UNCLASSIFIED 5 LA TIA TR 41 28

SECURI™Y CLASSIFICATION OF THIS PAGL (WhenDatd Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE TN
1. REPORT WUMBER [2. GOVT ACCESSION WO. (3. RECIPIENT'S CATALOG NUMBER

4. TITLE (anoSudtitie) $. TYPL OF REPORY B PERIOD COVERLD

Ada Compiler Validation Summary Report :Encore 27 July 1989 to 27 July 1990
Computer Corporation, Encore Verdix Ada Development System

Version 5.5, Encore Multimax 320 (Host & Target), 6. PERFOPMING DRG. REPORT NUMBER
@022751.10128

7. AUTMOR(s)

8. CONTRACT OR GRANT NUMEER(s)

National Institute of Standards and Technology
saithersburg, Maryland, USA

. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PRCIOECT, TASK
h AREA & WORK UNIT NUMEERS
1o Jjational Institute of Standards and Technology
c saithersburg, Maryland, USA
m 1. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE
- sdg Jg1gt Proglr)am ngxce £ Def
nited States Department of Defense br—woezrror—r
(\] Washington, DC 20301-3081 o
< 4. MONITORING AGENCY NAME & ADORESS(/f aifferent from Controliing Otfice) 15. SECURITY CLASS (of thisreport)
UNCLASSIFIED
i lational Institute of Standards and Technology 158, QEG;ASS{F 1CATION /DOW 3RADING
Q ;aithersburg, Maryland, USA Rtoot N/A
< 8. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.
17, DISTRIBJUTION STATEMINT (of the abstractentered nBiack 20 ifoifferent from Report)
UNCLASSIFIED
18, SUPPLEMiWTARY NOTES E
DECO 4 1983
18. KEYWORDS (Continue onreverse side if necessary and dentify by block number)
Ada Programming language, Ada Compiler Validation Summary Report, Ada
Cormpiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO
20. ABSTRALT (Continue onreverse side «f necessary and dentify by plock number)
Encore Computer Corporation, Encore Verdix Ada Development System, Versiom 5.3,
Gaithersburg, MD, Encore Multimax 320 under Mach, Version 0.5 Beta (Host & Target),
AcCvC 1.10.
L

g7

DD UM 1473 £DITION OF 1 WOV 85 1S OBSOLETE L
1 3AN 73 S/N 0102-LF-014-6801 UNCLASSIFIED T~

W{tunlh CLASSITICATION OF THIS PAGE (WhenDaete Entered)

h

Ada Compiler Validation Summary Report:

Compiler Name: Encore Verdix Ada Development System, Version 5.5

Certificate Number: 890727S1.10128

Host: Encore Multimax 320 under Mach, Version 0.5 Beta

Target: Encore Multimax 320 under Mach, Version 0.5 Beta
Testing Completed July 27, 1989 Using ACVC 1.10

This report has been reviewed and is approved.

ALL

Ada Valldatlon Faclity |\

Dr. David K. Jefferson K \

Chief, Information Systems

Engineering Division

National Computer Systems Laboratory (NCSL)
National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, MD 20899

N

L M

“Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

I 0, Eonerf

Ada Joint Program Office
Dr. John Solomond
Director

Department of Defense
Washington DC 20301

AVF Control Number: NISTB89ENCS60_2_1.10
DATE COMPLETE ON-SITE: Q7-14-89
DATE REVISED: 08-11-89

Ada COMPILER
VALIDATION SUMMA-Y REPORT:
Certificate Number: 89072751.10128
Encore Computer Corporation
Encore T7erdix Ada Development System, Version 5.5
Encore Muluimax 320 Host and Encore Multimax 320 Target

Completion of On-Site Testing:
July 27, 1989

Prepared By:

Software Standards Validation Group
National Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

TABLE OF CONTENTS

CHAPTER 1 INTRCDUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
USE OF THIS VALIDATION SUMMARY REPORT oo 1-2
REFERENCES .13
DEFINITION OF TERMS 1-3
ACVC TEST CLASSES 1-4

e e
O R N

CHAPTER 2 CONFIGURATION INFORMATION
2.1 CONFIGURATION TESTED . .. 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION
3.1 TEST RESULTS e e e 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER . 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS C e e e e e e 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 3-5
3.7 ADDITIONAL TESTING INFORMATION . 3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-6
3.7.3 Test Site 3-7

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS , %‘ooo% | Acosssion For

AN NTLS GRA&I
$ DTIC TAB 0
APPENDIX D WITHDRAWN TESTS ‘e Unannourced d
' Justiftcation
APPENDIX E COMPILER OPTIONS AS SUPPLIED BY -
Encore Computer Corporation BY.o

| Distritution/
AvallabilithCodgs
7 javall and/or
Special

D1sat

/

A

\)

CHAPTER 1

INTRCDUCTION

TN

This Validation Summary Zeport “¢¥SR) describes the extent to which a
specific Ada compiler conforms to thc Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability ,4A€¥C)~ =~ An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that.
is not in the Standard.

e .

Even though all validated Ada compilers conform to the Ada Standard, it
must be understond that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the

maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed

during the process of testing this compiler are given in this report.
The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. ™ The purpose of validating is to ensure
conformity of the compiler ‘to the Ada Standard by testing that the
compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent, but is permitted
by the Ada Standard. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, and during
execution. ’

:w _ “ - /L ///

1-1

1.1 PURPOSE O THIS VALIDATION SUXMARY REPORT
This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compile:i but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

On-site testing was completed July 27, 198" at Marlbor:cugh, MA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:
Software Standards Validation Group
National Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Caithersburg, Maryland 20899
Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

1-2

Ada Validation Organization
Insticute for Defense Analyses
1301 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers’ Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada An Ada Commentary contains all information relevant to
the Commentary point addressed by a comment on the Ada
Standard. These comments are given a unique
identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and 1SO 8652-1987.
Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and
technical support for Ada validations to ensure
consistent practices.

Compiler A processor for the Ada language. In the context of

1-3

this vreport, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC ctest for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a

test compiler is not required to support or may legitimately
support in a way other than the one expected by the
test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler’s conformity regarding

a particular feature or a combination of features to the
Ada Standard. In the context of this report, the term
is used to designate a single test, which may comprise
one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be
incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal or
erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests.
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce errors
because of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal
Ada programs with certain language constructs which cannot be verified
at run time. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved
words cof another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada compiler. A Class
A test is passed if no errors are detected at compile time and the

1-4

program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executavle. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check the run time system to ensure that legal Ada
programs can be correctly compiled and executed. Each Class C test is
self-checking and produces a PASSED, FAILED, or NOT APPLICABLE message
indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a

conforming compiler. Therefore, if a Class D test fails to compile
becauce the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test coumpiles successfully, t is

self-checking and produces a PASSED or FAILED message during execution.

Class E tests are oaxpected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the
Ada Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it 1is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or:illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it 1s rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated. In some cases, an
implementation may legitimately detect errors during cc ~ilation of the
test.

Two 1library units, the package REPORT and the procedure CHECK_FILE,
support the self-checking features of the executable tests. The package.
REPORT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It alsc provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumveny a test objective. The p.ocedure
CHECK_FILE is used to check the contents of text files written by some

1-5

of the Class C tests Ifor Chgpter 14+ of the Ada Standard. The operation

of REPORT auc CUECK _FILE is checked by a sec of eXECJCaDl tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If cthese units are not operating correctly, then

the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all

implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific wvalues--for example, an illegal file name. A

list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an
implementation is considered each time the implementation is validated.
A test that is inapplicable for one wvalidation is not necessarily
inapplicable for a subsequent validation. Any test that was determined
to contain an illegal language construct or an erroneous language
construct is withdrawn from ¢he ACVC and, therefore, is not used in
testing a compiler. The tests withdrawn at the time of this wvalidation
are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFCRMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: Encore Verdix Ada Development System Version,
5.5
ACVC Version: 1.10
Certificate Number: 89072751.10128
Host Computer:
Machine: Encore Multimax 320

Operating System: Mach, Varsion 0.3 Beta

Memory Size: 16M3ytes

Target Computer:
Machine: Encore Multimax 320
Operating System: Mach, Version 0.5 Beta

Memory Size: 1eM3yvtes

2-1

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of wvalidating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit

implementatiors to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following

characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing

723 wvariables in the same declarative part. (See test
D22002K.)

{2) The compiler correctly processes tests containing loop
statements nested to 63 levels. (See tests DSS5A03A. .H (8
tests).)

(3) The compiler correctly processes tests containing block,
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly pronesses tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D6400SE..G (3 tests).)

b. Universal integer calculations.

(1) An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT.
This implementation processes 64-bit integer calculations.
(See tests D4AO02A, D4AQO?2B, D4AOQO4A, and D4AOO4LB.)

c. Predefined types.

(1) This implementation supports the additional predefined
types SHORT INTEGER, TINY INTEGER, SHORT_FLOAT in the
package STANDARD. (See tests B860CQLT..Z (7 tests).)

d. Expression evaluation.

The order in which expressions are evaluated and the time at
which constraints are checked are not defined by the language.
While the ACVC tests do not specifically attempt to determine
the order of evaluation of expressions, test results indicate
the following:

2-2

(L) All of the <default initialization expressions for record
components are evaluated before any wvalue is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignmancs for subtypes are performed with less precisicn
than the base tvpe. (See test C35712B.)

{(3) Tuis implementatinn uses no extra bits for extra precision
and uses all extra bits for extra range. (See test
€359G3aA.)

(4) NUMERIC_ERROR is raised for pre-cdefined integer comparison,
pre-defined integer memba-ship, large int comparison,
large int mewbersinip. small_int comparison and no exception
is vaised for smairl_int membership.
NUMERIC ERROR/CONSTRAINT_FRROR 1is raised when an integer
literal operand in a comparison or membership test is
outside the range of the base type. (See test C&45232a.)

(5) NUMERIC_ERROR 1is raised by membership test "1.0E19 in
LI¥E _DURATION M23" end "2.9E9 in MIDDLE M3". (Sea test
C452524.0

(6) Underflow is not gradual. (See tests C&45524A..Z (26
tests).)

Rounding.

The methcd by which values are rounded in type conversions is
not defined by the language. While the ACVC tests do not
specifically attempt to determine the metihiod of rounding, the
test results indicate the following:

(1) The method used for rounding to integer is round to even.
(Se« wzsts C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round to
even. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round to even. (See test C4AQOLl4A.)

Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX_INT. For this
implementation:

2-3

g.

(L)

(2)

(3)

(&)

(5)

(6)

(7

(8)

Declaration of an array type or subtype declaration with
more than SYSTEM.MAX INT components raises no exception.
(See test C36003A.)

NUMERIC_ERROR is raised when 'LENGTH is applied to an array
type with INTEGER’LAST + 2 compeonents. (See test C36202A.)

NUMERIC_ERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAX_ INT + 2 components. (See test
C36202B.)

A packed BCOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises NUMERIC ERROR ‘'then the array type is
declared. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC_ERROR when the array
type 1s declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may vraise NUMERIC ERROR or CONSTRAINT_ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However,
lengths must match 1in array slice assignments. This
implementation raises NUMERIC_ERROR when the array type is
declared. (See test E52103Y.)

In assigning ore-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT_ERROR is raised
when checking whether the expression’s subtype 1is
compatible with the target’'s subtype. (See test C52013A.)

In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression’s subtype is
compatible with the target’s subtype. (See test C52013A.)

Discriminated types.

(L)

(2)

During compilation, an implementation is allowed to either
accept or reject an inccmplete type with discriminants that
is used in an access type definition with a compatible
discriminant constraint. This implementation accepts such
subtype indications. (See test E38104A.)

In assigning record types with discriminants, the
expression is evaluated in its entirety before
CONSTRAINT_ERROR is raised when checking whether the
expression’'s subtype is compatible with the target's
subtype. (See test C52013A.)

2-4

h. Aggregates.

i.

j.

(1) In the evaluation of a multi-Jdimensional aggregate, the
test results indicate that all choices are evaluated before
checking against the index type. (See tests C43207A and
C432078.)

(2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT_ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate
does not belong to an index subtype. (See test E43211B.)

Pragmas.

(1) The pragma INLINE is supported for functions or procedures.
(See tests LA3004A..B (2 tests), EA3004C..D (2 tests), and
CA3004E. .F (2 tests).)

Generics.

(1) Generic specifications and bodies can be compiled in
separate compilations. (See tests CA1012A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011lA.)

(3) Generic subprogram declarations and bodies can be compiled
in separate compilations. (See tests CA1012A and CA2009F.)

(4) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CAlO012A.)

(5) Generic non-library subprogram bodies can be compiled in
separate compilations from their stubs. (See test
CA2009F.)

(6) Generic package declarations and bodies can be compiled in,
separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

(7) Generic library package specifications and bodies can be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

(8) Generic non-library package bodies as subunits can be

2-5

k.

(9

compiled in separate compilations. (See test CA2009C.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA301llA.)

Input and output.

(L

(2)

(3)

(4)

(3)

(6)

(N

(8)

(9)

(10)

(11

(12)

(13)

The package SEQUENTIAL_IO0 can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,
EE2201D, and EE2201E.)

The package DIRECT IO can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101H,
EE2401D, and EE2401G.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL I0.
(See tests CE2102D..E, CE2102N, and CE2102P.)

Modes IN_FILE, OUT_FILE and INOUT _FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I..J (2 tests),
CE2102R, CE2102T, and CE2102V.)

Modes IN_FILE and OUT_FILE are supported for text files.
(See tests CE3102E and CE3102I..K (3 tests).)

RESET and DELETE operations are supported for
SEQUENTIAL_IO. (See tests CE2102G and CE2102X.)

RESET and DELETE operations are supported for DIRECT_IO.
(See tests CE2102K and CE2102Y.)

RESET and DELETE operations are supported for text files.
(See tests CE3102F..G (2 tests), CE3104C, CE3110A, and
CE3114A.)

Overwriting to a sequential file truncates to the last
element written. (See test CE2208B.)

Temporary sequential fiies are given names and deleted when
closed. (See test CE2108A.)

Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

Temporary text files are given names and deleted when
closed. (See test CE3112A.)

More than one internal file can be associated with each'
external file for sequential files when writing or reading.

2-6

(14)

(15)

(See tests CE2107A..E (5 tests), CE2102L, CE2110B, and
CE2111D.)

More than one internal file can be associated with each
external file for direct files when writing or reading.
(See tests CEZ2107F..H (3 tests), CE2110D and CE2111H.)

More than one internal file can be associated with each
external file for text files when writing or reading. (See
tests CE3111A..B, (2 tests), CE3111D..E (2 tests) and
CE3114B.)

CHAPTER 3

TEST INFORMATION
3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 331 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding that
supported by the implementation. Modifications to the code, processing,
or grading for 10 tests were required to successfully demonstrate the
test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 129 1134 1988 17 28 46 3342

Inapplicable 0 4 327 0 0 0 331

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 3¢ 46 3717

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

Passed 198 577 545 245 172 99 163 331 137 36 252 288 299 3342
Inapplicable la 72 135 3 0 0 3 1 0 o0 o0 81 22 331
Wdrn $1P 1 o0 ¢ 0 O 0 2 0 0 1 35 & L4é

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time
of this validation:

A39005G B97102E C971164 BC3C09B CD2A62D CD2A63A
CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2A73A CD2A73B (CD2A73C CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D <CD2A81G CD2A83G CDZA84M
CD2A84N CD2B1S5C <CD2D11B CD5007B (€D50110 CD7105A
CD7203B CD7204B CD7205C CD7205D CE2107I CE311l1C
CE3301A CE3411B E28005C ED7004B ED7005C ED7005D
ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because thev make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or witudrawn. The appli-ability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 331
tests were inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)

C35706L..Y (14 tests) C35707L..Y (14 tests)

C35708L..Y (14 tests) C35802L..Z (15 tests)
3-2

‘

C45241L. .Y (l4 tests) C45321L. .Y (14 tests)
C45421L..Y (14 tests) C45521L. .2 (15 tests)
C45524L..2 (15 tescts) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C35702B and BB86001U are not applicable because this implementation
supports no predefined type LONG FLOAT.

The following 16 tests are not applicable because this
implementation does not support a predefined type LONG INTEGER:

C45231¢C C45304C €45502¢C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B0O7A BSS5BO9C B86001W
CD7101F

C45531M..N (2 tests) and C45532M..N (2 tests) use fine 48-bit
fixed-point base types which are not supported by this cowpiler.

C455310..P (2 tests) and C455320..P (2 tests) use coarse 48-bit
fixed-point base types which are not supported by this compiler.

C86001r redefines package SYSTEM, but TEXT_IO is made obsolete by
this new definition in this implementation and tne test caanot be
executed since the package REPORT 1is dependent on the package
TEXT_IO.

C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

CD1009C, CD2A41A..B, CD2A4lE, CD2A42A..J (l4 tests) are
inapplicable because size clause are not supported for floating
point types.

CD2A61I..J (2 tests) are inapplicable because SIZE clauses applied‘

to array types does not imply compression of the component type
when the component type is a composite or floating point type; an
explicit SIZE clause on the component type is required.

CD2A84B..I (8 tests) and CD2A84K. .L (2 tests) are inapplicable
because SIZE clauses are not supported for access types. Access
types are represented by machine addresses which are 32 bits on
this architecture.

CD2A91A. .E (5 tests) are inapplicable because size clauses are not
supported for tasks. A task value is implemented as an address and
addresses on this architecture are 32 bits.

CDS5003B..H (7 tests), CDSO11A..H (8 tests), CD5011L..M (2 tests),
€D5011Q..R (2 tests), CD5012A..1 (9 tests), CD5012L, CD5011m,
€D5013D, CD5013F, CD5013H, €D5013L, CDS5013N, CD5013R, CD5014T..X (5
tests) (total of 41 tests) are inapplicable because an address

3-3

clause with a dynaxic address is applied to a variable requiring
initialization.

m. CD5011N is inapplicable because address clauses for constants of
access tvpe are not supported.

n. CD5012J, <CD5013S, and CD5014S are inapplicable because address
clauses are not supported for tasks.

o. CE2102D is inapplicable because this implemcntation supports CREATE
with IN_FILE mode for SEQUENTIAL_IO.

D. CE2102E is inapplicable because this implementation supports CREATE
with OUT_FILE mode for SEQUENTIAL_IO.

q. CE2102F is inapplicable because this implementation supports CREATE
with INOUT_FILE mode for DIRECT_IO.

r. CE21021 is inapplicable because this implementation supports CREATE
with IN_FILE mode for DIRECT_10.

s. CE2102J is inapplicable because this implementation supports CREATE
with OUT_FILE mode for DIRECT IO.

t. CE2102N is inapplicable because this implementation supports OPEN
with IN_FILE mode for SEQUENTIAL_IO.

u. CE21020 is 1inapplicable because this implementation supports RESET
with IN_FILE mode for SEQUENTIAL_IO.

v. CE2102P is inapplicable because this implementation supports OPEN
with OUT_FILE mode for SEQUENTIAL_IO.

w. CE2102Q is inapplicable because this implementation supports RESET
with OUT_FILE mode for SEQUENTIAL_IO.

X. CE2102R is inapplicable because this implementation supports OPEN
with INOUT FILE mode for DIRECT_IO.

y. CE2102S is inapplicable because this implementation supports RESET
with INOUT_FILE mode for DIRECT_IO.

z. CE2102T is inapplicable because this implementation supports OPEN
with IN_FILE mode for DIRECT_IO.

aa., CE2102U is inapplicable because this implementation supports RESET
with IN _FILE mode for DIRECT_IO.

ab. CE2102V is inapplicable because this implementation supports OPEN
with OUT_FILE mode for DIRECT_IO.

ac. CE2102W is inapplicable because this implementation supports RESET

3-4

;—_J

with OUT_FILE mode for DIRECT_IO.

ad. <CE3102E is inapplicable because text file CREATE with IN_FILE mode
is supported by this implementation. '

ae., CE3102F 1is inapplicable because text file RESET is supported by
this implementation.

af. CE3102G is inapplicable because text file deletion of an external
file is supported by this implementation.

ag. CE3102I is inapplicable because text file CREATE with OUT_FILE mode
is supported by this implementation.

ah. CE3102J is inapplicable because text file OPEN with IN_FILE mode is
supported by this implementation.

ai. CE3102K is inapplicable because text file OPEN with OUT_FILE mode
is not supported by this implementation.

2j. CE3115A is ..t applicable because RESETting of external files for
MODE OUT_FILE is not supportced.
3.6 TEST, PRCCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate

implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such

modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that was not anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 10 tests.

The following tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B24009A B33301B B38003A B38003B B3800%A
B38009B B41202a B91001H BC1303F BC3005B

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to wvalidation, a set of test results for ACVC Version 1.10
produced by the Encore Verdix Ada Development System Version, 5.5 was

submitted to the AVF by the applicant for review. Analysis ot these

3-5

resulcs doemonscrated Siiar i

applicable tests, and the cowpiler cubibited the

all inapplicable tescs.

3.7.2 Test Method

Testing of the Encore Verdim ida
ACVC Version 1.10 was cowdiezed o
AVF. The configuration in ~hich

compiler successfully passed all
expected behavior on

Development Svstem Version, 5.5 using
m-site by a validation team from the

I3 . H 3 .
hie Tosting was performed is described

by the following desigrations of havrd: ve and software components:
Host computar: bocore Huleimas 220
Host operating system: Unax 4.2, Version R3.3
Target computer: Encore Multimax 320 . :
Target operating systemn: dlach, Version 0.5 Beta
Linker: a.ld

A magnetic tape containing all
tests requiring unsupported floac

tests except for withdrawn tests and
ing-point precision was taken on-site

by the validation team for processing. Tests that make use of

itplementation-specific values wouv

¢ customized on-site.

Split tests as supplied by Encore were checked against those
corresponding tests from the wagznetic tape using a UNIX utiliety, diff.

No differences were found eucept

those ewxpected. The split tests as

supplied by Encore were used in the validation.

TEST INFORMATIOXN

The contents of the magnetic tape were loaded onto an Encore Multimax

320 where a utility read the ASCI
to UNIX directory format. The
provided by the aVF. The un

I tape and co.verted the tape contents
tests were unpacked using UNPACK.ADA
packed tests were partitioned into

appropriate dirvectorvies. These divectories with their files were then
transferred via Ethernet to wvach of the other host/target hardwares
(Encore Multimax 220 running differcent operating systems).

After rthe test files were Lowded to disk, the full set of tests was
compiled, 1linked, and all ciuccurable tests were run on the Encore
Multimax 320, Results were printed from the Encore Multimax 320

computer.

The compiler was tested vsing command scripts provided by Encore

Computzr Corporation and vevicued
E for a complete listing o
implementation. The following con

-1 -w -el

bv the validation team. See Appendix
f the compiler options for this
wiler options were invoked:

Tests were compiled, linked, and executed (as appropriate) using a
single computer. Test output, compilation listings, and job logs were
captured on magnetic tape and archived at the AVF,

3.7.3 Test Site

Testing was conducted at Marlborough, MA and was completed on July 27,
1989.

APPENDIX A

DECLARATION OF CONFORMANCE

Encore Computer Corporation has submitted the following
Declaration of Conformance concerning the Encore Verdix Ada
Development System, Version 5.5.

DECLARATION OF CONFORMANCE

Comniler Implementor: Encore Computer Cerporauon
Ada Validanon Facdiry: NIST. Sottware Standards Validauon Group
Ada Compuler Vahdauon Capabuity { ACVC) Version: 1.10

Base Configuration

Base Compiler Name: Encore Verdix Ada Development System Version: 5.5

Host Architecture ISA: Encore Multimax 320 OS&VER # Mach, Version 0.5 Beta
Target Architecture ISA: Encore Mulumax 320 OS&VER# Mach, Version 0.5 Beta

Implementor’s Declaraton

I, the undersigned. represenung Encore Computer Corporation, have implemented no deliberate extensions
1o the Ada Language Standard ANSI/MIL-STD-1815A in the compiler listed in this declaration. I declare
that Encore Computer Corporation is the owner of record o1 .ne Ada language compuler listed above and as
such, is responsible for mantaining said compiler in conformance to ANSUMIL-STD-1815A. All
certficates and registrations for the Ada language compiler listed in this declaration shall be made only in
the owner's corporate name.

K;“‘ \é’% Date: L “‘; 8
Enco Comine orporation
JuemVuerge

Software Engineer

Owner’s Declaration

[, the undersigned. representing Encore Computer Corporaton, take full responsibility for the implementa-
ton and maintenance of the Ada compiler listed above, and agree to the public disclosure of the final Vali-
dation Summary Report. [further agree to continue o comply with the Ada rademark policy, as defined
by the Ada Joint Program Office. I declare that the Ada language compiler listed, and its host/target per-
formance is in compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

D g K S s /s
/ "ﬁLﬁA Date: ¢ ‘/j/’

Encore Computer Corporation
Pin-Yee Chen
Vice President, Parallel Products

APPEXNDIX B

APPENDIX I OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representa-ion clauses. The
implementation-dependent characteristics of the Encore Verdix Ada
Development System Version, 5.5, as described in this Appendix, are
provided by Encore Computer Corporation. Ualess specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647,
type SHORT INTECER is range -32768 .. 32767,
type TINY INTEGER is range -128 .. 127,

type FLOAT is digits 15 range
-1.79769313486231E+308 .. 1.79769313486231E+308;

type SHORT_FLOAT is digits 6 range
-3.40282346638529E+38 .. 3.40282346638529E+38;

type DURATION is delta 6.10351562500000E-05 range
~131072.0..131071.99993;

end STANDARD;

5
\
O

ATTACHMENT (I
APPENDIX F DMPLEMENTATION-DEPENDENT CHARACTERISTICS
Pre-validation Materials/Encore VADS Version §.3

UMAX 4.2

1 IMPLEMENTATION-DEPENDENT PRAGMAS
INLINE_LONLY
This pragma, when used in the same way as pragma INLINE, indicates to the compiler

that the subprogram must a/ways be inlined. This pragma also suppresses the generation
of a callable version of the routine which saves code space.

BUILT_IN
This pragma is used in the implementation of some predefined Ada packages, but pro-

vides no user access. Itis used only to implement code bodies for which no actual Ada
body can be provided, for example the MACHINE_CODE package.

SHARE_CODE

This pragma takes the name of a generic instantiation or a generic unit as the first argu-
ment and one of the identifiers TRUE or FALSE as the second argument. This pragma is
only allowed immediately at the place of a declarative item in a declarative part or pack-
age specification, or after a library unit in a compilation, but before any subsequent com-
piladon unit.

When the first argument is a generic unit the pragma applies to all instandanons of that
generic. When the first argument is the name ¢ ' 2 generic instantagon the pragma
applies only to the specified instantiation, or overloaded instanuations.

If the second argument is TRUE the compiler will try to share code generated for a gen-
eric instantiation with code generated for other instanganons of the same generic. When
the second argument is FALSE each instantiation will get a unique copy of the generated
code. The extent to which code is shared between instantiations depends on this pragma
and the kind of generic formal parameters declared for the generic unit.

The name pragma SHARE_BQDY is also recognized by the implementation and has the
same effect as SHARE_CODE. It is included for compatibility with earlier versions of
Encore VADS Ada.

‘-———J

NO_IMAGE

This pragma suppresses the generation of the image array used for the IMAGE atmbute
of enumeranion types. This eliminates the overhead required to store the array in the exe-
cutable image.

EXTERNAL_NAME

This pragma takes the name of a subprogram or variable defined in Ada and allows the
user to specify a different external name that may be used to reference the entity from
other languages. The pragma is allowed at the place of a declaratve item in a package
specification and must apply to an object declared earlier in the same package
specification.

INTERFACE_OBJECT

This pragma takes the name of a variable defined in another language and allows it to be
referenced directly in Ada. The pragma will replace all occurrences of the vanable name
with an external reference to the second, link_argument. The pragma is allowed at the
place of a declarative item in a package specification and must apply to an object
declared earlier in the same package specification. The object must be declared as a
scalar or an access type. The object cannot be any of the following:

a loop vanable,

a constaant,

an initialized variable,
an array, or

a record.

IMPLICIT_CODE

This pragma takes one of the identifiers ON or OFF as the single argument, and is only
allowed within a machine code procedure. It specifies that implicit code generated by the
compiler be allowed or disallowed. A warning is issued if OFF is used and any implicit
code needs to be generated. The default is ON.

2. PREDEFINED PRAGMAS

CONTROLLED

This pragma is recognized by the implementadon but has no effect.

ELABORATE

This pragma is implemented as described in Appendix B of the Ada RM.

*——_{

INLINE

This pragma 1s implemented as described in Appendix B of the Ada RM.

INTERFACE

This pragma supports calls to C and FORTRAN functions. The Ada subprograms can be
either functions or procedures. The types of parameters and the result type for functions
must be scalar, access or the predefined type ADDRESS in SYSTEM. An optional third

argument overrides the default link name. All parameters must have mode IN. Record
and array objects can be passed by reference using the ADDRESS attribute.

LIST

This pragma is implemented as described in Appendix B of the Ada RM.
MEMORY_SIZE

This pragma is recognized by the implementation but has no effect. The implementation
does not allow SYSTEM to be modified by means of pragmas (the SYSTEM package
must be recompiled).

OPTIMIZE

This pragma is recognized by the implementadon but has no effect.

PACK

This pragma will cause the compiler to minimize gaps between components in the
representation of composite types. For arrays, components will only be packed to bit
sizes corresponding to powers of 2, if the field is smaller than STORAGE_UNIT bits.

Objects larger than STORAGE _UNIT are packed to the nearest STORAGE_UNIT.
level.

PAGE

This pragma is implemented as described in Appendix B of the Ada RM.
PRIORITY

This pragma is implemented as described in Appendix B of the Ada RM.
SHARED

This pragma is recognized by the implementation but has no effect.

STORAGE_UNIT

i_}

This pragma 1s recognized by the implementation but has no effect. The implementation
does not allow SYSTEM w0 be modified by means ot pragmas (the SYSTEM package
must be recompiled).

SUPPRESS

This pragma is implemented as described in Appendix B of the Ada RM.
SYSTEM_NAME

This pragma is recognized by the implementation but has no effect. The implementation
does not allow SYSTEM 10 be modified by means of pragmas (the SYSTEM package
must be mcompiled).

3. IMPLEMENTATION-DEPENDENT ATTRIBUTES

The atmmibute REF has two forms: X'REF and SYSTEM.ADDRESS(N):

In X'REF, X must be a constant, variable, procedure, function, or label. The attribute
returns a value of the type MACHINE_CODE.OPERAND and may only be used to
designate an operand within a code statement.

In SYSTEM.ADDRESS(N), SYSTEM.ADDRESS must be of the type
SYSTEM.ADDRESS. N must be an expression of type UNIVERSAL_INTEGER. The
auribute returns a value of type SYSTEM.ADDRESS, which represents the address
designated by N (this is similar to the effect of an unchecked conversion from integer to
address except N must be static).

4. SPECIFICATION OF PACKAGE SYSTEM

package SYSTEM
is

type NAME is (UMAX _4_2),
SYSTEM_NAME : constant NAME = UMAX_4_2;

STORAGE _UNIT : constant = 8.
MEMORY_SIZE :constant ;= 16_777_216;

-- System-Dependent Named Numbers
MIN_INT . constant ;= -2_147_483_647 - |,

MAX_INT :constant ;= 2_147_483_647,
MAX_DIGITS : constant = 1§,

———_

MAXOMANTISSA s constant (= 3
FINE_DELTA ceonstant t= 2.0**(-31;
TICK cconstant c= 0.01;

-- Other System-dependent Declarations
subtype PRIORITY is INTEGER range 0. 99
MAX_REC_SIZE : integer := 64*1024;

tvpe ADDRESS is private;

NO ADDR: constant ADDRESS;

function PHYSICAL_ADDRESS(I: INTEGER) return ADDRESS;

function ADDR_GT(A. B: ADDR.SS) return BOOLEAN;

function ADDR_LT(A, B: ADDRESS) return BOOLEAN,

function ADDR_GE(A. B: ADDRESS) return BOOLEAN;

function ADDR_LE(A, B: ADDRESS) return BOOLEAN;

function ADDR_DIFF(A, B: ADDRESS) return INTEGER;

function INCR_ADDR(A: ADDRESS; INCR: INTEGER) return ADDRESS:
function DECR_ADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS:

function ">"(A, B: ADDRESS) return BOOLEAN renames ADDR_GT;

function "<"(A. B: ADDRESS) return BOOLEAN renames ADDR_LT:

function ">="(A, B: ADDRESS) return BOOLEAN renames ADDR_GE,;

function "<="(A, B: ADDRESS) return BOOLEAN renames ADDR_LE;

function "-"(A, B: ADDRESS) return INTEGER renames ADDR_DIFF;

function "+"(A: ADDRESS; INCR: INTEGER) return ADDRESS renames INCR_ADDR:
function "-"(A: ADDRESS; DECR: INTEGER) return ADDRESS renames DECR_ADDR:

pragma inline(PHYSICAL_ADDRESS);
pragma inline(ADDR_GT);

pragma inline(ADDR_LT);

pragma inline(ADDR_GE);

pragma inline(ADDR_LE),

pragma inline(ADDR_DIFF);

pragma inline(INCR_ADDRY);

pragma inline(DECR_ADDRY);

private

type ADDRESS is new INTEGER;
no_addr: constant address := 0;

end SYSTEM

\

S ATTRIBUTES OF TYPES [N STANDARD

Atmbutes of the pre-defined type DURATION

first -131072.00000

last 131071.99993

size 32

delta 6.10351562500000E-05
mantissa 31

small 6.10351562500000E-05
large 1.31071999938964E+05
fore 7

aft 5

safe_small 6.10351562500000E-05
safe_large 1.31071999938964E+03
machine_rounds TRUE
machine_overflows TRUE

Attributes of type FLOAT

first -1.79769313486231E+308
last 1.79769313486231E+308
size 64

digits 15

mantissa 51

epsilon 8.88178419700125E-16
emax 204

small 1.94469227433160E-62
large 2.57110087081438E+61
safe_emax 1021

sate_small 2.22507385850720E-308
safe_large 2.24711641857789E+307

machine_radix 2
machine_mantissa 53
machine_emax 1024
machine_emin -1021

machine_rounds TRUE
machine_overflows TRUE

Attributes of type SHORT_FLOAT

first -3.40282346638529E+38
last 3.40282346638529E+38
size 32

digits 6

mantissa 21

‘_J

epsilon 9.53674316406250E-07

emax 84
small 2.58493941422821E-26
large 1.93428038904620E+25

safe_emax 125
safe_small 1.17549435082228E-38
safe_large 4.25352755827077E+37

machine_radix 2
machine_mantissa 24
machine_emax 128
machine_emin -125

machine_rounds TRUE
machine_overflows TRUE

Ranges of predefined integer types
TINY_INTEGER -128 .. 127
SHORT_INTEGER -32768 .. 32768
INTEGER -2147483648 .. 2147483647
Default STORAGE_SIZE (collectdon size) for access types
100000
Priority range is O .. 99
Default STORAGE_SIZE for tasks is
10240

If tasks need larger stack sizes, the 'STORAGE_SIZE attribute
may be used with the task type declaration.

Attributes and time-related numbers

Duration’small 9.76562500000000E-04
System.tdck 1.00000000000000E-02

6. RESTRICTIONS ON REPRESENTATION CLAUSES
Pragma PACK
See section (2) above.

Size Specification

l

The size specification T'SMALL is not supported except when the representation
specification is the same as the value "SMALL for the base type.

7. RECORD REPRESENTATION CLAUSES

Component clauses must be aligned on STORAGE_L™'IT boundaries.

Address Clauses

Address clauses are supported for objects and entries.

[nterrupts

Interrupt entries are supported for UNIX signals. The Ada for clause gives the UNIX sig-
nal number.

Representation Atmibutes
The ADDRESS atmribute is not supported for the following entities:

Packages

Tasks

Entries
8. MACHINE CODE INSERTIONS
Machine code insertions are supported.
The general definition of the package MACHINE_CODE provides an assembly language
interface for the target machine. It provides the necessary record type(s) needed in the
code statement, an enumeration type of all the opcode mnemonics, a set of register
definitions, and a set of addressing mode functons.
The general syntax of a machine code statemnent is as follows:

CODE_N'(opcode, operand {, operand)),

where N indicates the number of operands in the aggregate.

A special case arises for a variable number of operands. The operands are listed within a
subaggregate. The format is as follows:

CODE_N’(opcode, (operand (, operand})),

For those opcodes that require no operands, named notation must be used (cf. RM
4.3(4)).

M

CODE_0'(op => npcade i

The opeode must be an enumeration literal (1.8, it cannot be an object. atmbute, or a
rename).

An operand can only be an entity defined in MACHINE_CODE or the 'REF atmbute.
The arguments to any of the functions defined in MACHINE _CODE must be stanc
expressions, suing literals. or the functions defined in MACHINE_CODE. The 'REF
armbute may not be used as an argument in any of these functions.

Inline expansion of machine code procedures is supported.

9. CONVENTIONS FOR IMPLEMENTATION-GENERATED NAMES

There are no implementation-generated names.

10. INTERPRETATION OF EXPRESSIONS IN ADDRESS CLAUSES

Address clauses are supported for constants and variables. [nterrupt entries are specified
with the number of the UNIX signal.

11 RESTRICTIONS ON UNCHECKED CONVERSIONS

None,

12. RESTRICTIONS ON UNCHECKED DEALLOCATIONS

None.

13. IMPLEMENTATION CHARACTERISTICS OF 110 PACKAGES

Instandatons of DIRECT_IO use the value MAX_REC_SIZE as the record size
(expressed in STORAGE_UNITS) when the size of ELEMENT_TYPE exceeds that
value. For example, for unconstrained arrays such as string where
ELEMENT_TYPE'SIZE is very large, MAX_REC_SIZE is used instead.
MAX_RECORD_SIZE is defined in SYSTEM and can be changed by a program before
instantiating DIRECT _IO to provide an upper limit on the record size. In any case, the
maximum size supported is 64 * 1024 bytes. DIRECT_[O will raise USE_ERROR if
MAX_REC_SIZE exceeds this absolute limit.

Instandations of SEQUENTIAL _[O use the value MAX_REC_SIZE as the record size

I ———]

r2xpressed in STORAGE_UNITS) when the size of ELEMENT_TYPE exceeds thar
value. For example, for unconstrained arrays such a» sming where
ELEMENT_TYPE'SIZE 1s very large. MAX_REC_SIZE is used instead.
MAX_RECORD _SIZE is defined in SYSTEM and can be changed by a program before
instantiaung INTEGER_IO to provide an upper limit on the record size.

SEQUENTIAL _[O imposes no limit on MAX_REC_SIZE.

14 IMPLEMENTATION LIMITS

The following limits are actually enforced by the implementation. It is not intended to
imply that resources up to or even near these limits are available to every program.

Line Length

The implementation supports 2 maximum line length of 499 characters not including the
end of line character.

Record and Array Sizes

The maximum size of a starically sized array type is 4,000,000 x STORAGE_UNITS.
The maximum size of a statically sized record type is 4,000,000 x STORAGE _UNITS.
A record type or array type declaration that exceeds these limits will generate a waming
message.

Default Stack Size for Tasks

In the absence of an explicit STORAGE_SIZE length specification every task except the
main program is allocated a fixed size stack of 10,240 STORAGE_UNITS. This is the
value returned by T'STORAGE_SIZE for a task type T.

Default Collecton Size

In the absence of an explicit STORAGE _SIZE length attribute the default collection size
for an access type is 100,000 STORAGE _UNITS. This is the value returned by
T'STORAGE_SIZE for an access type T.

Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE_UNITS for objects declared staun-
cally within a compilation unit. If this value is exceeded the compiler will terminate the
compilation of the unit with a FATAL error message.

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such wvalues is identified by the extension .TST
in its file name. Actual wvalues to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

$SACC_SIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access

type.

$BIG_ID1 1..498 => 'A’, 499 => "1’
Identifier the size of the
maximum input line 1length with
varying last character.

$BIG_ID2 1..498 => 'A', 499 => "2
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID3 1..127 => ra*, 128 => '3’
Identifier the size of the 129..499 => A’
maximum input line length with
varying middle character.

$BIG_ID4 1..127 => 'a', 128 => '4"
Identifier the size of the 149, 499 => a
maximum input line length with
varying middle character.

$BIG _INT_LIT 1..252 => '0', 253..499 => '298’
An integer 1literal of value 298
with enough leading =zeroes so
that it is the size of the
maximum line length.

$BIG_REAL LIT 1..250 => '0', 251..499 =>

A universal real 1literal of '690.0
value 690.0 with enough leading
zeroes to be the size of the

A-3

maximum line leng:th.

$BIG_STRINGI
A string literal which when
catenated with BIG STRINGZ
yields the image of BIG_iDl.

$BIG STKING2
A string literal which when

catenated to the end of
BIG_STRINGlL yields the image of
BIG_IDI1.

S$BLANKS

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT _LAST
A universal integer
literal whose value is
TEXT_IO.COUNT'LAST.

S$DEFAULT _MEM_SIZE
An integer literal whose value
is SYSTEM.MEMORY SIZE.

SDEFAULT_STOR_UNIT
An integer literal whose value
is SYSTEM.STORAGE UNIT.

$DEFAULT_SYS_NAME
The value of the constant
SYSTEM.SYSTEM NAME.

$DELTA_DOC
A real literal whose wvalue 1is
SYSTEM.FINE_DELTA,

$FIELD_LAST
A universal integer
literal whose value is

TEXT_10.FIELD’LAST.

SFIXED_NAME
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT_NAME
The name of a predefined
floating-point type other than

A-b4

1..195 => "A"

196. .498 => "127, 499 =>

1..235 => "

2 147 483 647

16_777_216

UMAX_V

2.0%%(-31)

2 147_483_647

NO_SUCH_FIXED_TYPE

NO_SUCH_FLOATING_TYPE

lllll

FLOAT, SHORT FLCAT, or
LONG_FLOAT.

SGREATER_THAN DURATION
A universal real literal that
lies between DURATION'BASE’LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATER_THAN DURATION_BASE _LaST
A universal real literal that is
greater than DURATION'BASE'LAST.

SHIGH_PRIORITY
An integer literal whose wvalue
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

S$ILLEGAL_EXTERNAL_ FILE NAMEL
An external file name which
contains 1invalid characters.

SILLEGAL EXTERNAL FILE_NAME2
An external file name which
is too long.

SINTEGER_FIRST
A universal integer literal
whose value 1is INTEGER’'FIRST.

$INTEGER_LAST
A universal jinteger literal
whose wvalue is INTEGER'LAST.

SINTEGER_LAST_PLUS 1
A universal integer literal
whose value is INTEGER’LAST + 1.

SLESS_THAN DURATION
A universal real literal that
lies between DURATION'BASE’FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESS_THAN DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE’'FIRST.

$LOW_PRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

A-5

21374840

2147484.0

99

1..511

i

> a, 512 => 1

1..511 => b, 512 => 2

-2147483648

2147483647

2147483648

-2147484 .0

-2147484 .0

SMANTISSA_DOC 31
An integer literal whose value
is SYSTEM.MAX MANTISSA.

$MAX_DIGITS 15
Maximum digits supported for
floating-point types.

SMAX _IN_LEN 499
Maximum input line length
permitted by the implemencation.

SMAX_INT 2147483647
A universal integer literal
whose value is SYSTEM.MaX INT.

SMAX INT PLUS_1 2 147 _483_648
A universal integer literal
whose value is SYSTEM.MAX_INT+L.

S$MAX LEN INT_BASED_LITERAL 1..2 => "2:", 3..250 => '0',
A universal integer based 251..499 => '11:°’
literal whose value 1is 2=&ll=
with enough leading =zeroes in
the mantissa to be MAX_ IN_ LEN
long.

=> '16:", 3..248 => '0Q'

SMAX_LEN REAL BASED LITERAL .
49..499 => '16:F.E'

A universal real based literal
whose value 1is 16:F.E: wicth
enough leading =zerces 1in the
mantissa to be MAX IN LEN long.

o
N

S$MAX_STRING_LITERAL 1 => """ ,2..498 => "A",
A string literal of size 499 => '"’
MAX_IN_LEN, including the quote
characters.

SMIN_INT -214748364¢8
A universal integer literal
whose wvalue is SYSTEM.MIN INT.

SMIN_TASK _SIZE 32
An integer literal whose ‘alue
is the number of bits required
to nold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body

A-6

SNAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.

SNAME_LIST
A list of enumeration literals
in the type SYSTEM.NAME,
separated by comnas.

$NEG_BASED_INT
A based integer literal whose
highest order nmnonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

$NEW_MEM SIZE
An integer literal whose value
is a permitted argument for
pragma memory_size, other cthan
$DEFAULT _MEM_SIZE. If there 1is
no other value, then use
$DEFAULT_MEM _SIZE.

$NEW_STOR_UNIT
An integer literal whose value
is a permitted argument for
pragma storage_unit, other than
SDEFAULT_STOR UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE_UNIT.

S$NEW_SYS_NAME
A value of the type SYSTEM.NAME,
other than $DEFAULT SYS NAME. If
there is only one value of that
type, then use that value.

$TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one inout
parameter.

STICK
A real literal whose wvalue is
SYSTEM.TICK.

TINY INTEGER

UMAX_V

16=FFFFFFFD®

16_777_216

UMAXS12_V

32

0.01

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 44 tests had been withdrawn at the time
of wvalidation testing for the reasons indicated. A reference of the
form AI-ddddd is to an Ada Commentary.

A39005G
This test unreasonably expects a component clause to pack an array
component into a minimum size (line 30).

B97102E

This test contains an unintended illegality: a select statement
contains a null statement at the place of a selective wait alternative
(line 31).

Cc97116A

This test contains race conditions, and it assumes that guards are
evaluated indivisibly. A conforming implementation may use interleaved
execution in such a way that the evaluation of the guards at lines 50 &
54 and the execution of task CHANGING_OF_THE GUARD results in a call to
REPORT.FAILED at one of lines 52 or 56.

BC3009B .
This test wrongly expects that circular instantiations will be detected
in several compilation units even though none of the units is illegal
with respect to the units it depends on; by AI-00256, the illegality
need not be detected until execution is attempted (line 95).

CD2A62D
This test wrongly requires that an array object’'s size be no greater
than 10 although its subtype’s size was specified to be 40 (line 137).

CD2A63a..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests)]

These tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length clause
and attribute, whose interpretation is considered problematic by the WG9
ARG,

CD2A81G, CD2A83G, CD2A84M & N, & CD50110

These tests assume that dependent tasks will terminate while the main
program executes a loop that simply tests for task termination; this is
not the case, and the main program may loop indefinitely (lines 74, 85,
86 & 96, 86 & 96, and 58, resp.).

D-1

CD2B15C & CD7205C

These tests expect that a 'STORAGE_SIZE length clause provides precise
control over the number of designated objects in a collection; the Ada
standard 13.2:15 allows that such control must not be expected.

CD2D11B

This test gives a SMALL representation clause for a derived fixed-point
type (at line 30) that defines a set of model numbers that are not
necessarily represented in the parent type; by Commentary AI-00099, all
model numbers of a derived fixed-point type must be representable values
of the parent type.

CD50078
This test wrongly expects an implicitly declared subprogram to be at the
address that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]

These tests check wvarious aspects of the use of the three SYSTEM
pragmas; the AVO withdraws these tests as being inappropriate for
validation.

CD7105A

This test requires that successive calls to CALENDAR.CLOCK change by at
least SYSTEM.TICK; however, by Commentary AI-00201, it is only the
expected frequency of change that must be at least SYSTEM.TICK --
particular instances of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD7205D

This test checks an invalid test objective: it treats the specification
of storage to be reserved for a task's activation as though it were like
the specification of storage for a collection.

CE21071

This test requires that objects of two similar scalar types be
distinguished when read from a file--DATA _ERROR is expected to be raised
by an attempt to read one object as of the other type. However, it is
not clear exactly how the Ada standard 14.2.4:4 is to be interpreted;
thus, this test objective is not considered valid. (line 90)

CE3111C
This test requires certain behavior, when two files are associated with
the same external file, that is not required by the Ada standard.

CE3301A

This test contains several calls to END _OF LINE & END_OF_PAGE that have
no parameter: these calls were intended to specify a file, not to refer
to STANDARD INPUT (lines 103, 107, 118, 132, & 136).

D-2

CE3411B

This test requires that a text file's column number be set to COUNT’LAST
in order to check that LAYOUT_ERROR is raised by a subsequent PUT
operation. But the former operation will generally raise an exception
due to a lack of available disk space, and the test would thus encumber
validation testing.

E28005C

This test expects that the string "-- TOP OF PAGE. --63" of line 204
will appear at the top of the listing page due to a pragma PAGE in line
203; but line 203 contains text that follows the pragma, and it is this
that must appear at the top of the page.

APPENDIX E
COMPILER OPTIONS AS SUPPLIED BY

Encore Computer Corporation

Compiler: Encore Verdix Ada Development System Version, 5.5

ACVC Version: 1.10

E-1

ada(1)

NAME
ada - Ada compiler

SYNTAX
ada [options] {ada_source.a}... [linker_opuons] [object_file.o]...

DESCRIPTION

The ~ommand ada executes the Ada compiler and compiles the named Ada source file, ending with the .a
suffix. The file must reside 1n a VADS ubrary directory. Th¢ awaib Ble in this directory is modified after each

Ada unit is compiled.

The object for each compiled Ada unit is left in a file with with the same name as that of the source with .01,
.02, ete, substituted for .a. The -0 option can be used 10 produce an executable with a name other than a.out.
the default. For cross compilers, the default name is a.vox.

By default. ada produces only object and net files. If the -M option is used, the compiler automatically invokes
a.ld and builds a complete program wih the named library unit as the main program.

Non-Ada object files (.o files produced by a compiler for another language) may be given as arguments to ada.
These files will be passed on to the linker and will be linked with the specified Ada object §les,

Command line options may be specified in any order, but the order of compilation and the order of the files to
be passed to the linker can be significam.

Several VADS compilers may be simultaneously available on a single system. Because the ada command in
any VADS location/bin on a system will execute the correct compiler components based upon visibie library
directives, the option -sh is provided to print the name of the components actually executed.

Program listings with a disassembly of machine instructions are generated by a.db or a.das.

OPTIONS

-3 file_name (archive) treat file_name as an ar file. Since archive fles end with .a, -a is used to distinguish
archive files from Ada source files.

-d (dependencies) analyze for dependencies only. Do not do semantic analysis or code generation.
Update the library, marking any defined units as uncompiled. The -d option is used by a.make
to establish dependencies among new files.

-e (error) process compilation error messages using a.error and direct it to stdout.-only the
source lines containing errors are listed. Only one -e or -E option should be used.

-E

-E file

-E directory (error output) without a file or directorv argument, ada processes error messages using a.error
and directs the output to stdout; the raw error messages are left in ada_source.err. [f a file
pathname is given, the raw error messages are placed in that fle. If a directory argument is
supplied, the raw error output is placed in dir/source.err. Only one -¢ or -E option should be
used.

-el (error listing) intersperse error messages among source lines and direct to stdout.

-El

-El file

VADS UMAX 4.2 User's Reference Manuei 0=1

\

agat

-El directory

-ev

-1fle_abbreviation

M unit_name

—\

{error listing) same as the -E option. except that source listing with errors is produced.

(errof vi) process svalax error messages using a.error, embed them in the source fle, and call
the environment editor ERROR_EDITOR. (If ERROR_EDITOR is defined. the environment
variable ERROR_PATTERN should also be defined. ERROR_PATTERN is an editor search
command that locates the first occurrence of ‘m# %’ in the error fle.) If no editor is specifed,

call vi.

(link) Link this library file. (Do not space between the -l and the file abbreviation.) See also

Operating system documentation, ld{i).

(main) produce an executable program using the named unit as the main program. The unit
must be cither a parameterless procedure or a parameterless function returning an integer. The
cxecutable program will be {eft in the file a.out unless overridden with the -0 option.

-M ada_source.a (main) like -M unit_name, ezcept that the unit name is assumed to be the root name of the

-0 executable_file

-0|0-9]

-R VADS _library

-V

-w

SEE ALSO

-a file (for foo.a the unit is foo). Only one .a file may be preceded by -M.

(output) this option is to be used in conjunction with the -M option. executable Gle is the name
of the executable rather than the default a.out.

(optimize) invoke the code optimizer (no space before the digit). An optional digit limits the
number of passes by the optimizer: without the -O option, one pass is made; -O0 prevents
optimization; -O with no_digit optimizes as far as possible.

(recompile instantiation) force analysis of all generic instantiations, causing remsmnuauon ot‘
any that are out of date.

(suppress) apply pragma SUPPRESS to the entire compilation for all suppressible checks.
(timing) print timing information for the compilation.

(verbose) print compiler version number, date and time of compilation, name of file compiled.
command input line, jotal compilation time, and error summary line.

(warnings) suppress warning diagnostics.

{VADS Reference] a.db, a.error, a.ld, a.mklib, a.das and Operating system documentation, 1d(1)

DIAGNQSTICS

The diagnostics produced by the VADS compiler are intended 10 be seif-explanatory. Most refer to the RM.
Each RM reference includes a section number and optionally, a paragraph number enclosed in parentheses.

VADS

0=2 UMAX 4.2 User's Reference Manuai

\

