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SUMMARY

Aircraft spinning is an important area of design for general aviation
and military aircraft, and has been so, since the early days of aviation. In
many of the major aeronautical laboratories in the world, aircraft spinning has
been the subject of intensive period- of research. However, the resulting
design criteria are still only adequate for predicting gross trends in aircraft
spin behaviour. To enable flight testing to proceed with confidence and to
minimise modifications during flight development most major aircraft
development programmes include extensive scale-model spin testing. In this
paper, the development of these techniques and their application for spin
prediction will be discussed. In current military aircraft stability
augmentation systems add further considerations for high angle-of-attack and
spin behaviour. These and future considerations of thrust vectoring for
aircraft control at high angles-of-attack are outside the scope of this paper.
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NOTATION

b Wing span

c Wing mean aerodynamic chord

g Acceleration due to gravity

m Aircraft mass

p Body-axes roll rate

q Body-axes pitch rate

r Body-axes yaw rate

CD Drag coefficient

CL Lift coefficient

CR Total force coefficient vc L2 + 2

C1  Rolling moment coefficient, Rolling Moment / (1/2pV2 Swb)
positive clockwise looking forward

Cm Pitching moment coefficient, Pitching moment / (1/2pV2 Swc)
positive nose up

Cn Yawing moment coefficient, Yawing Moment / (1/2pV 2S b)
positive nose to the right

Ixy,IZ  Moments of inertia about the X, Y and Z body axes, respectively ,

RS  Spin radius measured from spin axis to aircraft center of gravity

S Wing area oesson For Ole

V Free-stream velocity ZIS RA&I
DTIO TAB ti

Angle of attack, deg. Unannounoed D
JuStifleatlon

Angle of slideslip, deg.

6a  Aileron deflection Ditrlautan/

6 Elevator deflection AvaJlabliLty Codes
e - va11 and/or

6 Rudder deflection ist Speoial

p Air density I

0 Inclination of flight path to the vertical

Angular velocity about spin axis, rad/sec, positive for clockwise rotation
when looking into the relative wind.

cb/2V Spin coefficient, same sense as o

-ARM.



1. INTRODUCTION

Aircraft spinning is an important area of design for general aviation and
military aircraft, and has been so, since the early days of aviation. In many of the
major aeronautical laboratories in the world, aircraft spinning has been the subject
of intensive periods of research. However, the resulting design criteria are still only
adequate for predicting gross trends in aircraft spin behaviour. To enable flight
testing to proceed with confidence and to minimise modifications during flight
development most major aircraft development programmes include extensive scale-
model spin testing. In this paper, the development of these techniques and their
application for spin prediction will be discussed. In current military aircraft stability
augmentation systems add further considerations for high angle-of-attack and spin
behaviour. These and future considerations of thrust vectoring for aircraft control
at high angles-of-attack are outside the scope of this paper.

Following a discussion of the nature of the spin, a summary of the
historical development of spin research is presented. The methods currently
available to the aircraft designer for spin prediction are discussed and some recent
research at the Aeronautical Research Laboratories (ARL) in the modelling of the
flight dynamics of the aircraft spin will be described.

2. THE NATURE OF THE SPIN

2.1 Spin Phases

The spin manoeuvre has traditionally been divided into four stages (Figure
1): Spin entry, incipient spin, steady spin, and spin recovery. Spin entry from
unstalled flight may be deliberate - usually as a training rather than an operational
manoeuvre - or inadvertent - occurring usually during low speed manoeuvres.

A deliberate spin is initiated by slowing the aircraft towards the stall and
then at the point of stall generating a rate of yaw by applying full rudder deflection.
The yawing motion promotes stalling and a large loss of lift due to increased flow
incidence on the rearward travelling wing, while maintaining attached flow due to
reduced flow incidence on the forward travelling wing. The resulting differential lift
produces a rolling moment in the direction of the rearward travelling wing, and
initiates the spin manoeuvre with a large rate of roll.

Aircraft with high 'spin resistance' generally require vigorous and precise
control movements to initiate the spin. In contrast, inadvertent 'spin entry' can
result with aircraft which are susceptible to spinning either during steep turns at low
speeds, or during the low speed portions of aerobatic manoeuvres such as at the top
of a loop or barrel roll.
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The 'incipient spin' is the transition between 'spin entry' and the 'steady
spin'. Recovery from an inadvertent spin is most effectively achieved in this phase,
so it is important for pilots to be able to recognise the manoeuvre and to apply
appropriate recovery action. The incipient phase is considered to end when the
airspeed has become steady and a vertical trajectory has been reached. For
practical purposes, the 'steady spin' is reasonably well established after two to three
turns.

During the 'incipient spin' the aircraft flight path changes from horizontal
to vertical, the angle-of-attack increases to well beyond the stall value, and the
rotation in yaw increases to match or frequently exceed that in roll.

In the 'steady spin' or 'equilibrium spin' the aircraft describes a steep spiral
motion about a vertical axis, in which spin rate, angle-of-attack, sideslip angle and
vertical velocity are constant. In many cases the motion does not reach a steady
equilibrium state, but may exhibit an oscillation about the nominal equilibrium point,
with a frequency higher than the spin rate.

"Spin Recovery" for conventional low-speed aircraft is achieved primarily
by the use of full rudder deflection to arrest the large rate of yaw. A standard
technique taught during flight training for spin recovery is to centralise the ailerons,
in conjunction with application of full recovery rudder and then to move the elevator
control forward to regain flying speed.

Quite large variations on this technique may occur for aircraft of different
inertia distribution and aerodynamic design. For modern combat aircraft in which
the pitch inertia is much greater than the roll inertia application of in-spin aileron
and aft elevator control results in an inertia yawing moment which favours
recovery. Conversely for wing-heavy aircraft in which the roll inertia exceeds the
pitch inertia the use of out-spin aileron favours recovery.

2.2 THE STEADY SPIN

The 'steady spin' phase is of particular importance since it represents a
stable equilibrium flight condition from which recovery may be impossible. Because
the motion is steady, it is also more tractable to analysis than the other phases.

Some aircraft exhibit more than one 'steady spin' condition or mode, in
which case the sequence of control movements applied during the entry and incipient
phases will determine which of the modes is reached. However, the characteristics,
of the mode depend only on the aircraft aerodynamic and inertia characteristics and
on the control settings. There is also a dependency on air density and hence altitude,
but this will not be discussed here.

From stability considerations, the 'steady spin' may be referred to as a
point of stable equilibrium similar to a trimmed condition in level flight. Figure 2
shows this condition and also another stable equilibrium, the 'deep stall'.
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All these cases are in equilibrium since in each there is a balance of forces
and moments about all axes; the steady spin is the most complex in that the balance
occurs in the presence of large angular rotations about the roll and yaw axes.

The key to spin recovery is to design the aircraft with sufficient control
power to unlock this stable co'idition.

The dynamics of the 'steady spin' were understood and described in detail
many years ago. A comprehensive description is given by Gates and Bryant in
Reference 1 in 1926 (also bibliography 1920-1929/8) As with other branches of
flight dynamics, the most difficult problems associated with an analysis of the spin
arise not from the system dynamics, but from the complexity of the aerodynamic
forces. The more important aerodynamic forces acting in the steady spin are briefly
described below.

2.3 THE BALANCE OF FORCES AND MOMENTS

Figure 3 from Ref. 1 shows that the balance of forces in a 'steady spin' is
such that the drag is equal to the weight and the lift is equal to the centrifugal
force. In the steady spin, the spin radius is only of the order of a few feet, the
resultant force is almost normal to the wing and acts approximately at t,.e wing
semi-chord, and the normal acceleration is low.

In practice the actual balance is slightly more complex in that aerodynamic
sideforces exist such that the lateral axis is not necessarily horizontal but may be
tilted . The amount of tilt is directly related to the spin helix angle and to the angle
of sideslip adopted in the spin. The sideslip is determined primarily by the rolling
moment characteristics as will be explained later.

To illustrate the balance of moments in a 'steady spin' the primary
aerodynamic contributions will be discussed. Rotary-balance data measured on a low
- speed basic training aircraft with standard layout will be used to illustrate the
discussion. The moments are referred to aircraft body axes. Because of the large
variation in onset flows over a spinning aircraft, the choice of axis system has little
significance. The less important aerodynamic contributions are neglected in this
discussion but are described in detail in Ref.l.

Equilibrium of pitching moments is reached when the nose-down
aerodynamic moment is equal to the large nose-up inertia moments, as shown in
figure 4. The aerodynamic contributions are from the wing normal force which, for a
stalled wing, acts at the wing semi-chord and from the tailplane normal force. The
equations of motion for a steady spin show that the inertia moment is proportional
to the square of spin-rate and reaches a maximum at 45 degrees angle-of-attack.
The balance of pitching moments at low angles-of-attack occurs at low spin rates
and at high angles-of-attack with high spin rates. This is the reason for the typical
characteristics of 'slow steep' spins and 'fast flat' spins. Movement of the elevator
adds an increment to the aerodynamic curve as shown in Fig.5. but normally, this is
not of sufficient magnitude to unlock the balance of pitching moments.
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Of prime importance for roll equilibrium is the balance of the aerodynamic
contributions due to roll rate and due to sideslip. The inertia moment may be
positive or negative depending on wing tilt angle - having a zero value for zero tilt.
Figure 6 shows the typical variation of aerodynamic rolling moments with spin rate
and sideslip for a given angle-of-attack. Note that, for a significant change in spin-
rate, the rolling moments can be balanced by a modest change in sideslip angle.
Movement of the aileron adds an increment to the rolling moment curve but the
magnitude is normally insufficient to unlock the balance of rolling moments. Aileron
deflection will result in a change in the equilibrium sideslip angle and may contribute
a yawing moment, both of which will affect the spin and spin recovery.

The two largest aerodynamic yawing moment contributions for the low-
speed aircraft of this example are due to spin-rate and rudder deflection, as shown in
Figure 7; by comparison the contribution due to sideslip is small, and, for the case of
zero wing tilt, the inertia contribution is zero. Since the rudder can alter the yawing
moment curve appreciably, the key to unlocking the balance of moments in a spin for
the example aircraft is therefore, to generate a large yawing moment with the
rudder.

In order to highlight the major aerodynamic contributions, the wing tilt has
been taken to be zero. The equations of motion for a steady spin show that in this
case the rolling and yawing inertia contributions will be zero. Tilt angles -usually
leading wing down - of five degrees can occur in a steady spin. Consequently the
rolling and yawing moment balance will be modified and so, in any detailed analysis,
the inertia contribution must be included.

Consideration of the balance of moments has shown for the low-speed basic
training aircraft example that the spin rate and spin angle-of-attack are closely
related and are determined essentially by the balance of pitching moments; that the
sideslip is determined by the balance of rolling moments, and that although all three
control surfaces may be effective in changing the balance of moments- and hence
spin conditions- the rudder is the most effective means of unlocking this balance.
For aircraft of substantially different inertia loading and layout this emphasis may
change.

2.4 INCIPIENT SPIN AND SPIN RECOVERY

These two phases are characterised by the transition between two
extremely different flight conditions. Upon entry the aircraft has low angular
velocity, mode7 '. linear velocity, constant potential energy, and is flying at low
angles-of-attack. The transition through to the 'steady spin' involves an initial
increase in roll rate followed by an increase in yaw rate giving a large resultant
angular rotation; a small change in linear velocity and a constant reduction in
potential energy, with the angle-of-attack increasing to large values.

The aerodynamic changes are equally dramatic and involve changes from
attached to separated flow over large areas of the aircraft surfaces with consequent
unsteady flow behaviour. During 'spin recovery' these changes are reversed with
additional transients occurring due to the dissipation of angular momentum.
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Although some progress has been made towards understanding the
aerodynamic behaviour occurring during the spin, reliable methods for spin prediction
do not yet exist. Even the methods for the prediction of steady spin behaviour only
yield gross trends and so scale model testing is generally carried out where possible,
in order to reduce project risks and to provide a basis for the flight development
phase.

A discussion of the methods currently available for aircraft spin prediction
including scale model testing is presented in Section 4.

3. HISTORICAL DEVELOPMENT OF SPIN RESEARCH

The following sum mary is based, in the main, on research publications from
the U.K. and U.S.A. and in consequence may not give due recognition to
developments in other countries. The summary emphasises the continuous efforts in
spin research since the early days of flight and highlights the major developments in
research methods. However space does not permit a discussion of the results and
design information produced by those methods.

One of the earliest written reports on the spin is contained in the August
31st edition of Flight Magazine for 1912. The article refers to a manoeuvre carried
out by Lieutenant Parke of the Royal Navy, and witnessed by Mr Berriman, the
editor of "FLIGHT" and Mr Short of the Royal Aircraft Factory. The manoeuvre was
referred to as Parke's dive.

Following this event only two spin accidents were reported prior to the
First World War.

It is generally agreed that the first pilot to demonstrate a method of
recovery from the spin was Harry G. Hawker, the son of a blacksmith from
Moorabbin in Victoria, Australia. Sopwith, Hawker, and Sigrist launched the Sopwith
Aviation Company at Brooklar ' in the U.K. in 1912.

The earliest scientific measurements were carried out by Lindemann,
Glauert and Harris at Farnborough and were reported in the British Aeronautical
Research Committee publication series 'Reports and Memoranda' R&M 411 dated
March 1918. (Bibliography 1915-1919/1). F.A. Lindemann later became Professor of
Experimental Philosophy at Oxford University, then during World War II was
scientific advisor to Winston Churchill. Lindemann noted that "the stresses are not
dangerous in a proper spin" and also "Analysis and Ey-'erimental results indicate that
this is a stable form of motion".

Leonard Bairstow, whose text book' Applied Aerodynamics' was published in
1919, suggested that "the manoeuvre known as spinning might be imitated in a wind
channel by mounting an aerofoil so that it may be free to rotate about a horizontal
axis". This technique was implemented by Ernest Relf and the reuluts were. reported
together with a comparison with estimates using strip theory in R & M 618
(bibliography 1920-1929/3). A summary of the status of spin knowledge was made by
the Stability and Control Panel in 'R&M 1000' in 1925, (bibliography 1920-1929/4).
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In 1926 Professor B.M. Jones and Miss A. Trevelyan published a 'R&M' 999,
(Qbibliography 1920-1929/5) entitled 'Step by step calculations upon the asymmetric
movements of stalled aeroplanes'. The text reads "the detailed study of the few
seconds during which an aeroplane descends from steady flight to a spin has been
made in one instance and employed a skilled calculator for many months". We can
guess that the calculations were carried out at about 0.1 Floating Point Operations
per Second (FLOPS), which may be compared with current scientific computer speeds
of 6 Mega FLOPS. A further indication of the tedious procedure is noted in the
comment "At about midway through the calculation (about I second) a further series
of wind tunnel tests had been completed and better aerodynamic data became
available".

In October 1926 Gates and Bryant published a comprehensive survey on the
'Spinning of Aeroplanes' in which the equations required for calculating equilibrium
spins were presented. (bibliography 1920-1929/8) also (Reference 1)

A major development in spin research was carried out by Irving and Batson
at the N.P.L. between 1925 and 1935. They developed and used a continuous rotation
balance in the 7 ft. No. 2 tunnel. These test provided aerodynamic coefficient data
and a good insight into aircraft spinning.

A.V. Stephens, later to become the first Professor of Aeronautics at Sydney
University, was involved during this period in full-scale and scale-model flight
testing, at R.A.E. Farnborough.

Stephens early model experiments involved launching dynamically scaled
models from a height of 80 ft in the Balloon Sheds at Farnborough. Later under the
direction of McKinnon Wood he was concerned with the development of the 12 ft dia.
vertical wind tunnel at Farnborough for testing dynamic models. The tunnel began
operation in 1932 and a large number of configurations were tested in the facility.

In 1935 a third continuous potation balance was commissioned at the
N.P.L. However a somewhat disconsolate note appeared in the associated report. It
states that "The Spinning Panel advised that theoretical work, could with advantage,
be postponed in favour of the generation of more ad-hoc design data". Only one
major study using the rotary balance appears to have been carried out at N.P.L.
following this report.

At the Langley Research Center in the U.S.A. a simple spinning balance
was fitted to a 5 ft vertical tunnel in 1931 and tests were carried out on wing auto-
rotation during the 1930's. A 15 ft diameter vertical wind tunnel for testing dynamic
models was commissioned in 1936 and the earliest results reported in 1939. This
tunnel was replaced in 1941 by the current 20 ft diameter vertical spin tunnel.

The introduction of the dynamic model technique using vertical wind-
tunnels permitted the testing of a wide range of configurations. Unfortunately it led
to the termination of the more basic investigations possible with the rotating
balance. The dynamic model technique provided data for the developmenL of
empirical design criteria upon which preliminary design estimates can be made.
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Beginning in the mid 1970's a number of rotating balances were
commissioned throughout the world to investigate aircraft high angle-of-attack and
spin behaviour. These developments have led to a greater understanding of the
aerodynamic behaviour of aircraft in these flight regimes. A brief discussion of
these facilities and of current spin prediction techniques follows.

4. SPIN DESIGN AND PREDICTION TECHNIQUES

Figure 8, taken from bibliography 1980-1983/i1 suininarises the
recommended approach to the prediction of aircraft stall and spin characteristics.
The figure shows that stall and spin behaviour are still very important design
considerations in general aviation and military aircraft and indicates that a large and
varied amount of testing is required to predict, with confidence, full scale aircraft
behaviour.

Figure 9 sum marises the major spin prediction techniques currently
available, their range of application, and the location of some of the major facilities.

Empirical design criteria for spin recovery would generally be augmented
by more detailed information if availqble, on similar configurations, to improve the
level of reliability. Although its application must be strictly qualified it still remains
the only technique which does not require experimental test data.

As discussed in Section 3, the dynamic model and rotating model techniques
were developed in the U.K. and USA during the 1920's and 30's. These are the
methods most commonly used today for aircraft development programmes and were
selected for use on the Australian Basic Trainer development program me.

Only two facilities are available in the Western World for dynamic spin
model testing. These are located at the NASA Langley Research Center and at IMF
Lille in France. The technique involves launching a dynamically scaled model into a
vertical airstream and then recording on video the steady spin behaviour and spin
recovery following actuation of controls. Analysis of the recording gives rate of
spin, angle-of-attack and sideslip and spin recovery times for the given combination
of pro-spin and spin-recovery control settings.

Rotary balances have been commissioned at a number of wind-tunnel
facilities as indicated in Figure 9. At the Langley Research Facility and at !MF Lille
the balances are both installed in the vertical spin tunnels and both dynamic-model
and rotary balance programmes are carried out in the same facility. At other
organisations the balances have been installed in conventional horizontal wind-
tunnels. These balances have been used mainly for studying the high angle-of-attack
departure problems of combat aircraft.

An unsuccessful attempt was made in 1950 to resurrect the rotary-balance
technique, but the method did not become viable until the late 1970's when
developments in instrumentation, data logging and computer analysis provided the
required data rate and accuracy.
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The capability to calculate 'steady spin' conditions from rotary balance
data was revived by Dr. Bazzochi of Aeromachi in 1975, (bibliography 1970-1979/15)
and by Tischler and Barlow in 1980 (bibliography 1980-1989/3), although the general
procedure had been foreshadowed by Gates and Bryant in 1926 and had been
employed by Bamber, Zimmermpn and House at the La..,cley Research Center in
1935. This latter formulation was programmed by Bihrle in 1980 at the Langley
facility, (bibliography 1980-83/15)

The merits of rotary balance testing for spin prediction are: Firstly that it
provides aerodynamic force and moment data in coefficient form. Secondly, the
model can be tested with components removed enabling their direct and interference
effects to be investigated. Thirdly, the effects of modifications on the forces and
moments can be determined. Finally, once the aerodynamic information is available
the steady spin conditions for a wide range of centre of gravity, inertia, and altitude
changes can be calculated Lsing the steady spin equations of motion. Although the
rotary balance technique does not provide all the information required to predict spin
recovery, an indication of recovery control effectiveness can be determined and this,
coupled with the insight afforded by the method, enables estimates of the recovery
capability to be made.

The remaining four techniques listed in Figure 9 involve free-flight testing
of scale-models. The drop-model technique using approximately 1/4 scale-models
has been employed recently in the U.K. and U.S.A. for investigating the high angle-
of-attack behaviour of combat aircraft, and has the potential to cover all phases of
the spin. However, because of cost and substantial manpower requirements it only
becomes viable for major projects.

While spin design requirements are extremely important for many aircraft,
it is clear from this brief survey that spin testing facilities and spin research
activities are confined to a small number of aeronautical establishments.

5. RECENT RESEARCH AT ARL

In 1984 ARL initiated a research task aimed at developing a mathematical
model of the spin behaviour of a basic training aircraft design. This task is embraced
within longer term aims of studying the dynamic behaviour of combat aircraft at
high angles-of-attack.

Early computer models of spin behaviour were extensions of the
conventional flight dynamic models which used static and oscillatory wind-tunnel
data. A common problem in these models was their inability to reach steady spin
conditions.

In 1954 an alternative formulation of the flight dynamic model was
proposed by Scher (bibliography 1950-59)/13) which allowed for the inclusion of
rotary-balance data. Since the rotary-balance data is measured during steady
rotations representing steady spinning conditions the model gives more accurate
predictions of the steady spin. As with a conventional model, this alternative
formulation requires data for the forces due to oscillations about the steady
conditions. However experimental methods for determining these oscillatory
contributions in the presence of steady rotations are still being developed.
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Because of this deficiency and the poor quality of the initial rotary balance
data the alternative formulation has not been widely used.

In 1983 a comprehensive set of rotary balance data was measured on a
basic training aircraft design in the NASA Langley Spin Research Facility in support
of an Australian aircraft development programme. These data are being used in a
flight dynamic model for the simulation of aircraft spinning.

In addition to the steady rotation data, information is also required on the
aerodynamic forces occurring during the non-steady spin-entry and spin-recovery
manoeuvres. Wind-tunnel methods for the measurement of these forces are not yet
available and so simple aerodynamic estimation techniques have been investigated.

Figure 10 shows the span-wise wing-loading for a straight wing under
steady rolling conditions. The results have been calculated using a simple bound
vortex representation of lift and a discrete line-vortex representation of the wing-
wake. Bound vortex strength is obtained from experimentally determined two-
dimensional lift data and this together with the corresponding drag information
enables the spanwise load distribution to be calculated. The model can be used to
determine the variation in aerodynamic coefficients due to small disturbance about
the steady rotation condition.

To provide additional insight into the nature of the flow at the tail of an
aircraft during spinning a joint ARL/NASA wind-tunnel program has been conducted
in the NASA spin test facility at Langley Research Center to determine the pressure
distribution on the tail, fin and fuselage of a model during steady rotation.

An example of the test results is shown in Fig. 11. This programme
provides aerodynamic details not previously available on the flow in the importantregions of the tail of a spinning aircraft.

6. CONCLUDING REMARKS

Early research into aircraft spinning led quickly to an understanding of the
main dynamic characteristics of spin behaviour but also identified the need for a
greater understanding of the complex nature of the aerodynamic forces. The
complexity arises from the large aircraft angular rates and hence large changes in
onset flow conditions, and from the large areas of flow separation. Facilities were
developed as early as 1926 for measuring aerodynamic forces on models during
steady rotation, but these were abandoned in favour of the dynamic-model spin
tunnel technique in an attempt to obtain more tangible design data. The dynamic-
model technique has been extended to include a range of free-flight techniques, all
of which provide information directly on the model dynamic behaviour, but provide
very little insight into the aerodynamic characteristics. Since the mid 1970's new
facilities have been developed to measure the aerodynamic forces on rotating models
and efforts are being made to parallel these experimental results with theoretical
and numerical analysis. With the rapid developments in computational aerodynamic
design methods, the prospect of more reliable spin design prediction techniques can
be foreseen.
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