2.5 are 32

Best choices are:
NORTH had a formant-lpc distance factor of 1.4661
MARK had a formant-lpc distance factor of 3.2379
KNOTS had a formant-lpc distance factor of 3.9073
NOSE had a formant-lpc distance factor of 4.1603
THREAT had a formant-lpc distance factor of 5.0613
FAULT had a formant-lpc distance factor of 5.1697
WEST had a formant-lpc distance factor of 6.6020
POINT had a formant-lpc distance factor of 7.1808
MISSILE had a formant-lpc distance factor of 7.7583
SOUTH had a formant-lpc distance factor of 7.9360

correct a 1.000 cum-correct a 0.929

Total wrong fusion words are 9.00 from a total of 127.00 words
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FEATURE-FUSION: CANCEL_(#33)

lpc7_wr2_33.trn is: 33 47

Should be: 33

Best choices are:
SOUTH had a lpc distance of 163.75 and a distance factor of 1.0000
SPACE had a lpc distance of 206.25 and a distance factor of 1.2534

TWO had a lpc distance of 276.50 and a distance factor of 1.6885
ECHO had a lpc distance of 292.50 and a distance factor of 1.7863

Best choices are:
CANCEL had a lpc distance of 42.25 and a distance factor of 1.0000
TAIL had a lpc distance of 218.75 and a distance factor of 5.1775

SEVEN had a lpc distance of 260.50 and a distance factor of 6.1657
HEADING had a lpc distance of 269.50 and a distance factor of 6.3787

correct = 0.500 cum-correct a 0.818

Total wrong lpc digits are 6.00 from a total of 33.00 digits

fmc7_wr2_33.trn is 98 vectors long

fmc7_wr2_33.trn is: 33
Should be: 33
Best choices are:
CANCEL had a formant distance of 15739.49 and a distance factor of 1.0000
FAULT had a formant distance of 19042.55 and a distance factor of 1.2099
ECHO had a formant distance of 19775.15 and a distance factor of 1.2564
correct - 1.000 cum-correct a 0.864

Total wrong formant digits are 4.50 from a total of 33.00 digits

The LPC-F1/F2 fusion results for LPC distances less than 1.50 are:
The computed utterance string is: 33

Should be: 33
The # of words less than 1.5 are I

Best choices are:

CANCEL had a formant-lpc distance factor of 1.0000

correct a 1.000 cu.correct a 0.924
Total wrong fusion digits are 2.50 from a total of 33.00 digits
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The LPC-F1/F2 fusion results for LPC distances less than 2.00 are:
The computed utterance string is: 33

Should be: 33
The * of words less than 2.0 are 1

Best choices are:
CANCEL had a formant-lpc distance factor of 1.0000

correct = 1.000 cum-correct = 0.924
Total wrong fusion digits are 2.50 from a total of 33.00 digits

The LPC-F1/F2 fusion results for LPC distances less than 2.50 are:
The computed utterance string is: 33

Should be: 33
The # of words less than 2.5 are 1

Best choices are:
CANCEL had a formant-lpc distance factor of 1.0000

correct = 1.000 cum-correct = 0.924
Total wrong fusion digits are 2.50 from a total of 33.00 digits
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FEATURE-FUSION: DELTA_(#14)

ipc7_wr2_14.trn is: 22 47
Should be: 14
Best choices are:

SOUTH had a lpc distance of 204.75 and a distance factor of 1.0000
ALPHA had a lpc distance of 227.50 and a distance factor of 1.1111
DELTA had a lpc distance of 268.25 and a distance factor of 1.3101
THOUSAND had a lpc distance of 316.25 and a distance factor of 1.5446

Best choices are:
FUEL had a lpc distance of 127.50 and a distance factor of 1.0000
TAIL had a lpc distance of 150.50 and a distance factor of 1.1804
TWO had a lpc distance of 189.50 and a distance factor of 1.4863
CHANNEL had a lpc distance of 223.00 and a distance factor of 1.7490

correct = -0.500 cum-correct = 0.786

Total wrong lpc digits are 3.00 from a total of 14.00 digits

fmc7_r2.14.trn is 136 vectors long
fmc7_vr2_14.trn is: 14

Should be: 14
Best choices are:

DELTA had a formant distance of 17128.95 and a distance factor of 1.0000
FAULT had a formant distance of 24352.22 and a distance factor of 1.4217
SOUTH had a formant distance of 28102.55 and a distance factor of 1.6406

correct = 1.000 cum-correct a 0.821

Total wrong formant digits are 2.50 from a total of 14.00 digits

The LPC-F1/F2 fusion results for LPC distances less than 1.50 are:
The computed utterance string is: 14

Should be: 14
The # of words less than 1.5 are 3

Best choices are:

DELTA had a formant-lpc distance factor of 4.7317
SOUTH had a formant-lpc distance factor of 5.1986
ALPHA had a formant-lpc distance factor of 7.4578

correct a 1.000 cum-correct a 0.929
Total wrong fusion digits are 1.00 from a total of 14.00 digits
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The LPC-F1/F2 fusion results for LPC distances less than 2.00 are:
The computed utterance string is: 14

Should be: 14
The * of words less than 2.0 are 6

Best choices are:
DELTA had a formant-lpc distance factor of 4.7317
SOUTH had a formant-lpc distance factor of 5. 1986
ALPHA had a formant-lpc distance factor of 7.4578
THOUSAND had a formant-lpc distance factor of 14.2788
FOUR had a formant-lpc distance factor of 14.8429
FIVE had a formant-lpc distance factor of 16.0068

correct = 1.000 cum-correct = 0.929
Total wrong fusion digits are 1.00 from a total of 14.00 digits

The LPC-F1/F2 fusion results for LPC distances less than 2.50 are:
The computed utterance string is: 14

Should be: 14
The S of words less than 2.5 are 8

Best choices are:
DELTA had a formant-lpc distance factor of 4.7317
SOUTH had a formant-lpc distance factor of 5.1986
ALPHA had a formant-lpc distance factor of 7.4578
MARK had a formant-lpc distance factor of 7.5601
THOUSAND had a formant-lpc distance factor of 14.2788
FOUR had a formant-lpc distance factor of 14.8429

FIVE had a formant-lpc distance factor of 16.0068
SPACE had a formant-lpc distance factor of 51.7200

correct - 1.000 cum-correct a 0.929

Total wrong fusion digits are 1.00 from a total of 14.00 digits
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FEATURE-FUSION: THREE(#3)

lpc7_wr3_3.trn is: 52
Should be: 3
Best choices are:

CHARLIE had a ipc distance of 303.50 and a distance factor of 1.0000
STRAFE had a lpc distance of 326.75 and a distance factor of 1.0766
BEARING had a lpc distance of 382.25 and a distance factor of 1.2595
NORTH had a lpc distance of 395.00 and a distance factor of 1.3015
THREE had a lpc distance of 425.25 and a distance factor of 1.4012

correct a 0.000 cum-correct = 0.912
Total wrong lpc digits are 6.50 from a total of 74.00 digits

fmc7Twr3_3.trn is 180 vectors long
fmc7_wr3_3.trn is: 34
Should be: 3
Best choices are:
DEGREES had a formant distance of 31316.80 and a distance factor of 1.0000
EAST had a formant distance of 31753.25 and a distance factor of 1.0139
THREE had a formant distance of 35179.80 and a distance factor of 1.1234
correct = 0.000 cum-correct - 0.912

Total wrong formant digits are 6.50 from a total of 74.00 digits

The LPC-FI/F2 fusion results for LPC distances less than 1.50 are:
The computed utterance string is: 3

Should be: 3
The # of words less than 1.5 are 6

Best choices are:
THREE had a formant-lpc distance factor of 1.5740
STRAFE had a formant-lpc distance factor of 1.9274
NORTH had a formant-lpc distance factor of 2.0503
BEARING had a formant-lpc distance factor of 2.2064
CHARLIE had a formant-lpc distance factor of 2.5236
ARM had a formant-lpc distance factor of 3.7863

correct a 1.000 cum-correct - 0.946
Total wrong fusion words are 4.00 from a total of 74.00 words
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The LPC-F1/F2 fusion results for LPC distances less than 2.00 are:
The computed utterance string is: 3

Should be: 3
The S of words less than 2.0 are 25

Best choices are:
THREE had a formant-lpc distance factor of 1.5740
EIGHT had a formant-lpc distance factor of 1.7521
STRAFE had a formant-lpc distance factor of 1.9274
NORTH had a formant-lpc distance factor of 2.0503
BEARING had a formant-lpc distance factor of 2.2064
CHARLIE had a formant-lpc distance factor of 2.5236
MARK had a formant-lpc distance factor of 2.7673
HEADING had a formant-lpc distance factor of 2.8473
FREQUENCY had a formant-lpc distance factor of 2.8985
NINE had a formant-lpc distance factor of 3.0892

correct = 1.000 cum-correct = 0.946

Total wrong fusion words are 4.00 from a total of 74.00 words

The LPC-F1/F2 fusion results for LPC distances less than 2.50 are:
The computed utterance string is: 3

Should be: 3

The S of words less than 2.5 are 39

Best choices are:
THREE had a formant-lpc distance factor of 1.5740
EIGHT had a formant-lpc distance factor of 1.7521
STRAFE had a formant-lpc distance factor of 1.9274
NORTH had a formant-lpc distance factor of 2.0503
DEGREES had a formant-lpc distance factor of 2.0840

BEARING had a formant-lpc distance factor of 2.2064
CHARLIE had a formant-lpc distance factor of 2.5236

MARK had a formant-lpc distance factor of 2.7673
HEADING had a formant-lpc distance factor of 2.8473
FREQUENCY had a formant-lpc distance factor of 2.8985

correct a 1.000 cum-correct a 0.932
Total wrong fusion words are 6.00 from a total of 74.00 words
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FEATURE-FUSION: THREAT(#40)

lpc7_wr4_40.trn is: 46
Should be: 40
Best choices are:

SEARCH had a lpc distance of 236.25 and a distance factor of 1.0000
THREAT had a lpc distance of 264.00 and a distance factor of 1.1175
KNOTS had a lpc distance of 304.50 and a distance factor of 1.2889

correct = 0.000 cum-correct = 0.900
Total wrong Ipc digits are 18.00 from a total of 180.00 digits

fmc7_wr4_40.trn is 72 vectors long
fmc7Twr4-40.trn is: 50
Should be: 40

Best choices are:
WEST had a formant distance of 9493.40 and a distance factor of 1.0000
THREAT had a formant distance of 10616.20 and a distance factor of 1.1183
WEAPON had a formant distance of 11575.40 and a distance factor of 1.2193
correct = 0.000 cum.correct a 0.875

Total wrong formant digits are 22.50 from a total of 180.00 digits

The LPC-F1/F2 fusion results for LPC distances less than 1.50 are:
The computed utterance string is: 40

Should be: 40
The 8 of words less than 1.5 are 8

Best choices are:
THREAT had a formant-lpc distance factor of 1.2496
KN OTS had a formant-lpc distance factor of 1.9531

FAULT had a formant-lpc distance factor of 2.8167
SOUTH had a formant-lpc distance factor of 2.8356
CANCEL had a foraant-lpc distance factor of 3.7427

TARGET had a formant-lpc distance factor of 4.4386
STRAFE had a formant-lpc distance factor of 4.9690
SEARCH had a formant-lpc distance factor of 7.1753

correct a 1.000 cum-correct a 0.947
Total wrong fusion words are 9.50 from a total of 180.00 words
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The LPC-F1/F2 fusion results for LPC distances less than 2.00 are:
The computed utterance string is: 40

Should be: 40
The 8 of words less than 2.0 are 22

Best choices are:
THREAT had a formant-lpc distance factor of 1.2496
WEST had a formant-lpc distance factor of 1.6698
KNOTS had a formant-lpc distance factor of 1.9531
SELECT had a formant-lpc distance factor of 2.2832
SIX had a formant-lpc distance factor of 2.5909
FAULT had a formant-lpc distance factor of 2.8167
SOUTH had a form& t-lpc distance factor of 2.8356
MARK had a formant-lpc distance factor of 3.4952
CANCEL had a formant-lpc distance factor of 3.7427
TARGET had a formant-lpc distance factor of 4.4386

correct = 1.000 cum-.correct = 0.939
Total wrong fusion words are 11.00 from a total of 180.00 words

The LPC-F1/F2 fusion results for LPC distances less than 2.50 are:
The computed utterance string is: 40

Should be: 40
The 8 of words less than 2.5 are 46

Best choices are:

THREAT had a formant-lpc distance factor of 1.2496
WEST had a formant-lpc distance factor of 1.6698
KNOTS had a formant-lpc distance factor of 1.9531
SELECT had a formant-lpc distance factor of 2.2832
SIX had a formant-lpc distance factor of 2.5909
FAULT had a formant-lpc distance factor of 2.8167

SOUTH had a formant-lpc distance factor of 2.8356

WEAPON had a formant-lpc distance factor of 2.8760

MARK had a formant-lpc distance factor of 3.4952

CANCEL had a formant-lpc distance factor of 3.7427

correct a 1.000 cum-correct = 0.928

Total wrong fusion words are 13.00 from a total of 180.00 words
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Conclusion

This chapter presented all the tests used to ascertain the performance of

the of the basic speech recognition system in Phase I and the improved system

developed and tested in Phase II. The feature-fusion section provided excellent

results for isolated speech. Formant recognition accuracies of 20% precluded the

use of feature-fusion with connected speech.

The last chapter will summarize the results of both Phase I and Phase II

testing, will discuss the weak areas in the system, and will suggest ways to improve

overall accuracy.
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VL Conclusions and Recomendations

Introduction

This chapter concludes this thesis effort by summarizing the design and per-

formance characteristics of the speech recognition system. Both strengths and

weaknesses of the system are discussed. Suggested areas for further research are

delineated.

Conclusion

This thesis effort was computationally intensive. An extensive body of knowl-

edge was obtained on the response of a Kohonen neural network to speech input.

This knowledge was used in the design of the speech recognition system which

included a feature-fusion and rule-based section. The system vocabulary was ex-

panded from 10 to 70 words; the recognition system now supports the F-16 vocab-

ulary.

The feature-fusion section was able to combine the essential attributes present

within each feature. The average isolated-word recognition accuracy was 97.2% on

eleven Kohonen networks trained with LPC and Fl,.F2 formants when feature-

fusion was utilized. The average recognition accuracy using Fl,.F2,.F3 formants

was 97.4% on these same eleven Kohonen neural networks. The best individual

recognition accuracy was 98.3% using Fl, .F2 formants, and 98.6% using .l, F2, .F3

formants. Poor formant recognition accuracy precluded use of the feature-fusion

routine with connected speech. The average LPC connected-word recognition ac-

curacy was 70.8% on eleven networks. The best LPC recognition accuracy obtained

was 83.7%. A discussion of the recognition system follows.

Preprocessor The method used to process the formants allowed for excellent

feature-fusion recognition accuracy on isolated speech. The effects of coarticula-
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tion in connected speech corrupted the formant data representations. The result

produced formant recognition accuracies around 20%. The basic method used to

extract formant information from the SPIRE formant files needs improvement.

The energy gate usually was able to reliably signal the regions in the signal where

the formant routine had difficulty keeping track of vocal track harmonics. Sections

of the signal that contained valid formant information were sometimes not included

because the energy level was below -75 dB. All valid formant regions need to be

included.

Nine of the 350 words in the system were replaced in the last part of Phase II

testing using the range of values in the raw formant data file. Any improvements

to a system should be considered valid only if they are applicable operationally.

Evaluating raw formant data files could be easily automated.

Kohonen Neural Network The extensive ailount of research on the Kohonen

network in this thesis confirmed the network's special ability to classify human

sounds. The network achieved a 97% recognition rate when trained on only half

of the 70 word F-16 vocabulary. This finding supports the idea that only a subset

of a recognition vocabulary will be required to train an operational system.

A Kohonen-Dynamic Programming three-dimensional surface was generated

for two of the five gain reduction methods tested in this thesis effort. Analysis of

the surface shows that a Kohonen neural network segments its surface into discrete

sound regions quickly. Test results from Phase II did not show any significant

improvement in recognition accuracy on Kohonen networks trained from 4,000

iterations to 90,000 iterations. The flat recognition response is especially true after

fusion of speech features. In general, recognition accuracy without fusion tended

to decrease as iteration cycle times approach 100,000. Local maximum recognition

rates are possible as shown by the rough Kohonen-Dynamic Programming surface.

The Exponential gain reduction method proved superior to the other gain
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reduction methods tested in this thesis. The Kohonen-Dynamic Programming

three-dimensional surface produced with Exponential gain reduction is much higher

overall (ie. higher recognition accuracy) than the Piecewise-Linear gain reduction

method. Exponential gain reduction also segmented the sound groups more quickly

on the Kohonen surface giving higher recognition accuracies with shorter training

times.

The use of conscience allowed a Kohonen network to train faster as observed

on the Kohonen-Dynamic Programming surface graphs. Tests showed that con-

science does affect the recognition accuracy at least up to a conscience factor value

of 20. The optimum conscience factor range observed was from five to seven for

speech input when Exponential gain reduction was employed.

Dynamic Programming Sound types are grouped into distinct areas on the

Kohonen surface providing two types of information to a word classifier. The net-

work provides both relative and absolute coordinate information on word sounds.

Dynamic programming operates by comparing the relative relationships between

words in the Kohonen surface. Dynamic programming does not use the absolute

coordinate information. Even without this information, dynamic programming

provided excellent recognition accuracies with the system developed in this thesis.

Feature-Fusion Feature-fusion performed better than expected. Isolated-

word recognition accuracies were above 90% on all tests. Phase II, Set #2 had

average recognition accuracies above 95%. As noted earlier, feature-fusion was not

usable on connected speech because of low average formant input accuracies.

All fusion thresholds gave similar results for isolated speech. Overall, a fusion

threshold of 2.5 is recommended for isolated speech. The optimum fusion threshold

for connected speech cannot be determined until the formant preprocessing method

is improved. A lower value than 2.5 used for isolated speech will probably be

required due to the effects of coarticulation.
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Feature-fusion of three formants instead of just he first two formants did

not significantly improve the recognition accuracy. Processing only the first two

formantb appears adequate for speech recognition and is recommended in future

research.

Rule-Based System The rule-based section, which supports the feature-fusion

routine, was not fully tested because of the poor formant accuracy on connected

speech. The part of the rule-based section that supports isolated speech performed

well as noted by the test results.

Recomendations

The following items are suggested areas for further research.

" Evaluate the method used to process raw formants. Even a modest im-

provement could potentially increase recognition performance significantly.

In valid formant regions, formant tracks do not make abrupt changes in fre-

quency. A different formant processing scheme could consider this formant

characteristic and process the data files directly without using other features.

" Take advantage of the absolute coordinate information available from a Ko-

honen network. The word sounds or phonemes may need to be mapped on

the Kohonen surface. Caution is advised since there is not total agreement

on the number of actual phonemes in English. Also, most phonemes cannot

be recorded easily in pure form. The vowels are an exception. An attempt

should be made to map the vowel sounds on the Kohonen surface.

* Add a third feature to the recognition system. Data processed by a Fast

Hartley Transform or Cepstral analysis may provide information to the fusion

process that is not present in other features. Additional features, however,

require additional processing.
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* Improve the rule-based system. The rule-based system was designed to match

unequal word segments. The system represents a shell for an expanded rule-

based system based on phonetic, vocabulary, and syntax rules within a lan-

guage.

Final Remarki

An attempt was made to expand the horizon in speech research. Usually

speech systems are one-dimensional in which one feature or representation of speech

is processed using a specific design methodology. The feature and design method-

ology have undergone significant revision through the years in an effort to improve

performance.

Clearly, the human perception system is multi-dimensional; humans process

more information than just the sound of a word during recognition. Context,

inflection, facial expression, and rules of the language are a few of the sensory

inputs used by the human perception system. Any speech recognition system that

mimics the human perception system will need to be multi-dimensional. This thesis

effort represents a step in that direction.
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Appendix A. Computer Source Code

This section includes source code listings for a few of the programs developed

in this thesis effort.
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Continued from Block 19: Abstract

Usually speech systems are one-dimensional. One feature or representation

of speech is processed using a specific design methodology. In contrast, the human

perception system is multi-dimensional; humans process more than just the sound

of the word. Any speech recognition system that mimics human speech perception

will need to be multi-dimensional. This methodology formed the basis for the

design approach used in this research effort. Linear Predictive Coefficients (LPC)

and formants were used as distinct and independent inputs into a recognition

system consisting of a Kohonen neural network and a dynamic programming word

classifier. A feature-fusion section and rule-based system were used to integrate

the two input feature sets into one output result.

The first half of this research effort involved extensive testing of the Kohonen

network. Using a speech input signal, different Kohonen gain reduction methods,

initial gain values, and conscience values were tested for various iteration times

in an effort to quantify the response and capabilities of the Kohonen network.

Three-dimensional Kohonen-Dynamic Programming surfaces were developed that

graphically showed the effects of gain, conscience, and " eration time on the speech

recognition response of a Kohonen neural network. A new standard iteration time

called a multiple was used during training of the Kohonen networks.

The results of the basic research on the Kohonen network produced an op-

timized Kohonen configuration that was used in the multiple-feature recognition

system. A 70-word vocabulary of F-16 cockpit commands were used to evaluate

the new feature-fusion method. The feat ure-fusion section performed well and was

able to correctly classify words even when each individual input feature gave an

incorrect answer


