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ABSTRACT A--I

'hls ilpcr invcstilgtes the dynamics of phaso transformations In
elastic burs. The specific issue studied IN the compatibility of the
field equations and jump conditions of the one-dimensional theory

of such bars with two additional constitutive requirements: the first

of these is t khll:i relation controlling the rate at which the phase

transition takes place; the second Is a nucleation criterion for the
inititlon of the phase trinsition, A special elastic material with a

piccewisc-linear, non-monotonic strom-strain relation Is considered,

and the Rlemnann problem for this materal Is analyzed. For a large
class of Initial dita, It is found that the kinetic relation and the
nucleation critcrion together will single out a unique solution to this
problem from among the infinitely many solutions that satisfy the

entropy Jump condition at all straln discontinuities. , ,14. .



1. Introduction. The continuum modeling of phase transformations in solids has

recently attracted much analytical attention. Purely mechanical equilibrium problems involving

coexistent phases in elastic materials have been studied, for example, by Abeyaratne (1981,

1983), Ericksen (1975), Gurtin (1983), James (1979, 1981, 1986), and Silling (1988, 1989). In

these analyses, the equilibrium states of principal interest were those that were stable in the sense

that they minimized absolutely the appropriate energy functional.

Quasi-static motions of elastic solids that involve both stable and metastable equilibrium

states have been studied by Abeyaratne and Knowles (1987a,b), (1988a,b), (1989), who observe

that additional constitutive information is needed if the associated macroscopic response of the

body is to be determinate. In the latter three papers in particular, the supplementary constitutive

postulate was taken to be one that governs the initiation and evolution of the phase

transformation. The importance of an initiation or nucleation criterion, together with a suitable

kinetic relation, in the description of phase transformations is emphasized in the literature in

materials science; see, for example, Chapters 10 and 11 of Christian (1975) or Chapters 13 and

17 of Ralls, Courtney and Wulff (1976).

The detailed implications of a kinetic relation and an initiation criterion were investigated

by Abeyaratne and Knowles (1988a), who considered quasi-static motions involving phase

transformations in tensile bars on the basis of a one-dimensional model. Because the elastic

potential in the model is non-convex, stress is a non-monotonic function of strain, so that a given

tensile force applied to the bar may result in any one of infinitely many equilibrium states

involving a mixture of phases. It is this lack of uniqueness of the underlying equilibrium problem

that makes room for the kinetic relation in the mathematical theory. Moreover, a single relation

controlling the kinetics of the phase transformation, accompanied by an initiation criterion, is

found to be sufficient to overcome this breakdown in uniqueness and to lead to a determinate

relationship between the histories of the force applied to the bar and its overall elongation during
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any quasi-static process. In fact, under reasonable assumptions on the kinetic relation, the

hysteretic macroscopic response predicted by the analysis is qualitatively similar to that observed

in experiments on martensitic transformations such as those reported by Krishnan and Brown

(1973) or Grujicic, Olson and Owen (1985b).

If the kinetic relation and the initiation criterion are indeed a part of the constitutive

description of the material, they must apply not only during quasi-static motions, but when

inertial effects are included as well. Motivated in part by this concern, the present paper

investigates whether these additional constitutive postulates can be accommodated by the system

of conservation laws appropriate to the simplest one-dimensional theory of the dynamics of bars.

Further motivation for the inclusion of inertial effects in a continuum mode! of phase

transformations arises from experiments. According to Grujicik, Olson and Owen (1985a),

reported measurements of phase boundary velocities vary widely, from values small enough to

permit direct optical observation to values approaching the speed of shear waves in the parent

phase of the material; see also Bunshak and Mehl (1952).

The dynamical aspects of phase transformations have been studied by a number of

authors in recent years, beginning with the paper of James (1980), who pointed out several

important issues concerning phase transitions in elastic bars. A sample of the more recent

literature, often concerned with the van der Waals fluid, m,. bc rund in Hattori (1986a,b),

Pence (1986), Shearer (1986, 1988), Silhavy (1988), Slemrod (1983, 1989), and Truskinovsky

(1985, 1987).

In the classical dynamics of an ideal gas in one dimension, the extent of the lack of

uniqueness of weak solutions to the Cauchy problem for the corresponding system of

conservation laws is such that the imposition of the entropy inequality at shock fronts is

sufficient to rule out all but one solution. The mathematical theory of conservation laws and
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shock waves, with gas dynamics serving as a prototype, has developed a large literature, the

early portion of which is summarized by Lax (1973); a discussion of more recent work is

included in the article by Dafermos (1983). A uniqueness theorem appropriate to the Cauchy

problem for quasi-linear systems of the kind arising in gas dynamics was apparently first proved

by Oleinik (1957). Her result is also applicable to the simplest model of longitudinal waves in a

one-dimensional bar, provided the material is such that stress is a monotonically increasing

function of strain that is either strictly convex or strictly concave. If the material of the bar is

capable of undergoing phase transformations, the stress-strain relation will in general have

neither the monotonicity nor the convexity property required in Oleinik's theorem. For these

latter materials, one can show that the imposition of the entropy inequality at curves in

space-time bearing jumps in strain or particle velocity is no longer sufficient to guarantee

uniqueness for the Cauchy problem. A number of authors have proposed a variety of stronger

"admissiblity conditions" intended to generalize the entropy inequality and designed to select

physically appropriate solutions in the case of conservation laws that are either non-strictly

hyperbolic or of mixed type. Thus Dafermos (1973), for example, has proposed a maximum

entropy rate admissibility condition. The implications of this condition have been studied in the

setting of elastic bars by James (1980) and for the van der Waals fluid by Hattori (1986a,b); for

further discussion, see Dafermos (1989). Slemrod (1983) derives admissibility conditions by

embedding the theory of the van der Waals fluid in a higher order theory that include! the effects

of both viscosity and capillarity; such an embedding is also utilized by Truskinovst-.y (1985).

Implications of Slemrod's notion of admissibility have been studied by Shearer (1986,1988),

who has also investigated other possible conditions of admissibility for conservation laws of

mixed type; see Shearer (1982).

The approach to be taken in the present paper is entircAy different from those cited above.

We shall investigate whether the entropy inequality at strain discontinuities and the kinetic

relation at phase boundaries, together with the initiation criterion when appropriate, suffice to
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determine a unique solution of the system of one-dimensional conservation laws governing the

dynamics of bars made of a material capable of undergoing phase transformations. The particular

type of kinetic relation to be considered here has been motivated both by internal-variable

theories of inelastic behavior (Abeyaratne and Knowles, (1988a,b), Rice (1970, 1971, 1975))

and by thermodynamial considerations (Abeyaratne and Knowles (1989)). The special elastic

material to be studied is one for which stress is a piecewise linear function of strain. The

mathematical problem to be treated is the Riemann problem for this "trilinear" material, with the

kinetic relation imposed directly at phase boundaries. As in the work of Hattori (1986a), James

(1980) and Slemrod (1989) we assume here that the dynamical processes occurring in the bar

take place isothermally, despite the fact that this is unlikely to be a physically realistic setting.

We hope to treat the adiabatic case, as well as the case in which heat conduction is present, in

later communications.

In the following section, we present the field equations and jump conditions of the

classical one-dimensional theory of elastic bars, and we discuss the energetics of motions in

which strain discontinuities occur. In the course of this discussion, we introduce the notion of

the "driving traction" - or "Eshelby force" - associated with strain discontinuities, and we state

the entropy inequality at such discontinuities in terms of the driving traction. Throughout the

present paper, we shall refer to solutions as admissible if the entropy inequality is satisfied at

each strain discontinuity. The theory as set out in Section 2 applies to elastic bars with

essentially arbitrary stress-strain relations. In Section 3, we consider the special material whose

stress-strain relation is trilinear (see Figure 2), and we review the quasi-static response of a bar

of this material during slow processes in which inertia is unimportant. The notions of a kinetic

relation and an initiation criterion for a phase transformation are introduced in this setting. We

return to the genuine dynamics of the bar in Section 4, where we describe the local properties of

discontinuities; these may correspond either to shock waves or tophase boundaries. Section 5 is

devoted to the formulation of the Riemann problem for the trilinear material. Before attempting
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to impose the kinetic relation, we show in Section 6 that the admissibility condition alone -

although, as expected, not strong enough to deliver uniqueness - is nevertheless responsible for

some major qualitative conclusions about the structure of solutions of the Riemann problem. By

constructing explicit solutions, we show in Section 7 that, for a large class of initial data, the

lack of uniqueness remaining after the imposition of our admissibility requirement is precisely

that needed to accommodate the kinetic relation and, where appropriate, the initiation criterion

for the relevant phase transition. Section 8 contains further discussion and concluding remarks.

2. Preliminaries. Consider an elastic bar with uniform cross-sectional area A; the bar is

regarded as a one-dimensional continuum that occupies the interval [0,L] in an unstressed

reference configuration. In a longitudinal motion of the bar, the particle at x is carried to the

point x + u(x,t) at time t, where the displacement u is to be continuous with piecewise continuous

first and second derivatives on [0,L]x[O,oo). Where u and ut exist, we let

'Y=u , v=u t  (2.1)

denote strain and particle velocity, respectively. We assume that y(x,t) > -1, so that the mapping

x - x + u(x,t) is invertible at each t. The stress c(x,t) is related to the strain through

a = c (y), (2.2)

where the stress response function a is determined by the material. We assume that

a(0) = 0, 4 = a'(0) > 0 ; (2.3)

the first of these conditions reflects the fact that the reference configuration is unstressed, while

the second asserts that the tensile modulus at infinitesimal deformations is positive. The mass
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density p of the material in the reference state is taken to be constant.

At points (x,t) in space-time where y and v are smooth, one has

a'(T)T - pv t = 0, (2.4)

vx - Tt = 0 , (2.5)

provided body forces are absent. If either y or v is discontinuous across the curve x = s(t) in the

x,t-plane, the following jump conditions must be satisfied:

[[all] =-p[[v]] s, (2.6)

[[]] s; = -[[v]] , (2.7)

where, for any function f(x,t), [[fl] stands for f(s(t)+,t) - f(s(t)-,t). Conditions (2.4) and (2.6) are

local consequences of the global balance of linear momentum; (2.5) and (2.7) follow from the

smoothness required of u(x,t).

Let

Y

w(y) = f0' , y > -1 , (2.8)

be the strain energy per unit reference volume for the material of the bar. Consider the

restriction of the motion to the time interval [t1, t2] and to the piece of the bar that occupies the

interval [xl ,x2] in the reference state. Suppose that y and v are smooth on [xl,x 2]x[t1 ,t2] except

at the moving discontinuity x = s(t). Let E(t) be the total mechanical energy at time t for the
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piece of the bar under consideration:

Et= x 2 Ew,~~)+1pv2(x,t)] A dx. (2 ..9)x 2 2E(t) f [W(y(x,t)) + p vp xt]A x 29

x1

A direct calculation that makes use of (2.4)-(2.9) establishes the following work-energy identity:

G(x 2,t)Av(x 2,t) - G(x 1 ,t)Av(x1 ,t) - E (t) = f(t)As(t) , (2.10)

where f(t) is defined by

+

f( )-J y )dy -([y)( ) + Y (T ) (2.11)

and y(t) = y(s(t)+,t) are the strains on the two sides of the discontinuity. The left side of (2.10)

represents the excess of the rate of work of the external forces acting on the piece of the bar over

the rate of storage of mechanical energy. If there is no jump in strain at x = s(t), then (2.11)

would give f = 0, and the rate of work of the external forces would be exactly balanced by the

rate of increase of energy. When there is a strain jump, the right side of (2.10) need not vanish,

and each side of (2.10) would then represent the rate of dissipation of mechanical energy

associated with the moving discontinuity. We may think of -f(t)As(t) as the rate of work done on

the bar by the moving discontinuity; correspondingly, we speak of f as the driving tracion acting

on the discontinuity.

A +
If the material of the bar is linear, so that a(y) = 4y, then (2.11) yields f(y, y) = 0. Thus

for a linear material, the driving traction vanishes at any discontinuity, so motions of the bar are
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automatically dissipation-free. More generally, if 6(y) is linear only over an interval of strain,

say [y' y,2 ], it follows from (2.11) that f(t) vanishes at any discontinuity for which the limiting

strains +(t) and y (t) both lie in [ 1' ' 2].

A geometric interpretation of f(y, ,y) is exemplified in Figure 1: f(y, y) = A - B, where A

and B are the areas of the two regions A and B generated by the stress-strain curve and the

trapezoid determined by Y-, Y, ',), and a +M.

The driving traction on a strain discontinuity is related to the notion of the "force on a

defect" introduced in an equilibrium context by Eshelby (1956). It is also the counterpart -

considered here only in one space dimension - of the force on an interface between two elastic

phases derived by Eshelby (1970) and discussed by Rice (1975); see also Knowles (1979). The

notion of driving traction can be given meaning in a much more general setting than that

envisaged here. Indeed, it has been introduced in connection with surfaces of discontinuity in

three-dimensional thermo-mechanical processes taking place in an arbitrary continuum by

Abeyaratne and Knowles (1989); see also Truskinovsky (1987).

The basic field equations and jump conditions (2.4)-(2.7) do not guarantee that the

instantaneous dissipation rate in (2.10) is non-negative. The condition that this be so is clearly

f(t) s(t) 0. (2.12)

We shall speak of the motion of the bar as admissible if (2.12) holds at each discontinuity and for

all time. If the material under consideration here is regarded as thermoelastic, and if the

dynamical processes being studied are assumed to take place at constant temperature, the

condition (2.12), with f given by (2.11), can be shown to be a consequence of the

Clausius-Duhem version of the second law of thermodynamics. The assumption of
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isothermality, however, is more appropriate for slow processes, in which inertia forces and

kinetic energy are unimportant, than for the processes considered here. Nonetheless, for

simplicity, we shall retain (2.12), (2.11), deferring to future work a consideration of the adiabatic

case or the even more realistic case in which heat conduction is included. For related discussion,

see Abeyaratne and Knowles (1989).

3. The trilinear material. Equilibrium states and quasi-static motions. Before

pursuing the dynamical issues of principal interest to us here, it is essential to review briefly the

corresponding theory of equilibrium states and related quasi-static motions. Accordingly, we

seek equilibrium solutions of the field equations (2.4), (2.5) and the jump conditions (2.6), (2.7).

When the displacement u(x,t) is independent of time t, the strain y, the stress a and the

discontinuity location s have this property as well, and the particle velocity v vanishes.

Conditions (2.5) and (2.7) are now trivially satisfied, and (2.4), (2.6) imply that a(x) = a =

constant for 0 < x < L. If the stress response function 6(y) were strictly increasing with y, (2.2)

would show that y also is constant along the bar, so that no strain discontinuities could occur in

the equilibrium field, and the bar would find itself in a homogeneously deformed state of

extension or contraction.

For a stress-strain curve of the form shown in Figure 1, however, the situation is

different. For stress levels between the local minimum ar and the local maximum M

equilibrium fields in the bar are possible in which the stress a is constant along the bar, but the

strain y is only piecewise constant, in general taking any one of three possible values

corresponding to the given a. We regard such states as mixtures of phases; we say a particle of

the bar located at x in the reference state is in phase 1,2 or 3 at time t during a motion if 'y(x,t)

lies in the interval (-1, TM], (yM, m) or [ym, -c), respectively. Since our interest here is in phase

mixtures, we shall be concerned with a stress-strain curve of the form shown in Figure 1. Insofar

as our review of equilibrium fields and quasi-static motions is concerned, the discussion could be
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carried out without specifying the stress-strain relation in detail beyond the qualitative

requirement that it be at first rising, then declining and finally rising again, as in Figure 1; see

Abeyaratne and Knowles (1988a). For the dynamics of phase mixtures, however, the

simplifications provided by the trilinear stress-strain relation illustrated in Figure 2 turn out to be

enormously helpful. We thus confine our attention from here on to the case of the trilinear

material; we shall comment on the seriousness of this restriction in the final section.

Let the stress a in the bar be given, with am a ' We consider displacement fields

for which the corresponding strain is piecewise constant with a single discontinuity at x = s,

where s is given arbitrarily in [0,L]. Such a field is said to be of p,q-type if the strain is in phase

p to the left of x = s, and in phase q to the right, p,q = 1,2,3. If p=q, the strain is continuous at

x=s; if p :q, we refer to x=s as a phase boundary. For example,

ax/t , 0<x s,
u(x) = (3.1)

o-x/t' + (lilt - l/gt')Ys , s < x!< L ,

represents a continuous equilibrium displacement field of 1,3-type that gives rise to the given

stress a. Here i and t' (< t) are the tensile moduli for phase 1 and phase 3, respectively; see

Figure 2. For an equilibrium field of p,q-type and for a given s, the relation 8 = A pq(F,s)

between the overall elongation of the bar 8 = u(L) - u(O) and the applied force F = (A is called

the macroscopic response of the bar. For thc field of 1,3-type corresponding to (3.1), one has

A 13(F,s)-=_(-,)s+L,] F , (mA<F<MA , 0<s<L. (3.2)

When s=L, the displacement field in (3.1) is smooth, and all particles of the bar are in phase 1;
this suggests that we set AII(F) = A13(F,L) for am A M imilarly, if s=O, u(x) is
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smooth and the entire bar is in phase 3; we set A33(F) = A13(FA), a mA5 F a A

If the given stress a is less than a or greater than aM , the corresponding displacement

field is smooth and unique. We speak of these as fields of 1,1-type in the former case, 3,3 type

in the latter. The corresponding macroscopic responses are

8= All(F)= FL/1A , tA <F<aA; 8=A33(F) = FL/ t'A, F > aMA (3.3)

The macroscopic response for a field of 1,3-type is illustrated in Figure 3. The dashed

lines represent graphs of 8 = A13(F,s) vs. F for various constant values of s. Points on OPQ

correspond to smooth phase-I fields, with macroscopic response 5 = A1 1(F); points on SRT refer

to smooth phase-3 fields, 5 = A33(F). Points in the interior of the quadrilateral PQRS or on the

horizontal portions of its boundary correspor I to mixtures of phase 1 and phase 3. Observe that,

for a given stress a in [am, aM], there are infinitely many equilibrium states of 1,3-type. To

render the corresponding 1,3-response unique, one must also specify the value of the "internal

variable" s.

For a 1,3- equilibrium mixture of phases in a trilinear material, the driving traction

defined in (2.11) specializes to

f=-- - (G 2-a 2) , a < O <aM , (3.4)

where a0 = (aMm)/ 2 . Note that the driving traction vanishes when the stress a in the bar

coincides with a 0; a 0 is called the Maxwell stress, and it is such that the hatched areas in Figure

2 are equal. As the stress a increases from a to am ? the static driving traction given by (3.4)
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decreases from a maximum value of fM = f(1-Ym/aM) > 0 to a minimum value of f =

f (l-aM/a m) < 0, where the constant f is given by f = (1/2)(g~t - g')yrnyM > 0. If E(F,s) is the

total strain energy in the bar for a given force F and a given location s of the phase boundary, and

if U(F,s) = E(F,s) - FA13(F,s) is the corresponding potential energy, it can be shown that

aU(F,s)/DF = -6 and aU(F,s)/Ds = -Af. In particular, the driving traction f and the internal

variable s are conjugate. In the more general setting of Abeyaratne and Knowles (1989), f and s

are shown to be conjugates with respect to the entropy production rate.

A 1,3-quasi-static motion is obtained by replacing the stress a and the phase boundary

location s in (3.1) by functions of time: a = a(t), s = s(t). The driving traction then becomes a

function of time as well, and the admissibility condition (2.12), together with (3.4), yields

[a(t) - 0] s(t) < 0, (3.5)

as long as am  M* A 1,3-quasi-static motion determines a path in the quadrilateral PQRS

of Figure 3; the inequality (3.5) restricts the direction of this path. When o(t) exceeds the

Maxwell stress o0 , (3.5) requires that s(t) 5 0, so that the phase boundary x = s(t) cannot move

to the right, and the direction of the path generated in PQRS must be in accord with the arrows in

Figure 4. Thus when a(t) is larger than ao0 , the length of the phase-3 portion of the bar cannot

decrease, and particles at the phase boundary are transforming from phase 1 to phase 3. The

opposite conclusions apply when a(t) < aY0 . When the stress coincides with the Maxwell stress,

one has f=0 and the admissibility condition (3.5) holds trivially; thus travel in either direction

along the "Maxwell line" F = a0 A is possible, as indicated in Figure 4.

Specifying the stress history c(t ), 0 < t < t, in a 1,3-quasi-static motion is not sufficient

to determine the present value of the elongation, even with admissibility (2.12) enforced, since
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s(t) must be known as well. As viewed by Abeyaratne and Knowles (1988a), this reflects a

constitutive deficiency which can be remedied by annexing to the field equations, the jump

conditions and the admissibility requirement, a kinetic relation that controls the rate at which

particles of the bar transform from one phase to the other, as well as an initiation (or nucleation)

criterion for a phase transition. Specific types of kinetic relations and nucleation criteria, often

based on thermal activation arguments, have long been discussed in the metallurgical literature

concerned with phase transformations in solids, especially for those transformations in which

diffusion is an important mechanism. The reader may refer, for example, to Fine (1964), Porter

and Easterling (1981) and Ralls, Courtney and Wulff (i976).

We shall postulate a simple form of kinetic relation in which the driving traction f(t) is a

function of the time rate of change s(t) of its conjugate internal variable s(t); s(t) clearly measures

the rate at which one phase is transforming to the other. Thus we assume that there is a

constitutive function (P13 such that, during a 1,3-quasi-static motion,

f(t) = ql 3[S(t)]. (3.6)

Because of the admissibility condition (2.12), the kinetic response function (P13 is subject to the

restriction

913(s) s > 0 (3.7)

for all s. We shall assume that the graph of the function (P13 has the form indicated

schematically by the curve K in Figure 5. The kinetic response function (p13 is to be

monotonically increasing and smooth everywhere except possibly at s = 0. We let 913 (0+) = fM

2!0, 0P13(0-)=fM- , 0 1''3(+) = f p 13(-) M ' where fM and f m are new material

-14-



parameters, and fM and f, introduced earlier, are the maximum and minimum values of driving

traction. For values of the driving traction between f and f no motion of the phase boundary

is possible, reflecting a frictional type of relationship between driving traction and phase

boundary velocity. It may happen that f = fM = 0, in which case P13(s) is continuous at s = 0,

and motion of the phase boundary takes place whenever the driving traction is different from

zero. The hatched region in Figure 5 comprises the set of all points (s, f) with f < f < fM for

which the admissibility condition fs 0 holds.

Once a 1,3-phase boundary has been initiated, the kinetic relation (3.6) controls its

evolution. A separate criterion is needed to signal the emergence of such a phase boundary from

a single-phase configuration. In general, a particle may change its phase in one of two ways: a

pre-existing phase boundary may pass through it, or it may undergo a spontaneous phase

transition. In the latter case, the transition generates two new phase boundaries if the particle lies

in the interior of a single-phase intervL;, one new phase boundary if the particle is at an end of

the bar. Since the bar is uniform in cross-section and materially homogeneous, there is no

distinction between different particles of the bar in a single-phase equilibrium state. Presumably,

a spontaneous phase transition could therefore begin with equal likelihood at any point in the bar.

Thus we shall suppose arbitrarily that, whenever the bar is in a uniform phase 1 state, a

spontaneous phase 1 -> phase 3 transition accompanied by an emergent phase boundary can

occur only at x = L. We further assume that the occurrence of such a spontaneous 1->3 transition

is controlled by a critical value fcr of driving traction: when the stress a at the particle labeled bym

x = L has increased to a value such that, according to (3.4), the corresponding driving traction f

is not greater than fcr' this particle will spontaneously transform to phase 3, thus initiating a

1,3-phase boundary at x = L. This phase boundary then moves leftward into the bar in

accordance with the kinetic relation (3.6). By (3.4), the stress cr corresponding to f = fCr is
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0= 1-" (3.8)

0

thus the phase 1-) phase 3 transformation is initiated when C , cr. Since by admissibility

fcr < 0, a c r is at least as great as the Maxwell stress. Similarly, if the bar is in a pure phase 3m

state, spontaneous transformation from phase 3 to phase 1 of the particle labeled by x = 0 is

assumed to occur when the stress c has diminished to a value such that the associated driving

traction in (3.4) is at least as great as a critical value fCr; the corresponding critical stress in this

case is less than 0 . Under these circumstances, a 1,3-phase boundary is initiated at x = 0, and it

moves with positive velocity s into the bar in accordance with (3.6). The initiation levels of

driving traction fcr and fcr are material parameters that satisfy the following inequalities:m M
f <fcr<f* <0<f *<fcr<f
m m m MM M

As shown in detail in Abeyaratne and Knowles (1988a), a kinetic relation (3.6) in which

'P13 has the form shown in Figure 5, together with the initiation criterion, gives rise to a fully

determinate response. When the bar is first quasi-statically loadedfrom the reference state and

then unloaded to the reference state, the associated force-elongation curve is as shown in Figure

6; generally, the response is hysteretic and rate-dependent.

A treatment analogous to that summarized above for 1,3-quasi-static motions can be

provided for motions involving equilibrium fields of p,q type for any p and q, as well as for

transitions from one type of motion to another. For a more extensive discussion, see Abeyaratne

and Knowles (1988a).

4. Dynamics: local properties of discontinuities. Returning to the dynamical processes

described in Section 2, we note from (2.6), (2.7) that the velocity s of a moving discontinuity at
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x = s(t) satisfies

pS2 () ( (4.1)

+

where y are the limiting strains on either side of the discontinuity. From this it follows that the

slope of the chord joining the points (j', ()) and ( , (4)) on the stress-strain curve must

necessarily be non-negative. Conversely, one can show readily that, if a pair j', y satisfies this

condition, there exist numbers ,, v and s that, together with y', , satisfy the jump conditions

(2.6), (2.7). The pairs of distinct strains , that can occur at a discontinuity are thus those that

make the right side of (4.1) non-negative. For the trilinear material, the set F of all such pairs

corresponds to those points in (-1,o)x(- 1,o) that lie on or outside the irregular hexagon

ABCDEFA and off the line y = ,in the y, y-plane shown in Figure 7. The figure explicitly

indicates the subregions F of F that correspond to discontinuities of p,q-type for various p,q.pq

If ' is in phase p and y in phase q, we call the associated p,q-discontinuity a shock wave if

p = q, a phase boundary if p # q. (Because shock waves here relate to a linear part of the

stress-strain curve, "acoustic waves" might be a more appropriate term; this would not be the

case, however, for more general materials of the kind represented by Figure 1.) Condition (4.1)

clearly rules out shock waves of 2,2-type. For the trilinear material, (4.1) yields

1/2 , 1/2c = (p) /2, c' = (/p) < c , (4.2)

as the (constant) speeds of shock waves of 1,1 - and 3,3-type, respectively. For phase boundaries,

one shows easily that the ranges of the velocity s permitted by (4.1) are as given in Table 1

below for the various combinations of phases.
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TABLE 1

Typt: or phase boundary Range of velocity

' 2 2
1,3 or 3,1 0 < s < c.

* 2 ,2

2,3 or 3,2 0 < s < c
2 2

2,1orl,2 0 s < c

In the table above,

( 2 + 2 1/2

c*= ( Ym) (4.3)

With the help of Figure 2, one shows easily that pc* is the maximum slope of the chord

connecting two points on the trilinear stress-strain curve, one of which lies in phase 1, the other

in phase 3. Note that c' < c* < c. A phase boundary for which Isl < c' is said to be subsonic; it is

supersonic if Isl > c'. It should be observed from the table that the cases for which s = 0,

corresponding to stationary phase boundaries, are not excluded. They correspond to points on the

hexagon ABCDEFA in Figure 7; at all such points, a(4) = +(j'), as in the case of the

equilibrium phase boundaries discussed in the previous section.

At any strain discontinuity, there is a driving traction. For a shock wave in a trilinear

material, f = 0, because - as remarked in Section 2 - the driving traction at a discontinuity

vanishes whenever the strains on the two sides are such that the stress-strain curve is linear

between them. On the other hand, for a phase boundary of 1,3-type, the definition (2.11) yields

=8_ff3(y,y) 2 (4Lt- )(YM/m - YY), (4.4)
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while for a 3,1-discontinuity,

A _+ 1 A _f = f 31(' "7) -2 (  Yt  'jM) /-YMm ) =-f 13(-,/') (4;5)

When = b, (4.4) can be immediately reduced to the representation (3.4) for the static driving

traction.

For discontinuities involving phase 2, it is easily seen that

A A +) A A -+
f1 2 (,{ )> 0, f (y f3 2 (y, Y)> 0, f2 3(Yy) < 0, (4.6)

12( -++1Yy3('+2

for all appropriate values of y and y. Since discontinuities involving phase 2 turn out to be

unimportant, we will not need explicit formulas for the driving tractions occurring in (4.6).

The admissibility inequality (2.12) is trivially satisfied for shock waves, which are

dissipation-free for the trilinear material. For phase boundaries, however, the admissibility

requirement has strong implications. To begin with, it further restricts the ranges of the phase

boundary velocities, nominally given by the inequalities in Table 1. For a 1,3-phase boundary,
A

for example, (4.4) shows that the driving traction f = f13(y, y) vanishes on the portion of the+-3

hyperbola yy = ym that lies in the 1,3-region 13 of Figure 7; the driving traction at a

1,3-phase boundary is thus positive for strain pairs y, y that correspond to points on one side of

this hyperbola, negative at points on the other side. By (2.12), the sign of the phase boundary

velocity s is restricted accordingly, as illustrated in Figure 8. It is easily shown that, in the part

of F 13 where s > 0, the supremum of the values of is c*, but where s < 0, the supremum is

.2c 2. Combining this restriction with the appropriate entry in Table 1 yields the more restricted

range - c'< s < c* for the phase boundary velocity. Similar considerations apply to the other
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cases; the results are summarized in Table 2 below. If the material into which a phase boundary

is advancing is said to be in the parent phase, the first two lines of Table 2 assert that, if a phase

boundary between phases 1 and 3 is supersonic, then the parent phase is necessarily phase 3.

TABLE 2

Type of phase boundary Range of admissible velocity

1,3 C < s < c

3,1 -c.< S < C"

2,3 -c'<s O0

3,2 0<s<c'

2,1 -c<s-<0

1,2 01s<c

Figure 8 also shows the subregions of F13 that correspond to subsonic and supersonic phase

boundary velocities. Further implications of admissibility arise in Section 6.

Next, it is convenient to record here some formulas that will be useful later. Suppose that

x = s(t) is a 1,3-phase boundary at time t; from (4.1), (4.2) and the explicit form of the trilinear

stress response function a(y), one can relate y(t) to y, (t) and s(t) by

= 3 (s) y (1,3-case), (4.7)

where 3 (s) is defined in terms of the wave speeds c and c' by

2 *2
C -s

s) 2 s ±c'. (4.8)
C2-_ s2
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Similarly, at a 3,1-phase boundary, one has

1
y (3,1-case). (4.9)

S(s)

Finally, we use (4.1) and (2.11) to map the set F of possible strains at a discontinuity

from the , +-plane of Figure 7 to the s, f-plane of Figure 5. For our purposes, it is sufficient to

describe the restriction of this mapping to the subregion F 13 of F that corresponds to phase

boundaries of 1,3-type; see Figure 8. To do this, we make use of the explicit formulas (4.4),

(4.7). Each point (') in F13 that does not lie on the segment BC in Figure 8 is carried to two

points (+s, f ) and (-s, f ) in the s, f-plane, only one of which satisfies the admissibility condition

(2.12). In contrast, each point on BC maps to a single point (0, f ), trivially admissible, on the

f-axis, with f f:5 fM, where f and fM are the minimum and maximum values of the staticfaiwtfm m rn

driving traction. All points on the y-axis in F 13 correspond to phase boundaries travelling at the

sonic speed c'; they map to the same pair of points (±c', f0) in the s, f-plane. Each point (y ) on

the hyperbolayy = m M in F13 maps to a pair of points ( s,0) on thes-axis, with 0:< s < c'.

Figure 9 shows the admissible image in the s, f-plane of the region F 13 in the y', -plane, which is

shown in the inset; hatched regions in the two planes correspond, as do dotted regions.

A significant conclusion can be drawn from Figures 5 and 9: the quasi-statically

admissible region of Figure 5 (shown hatched), when truncated so as to allow only subsonic

phase boundary speeds Isl < c', is a subset of the dynamically admissible region of Figure 9. The

curve K in Figure 9 is now the graph of the restriction to subsonic speeds of the kinetic response

function f = (PIP
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5. The Riemann problem. We now formulate the Riemann problem for the field

equations and jump conditions (2.4)-(2.7). We seek weak solutions of the differential equations

(2.4), (2.5) on the upper half of the x,t-plane that satisfy the following initial conditions:

Y(,+) L ' - 00< x < O '  { VL9 'O < x<O'
(xe0+)=vv (x, 0+) = (5.1)

I/R' 0 <X<+O-, IV R ,  0 <x<+-o,

where yL, yR, VL, and vR are given constants, with YL> -1, yR >-I .

In order to motivate the class of functions in which the solution is to be sought, we first

note that the initial value problem is formally invariant under the scale change x -> kx, t -> kt,

suggesting that we seek solutions with this invariance property as well. Where such solutions are

smooth, they must have the form y = y (x/t), v = v (x/t); it then follows from (2.4) and (2.5) that,

in a domain where y and v are smooth, either y and v are both constant, or the equality a'(y (x/t))

= p (x/t) 2 must hold. But for the trilinear material, a'(y) is piecewise constant, so that fans

cannot occur, and the last relation can hold only on shock waves. If either Y or v jumps at x

s(t), then the fact that y and v are constant on either side of x = s(t) necessarily requires that s(t)

= st, where s is a constant. We conclude that solutions with the invariance property described

above must have the following form:

x,t)=Y., v(x,t)=v., s.t _< x _< s. t, j=O,1,...,N, (5.2)
J J J J +1

where y., v., s. and N are constants, with N a non-negative integer, and yo = yL, yN = yR,
J J J

v0 = v U VN VR9 S0 = " N+1 = + ; see Figure 10. The case N = 0 can occur only ifyL

yR andvL=vR. The y.'s are required to satisfy y. > -1 forj = 0,...,N; if N > 0, it is also required

that y. y+ j = 0,...,N-1. In the field given by (5.2), there are N strain discontinuities on lines
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x = s.t ; they may be shock waves or phase boundaries. If x = s.t is a shock wave, then s. must
J J J

take one of the four values ± c, ± c'. Since by Table 2, no discontinuity can travel faster than c,

we have

-c5sI < s 2 
<  <  N < c ". (5.3)

We seek solutions of the Riemann problem in the class of all functions of the form

described above.

At each discontinuity, the jump conditions (2.6), (2.7) must be satisfied, so that

sj (- j.1) =- (vj-Vj) J j=1,....N, (5.4)

e("/j) - (jl =-P s. (vj -vj.1),

where it is understood that a is the stress response function for the trilinear material (Figure 2).

Let f. stand for the driving traction on the discontinuity at x = s.t; the admissibility condition
J J

(2.12) then requires

f.s. 'a 0, j=l .... N. (5.5)
J J

An admissible solution of the Riemann problem is a pair y(x,t), v(x,t) of the form (5.2) such that

(5.3)- (5.5) hold. We shall find that, in general, this Riemann problem has many admissible

solutions.

6. General features of the Riemann problem. We shall call the initial data in (5.1)

metastable if neither of the initial strains yL, TR belongs to phase 2. From here on, we shall
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consider only this case. Before constructing explicit global solutions, it is convenient to establish

some general results pertaining to the structure of admissible solutions when the initial data are

metastable.

Let (yv) be an admissible solution to a Riemann problem with metastable initial data.

Then

(i) for j = 0,...,N, no strain y in (5.2) belongs to phase 2;

(ii) (y,v) involves at most two subsonic phase boundaries; if there are two, one

moves with non-negative speed, the other with non-positive speed;

(iii) (y,v) involves at most two supersonic phase boundaries; if there are two, one

moves with positive speed, the other with negative speed;

(iv) either all phase boundaries are subsonic, or all are supersonic.

To prove (i), we first note that the result is trivially true if N = 0 or 1, so we may assume

that N ! 2. Suppose that, for some k O,N, we have'k in phase 2. Since 2,2-shock waves do not

exist, neither yk-1 nor yk+l can be in phase 2. It follows that x = skt is either a 1,2- or a 3,2- phase

boundary. According to (4.6), the driving traction at this phase boundary must be positive in

either case, whence by the admissibility requirement (5.5), necessarily sk > 0. Similarly, the

phase boundary x = k+1 t must be either of 2,1- or 2,3-type, so that by (4.6), (5.5), one has

Sk+l 0. Thus s > sk+l ' contradicting (5.3). It follows that no phase-2 strain yk can emerge

from metastable initial data; this is a consequence of the fact that admissibility prevents an

increase in length of any portion of the bar that bears a phase-2 strain and is terminated at both

ends by phase boundaries.

Turning to (ii), we note first that the assertion is trivially true if N<_2, so we may assume

that N_ 3. We first show that, if x = skt and x = sk+1 t , k = 1,...,N-1, are adjacent subsonic phase
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boundaries in the representation (5.2), then necessarily

Sk < 0 < sk+1 (6.1)

To prove (6.1), we begin by inferring from the result in (i) that either (a) x = s kt is a 3, 1-phase

boundary while x = sk+lt is of 1,3-type, or (b) the reverse is true. Suppose (a) is the case. Then

by (4.7) and (4.9), we have

1 (S k+1)  (6.2)Yk = (k---Yk-I ' Yk+l = P(S k+l ) k =  Yk k- I'(.2

i___k P f(s k)

where [P is defined in (4.8). The driving tractions fk and fk+I acting on the two phase boundaries

can be calculated from (4.5) and (4.4), respectively; using these in the admissibility conditions

(5.5) for j = k and j = k+1 leads immediately to the inequalities

gk sk < 0, gk+S > 0 (6.3)

where

gk = YMYm - Yk lyk , gk+l1 = YMYm Yk 7 k+1 .  (6.4)

Suppose that sk > 0. Then by (5.3), s k+ > 0 as well, so that (6.3) gives gk < 0 gk+ 1 0, hence

gk+I- gk > 0. (6.5)

By (6.4) and (6.2),
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-=[k - s (kO ; (6.6)gk+lI - gk =- l2k ( * k) -P'~

from (6.5) and (6.6), it follows that 3(sk) > jP(sk+1 ). On the other hand, since sk and s k+ are both

positive and subsonic, the definition (4.8) yields P(Sk ) < s(Sk+1). This contradiction shows that

sk < 0. Next, if one assumes that sk+l < 0, an argument similar to that given above leads again

to a contradiction, establishing the result (6.1) in case (a). Case (b), in which phases 3 and 1 are

interchanged, is treated by a similar argument. This establishes (6. 1).

It then follows that for no value of j among the integers 0,...,N-1 can it be so that either s.
j

< sj+ 1 < 0 or 0 < s i < sj+ 1 when x = s t and x = s j +1t are subsonic phase boundaries. Thus there

are two possibilities: either there are exactly two subsonic phase boundaries x = sk t and x = sk+1

t, with sk < 0, S k+ > 0, sk < sk+1 ' or there are three, with velocities sk' Sk+1 and sk 2 such that

Sk < Sk+l = 0 < Sk+2 (6.7)

In order to complete the proof of proposition (ii), we need only show that the second possibility

cannot occur. Suppose the contrary, so that there are three subsonic phase boundaries whose

velocities satisfy (6.7). Note from (6.7), (4.8) that 0(Sk) > ('Sk+ ) > 0 and 0(Sk+2) > 13(s k+) > 0,

whence

P(s k) P (sk+2 ) > P 2(sk+) (6.8)

Again, there are two cases: either (a) x = skt, x = sk+ t=0 andx=s k+2t are phase boundaries
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of type 1,3, type 3,1 and type 1,3, respectively, or (b), they are of type 3,1, type 1,3 and type 3,1,

respectively. In either of these two cases, the admissibility conditions (5.5) applied to the two

moving Ihase boundaries x = Skt and x = sk+2t can be shown to require that 3(Sk)(sk+2) <:

132(sk+1) , contradicting (6.8) and ruling out the occurrence of three subsonic phase boundaries.

Proposition (ii) is therefore established.

To prove proposition (iii), we first note that, according to proposition (i), each phase

boundary is either of 3,1-type or of 1,3-type, so that, according to Table 2, the velocity of a

supersonically moving phase boundary must lie in one of the two intervals [c', c.), (-c*, -c'].

Suppose there were two or more supersonic phase boundaries with velocities in [c', c. ), and let

x = Skt and x = Sk+lt be two adjacent ones. By Table 2, each of these must be of 1,3-type, which

is impossible. Similarly, there cannot be two or more phase boundary velocities in the interval

(-c* , -c]. Thus at most two supersonic phase boundaries can occur; if there are two, one moves

with velocity in [c', c,), the other with velocity in (-c*, -c], establishing proposition (iii).

Finally, we take up proposition (iv). Suppose that (y, v) involves both subsonic and

supersonic phase boundaries. Then there are phase boundary velocities si and Sk such that

s.r (-c', c') and either SkE [c', c.) or skE (-c. , -c']. Suppose first that SkG [c' , c.); assume that i

corresponds to the subsonic phase boundary with greatest velocity, k to the supersonic phase

boundary, so that there can be no other phase boundaries between x = s.it and x = Skt. By Table

2, the supersonic phase boundary must be of 1,3-type. The subsonic boundary x = sit must

therefore be of 3,1-type. (No shock wave could intervene between these two phase boundaries,

because it would have to be a 1,1-shock, whose velocity ±c could not lie between s, and sk

According to Figure 8, the phase- 1 strain between the two phase boundaries must be negative if x

S kt is to be supersonic. But it can be readily shown that this is inconsistent with the assumption
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that the 3,1-phase boundary at x = s.t is subsonic. This contradiction rules out s e (-c',c'),1 1

ske [c' ,c.); the possibility that ske (-c. , -c] is ruled out by a similar argument. Proposition (iv)

is thus proved.

The arguments used to establish the four results above depend critically on the

admissibility inequalites (5.5), which in turn are consequences of the second law of

thermodynamics, if the processes under consideration here are viewed as taking place

isothermally.

7. Explicit solutions. The qualitative results established in the preceding section make it

possible to construct explicitly all admissible solutions to the Riemann problem for the trilinear

material in the case of metastable initial data. We say the initial data is of p,q-type if TL is in

phase p, yR in phase q, and we speak of a p,q-Riemann problem. For metastable initial data,

there are four cases of the Riemann problem: initial data is either of 1,3-type, 3,1-type, 1,1-type

or 3,3-type. In the first two cases, the initial data involves two distinct phases, while in the last

two, the initial data is associated with a single phase. By symmetry, the second case need not be

considered once the first case has been treated. We begin with the case of 1,3-initial data.

(i) The Riemann problem for 1,3-initial data. For such data, one has 6L6 (-1, ,M ,

y Re [ym, c-). In view of proposition (i) of the preceding section, the solution yv must involve an

odd number of phase boundaries. However, by results (ii)-(iv) of that section, no more than two

phase boundaries can occur. Thus precisely one phase boundary is involved, and it may be either

subsonic or supersonic. We begin with the subsonic case.

(i(a))1-3 initial data: solutions with one subsonic phase boundary. In (5.2), we take N =

3, with sl = -c, s2 = s, s3 = +c', where -c' < s < c' ; this allows for one subsonic phase boundary

x = st and two shock waves, the left one at x = -ct of 1,1-type, the right one at x = c't of 3,3-type.
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Thus we have (see Figure l(a)):

I L' VL, -oo<X<-Ct,
V, V' -ct < x< St,71

'v = s, +, St<<C't,

YR' VR' C' <X <+O,

where 7, ,,, v and s are unknowns, with

0 < i' < 7M' Y >y -C'<s <C'. (7.2)

(The fact that y > 0 follows from Figure 8 and the assumption that Isl < c'.)The five unknowns are

to be found from the jump conditions (5.4), which under the present circumstances reduce to

- c - L ) = - (i' - VE), (7.3)

S( -Y)=-(v-v), (7.4)
,f2+ 2- . +_c'Y-C 72 =-s (v- V€), (7.5)

C'( TR- ) =- (VR- v ). (7.6)

These comprise four equations for the five unknowns, suggesting a one-parameter family of

solutions. Indeed, solving (7.3)-(7.6) fory, v,y and v, in terms of s gives

c'+S + c-s
y=- h, y= h,

c+ s c'-
(7.7)c'+s + c -s

'=V L -c YL+ ch, v=VR +C'YR c-
c+s -s

where
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h = (c YL + c'YR + VR VL)/(c + c' ). (7.8)

Note that h depends only on the material and the given data, and that the strains y and y depend

on the initial data only through h. By (7.2), (7.7), the inequalities

c+ s c-s
0<- h-<M -hhYm , -c'<s<c', (7.9)

must hold. One shows easily that the leftmost inequality in (7.9) holds automatically if the

remaining inequalities are satisfied. It also follows that the initial data must necessarily be such

that

h>0. (7.10)

Thus altogether, h and s must satisfy

c'-s c+s
Ym < h YMc+s -c' < s < c'. (7.11)

In the s,h-plane of Figure 12, the inequalities (7.11) describe the region on and between the top

and bottom curves C1 and C2 . The respective equations for C1 and C2 are h = YM(c + s)/(c' + S)

and h = ym(c' - s)/(c - s), - c' < s < c'.

Let 1,3-initial data be given such that h in (7.8) is positive. For any such h, Figure 12

shows that there is a range of s - a subinterval of (- c', c') - in which (7.11) hold. For each s in

this range and for the given h, define y,, and v by (7.7), yand v by (7.1). Then (7.2) are
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satisfied, and the set of all pairs yv so constructed comprises a 1-parameter family (parameter s)

of solutions to the Riemann problem for the given h; in each solution there is a subsonically

moving phase boundary. The condition (7.10) on the initial data is therefore necessary and

sufficient for the existence of solutions of the form (7. 1) with a subsonic 1,3-phase boundary in

the case of 1,3-initial data. We now determine which of these solutions, if any, are admissible.

Since the phase boundary in the solutions constructed above is of 1,3-type, the associated

driving traction f is given by (4.4), with y, y given by (7.7) 1,2 thus

S J (c'+s) (c - s) 2(f = ( ( I 'mM - . (7.12)

With this f, the admissibility condition (5.5) leads to the requirement

I (c'+s)(c's) h2 > 0. (7.13){YM (c " *s)(c + )

Inequality (7.13) reduces the set of solutions to that corresponding to the hatched regions in

Figure 12; the "Maxwell curve" M shown in the figure is the curve along which the contents of

the braces in (7.12) vanish, and thus on which f = 0. All points in the hatched region correspond

to admissible solutions of the present Riemann problem. As expected, the entropy condition for

admissibility (5.5) does not deliver uniqueness. Indeed, Figure 12 shows that, for every positive

value of h except h=o /(±')I/2 , there is a 1-parameter family (parameter s) of admissible

solutions of the Riemann problem. For the exceptional value of h, there is a unique admissible

solution; it has a stationary 1,3-phase boundary (s = 0) with zero driving traction. This solution

tends for large time to an equilibrium mixture of phases 1 and 3 at the Maxwell stress. All other
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values of the initial datum h in the interval [Om/(g , )1/ aV/(g , ) 12 correspond to solutions

that give rise either to long-time mixed-phase equilibria corresponding to s = 0 or to single-phase

equilibria (s * 0); the mixed-phase equilibria are not Maxwell states, and hence are metastable:

For values of h outside this interval, the corresponding long-time equilibrium states involve only
/ ,1/2 ,,1t2

a single phase: phase 1 if 0 < h <a /(gp ) , so that s > 0, phase 3 if h > aM/(g ) , in which

case s < 0.

For some special values of the initial data, one - or even both - of the shock waves may

be absent.

Finally, we shall show that the extent of the lack of uniqueness remaining after the

imposition of admissibility is exactly that required for the further imposition of the kinetic

relation (3.6) at the phase boundary, and that when the kinetic relation is invoked, it singles out

precisely one solution to the Riemann problem presently under consideration. We first use

(7.12) to map the s,h-plane of Figure 12 into the s,f-plane of Figure 9. The hatched regions in

Figure 9 are the images in the s,f-plane of the hatched regions in the s,h-plane corresponding to

the totality of admissible solutions. The curves C1 and C are the images of the left half of C11 2

and the right half of C2, respectively; the i-axis in the s,f-plane is the image of the Maxwell

curve M in the s,h-plane. In Figure 9, we have sketched schematically the graph K of the

kinetic relation f = (P13(s), with s restricted to the interval (-c', c'). The pre-image K in the

s,h-plane of K is found from (3.6), (7.12) to be described by

n(i)' - 1/2
h =4(s) ~~/2 1 T13N c- s)(c + s) ~.(.4h = L() -m M )  f (c' +s)(c- s) (7.14)

the curve K is shown in Figure 12. The fact that the kinetic response function SP3(S) is
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monotonically increasing can be used to show that C1(s) in (7.14) is monotonically decreasing.

Also, D(s) -> +o as s -> -c', and 4(s) -> 0 as s -> c'. It follows that for any given h>O, (7.14)

determines a unique s in the interval (-c',c'), with the understanding that s - 0 if the given h lies

in the interval [4(O-), 4D(O+)]; see Figure 12. This unique s, when used in (7.7), furnishes the

unique admissible "subsonic" solution to the 1,3-Riemann problem that is consistent with the

kinetic relation f = (PI).

Since two distinct phases are present in the initial data, the occurrence of a phase

boundary in the solution is inevitable, and no appeal to the initiation criterion is necessary.

(i(b)) 1,3-initial data: solutions with one supersonic phase boundary. The case of

"supersonic" solutions to the 1,3-Riemann problem is quite different. By Table 2, if there is a

supersonic 1,3-phase boundary, its velocity must lie in the interval (c', c.). Thus in conformity

with the results of Section 6, we take N=2 and *l=-C in (5.2), and we set is 2=s with -c' < s < C,.

This allows for a single supersonic phase boundary at x=st and a shock wave of 1,1-type at x=-ct;

see Figure 1 lb. We thus write

/L,VL, -- <X<-Ct,
y, v V= Yo0' v0' 9 ct < x < t , (7.15)

YR' VR' st <X<+*,

where y0, v0 and s are unknowns, subject to -1 < < 0, c' < i < c,. (From Figure 8, it can be

seen that yo must be negative since the phase boundary is to be supersonic; part of the bar is thus

contracted.) It is readily shown that the jump conditions (5.4) reduce in this case to three

equations for the three unknowns. Analysis of these equations shows that they have a solution

with y0, s satisfying the restrictions given above if and only if the 1,3-initial data are such that
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1 C c'_t -c cE2R+(c2 +C)YR +C21 t< h<O, (7.16)
c+C

where h is defined by (7.8). The leftmost inequality in (7.16) arises from the requirement that"yo

be greater than -1, which in turn stems from the requirement that the mapping x-> x+u(x,t) be

invertible at each t. If the initial data satisfy (7.16), then there is a "supersonic" solution of the

above form to the 1,3-Riemann problem, and it is unique. Moreover, it can be verified that this

solution is automatically admissible. We observe that there is no possibility of imposing the

kinetic relation in the supersonic case of the 1,3-Riemann problem.

(ii) The Riemann problem for 1,1-initial data. If the initial data involve only phase- I

strains, it is clear that a solution of the form (5.2) must involve either no phase boundaries or an

even number of them. The results of Section 6 then show that the number of phase boundaries

is either zero or two. Moreover, Table 2 can be used to show that, if phase boundaries are

present, they are necessarily subsonic.

The 1,1-case exhibits a feature not present in the case of the 1,3-Riemann problem just

discussed. We shall find that, for certain initial data, there is a solution with no phase boundary

as well as a solution with two phase boundaries satisfying the kinetic relation, making it

necessary to invoke an additional constitutive principle to select between these two solutions.

Making such a selection is equivalent to specifying when the bar changes phase and when it does

not; this is precisely the role of the initiation criterion for the phase 1 -> phase 3 transformation.

(ii(a)) 1,1-initial data: solutions with no phase boundaries. Take N = 2 in (5.2), and set

s =- c, S2 = c, corresponding to two shock waves of 1,1-type; see Figure 13(a). We thus seek a

solution in the form
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I LVL, -oo<X<-Ct,

,v= '0 VYo -ct<x< ct, (7.17)

YRVR, ct<x<+oo,

in which YL and YR both belong to (-1, yM], and y,, v 0 are the only unknowns. Let

h = (cyL + cYR + VR- VL)/( 2 c) (7.18)

be the 1,1-counterpart of h as defined for the 1,3-case in (7.8). Analysis of the jump conditions

(5.4) in this simple case shows immediately that o = h, and that there is a solution of the form

(7.17) (i.e., without phase boundaries) to the 1,1-Riemann problem if and only if the 1,1- initial

data are such that

- 1 < h _ aM/pg; (7.19)

moreover, when the datum h lies in this range, there is precisely one such solution. Since this

solution involves only shock waves, it is trivially admissible because the material is trilinear, the

kinetic relation is of course irrelevant, since no phase boundaries are present.

(ii(b)) 1,1-initial data: solutions with two phase boundaries. In view of the results of

Section 6, in this case we must take N = 4 in (5.2) and set s 1 =-c, s2 
= s s3 = S* 9 s4 

= c,

where - c' < s < 0 < 's < c'. This corresponds to two shock waves of 1,1-type and two subsonic

phase boundaries, one of 1,3-type at x = st, another of 3,1-type at x = set; see Figure 13b. We

thus seek a solution in the form
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TL, VL, -oo<x<-Ct,
7I' Vl' -Ct<X< it,

Sv = y2 ,v 2 ' t < x < s~t, (7.20)

T3 v3 , s~t<x < ct,

tR, VR, Ct<X<+ o,

in which YL' YR both belong to (-1, yM], and y, v1 ' Y2' v2' Y3' v3' s and s, are unknowns.

The jump conditions (5.4) reduce in the present case to six equations for the eight

unknowns, and these equations can be readily solved for the strains and particle velocities in

terms of the phase boundary speeds s and s*; in particular, one finds

c,2 *2 c,2 * 2
T=2c - h, y=2c h, y3 = 2c - h, (7.21)

1)2 ~s sY2 T3  2.21 2 2 A(S,.) A(SS.) C ,c S A(S, S)

where h is given by (7.18), and

'2 -2 C2-

A( S,)O - + . + .s > 0. (7.22)c-S c + S*

In order that the strains yr, y2 , y3 belong to the appropriate phases, one must ensure that

-1 < Y1 <YM' Y2-!Ym '  -1 < Y3<YM . (7.23)

Using an approach parallel to that in sub-section (i(a)), it is possible to proceed directly

from (7.21) to show that there is a non-empty region in S, S,, h- space in which the requirements

(7.23) and the admissibility conditions (5.5) are satisfied, so that - for a given h in a suitable
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range - (7.21), (7.22) provide a 2-parameter family (parameters s, s) of admissible solutions

with two phase boundaries to the 1,1-Riemann problem. Imposing the kinetic relations at the

two phase boundaries would then lead to a pair of equations to determine s, s* and hence a

unique solution.

It is more efficient, however, to impose immediately the appropriate kinetic relations a

the two phase boundaries. To this end, we first use (4.4), (4.5) and (7.21) to find the driving

tractions f and f* acting on the phase boundaries x = st and x = s respectively:

c=(t'I' 2 f =- C ('\-( ') ' 724)2 .2 2C 2 S.

where y2 is given by (7.21) 2 . The kinetic relations are

f = ( 13(s) , f. = (P31(s.), (7.25)

where 913 and (P31 are the kinetic response functions associated with phase boundaries of

1,3-type and 3,1-type, respectively. The analysis is greatly simplified by assuming, as we shall,

that the bar is symmetric in the sense that the driving traction acting on a 1,3-phase boundary

moving with velocity s is the negative of the driving traction acting on a 3,1-phase boundary

moving with velocity -s. Thus the kinetic response functions 913 and (P3 are required to satisfy

tP13(s) = - (P3 1(-s), -C' < <c'. (7.26)

Note that, by (7.26) and Figure 5, 913(0+) = -q(31(0-) = fM' (P13(0-) = "(P31(0+) = f "
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Eliminating )2 between the two statements in (7.24) yields

c 2 - i2 
c

(f f) .2) =_ (f, +f) ( C12 ._2 (7.27)

where f = (i - ') YmMYm/ 2 > 0. Using (7.25) to express f and f, in (7.27) in terms of (P13 and

(P31 and invoking (7.26) allows us to rewrite (7.27) in the form

0(s) = O(- s,), (7.28)

where the function 0 is defined by

2 *2
O(s) = [13(s) 0- f]c,2 *2 '-c < 0. (7.29)

The fact that P13 is non-positive and strictly increasing on (--C, 0] makes it possible to show that

0 is strictly increasing on (-c', 0]. Since both s and - s, lie in (-c', 0], it then follows from (7.28)

that

=-s . (7.30)

This result allows us to simplify (7.22) and (7.21) to get

,2 *2

ch, Y2  2 ch, -c'<s< 0, (7.31)
(c + s)(c -cs) (c' -cs)
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where h is given in terms of initial data by (7.18). Recall from (5.3) that s < s,, so that, by

(7.30), s * 0. Since s < 0 < s , all particles of the bar are in phase 3 in the long-time equilibrium

state; mixed phase equilibria cannot emerge as long-time limits from pure phase-1 initial states

In order to complete the solution, we must determine the phase boundary speed s from

the kinetic relation (7.25) 1, making use of (7.24) 1 and (7.31)2 ; it is then only necessary to verify

that the strains given by (7.31), evaluated at the appropriate s, conform to the requirements

(7.23). We begin by noting that, in view of (7.31), the inequalities (7.23) reduce to

12 *2c_ s c-s21 <ch<TM , , .ch _> 7. (7.32)(c + s)(c' 2 - cs) (c -cs)

The rightmost inequality in (7.32) shows that the initial data must be such that h > 0, and if this is

the case, the leftmost inequality holds automatically. Indeed, the remaining inequalities to be

enforced are

c 2 -cs (c + s)(c 2 - CS)
7 M<2 h 5 2 , -c <s<0 . (7.33)

The region in the s,h-plane described by (7.33) and shown in Figure 14 lies between the curves

G1 and G2 and the lines s = -c', s = 0; note that for every h > Fm/ , there is a non-empty range of

s such that (7.33) holds. If s -> 0 - with h fixed in [am/gt, aM/], the solution given by (7.20),

(7.31) tends to the solution without phase boundaries constructed in subsection (ii(a)). Thus the

vertical segment S = 0, mTm/lt 5 h < M/ t in Figure 14 may be thought of as corresponding to

solutions without phase boundaries.

If (7.30) and (7.31) are used to compute the driving tractions in (7.24), it is found that

-39-



1 m (C' 2 2)( C) C2h 2  f. (7.34)
=2 ( -) M- (c,2 _ cs) 2(c + s)

Since s < 0, s, > 0, it then follows that admissibility of both phase boundaries is equivalent to

the single inequality f < 0. Making use of (7.34)1' we find that the admissible subset of the

region described by (7.33) is that determined by the following inequalities:

(YmVM[ 1 / 2 (C'2 - cS)(c + s)1/2 (c + S)(c' 2 - cs)

- c2 2 1/2 < h < "M2 2 c'<s<0; (7.35)c (c, s )(c - * )]1/ c (c' - s2

this admissible region is shown hatched in Figure 14.

Because of (7.34)2 , (7.30) and (7.26), each of the kinetic relations in (7.25) implies the

other, so we need only consider, say, (7.25) 1 . We shall now show that (7.25) 1 picks out a

unique admissible, two-phase-boundary solution of the 1,1-Riemann problem. As in the

discussion of the 1,3-Riemann problem above, we begin by using (7.3 4 ) 1 to map the region in

the s,h-plane characterized by (7.35) and shown in Figure 14 into the s,f-plane. It is found that

the image of this set under the mapping is exactly the region between the curve C1 and the s-axis

shown in Figure 9. From this, as in the case of the 1,3-Riemann problem, it follows that a

kinetic response function (P13 (s) appropriate for quasi-static motions remains appropriate in the

dynamical case, provided s is restricted to the subsonic range. Finally, we note that when the

driving traction is eliminated between (7.25)1 and (7.34) 1, the result is an equation to determine

the value of the parameter s in terms of the given h; this equation may be written in the form

h = U(*s) -= (yrnmYM) 1/2 1(c '2- Cz2 (C + SO I ) 1) 1 / , -c' <s< 0 (7.36)
c I(c 2 _ s2)(CS) f
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The japh of the function P in (7.36) is shown as the curve K' in Figure 14; P is a strictly

decreasing function of s on (-c', 0), and P(-c'+) = +O, '(O-) = Y./gI, where Y. = a(1 - f /f ) I/2.

Since f < 0, one has a < a c a M . It follows that for all initial data such thatm o * M

h > o,/4t (7.37)

the kinetic relation, expressed in the form (7.36), determines a unique velocity s = V(h) < 0 for

the left phase boundary x = St.

Thus there is a unique admissible solution to the 1,1-Riemann problem of the form (7.20),

with two phase boundaries conforming to the kinetic relations (7.25), if and only if the given

1,1-data are such that

a4./p, < h < + . (7.38)

On the other hand, from the results of subsection (ii(a)), it follows that, when the initial

datum h satisfies

o./ < h < ONM/, (7.39)

the given Riemann problem also has an admissible solution of the form (7.17) with no phase

boundaries. Thus for -1 < h < a./., the 1,1-Riemann problem never leads to a phase

transformation; for h > aM/I, it always does. For the intermediate values of h where both types

of solutions exist, a criterion for the initiation of a phase transition is necessary to select the

appropriate solution; such a criterion will be discussed below.
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(ii(c)) 1,1-initial data: initiation criterion for the phase transformation. As observed

above, when the 1,1-initial data is such that h lies in the interval (oF./gt, aYM/k], the bar may

respond by generating only shock waves at x=t--O, thus remaining entirely in phase 1 for all time,

or it may generate a pair of phase boundaries as well as shock waves at x=t=O, in which case the

bar ultimately finds itself entirely in phase 3. To determine which of these events occurs, we

adapt to the present dynamical setting the initiation criterion discussed for quasi-static phase

transformations in Section 3. The particle located at x = 0 in the reference state "computes", as it

were, the value of h from the given 1,1-initial data in the Riemann problem according to (7.18).

If this h is at least as great as the value Ocr/t defined in (3.8), then the magnitude of the driving

traction on either a leftward-moving 1,3- or a rightward-moving 3,1-phase boundary issuing

from x = 0 would exceed the critical value Ifarl for the phase 1 -> phase 3 transition, as is easilym

shown. According to our initiation criterion, the particle would then spontaneously jump from

phase 1 to phase 3, generating - in the present problem - the two phase boundaries constructed

above. The criterion thus asserts that the bar will respond to 1,1 -initial data in the Riemann

problem by generating two shock waves but remaining entirely in phase 1 as long as the initial

data is such that - < h < Ocr/k; this is the solution constructed in subsection (ii(a)). On the other

hand, when h _ dcr/k, a spontaneous phase transition occurs at x = 0, and the two-phase-

boundary solution consistent with the kinetic relation is initiated, leading to a long-time

equilibrium state in which the bar is entirely in phase 3; this is the solution of subsection (ii(b)).

In his study of the viscosity-capillarity admissibility condition of Slemrod (1983),

Shearer (1986) considers general materials of the type represented by Figure 1. It is of interest to

note that, for a certain class of single-phase initial data, he finds that a given Riemann problem

has two solutions, each admissible by his criterion, one of which involves a phase transition,

while the other does not. Our discussion above would suggest that such a finding manifests the

need for a criterion by which the phase transition is to be intiated.
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A notable special case of the 1,1-Riemann problem arises when the bar is initially at rest

in a smooth phase-1 state: thus vL = vR = 0, and L = 7,R, with the initial strain in phase 1. By

(7.18), h = YL = TR in this case. According to the discussion above, if the initial strain is at least

as great as ccr/g , a phase transition will occur, leading eventually to a pure phase-3 equilibrium

state. Thus even an initially smooth, single-phase equilibrium state may break up dynamically

into a mixture of phases 1 and 3, ultimately coming to equilibrium in a new phase.

(iii) The Riemann problem with 3,3-initial data. In this case, there are three possible

scenarios. The first two are analogous to the two alternatives just discussed in the case of

1,1-initial data: either two shock waves and no phase boundaries occur, leaving the bar entirely

in phase 3, or a phase transition occurs at x = 0, generating a 3,1-phase boundary moving

leftward and a 1,3-phase boundary moving to the right, both subsonic, in addition to shock

waves. The details are similar to those in the 1,1-case, so we omit them. In the third possibility

here, the solution involves two supersonic phase boundaries, unaccompanied by shock waves.

As in the supersonic subcase for 1,3-initial data, this solution is uniquely determined by the data

when it exists, and no kinetic relation can be imposed. The respective sets of initial data that

lead to either of the first two possibilities, on the one hand, or to the third possibility on the other

hand, are disjoint.

8. Concluding remarks. In the case of metastable initial data, it has been shown above

that, as expected, the Riemann problem for the trilinear material requires more than the "entropy

jump condition" of admissibility (2.12) to render solutions unique. We have further shown that,

among the many admissible solutions corresponding to the same initial data and involving phase

transitions accompanied by subsonically propagating phase boundaries, a kinetic relation

controlling the rate at which the transition occurs will pick a unique solution. Under certain

conditions, two types of solutions can arise from a given set of initial data, one of which

involves a phase transition while the other does not. An initiation criterion for the relevant phase
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transition is needed to choose between these two types of response; when such a criterion

mandates the occurrence of a phase transition, the kinetic relation controls the evolution of the

resulting phase boundaries. The fact that the mathematics needs and can accommodate these two

supplementary mechanisms - an initiation criterion and a kinetic relation - seems to be

qualitatively consistent with the view taken by materials scientists, for whom models of

nucleation and of growth of the product phase in the parent phase are an important part of the

explanation of the phase transition process.

Kinetic relations of forms other than that used here could of course be studied. In

particular, rate equations based on thermal activation models for the kinetics of phase

transformations could be investigated; see, for example, Chapter 17 of Rails, Courtney and Wulff

(1976). At a fixed temperature, such rate equations would lead to a kinetic relation of the form f

= p13 (s; a, -) in place of (3.6).

As we have shown, under certain conditions there are solutions to the Riemann problem

with metastable initial data that involve supersonically propagating phase boundaries. For these,

a kinetic relation cannot be imposed, since a solution - when it exists - is uniquely determined

by the initial data alone.

It would be of interest to make clear the relationship between the present direct approach

to the phase transformation problem through kinetic relations and nucleation criteria, and the

approaches based on various "admissibility criteria" of the kind proposed, for example, by

Dafermos (1973) or by Slemrod (1983).

An attempt to generalize the present analysis from the case of the trilinear material of

Figure 2 to any material with a stress-strain curve qualitatively like that of Figure 1 would

encounter a number of complications not present in the trilinear material. First, such materials
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generally give rise to solutions involving "fans" as well as shock waves. Second, shock waves in

such materials will in general be dissipative, in contrast to the dissipation-free "linear" shock

waves arising in the present model. Third, the velocity of shock waves would be a priori

unknown in the more general case. How many of the qualitative properties of the solutions

constructed in the present paper survive for all materials in the class typified by the curve in

Figure 1 is as yet unclear.

One can consider the case of a trilinear stress-strain curve in which the slope of the

phase-2 branch, while less than the slopes for phases 1 and 3, is nevertheless positive, so that - in

contrast to the case treated here - stress is an increasing (although still neither convex nor

concave) function of strain. For such a material, equilibrium mixtures of phases cannot occur,

and there is no counterpart of the quasi-static theory sketched in Section 3. In the dynamical

setting, however, the situation is different. Analysis of a 1,3-Riemann problem for this kind of

material shows that a kinetic relation can again be imposed, and - when invoked - it will pick a

unique solution from among infinitely many admissible ones. This suggests that such a material

will support dynamical mixtures of phases controlled by a given kinetic relation, but such

mixtures will tend to single-phase equilibria in the long-time limit.
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FIGURE 8. VARIATION OF PHASE BOUNDARY VELOCITY s IN F
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FIGURE 9. ADMISSIBLE IMAGE OF lI (INSET) IN s, f-PLANE.
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FIGURE 11. FORM OF SOLUTIONS TO RIEMANN PROBLEM WITH

1, 3 -INITIAL DATA.
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FIGURE 12. THE , h -PLANE FOR 1, 3 - INITIAL DATA.
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FIGURE 14. THE h h-PLANE FOR 1, 1- INITIAL DATA.


