
CHIMERA II: A Real-Timne UNIX-Compatible
Multiprocessor Operating System for

Sensor-based Control Applications

David B. Stewart
Donald E_ Schmitz
Pradeep K. Khosla

I~ C MU -RI-TIL-89-24!

Contents

1 Introduction 3

2 CHIMERA II Features 4

3 CHIMERA II Hardware Support

3.1 General Purpose Processors .-.. 9

3.2 Special Purpose Processors and I/O Devices 10

4 CHIMERA II Kernel 13

4.1 Real-time Computing Requirements 13

4.2 CHIMERA II Kernel Design 14

4.2.1 Context Switch Operation 15

4.2.2 Process Scheduler 15

4.2.3 Process Data Structures 17

4.2.4 Process Control Primitives 18

4.2.5 Exception and Interrupt Handling 19

4.3 Memory Management 20

5 Interprocessor Communication 20

5.1 Global Shared Memory 21

.5.2 Systom-Level Communication 22

5.2.1 Express Mail Devices 23

5.3 User-level Communication 26

5.3.1 Shared Memory. 2S

5.3.2 Message Passing 31

5 3.3 Semaphores and Synchronization 32

6 Summary 32

7 Acknowledgements 33

List of Figures

1 A Sample Hardware Configuration Supported by CHIMERA II 8

2 CHIMERA II Configuration File 12

3 A remote read() operation 24

4 Read() and write() drivers for xm devices 27

5 Example of Interprocessor Shared Memory 29

6 Implementation of Interprocessor Shared Memory 30

Abstract

This paper describes the CttIMERA II multiprocessing operating system, which has been developed
to provide the flexibility, performance, and UNIX-compatible interface nieeded for fast development
and implementation of parallel real-time control code. The oi,-ratirig systenm is intended for sensor-
based control applications such as robotics, process control, and manufacturing. The features of
CHIMERA II include support for multiple general purpose CPUs; support for multiple special pur-
pose processors and I/O devices; (high-performance real-time mulitasking kernel: user redefinable
dynamic real-time schedulers;)a UNIX-like environment, which supports most standard C system
and library calls; standardized interrupt and exception handlers; and a user interface which serves
to download, monitor, and debug code on any processor board, and serves as a terminal interface
to the executing code. CHIMERA II also offers an attractive set of interprocessor communication
features. The system-level express mail facility provides transparent access to a host file system
,lid remote devices, and provides{he basis for implementing user-level interprocessor communica-
tion. Application programmers have the choice of using shared memory, message passing, remote
semaphores, or other special synchronization primitives for communicating between multiple pro-
cessors. As an example of an actual implementation, we are currently using CHIMERA II to control
a multi-sensor based robot system. The system runs on a Sun workstation host, with one or more
Ironics M68020 processing boards, connected over a VME backplane. The system contains various
special purpose processors, including n Mercury 3200 Floating Point Unit and an Androx Image
Processor. The system also supports :. w-;ety of sensors and devices for real-time systems, which
currently include a camera, force and e sensors, and a joystick.

Accession For

NTIS MA&I
DTIC TAB
Unannounoed
Juttiflatiori

By

Avn ilability Codes

ie tp ad/or

7 December 1989

Defense Technical Information Center
Cameron Station
Alec'mndriai. VA 22314

.- ttin: J. Cundi it

Denr Mr. Cund1Cilf:

RFE: Report No. C\ii :-R1-TrR-89924

Penniission is ,ranted to the Defense Technical Information Center and thle National
Technical lIn tonation Service to reproduce and sell the following report. %%hich conitains
intonlnation "en-ral j aue

('1li1! ERA //.-A IReal-time UNVIX -Compatible u ltiproccsr ()pcrainI
.Svsrwn tr Sensur-based Control Applications, by David 13. Ste\ art, D~onald
F. Schmitz, and Pradeep K. Khosta.

N mcvA. Scrvion]
[uC LIm.Ient Cor dinator

ernc.: 12 copies of report

1 Introduction

Sensor-ba-sed control applications, such as robotics, process control, and manufacturing svstems.

present problems to conventional operating systems because of their need for several different

hierarchical levels of control, which can fall into three categories: servo levels, supervisory levels,

and planning leve'!s. The servo levels involve reading data from sensors, analyzing the data, and

controlling electro-necbanical devices, such as robots or machines. The timing of these levels is

critical, and often involves periodic processes ranging from 10 Hlz to 1000 liz. The supervisory

levels are higher level actions, such as specifying a task, issuing commands like turn on motor 3

or move to position B, and selecting different modes of control based on data received .,'," sensors

at the servo level. Time at this level is a factor, but not as critical as for the s(rvo levels. In

the planning levels time is not a factor. Examples of processes in this level include generating

accounting or performance logs of the real-time system, simulations, and programming new tasks

for the system to take on.

In order to satisfy the needs of sensor-based control ap~lications, ; f-xibie real-time, multitasking

and parallel programming environment is needed. For the servo levels, it must provide a high

performance real-time kernel, low-level communication, fast context switching and interrupt]a-

tencv times, and support for special purpose CPUs and I/O devices. For tile supervisory levels, a

message passing mechanism, access to a file system, and scheduling flexibility is desired. Finally

the real-time environment must be compatible with a host workstation, which can provide tols

for programming, debugging, and o.T-line analysis, are required by the planning levels. Ideally, a

popular high level language is available to minimize the learning time of the system. The real-

time operating system should also be designed so that programs running in simulation under a

time-sharing environment can be incorporated into the real-time environment with minimal effort.

CHIMERA II provides such an environment that is capable of supporting all levels of sensor-based

control applications on a parallel computer system.

Several real-time operating systems currently exist for control type applications, such as VRTX,

by Ready Systems [1], and VxWorks, by Wind River Systems [2]. VRTX is aimed at embedded

systems for production, as opposed to CHIMERA II, which is a flexible UNIX-compatible real-time

environment, suitable for research and development of control applications. VxWorks is similar to

(1IIlMERA II in concept, but it is geared towards networking multiple single board computers to

provide, parallel processing power. It does not offer the necessary features for taking advantage of

inidtipl,, procr,ssors on a common backplane, which is especially needed to satisfy the high compu-

3

tational demands of the servo levels. It also does not provide the scheduling and communication

flexibility needed by niany seLvsor-based control applications. In contrast, (III N I'R A I1 is designed

especiaiy tor provid ing niaximum performance ad flexibility In a patallel processing system. It

takes advantage of shared memory over a backplane to reduce overhead on message passing and

to provide interprocessor shared data segments and semaphores. The design of the CHtIMERA II

operating system, and its predecessor C!IMERA[3], was influenced by itz targ-t application, that

involved real-time control of the Reconfigurable Modulator Manipulator System [4 and Direct

Drive Arm II [51 at Carnegie Mellon University. The features, high performance, and flexibility of

CHIMERA I1 allow it to be used in any type of process control, manufacturing, or real-time control

applications; and as a testbed for research in real-time systems.

The remainder of this paper describes the implementation of CHIMERA II, and concentrates on the

details of the operating system which make it unique. Section 2 provides an overview of the features

of CHIMERA II. Section 3 describes the possible hardware that can be used with CHIMERA [I.

Section 4 provides details rf the CHIMERA II real-time kernel, including our approach for ob-

taining low context switching times, scheduling flexibility, and real-time process control primitives.

Section 5 describes the various forms of system-level and user-level interprocessor communication

within the system.

2 CHIMERA IJ Features

CHIMERA II provides the necessary features for implementing sensor based control applications

in a parallel computing environment. These features include the following:

9 Support for multiple general purpose CPUs:

* Support for multiple special purpose CPUs and I/O devices;

* A real-time muititasking kernel;

* User definable and dynamically selectable real-time schedulers;

o Transparent access to a host file system and to remote devices;

* Generalized and efficient interprocess and interboard communication;

o Local and remrote procss synchronization;

" Standardized interrupt and exception handlers;

" ['NIX-like environment, which supports most standard C system and library calls:

" Sipport for Hierarchical and Horizontal Control Architectures

" A user interface which serves to download, monitor, and debug code on any processor board,

and serves as a terminal interface to the executing code.

One of the goals of CHIMERA II is to provide an environment for controlling systems that accept

inputs for their operation from multiple sources that include both sensors and humans. Another

goal is to develop an environment, based on commercially available devices, that can be easily

ported and thus made widely available for research, development, and application. Based on these

objectives, we established the following requirements for the hardware architecture of a program-

ming environment for sensor-based control applications:

" Aside from application specific I/O, the hardware must be based on commercially available

items.

" A well supported family of general purpose CPUs must be used in the entire system. These

must be chosen for overall performance and software portability.

" A time sharing workstation must be used as a host to the real-time programming e,.viron

ment, in order to provide widely-used editors, debuggers, and window managers for program

development.

" The real-time system must be expandable by adding one or more general purpose CPUs

operating in parallel, each capable of working either independently or synchronized with

other CPUs.

" The hardware must be capabic of supporting special purpose devices, such as floating point

processors and I/O devices, in order to provide enough flexibility for use in a wide variety of

control applications.

Based on the above requirements, we chose to base CHIMERA II on the Sun 3 workstation, a

popular and well supported Motorola. M68020-based workstation with a VME bus. This choice,

,tictated that our real-time engines also be VME-based M68020-based boards. Of the coninwrciallv

availahl, MG68020 processor boards, we chose the Ironics family of CPU boards, because of slilport

5

for a local bus and mailbox interrupts, each of which belos in reducing potential memory handwidth

problems on the VM bus.

Besides the above requirements for the hardware architecture, we also established the following

software requirements for a sensor-based real-time computing environment:

* The software environment must appear to the user as a real-time extension of a typical UNIX

development system:

- The C programming language must be available for all levels of the control program.

There should not be any need for using assembly language.

- The real-time kernel must support programs which are designed as multiple, concurrent

processes. The kernel must support access to hardware devices via a library of high level

routines, hiding the hardware details from the applications programmer.

- Standard UNIX utility libraries must be ported or emulated, allowing ready portability

of existing UNIX programs.

- The UNIX fitle system must be accessible to all general processing boards.

" The kernel must be flexible enough to use a variety of schedulers to provide the best per-

formance for a given task, thus taking advantage of the many different scheduling strategies

which have been proposed for real-time operating systems.

" The software must implement a form of interprocessor communication and synchronizat:n

which requires a minimal amount of overhead, yet is flexible enough for all applications. Effi-

ciency is very important since increased parallelism usually creates additional communication

overhead between processors, wb'h may nullify the advantages gained from making the code

run in parallel.

" A standardized interface for interrupt handling and device drivers must be available, to sim-

plify user code and also decrease development time of applications.

" The environment must provide the basic constructs required to support both hierarchical

and horizontal control architectures, such as high level constructs for low-volume hierarchical

communication; and low overhead communication for high-volume horizontal communication:

and global shared memory across all processors.

* The simulation and real-time control environments must be simila,, so that code can easily

be rnovod betwoen the two environments.

I'lle above'' requiiriiements' iilst all he achiievedl by, sacrificing a miinimial amiouint of performnance. 'I I,-

II ll :\' 11 p)rotgrmiii. etIiriiiw provide.s a 1.NIX-ciliiipitio inti-~fatce, %hich sijqporK

ai reai- time kernel, initerpr ,cessor commniitication, tranisparenit access toJ the hwos filo stei andt

k'k\ I(.(S (l)t I e \ %I 1" b)uS . r4 t 4,) o vitil t(t riOC(-)vh n iat IO i n a nIman N. n m , featIu ri- ii'edl d fo r l iti-i ir -

based conit rol. lIi thli reminider of this paper, we describe the hardlware and soft ware arc hi t ef tire

for our- iplvientat ion.

3 CHIMERA 11 Hardware Support

('ifI[NI LRA 11 is capable of supporting multiple general purpose processors (', I1, which pro~ ide

he parallel computational power needled to support multiple sensors in a c:ont rol a pplicat un. In

aiddition, special purpose processors, such as floating point units (FP1Us), imnae IMProcesng lmiii>

ll INs), and digital sinlprocessors (DSI's), can be incorporated into the svsten. 1;1II I

ako allows devices. such as serial ports. parallc! ports, and frame grabbers. to he add~edl ti tI1w

systemi with relative ea-se. Each of these devices are accessible by all CIs in t Ii, s.ystemn. lhe

r(eminder of this sect ion describes the interface developed for CIM NERA If to i ncorpiorate ai lariue

variet v of processors amid ilevices within the sVsteCif.

The minimum configuration to run the CHIMERA 11 environment is a Sun :3 'orkstatun %k!t h

VMIE backplane, running Sun OS 3.x or Sun 0S 4.0.31, and one Ironic.. :.:3'8o20 processing board.

Figure 1 shows a sample hardware coiufguration. It is the one currently in use wvith the ('%ITI-

D~irect Drive Arm I1 project. The system consists of several processors and I/0 devices":

* A Sun 3/260 host system on a \'NIE bus, running Sin CctO.

e A VMI-to-VNIE bus adapter, to isolate the timesharing host from the real-tiii systeti:

* Multiple Ironics M68020 boards, possibly with different options, such as varyingz memory size.

1/O ports, and1 local buses;

* A Mercury 3200 Floating Point Unit, which provides a peak performance of 20 Mfl~op. for

intensive real-ti me control calculations;

* six Texas Instrument TMS320 DSP processors, on a Multibus back1)lane. eiuch cont rolling

one joint of thle ('NIUI Dl)Arm 11. The Multi bus is connected to the V NIF bulos t Iiroughi a

'W, have plans to port th' 71 CIM LRA 1l rodfe to tile NiaCil operating systeni [6)3.

Sun VME Backplane

Sun 3/060
Workstation VME

with -to VME Androx
VME bus aptr Image

Backlan adater Processor

Camera
____________VM E

bus 6 DOF

TacstiSeso

ForceeSenso

TMBurAdpte
oinPt Jointl Jointr

Contrller ontroler 0Pa Conrolle
#1/ P2r #6

To/rom ooi T/rm oosT/rm oo
loirIL~~c 1Sont2Jone

MF6802 Foc SensorI~ry;r (ofgrtau uprtdL 1INIl \I

Processo

VMIE-to-Multibus Adapter.

" Multiple Sensors with corresponding I/o ports: a tactile sevnsor, cniricld fo n Ir,, 0 riil

port: a six axes force sensor, connected to a paralll 1/0) bmard: and a caiier;i. with mimirI,.

connected to an Androx Image Processing board:

" A six degree of freedom joystick, connected to an Ironics serial port.

The CH1IMERA II kernel executes on each Ironics M68020 board, while the development ,rivir"li

ment is on the Sun host system. Non-68020 boards, such as the Mercury and the Androx. opf-raTU,

as slaves to one of the Ironics CPUs. Additional devices can be easily incorporated iitT h) .the

Each Ironics M68020 has either an M68881 or M68882 floating point coprocessor)r, th,

Although these are useful for small amounts of floating point calculations, t;ev are not po,,rfil

enough to support the computational requirements of a sensor-based control applicatiom. We oplil,

for the Mercury 3200 floating point unit, since it offers the required performance at a reasonah#,

cost: and because a true C compiler is supplied, allowing us to develop all parts of the c)1rotl (ode

in ('.

The various sensors we are using not only allow us to perform research on multi-sensor control

algorithms, but also provide a base for testing CHIMERA II's capability for handling a variety of
devices. Similar'.,' the Mercury FPU, the Androx vision processor, and the custom TMS320 ls

also provide a good way of testing CHIMERA II with a variety of special-purpose process-ors, henct,

demonstrating the flexibility of the programming environment. Finally, the six degree of freedhorn

joystick is a source of aperiodic human interaction into the control loop of various algorit hini ;.

3.1 General Purpose Processors

All CIIIMERA II real-time programs execute on one or more real-time engines that are sini.le boir,i

computers co-existing on the VME bus ofa SUN-3 workstation host. At present. ('11 NIlI' II

ports the Motorola M68020 processor architecture as implemented on several commer(ial produc.,

and will be ported to the newer M6N8030 in the r,.ar future. While ports to radically ,hitferenit (T'II

architectures are now under consideration, the M680X0 family provides sufficint prf, rm;., f,,r

marinv real-time control applications and continues to improve. Using the same ('PV faiiilv in I.,'11

tue real-tiniP engines and host processors eliminates many of the problems of pmrtinm, ,i, betw,,,

ti,' -iorinhl tilin ahntd re.al-ti.meli environnients.

Real-time programs are typiclly written in C, and compiled using the standard SUN C compiler.

Once compiled, these programs are linked with the real-time kernel, interprocessor comnmunication

package, and common ut;lities, ail of which are simply UNIX library files, again usih~g the standard

SUN linker. The resulting executable file is then downloaded directly into the real-time proces-

sor's memory via the host's VME bus. A user interface program on the SUN host performs this

downloading and provides a simple terminal-like interface to the remote processor, both to user

programs running on the processor and to the on-board monitor program for debugging purposes,

3.2 Special Purpose Processors and I/O Devices

CHIMERA II uses the UNIX philosophy of device drivers to incorporate special purpose processcrs

and I/O devices into the system. The UNIX-compatible calls open(), close(o, read(), write(),

mrnapO and ioctl(are used to access these devices, thus hiding the details of the deviceE from the

applications programmer. However, compared to UNIX, writing device drivers for CHIMERA II is

simpler. Since there is no interprocess security or virtual memory (refer to Section 4.1 for details),

much of the overhead and complexity required to write a set of device drivers has been eliminated.

Each device is allocated a major number and a minor number. The major number is used as an

index to thz proper driver routines for the device, and the minor number distinguishes beLween

multiple devices sharing the same driver.

A configuration file on the host workstation stores the information defining the processors and I/O

devices within the system. Figure 2 shows the configuration file corresponding to our setup for

the CMU DDArm I1. The first part of the file contains lines beginning with "x", which lists the

general processors, and defines their corresponding xm devices (see Section 5.2.1 for more details).

Lines beginning with "#" are comments. The second part of the file defines all the processors and

devices on the system (lines starting with "d"). For compatibility with the UNIX file system, all

filenames are under the directory /vme. Any access to a device with such a name is intercepted by

CHIMERA II, and assumed to be located within the real-time processing environment; otherwise,

CHIMERA II assumes that it is a file on the Sun host file system.

The different fields for defining general processing boards, in the first part of the file, are the

following:

* bid: Numerical ID given to processor board

10

* boardname: Symolic name given to the board

* sunname: Device name used on Sun host to access board

* spacc: The VIME a.ddress space in which the device is defined.

* vmeaddr. The VME address of the board

* cputype: The model of the board.

* vec: For hxm# devices: Interrupt vector; the 3 least significant bits of the vector also represent

the level of the interrupt. For ixm# devices: Mailbox number for mailbox interrupts.

All the information needed by the CHIMERA 11 system about the general processor boards are

included in the configuration file. Similarly, for special purpose processors and devices, the necessary

information is included, on lines starting with an "x". The fields are the following:

* boardname: The name of board which owns and is responsible for maintaining the data

structures required for reading and writing the device.

" vrnename: The name to be used in application programs wanting to open the device.

" space: The VME address space in which the device is defined. 'LOCAL' means that the

device is only accessible to the local CPU.

" vmeaddr. The VME address of the board (or local address for LOCAL devices)

* size: Number of bytes occupied by device (memory mapped devices only)

* rnaj: Major device number

" mim: Minor device number

* vec: Interrupt Vector generated by device (or 0 if device does not interrupt). The 3 least

significant bits of the vector represent the level of the interrupt.

U3sually special purpose processors are memory mapped for maximum performance, while the I/O

drivers are accessed using the generic read() and write) system calls or utilities.

11

##

CHIMERA II Configuration file for CMU DDArm II

This file contains the information needed to specify the configuration of
the hardware. Any devices specified in this file must have their
corresponding device drivers installed if they are to be accessed by the
user program.
#

declarations for general processing boards
8

All numerical values in hex

bid boardname sun-name space vmeaddr cputype vec

x 0 host /dev/hxmO A24D32 000000 SUN3 53
x 1 sensor /dev/ixmO A32D32 40000000 IV32204 01
x 2 control /dev/ixml A24D32 800000 IV3204 01

declarations for other devices on VME board

/vme/sio# are the onboard serial devices of the Ironics IV3220 model.
/vme/pio# are parallel I/O ports
/vme/vmxO allows mapping the Ironics local VMX bus into D32 space.
/vme/vmxl allows mapping the Ironics local VMX bus into D16 space.
/vme/tmsO allows memory mapping the space of the 6 TMS320 processors.

/vme/tmrO are the control registers for tmsO.
/vme/mcO is the mercury 3200 board.

boardname vme-name space vmeaddr size maj min vec
d sensor /vme/sioO LOCAL FC460000 0 0 0 83
d sensor /vme/siol LOCAL FC460000 0 0 1 83
d sensor /vme/pioO A16D16 COCO 0 1 0 74
d sensor /vme/piol A16D16 COCO 0 1 1 74
d sensor /vme/pio2 A16D16 COCO 0 1 2 74

d sensor /vme/pio3 A16D16 COCO 0 1 3 74
d control /vme/vmxO LOCAL FCOOOOOO 0 2 0 0
d control /vme/vmxl LOCAL FDOOOOOO 0 2 1 0

d control /vme/mcO A32D32 bOO00000 200000 3 0 e4
d control /vme/tmsO A24DI6 3dO000 030000 4 0 0
d control /vme/tmrO A16D16 0050 20 5 0 0

End of Configuration file.

Figiire 2: CHIMERA II Configuration File

12

4 CHIMERA II Kernel

The CIINIERA II multi-tasking capabilities are provided by a real-time exc-utive or kcrncl. The

kernel design exploits the unique requirements of a real-time control environment to provide much

of the functionality of a conventional operating system with a minimal performance overhead. User

access to the kernel is via a small set of process control primitives implemented as C callable library

routines. These primitives support an Ada-like process control methodology, and serve as building

blocks for more complex constructs. The kernel itself is a C library linked into the user's code, easing

software modifications and user extensions. While the kernel implementation is fairly conventional,

the design trade-offs are unique to the target environment. The various system requirements and

their impact on kernel design are not always obvious, and are worthy of discussion here.

4.1 Real-time Computing Requirements

The computing requirements for a real-time system are very different from those of a con'entional

operating system. These constraints affect both the computing hardware and kernel design of a

real-time system. In particular:

" Interprocess security is not required. In general, all of the processes running on a given CPU

(or set of CPUs) are written and invoked by a single user - it is reasonable to assume that

these processes are designed to cooperate. This eliminates much of the overhead in performing

system calls or their equivalents, since all processes can be assumed to have all privileges.

" Programs are rarely limited by memory size. Real-time processes tend to be short repetitive

operations, implying a small number of instructions and small data sets. This allows such

systems to forgo virtual memory, improving memory system performance and eliminating

memory management overhead from the process context switch operation.

" Process scheduling must occur at a fast rate, and include the concept of physical time and

execution deadline in the scheduling algorithm. Restating the justification above, real-time

processes tend to be active for short periods and deadline critical, requiring a scheduling

time quanta on the order of the shortest physical event being controlled. Typical scheduling

rates are an order of magnitude (or more) higher than conventional time-sharing operating

systems. Since execution priorities are a function of time, this also implies re-evaluating the

rolative priority of each process every time quanta.

13

" The number of processes is usually small. This is due to the performance limitation of

the CPU, and the difficulty of designing concurrent algorithms. This small number allows

computationally intensive scheduling algorithms to be used without introducing unacceptable

context switch overhead.

" Consistent or deterministic performance is more important than average performance. Many

systems use techniques such as hardware caching or data dependency optimizations to increase

the average performance. These features, however, are undesirable in a real-time system where

predictability is more important than obtaining higher performance most of the time, at the

cost of lower performance some of the time.

The CHIMER \ II kernel is designed around the above requirements, and sacrifices interprocess

security and virtual memory to provide the predictability and high performance needed for all levels

of sensor-based control applications.

4.2 CHIMERA II Kernel Design

The CHtIMERA II kernel is readily divided into five major components:

" Context switch code, written in assembly language, that performs the low level mechanics

of saving and restoring the CPU state required to initiate a context switch. This code is

initiated by either a hardware timer interrupt or a user level trap.

" A process scheduler, written in C, that is called from within the low level context switch.

The scheduler is responsible for maintaining the current global process state, and selecting

the next process to swap into the CPU.

" A set of data structures which contain the CPU state of non-active processes and tile schedul-

ing status of all processes.

" User interface routines that manipulate the process data structures to (indirectly) control the

operation of the process scheduler, and thus the execution of the process.

" Exception handler code, written in C or assembler, which service traps caused by interrupts

and execution errors, such as division by zero, illegal memory access, and illegal instruction.

Each of these components are described in more detail in the following paragraphs.

14

4.2.1 Context Switch Operation

The low-level context switch operation is very much dependent on the CPU architecture. The cur-

rent CHIMERA II kernel supports the Motorola MC68020 CPU architecture, and uses a straight-

forward multi-tasking implementation. As is typical of many modern CPUs, the MC68020 enters

a supervisor state when processing an exception, automatically toggling the active stack pointer

from user stack pointer to supervisor stack pointer, and enabling all privileged instructions 2. Each

CHIMERA II process owns a supervisor stack area that is used as storage space for the CPU state

when the process is inactive (not currently executing). Immediately after entering the exception

handler code, the current CPU state is saved in this area. The process scheduler is then called (as

a subroutine), which employs some algorithm to select the next process to execute, and returns a

pointer to the new process's saved context. The current supervisor stack pointer is then replaced

with the returned value, the CPU is loaded with the state information stored there, and the excep-

tion processing is exited. This effectively restarts the process defined by that state, at the point at

which it was previously interrupted.

4.2.2 Process Scheduler

The operation of the process scheduler is the most significant difference between a real-time kernel

and a conventional operating system. In addition to a much greater emphasis on execution efficiency,

the real-time scheduler must select which process to make active as a function of physical time and

the execution deadlines of the process pool. At the same time, the algorithm should impose a

minimum burden on the user programmer - if the user must bpecify exactly when each process

should be swapped in and out of the CPU, little is gained in terms of programming efficiency or

performance over an interrupt driven approach.

The CHIMERA II scheduler algorithm was developed in an ad hoc fashion, incorporating various

standard algorithms with extensive experimentation and tuning to obtain the best performance for

typical job mixes. Given the lack of security requirements in this application, CHIMERA II does

provide hooks into the context switch code to allow the user to replace the standard schedulers

with application specific algorithms.
2 While tasks normally run at user level, nothing prevents a task from explicitly changing the processor status and

executing at supervisor level. In general there is no reason to do this; catastrophic failures due to programmer error
are more likely when running in supervisor mode, however nothing prevents a user process from changing status if
needed.

15

An important realization in the design of the scheduler was that there are two distinct reasons for

performing a context switch:

1. The expiration of a time quanta, indicating it is time to re-evaluate the time based scheduling

criteria, or simply to give another concurrent, equal priority process a chance to execute.

2. A process cannot continue due to contention for a system resource, for example mutually

exclusive access to a data set or I/O device. In this case, the process which must wait may

actually have a preference as to which process is to execute next in the remainder of its

previously allocated time quanta.

In the first case, the standard CHIMERA II scheduler divides processes into two classes, those

with real-time deadlines and those without. Processes with deadlines always have priority over

those without, in the general case that multiple deadlines exist at once a minimum-laxity-first

algorithm is used. This algorithm selects the process which must start execution in the shortest

period in order to meet its deadline - ties are settled using a highest-priority-first algorithm. If

no deadlines exist, processes are scheduled using a highest-priority-first algorithm. By replacing

previously active processes at the end of the process ready list, and starting the next process search

from the beginning, a round-robin behavior is introduced that improves scheduler fairness among

equal priority processes.

Research has shown that the minLaum-laxity-first algorithm provides very good real-time schedul-

ing efficiency, and is inexpensive to implement[7]. The algorithm is also fairly simple to use. An

application programmer has only to assign a relative priority to each process, and when required,

specify the execution deadline, an estimate of the number of time quanta required to execute, and

an emergency action routine. If a process misses its deadline, the scheduler automatically calls

the emergency action routine, which can perform such tasks as aborting or restarting the process,

altering the process's priority, or sending a message to another part of the system.

In tne case of a context switch due to resource contention, a different algorithm is used. Since only

a fraction of a time quanta remains, it is best to choose the next process quickly in order to utilize

as much of the remaining time quanta as possible. In addition, the current processor hardware does

not allow the scheduler to know how much of the time quanta remains, making it impossible to

schedule based on physical time. Finally, the process which blocks may actually have a preference

as to which process to run next; for example, a good strategy would be to give the process being

waited on the remainder of the quanta. CHIMERA II addresses this diverse set of possibilities

16

by providing a context switch primitive which takes a scheduler routine as an argument. In most

cases, the scheduler is a round-robin algorithm which simply selects the first process in the ready

list, regardless of priority. The resulting context switch typically executes faster than the more

complex time-driveit algorithm. It is possible to specify a user supplied scheduler routine which

implements an arbitrary algorithm tc select the next process.

Our scheduling methodology, sometimes called preemptive scheduling [7] (we prefer dynar";c schedul-

ing), is in contrast to rate monotonic scheduling, in which each process is defined at compilation

time as having periodic deadlines and well defined execution timing. Rate monotonic systems

are often more efficient, as a provably optimal CPU utilization schedule can be determined offline,

virtually eliminating the need for process scheduling at runtimc (during a context switch) [8]. How-

ever, such an approach imposes more responsibility on the application programmer, slowing down

program development and increasing the chance for an error. The rate monotonic methodology

is also limited for the case of processes that require variable amounts of CPU utilization, such

as iterativc L.Igorithms, which converge in a variable number of iterati-'s, C,7 apericdic processef,

which are usually triggered by an interrupt.

4.2.3 Process Data Structures

The CHIMERA II scheduler maintains process state information in a number of linked lists of

Process Control Blocks, or PCBs. A PCB is simply a memory segment containing the process's

supervisor stack, which is used for processing exceptions and also holds its CPU state when inactive,

and a small amount of process specific scheduling information, such as priority and execution

deadline. Each list corresponds to a particular state a process can be in (since there can only be

one active or executing process at a time, there is no need for a list for this state):

* Ready to run with a deadline.

* Ready to run.

9 Paused (waiting) on a timer to expire.

* Waiting on a software signal.

This sorting by execution state eliminates the number of processes which must be checked at any

time for a potential change of state. In addition, the user is free to create lists indicative of more

17

complex process states and explicitly manipulate these processes using standard process control

primitives.

The process list implementation is doubly linked with a fixed guard or head node that can never be

removed. This implementation makes adding and removing arbitrary elements from a list efficient,

requiring only a few processor instructions. Searching through the list is similarly efficient. Utilizing

a guard node list representation also improves execution efficiency, eliminating the need for handling

the sDecial empty list case. The guard node also imposes a distinct ordering on the lists that is

useful in many search algorithms.

4.2.4 Process Control Primitives

CHIMERA II provides the application programmer with a small set of process control primitives

'ha.t c:;-::l the most general level of process execution control. The CHIMERA II design phi-

losophy has been to make these primitives as simple, general, and efficient as possible, allowing

the user to build more complex operations on top of these primitives while achieving acceptable

performance. The relative simplicity of the primitives makes them portable across hardware envi-

ronments and processor architectures. Since (aside from hardware specific utilities) these primitives

serve as the basis for all other CHIMERA II supported utilities, their functional specification can be

thought of as defining the CHIMERA II programming environment. Following is a brief description

of the most important process control primitives:

" spawn(: create an instance of a process.

" pause(): suspend a process for a specified (physical time) duration. Accepts optional param-

eters to specify a subsequent execution deadline.

" set-deadline(): specify the minimum number of time quanta of CPU utilization required by

a process in a specific period to meet its execution deadline.

" block(o. wakeup(): low level interprocess signaling mechanism.

" P(), V(}: classic countered semaphore interprocess synchronization mechanism.

* clock{}: returns the current physical time maintained by a hardware timer.

" spl(j: UNIX-like interface to hardware interrupt mask, allowing processes to initiate unin-

terru ptable atomic code.

From the users viewpoint, each CHIMERA I1 process is a C subroutine that an be considered

to execute on its own (virtual) CPU, concurrently with an arbitrary number of other processes.

Independent processes are allowed to schedule their execution as a function of physical time using

the pausf (), set-dcadline() and clock() primitives. For example, a call to the primitive paus() sets

the calling process's restart, required quanta and deadline fields to the arguments passed to pause(),

moves the calling process to the paused process list and arrangts a context switch to another ready

to run process.

Tbe CHIMERA II kernel, and in particular the process scheduler, then arranges to time-share the

CPU among each procass to provide each with the specified number of processor cycles required to

meet their execution deadlines. The block), wakeupO, PO and V0 utilities are used in the more

complex case in which concurrent processes must interact. These constructs support the concept

ot one process waiting for another, either in a producer-consumer relationship or as competitors

for a global resource. The CHIMERA II scheduling algorithms support these features while oL1:1

enforcing real-time execution constraints.

While a few of the above routines are implemented as conventional trap driven system calls, the

majority are simply subroutines. Access to the CPU interrupt mask and status register is provided

by the splx0 routine - using this utility it is possible to code C routines that do practically

anything that previously required assembly language coding'.

4.2.5 Exception and Interrupt Handling

CHIMERA II allows users to write programs that respond to exceptions and hardware interrupts.

These exception handlers are written as C routines, which are then called from a small segment

of assembly code that provides the low level interface to the processor. CHIMERA II includes a

preprocessor macro which automatically generates the proper assembly patch code when a routine

is declared as an exception handler. Interrupt handlers are typically included in the device driver

software that provides an interface between the CHIMERA real-time kernel and the hardware

device as a standard part of the CHIMERA II software release, however there are no restrictions to

prevent new interrupt handlers from being installed. More useful is the ability to define handlers

for soltware exceptions, such as division by zero or attempting to access a non-exibtent memory

location. By default, such exceptions are handled by printing an error message on the system

ISince these routines are very much (,PIT dependent such code will likely be non-portable across varying
architecrures.

19

console and terminating the offending process; however CHIMERA allows user programs to define

an exception handier for such conditions on either a per-processor or per-process basis. The later

requires making a copy of the standard exception vector table and installing it (with the modified

entries) in place of the default table the vector table for the specified process.

4.3 Memory Management

Since no interprocess security is available in CHIMERA II, any process is capable of accessing

any part of the processor's memory. However, unless there is some form of memory management,

processes will not be able to use the memory efficiently. CIIIMER , TI provides the standard C

routines malloc(), freeo, realloco, etc., and other useful routines such as mavail(), maxaval().

malloc-verifyO, etc. They provide the same functionality as their UNIX counterparts, but the

implementation varies.

The routines keep two singly-linked lists: one for free blocks and one for allocated blocks. A first

fit algorithm is used to allocate blocks. Each block has a header, which includes the size of the

allocated block, a pointer to the next block, and the process ID of the owner. Storing the owner's

ID allows all allocated memory to be released when a process terminates, even if the process does

not explicitly free the memory. The kernel on each board is responsible for it's own memory.

Interprocessor shared memory segments are used to access off-board memory (see Section 5.3).

5 Interprocessor Communication

One of the most important aspects of a multiprocessor real-time system is its ability to provide

fast, reliable, and standardized communication between all processes in the parallel computing

environment. We have designed a standardized interface for low-overhead reliable communication

among processes on parallel CPUs on a common backplane, including the Sun host. Multiple Sun

hosts can then be connected to each other, by ethernet, using Sun's networking protocols, such as

TCP/IP [9], RPC, and Sun NFS [101.4 The features provided include shared memory, semaphores,

and message passing, which not only work transparently across multiple processors, but also across

the Sun host, allowing non-real-time processes to communicate with the real-time environment

4Note that since neither the ethernet nor UNIX operate in real-time, the concept of time is lost, and thus the
real-time arena is exited. Programs that require such networking, however, are usually at the planning level, and
thus do not need the fast real-time responses required for the servo and supervisory levels.

20

without the need of high-overhead networking protocols. The remainder of this section describes

the communication facilities provided by CIIIMERA II.

5.1 Global Shared Memory

The VME bus provides global shared memory by mapping the memory of each processor into one

of several standard address spaces, depending on the addressing and data handling capabilities of

the processor and memory. This form of memory mapping has the advantage that it provides the

fastest possible communication with very little, if any, overhead. In such a scheme, however, several

problems arise:

" Not all boards use the same address space. The VME bus alone supports Several differont

modes (A32D32, A24D16. A16D16. etc.). Each board also view; its own rnvnmror as a local

address space, starting at address 0.

" The SUN host operates in a virtual memory environment, and although the SUN can easily

map other CPU's memory into its virtual memory space, the reverse is not ea-sily done.

" All information copied from one processor to another is untyped. The reci vimti board may

not know what to do with the data unless it knows what data is arriving.

" Some mechanism is needed for different processors to settle on a single memory segment to

communicate in. By default, two processes on different boards will not be able to communicate

unless an absolute memory area is defircd at compile time. This is not always desirable, nor

always possible.

" Standard semaphores cannot be used for mutual exclusion. The kernel is usually responsible

for controlling access to semaphores by blocking and waking up processes. In a multiprocessor

environ ar-, however, a kernel on one processor does not have control of blocking or waking

up processes on another processor.

('HIMERA 1I solves the above mentioned problems, while still maintaining general and fast com-

munication among all processors. by splitting the communication into two levels: system level and

user level. The system-level communication, which we also call ezprcss mail, uses a combination of

message passing and global shared memory. !* is used only bv the real-time kernels for performing

remote operations transparent to the user and to communicate with lie Sun Host: the user cannot

21

access these routines directly. The user-level communication is a set of high level primitives avail-

able to the applications programmer, which includes shared memory, message passing, and remote

semaphores that can be used transparently across multiple processors.

5.2 System-Level Communication

In CHIMERA II, many UNIX system calls have been emulated as C procedures. Whenever these

calls have to access a remote processor, a message is sent to the remote processor's eXpress Mail

(xm) device. Each board has one xm device, which is in a part of memory known to all other

processors, and a local server process, which handles all incoming messages. Using this method, a

small portion of the Sun virtual memory can be mapped into the VME space., using Sun's I)irect

Virtual Memory Access (DVMA). The DVMA space lies in physical memory on the Sun. and

is never swapped out, thus only a small amount of memory can be reserved as I)VMA space.

The xm devices minimum memory size is that of the largest possible message. In our current

implementation, the average message is less than 32 bytes long. Only one message (a kernel

printf() message) is relatively long at 268 bytes. A buffer of one kilobyte (four times the maximum

message length and 32 times the average message length) is more than adequate, while a buffer of

4 Kbytes will prevent almost all processes from blocking on an insert into message buffer because

of buffer overflow. A Sun with 4 Megabytes or more of memory can usually spare 4 Kbvtes for

)VIA space.

A good way to demonstrate the use of the xm devices at the system level is by an example. Figure 3

shows a read operation on a file or device on a remote board, which occurs transparently to the

user. Processor i is one of the real-time general purpose processors, and Processor j is a different

processor or the Sun host. The steps in the read operation are as follows: (1) the C statement

read(fd, buffer, nbytes) is called from a user's process. Fd is a ralid file descriptor returned from a

previous open() call. Buffer is a pointer into either the processor's local memory, or a valid VML

bus address. Nbytes is the number of bytes to read. (2) The read(routine first determines whether

the file is local or remote, and branches accordingly. The information is available from an array of

structures indexed by the file descriptor, and was initialized during the open() call. Assuming the

operation is remote, control goes on to step) (3). A message is sent to the remote board's xm device

(4). The message consists of a header and a body. The header contains the source process ID,

and source board ID, which specify the origin of the message, a message type which determnines the

contents of the body, and a set of flags, which can be used to alter the default processing methods

for a particular message type. In the case of the reed)operation, the message type is REA D. and

22

the contents of the message body are the file descriptor on the reinote process or, th buffer pointt'r

il l cal space, and tlie iiniber of bytes to read. After the ii ssa is wenl. hI i proc#,, I elii bhck-

wh ai l aitii-, for I he r ad() operation to compl)hI (5).

When a message is placed into the xmi device of processor j, a mailbox interrupt is generated, which

wakes up the server process, which in turn begins to process the message (6). Based on the message

type, the server takes appropriate action. In the case of the read() operation, the buffer pointer is

first converted into the proper VM E address, in processor j's address space. This conversion iiakes-

use of the configuration file. and solves the problem of communicating across several add ress spa(e.

The server then executes a read() operation, which is guaranteed to be a local operation (7). Uiiiv

the converted buffer pointer, the data can be placed directl into t he memory of processor I (,

After the operation is complete, a reply message is sent to acknowledge success or failure of the

message (9). For a read(), the return value is the number of bytes read. indicatit, a succv sfui

operation, or - t. and the accomnpanying errno, to indicate failure. The tnessage is placed i,!!

xm device of processor i (10). Note tnat it is possible to send a message wit Ih the V)h' I ' tidt,-,

set, which suppresses sending the reply message. This feature is useful to :,ll w pecal liI p1,1

processors, which do not have xm devices, to still send messages: the oiil s difft,renr, is thLat iil

reply is received to a(knowledge success or signal a failure.

The server on processor i receives the message (11). This time. the tnes:;age type I, UP!Pi) I

default action is to wakeup the process waiting for the reply, and to pass it the return values I2,

Since both processes are on the same board, local semaphores and shared memory it b, used ii,

communicate between the two processes (13). No reply is sent to a RlTL'I. Y mes,,age i I I, I

the read process wakes up (15), and returns the value of the read() operation 1 16).

Analyzing the efficiency of the remote read() operation, we note lihe following: '1h, data trni,

rfad() is placed directly into the remote processor's memory, thus there is no need for copviijg ft,,iii

a buffer on one processor to a buffer on the other. The largest overhead thus arises frot:i senl i

and receiving two messages. The next section desciibes the xmxi devices and thiir *,'icivnc v t,

sending and receiving messages.

5.2.1 Express Mail Devices

The xm devices consists of a first-in-first-out circular q,,eue. with 'luli'ritz () and rmr',,ztd)ri er,

to intsert messag s into and remiove thein frorn t le (uue respectivel. These drivers i til;niulat'

23

Processor "i"

read(fd, Get message ---

buff ernbytes) from xm queue

12

cal Ixx rea~d Service Message
local? yes device driver (aeu ed

send msg to block until Reply to message

remote board reply arives (if necessary)

1 Server Proces
Read I _,/= t 13

go mxm devic

-~~ -rc o -i I ... pocso j

sharedmemoryshare procsso

Processorp

6

Get message
from xm queue

7

Service Message
r (perform aread)

Process Flow Reply to message

Data Flow (4 _fnecessary) -

Server Process

Figure 3: A remote read() operation

21

the messages using the least amount of overhead possible, while still maintaining integrity and

providing mutual exclusion against being accessed by multiple processors at once. ligure I shows

the pseudo-code for the xmuritc() and XJmrcad() drivers. These drivers assume that tie proper

initialization has been performed previously.

In xynwriteO, checking for a legal board ID and putting the message into a packet requires only a

few simple instructions. The next step is to ensure mutual exclusion when accessing the queue of

the xm device. A test-and-set (tas) instruction on a mutual exclusion bit is used to obtain access.

If the bit is not previously set, then the tas() instruction sets the bit, and proceeds to the next

instruction. If it fails, however, the process does not block; rather, it will initiate a context switch

so that the next ready process will run, and places itself back on the ready queue. At a later time,

whcn it is the processes' turn to run again, it will again try the tas 0 instruction, and repeat the

above steps. The reasons that encourage this type of context-switch polling implementation include

the following:

" blocking the process trying to gain mutual exclusion would require some sophisticated syn-

chronization to wake it up, because the process holding the mutual exclusion bit may be on

a different processor.

" pure polling would waste valuable CPU time. The overhead of performing a context switch

is only a fraction of the time used as compared to polling for an entire time quanta.

" The mutual exclusion bit is locked for only a very short amount of time, since the messages

to be transferred are relatively short. More often than not, the tas) instruction succeeds on

the first try, but if it does not, the lock will usually be cleared by the time the process tries

again.

" A timeout mechanism prevents a process from waiting indefinitely for the lock, which can

happen if the remote xm device dies, such as all processes terminating on the remote board

terminate.

" When success is achieved the first time, the overhead for gaining mutual exclusion is limited

to one tas 0 instruction and one comparison.

After mutual exclusion is obtained, a check is made to see if there is enough room in the buffer.

It not, context-switch polling is again used until there is enough room. However, since the average

t,,ss;Lg_;o size is less than 32 bytes, and by default the xm device has 4 Kbytes; 128 messages ran

25

fit in the queue before running out of place, thus buffer overflow is rare. Copying the message to

the queue, is dloi, using an optimize bcopy() (block copy) routine.

Usually only one server process per processor reads incoming messages, using xmread(), therefore

the tas() instruction usually succeeds on first try. If it does not succeed, then the server blocks.

Unlike in zmwrite(), only onboard processes can read messages from the xm device, thus a process

can actually block, and wakeup via a signal tiom another onboard process, instead of having to use

context-switch polling. The server also blocks if the buffer is empty. The server wakes up upon

reception of a mailbox interrupt, which signals the arrival of a message.

Messages can be sent and received within a few microseconds. The major overhead with message

passing occurs when a receiving process is not the executing process, in which case at least one

context switch must occur prior to reading the message. This overhead, however, is inevitable in

any.- multitasking system.

Xm devices are used not only for implementing remote operations, as was shown in Figure 3,

but are also used as a basis in setting up global shared memory segments and message queues,

implementing remote synchronization, and for communicating with the remote consoles. The next

section describes the user-level communication, and their implementation using the xm devices.

5.3 User-level Communication

CHIMERA II provides the user-level communication package which allows user programs on differ-

ent CPUs to communicate efficiently and in real-time. The facilities include interprocessor shared

memory, which allows a procassor to access another processor's memory directly; message passing,

with options for priority and real-time handling; and semaphores, with special primitives for syn-

chronizing processors. The Express Mail communication devices are the underlying mechanism for

implementing all of these facilities. All of the routines described in the next few sections are avail-

able for both processes running on the real-time processors, and for non-real-time processes running

on the Sun host. This feature allows user applications running on the Sun host to communicate

directly with the real-time processors.

26

xmwrite(board-id,message);
/* Put 'message' into xm queue on board with id 'boardid' */
{

Return Error if illegal board.id
Put message into a packet
timeout = 0;

while (tas(insert-mutex[board.idJ) != OK) {
if (timeout++ > MAXTIMES) return(Timeout Error)
context-switch;

}
timeout = 0;

while (not enough place in queue) {
if (timeout++ > MAXTIMES) return(Timeout Error)
context-switch;

I
copy message to queue of board-id
adjust pointers to queue
release (insertmutex[board-id])
unblock(empty) /* wake up anyone waiting for the message */

xmread(message);
/* Get message from xm device on my board */
{

Return Error if illegal board-id
timeout = 0;

while (tas(remove-mutex) != OK)

block(mutex); /* block waiting for mutual exclusion */
}
remote-mutex = 1
while (buffer empty) {

block(empty); /* block waiting for a message */

}
get message in queue
adjust pointers to queue
unblock(mutex); /* wake up anyone waiting for mutual exclusion */

Figure 4: Read(and write(drivers for xm devices

27

5.3.1 Shared Memory

Four routines are available for using the CHIMERA II interprocessor shared memory facility: shn,-

Crcate(), shmDetach(), shmA ttachO, and shmDestroyO .

ShmCreate(board, segment,size) creates a shared memory segment on the specified board, with the

specified memory size. Segment is a symbolic name which is used by all other processes wanting

to use the same segment. A pointer to the newly created segment is returned. Only one process

creates a segment, while all other processes attach to it, using the routine shmA ttach (board, segment),

which also returns a pointer to the memory segment. When a process is finished with a segment,

it can issue the shmDetach0 routine. The last process to finish using the shared memory issues a

shmDestroy0 command to free the memory used by the segment.

The express mail server for each processor is responsible for handling all requests for shared memory

segments within its local address space. It also performs the necessary address space conversions,

so that pointers returned can be used directly by user programs. Figure 5 gives an example of code

which uses interprocessor shared memory. Figure 6 shows the process and data flow of the shared

memory routines, as they are implemented using the express mail facility.

As a first step, process A on processor i issues the command shmCreate("i", "seg",nbytes), which

requests that a shared memory segment of nbytes long be created on processor i (1). An appropriate

message is placed in processor i's xm device (2). The server receives the message (3), and proceeds

to create a shared memory segment (4,5). A pointer to "seg" is then returned to the calling process

(6). Note that onboard processes communicate via local shared memory (7). Process A can then

resume and use the shared memory segment at will (8).

Meanwhile, a second process B on processor j also wants to use the segment, so the shmAttach0

command is issued (9). The message is placed in the xm device of processor i, since the shared

memory segment lies on board i (10). The server processes the attach in the same manner (11.12,13).

If necessary, the server converts the pointer into the proper address space so that process B can use

it directly. It then places the pointer into the xm device of processor j (14). Processor j's server

gets the message, and passes the pointer to process B (15,16,17,18). Process B can then also use

the shared memory segment (19). Note that for simplicity, the example does not show any form of

mutual exclu :on when accessing the shared memory segment. If needed, the remote semaphores

described in Section 5.3.3 can be used. When processor B is finished, it calls shmnDetachO (20),

28

typedef struct { /* The data structure stored in */
int x; /* the shared memory segment */
float y;

} shmData;

/* The following code runs on processor i" */
/* Note that for simplicity, the code ignores */
/* potential problems with mutual exclusion. */

processA-main()
{

shmData *su;

sd = (shmData *) shmCreate("i","seg".sizeof(shmData));

sd->x = 10; /* use the shared memory */
sd->y = 4.5;

/* Could do lots more stuff */

/* Keep trying to destroy until successful */
while (shmDestroy("i","seg") == -1)

/* The following code runs on processor "j" */

processB-main()
{

shmData *sd;

sd = (shmData *) shmAttach("i","seg");

printf("x = %d, y = %f\n", sd->xsd->y);
/* Could do lots more stuff */

shmDetach("i","seg"); /* Detach from shared memory */

Figure 5: Example of Interprocessor Shared Memory

29

Processor "i" Process Flow Data Flow - - - -im

3 11

shm reate("i.; -local- Get message ---F eg nbts shre memory from xm queue

Read/write - 41
shared memory I--Service Message

shmDestroy(6 1
iseg") L . - -

Reply to message
(if necessary)

Prcss A i Server Process

global - ----- --- x device
shared memory ~.e:SprocessorT r----------------------

10

I 114

Processor ""Ixm device

I I processor "

shmAttach(I L Get message
*seg)- 4- -t--- -- -- -- -- -1 from xm queue

18

1 9 loa

Read/write 1
shared memory 17Service Message

20 L -- -- -- ------ (ake up process)

shmDetach(------- W

ise~eg")------- ----- 0 E) Reply to mes age

_Procss
B(if

necessay)

Procss BServer Process

Figiure 61: Implementation of Interprocessor Shared Memory

30

which again sends a message to *he server on processor i, and wait for a reply indicating successful

detachnient (21). Process A can free upl) the memory by issuing the shmDestroy0 command (22,23).

Note that if not all processes have detached from the shared memory, slmnDestroy() returns an error.

The advantage of this implementation of shared memory is that segments can be referred to by

symbolic names. Once attached to a segment, processes can use the shared memory segment just

as though the memory was on board, in the most efficient manner possible.

5.3.2 Message Passing

The message passing system is implemented much in the same way as the shared memory, using the

routines msgCreate(), msgAttachO, msgDetachO, and msgDestroy() to control access to message

queues, and the routines msgSend 0 and msgReceive 0 for sending and receiving typed messages.

As with the shared memory, the board name and queue name only have to be specified for

msgCreate() and msgAttacho . These routines return an identifier, which is used in all subsequent

operations. A process can thus send and receive messages transparently between processors.

The message passing system gives the option of specifying the queuing system to be used. It

can be either priority-based, deadline-time based, or first-in-first-out. All messages are typed. A

process receiving a message can also specify the type of message to be received, ignoring all other

messages in the queue. MsgReceive(also offers the option of blocking, non-blocking, or polling

retrieval of messages. If the default blocking mode is used, then the process waits until a message

arrives before returning. If the non-blocking mode is selected, msgReceive(returns an error code

if no mes, ages are in the queue. The polling mode allows highly synchronized processes to receive

and process messages as quickly as possible. By tar, the major overhead occurring in any part

of the communication package offered by CHIMERA II is the time spent by a process, which is

blocked waiting for a message, to context switch back into the CPU. Using the polling mechanism,

a process that expects a message to be arriving, can arrange to wakeup before the message actually

arrives, and wait for the message to arrive by polling the queue, thus receiving a message only

microseconds after it is sent. Timer interrupts can force the process to swap back out: however,

the splz() primitive provided by the kernel can force a process to poll indefinitely until a message

arriv s.

31

5.3.3 Semaphores and Synchronization

The semaphore mechanism in CHIMERA II is consistent with the shared memory and message

passing facilities, ofrering the routines semCreate(), sernAttachO, semDctachO, and semDestroy

to control access to semaphores, and provide transparent access to semaphores in subsequent calls.

The routines setmP 0 and sem V0 are used to perform the standard semaphore operations PO and

V() remotely.

Two additional routines, .yncWait(and syncSignal0 are used for obtaining accurate synchroniza-

tion among processors. The syncWait(locks the process in the CPU, an.d polls for an incoming

synchronization signal. Processing then resumes immediately upon reception of the signal. Any

other processor, or the user from the terminal interface, can issue the synchronization signal by

calling syncSignalO, which sends a signal to every processor waiting for it. This mechanism allows

two)r more processors to be synchronized within microseconds of each other. A typical use for

this feature is for the user to download and start executing a program on each CPU. Each pro-

gram performs all initialization, then call synclWait(. Once all boards have been downloaded and

initialized, and the user is ready to start the system, the syncSignal0 can be issued, guaranteeing

that all processors start within a few microseconds of each other.

6 Summary

CHIMERA II has been designed with the goal of supporting real-time sensor-based control applica-

tions. It is a multiprocessor and multitasking UNIX-like environment. Among the many features,

it provides low-overhead interprocessor communication, in the forms of shared memory, message

passing, and remote semaphores. A high-performance kernel, which supports a variety of real-time

schedulers and low context switching times, allows CHIMERA II to be used with the most demand-

ing of control algorithms. The flexibility of CHIMERA II allows the user to fine-tune the operating

system to the application's needs, by providing simple software and hardware interfaces to support

all types of sensor-based control applications.

32

7 Acknowledgements

The research reported in this paper is supported, in part, by U.S. Army AMCOM and DARPA

under contract DAAA-2189-C-0001, NASA under contract NAG5-1091, the Department of Electri-

cal and Computer Engineering, and The Robotics Institute at Carnegie Mellon University. Partial

support for David B. Stewart is provided by the Natural Sciences and Engineering Research Council

of Canada (NSERC) through a Graduate Scholarship.

References

[1] J. F. Ready, "VRTX: A real-time operating system for embedded microprocessor applications,"

IEEE Micro, vol. 6, pp. 8-17, August 1986.

[2] L. Kirby, "Real-time software controls mars rover robot," Computer Design, vol. 27, 5j- 0-62.

November 1 1988.

[3] D. E. Schmitz, P. Khosla, R. Hoffman, and T. Kanade, "CHIMERA: A real-time programming

environment for manipulator control," in 1989 IEEE International Conference on Robotics and

Automation, (Phoeniz, Arizona), May 1989, pp. 846-852.

[4] D. E. Schmitz, P. K. Khosla, and T. Kanade, "The CMU Reconfigurable Modular Manipulator

System," in Proceedings of 18-th ISIR, (Australia), ISIR, 1988.

[5] T. Kanade, P. K. Khosla, and N. Tanaka, "Real-time control of the CMU Direct Drive Arm

II using customized inverse dynamics," in M. P. Polis, ed., (Proceedings of the Z3rd IEEE

Conference on Decision and Control), (Las Vegas, NV), December 12-14, 1984, pp. 1345-1352.

[6] R. F. Rashid, "Threads of a new system [MACH]," UNIX Review, vol. 4, pp. 37-49, August

1986.

[7] W. Zhao, K. Ramamritham, and J. A. Stankovic, "Preemptive scheduling under time and

resc irce constraints," IEEE Transactions on Computers, vol. C-36, pp. 949-960, August 1987.

[8] H. Tokuda, J. W. Wendorf, and H.-Y. Wang, "Implementation of a time-driven scheduler for

real-time operating systems," in Proc. IEEE Real-Time Systems Symposium, December 1987.

[9] G. C. Kessler, "Inside TCP-IP (Transmission Control Protocol-Internet Protocol)," Lan Mag-

azine, pp. 134-142, July 1989.

[10] Sun Microsystem-, Inc., Network Programming, 1987.

33

