
UNCLASSIFIED - ijF "Y

SECUPI'y CLASSIF1C.Al O, OF TMIS PAGE (When Dora rOt ered

REPORT DOCUMENTATION PAGE -r-,REN O ,LF

1. NEPORT NUMBER 12. 60VT ACCESSION No. 3 RECIIlENt'S CATALOG NUMBER

4. TITLE (ondSubrile) 5. TYPE OF REPORI I PERIOD COVERED

Ada Compiler Validation Summary Report:Encore 27 July 1989 to 27 July 1990
Computer Corporation, Encore Verdix Acia Development System
Version 5.5, Encore Multimax 320 (Host & Target), 8. PEAFOPM1NG")RG. REPORT NUMBER

90727S1. 10128

1. IUTHOR(s) 8. CONTRACT OR GRANT NUMBER(S)

National Institute of Standards and Technology

,aithersburg, Maryland, USA

PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
IAREA A WORK UNIT NUMBERS
Lfl qational Institute of Standards and Technology

o aithersburg, Maryland,
USA

1. CONTROLLING OFFICE NAME AND APORESS 12. REPORT DATEU) Ada Joint Program Office
Y United States Department of Defense 13.'tu.bLK Ut PA6L5

(\j Washington, DC 20301-3081

4. MONITORING AGENCY NAME & ADORESS(If different from Controlhng Office) 15. SECURITY CLASS (of th,s report)UNCLASSIFIED
lational Institute of Standards and Technology

NC. LCSUFICATIOND RAOING

;aithersburg, Maryland, USA N/A

S B. DISTRIBUTION STATEMENT (ofthisReporr)

Approved for public release; distribution unlimited.

17. OISTRIBJTION STATEMENT (ofthe a bsacteneed ,nBfock 20 If ,'ferent from Report)

UNCLASSIFIED DTIC
18. SUPP,.ENEkTAR) NOTES D -:

19. EYWORDS (Continue on ,everse sdc ,fneces Jr) and identf by block number)

Ada Programning language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side of necessary andde nt,f) by block number)

Encore Computer Corporat.ion, Encore Verdix Ada Development System, Version 5.5,

Gaithersburg, MD, Encore Multimax 320 under Mach, Version 0.5 Beta (Host & Target),
ACVC 1. 10.

DD ,u'. 1473 EDITION Of I NOV 65 IS OBSOLETE

I JAM 73 S/N 0o10Z-L-o4-6601 UNCLASSIFIED

, ILCuRI I CLASSIFICATION OF ImIS PAGE (whenoe Entered)

Ada Compiler Validation Summary Report:

Compiler Name: Encore Verdix Ada Development System, Version 5.5

Certificate Number: 890727SI.10128

Host: Encore Multimax 320 under Mach, Version 0.5 Beta

Target: Encore Multimax 320 under Mach, Version 0.5 Beta

Testing Completed July 27, 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Faclit . I

Dr. David K. Jefferson

Chief, Information Systems

Engineering Division
National Computer Systems Laboratory (NCSL)
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, MD 20899

Ada Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses

Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond

Director
Department of Defense
Washington DC 20301

AVF Control Number: NIST89ENC560 2 1.10

DATE COMPLETE ON-SITE: 07-14-89
DATE REVISED: 08-11-89

Ada COMPILER
VALIDATION SUMI.-4AY REPORT:

Certificate Number: 890727S1.10128
Encore Computer Corporation

Encore Terdix Ada Development System, Version 5.5
Encore Mul:imax 320 Host and Encore Multimax 320 Target

Completion of On-Site Testing:
July 27, 1989

Prepared By:
Software Standards Validation Group
National Computer Systems Laboratory

National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

Prepared For:

Ada Joint Program Office
United States Department of Defense

Washington DC 20301-3081

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUM.XARY REPORT 1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2

3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 3-5
3.7 ADDITIONAL TESTING INFORMATION3-5

3.7.1 Prevalidation 3-5

3.7.2 Test Method 3-6
3.7.3 Test Site 3-7

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS Acoession For

4,rI G R A&t
D'Ir tAB

APPENDIX D WITHDRAWN TESTS U:ianxourced 0

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY
Encore Computer Corporation

Distritution/

Avallab.11ty Codes

I,vatl and/or
Dist Special

i II IIIII Iii

CHAPTER 1

INTRODUCTION

This Validation Summary 7 eport ---) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, A.NSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability -(VG)(-f An Ada compiler must be implemented

according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented thAt.
is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it

must be understo-d that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies- -for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a

suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results.- \The purpose of validating is to ensure

conformity of the compiler ,to the Ada Standard by testing that the
compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is ;mplementation dependent, but is permitted
by the Ada Standard. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

f~ /

1-1

1.1 PURPOSE OF THIS VALIDATION SUM.IARY REPORT

This VSR documents the results of the validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any Language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compila but required bv the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

On-site testing was completed July 27, 198" at Marlborzugh, MA.

1.2 USE OF THIS VALIDATION SU M ARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United

States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. p552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this

report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no

nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office

OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standdards Validation Group

National Comput:er Systems Laboratory

National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

1-2

Ada Validation Organization
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1825A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and G'iidelines, Ada Joint

Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada An Ada Commentary contains all information relevant to
the Commentary point addressed by a comment on the Ada

Standard. These comments are given a unique

identification number having the form AI-ddddd.

Ada Standard ANSi/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for

conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures and

Guidelines.

AVO The Ada Validation Organization. The AVO has oversight

authority over all AVF practices for the purpose of

maintaining a uniform process for validation of Ada

compilers. The AVO provides administrative and

technical support for Ada validations to ensure

consistent practices.

Compiler A processor for the Ada language. In the context of

1-3

this report, a compiler is any language processor,
inclIuding5 cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding
a particular feature or a combination of features to the
Ada Standard. In the context of this report, the term
is used to designate a single test, which may comprise
one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be
incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal or
erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies tha class to which it belongs. Class A, C, D, and E tests.
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce errors
because of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal
Ada programs with certain language constructs which cannot be verified
at run time. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada compiler. A Class
A test is passed if no errors are detected at compile time and the

1-4

program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check the run time system to ensure that legal Ada
programs can be correctly compiled and executed. Each Class C test is
self-checking and produces a PASSED, FAILED, or NOT APPLICABLE message
indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a

compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, ;t is
self-checking and produces a PASSED or FAILED message during execution.

Class E tests are axpected to execute successfully and check

implementation-dependent options and resolutions of ambiguities in the
Ada Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations i- the main program or any units
referenced by the main program are elaborated. In some cac,, an
implementation may legitimately detect errors during cc -ilation of the
test.

Two library units, the package REPORT and the procedure CHECKFILE,
support the self-checking features of the executable tests. The package.
REPORT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumven a test objective. The p-ocedure
CHECK FILE is used to check the contents of text files written by some

1-5

of the Class C tests fuir S-hapter 14 of the Ada Standard. The operation

of REPORT aid C'{ECK FLE is checked by a ec of executable tests. These

tests produce messages that are examined to verify that the units are

operating correctly. If these units are not operating correctly, then

the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended

to ensure that the tests are reasonably portable without modification.

For example, the tests make use of only the basic set of 55 characters,

contain lines with a maximum length of 72 characters, use small numeric

values, and place features that may not be supported by all

implementations in separate tests. However, some tests contain values

that require the test to be customized according to

implementation-specific values--for ex:ample, an illegal fiie name. A

list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and

demonstrate conformity to the Ada Standard by either meeting the pass

criteria given for the test or by showing that the test is inapplicable

to the implementation. The applicability of a test to an

implementation is considered each time the implementation is validated.

A test that is inapplicable for one validation is not necessarily

inapplicable for a subsequent validation. Any test that was determined

to contain an illegal language construct or an erroneous language

construct is withdrawn from Lhe ACVC and, therefore, is not used in

testing a compiler. The tests withdrawn at the time of this validation

are given in Appendix D.

1-6

CHAPTER 2

CON-FC-UTRATION INFORcATiON

2.1 CONFIGURATION TESTED

The candidate compilation sys:em for this validation was tested under
the following configuration:

Compiler: Encore Verdix Ada Development System Version,
5.5

ACVC Version: 1.10

Certificate Number: 890727S1.1 0128

Host Computer:

Machine: Encore Multimax 320

Operating System: Mach, Version 0.5 Beta

Memory Size: 16MBytes

Target Computer:

Machine: Encore Multimax 320

Operating System: Mach, Version 0.5 Beta

Memory Size: 14-Bytes

2-I

2 2 IMPLE%ENTATIO. CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

a. Capacities.

(i) The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002K.)

(2) The compiler correctil processes tests containing loop
statements nested to 65 levels. (See tests D55AO3A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17

levels. (See tests D64005E..G (3 tests).)

b. Universal integer calculations.

(1) An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX IINT.

This implementation processes 64-bit integer calculations.

(See tests D4A002A, D4AO02B, D4AO04A, and D4AO04B.)

c. Predefined types.

(1) This implementation supports the additional predefined
types SHORT_ INTEGER, TINYINTEGER, SHORTFLOAT in the
package STANDARD. (See tests B86001T..Z (7 tests).)

d. Expression evaluation.

The order in which expressions are evaluated and the time at
which constraints are checked are not defined by the language.

While the ACVC tests do not specifically attempt to determine
the order of evaluation of expressions, test results indicate

the following:

2-2

(I) All of the default initialization expressions for record
components are evaluated before any value is checked for

membership in a component's subtype, (See test C3211'A.)

(2) Assignments for subtypes are performed with less precisicn
than the base type. (See test C35.112B.)

(3) This implementation uses no extra bits for extra precision

and uses all extra bits for extra range. (See test

C35903A.)

(4) NUMERIC ERROR is raised for pre-defined integer comparison,
pre-defined integer membaship, largeint comparison,
large int membersiaip, smallint comparison and no exception
is -a ised fo r smaili n t membership.

NUMERIC ERROR/CONSrRAINTERROR is raised when an integer

literal oparand in a comparison or i.iembership test is

outside the range of the base type, (See test C45232A.)

(5) NUMERIC ERROR is raised by membership test "I.OE19 in

LIKE DURATION, 123 '; and "2.9E9 in MIDDLEM3". (See test
C45252A.1

(6) Underflow is not gradual. (See tests C45524A..Z (26

tests).)

e. Rounding.

The methcd by which values are rounded in type conversions is
not defined by the language. While the ACVC tests do not

specifically attempt to determine the method of rounding, the

test results indicate the following:

(1) The method used for rounding to integer is round zo even.

(SEe tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round to

even. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round to even. (See test C4AO14A.)

f. Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds

STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this

implementation:

2-3

(i) Declaration of an array type or subtype declaration with
more than SYSTE.MI.vAX INT components raises no exception.

(See test C36003A.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

(3) NUMERIC ERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.1.MAX_INT + 2 components. (See test

C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding

INTEGER'LAST raises NUMFRICERROR :hen the array type is
declared. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than

INTEGER'LAST components raises NUMERICERROR when the array

type is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINTERROR
either when declared or assigned. Alternatively, an

implementation may accept the declaration. However,
lengths must match in array slice assignments. This

implementation raises NUMERIC ERROR when the array type is

declared. (See test E52103Y.)

(7) In assigning ore-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT-ERROR is raised

when checking whether the expression's subtype is

compatible with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CCNSTRAINTERROR is

raised when checking whether the expression's subtype is

compatible with the target's subtype. (See test C52013A.)

g. Discriminated types.

(1) During compilation, an implementation is allowed to either

accept or reject an inccmplete type with discriminants that

is used in an access type definition with a compatible

discriminant constraint. This implementation accepts such

subtype indications. (See test E38104A.)

(2) In assigning record types with discriminants, the

expression is evaluated in its entirety before

CONSTRAINT ERROR is raised when checking whether the

expression's subtype is compatible with the target's

subtype. (See test C52013A.)

2-4

h. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the
test results indicate that all choices are evaluated before
checking against the index type. (See tests C43207A and
C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for

identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate

does not belong to an index subtype. (See test E43211B.)

i. Pragmas.

(i) The pragma INLINE is supported for functions or procedures.
(See tests LA3004A..B (2 tests), EA3004C..D (2 tests), and
CA3004E..F (2 tests).)

j. Generics.

(1) Generic specifications and bodies can be compiled in
separate compilations. (See tests CAlOl2A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3OlIA.)

(3) Generic subprogram declarations and bodies can be compiled
in separate compilations. (See tests CAI012A and CA2009F.)

(4) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CAlOl2A.)

(5) Generic non-library subprogram bodies can be compiled in
separate compilations from their stubs. (See test
CA2009F.)

(6) Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

(7) Generic library package specifications and bodies can be
compiled in separate compilations. (See tests BC3204C and

BC3205D.)

(8) Generic non-library package bodies as subunits can be

2-5

compiled in separate compilations. (See test CA2009C.)

(9) Generic unit bodies and their subunits can be compiled in

separate compilations. (See test CA3011A.)

k. Input and output.

(1) The package SEQUENTIAL 10 can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,

EE2201D, and EE2201E.)

(2) The package DIRECT O 10 can be instantiated with
unconstrained array types and record types with

discriminants without defaults. (See tests AE21OlH,
EE2401D, and EE240IG.)

(3) Modes IN FILE and OUTFILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes IN FILE, OUT FILE and INOUT FILE are supported for
DIRECT_ I0. (See tests CE2102F, CE2102I. J (2 tests),
CE2102R, CE2102T, and CE2102V.)

(5) Modes INFILE and OUTFILE are supported for text files.
(See tests CE3102E and CE31021..K (3 tests).)

(6) RESET and DELETE operations are supported for

SEQUENTIALIO. (See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECT_IO.
(See tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F. .G (2 tests), CE3104C, CE311OA, and
CE3114A.)

(9) Overwriting to a sequential file truncates to the last
element written. (See test CE2208B.)

(10) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

(11) Temporary direct files are given names and deleted when
closed. (See test CE2I08C.)

(12) Temporary text files are given names and deleted when
closed. (See test CE3112A.)

(13) More than one internal file can be associated with each
external file for sequential files when writing or reading.

2-6

(See tests CE2107A. .E (5 tests), CE2102L, CE211OB, and
CE2111D.)

(14) More than one internal file can be associated with each
external file for direct files when writing or reading.
(See tests CE2107F..H (3 tests), CE2110D and CE2111H.)

(15) More than one internal file can be associated with each
external file for text files when writing or reading. (See
tests CE3111A..B, (2 tests), CE3111D. .E (2 tests) and
CE3114B.)

2-7

CHAPTER 3

TEST INFOPRATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 331 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding that
supported by the implementation. Modifications to the code, processing,
or grading for 10 tests were required to successfully demonstrate the
test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 129 1134 1988 17 28 46 3342

Inapplicable 0 4 327 0 0 0 331

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

3.3 SUMMRY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14 _

Passed 198 577 545 245 172 99 163 331 137 36 252 288 299 3342

Inapplicable 14 72 135 3 0 0 3 1 0 0 0 81 22 331

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time
of this validation:

A39005G B97102E C97116A BC30O9B CD2A62D CD2A63A
CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2A73A CD2A73B CD2A730 CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G CD2A84M

CD2A84N CD2B15C CD2DIIB CD5007B CD50110 CD7105A
CD7203B CD7204B CD7205C CD7205D CE21071 CE3111C
CE3301A CE3411B E28005C ED7004B ED7005C ED7005D

ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either

inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 331
tests were inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)

3-2

C45241L. .' I i4 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

b. C35702B and B86001U are not applicablp because this impl~mentation
supports no piedefined type LONG_FLOAT.

c. The following 16 tests are not applicable because this
implementation does not support a predefined type LONG-INTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09C B86001W
CD7101F

d. C45531M..N (2 tests) and C45532M..N (2 tests) use fine 48-bit
fixed-point base types which are not supported by this coMpiler.

e. C455310. . P (2 tests) and C455320. . P (2 tests) use coarse 48-bit
fixed-point base types which are not supported by this compiler.

f. C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the Lst cannot be
executed since the package REPORT is dependent on the package

TEXTIO.

g. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

h. CDIO09C, CD2A41A. .B, CD2A41E, CD2A42A. .J (14 tests) are
inapplicable because size clause are not supported for floating

point types.

i. CD2A61I..J (2 tests) are inapplicable because SIZE clauses applied
to array types does not imply compression of the component type
when the component type is a composite or floating point type; an
explicit SIZE clause on the component type is required.

j. CD2A84B. .1 (8 tests) and CD2A84K L (2 tests) are inapplicable

because SIZE clauses are not supported for access types. Access
types are represented by machine addresses which are 32 bits on
this architecture.

k. CD2A91A..E (5 tests) are inapplicable because size clauses are not
supported for tasks. A task value is implemented as an address and

addresses on this architecture are 32 bits.

1. CD5003B..H (7 tests), CD5011A. .H (8 tests), CD5011L. M (2 tests),
CD5011Q..R (2 tests), CD5012A..I (9 tests), CD5012L, CD5011B,
CD5013D, CD5013F, CD5013H, CD5013L, CDS013N, CD5013R, CD5014T..X (5

tests) (total of 41 tects) are inapplicable because an address

3-3

clause with a dyna.aic address is applied to a variable requiring
initialization.

m. CD5OIN is inapplicable because address clauses for constants of
access type are not tupported.

n. CD5Ol2J, CD5013S, and CD5014S are inapplicable because address
clauses are not supported for tasks.

o. CE2102D is inapplicable because this implem~ntation supports CREATE
with IN-FILE mode for SEQUENTIAL_10.

p. CE2102E is inapplicable because this implementation supports CREATE
with OUTFILE mode for SEQUENTIALIO.

q. CE21O2F is inapplicable because this implementation supports CREATE
with INOUTFILE mode for DIRECTIO.

r. CE2102I is inapplicable because this implementation supports CREATE
with IN FILE mode for DIRECT_10.

s. CE2102J is inapplicable because this implementation supports CREATE
with OUTFILE mode for DIRECTI0.

t. CE2102N is inapplicable because this implementation supports OPEN
with INFILE mode for SEQUENTIAL_10.

u. CE21020 is inapplicable because this implementation supports RESET
with INFILE mode for SEQUENTIALIO.

v. CE2102P is inapplicable because this implementation supports OPEN
with OUTFILE mode for SEQUENTIALIO.

w. CE2102Q is inapplicable because this implementation supports RESET
with OUTFILE mode for SEQUENTIAL_10.

x. CE2102R is inapplicable because this implementation supports OPEN
with INOUTFILE mode for DIRECT_10.

y. CE2102S is inapplicable because this implementation supports RESET
with INOUTFILE mode for DIRECTIO.

z. CE2102T is inapplicable because this implementation supports OPEN
with IN FILE mode for DIRECT_ O.

aa. CE2102U is inapplicable because this implementation supports RESET
with INFILE mode for DIRECTIO.

ab. CE2102V is inapplicable because this implementation supports OPEN
with OUTFILE mode for DIRECTIO.

ac. CE2102W is inapplicable because this implementation supports RESET

3-4

with OUTFILE mode for DIRECT I0.

ad. CE3102E is inapplicable because text file CREATE with INFILE mode
is supported by this implementation.

ae. CE3102F is inapplicable because text file RESET is supported by
this implementation.

af. CE3102G is inapplicable because text file deletion of an external

file is supported by this implementation.

ag. CE3102I is inapplicable because text file CREATE with OUTFILE mode
is supported by this implementation.

ah. CE3102J is inapplicable because text file OPEN with INFILE mode is
supported by this implementation.

ai. CE3102K is inapplicable because text file OPEN with OUTFILE mode
is not supported by this implementation.

ij. CE3lI5A i .-L pplicable because RESETting of external files for
MODE OUTFILE is not supported.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into subtests so that all

errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that 4as not anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 10 tests.

The following tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B24009A B33301B B38003A B38003B B38009A
B38009B B41202A B910O1H BCI303F BC3005B

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10
produced by the Encore Verdix Ada Development System Ve:rsion, 5.5 was
submitted to the AVF by the applicant for review. Analysis ot these

3-5

resu ts deri i ci . : o. tflU:) i] ,r 1 Liucc v s ful l passed all

applicable tests, and the coui :L c.:hibitcd the expected behavior on
all inapplicable tests.

3.7.2 Test Method

Testing of the Encore Verdi:- :L. D'.2.opc.ent System Version, 5.5 using
ACVC Version 1.10 ,i coadcod te hi a v.,lidation team from the
AVF. The configuration in %..hich , e .ti:.;as performe'd is described
by the following designations of b -LC' e and software components:

Host computer: !,',,. ji a : 320
Host operating system: a. 4.2, 'ersion R3.3
Target computer: !ncore ultimax 320
Target operating system: :,Lch, Version 0.5 Beta

Linker: . Id

A magnetic tape containing all tests except for withdrawn tests and
tests requiring unsupported floating-point precision was taken on-site
by the validation team foLr pocessing. Tests that make use of
i:a.plementation-specific values v:co customized on-site.

Split tests as supplied by Encore were checked against those
corresponding tests from the ,a:etic tape using a UNIX utility, diff.
No differences were found e::cept those expected, The split tests as
supplied by Encore were used in the validation.

TEST INFORMATION

The contents of the magnetic tape were loaded onto an Encore Multimax
320 where a utility read the ASCII tape and co'.verted the tape contents
to UNIX directory format. The tests were unpacked using UNPACK.ADA
provided by the AVF. The unpacked tests were partitioned Into
appropriate directories. These directories with their files were then
transferred via Ethernet to tvch of the other host/target hardwares
(Encore Multimac. 320 running .differcnt operating systems),

After the test files were L.(,,icod to disk, the full set of tests was

compiled, linked, and all c::cutable tests were run on the Encore

Multim.,x 320. Results wet> printed from the Encore Multimax 320

computer.

The compiler was tested :.n;ii. coimnand scripts provided by Encore

Computer Corporation and revLc:.;ed by the validation team. See Appendix

E for a complete listtn '-, oF the compiler options for this
implementation. The following; compiler options were invoked:

-4 -w -el

3-6

Tests were compiled, linked, and executed (as appropriate) using a
single computer. Test output, compilation listings, and job logs were
captured on magnetic tape and archived at the AVF.

3.7.3 Test Site

Testing was conducted at Marlborough, MA and was completed on July 27,
1989.

3-7

APPENDIX A

DECLARATION OF CONFOR-MAN!CE

Encore Computer Corporation has submitted the following
Declaration of Conformance concerning the Encore Verdix Ada
Development System, Version 5.5.

A-1

DECLARATION OF CONFOR.MANCE

Compiler Implementor: Encore Computer Corporauon
Ada , alidation Facility: NIST. Sottware Standards Vaiidation Group
Ada Compiler Validation Capabdity ACVC) Version: 1.10

Base Configuration

Base Compiler Name: Encore Verdix Ada Development System Version: 5.5

Host Architecture ISA: Encore Multimax 320 OS&VER M: Mach, Version 0.5 Beta
Target Architecture ISA: Encore Multimax 320 OS&VER b: Mach, Version 0.5 Beta

Implementor's Declaration

I, the undersigned. represenung Encore Computer Corporation. have implemented no deliberate extensions
to the Ada Language Standard ANSI/ ML-STD-1815A in he compiler listed in this declaration. I declare
that Encore Computer Corporauon is the owner of record o, .ie Ada language compiler listed above and as
such, is responsible for maintning said compiler in conformance to ANSUMIL-STD-1815A. All
certificates and registrations for the Ada language compiler listed in this declaration shall be made only in
the owner's corporate name.

k.-Date:___ __

Enco Com tertorporauon
Juern uerger

Software Engineer

Owner's Declaration

[, the undersigned, representing Encore Computer Corporation, take full responsibility for the implementa-
tion and maintenance of the Ada compiler listed above, and agree to the public disclosure of the final Vali-
dation Summary Report. I further agree to continue to comply with the Ada trademark policy, as defined
by the Ada Joint Program Office. I declare that the Ada language compiler listed, and its host/target per-
formance is in compliance with the Ada Language Standard ANSIIMI-STD-1815A.

_ _ _ _ _ _ _ Date: _

Encbre Compute;torporation
Pin-Yee Chen
Vice President, Parallel Products

APPENDIX B

APPEND: I OF THE Ada STANDARD

The only allowed implementation dependencies correspond to

implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to

certain allowed restrictions on representation clauses. The

implementation-dependent characteristics of the Encore Verdix Ada

Development System Version, 5.5, as described in this Appendix, are

provided by Encore Computer Corporation. U.iless specifically noted
otherwise, references in this appendix are to compiler documentation and

not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORTINTECER is range -32768 .. 32767;

type TINYINTEGER is range -128 .. 127;

type FLOAT is digits 15 range
-1.79769313486231E+308 .. 1.79769313486231E+308;

type SHORT FLOAT is digits 6 range

-3.40282346638529E+38 .. 3.40282346638529E+38;

type DURATION is delta 6.10351562500000E-05 range

-131072.0..131071.99993;

end STANDARD;

A-2

ATTAC-MENT H[

APPENDLX F IMPLENIENTATION-DEPENDENT C-A-\RACTER[STICS

Pre-, ahjdation Materials/Encore VADS Version 5.5

UMIAX 4.2

1, IMPLEMENTATION-DEPENDENT PRAGMAS

INLINE_ONLY

This pragma. when used in the same way as pragma INLiNE, indicates to the compiler
that the subprogram must alwa'rs be inlined. This pragma aiso suppresses the generation
of a callable version of the routine which saves code space.

BUILTIN

This pragma is used in the implementation of some predefined Ada packages, but pro-
vides no user access. It is used only to implement code bodies for which no actual Ada
body can be provided, for example the MACHINECODE package.

SHARECODE

This pragma takes the name of a generic instantiation or a generic unit as the first argu-
ment and one of the identifiers TRUE or FALSE as the second argument. This pragma is
only allowed immediately at the place of a declarative item in a declarative pan or pack-
age specification, or after a library unit in a compilation, but before any subsequent com-
pilation unit.

When the first argument is a generic unit the pragma applies to all instantiations of that
generic. When the first argument is the name (, a generic instantation the pragma
applies only to the specified instantiation, or overloaded instantiations.

If the second argument is TRUE the compiler will try to share code generated for a gen-
eric instantiation with code generated for other instantiatons of the same generic. When
the second argument is FALSE each instantiation will get a unique copy of the generated
code. The extent to which code is shared between instantiations depends on this pragma
and the kind of generic formal parameters declared for the generic unit.

The name pragma SHAREBODY is also recognized by the implementation and has the
same effect as SHARECODE. It is included for compatibility with earlier versions of
Encore VADS Ada.

NOIMAGE

This pragrna suppresses the generation of the image array used for the INIAGE a-.bUte
of enumeration types. This eliminates the overhead required to store the array in the ece-
cutable image.

EXTERNALNAME

This pragma takes the name of a subprogram or variable defined in Ada and allows the
user to specify a different external name that may be used to reference the entity from
other languages. The pragma is allowed at the place of a declarative item in a package
specification and must apply to an object declared earlier in the same package
specification.

INTERFACEOBJECT

This pragma takes the name of a variable defined in another language and allows it to be
referenced directly in Ada. The pragma will replace all occurrences of the variable name
with an external reference to the second, link-argument. The pragma is allowed at the
place of a declarative item in a package specification and must apply to an object
declared earlier in the same package specification. The object must be declared as a
scalar or an access type. The object cannot be any of the following:

a loop variable.
a constant,
an initialized variable,
an array, or
a record.

IMPLICITCODE

This pragma takes one of the identifiers ON or OFF as the single argument, and is only
allowed within a machine code procedure. It specifies that implicit code generated by the
compiler be allowed or disallowed. A warning is issued if OFF is used and any implicit
code needs to be generated. The default is ON.

2. PREDEFINED PRAGMAS

CONTROLLED

This pragma is recognized by the implementation but has no effect.

ELABORATE

This pragma is implemented as described in Appendix B of the Ada RM.

[NLINE

This pragma is implemented as described in Appendix B of the Ada R.M.

INTERFACE

This pragma supports calls to C and FORTRAN functions. The Ada subprograms can be
either functions or procedures. The types of parameters and the result type for functions
must be scalar, access or the predefined type ADDRESS in SYSTEM. An optional third
argument overrides the default link name. All parameters must have mode IN. Record
and array objects can be passed by reference using the ADDRESS attibute.

LIST

This pragma is implemented as described in Appendix B of the Ada R.M.

MEMORY_SIZE

This pragma is recognized by the implementation but has no effect. The implementation
does not allow SYSTEM to be modified by means of pragmas (the SYSTEM package
must be recompiled).

OPTIMIZE

This pragma is recognized by the implementation but has no effect.

PACK

This pragma will cause the compiler to minimize gaps between components in the
representation of composite types. For arrays, components will only be packed to bit
sizes corresponding to powers of 2, if the field is smaller than STORAGE-UNIT bits.
Objects larger than STORAGEUNIT are packed to the nearest STORAGEUNIT.
level.

PAGE

This pragma is implemented as described in Appendix B of the Ada RM.

PRIORITY

This pragma is implemented as described in Appendix B of the Ada RM.

SHARED

This pragma is recognized by the implementation but has no effect.

STORAGE-UNIT

This pragma is recognized by :he implementation but has no ettect. The implementa-ton
does not allow SYSTEM to be modified by means of pragmas (the SYSTEM package
must be recompiled).

SUPPRESS

This pragma is implemented as described in Appendix B of the Ada R.M.

SYSTEMNAME

This pragma is recognized by the implementation but has no effect. The implementation
does not allow SYSTEM to be modified by means of pragmas (the SYSTEM package
must be tcompiled).

3. IMPLEMENTATION-DEPEND ENT ATTRIBUTES

The attribute REF has two forms: X'REF and SYSTEM.ADDRESS(N):

In X'REF, X must be a constant, variable, procedure, function, or label. The attribute
returns a value of the type MACHINE CODE.OPERAND and may only be used to
designate an operand within a code statement.

In SYSTEM.ADDRESS(N), SYSTEM.ADDRESS must be of the type
SYSTEM.ADDRESS. N must be an expression of type UNIVERSAL-INTEGER. The
attribute returns a value of type SYSTEM.ADDRESS, which represents the address
designated by N (this is similar to the effect of an unchecked conversion from integer to
address except N must be static).

4. SPECIFICATION OF PACKAGE SYSTEM

package SYSTEM
is

type NAME is (UMAX-A_2);

SYSTEMNAME constant NAME := UMAX_4_2;

STORAGE-UNIT :constant:, 8;
MEMORYSIZE constant := 16777216;

-- System-Dependent Named Numbers

MINNT constant := -2147 483647 - I;
MAXINT constant := 2_147483_647;
MAXDIGITS :constant 15;

,%X_.,t-%INTISSA constant 31;
FLE_DELTA constant:= 2.0*(-3 1 >
TICK constant 0.01:

-- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0.. 99;

i-kXRECSIZE integer:= 64* 1024;

type ADDRESS is private;

NO ADDR: constant ADDRESS;

function PHYSICAL_,ADDRESS(I: INTEGER) return ADDRESS;
function ADDRGT(A. B: ADDRiSS) return BOOLEAN;
function ADDRLT(A, B: ADDRESS) return BOOLEAN;
function ADDR_(3E(A. B: ADDRESS) return BOOLEAN;
function ADDRLE(A. B: ADDRESS) return BOOLEAN;
function ADDRDIFF(A, B: ADDRESS) return INTEGER;
function INCRADDR(A: ADDRESS; INCR: INTEGER) return ADDRESS:
function DECRADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS:

function ">"(A, B: ADDRESS) return BOOLEAN renames ADDR.GT;
function "<"(A. B: ADDRESS) return BOOLEAN renames ADDR-LT;
function ">="(A, B: ADDRESS) return BOOLEAN renames ADDR-GE;
function "<="(A. B: ADDRESS) return BOOLEAN renames ADDR.LE;
function "-"(A, B: ADDRESS) return INTEGER renames ADDRDIFF.
function "+"(A: ADDRESS; INCR: INTEGER) return ADDRESS renames INCR.ADDR:
function "-"(A: ADDRESS; DECR: INTEGER) return ADDRESS renames DECR_-ADDR.

pragma inline(PHYSICALADDRESS);
pragma inline(ADDRGT);
pragma inline(ADDRLT);
pragma inline(ADDRGE);
pragma inline(ADDRLE);
pragma inline(ADDR-DIFF);
pragma inline(INCRADDR);
pragma inline(DECRADDR);

private

type ADDRESS is new INTEGER;
no-addr: constant address := 0;

end SYSTEM

ATTRIBLTES OF TYPES 1.% STAND.ARD

Att-butes of the pre-defined tpe DLRATION

ftrst -131072.00000
last 131071.99993
size 32
delta 6.10351562500000E-05
mantissa 31
small 6.10351562500000E-05
large 1.31071999938964.E+-05
fore 7
aft 5
safe-small 6.10351562500000E-05
safe-large 1.31071999938964E+05
machine-rounds TRUE
machine-overflows TRUE

Attributes of type FLOAT

first -1.79769313486231E+308
last 1.79769313486231E+308
size 64
digits 15
mantissa 51
epsilon 8.88178419700125E-16
emax 204
small 1.94469227433 160E-62
large 2.57110087081438E+61
safe-emax 1021
safe-small 2.22507385850720E-308
safe-large 2.24711641857789E+307
machine radix 2
machine-mantissa 53
machine-emax 1024
machine-emin -1021
machine-rounds TRUE
machine-overflows TRUE

Attributes of type SHORT-FLOAT

first -3.40282346638529E+38
last 3.40282346638529E+38
size 32
digits 6
mantissa 21

epsilon 9.536743 16-06250E-07
emax 84
mall 2.5S49394 t12282 l E-26

large 1.93428038904620E -"25
safe_emax 1 25
safe-small 1. L7549,435082228E-38
safe-large 4.25352755827077E4-37
machineradix 2
machinemantissa 24
machineemax 128
machine_emin -25
machine-rounds TRUE
machine-overflows TRUE

Ranges of predefined integer types

TINY-INTEGER -128 .. 127
SHORTINTEGER -32768 ..32768
INTEGER -2147483648.. 2147483647

Default STORAGESIZE (collection size) for access types

100000

Priority range is 0.. 99

Default STORAGE-SIZE for tasks is

10240

If tasks need larger stack sizes, the 'STORAGESIZE attribute
may be used with the task type declaration.

Attributes and time-related numbers

Duration'small 9.76562500000000E-04
System.tick 1.00000000000000E-02

6. RESTRICTIONS ON REPRESENTATION CLAUSES

Pragma PACK

See section (2) above.

Size Specification

The size specification T'SNIALL is not supported except wkhen the representation
,pecification is the same as the value "SMALL for the base tpe.

7. RECORD REPRESENTATION CLAUSES

Component clauses must be aligned on STORAGEU"TT boundaries.

Address Clauses

Address clauses zire supported for objects and enties.

Interrupts

Interrupt ennies are supported for UNIX signals. The Ada for clause gives the UNIX sig-
nal number.

Representation Attibutes

The ADDRESS attibute is not supported for the following entities:

Packages
Tasks
Entries

8. MACHINE CODE INSERTIONS

Machine code insertions are supported.

The general definition of the package MACHINECODE provides an assembly language
interface for the target machine. It provides the necessary record type(s) needed in the
code statement, an enumeration type of all the opcode mnemonics, a set of register
definitions, and a set of addressing mode functions.

The general syntax of a machine code statement is as follows:

CODEN'(opcode, operand f, operand));

where N indicates the number of operands in the aggregate.

A special case arises for a variable number of operands. The operands are listed within a
subaggregate. The format is as follows:

CODE-N'(opcode, (operand (, operand)));

For those opcodes that require no operands. named notation must be used (cf. RIM
4.3(4)).

CODEO op => ,npc,)de):

The opcode must be an enumeration literal (i.e. ,r cannot be an object, atmbute, or a

renane).

An operand can only be an entity defined in vLACHIINECODE or the 'REF atmbute.

The arguments to any of the functions defined in MACHINECODE must be stanc
expressions, string literals. or the functions defined in MACHINECODE. The 'REF
atmbute may not be used as an argument in any of these functions.

Inline expansion of machine code procedures is supported.

9. CONVENTIONS FOR IMPLE,$IE.\TATION-GENERATED NAMES

There are no implementation-generated names.

10. INTERPRETATION OF EXPRESSIONS IN ADDRESS CLAUSES

Address clauses are supported for constants and variables. Interrupt entries are specified
with the number of the UNIX signal.

11. RESTRICTIONS ON UNCHECKED CONVERSIONS

None,

12. RESTRICTIONS ON UNCHECKED DEALLOCATIONS

None.

13. IMPLEMENTATION CHARACTERISTICS OF I/0 PACKAGES

Instaniations of DIRECTI1 use the value MAXRECSIZE as the record size
(expressed in STORAGE_UNITS) when the size of ELEMENT_TYPE exceeds that
value. For example, for unconstrained arrays such as string where
ELEMENTTYPE'SIZE is very large, MA.X-RECSIZE is used instead.
MAXRECORDSIZE is defined in SYSTEM and can be changed by a program before
instantiating DIRECT-10 to provide an upper limit on the record size. In any case, the
maximum size supported is 64 * 1024 bytes. DIRECT-1O will raise USE-ERROR if
MAXRECSIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL_)O use the value MAXRECSIZE as the record size

:r-ed in STORAGE_UNTS when the size of ELEMENTTYPE exceeds zar
%alue. For example, for unconstrained arrays such ,3stung where
ELEMENTTYPE'SIZE is , ery' large, MAX .RECSIZE is used instead.

L-AX_RECORD-SIZE is defined in SYSTEM and can be changed by a program before
instantiating INTEGERJO to provide an upper lirmt on the record size.
SEQUENTIAL_10 imposes no limit on MAXRECSIZE.

14. IMPLEMENTATION UMITS

The following limits are actually enforced by the implementation. It is not intended to
imply that resources up to or even near these limits are available to every program.

Line Length

The implementation supports a maximum line length of 499 characters not including the
end of line character.

Record and Array Sizes

The maximum size of a statically sized array type is 4,000,000 x STORAGEJNITS.
The maximum size of a statically sized record type is 4,000,000 x STORAGE-.NLITS.
A record type or array type declaration that exceeds these limits will generate a warning
message.

Default Stack Size for Tasks

In the absence of an explicit STORAGE-SIZE length specification every task except the
main program is allocated a fixed size stack of 10,240 STORAGEUNITS This is the
value returned by T'STORAGESiZE for a task type T.

Default Collection Size

In the absence of an explicit STORAGE-SIZE length atibute the default collection size
for an access type is 100,000 STORAGE-UNITS. This is the value returned by
T'STORAGESIZE for an access type T.

Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE_UNITS for objects declared stati-
cally within a compilation unit. If this value is exceeded the compiler will terminate the
compilation of the unit with a FATAL error message.

APPENDIX C

TEST PAPt4ETERS

Certain tests in the ACVC make use of implementation-dependent values,

such as the maximum length of an input line and invalid file names. A

test that makes use of such values is i2entified by the extension .TST

in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for

each of these names before the test is run. The values used for this
validation are given below.

SACCSIZE 32
An integer literal whose value

is the number of bits sufficient
to hold any value of an access
type.

$BIGIDi 1..498 => 'A', 499 => '1'
Identifier the size of the

maximum input line length with
varying last character.

$BIGID2 1..498 -> 'A', 499 => '2'
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID3 1.127 => 'A', 128 => '3',
Identifier the size of the 129..499 -> 'A'

maximum input line length with

varying middle character.

$BIG_ID4 1.127 => 'A', 128 => '4',

Identifier the size of the 1z9.. -> t

maximum input line length with
varying middle character.

$BIGINTLIT 1..252 -> '0', 253..499 -> '298'

An integer literal of value 298
with enough leading zeroes so

that it is the size of the

maximum line length.

$BIG_REALLIT 1,250 -> '0', 251.499 ->

A universal real literal of '690.0'
value 690.0 with enough leading

zeroes to be the size of the

A-3

maximum line length.

$BIGSTRINGI 1..195 > "A"

A string literal w'hich when

catenated with BIGSTRING2

yields the image of BIGIDi.

$BIG_STRING2 196,,498 => "127, 499 => "1"

A string literal which when

catenated to the end of

BIG STRING1 yields the image of

BIGIDl.

$BLANKS 1..235

A sequence of blanks twenty

characters less than the size

of the maximum line length.

$COUNTLAST 2_147_483_647

A universal integer

literal whose value is

TEXTIO.COUNT'LAST.

$DEFAULT_ MEM SIZE 16_777_216

An integer literal whose value

is SYSTEM.MEMORYSIZE.

$DEFAULTSTORUNIT 8

An integer literal whose value

is SYSTEM.STORAGEUNIT.

$DEFAULT SYS_ NAME UMAXV

The value of the constant

SYSTEM.SYSTEMNAME.

$DELTA DOG 2.0**(-31)

A real literal whose value is

SYSTEM. FINEDELTA.

$FIELD LAST 2_147_483_647

A universal integer

literal whose value is

TEXTIO.FIELD'LAST.

$FIXED NAME NOSUCH FIXEDTYPE

The name of a predefined

fixed-point type other than

DURATION.

$FLOAT NAME NOSUCHFLOATINGTYPE

The name of a predefined

floating-point type other than

A-4

FLOAT, SHORT FLCAT, or
LONGFLOAT.

$GREATER THANDURATION 2107434.0
A universal real literal that

lies between DURATION'BASE'LST
and DURATION'LAST or any value
in the range of DURATION.

$GREATERTHANDURATIONBASELAST 2147484.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGHPRIORITY 99
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL EXTERNAL FILE NA EI 1..511 => a, 512 => 1
An external file name which
contains invalid characters.

$ILLEGAL EXTERNAL FILE NAME2 1..511 -> b, 512 => 2

An external file name which
is too long.

$INTEGERFIRST -2147483648

A universal integer literal
whose value is INTEGER'FIRST.

$INTEGERLAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLAST PLUS_1 2147483648

A universal integer literal
whose value is INTEGER'LAST + 1.

$LESS_TFAN_DURATION -2147484.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHANDURATION BASEFIRST -2147484.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOWPRIORITY 0
An integer literal whose value
is the lower bound of the range

for the subtype SYSTEM.PRIORITY.

A-5

$MANTISSADOC 31

An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MAXDIGITS 15

Maximum digits supported for
floating-point types.

$MAXIN LEN 499
Maximum input line length
permitted by the implementation.

MAX_INT 2147483647

A universal integer literal
whose value is SYSTEM.=MAX 1 TK T.

$MAX_INT PLUS 1 2_147_483_648

A universal integer literal
whose value is SYSTEM.MAX INT+l.

$MAX_LENINTBASEDLITERAL 1._2 => "2:", 3..250 => '0',

A universal integer based 251..499 -> '11:'

literal whose value is 2ll=
with enough leading zeroes in

the mantissa to be M1AXINLEN

long.

$MAX_LENREAL BASEDLITERAL 1..2 => '16:', 3..248 -> '0'

A universal real based literal 249..499 => '16:F.E'
whose value is 16:F.E: with

enough leading zeroes in the

mantissa to be MAXINLEN long.

$MAX_STRING LITERAL i => " ,2..498 > "A",

A string literal of size 499 =>

MLAX IN LEN, including the quote

characters.

$MIN_INT -214748364C

A universal integer literal
whose value is SYSTEM.MIN '1TN

$MINTASK SIZE 32

An integer literal whose value

is the number of bits required

to hold a task object which has

no entries, no declarations, and
"NULL;" as the only statement in

its body

A-6

INME TINY INTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONGFLOAT, or LONG-INTEGER.

$NAME LIST UMAX V
A list of enumeration literals
in the type SYSTE..NA.mE,

separated by commas.

$NEGBASED INT 16tFFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation

for SYSTEM.MAXINT.

$NEWMEMSIZE 16_777_216
An integer literal whose value
is a permitted argument for

pragma memory size, other than
$DEFAULTMEMSIZE, If there is
no other value, then use

$DEFAULTMEMSIZE.

$NEWSTORUNIT 8
An integer literal whose value
is a permitted argument for

pragma storage unit, other than
$DEFAULT STORUNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE UNIT.

$NEWSYS NAME UMAX512_V
A value of the type SYSTEM.NAME,
other than $DEFAULT SYS NAME. If

there is only one value of that

type, then use that value.

$TASK SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one inout

parameter.

STICK 0.01
A real literal whose value is

SYSTEM.TICK.

A-7

APPENDIX D

%2ITHDRAN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 44 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the

form AI-ddddd is to an Ada Commentary.

A39005G
This test unreasonably expects a component clause to pack an array
component into a minimum size (line 30).

B97102E
This test contains an unintended illegality: a select statement
contains a null statement at the place of a selective wait alternative
(line 31).

C97116A
This test contains race conditions, and it assumes that guards are

evaluated indivisibly. A conforming implementation may use interleaved
execution in such a way that the evaluation of the guards at lines 50 &
54 and the execution of task CHANGING OF THE GUARD results in a call to
REPORT.FAILED at one of lines 52 or 56.

BC3009B
This test wrongly expects that circular instantiations will be detected
in several compilation units even though none of the units is illegal
with respect to the units it depends on; by AI-00256, the illegality
need not be detected until execution is attempted (line 95).

CD2A62D

This test wrongly requires that an array object's size be no greater
than 10 although its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length clause
and attribute, whose interpretation is considered problematic by the WG9

ARG.

CD2A81G, CD2A83G, CD2A84M & N, & CD50110
These tests assume that dependent tasks will terminate while the main
program executes a loop that simply tests for task termination; this is
not the case, and the main program may loop indefinitely (lines 74, 85,
86 & 96, 86 & 96, and 58, resp.).

D-1

CD2Bl5C & CD7205C
These tests expect that a 'STORAGE SIZE length clause provides precise
control over the number of designated objects in a collection; the Ada
standard 13.2:15 allows that such control must not be expected.

CD2DllB
This test gives a SMALL representation clause for a derived fixed-point
type (at line 30) that defines a set of model numbers that are not

necessarily represented in the parent type; by Commentary AI-00099, all
model numbers of a derived fixed-point type must be representable values
of the parent type.

CD5007B
This test wrongly expects an implicitly declared subprogram to be at the
address that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]
These tests check various aspects of the use of the three SYSTEM
pragmas; the AVO withdraws these tests as being inappropriate for
validation.

CD7105A
This test requires that successive calls to CALENDAR.CLOCK change by at
least SYSTEM.TICK; however, by Commentary AI-00201, it is only the

expected frequency of change that must be at least SYSTEM.TICK --
particular instances of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD7205D
This test checks an invalid test objective: it treats the specification
of storage to be reserved for a task's activation as though it were like
the specification of storage for a collection.

CE21071

This test requires that objects of two similar scalar types be
distinguished when read from a file--DATA ERROR is expected to be raised
by an attempt to read one object as of the other type. However, it is
not clear exactly how the Ada standard 14.2.4:4 is to be interpreted;

thus, this test objective is not considered valid. (line 90)

CE3111C
This test requires certain behavior, when two files are associated with
the same external file, that is not required by the Ada standard.

CE3301A

This test contains several calls to END OF LINE & ENDOFPAGE that have
no parameter: these calls were intended to specify a file, not to refer
to STANDARDINPUT (lines 103, 107, 118, 132, & 136).

D-2

CE3411B
This test requires that a text file's column number be set to COUNT'LAST

in order to check that LAYOUTERROR is raised by a subsequent PUT

operation. But the former operation will generally raise an exception

due to a lack of available disk space, and the test would thus encumber

validation testing.

E28005C
This test expects that the string "-- TOP OF PAGE. --63" of line 204

will appear at the top of the listing page due to a pragma PAGE in line

203; but line 203 contains text that follows the pragma, and it is this

that must appear at the top of the page.

D-3

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY

Encore Computer Corporation

Compiler: Encore Verdix Ada Development System Version, 5.5

ACVC Version: 1.10

E-1

ada(l)

NAME
ada - Ada compiler

SYNTAX
ada [options] [ada-source. a... [linker-optionsl (object Filc o]

DESCRIPTION
,c 'or-nanl, ada executes the Ada compiler and compiles the named Ada source file. ending with the .a

suffix. The file must reside in a 'ADS uiary zircc-ory a ,..!'b Ele in this directory is mo,4;Fed after each
Ada unit is compiled.

The object for each compiled Ada unit is left in a file with with the same name as that of the source with .01,
.02, etc. substituted for .a. The -o option can be used to produce an executable with a name other than &.out.
the default. For cross compilers, the default name is a.vox.

By default. ad& produces only object and net 5les. If the -M option is used, the compiler automatically invokes
a.ld and builds a complete program wih the named library unit as the main program.

Non-Ada object files (.o files produced by a compiler for another language) may be given as arguments to ada.
These files will be passed on to the linker and will be linked with the specified Ada object files.

Command Line options may be specifed in any order, but the order of compilation and the order of the files to
be passed to the linker can be significan't.

Several VADS compilers may be simultaneously available on a single system. Because the ada command in
any VADS-location/bin on a system will execute the correct compiler components based upon visible library
directives, the option -sh is provided to print the name of the components actually executed.

Program listings with a disassembly of machine instructions are generated by &.db or a.das.

OPTIONS
-a file-name (archive) treat file-name as an ai file. Since archive files end with .a, -a is used to distinguish

archive files from Ada source files.

-d (dependencies) analyze for dependencies only. Do not do semantic analysis or code generation.
Update the library, marking any defined units as uncompiled. The -d option is used by a.make
to establish dependencies among new files.

-e (error) process compilation error messages using &.error and direct it to stdout.-only the
source lines containing errors are listed. Only one -e or -E option should be used.

-E

-E 61e

-E directory (error output) without a file or directory argument. ada processes error messages using a.error
and direts the output to stdout; the raw error messages are left in ada-source.err. If a file
pathname is given, the raw error messages are placed in that file. If a directory argument is
supplied, the raw error output is placed in dir/source.err. Only one -e or -E option should be
used.

-01 (error listing) intersperse error messages among source lines and direct to stdout.

-El

-El file

VADS UOWAX 4.2 User's ROeNIeNOM Manue 0.-I

-El directory terror listing) same as the -E option. except that source listing with errors Ls produced.

-ev (error vi) process syntax error messages using a.error, embed them in the source file. and call
the environment editor ERROR-EDITOR. (If ERROREDITOR is defined, the environment
variable ERRORPATTERN should also be defined. ERROR PATTERN is an editor search
command that locates the lirst occurrence of '' in the error dle.) If no editor is specifed.
call vi.

-lfile.abbreviation
(link) Link this library file. (Do not space between the -1 and the ale abbreviation.) See also

Operating system documentation, ld(ij.

-M unit-name (main) produce an executable program using the named unit as the main program. The unit
must be either a parameterless procedure or a parameterless function returning an integer. The
executable program will be left in the file a.out unless overridden with the -o option.

-M ad._.sonrce.a (main) like -M unit nme, except that the unit name ia saumed to bc the root name of !he
.a file (for foo.a the unit is foo). Only one .a file may be preceded by -M.

-o executableEle
(output) this option is to be used in conjunction with the -M option. executable-Gle is the name
of the executable rather than the default a.out.

-OO-9J (optimize) invoke the code optimizer (no space before the digit), An optional digit limits the
number of passes by the optimizer: without the -0 option, one pass is made; -00 prevents
optimization; -0 with no digit optimizes as far as possible.

-R VADS-library
(recompile instantiation) force analysis of all generic instantiauons. causing reinstaniation of
any that are out of date.

-S (suppress) apply pragma SUPPRESS to the entire compilation for all suppressible checks.

-T (timing) print timing information for the compilation.

.V (verbose) print compilerversion number, date and time of compilation. name of file compiled.
command input line, sotal compilation time, and error summary line.

-w (warnings) suppress warning diagnostics.

SEE ALSO
'VADS Reference] a.db, a.error, &.Id, a.mklib, a.das and Operating system documentation, ld(l)

DIAGNOSTICS
The diagnostics produced by the VADS compiler are intended to be self-explanatory. Most refer to the RM.
Each RM reference includes a section number and optionally, a paragraph number enclosed in parentheses,

0-2 IMWAX 4.2 Use's Reerenee Manual VADS

