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1.0 INTRODUCTION

The use of Gaussian beams to compute wave propagation phenomena is a field
of current interest and activity. Porter and Bucker (1987) supply an extensive list of
references. More recent references can be found in Benites and Aki (1989). Gaussian
beams can be traced as rays in range-dependent media providing not only propagation
loss, but travel times, multipath structure, and frequency dependence. The well-
known ray theory problems of caustics and shadow zones are treated automatically.

This report outlines a beam width minimization technique applied to a Gauss-
ian beam model developed by Dr. H. P. Bucker. Porter and Bucker (1987) gives the
formulation upon which the technique is built. A free parameter E (caffe- -in Porter
and Bucker, 1987) is usually determined in a heuristic manner. Here, it is shown that
the minimization of beam width assigns a precise value to E. Examples are given
showing that the minimized beams give good propagation losses in some cases.

A case is also shown in which the standard Gaussian beams give poor results
and the minimized beams give even worse results. The problem appears to arise in
beams that pass near boundaries. This problem will have to be corrected before a
final judgment can be made on the validity of minimum-width beams.

Gaussian beam cross-sectional intensities and curvature are controlled by two
functions, p and q. Several examples of these functions are plotted in this report and
their nature is clarified.

In section 2.0 of this report the parts of Gaussian beam theory used here are
reviewed. The following sections then discuss the beam minimization and show exam-
ples.

2.0 REVIEW OF GAUSSIAN BEAMS

The Gaussian beam theory and notation used here is that reported by Porter
and Bucker (1987). In this section some equations from Porter and Bucker (1987)
that are used in later sections will be presented.

A Gaussian beam is assumed to have the form

w(s,n) =A(s,z) exp {-ico [ t(s) + Bn2 I } (1)

where w is the sound pressure, s is the arc length along a ray, n is the normal dis-
tance from the ray, zo is the depth of the point source, (9 is the angular frequency,
and t is the travel time along the ray. Thus, the Gaussian beam in the current view is
inseparably tied to ray theory. The center of the beam is a ray which defines s and t;
the field u at a point in space is determined by the minimum distance, n, from the
central ray.

The parameter B is a complex number. The imaginary part defines the rate at
which the beam acoustic pressure decreases from the center, or equivalently defines



the beam width. This imaginary part of B must be negative if the beam is to decrease
away from the center. This is assumed to be a physical requirement at all times.

The real part of B adds to the travel time to determine the acoustic phase at a
point removed from the central ray. If this real part of B is zero, there is no phase
change perpendicular to the beam and the beam has the phase behavior of a plane
wave. Near a point source the wave fronts are expected to be circles (in two dimen-
sional representations) so the phase increases in directions perpendicular to the cen-
tral ray. Therefore, the real part of B must be positive near the point source. The
beam does not have to maintain this convex curvature at all ranges and, in fact, in
cor vergence zone propagation often becomes concave.

The central problem in utilizing the beam as in equation (1) is to determine
the parameter B at any given point along the ray. Porter and Bucker (1987) give a
derivation and cite further references. In general, the behavior of rays near the cen-
tral ray when constrained by the Gaussian condition of equation (1) must be deter-
mined and expressed in the ray dependent, (s, n) coordinate system. Rays near the
central ray might differ from it slightly because of a different ray parameter or
because of a different source point. Thus, a variation in two parameters should pro-
vide the real and imaginary parts of B.

Porter and Bucker express B as the ratio of two functions p(s) and q(s), or

B = (p/q)/2. (2)

They then show that p and q can be computed by integrating the following set of dif-
ferential equations along the ray:

dq/ds = C(s)p(s), (3)
dpds = - C, (s)q(s) Ic2(S),

where C is the sound speed and c,, is the second partial derivative of the sound
speed in the normal direction.

The field of a point source can now be expressed in an asymptotic expansion
and compared to a Gaussian beam sum to evaluate A in equation (1). The value of A
appropriate for a point source is found to be

A = a exp(ix/4)[C(s)q(o)o cos a/2 x rq(s)] 1/2/Co , (4)

where a is the angle from the horizontal to the beam center at the source and 6a is
the separation between adjacent beam angles. The sound speed C and q are evaluated
at the source and at the arc length s.

The usual application of equations (1), (2), and (4) is to launch equally-spaced
beams from the source. The distance n is then the closest approach of the beam cen-
ter to the receiver point. The point on the center ray that is closest to the receiver
determines the ray length s. At this point the receiver is on the perpendicular to the
ray.
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A beam will contribute to any receiver, although a distance between beam and
receiver can usually be found where the beam contribution is negligibly small. The
field at a given point will usually consist of contributions from a number of beams
that are sufficiently close to the receiver. If the beams can be made narrower, fewer
beams will contribute to a given receiver point. This depends upon p/q and their
starting values.

For the present let

p(O) = 1 and q(O) =iE0 . (5)

The function p starts at a real number and q starts with a pure imaginary con-
stant E0 . Following Porter and Bucker (1987), in a medium with constant sound
speed C, the rays are straight lines and equation (3) gives

p(s) = I and q(s) = Cos + iE0 , (6)

because c,, is zero. Thus, in a uniform medium the beam width will depend upon the
starting value Eo near the source but at long distances from the source (large s) will
become approximately proportional to s. When Cos = Eo, the two terms have about
equal effect. This cross-over point will turn out later to be related to the optimum
beam width.

3.0 OPTIMIZATION OF BEAM WIDTH

Porter and Bucker (1987) suggest values of Eo as starting values for q. These
are functions of the beam spacing 6a and make the beams overlap at their lie down
points in the far field. These, and similar values of E", were tried in a convergence
zone environment. It was found that similar sound fields were computed no matter
what value of Eo was used. Any selected E,, resulted in values ofp and q, and there-
fore values of A and B which gave a similar value for the acoustic field. Propagation
losses were generally within 3 dB of each other. These observations led to a closer
examination of the functions p and q, and to the concept that E0 could be chosen in-
dependently for each beam and was not a true constant. The subscript o will there-
fore be omitted from E when used ir. this context. Observation showed that p and q
could be written as

p =a +iEb,

and

q = c + iEd. (7)
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Thus, the real parts of p and q are independent of E, and the imaginary parts
remain directly proportional to E as p and q are integrated along the ray. These fol-
low from equations (3) and (5) because c, c,,,, and E are real numbers.

One implication of equation (7) is that E does not have to be determined at
the start of a beam calculation. It can be set to 1 and then when the beam contribu-
tions at a field point are evaluated, an appropriate value of E can be selected.

A second implication is that if the initial values of both real and imaginary
parts were in p and both parts of q were zero, then identical functions for real and
imaginary p and q would be obtained differing only by a constant factor. Startingp
real and q imaginary as in equation (5) is a method for obtaining two independent
solutions that can determine both beam width and beam curvature.

Figure 1* shows p and q for a specific ray and illustrates the previous points.
The ray in the upper panel leaves the source at 1000-m depth at an angle of 4.30 from
horizontal where positive ray angles are downgoing. The sound-speed profile used
here is the Munk-canonical profile with the axis of minimum sound speed at 1300-m
depth. The profile is shown in Porter and Bucker (1987), figure 6. The scales on p and
q apply only to the real parts, since the imaginary parts are proportional to E. For
reasons to appear later, E is assumed to be negative. In general, on this and similar
figures to follow, the shape of the curves and not the actual excursions are important.
Units are given for q under the assumption that imaginary q is a second independent
solution with the same units as real q, and p is unitle-ss. The magnitude of q is about
107 larger than p.

Figure 1 shows that the parts of p and q are almost cyclical functions of range
(and ray length s). This follows from equation (3) because convergence zone profiles
have generally positive second derivatives c2,,, of sound speed with depth, and conver-
gence zone rays have shallow angles so C,, is close to c,, . This behavior of p and q
can be contrasted with that of equation (6) for constant sound speed.

Figure 2 also shows the ray and p and q, this time for the upgoing ray of -4.3
at the source. Figure 3 shows the same quantities for a downgoing ray of 8.60. This
ray, traveling farther from the sound speed axis, is effected by more extreme values of
C?1n •

These figures make it clear that p and q express the effects of ray refraction
upon the beam parameters, while E is a free parameter that might be used to opti-
mize the beam parameters. The most apparent optimization, and the one used here, is
to minimize beam width. From equation (1), this means the imaginary part of B,
therefore of p/q, must be as large negatively as possible. To this end, p/q is expressed
in terms of equation (7) giving

pq =(ac + E2bd )/y 2 +iE( bc-ad )/y 2, (8)

where

Y2 =c 2 +E 2 d 2 .

*Figures in this report are combined at the end of text.
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The imaginary part of p/q is now differentiated and set equal to zero giving

E =+ (cld) 1/2 (9)

The choice of sign must make the imaginary part of p/q negative. Therefore,
the sign of E will be chosen opposite to the sign of the term (bc - ad) from equation
(8). This term has been observed to be almost constant along a ray, or for the starting
values of equation (5) is almost - E.. This is the reason imaginary q was started as a
negative number in figures 1 through 3, and is consistent with the minus sign in
equation (1).

Substituting equation (9) into equation (8), the optimized value for p/q is

(plq) opt = (a/c + b/d)/2 - ilb/d - a/cl/2 . (10)

The second term is negative when the sign of E is selected. The first term of
equation (10) is undefined at zero range. However, at a small distance along the ray,
figures 1, 2, or 3 show a/c is a large positive number while bid is a small negative
number. (The large size of q compared top does not change the relative sizes.) At this
small distance, the first term of equation (10) is positive as is the travel time. As dis-
cussed in section 2.0, this ensures convex curvature near the source.

The effect of equation (9) on q is to make the real and imaginary parts equal
except for sign. For example, if figure 1 were the optimized p and q, the imaginary
part of q would be multiplied by a different E at each rauge to keep its magnitude
equal to that of real q. However, the sign remains the same. At the range where
imaginary q crosses zero, E becomes infinite and the optimized imaginary q will jump
from the opposite sign of real q to the same sign or vice versa.

When real q in figure 1 goes through zero, E simply becomes zero and so
does the optimized imaginary q. These points are apparently the caustic points of ray
theory. This is indicated by examining ray diagrams. Figure 4 is a portion of the ray
diagram of figure 7 from Porter and Bucker (1987). The rays of figures 1 and 2 can be
identified by the depths of their apexes near 735 m. The downgoing ray touches the
caustic near 37 and 53 km; the upgoing near 52 km. These are the zero crossing
points of real q in figures 1 and 2.

These caustics are equivalent to the zeros of c in equation (10), and p/q is
infinite. Thus, the beam collapses to zero width at the caustic. Any receiver point
more than an infinitesimal distance off the center of the beam will have zero inten-
sity. Near the caustic the beam will be narrow, but intense. The intensity follows
from the term A of equation (4).

At the zeros of imaginary q or d = 0, the beam again reaches zero width and
infinite intensity. There is no evidence of caustics here. Apparently, the optimization
of beam width is not limited at these points, and values of E are permitted that bring
the beam to zero width. However, the user is not required to select the optimum E
and an upper bound can be put on the magnitude of E in a program.
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In between the two types of critical points discussed above, the optimized
beam spreads to larger widths. The width will remain finite because the two parts of
p, a, and b of equation (10) will not become zero at the same time permittingp/q to
be zero. The plots of p in figures 1 through 3 suggest that the zeros will be separated.

4.0 PROGRAMMING CONSIDERATIONS

In this section some techniques used in the Gaussian beam propagation-loss
program written by H. P. Bucker are discussed with consideration to optimizing
beam width and some results are presented.

Central rays are computed including travel time with Runge-Kulta type
integrations. Steps in s of 100 or 200 m are usually used. Equation (3) for p and q are
integrated simultaneously. Eo is set to one. These somewhat computer-time intensive
methods permit range-dependent sound-speed variation, though that is not the case
here. As beam centers are traced near receivers, the distances to the receivers are cal-
culated at each step to find minimums When the presence of a minimum is indicated,
the true minimum is determined by interpolation and s, n, t, p, q, and E are evalu-
ated. If desired, the magnitude of E is checked and limited.

The method used to limit E may be more cautious and computer time con-
suming than necessary. The maximum magnitude of both parts of q that has been
encountered along the beam is saved and updated at each step. When an E is com-
puted it is limited to 10 times the ratio of maximum-real q and maximum-imaginary
q. This cautious method is used because the behavior of q, illustrated in figures 1
through 3, has not been observed for enough different acoustic ducts and the limits
on its excursions are not known.

When the required parameters have been determined for the point on the
beam center closest to the receiver, the acoustic pressure is determined by equation
(1), using the optimized values of p and q. Care must be used in taking the complex
square root in A in equation (4). The square root must be multiplied by (- I) k, where
k is the number of times the argument has crossed 1800. This number is determined
by keeping track of zero crossings of imaginary q as the beam center is being inte-
grated. If the square root of q(s) is taken by itself, the above determination of k will
work. However, if a single square root of the entire argument is used then q(O)/q(s)
determines the phase in the complex plane. The square root branch line occurs when
q(s) crosses 2700 since q(o) is a negative imaginary constant.

An even more careful treatment of the above process is required if occa-
sional errors are to be avoided. The zero crossings of q are determined at the end of
each step in s along the central ray. The actual crossing occurred at some point along
the last ray segment. If a point of minimum distance to a receiver also occurs in this
segment, it is necessary to determine on which side of the zero crossing the receiver
point lies. An alternative treatment is to interpolate the square root of q from square
roots at either end of the segment that have been corrected for their appropriate
number of zero crossings.
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5.0 EXAMPLES

Three examples are given here. An example of a deep source and receiver,
well removed from boundaries gives an excellent prediction of propagation losses. A
shallow receiver example shows significant differences between Gaussian-beam
results and normal-mode results. Finally, an example of the sequence of acoustic
pressures at a receiver for a family of beams is shown.

Figure 5 compares the first convergence zone for a 1000-m source and 800-m
receiver at 50-Hz frequency. This is the same case as illustrated in Porter and Bucker
(1987), figure 8. The Munk-canonical profile is used. There are minor differences
between the sound-speed profiles here because the normal-mode program was limited
to 12 layers. The normal mode profile from 3000 to 5000 m is represented by a single
layer, while the Gaussian-beam profile uses four layers. The Gaussian-beam profile
has a reflective bottom but beams were limited to those whose center cleared the bot-
tom. The normal-mode bottom was lossy (a negative gradient half space).

In figure 5 the disagreement beyond 65 km is probably due to the different
bottom treatments. The most serious disagreement is near the caustic at 40 kin. The
noticeable disagreement near 54 km is probably due to the nearby caustics at 52 and
53 kin.

The inexact losses near caustics should not be viewed as serious. Consider-
ing the extensive measures that extended ray theories must use to handle caustics,
the results here, achieved with no change in algorithm near the caustic and no
requirement to locate the caustic, are very encouraging.

The differences in the Gaussian beam results of figure 5 and those of Porter
and Bucker (1987), figure 8 have not been investigated. How much is due to using
optimized beam widths and how much to other variables is not known. Here, beam
spacing of 0.660 and ray step lengths of 200 m were used.

Figure 6 is propagation loss for a 300-m source and 150-m receiver. Other
parameters are the same as for the previous case. The points on the figure will be
used later. The Gaussian beam losses are obviously in error. The beams all pass near
the surface and the bottom. The interaction of the skirts of the beams with these
boundaries is a likely source of the error. However, this has not been fully investi-
gated at this time.

Figure 7 shows the location of the centers and the pressures of some of the
Gaussian beams that contribute to the receiver in figure 6 at 61-km range and 150-m
depth. These points are the points on the central ray at the point closest on the ray to
the receiver. These are also the points at which the receiver is on the normal to the
ray. The beam spacing is 0.33 ° , and every other beam is generally plotted. The num-
bers on the plot give angles of the beam centers at the source.

The two lower panels show the acoustic pressure of the beams as loss in
decibels. The upper and lower of these two panels refer to the upper and lower parts
of the trace in the depth-versus-range plot above. The pressures also have phase
which is not represented here.
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For comparison, corresponding pressures for a conventional Gaussian beam
treatment are shown in figure 8. A constant value of E of 1:09 x 107 is used for a!l
beams. The most obvious difference in the standard- and optimized-beam width is
near the caustic or beams where real q goes through zero at a source angle of 2.30.
This is at the left-hand edge of the plots. These beams, when beam width is mini-
mized, contribute little to the receiver 600-m distant, but contribute as strongly as
any when beam width is not minimized as in figure 8. Another caustic occurs at
-5.90 source angle. It is followed by a zero in imaginary q at -6.00. These produce the
somewhat confused pressures near the center of the lower panel in figures 7 and 8. At
source angles greater than 10.30, the rays are surface reflected.

The individual beam pressure as represented in figures 7 and 8 add up to
92.3 and 85.8 dB, respectively. This is a considerable difference and the smaller loss
of the traditional beams is much closer to the desired answer. To see if the problems
indicated in figure 6 are due to the beam optimization process, the loss of each kilo-
meter was computed with traditional beams and are plotted as points on figure 6.
These losses are definitely in better agreement with the mode theory than are the
optimized beam losses. However, the agreement is poor enough to indicate a problem.
Beams that pass near the bottom and the surface are probably still the problem. The
optimized beams are obviously more susceptible to this problem.

This particular case is unusual in that all beam centers pass near bounda-
ries but only an insignificant few actually reflect from the surface. Upon reflection, p
and q are modified as indicated in Porter and Bucker (1987) to accommodate beam
reflections. This case forces attention on a remaining problem for Gaussian beams.
Two solutions are possible. First, p and q could be modified as the central ray passes
near a boundary giving a partial boundary effect. Second, the part of the beam skirt
that actually touches the boundary could be modified when it supplies the acoustic
field at a receiver further along the beam. In this second case the cross section of the
beam will become nonsymmetric. Neither solution has been investigated to date by
the author.

6.0 SUMMARY

The use of Gaussian beams to compute underwater sound fields from a point
source has been reviewed, using the method reported by Porter and Bucker (1987). A
method of minimizing beam width was then developed. An advantage of this method
is the elimination of a free parameter, E, that has been a problem in previous imple-
mentations.

Propagation-loss plots for a normal-mode model and the above Gaussian-
beam method were compared. For a deep source and receiver, well removed from
boundaries, the comparison was good. However, for a shallow source and receiver the
Gaussian beams give poor results. Arguments are made that the problem is caused by
beams whose centers pass near the surface and the bottom. Because of their width
the beams should be effected by the surface and bottom. The current theory does not
include such effects.

An example of the acoustic pressures at a receiver contributed by each beam
is shown. This succession of pressures show that many beams contribute to the total
pressure at a receiver, even when beam widths are optimized.
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7.0 RECOMMENDATIONS

Gaussian-beani methods are effective for computing propagation loss. They
have the flexibility of ray theory but overcome the problems of caustics and shadow
zones. However, certain boundary problems remain. Beams that pass near reflecting
boundaries but whose centers do not touch should be investigated. Theoretical deri-
vations should be made if not available in the literature, and then tested in existing
propagation models.

Once the boundary problems are corrected, the beam width optimization of
this report should be tested more exhaustively.
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