
An Annual Progress Report
Contract No. N00014-86-K-0245

October 1, 1988 - September 30, 1989

THE STARLITE PROJECT

0) Applied Math and Computer Science
Dr. James G. Smith

Program Manager, Code 1211

Computer Science Division
Dr. Andre van Tilborg
Director, Code 1133

Submitted to:

Director
Naval Research Laboratory

Washington, DC 20375

Attention: Code 2627

Submitted by: D T ICSd~ ELECTEM
R. P. Cook E LM

Associate Professor 001.301989
S. H. Son B

Assistant Professor

SCHOOL OF ENGINEERING AND

APPLIED SCIENCE

Apirr.,v for pa'lbc r.guSCl

r! t DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, VIRGINIA 22901

UNIVERSITY OF VIRGINIA
School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate en-
rollment of appromirnately 1,500 students with a graduate enrollment of approximately 600. There are 160
faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties. These
range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical and Aero-
space to newer, more specialized fields of Applied Mechanics, Biomedical Engineering, Systems Engi-
neering, Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Com-
puter Science. Within these disciplines there are well equipped laboratories for conducting highly
specialized research. All departments offer the doctorate; Biomedical and Materials Science grant only
graduate degrees. In addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 2,000 faculty and a total of full-time student
enrollment of about 17,000), also offers professional degrees under the schools of Architecture, Law,
Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College of Arts
and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant to the engi-
neering research program. The School of Engineering and Applied Science is an integral part of this
University community which provides opportunities for interdisciplinary work in pursuit of the basic goals
of education, research, and public service.

An Annual Progress Report
Contract No. N00014-86-K-0245

October 1, 1988 - September 30, 1989

THE STARLITE PROJECT

Applied Math and Computer Science
Dr. James G. Smith

Program Manager, Code 1211

Computer Science Division
Dr. Andre van Tilborg
Director, Code 1133

Submitted to:

Director
Naval Research Laboratory

Washington, DC 20375

Attention: Code 2627

Submitted by:

R. P. Cook
Associate Professor

S. H. Son
Assistant Professor

Department of Computer Science
SCHOOL OF ENGINEERING AND APPLIED SCIENCE

UNIVERSITY OF VIRGINIA
CHARLOITESVILLE, VIRGINIA

Report No. UVA/525410/CS90/103 Copy No.
October 1989

~ ~ PGE j Form Approveod

ftRPOR DOC'~UMENTAIONIJl 0AEMB No. 0704-0188

co~~aoegebsWUOS .t~gwq~sI~tS1wreuoi thu bwdu. i Vu=Mqtnfl 4nqOttfts i~ g 0ed 'On n regarigtire etattmefi oraohe r~~ ait f hi

O&Z~ MqwA , isi tu.A0.ol.V 20.30.su o Otluc of Usnageoient anud Sudget. Ffowwofk AedUwf Project (0704.0 iaduifi.on OC 20303.

1. AGENCY USE ONLY (Leave blank) 2. RE PORT DATE 3. REPORT TYPE AND DATES COVERED
a* October 1989 IAnnual: Oct. 1, 1988 - Sept. 30,1989

4L TITLE AND SUBTITLE 5. FUNDING NUMBERS

The Starlite Project

6. AUTKOR(S) N00014-86-K-0245 P00002

R. P. Cook, S. H. Son

7. PERFORMIN49 ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION
University of Virginia REPORT NUMBER
Departmnent of Computer Science UVA/525410/CS90/103
Thornton Hall

*Charlottesville, VA 22901

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONIT ORNG
Office of Naval Research Resident Representative AGENCY REPORT NUMBER
818 Connecticut Avenue, N. W. Eighth Floor
Washington, DC 20006

11. SUPPLEMENTARY N OTES

*12a. DISTRLUUTION/AVAILABIUITY STATEMENT 12b. DISTRIBUTION CODE

Distribution unlimited

* 13. ABSTRACT (Mfaximum 200 worda)

The StarLite Project has the goal of constructing a program
library for real-time applications. The initial focus of the
project is on operating system and database support. The project

* also involves the construction of a prototyping environment that
supports experimentation with concurrent and distributed algorithms
in a host environment before down-loading to a target system for
performance testing.

The components of the project include a Modula-2 compiler, a
* symbolic Modula-2 debugger, an interpreter/ runt ime package, the

Pheonix operating system, the meta-file system, a visual simulation
p,!ckaqe, a database system, and documentation.-

14-.-SUIIJCT TEMS 1. NUMBER OF PAGES

StarLite Project, Modula-2 compiler, Modula-2 debugger, 16. PRICE CODE

17 SECURITY CLASSIFICATION I3. ECURITY CLASSIFICATION 19 11'CURIY CIASSiMCA71ON 20. LIMITATION OF ABSTRACT'

Unclassified Unclassified Unclassified U

NSN 7540-01.280-5SO0 Standard Form 298 J890iG4 Oraft)
Pvcnbgd by ANSI Std. 219-1S
2911101

TABLE OF CONTENTS

Page
Progress Report ... 1

1. Introduction ... 1
2. Related Activities ... 2
3. Student Participation 3
4. Publications Since September 1988 3

Journal Publications 3
Refereed Conference Publications 4
Technical Reports ... 5

5. The Prototyping Environment 5
6. Operating System ... 6
7. Database Systems ... 6

7.1 New Approaches 7
0 7.2 Integration of a Relational Database with ARTS 9

7.3 Development of a Database Prototyping Tool 9

APPENDIX

0 The StarLite Operating System
RDB, An Open, Real-Time, Relational Database Kernel
On Priority-Based Synchronization Protocols for Distributed Real-Time
Database Systems
Checkpointing and Recovery in Distributed Database Systems

Accession For

- IS GRA& I
DTIC TAI
Unarwounced
just if r cati on

By
Distribution/

AvatlabcliVy Codes

Dist ipc ,lal

0]

PROGRESS REPORT

1. Introduction

It seems improbable that a single database or operating system will suffice to solve
all the application problems that are likely to arise in future real-time, embedded systems.
A much more likely scenario is that future engineers, with support from a programming
environment, will select and adapt modules from program libraries. The selected
modules must have proven operating characteristics and the domain over which they are
applicable must be well-defined.

The StarLite Project, which is supported by the Office of Naval Research, has the
goal of constructing such a program library for real-time applications. The initial focus
of the project is on operating system and database support.

Another goal of the StarLite project is to test the hypothesis that a host prototyping
environment can be used to significantly accelerate our ability to perform experiments in
the areas of operating systems, databases, and network protocols. The primary project
requirement for StarLite is that software developed in the prototyping environment must
be capable of being retargeted to different architectures only by recompiling and
replacing a few low-level modules. The anticipated benefits are fast prototyping times,
greater sharing of software in the research community, and the ability for one research
group to validate the claims of another by replicating experimental conditions exactly.

As one measure of the effectiveness of the environment, it is often possible to fix
errors in the operating system, compile, and reboot the StarLite virtual machine in less
than twenty seconds. The coIiilation time on a SUN 3/280 for the 66 modules (7500
lines) that comprise the operating system is one minute (clock) or 16 seconds (user time).

* At the present time, all components execute on SUN workstations using the StarLite
Modula-2 system.

The StarLite prototyping architecture is designed to support the simultaneous
execution of multiple operating systems in a single address space. For example, to
prototype a distributed operating system, we might want to initiate a file server and
several clients. Each virtual machine would have its own operating system and user
processes. All of the code and data for all of the virtual machines would be executed as a
single UNIX process.

In order to support this requirement, we assume the existence of high-performance
workstations with large local memories. Ideally, we would prefer multi-thread support,
but multiprocessor workstations are not yet widely available. We also assume that
hardware details can be isolated behind high-level language interfaces to the extent that
the majority of a system's software remains invariant when retargeted from the host to a
target architecture.

StarLite has matured to the point that we are, in the coming year, pursuing several
* technology transition possibilities. We will briefly describe several of our ideas. The

progress to date for each of the StarLite components is covered in later Sections.

First, we think that it might be possible to convert our whole environment over to an
Ada subset. Note the word "subset"; no one in a University could do a full Ada
environment with our funding level. The advantage is that we could take advantage of
StarLite's portability to provide a direct technology transfer mechanism for industry.
Second, we have started work with IBM Manassas to combine our database work with
the CMU work on the ARTS kernel. The database group at NOSC is waiting to use the

resulting system as a testbed. Third, we are attempting to convince CLI, which has a
DARPA contract to formally verify Kernelized Mach, to adopt our modular design
approach so that we could work jointly on the project. This would result in a modular
Kernelized Mach running under the StarLite environment. The advantage is that Mach
could then be widely distributed as a research vehicle. With more researchers working
on making Mach better, DOD and its other users would benefit. Furthermore, the
StarLite Mach could serve as a training device for defense contractors who wished to
build their own OS on top of the Mach kernel. Fourth, some of the people in the 43RSS
development group have agreed to work with us to use their Pulse Detection System
specification as a testbed for our operating system and database work. We have already
started the implementation. The result will be a real test case that can be widely
distributed to other researchers. It will also be a better testbed for our new algorithms
than the random parameter ranges that we currently use.

2. Related Activities

* Cook, General Chairman, Seventh IEEE Workshop on Real-Time Software and
Operating Systems, Charlottesville, VA (1990).
* Son, participation in the coordination meeting with Prof. Tokuda from CMU and Pat
Watson from IBM (Sept. 1989).
* Cook, participant in IDA/ONT/ONR/SNSC Workshop on Operating Systems for
Mission Critical Computing (Sept. 1989).
e Cook, invited participant in AIA/SEI Workshop on Research Advances Required for
Real-Time Software Systems in the '90s (Sept. 1989).
* Son, presentation at the 18th International Conference on Parallel Processing (Aug.
1989)
* Son, participation in the IEEE Data Engineering Conference program committee
meeting (Aug. 1989).
* Son, participation in the ACM SIGMIOD Conference (June 1989).
* Son, invited talk at Stanford University on real-time databases (June 1989).
e Cook and Son, accepted for Tools Fair presentation of StarLite at the 1 th International
Conference on Software Engineering, (May 1989).
* Cook, Session Chair, Sixth IEEE Workshop on Real-Time Software and Operating
Systems, (May 1989).
* Cook, invited participant at the IEEE Indialantic Workshop on Tools and Environments
for Reuse, (May 1989).
* Son, participation in the Carnegie-Mellon University ARTS project meeting (May
1989).
* Son, presentation at the International Symposium on Database Systems for Advanced
Applications (April 1989).
* Son, Session Chair and panelist at the International Symposium on Database Systems
for Advanced Applications (April 1989).
eSon, presentation at the IEEE INFOCOM '89 (April 1989).

* * Cook and Son, presentation at the ACM Conference on Hypercube Concurrent
Computers and Applications (March 1989).
9 Son, invited talk at the NSWC on reliable distributed database systems (March 1989).

* 2

* Son, participation in the Real-Time Systems Symposium (Dec. 1988).
e Cook and Son, presentation at the ONR Foundations of Real-Time Computing
Research Initiative Workshop (Nov. 1988).

3. Student Participation

Chun-Hyon Chang (Post Doc.), priority-based contention protocols
Anthony Burrell (Ph.D. student), real-time operating system scheduling
Shi-Chin Chiang (Ph.D. Student), checkpointing in distributed database systems
Lee Hsu (Ph.D student), just getting started
Ying-Feng Oh (Ph.D. student), just getting started

41 Juhnyoung Lee (Ph.D. student), just getting started
Jeremiah Ratner (Ph.D. student), synchronization protocols for real-time systems
Ambar Sarkar (Ph.D. student), real-time, fault-tolerant network protocols
David Duckworth (M.S. student), Modula-2 to C compiler
Greg Fife (M.S. student), real-time, distributed, site atomic transactions
Navid Haghighi (M.S. student), multi-version database performance evaluation

* Chris Koeritz(M.Sc. student), real-time operating system
Marc Poris (M.S. student), integration of a database with real-time kernel
Paul Shebalin (M.S. student), software safety in real-time systems
Alan Tuten (M.S. student), relational database extension
Prasad Wagle (M.S. student), temporal consistency issues

0 Richard McDaniel(B.S. student), prototyping environment

4. Publications Since September 1988

0 * Journal Publications

(1) Cook, R. P., "An Empirical Analysis of the Lilith Instruction Set," IEEE
Transactions on Computers 38, 1(Jan. 1989) 156-158.

(2) Cook, R.P., "StarMod--A Language for Distributed Programming," reprinted in
Concurrent Programming, Addison-Wesley, edited by N. Gehani and A.D.
McGettrick, (1988).

(3) Son, S. H., "An Adaptive Checkpointing Scheme for Distributed Databases with
Mixed Types of Transactions," IEEE Transactions on Knowledge and Data
Engineering, (Dec. 1989), to appear.

(4) Son, S. H., "An Algorithm for Non-Interfering Checkpoints and its Practicality in
Distributed Database Systems," Information Systems, (Dec. 1989), to appear.

(5) Son, S. H. and A. Agrawala, "Distributed Checkpointing for Globally Consistent
* States of Databases," IEEE Transactions on Software Engineering 15, 10(Oct.

1989) 1157-1167.

3

(6) Son, S. H., "Recovery in Main Memory Database Systems for Engineering Design
Applications," Information and Software Technology 31, 1(March 1989) 85-90.

(7) Son, S. H., "Checkpointing and Recovery in Distribut,;L: Database Systems," Data
Engineering 12, l(March 1989) 44-50.

(8) Son, S. H., "An Algorithm for Efficient Decentralized Checkpointing," Journal of
Computer Systems Science and Engineering 4, 1(Jan. 1989) 27-34.

(9) Son, S. H., "Replicated Data Management in Distributed Database Systems," ACM
SIGMOD Record 17, 4(Dec. 1988) 62-69.

(10) Son, S. H., "Semantic Information and Consistency in Distributed Real-Time
Systems," Information and Software Technology 30, 3(Sept. 1988) 443-449.

* Refereed Conference Publications

(11) Cook, R. P., "The StarLite Operating System," Workshop on Operating Systems
for Mission-Critical Computing, (Sept. 1989) J1-J7.

(12) Son, S. H. and N. Haghighi, "Performance Evaluation of Multiversion Database
Systems," Sixth IEEE International Conference on Data Engineering, Los
Angeles, California, (Feb. 1990), to appear.

(13) Son, S. H., "On Priority-Based Synchronization Protocols for Distributed Real-
Time Database Systems," IFAC/IFIP Workshop on Distributed Databases in
Real-Time Control Budapest, Hungary, (Oct. 1989), to appear.

(14) Son, S. H. and Y. Kim, "A Software Prototyping Environment and Its Use in
Developing a Multiversion Distributed Database System," 18th International
Conference on Parallel Processing, St. Charles, Illinois, (Aug. 1989) 81-88.

(15) Son, S. H. and R. Cook, "Scheduling and Consistency in Real-Time Database
Systems," Sixth IEEE Workshop on Real-Time Operating Systems and Software,
Pittsburgh, Pennsylvania, (May 1989) 42-45.

(16) Son, S. H. and C. Chang, "Distributed Real-Time Database Systems: Prototyping
and Preformance Evaluation," International Symposium on Database Systems for
Advanced Applications, Seoul, Korea, (April 1989) 251-258.

(17) Son, S. H. and H. Kang, "Approaches to Design of Real-Time Database Systems,"
International Symposium on Database Systems for Advanced Applications, Seoul,
Korea, (April 1989) 274-281.

(18) Son, S. H., "A Resilient Replication Method in Distributed Database Systems,"
IEEE INFOCOM '89, Ottawa, Canada, (April 1989) 363-372.

4

(19) Son, S. H., J. Pfaltz, and J. French, "Synchronization of Replicated Data in Parallel
Database Systems," Fourth ACM Conference on Hypercube Concurrent
Computers and Applications, Monterey, California, (March 1989).

(20) Son, S. H., R. Cook and J. Ratner, "Communication Paradigms for Message-Based
Multicomputer Systems," Fourth ACM Conference on Hypercube Concu-rent
Computers and Applications, Monterey, California, (March 1989).

(21) Pfaltz, J., J. French, and S. H. Son, "Parallel Set Operators," Fourth ACM
Conference on Hypercube Concurrent Computers and Applications, Monterey,
California, (March 1989).

41 e Technical Reports

(22) Son, S. H. and J. Ratner, "StarLite: An Environment for Distributed Database
Prototyping," Technical Report TR-89-05, Dept. of Computer Science, University
of Virginia, (Aug. 1989).

(23) Son, S. H. and N. Haghighi, "Performance Evaluation of Multiversion Database
Systems," Technical Report IPC-TR-89-007, Institute for Parallel Computation,
University of Virginia, (July 1989).

(24) Son, S. H. and N. Haghighi, "Multiple Data Versions in Database Systems,"
Technical Report TR-89-01, Dept. of Computer Science, University of Virginia,
(June 1989).

5. The Prototyping Environment
The components of the environment include a Modula-2 compiler, a symbolic

debugger, a window package, an interpreter/runtime package, the Phoenix operating
system, the concurrency control algorithm testbed, a simulation package, and
documentation.

During the past year, the windows package was extended to support bit-mapped
graphics operations. As a result, we were able to implement a number of support tools
for profiling, graphing, and visual simulation. Also, the debugger was rewritten to be
window-based and mouse-driven. This also involved changing the compiler so that
breakpoints worked correctly.

One of the problems with the environment is the delay introduced by using an
interpreter. This problem is being addressed in two ways. First, we performed a static
and dynamic analysis of instruction opcode usage as a prerequisite to improving the
interpreter's architecture. Secondly, we think that we have found a way to support
"mixed" execution; that is, a program that combines interpreted code and native machine
code. If our design works, all of the tools will continue to work but users can mix and
match machine language modules for significant performance gains. We believe that this
goal can be achieved without sacrificing portability.

* 5

As the system has grown larger, it has become more difficult to synchronize
changes that propagate through multiple modules. To address this problem, we
implemented a simple "make" utility that automatically compiles dependent modules. It
is simpler to use than UNIX "make" and avoids unnecessary compilations.

In summary, the environment is designed to maximize productivity. Therefore, it
accelerates a researcher's ability to conduct experiments, which advances the state-of-
the-art. While the initial version of the environment executes as a single UNIX process,
future versions could take excellent advantage of both load balancing to distribute a
running prototype across a number of machines and of multiprocessor support, such as is
found in Mach or Taos.

6. Operating System
During the past year, the operating system implementation was modified to execute

on the multiprocessor machine model as well as the distributed nodes. Quite a bit of
effort was invested in the efficient use o. spin locks. As a result, we have invented a new
method for handling synchronization within the operating system. The new method
should decrease the cost of lock overhead dramatically.

We also experimented with techniques to minimize interrupt latency in the
operating system. This effort was successful and resulted from the isolation of the use of
DISABLE to only two modules.

We also rewrote the SDB relational database system provided to Professor Son by
Pat Watson from IBM Manassas. We call our system RDB for Real-time Database. Our
version corrects a number of defects in SDB. It is reentrant, can be preempted, supports
more flexible query processing, and it has more data types than SDB.

We experimented with a new dynamic binding mechanism for operating system
services. The intent is to make it easy for application engineers to adapt the operating
system to meet the requirements imposed by hard real-time tasks. For example, they
might want a file system without naming to improve performance and predictability.

We experimented with and implemented a Volume Standard Format. The purpose
of a VSF is to make it possible for multiple operating systems to share files but without
sacrificing their own disk layouts or naming conventions. When VSF is perfected, it will
be suitable for VLSI implementation as a national standard candidate.

7. Database Systems

Compared with traditional databases, real-time database systems have a distinct
0 feature: they must satisfy the timing constraints associated with transactions. In other

words, "time" is one of the key factors to be , "sidered in real-time database systems.
Transactions must be scheduled in such a way t. they can be completed before their
corresponding deadlines expire. For example, both the update and query operations on
the tracking data of a missile must be processed within the given deadlines: otherwise,

* the information provideo could be of little value. State-of-the-art database systems are
typically not used in real-time applications due to two inadequacies: poor performance
and lack of predictability. Current database systems do not schedule their transactions to

* 6

0

meet response requirements and they commonly lock data tables indiscriminately to
assure database consistency. Locks and time-driven scheduling are basically
incompatible. Low priority transactions can and will block higher priority transactions
leading to response requirement failures. New techniques that are compatible with time-
driven scheduling and provide system response predictability need to be investigated.

Our research effort during October 1988 to September 1989 was concentrated in
three areas: investigating new techniques for real-time database systems, integrating a

* relational database system with the real-time operating system kernel ARTS, and
developing a message-based database prototyping environment for empirical study. In
addition, we have evaluated the performance of real-time database systems developed
using the prototyping environment.

7.1. New Approaches

We have investigated two approaches in designing real-time database systems. The
first approach is to use advanced database techniques to improve the availabi!ity and
responsiveness of real-time database systems. Specifically, we have studied techniques
for database checkpointing and synchronization using priorities and multiple versions of
data. The second approach is to exploit semantic information about transactions and data
for intelligent scheduling. This approach, combined with effective use of data replication,
may improve responsiveness and reliability.

The need for having checkpoint mechanisms in distributed database systems is well
known. Checkpoints are performed in database systems to save a consistent state of the
database on a separate secure device. In case of a failure, the stored data can be used to
restore the database. Since checkpointing is performed during the normal operation of
the system, interference with transaction processing must be kept to a minimum. It is
highly desirable that users are allowed to submit transactions while checkpointing is in
progress and that transactions are executed in the system concurrently with the

* checkpointing process. In distributed systems, this non-interference requirement makes
checkpointing complicated because we need to consider coordination among autonomous
sites of the system. A quick recovery from failure is also desirable in real-time
applications of database systems that require high availability. To achieve quick
recovery, each checkpoint needs to be globally consistent so that a simple restoration of

* the latest checkpoint can bring the database to a consistent state. To make each
checkpoint globally consistent, updates of a transaction must be either included
completely in one checkpoint, or not included at all.

Recently, the possibility of non-interfering checkpointing mechanisms, which do
not interfere with transaction processing and achieve global consistency, have been

* proposed. They are very promising for real-time database systems. We have investigated
and extended the use of non-interfering and adaptive checkpointing techniques for
distributed real-time database systems. Our research effort has resulted in a feasible
solution for achieving the goals of checkpointing. Currently, we are implementing a
non-interfering checkpointing algorithm and are using the prototyping environment to
evaluate the performance of our solution.

Performance of real-time database systems can be enhanced by synchronization
using priorities and multiple versions of data. In a real-time database system,

* 7

synchronization protocols must not only maintain the consistency constraints of the
database but also satisfy the timing requirements of the transactions accessing the
database. To satisfy both the consistency and real-time constraints, there is the need to
integrate synchronization protocols with real-time priority scheduling protocols. A major
source of problems in integrating the two protocols is the lack of coordination in the
development of synchronization protocols and real-time priority scheduling protocols.
Due to the effect of blocking in lock-based synchronization protocols, a direct
application of a real-time scheduling algorithm to transactions may result in a condition
known as priority inversion.

Priority inversion is said to occur when a high priority process is forced to wait for
an indefinite period of time for the execution of a lower priority process to complete.
Priority inversion is inevitable in transaction-based systems. However, to achieve a high
degree of schedulability in real-time applications, priority inversion must be minimized.

We have implemented priority-based scheduling algorithms in our prototyping
environment and investigated technical issues associated with them. One of the issues we
studied was the use of the priority ceiling approach as a basis for a real-time locking
protocol in a distributed environment. The priority ceiling protocol might be
implemented in a distributed environment by using the global ceiling manager at a
specific site.

In this approach, all decisions for ceiling blocking are performed by the global
ceiling manager. Therefore, all the information for the ceiling protocol is stored at the
site of the global ceiling manager. The advantage of this approach is that the temporal
consistency of the database is guaranteed since every data object maintains its most up-
to-date value. While this approach ensures consistency, holding locks across the network
is not very attractive. Due to communication delay, locking across the network will only
force the processing of a transaction using local data objects to be delayed until access
reques:s to the remote data objects are granted. This delay for synchronization,
combined with the low degree of concurrency due to the strong restrictions of the priority
ceiling protocol, is counter-productive in real-time database systems.

An alternative to the global ceiling manager approach is to have replicated copies of
data objects. An up-to-date local copy is used as the primary copy, and remote copies are
used as the secondary read-only copies. In this approach, we assume a single writer and
multiple readers model for distributed data objects. This is a simple model of
applications such as distributed tracking in which each radar station maintains its view
and makes it available to other sites in the network. Currently, we are investigating the
trade-offs between these two approaches for distributed real-time database systems and
their performance.

Maintaining multiple versions of data objects is another approach to improve
system responsiveness by increasing the degree of concurrency. The objective of using
multiple versions is to reduce the conflict probability among transactions and the
possibility of rejection of transactions by providing a succession of views of data objects.
One of the reasons for rejecting a transaction is that its operations cannot be provided by
the system. For example, a read operation has to be rejected if the value of data object it
was supposed to read has already been overwritten by some other transactions. Such
rejections can be avoided by keeping old versions of each data object so that an
appropriate old value can be given to a tardy read operation. In a system with multiple

8

versions of data, each write operation on a data object produces a new version instead of
overwriting it. Hence, for each read operation, the system is able to select an appropriate
version to read by flexibly controlling the order of read and write operations. We have
investigated several problems that must be solved to effectively use multiple versions of
data in real-time applications. For example, selection of old versions for a given read-
only transaction must ensure the consistency of the state seen by the transaction. In
addition, the need to save old versions for read-only transactions introduces a storage
management problem, i.e., methods to determine which version is no longer needed so
that it can be discarded.

Since multiversion database systems maintain timing information associated with
data objects, they can be used to satisfy temporal requirements of real-time transactions.
The temporal consistency requirement is specified in terms of the desired accuracy of the

*0 value of data objects to be read by the transaction. Temporal consistency provides a time
interval, relative to the start time of a transaction, during which accurate states of data
items may be accessed. For example, the temporal consistency requirement of 15
indicates that the data items accessed by the transaction cannot be older than 15 time
units relative to the start time of the transaction. An attempt to read an inaccurate data
item (i.e. one whose write timestamp is outside of this interval) will cause the transaction
to abort. While a deadline can be thought of as providing a time interval as a constraint in
the future, the temporal consistency specifies a temporal window as a constraint in the
past. We have developed a real-time transaction model that can be used for multiversion
data objects, and are currently investigating the scheduling options for multiversion real-
time databases.

7.2. Integration of a Relational Database with ARTS
ARTS is the real-time operating system kernel being developed by the researchers

at the Carnegie-Mellon University. The goal of the ARTS OS is to provide a predictable,
analyzable, and reliable distributed real-time computing environment. We have been
working closely with the ARTS developers and Pat Watson at the IBM Federal Systems
Division to integrate a relational database system with ARTS. Our goal is to provide a
fully functional distributed relational database manager for real-time systems. At present,
a relational database server and client objects are running on top of ARTS. We are
investigating methods to selectively apply consistency management techniques and to
develop a multi-thread server for this real-time database manager. In addition, we arc
expanding the functionalities that can be provided by the real-time relational database
manager.

7.3. Development of A Database Prototyping Tool

One of the primary reasons for the difficulty in successfully developing and
evaluating new techniques for distributed database systems is that it takes a long time to
develop a system, and evaluation is complicated because it involves analyzing a large
number of system parameters that may change dynamically. Prototyping methods can be
applied effectively to the evaluation of new techniques for implementing distributed
database systems. By investigating design alternatives and performance/reliability

* 9

characteristics of new database techniques, we can provide a clear understanding of
design alternatives with their costs and benefits in quantitative measures. Furthermore,
database technology can be implemented in a modular reusable form to enhance
experimentation. Although there exist tools for system development and analysis, few
prototyping tools exist for distributed database experimentation, especially for distributed
real-time database systems.

A prototyping tool to implement database technology should be flexible and
organized in a modular fashion to provide enhanced experimentation capability. A user
should be able to specify system configurations such as the number of sites, network
topology, the number and locations of processes, the number and locations of resources,
and the interaction among processes. We use the client/server paradigm for process
interaction in our prototyping tool. The system consists of a set of clients and servers,
which are processes that cooperate for the purpose of transaction processing. Each server
provides a service to the clients of the system,.where a client can request a service by
sending a request message to the corresponding server.

We have enhanced the previous version of the prototyping tool running on a Sun
workstation. The current prototyping tool provides concurrent transaction execution
facilities, including two-phase locking and timestamp ordering as underlying
synchronization mechanisms. A series of experiments have been performed to evaluate

the performance of multiversion database systems and priority-based synchronization
algorithms. Using the prototyping environment, we found that for specific workload,
multiversion database systems offer performance improvements despite the additional
CPU and I/O costs involved in accessing the old versions of data. We have also found
that transaction size is one of the most critical parameters that affects system
performance. Some of our findings have been presented at the International Conference
on Parallel Processing (August 1989), and will be presented at the International
Conference on Data Engineering (February 1990).

We have implemented the priority-ceiling protocol and compared its performance
with other design alternatives such as the two-phase locking protocol. We found that as
the transaction size increases, there is little impact on the throughput of priority-ceiling
protocol over a range of transaction sizes and over the workload type. Furthermore, the
percentage of deadline missing transactions increases sharply for the two-phase locking
protocol as the transaction size increases. A sharp rise was expected, since the probability
of deadlocks would go up with the fourth power of the transaction size. The percentage
of deadline missing transactions increases much more slowly as the transaction size
increases in the priority-ceiling protocol, since there is no deadlock in priority-ceiling
protocol and the response time is proportional to the transaction size and the priority
ranking.

10

0

0
APPENDIX

0

0

0

S

0

S

0

S

The StarLite Operating System

0 Robert P. Cook*
cook@cs.virginia.edu

Department of Computer Science
University of Virginia

* Charlottesville, VA 22903
(804) 979-9943

* 1.0 Introduction of the technology issues being explored as part of

The StarLite project [1,2,31 has four research the StarLite project.

components in the areas of prototyping, operat- 2.0 Operating System Interfaces
ing systems, database, and computer network
technology. The prototyping environment, In this Section, we describe the interface
which executes on Sun workstations, supports requirements that we feel would be most appro-
the development and execution of software for priate for a mission-critical operating system
uni- or multi-processors, as well as distributed solution. Interfaces are important because theysystems. can be standardized and because they are de-

signed to outlive implementations and machine
* Figure 1 illustrates the use of the prototyping architectures.

environment during a test session for the StarLite
operating system. The figure illustrates our It is now widely accepted that the use ofa pro-
proprietary UNIX implementation "booting up" cedural interface, such as the C library for UNIX,on a six-node virtual network. Once the virtual is the most advantageous method for presentingon si-noe vrtul ntwok. ncethevirualan operating system's functionality to an end

* network has booted, the system designer can aerating systemfuctnalityaton end
execute test programs, collect statistics, or exam- user. Such an interface an besmachine and
ine the system state using the builtin debugger, language invariant. These are desirable proper-
which is illustrated in Figure 2. We have invested ties given the diversity of hardware/software
a good deal of effort in building the prototyping

* system to create what we feel is the best possible There are two design options to choose from
research environment, as the basis for an interface standard: flat and lay-

The purpose of this paper is to describe our ered. An operating system with a flat interface,
approachtodesigninganewoperating system for such as UNIX, is essentially closed; that is none
mission-critical computing and to review some of the interfaces used in the implementation can

be accessed. Flat interfaces are inflexible and
typically trade performance and control for

*This work is supported by by ONR under con- generalit.

tract N00014-86-K0245 and ARO under con-

tract DAAL03-87-K0090. A layered interface specification, such as the
* *UNIX is a registered trademark of AT&T Bell ISOOSIdefinitionforcomputernetworks, over-

Laboratories. comes the deficiencies of the traditional, flat

NI ready to go 98111011 NI ready to go assI
10 M~OU ITMZAIwCe~I C 0dLE INITIALIZATION C04LEEPLTE

FER 10 MODULE INITIA.IZATOIO CON0 EI
FER 10 MOULE INITIALIZATION COMPLTE race disk y/n'M
co dsek y'n'OI3K MOCULE INITITALIZATION COMPLETT ISK MODULE! :NITITMAZATION COOPLETE

OF !MODE INITIALIZATION Io OF INOCE INITIALIZATION
OF FILE INITIALIZATION NO OF FILE :NITIAL.IZATION

I14 Ig Ieat Filesye.modoJ

see dik Y/A' Rooating' ZN!T ready to go 89BOII
ISe diskE INTTLZTNC4LT OCX 10 MODULE INITIALIZATION COMPLETE
owl trk *ac cMt 1 0 1 1 . FER T0 MOO"L INITIALIZATION CONPLETE
surf tritaftcmn 6 9 2 1 Sea a disk y/n'7n

Of INUE INITIALIZATION ISK MODLE NITITALIZATION CO-LTE
sarftrk mcnt: -- 1 U 4 1 NO OF INOOE INITIALIZATION

OF FILE INITIALIZATION OF FILE INITIALIZATION

NTready to go 6611NI re"d to go 89899819

FR10 MOULE INITIALIZATION C04PLETE roENT I 10 MOULE INITIALIZATION C04.ErE
race disk y/n~ft 2 FAILacdikympIll MODULE! INITITALIZATION COMPL.ETE 3 FAIL SO7 ISK MaOLE IMITITALrZATION COLETE
No OF INODE INITIALIZATION 4 REBOOT NO OF IMOOE INITIALIZATION
PCJ OF FILE INITIALIZATION 5 PATT'ERN OF FILE INITIALIZATION

Figure 1. A Six-Node StarLite System

0
ehIing for yton.RFC Oqtifuo remove reize soi re typ value aesse

loding... doral modul lim PC n c Count poser Peleter use61
29 44 Requst Record 8U6A7

lie a 158 set pppeacpsintor6611
Pointer 669

reek hInt typ value a fee
I r 1 PC Module NMe ITEto TS ver effort use51

N M 89 I Moitor ylpe name ti value adarelsismm 5ePocdr It talus CARDINAL 2" a m6
1120 7 pp clocki P Irent outer Pointer6660ilesys Is rearli 1I 10 S2 5jj ScoulF-rstChild 2User NIL 89609
113* 8 Wie53 Priority IS'str puler NIL 986611A
to5 tnIii 4 Z00411 rocessId -ARDINAL 2 BMW98

55 FileSys serld :ARDINAL S 860696

13:POEUEpjpervpu:pueer; YA r:.A 5 6 Law1il e tp &Iuo drs
13; VR p ipebeccrt.a 17 FInitoot WNERt raesecritecerS5066

134 pb :POINTER TO AARAY (C.30111OF CAR; Me56 w

13. WT 0Readers :AROINAL 2 6996966
137: pp ; pPlpeescriptor(r.pftle^.fIe); riters :AROINAL 1 80666966

13: WT p 0ytes ARDINAL. a99669
139: error :z ; :A OI:AL g 9
146: pla :z address; :A:0 AR AL 0 660~

* ~143: Slock(wrlteQ, PIPEYRITE); seega
144: VMILE count) N0 00 I
14S: If nytO z AXpIpf.1 rmIN
146: IF awaited(IaEpty)) I THIN lUh'iock(lelapty); END; '*

147: Slocl(isFult, FULLPIPI); ...

149; buf(taill :z po-Cresult]; (*CAg8-S60) '.
SS: :xC(result); INC(u0lptee); eoe.C :: count - O @A6-S .wt

151: tail: (talI.1) MOO (MAPIPE.1);

0 Figure 2. The StarLite Symbolic Debugger

2

operating system interface designs by allowing features, which can affect interfaces and imple-
the application engineer to choose an interface mentations at a number of layers. Even if the re-
layer that most closely fits the problem to be quirement is removed at a higher layer, there may
solved. For example, if UNIX were a layered be unused procedures and data structures at lower
design, itwouldbe possible for a database system layers that affect performance. Both problems
to manipulate the operating system's buffercache are being solved by improving compiler technol-
in a manner that has long been requested by ogy.
implementors[4]. 3.0 Interface Implementations

Access to low-level interfaces can address the
performance requirements of mission-critical Most operating system implementations are
software. Another advantage of a layered design closed; that is, the user cannot and probably
is that layers can be omitted to save space. For should not modify them. The StarLite operating
example, if an application does not use files, the system is designed to support an arbitrary num-
file system could be omitted. It is also possible ber of different, validated implementations for a
to implement layers in hardware to improve given interface. As a result, the operating system
performance. as a whole follows an open systems architecture

that can be tuned to meet application require-
The StarLite operating system is based on a ments. Examples of different implementation

Slayered design with standard interfaces. Two of options for the same interface specification in-
the research issues are how to partition the layers clude CPU and disk scheduling algorithms or
and how to define the interfaces at each layer, hierarchical versus flat-file name interpretation.

To experiment with different options, we The long-term goal of the StarLite project is to
designed and implemented a UNIX-compatible create an operating system generator that could

* operating system according to the layering prin- automatically select implementations from a
ciples defined by ISO[5]. The StarLite UNIX is module library based on specified application
proprietary in that it is not based upon nor does it requirements and a given target architecture. The
contain any code from other UNIX implementa- first step toward achieving this goal is to create a
tions. We have rewritten the system several times library of implementation modules suitable for

0 to try different layering and implementation mission critical applications. The current phase
strategies. of the StarLite project is concerned with creating

We have found interface specification to be a such a library.
more demanding task than doing the implemen- 40 A Software Backplane
tation. In other words, writing a monolithic piece
of code to solve a problem is much easier than One of the prerequisites for experimenting
creating a layered design in which the layers are with a library of operating system components is
intended to form functionally complete and use- having the ability to add and delete modules or
ful subsets. services. Also, we felt that some composition

* We have found two other problems with a mechanism would be necessary to achieve the

layered design that we are addressing as part of goal of creating an operating system generator.

our research. The first problem is the overhead This section discusses the two components of
of procedure calls through multiple layers of the StarLite operating system that make up what
software. The second problem results from we call a software backplane. The two compo-

0 application requirements, such as protection nents are a composition strategy for process

3

objects and a dynamic binding option for system efficiency as the traditional UNIX process struc-
services. The first component is used to create ture. For example, "pA.nextTimeOut" would
the internal structure of an operating system; the retrieve a field from the TimingInfo record.
second is used to connect various services to that It is also possible to associate managers with
underlying structure. properties. When a process object is closed, the

In a traditional operating system implementa- managers are notified one at a time so that the
ton, such as UNIX, the properties of a process are individual fields may be closed. Forexampte, the
stored as a single record. Any changes in one exit system call's implementation is unaware that
module of UNIX require a change in the ".h" file there is a file system associated with a process.

for the shared record. The result is that all the When the manager of the file-system property is
modules in the system must then be recompiled. invoked as the result of a process exit, it does its

The StarLite composition mechanism elimi- own cleanup by closing all open files.

nates unnecessary recompilations by binding Managers can also be used to monitor the
properties to processes dynamically. The actions on fields for debugging purposes. This is
method is object based but does not support somewhat equivalent to the probe points used on
inheritance. Thus, the support code is small and hardware backplanes.
fast. The second component of S tarLite's software

In StarLite, there is only one class of object, a backplane design is its user services interface.
process. Each process object can be composed of The operating system acts as an agent between
a limited number of properties that can be con- user interfaces and modules that provide serv-
nected to it in any order and at any time. ices. The connection between the two is by

When the operating system boots up, each means of messages in which the operations re-

module has been statically linked to the code of quested can be open, share, read, write, rcon-
trol, wcontrol. and close. However, the inter-

the modules that it depends on. However, each pretation of the message is strictly up to the
module dynamically connects its data tye to the service modules. Thus, the system implementor
process object using a low-level creat system
call. For example, 'creat(">process/Timing- can create an arbitrary number of user interfaces

Info")' would append a set of timing properties and an arbitrary number of implementations of

of a certain size to every process object. The those interfaces.

property fields are created only once when the For example, assume that a user opens "/dev/
system boots up. Also at boot time, the modules pipe". The result is that an action procedure is
that use a particular property retrieve the location dynamically associated with the 10 field in the
of its fields with an open system call, such as user's process object. Next, an open message is
'open(">process/TimingInfo")'. Again, this only constructed and sent to the Pipe module. The
occurs once. Note that the net effect is the same return value, which represents two file descriptor
as being able to declare a RECORD structure tags for the read/write ends of the pipe, is sent to
with the field location bound at runtime. the user's process as a result. The applications

engineercan choose from a variety of pipe imple-In order to use the TimingInfo property, aIn oderto se te Tminlnfoproert, amentations by using different names. Note that
module must execute a read system call to re- dynamic bnding eent nal d e loa

trieve a pointer to or copy of the desired field, dynamic binding need not entail demand load-

depending on the semantics. The contents of the ing; the implementation modules can be loaded
with the boot image if desired.

field can then be manipulated with the same g

4

The user services interface has one other dictate the use of a standard file system for all
aspect, the notion of context, that we feel is ir- critical computing. This may not be feasible so
portant for mission critical computing. Acontext we have investigated the lesser goal of standard-
defines the mechanism by which names are inter- izing file manipulation, indexing, and disk space
preted. In the StarLite implementation, all name allocation. Each vendor's operating system is
resolution is accomplished by messages sent to then presented with a standard interface to a vol-
context services by means of action procedure ume.
calls. At the current time, the VSF standard is de-

As a result, any path name syntax and any signed to maintain the integrity of a volume's bit
effect can be realized. For example, the dynamic map, file descriptors and index blocks. It is up to
service binding is implemented by a context each operating system to maintain the consis-
module. Contexts can also be used for perform- tency of other information, which may be arbi-
ance enhancement. For instance, the standard trary. For example, UNIX information, such as
UNIX implementation of path name resolution access times or an owner's id, could be manipu-
can result in lengthy and unpredictable disk latedfreely through the interface. Each operating
accesses. Critical read-only file names could be system is free to add whatever information that it
resolved by a context so that their index and data wants to either file descriptors or index blocks.
blocks were locked in memory thereby achieving This flexibility is achieved by partitioning the
unit access times. descriptor and index blocks into two parts. One

We feel that adaptability and extensibility are part can be manipulated arbitrarily by the host
desirable properties for operating systems to operating system through a protected interface.
support mission critical computing. The tradi- The second part can only be used in certain
tional methods of changing interfaces as new restricted, but always safe, ways. The integrity of

* application and technological requirements arise the protected information, which contains disk
are unacceptable. StarLite achieves flexibility block addresses, guarantees the integrity and
without sacrificing performance. recoverability of a volume's data.

5.0 Technology Issues The protected part of an index block or file

0 Idescriptor contains index slots. Each index slot
In this section, we discuss some of the StarLite can identify an extent, which can be as small as

project's research in operating system implemen- one block, or another index block. For high
tation techniques. The areas discussed include a performance applications, each file can be imple-
Volume Storage Format standard (VSF), syn- mented as a single extent consisting of a file
chronization, and resource allocation, descriptor followed by the data. This organiza-

5.1 A VSF standard tion avoids the overhead associated with the
traditional UNIX implementation.

We feel that one of the key aspects of a supportstategy for mission critical computing is a stant- The design also supports the creation of multi-
dard format for disk volumes. The advantages level index structures. Since an operating systemar thrat rdisk standcoul. be mpentaed ican store into the unprotected part of an indexare th at this standard could be im plem ented in b o k t i o s b e t f ii nl m l m nhardware for high-performance and that files block, it is possible to efficiently implement
stored on any volume could be accessed by any keyed access methods, such as B-trees, that dooperating system. not "fit" into the UNIX filesystem model. Al-though we have not tried it yet, it is also possible

* One way to achieve this goal would be to to create indices that span multiple files.

5

The proposed standard is flexible, supports tors are used for critical sections with blocking
volume interchange, and can be used to achieve conditions; and Blocking operations are used for
predictable, high-performance operation. Pro- the cases in which a delayed thread can be
prietary file systems can still be defined, but low- swapped out. For swapped, blocked threads, the
level access to data across systems is guaranteed. unblock operation is reflected as a state change

that defers the wakeup signal until the process is
5.2 Synchronization swapped in and scheduled to run.

The StarLite operating system is imple- In addition to experimenting with fine-
mented using the hierarchy of synchronization grained locking and synchroaization techniques
abstractions listed in Figure 3. Operators lower for operating system construction, we are also
in the hierarchy have higher performance buthave undesirable side-effects associated with investigating the enhancements necessary to

support real-time. Two areas of interest are
their use. Disabling interrupts to protect critical priority inheritance schemes and an integrated
sections is fast (usually one machine instruction) view of criticality.
but its indiscriminate use can increase interrupt
latency times, which in turn can affect critical 5.3 Resource allocation
event response times. The technique is also
inappropriate for multiprocessors where dis- Management of resources is one of the most
abling interrupts on one processor has no effect difficult problems to solve in order to produce a
on the execution of the others. The use of full-function UNIX operating system that is ca-
DISABLE in StarLite is restricted to two stan- pable of providing hard, real-time guarantees.
dard modules plus any device drivers that imple- The problem occurs when a low-priority
ment device synchronous operations. process holds a resource requested by a high-

As a result, StarLite minimizes interrupt la- priority process. If the resource cannot be
tency. Furthermore, the fine granularity of lock- preempted or released quickly enough, the high-
ing supports kernel preemption as well as simul- priority process can miss its deadline. The sec-
taneous system or IO operations. ond part of the real-time guarantee problem is to

make system timings predictable in the absence
Synchronization Level of resource contention.

Operation The current StarLite implementation attempts
DISABLE/RESTORE 1 to guarantee that the highest-priority process
Spin Locks 1 executes in an interference-free manner as long
Semaphores as its resources are disjoint from other processes.

For example, disk writes would circumvent disk
Monitors 3 scheduling and would supercede other requests.
Blocking 4 Our approach to the resource contention prob-

lem is based on priority-ordered avoidance[6].
This technique requires that tasks with "hard"

Figure 3. Synchronization Operations deadlines submit claims describing future ac-
tions and timing requirements. The system then

At the higherlayers of the StarLite implemen- guarantees that the deadline will be met as long
tation, Semaphores are used in protect critical as the task does not exceed its computation and
sections that consist of straight-line code; Moni- resource limits and neither the hardware nor

6

software fail. References

Each process with "hard" deadlines must
submit a claim list identifying the resources to be [1] Cook, R.P., StarLite, A Visual Simulation
used and the timing requirements. The system Package for Software Prototyping, Second
then associates a data structure with each re- ACMSIGSOFT/SIGPLANSymposium
source that restricts access by competing proc- on Practical Software Development En-
esses during critical periods. The key to success vironments, (Dec. 1986) 102-110, also
is making the avoidance test fast enough, which
is achieved by using priority to totally order the
necessary comparisons. [2] Cook, R.P., StarMod, A Language for

Distributed Programming, reprinted in
6.0 Summary Concurrent Programming, Addison-

StarLite is a research project that is exploring Wesley, edited by N. Gehani and A.D.
new ideas foroperating system structuring, inter- McGettrick, (1988).

face design, analysis, and implementation. It is [3] Son, S.H. and R.P. Cook, Scheduling and
one of the few projects that provides a standard Consistency in Real-Time Database
UNIX interface together with an implementation Systems, Sixth IEEE Workshop on Real-
strategy that addresses the critical system needs Time Software and Operating Systems,
of high-performance, openess, and predictabil- (May 1989) 42-45.
ity. Its layered interface design and software
backplane implementation strategy make the [4] Gray, J.N., Notes on Database Operating
StarLite system unique. Furthermore, its distri- Systems, in Operating Systems--An
bution as part of the StarLite programming envi- Advanced Course, edited by Bayer, Gra-
ronment means that any researcher with a SUN ham, Seegmuller, (1979).
workstation can work with the StarLite design to [5] Zimmermann, H., OSI Reference Model--
make it better. The ISO Model of Architecture for Open

Systems Interconnection, IEEE Transac-
tions on Communications COM-28,
(April 1980) 425-432.

[6] Munch-Anderson, B. and T.U. Zahle,
Scheduling According to Job Priority With
Prevention of Deadlock and Permanent
Blocking, Acta Informatica 6, 3(1977)
153-175.

7

0

RDB,
An Open, Real-Time, Relational Database Kernel

Robert P. Cook* and Sang H. Son
Department of Computer Science

University of Virginia
Charlottesville, VA 22903

1.0 Introduction dent databases without having to depend on the
I access methods traditionally provided by operat-
In this paper, weadiscussthe attributesof RDB, ing systems. As a final point, RDB uses up-which is an "open", real-time, relational database calls[4] to implement late binding of query and

kernel. RDB was implemented using the Star- I/O oion

Lite[l] software development environment. It I/0 operations.

* was inspired by the SDB system[21 created by By providing the user of RDB fine-grained
Betz and Smith. control over its operation, it is simple to select

implementation strategies that achieve perform-
RDB is intended for use in embedded systems ance and predictability goals. This can be con-

with requirements for high-performance and trasted with traditional database systems that

real-time priority and predictability guarantees. operate as closedboxes,often with poor perform-

0 RDB is a tool that can be used to achieve these ae a predbility cteitics o

goals but it is the user's responsibility to use it

properly. For example, RDB is completely reen- The following sections describe the relational
trant and can be preempted in one context switch model supported by RDB and a simple example
time to perform an action for a high priority that illustrates its use.

0 process. Thus, a query can be interrupted for an
update action and then restarted. However, if the 2.0 The RDB Model
low priority process holds locks that the high
priority process needs (priority inversion), it is The RDB kernel supports the following ab-
the user's responsibility to resolve the difficulty. stract data types: Schema, Relation, Attribute,

0 RDB is an "open"[3] system. It is imple- Cursor, SortKey, SortList, SortLists, Selection,

mented as a hierarchy of modules that are struc- and Expression. Figure I illustrates the relation-

tured so that they can be easily modified or ships among the various types.
replaced. Furthermore, RDB does not depend on A Schema in RDB describes the tuple format

* any operating system services. As a result, it is in terms of the position and type of the Attribute
possible to manipulate ROM or memory-resi- fields. Atpresent, the only field types are text and

numeric. The schema is disjoint from the data
composing a Relation in order to provide options

This work is supported by ARO under contract for real-time systems that are not normally found
DAAL03-87-K0090 and by ONR undercontract in traditional database systems. For example, it
N00014-86-K0245. is possible to define a Relation's content as a file,

+1

color part cost

Attribute Name "red" 123 6.87 0

Attribute Type "blue" 98 0.45 1

Attribute Tuple Offset "blue" 67 2.03 2

Length in bytes
Additional

Information 9ARTRIBUTE

SCHEMA "green" 42 9.67 98 <--CURSOR
SORTLISTS

I SortLists ---- > List of
Filter Procs. SortList "black" 15 4.32 473

SELECTION "black" 12 1.88

RELATION

Relation < ---- Relation Code String

List of SortKey Filter Procedures
SORTLIST Operand Stack

I Instruction Pointer

< ---- Attribute Stack Pointer

SORTKEY Sort Order EXPRESSION

Figure 1. The RDB DataBase Model

but is is also possible to define derived relations, bound after RDB is loaded but before a relation
That is, the tuples making up a relation can be is accessed. The procedures to be invoked are
computed as requested or they can be generated specified when a relation is "connected" to the
from a data stream of sensor inputs[5]. Figure 1 system for 1/0.
illustrates a relation composed from three attrib-utes: color (text), part number (numeric), and Upcalls give the system the flexibility to im-

* cost (numeric). Each Attribute specifies the field plement ROM or memory-resident databases,
cos (nmeic) Eah ttrbut seciiesth fildderived or computed relations, and relationsname and type as well as its position in the tuple based on data streams. In essence, each relationand its length in bytes. The file consists of 475 bsdo aasras nesne ahrlto

a tos lcan have a set of access procedures that are tunedtuples. to meet system performance and predictability

Once a schema has been defined and a relation goals. The system provides several traditional
selected, any number of Cursors can be opened. access methods, which the user is free to modify
A cursor identifies a tuple in a relation. Cursors or to augment.
are used to "mark" the positions at which 1/0 op- The SortKey is a central data structure in most
erations are to occur in a database. In RDB, the database implementations. It defines the order
actual 1/0 is performed using upcalls. An upcall relation to be used for an attribute when it is
is an invocation of a procedure variable that is accessed. For example, the "part number" attrib-

2
0L

ute in Figure 1 is sorted in descending numeric As with several othercomponentsof RDB,the
order. Expression module uses an upcall procedure to

A SortList identifies arelation and a list of sort bind the interpretatation of the "e" operator (load

A oTis eprese rjtion iof the external). The user typically provides an Expres-keys. The keys represent the projection sonfthapoedr hatilreunatrbt

relation over which a particular operator is to be sion with a procedure that will return attribute
appied Ifan ttibue i reernce thoug avalues when presented with the arguments toapplied. If an attribute is referenced through a "load external". However, the Expression mood-

secondary index, the projection can sometimes"laexrn".HwvthEpesinmdsecodar inextheprojctin cn smetnesule does not know that it is being used by a
be loaded by referring to the index rather than dbs sytem.

reading the tuples of the original relation. For a

real-time system, the update costs associated As a result, the user of RDB is free to generate
with a secondary index must be compared with its the operands of an expression in a manner that is
efficiency advantages for query processing. application dependent. For example, a tradi-

* A SortLists is a list of Sortlist elements, where tional database system would lock out updates to

each SortList is itself a list of SortKeys. The arelation while a query was in progress. Locking

SortLists data type represents the list of projec- can result in priority inversion which is an anath-

tions of relations that participate in multi-relation ema in real-time systems.

operations, such as a join. With RDB, the selection filters and expres-

* The join operation is implemented by selec- sion processing can be specified such that "com-

tion based on one or more expressions. A Selec- pensation" is possible. That is, the updates are
made to the relation and are simultaneouslytion data structure contains the input SortLists factored into the query so that neither the query

(relations and keys) as well as the upcall proce-

dure variables that are used to filter the tuples in process nor the update process are delayed. In a

* the input relations. Filtering can be applied similar fashion, if records are deleted, the effect

during selection either when each tuple of a may be "subtracted" from a query in progress.

relation is input orwhen one tuple in each relation 3.0 An RDB Example
has been input.

The following example illustrates the use of
* Tuple filtering can be combined with expres- RDB and the Phoenix real-time operating sys-

sion fltering to achieve results that are not pos-. tem, which is also part of StarLite, to implement
sible in a traditional database system. For ex- a cyclic process that prints a "parts" report once
ample, any tuple filter has the ability to terminate every hour starting at a particular hour.
selection. As a result, a query that cannot be

* completed by its original deadline can return a Phoenix provides an operator that transforms
partial, or less accurate result, and still meet its a procedure into a lightweight thread. Other
timing constraints, operators allow a thread to set or change its

priority and to delay until a selected time has
The Expression data type is implemented in a arrived. Even though a delay operator for a

fashion that makes it orthogonal to the rest of the relative amount of time has the same expressive
* database kernel. It operates on code strings such power, we have found that using an absolute time

as "e0000 s0zblue- -", which compares field zero specification results in programs that are more
in relation zero to the string "blue". If they are likely to perform as the user intended. This is
equal, the top of the operand stack is set to the particularly true for very fine-grained timing
Boolean value TRUE. control operations.

PROCEDURE repornGenerator(initHr:CARDINAL);

BEGIN

3

SetPriority(SelfO, 7); ments (procedure "f) to create an expression is
LOOP an upcall procedure that converts attributes in the

AtSnd.r At(initHr*60); input tuples into expression operands. Figure 4
* ELSE initHr := initHr+1; presents an outline of "f' and "printr".

END. PROCEDURE f(relation, autrCARDINAL
printO. arg:ADDRESS; VAR (*out*) o:Operand);

END; (* set Operand to field "attr" in "relation")END reportGencator, VAR s : Selection;

* Figure 2. A Cyclic Report Generator pT: pTuple;
pSK: pSortKey;

BEGIN
PROCEDURE printO; s := arg; (* remembered by Expression *)

VAR r: Relation; pSK := RGetSKey(s, relation, attr, pT (*out*));
s : SortList; o.pT := pT;

0 input: SonLists; o.offset:= pSKA.offset;
sel: Selection; o.length := pSKA.length;
e: Expression; END f;

BEGIN
r := RFind ("partsFile"); PROCEDURE printr(s:Selection; arg:ADDRESS);
ROpenSort(r, s); (* filter items to be printed in the report
RAddKey(s, "cost", "ascending"); VAR e : Expression;

0 RAddKey(s, "color", ""); pT: pTuple;
ROpenSortLists(input); pO : pOperand;
RAddSortList(input, s); BEGIN
sel := ROpenSelect(input, e, FIONULL, printr); e := arg; (* remembered during selection *)
RInterpreLROpen(e, "eOOOO sO4blue =", f, sel); pO := RInterpreLEvaluate(e);
RSelect(sel); IF NOT pOA.b THEN RETURN; END;

0 RInterpret.Close(e); (FOR EACH SortList in s DO
RCloseSelect(sel); pT := RGetSBuf(s, i);
RCloseSortLists(input); Write the selected attribures in PTA

END print;
InOut.WriteLn; (* terminate output line)

Figure 3. Initiate Record Selection END prin,

Figure 4. Upc~all Procedures
In Figure 3, the "print" procedure associates a

Relation variable with the database file and Whenonetuplehasbeenreadforeachrelation
schema. Next, the SortLists is constructed to selected as input, the "printr" procedure is in-

* describe the projections of theinput relations that yoked. This procedure in turn evaluates an
are to be printed (in this case just one relation), expression to select the tuples to be printed in the
Notice that the "cost" and "color" keys are per- report.
muted from the storage order. In general, a
SortList can permute the keys for both the input Whenever the expression evaluator encoun-

* and output relations. ters the "Load External", "e" operator, it per-
forms an upcall to the "T' procedure that was

After the SortLists is initialized, the Selection passed as an argument to ROpen to create an Ex-
and Expression data structures are initialized. pression variable. One of the arguments to "'" is
One of the arguments used to create the "sea" the address of an operand descriptor. It is the
variable is the upcall procedure "printr" that procedure's responsibility to map the relation and
actually produces the report. One of the argu- attribute indices to a SortKey. The SortKey is

4

then used to retrieve an attribute value, which is References
passed back to the evaluator as an operand. [1] Cook, R.P., StarLite, A Visual Simulation

When the evaluator completes, it returns an Package for Software Prototyping, Second
operand descriptor for the value on the top of the ACM SIGSOFT/SIGPLAN Symposium
operand stack. For the "printr" procedure, the on Practical Software Development En.
result is a Boolean value. If it is true, the fields vironments, (Dec. 1986) 102-110, also
are printed in the report. If it is false, the fields SIGPLAN Notices 22, 1(Jan. 1987).
are ignored and selection continues. [2] Betz, D. and D.N. Smith, SDB - A Simple

RDB implements a number of very flexible Database System, from documentation
options for expression evaluation that space does provided by Pat Watson at IBM Manassas
not permit us to describe. For real-time systems, (Nov. 1988).
the two most important are expression preemp- [3] Lanpson, B.W. and R.F. Sproul, An Open
tion and contextual reevaluation. Operating System for a Single-User Ma-

In the former, any expression can be chine, Proc. of the 7th Symposium on
preempted at any time by more critical expres- Operating System Principles, (Dec.
sions or other system actions. Using contextual 1979) 98-105.
reevaluation, it is possible for a query to modify [4) Clark, D., The Structuring of Systems

* its expression while it is being evaluated to return Using Upcalls, Proc. of the 10th Sympo-
a less accurate result in order to meet timing sium on Operating System Principles,
constraints. (Dec. 1985) 171-180.

4.0 Summary [5] Snodgrass, R., A Relational Approach to

* The RDB database kernel is intended for use Monitoring Complex Systems, ACM
in stand-alone applications that have "hard" tim- Transactions on Computer Systems 6,
ing requirements. It is an "open" system in that 2(May 1988) 157-196.
the user can manipulate interfaces not normally
available in traditional database systems to

* "tune" performance to application requirements.
The use of upcalls also adds great flexibility to
both selection and expression processing op-
tions.

RDB does not currently support transactions,
locking, or recovery. It can, however, operate on
either local relations or remote files by using
RPC. We are implementing additional function-
ality as part of a layered design for database

* operations. The layers are implemented so that
the end-user can add or subtract features to meet
the performance or timing requirements of
embedded systems.

5

On Priority-Based Synchronization Protocols
for Distributed Real-Time Database Systems

Sang H. Son
Department of Computer Science, University of Virginia
Charlottesville, Virginia 22903. USA

Abstract: Real-time database systems must maintain consistency while minimizing the number of transac-
tions that miss the deadline. To satisfy both the consistency and real-time constraints, there is the need to
integrate synchronization protocols with real-time priority scheduling protocols. This paper describes a pro-
totyping environment for investigating distributed real-time database systems, and its use for performance
evaluation of priority-based scheduling protocols for real-time database systems.

Keywords: distributed database, real-time, prototyping, synchronization, transaction, priority.

1. Introduction system parameters that may change dynamically.
As computers are becoming essential part of A prototyping technique can be applied effec-

* real-time systems, real-time computing is emerging as tively to the evaluation of control mechanisms for dis-
an important discipline in computer science and tributed database systems. A database prototyping tool
engineering (Shin87]. The growing importance of is a software package that supports the investigation of
real-time computing in a large number of applications, the properties of a database control techniques in an
such as aerospace and defense systems, industrial auto- environment other than that of the target database sys-
mation, and nuclear reactor control, has resulted in an tem. The advantages of an environment that provides
increased research effort in this area. Since any kind of prototyping tools are obvious. First, it is cost effective.
computing needs to access data, methods for designing If experiments for a twenty-node distributed database
and implementing database systems that satisfy the syste m can be executed in a software environment, it is
requirement of timing constraints in collecting, updat- not necessary to purchase a twenty-node distributed
ing, and retrieving data play an important role in the system, reducing the cost of evaluating design alterna-
success of real-time systems. tives. Second, design alternatives can be evaluated in a

Researchers working on developing new real- uniform environment with the same system parameters,
* time systems based on distributed system architecture making a fair comparison. Finally, as technology

have found out that database managers are assuming changes, the environment need only be updated to pro-
much greater importance in real-time systems [Son88]. vide researchers with the ability to perform new experi-
One of the characteristics of current database managers ments.
is that they do not schedule their transactions to meet A prototyping environment can reduce the time
response requirements and they commonly lock data of evaluating new technologies and design alternatives.

* tables indiscriminately to assure database consistency. From our past experience, we assume that a relatively
Locks and time.driven scheduling are basically incom- small portion of a typical database system's code is
patible. Low priority transactions can and will block affected by changes in specific control mechanisms,
higher priority transactions leading to response require- while the majority of code deals with intrinsic prob-
ment failures. New techniques are required to manage lems, such as file management. Thus, by properly iso-
database consistency which are compatible with time- lating technology-dependent portions of a database sys-
driven scheduling and the essential system response tem using modular programming techniques, we can

0 predictability/analyzability it brings. One of the pri- implement and evaluate design alternatives very
mary reasons for the difficulty in successfully develop- rapidly. Although there exist tools for system develop-
ing and evaluating a distributed database system is that ment and analysis, few prototyping tools exist for dis-
it takes a long time to develop a system, and evaluation tributed database experimentation. Especially if the
is complicated because it involves a large number of system designer must deal with message-passing

This work was supported in pan by the Office o(Naval Research under contract number N00014-88-K-0245 and by the Federal Systems
Division of IBM Corportion under University Agrenment WG-249153.

protocols and timing constraints, it is essential to have UI initiates the Configuration Manager (CM)
an appropriate prototyping environment for success in which initializes necessary data structures for wansac-
the design and analysis tasks. tion processing based on user specification. CM

This paper describes a message-based approach Invokes the Transaction Generator at an appropriate
to prototyping study of distributed real-time database time interval to generate the next transaction to form a
systems, and presents a prototyping software imple- Poisson process of transaction arrival.
mented for a series of experimentation to evaluate Transaction execution consists of read and write
priority-based synchronization algorithms, operations. Each read or write operation is preceded by

an access request sent to the Resource Manager, which
2. Structure of the Prototyping Environment maintains the local database at each site. Each transac-

For a prototyping tool for distributed database tion is assigned to the Transaction Manager (TM). TM
systems to be effective, appropriate operating system issues service requests on behalf of die transaction and
support is mandatory. Database control mechanisms reacts appropriately to the request replies.
need to be integrated with the operating system, The Performance Monitor interacts with the tran-
because the correct functioning of control algorithms saction managers to record, priority/timestamp and
depends on the services of the underlying operating read/write data set for each trnnsacnon, time when each
system; therefore, an integrated design reduces the sig- event occurred, statistics for each transaction and cpu
nificant overhead of a layered approach during execu- hold interval in each node. The statistics for a transac-
tion. tion includes arrival time, start time, total processing

Although an integrated approach is desirable, the time, blocked interval, whether deadline was missed or
system needs to support flexibility which may not be not, and number of aborts.
possible in an integrated approach. In this regard, the
concept of developing a library of modules with dif- 3. Priority-Based Synchronization
ferent performance and reliability characteristics for an In a real-time database system, synchronization
operating system as well as database control functions protocols must not only maintain the consistency con-
seems promising. Our prototyping environment fol- straints of the database but also satisfy the timing
lows this approach tCook87, Son88b]. It is designed as requirements of the transactions accessing the database.
a modular, message-passing system to support easy To satisfy both the consistency and real-time con-
extensions and modifications. An instance of the proto- straints, there is the need to integrate synchronization
typing environment can manage any number of virtual protocols with real-time priority scheduling protocols.
sites specified by the user. Modules that implement A major source of problems in integrating the two pro-
transaction processing are decomposed into several tocols is the lack of coordination in the development of
server processes, and they communicate among them- synchronization protocols and real-time priority
selves through ports. The clean interface between scheduling protocols. Due to the effect of blocking in
server processes simplifies incorporating new algo- lock-based synchronization protocols, a direct applica-
rithms and facilities into the prototyping environment, tion of a real-time scheduling algorithm to transactions
or testing alternate implementations of algorithms. may result in a condition known as priority inversion.

User Interface (U) is a front-end invoked when Priority inversion is said to occur when a higher prior-
the prototyping environment begins. Ui is menu- ity process is forced to wait for the execution of a
driven, and designed to be flexible in allowing users to lower priority process for an indefinite period of time.
experiment various configurations with different sys- When the transactions of two processes attempt to

* tern parameters. A user can specify the following: access the same data object, the access must be serial-
ized to maintain consistency. It the transaction of the

" system configuration: number of sites and the higher priority process gains access first, then the
number of server processes at each site. proper priority order is maintained, however, if the

transaction of the lower priority gains access first and
u database configuration: database at each site with then the higher priority transaction requests access to
user defined structure, size, granularity, and levels of the data object, this higher priority process will be

* replication, blocked until the lower priority transaction completes
" load characteristics: number of transactions to be its access to the data object. Priority inversion is inevit-

executed, size of their read-sets and write-sets, tran- able in transaction systems. However, to achieve a high
saction types (read-only or update) and their priori- degree of schedulability in real-time applications,
ties, and the mean interarrival time of transactions. priority inversion must be minimized. This is illustrated

" concurrency control: locking, timestamp ordering, by the following example.

• and priority-based.

0

Example: Suppose T1, T 2, and T3 are three tan- time database system and compared with other syn-
sactions arranged in descending order of priority with chronization protocols using the prototyping environ-
T, having the highest priority. Assume that T, and T3 ment.
access the same data object Oi. Suppose that at time t Using the prototyping tool, we have been
tansaction T3 obtains a lock on Oi. During the execu- evaluating the priority ceiling protocol and investigat-
tion of T3 , the high priority transaction T, arrives. ing technical issues associated with priority-based
preempts T3 and later attempts to access the object i. scheduling protocols. One of the issues we are studying
Transaction T, will be blocked, since Oi is already is the comparison of the priority ceiling protocol with
locked. We would expect that T1, being the highest other design alternatives. In our experiments, all tran-
priority transaction, will be blocked no longer than the sactions are assumed to be hard in the sense that there
time for transaction T3 to complete ad unlock O. will be no value in completing a transaction after its
However, the duration of blocking may, in fact, be deadline. Transactions that miss the deadline are
unpredictable. This is because transaction T3 can be aborted, and disappear from the system immediately
blocked by the intermediate priority transaction T 2 that with some abort cost.
does not need to access Oi. The blocking of T3, and
hence that of T 1, will continue until T2 and any other 4. Priority Ceiling Protocol
pending intermediate priority level transactions are
completed. The priority ceiling protocol is premised on sys-

The blocking duration in the example above can tems with a fixed priority scheme. The protocol con-
be arbitrarily long. This situation can be partially sists of two mechanisms: priority inheritance and
remedied if transactions are not allowed pt be priority ceiling. We already have explained the prior-rtyminheritanceamechanis.sIn theoprioritydceilin
preempted; however, this solution is only appropriate ity inheritance mechanism. In the priority ceiling
for very short transactions, because it creates unneces- mechanism, a priority ceiling is defined for every data
sary blocking. For instance, once a long low priority object as the priority of the highest priority transaction
transaction starts execution, a high priority transaction allowed to access the data object only if its priority is
not requiring access to the same set of data objects may higher than the priority ceilings of all data objects
be needlessly blocked.hihrtathproiyciigoflldaobes currently being accessed by some transaction in the

An approach to this problem, based on the notion system. With the combination of these two mechan-
of priority inheritance, has been proposed [Sha87]. The isms, it has been shown that in the worst case, each
basic idea of priority inheritance is that when a transac- transaction has to wait for at most one lower priority
tion T of a process blocks higher priority processes, it transaction in its execution, and no deadlock will ever
executes at the highest priority of all the transactions occur [Sha88l. In the next example, we show how
blocked by T. This simple idea of priority inheritance transactions are scheduled under the priority ceiling
reduces the blocking time of a higher priority transac- protocol.
tion. However, this is inadequate because the blocking Example: Consider the same situation as in the
duration for a transaction, though bounded, can still be e xample coier the ei toosi the
substantial due to the potential chain of blocking. For priority ceing of Oi is the priority of Tt. When T2
instance, suppose that transaction T needs to sequen- tries to access a data object, it is blocked because its
preempts whiechts areadyocked 02. Thsosuppsena T2 priority is not higher than the priority ceiling of Oi .preempts T3 which has already locked 02. Then, T 2 Therefore T, will be blocked only once by T3 to enterlocks 0 1 . Transaction T, arrives at fti instant and Oi, regardless of the number of data objects it may
finds that the objects 01 and 02 have been respec- access.
tively locked by the lower priority transactions T2 and
T3. As a result, T, would be blocked for the duration The ceiling manager implements the priority
of two transactions, once to wait for T2 to release 01 ceiling algorithm in the prototyping environment. The
and again to wait for T3 to release 02. Thus a chain of lock on a data object can either be a read-lock or a
blocking can be formed. write-lock. The write-priority ceiling of a data object is

r mdefined as the priority of the highest priority transac-Several methods to combat this inadequacy are tion that may write into this object. and absolute-
under investigation. The priority ceiling protocol is one piorit y iing is dn a e ty of theohghes
of such methods being investigated at the Carnegie- priority ceiling is defined as orwrit the highestMelon nivrsiy [ha81. t tiesto chive ot nly priority transaction that may read or write the data
Mellon University Sha88]. It tries to achieve not only object. When a data object is write-locked (read-
minimizing the blocking time of a transaction to at locked), the rw-priority ceiling of this data object is,,,most one lower priority transaction execution time, but defined to be equal to the absolute (write) priority ceil-

also preventing the formation of deadlocks. The prior- ine.
ity ceiling protocol has been implemented in our real-

When a transaction attempts to lock a data Transactions that miss the deadline are aborted, and
object, the transaction's priority is compared with the disappeared from the system immediately with some
highest rw-priority ceiling of all data items currently abort COSL We have used the transaction size (the
locked by other transactions. If the priority of the tran- number of data objects a transaction needs to access) as
saction is not higher than the rw-priority ceiling, it will one of the key variables in the experiments. It varies
be denied. Otherwise, it is granted the lock. In the from a small fraction up to a relatively large portion
denied case, the priority inheritance is performed in (10%) of the database so that conflict would occur fre-
order to overcome the problem of uncontrolled priority quently. The high conflict rate allows synchronization
inversion, protocols to play a significant role in the system perfor-

Under this protocol, it is not necessary to check mance. We choose the arrival rate so that protocols are
for the possibility of read-write conflicts. For instance, tested in a heavily loaded rather than lightly loaded sys-
when a data object is write-locked by a transaction, the tem. It is because for designing real-time systems, one
rw-priority ceiling is equal to the highest priority tran- must consider high load situations. Even though they
saction that can access it. Hence, the protocol will may not arise frequently, one would like to have a sys-

block a higher priority transaction that may write or tem that misses as few deadlines as possible when such
read it. On the other hand, when the data object is peaks occur. In other words, when a crisis occurs and
read-locked, the rw-priority ceiling is equal to the the database system is under pressure is precisely when
highest priority transaction that may write it. Hence, a making a few extra deadlines could be most important
transaction that attempts to write it will have a priority [Abb88].
no higher than the rw-priority ceiling and will be We normalize the transaction throughput in
blocked. Only the transaction that read it and have records accessed per second for successful transactions,

* priority higher than the rw-priority ceiling will be not in transactions per second, in order to account for
allowed to read-lock it, since read-locks are compati- the fact that bigger transactions need more database
ble. processing. The normalization rate is obtained by mul-

tiplying the transaction completion rate
S. Performance Evaluation (tansactions/second) by the transaction size (database

Various statistics have been collected for com- records accessed/transaction). In Figure 1, the
* paring the performance of the priority-ceiling protocol throughput of the priority-ceiling protocol (C), the

with other synchronization control algorithms. Tran- two-phase locking protocol with priority mode (P), and
saction are generated with exponentially distributed the two-phase locking protocol without priority mode
interarrival times, and the data objects updated by a (L), is shown for transactions of of different sizes with
transaction are chosen uniformly from the database. A balanced workload and I/O bound workload.
transaction has an execution profile which altcrnates As the transaction size increases, there is little
data access requests with equal computation requests, impact on the throughput of priority-ceiling protocol

• and some processing requirement for termination over the range of transaction sizes and over the work-
(either commit or abort). Thus the total processing time load type shown in Figure 1. This is because in
of a transaction is directly related to the number of data priority-ceiling protocol, the conflict rate is determined
objects accessed. Due to space considerations, we can- by ceiling blocking rather than direct blocking, and the
not present all our results but have selected the graphs frequency of ceiling blocking is not sensitive to the
which best illustrate the difference and performance of transaction size.

• the algorithms. For example, we have omitted the However, the performance of the two-phase
results of an experiment that varied the size of the data- locking protocol with or- without priority degrades very
base, and thus the number of conflicts, because they rapidly. This phenomenon is more clear as the transac-
only confirm and not increase the knowledge yielded tion workload is closer to I/O bound, since there are
by other experiments, few conflicts for the small transactions in the two-

For each experiment and for each algorithm phase locking protocol, and the concurrency is fully
* tested, we collected performance statistics and aver- achieved in the assumption of parallel 1/0 processing.

aged over the 10 runs. The percentage of deadline- Poor performance of the two-phase locking protocol
missing transactions is calculated with the following for bigger transactions is due to the high conflict rate.
equation: %missed 1 100 * (number of deadline- Since 1/0 cost is one of the key parameters in
missing transactions / number of transactions pro- determining performance, we have investigated an
cessed). A transaction is processed if either it executes approach to improve system performance by perform-
completely or it is aborted. We assume that all the trant ing 1/0 operation before locking. This is called the
sactions are hard in the sense that there will be no intention 10. In the intention mode of 1/0 operation,
value for completing the transaction after its deadline, the system pre-fetches data objects that are in the

0

access lists of transactions submitted, without locking schedulability than the use of exclusive semantics of a
them. This approach will reduce the locking time of lock. This means that the read semantics of a lock can-
data objects, resulting in higher throughput. As shown not be used to allow several readers to hold the lock on
in Figure 2, intention 1/O improves throughput of both the data object, and the ownership of locks must be
the two-phase locking and the ceiling protocol. How- mutually exclusive. Is it necessarily true? We are
ever, improvement in the ceiling protocol is much more investigating this and other related issues using the pro-
significant. This is because the frequency of ceiling totyping environment.
blocking is very sensitive to the duration of data object
locking in the system.

Another important performance statistics is the
percentage of deadline missing transactions, since the References
synchronization protocol in real-time database systems
must satisfy the timing constraint of individual transac- [Abb88] Abbott, R. and H. Garcia-Molina, "Schedul-
tion. In our experiments, each transaction's deadline is ing Real-Time Transactions: A Performance
set to proportional to its size and system workload Study," VLDB Conference, Sept. 1988, pp
(number of transactions), and the transaction with the 1-12.
earliest deadline is assigned the highest priority. As [Cook87] Cook, R. and S. H. Son, "The StarLite Pro-
shown in Figure 3, the percentage of deadline missing ject," Fourth IEEE Workshop on Real-Time
transactions increases sharply for the two-phase lock- Operating Systems, Cambridge, Mas-
ing protocol as the transaction size increases. A sharp sachusetts, July 1987, 139-141.
rise was expected, since the probability of deadlocks
would go up with the fourth power of the transaction [Gray81] Gray, J. et al., "A Straw Man Analysis of
size [Gray8l]. However, the percentage of deadline Probability of Waiting and Deadlock," IBM
missing transactions increases much slowly as the wan- Research Report, RJ 3066, 1981.
saction size increases in the priority-ceiling protocol, [Sha87] Sha, L., R. Rajkumar, and J. Lehoczky,
since there is no deadlock in priority-ceiling protocol "Priority Inheritance Protocol: An Approach
and the response time is proportional to the transaction to Real-Time Synchronization," Technical
size and the priority ranking. Report, Computer Science Dept., Carnegie-

Mellon University, 1987.
6. Conclusions [Sha88] Sha, L., R. Rajkumar, and J. Lehoczky,

Prototyping large software systems is not a new "Concurrency Control for Distributed Real.
approach. However, methodologies for developing a Time Databases," ACM SIGMOD Record
prototyping environment for distributed database sys- 17, 1, Special Issue on Real-Time Database
tems have not been investigated in depth in spite of its Systems, March 1988.
potential benefits. In this paper, we have presented a [Shin87] Shin, K. G., "Introduction to the Special

* prototyping environment that has been developed based Issue on Real-Time Systems," IEEE Trans.
on a message-based approach with modular building o C Aug. 1987, 901-902.
blocks. Although the complexity of a distributed data-
base system makes prototyping difficult, the implemen- (Son88I Son, S. H., "Real-Time Database Systems:
tation has proven satisfactory for experimentation of Issues and Approaches," ACM SIGMOD
design choices, different database techniques and pro- Record 17, 1, Special Issue on Real-Time
tocols, and even an integrated evaluation of database Database Systems, March 1988.

* systems. It supports a very flexible user interface to [Son88b] Son, S. H., "A Message-Based Approach to
allow a wide range of system configurations and work- Distributed Database Prototyping," Fifth
load characteristics. Expressive power and perfor- IEEE Workshop on Real-Time Software and
mance evaluation capability of our prototyping Operating Systems. Washington, DC, May
environment has been demonstrated by implementing a 1988, 71-74.
distributed real-time database system and investigating

* its performance characteristics.

There are many technical issues associated with
priority-based synchronization protocols that need
further investigation. For example, the analytic study
of the priority ceiling protocol provides an interesting
observation that the use of read and write semantics of

* a lock may lead to worse performance in terms of

0

20.0 25.0

Throughput ("r ut
(records/second) (reresond)15.0. Balanced Workload 20.0Blne Wrla

BalancednWerkWord o0,

15.
10.0

5

0.0.0.

5.5.

0.0.0
0 4 8 12 16 20 24 0.Trnato ie0 4 8 12 16 20 24

Transaction size Transaction size

a) balanced workload transaction Fig. 2 Transaction Throughput with Intention 1/O.

25.0

(hos 70.0
(reco20.od) Percentage of

20.oded Workload missing deadline 60.

15.0 50.

40.0 pP
10.0.

* 30.0

5.0 20.C

10.0.
0.0

0 4 8 12 16 20 24 0.0
* Transaction size 0 4 8 12 16 20 24

b) 1/0 bounded workload transaction Transaction size

Fig. I Transaction Throughput. Fig. 3 Percentage of Missing Deadline

C: priority-ceiling protocol
P: 2-phase locking protocol with priority mode
L: 2-phase locking protocol without pnonty mode

0

Checkpointing and Recovery in Distributed Database Systems

Sang H. Son

Department of Computer Science
University of Virginia

Charlottesville, Virginia 22903

1. Introduction
The need for a recovery mechanism in a database system is weln understood. In spite of powerful database

integrity checking mechanisms which detect errors and undesirable data, it is possible that some erroneous data may
be included in the database. Furthermore, even with a perfect integrity checking mechanism, failures of hardware
and/or software at the processing sites may destroy consistency of the database. In order to cope with those errors
and failures, database systems provide recovery mechanisms, and checkpointing is a technique frequently used in
database recovery mechanisms.

The goal of checkpointing in database systems is to read and return current values of the data objects in the
system. A checkpointing procedure would be very useful, if states it returns are guaranteed to be consistent. In a
bank database, for example, a checkpoint can be used to audit all of the account balances (or the sum of all account
balances). It can also be used for failure detection; if a checkpoint produces an inconsistent system state, one
assumes that an error has occurred and takes appropriate recovery measures. In case of a failure, previous check-
points can be used to restore the database. Checkpointing must be performed so as to minimize both the costs of
performing checkpoints and the costs of recovering the database. If the checkmint intervals are very short, too

* much time and resources are spent in checkpointing; if these intervals are long, too much time is spent in recovery.
For a checkpoint process to return a meaningful result (e.g., a consistent state), the individual read steps of the

checkpoint must not be permitted to interleave with the steps of other transactions: otherwise an inconsistent state
can be returned even for a correctly operating system. However, since checkpointing is performed during normal
operation of the system, this requirement of non-interference will result in poor performance. For example, in order
to generate a commit consistent checkpoint for recovery, user transactions may suffer a long delay waiting for active

* transactions to complete and the updates to be reflected in the database [CHA85]. A transaction is said to be
reflected in the database if the values of data objects represent the updates made by the transaction. It is highly
desirable that transactions are executed in the system concurrently with the checkpointing process. In distributed
systems, the desirable properties of non-interference and global consistency make checkpointing more complicated
because we need to consider coordination among autonomous sites of the system.

Recently, the possibility of having a checkpointing mechanism that does not interfere with transaction pro-
* cessing, and yet achieves consistency of the checkpoints, has been studied [CHA85, FIS82, SON86b]. The motiva-

tion for non-interfering checkpointing is to improve system availability, that is, the system must be able to execute
user transactions concurrently with the checkpointing process. The principle behind non-interfering checkpointing
mechanisms is to create a diverged computation of the system such that the checkpointing process can view a con-
sistent state that could result by running to completion all of the transactions that are in progress when the check-
point begins, instead of viewing a consistent state that actually occurs by suspending further transaction execution.
Figure 1 shows a diverged computation during checkpointing.

Non-interfering checkpointing mechanisms, however, may suffer from the fact that the diverged computation
needs to be maintained by the system until all of the transactions, that are in progress when the checkpoint begins,
come to completion. This may not be a major concern for a database system in which all the transactions are rela-
tively short. However, for database systems with many long-lived transactions, checkpointing of this kind might not

This work was supported in part by the Office of Naval Research tnder contract numbet N00014-86-K-0245, by the Department of Energy
* under contract number DEFGOS-88-ER25063. and by the Federal Systems Division of IBM Corporauon under University Agreement WF-

159679.

44

k TaTaactoon processing

Relie t:oerat,on

Fig. 1. Diverged computation for checkpointing

be practical for the following reasons:

(1) It takes a long time to complete a non-interfering checkpoint, resulting in high storage and processing over-
head.

(2) If a crash occurs before the results of a long-lived transaction are included in the checkpoint, the system
must re-execute the uansaction from the beginning, wasting all the resources used for the initial execution of
the transaction.

In the rest of this paper, we briefly discuss one approach for checkpointng which efficiently generates a con-
sistent database state, and its adaptation for systems with long-lived transatuons. Given our space limitations, our
objective is to intuitively explain this approach and not to provide details. The details are given in separate papers
[SON86b, SON88].

2. Non-interfering Approach
In order to make each checkpoint consistent, updates of a transaction must either be included in the check-

point completely or not at all. To achieve this, transactions are divided into two groups according to their relations
to the current checkpoint: 4fer-checkpoint transactions (ACPT) and before-checkpoint transactions (BCPT).
Updates belonging to BCPT are included in the current checkpoint while those belonging to ACPT are not included.
In a centralized database system, it is an easy task to sepate transactions for this purpose. However, it is not easy
in a disibuted envirnmenL To sepaate transactions in a distributed environment, a special timestamp which is
globally agreed upon by the participating sites is used. This special timestamp is called the Global Checkpoint
Number (GCPN), and it is determined as the maximum of the Local Checkpoint Numbers (LCPN) through coordi-

'nation o all participating sites.

An ACPT can be reclassified as a BCPT if its timestamp requires that the transaction must be executed before
the current checkpoint This is called the conversion of transactions. The updates of a converted transaction are
included in the current checkpoint.

Two types of processes are involved in the checkpoint execution: checkpoint coordinator (CC) and check-
point subordinate (CS). The checkpoint coordinator starts and terminates the global checkpoinung process. Once a
checkpoint has started, the coordinator does not issue the next checkpoint request until the first one has terminated.
At each site, the checkpoint subordinate performs local checkpointing by a request from the coordinator. We assume
that site m has a local clock LC, which is manipulated by the clock rules of Lampon[LAM78].

Execution of a checkpoint progresses as follows. Firs the checkpoint coordinator broadcasts a Checkpoint
Request Message with a timestamp LCcc. The local checkpoint number of the coordinator is set to LCcc. The coor-
dinator sets the Boolean variable CONVERT to false, and marks all transactions at the coordinator site with times-
tamps not greater than LCPNcc as BCPT.

45

0 I. - . .

F

On receiving a Checkpoint Request Message, the local clock of site m is updated and LCPN, is set to LCm.
The checkpoint subordinate of site m replies to the coordinator with LCPN=, and sets the Boolean variable CON-
VERT to false. The coordinator broadcasts the GCPN which is determined as the maximum of the local checkpoint
numbers.

In all sites, aftar the LCPN is fixed, all transactions with timestamps greater than the LCPN are marked as
temporary ACPTs. If a temporary ACPT updates any data objects, those data objects are copied from the database
to the buffer space of the transaction. When a temporary ACPT commits, updated data objects are not stored in the
database as usual, but are maintained as committed temporary versions (CTV) of the data objects. The data manager
in each site maintains permanent and temporary versions of data objects. When a read request is made for a data
object which has committed temporary versions, the value of the latest committed temporary version is returned.
When a write request is made for a data object which has committed temporary versions, another committed tem-
porary version is created for it rather than overwriting the previous committed temporary version.

When the GCPN is known, each checkpointing process compares the timestamps of the temporary ACPTs
with the GCPN. Transactions that satisfy the following condition become BCPTs; their updates are reflected in the
database, and are included in the current checkpoint.

LCPN < timestamp(T) < GCPN

The remaining tei.porary ACPTs are actual ACPTs; their updates are not included in the current checkpoint. These
updates are included in the database after the current checkpointing has been completed. After the conversion of all
eligible BCPTs, the checkpoinang process sets the Boolean variable CONVERT to true. Local checkpoinnng is exe-
cuted by saving the state of data objects when there is no active BCPT and the variable CONVERT is true. After the
execution of local checkpointing, the values of the latest committed temporary versions are used to replace the
values of dam objects in the database. Then, all committed temporary versions are deleted. Execution sequences of
two different types of transactions are shown in Figure 2.

As an example, consider a three-site distributed database system. Assume that LCcc = 5, LCcs1 = 3. and
LCcn = 8. CC sets its LCPN as 5, and broadcasts a checkpoint request message. On receiving the request message,
LCPN of each CS is set to 6 and 9, respectively. After another round of message exchange, the GCPN of the current
checkpoint will be set to 9 by the CC and will be known to each CS. If transac: -n T with the timestamp 7 was ini.
tiated at the site of CS1. it is treated as an ACPT. All updates by Ti are maintained as CTV. However, when GCPN
is known, T, will be converted to a BCPT and its updates will be included in the zurrent checkpoint.

3. Adaptive Approach for Long-lived Transactions

It can be shown that a non-interfering checkpointing process will terminate in a finite time by selecting an
appropriate concurrency control mechanisms [SON871. However, the amount of time necessary to complete one

Bufi.,2 Exo n sequence fo ACP'

Reflect lCommit

Committedl temoorary versionsj

Fig. 2. Execution sequences of ACPT and BCPT

46

checkpoint cannot be bound in advance; it depends on the execution time of the longest transaction classified as a
BCPT. Therefore the storage and processing cost of the checkpointing algorithm may become unacceptably high if a
long-lived transaction is included in the set of BCPTs. We briefly discuss the practicality of non-interfering check-
points in the next section. In addition, all resources used for the execution of a long-lived transaction would be
wasted if the transaction must be re-executed from the beginning due to a system failure.

These problems can be solved by using an adaptive checkpointing approach. We assume that each transaction
must carry a flag with it, which tells whether it is a normal transaction or a long-lived transaction. The threshold to
separate two types of transactions is application-dependent. In general, transactions that need hours of execution can
be considered as long-lived transactions.

An adaptive checkpointing procedure operates in two different modes: global mode and local mode. The glo-
bal mode of operation is basically the procedure sketched in the previous section. In the local mode of operation, a
mechanism is provided to save consistent states of a transaction so that the transaction can resume execution from
its most recent checkpoint.

As in the previous approach, the checkpoint coordinator begins checkpointing by sending out Checkpoint
Request Messages. Upon receiving this request message, each site checks whether any long-lived transaction is
being executed at the site. If so, the site reports it to the coordinator, instead of sending its LCPN. Otherwise (i.e., no
long-lived transaction in the system), non-interfering checkpointing begins. If any site reports the existence of a
long-lived transaction, the coordinator switches to the local mode of operation, and informs each site to operate in
the local mode. The checkpoint coordinator sends Checkpoint Request Messages to each site at an appropriate time
interval to initiate the next checkpoint in the global mode. This attempt will succeed if there is no active long-lived
transaction in the sysiem.

In the local muote of operation, each long-lived transaction is checkpointed separately from other long-lived
transactions. The coordinator of the long-lived transaction initiates the checkpoint by sending Checkpoint Request
Messages to its participants. A checkpoint at each site saves the local state of a long-lived transaction. For satisfying
the correctness requirement, a set of checkpoints, one per each participating site of a global long-lived transaction,
should reflect the consistent state of the transaction. Inconsistent set of checkpoints may result from a non-
synchronized execution -f associated checkpoints. For example, consider a long-lived transaction T being executed
at sites P and Q, and a checkpoint taken at site P at time X, and at site Q at u me Y. If a message M is sent from P
after X, and received at Q before Y, then the checkpoints would save the reception of M but not the sending of M,
resulting in a checkpoint representing an inconsistent state of T.

We use message numbers to achieve consistency in a set of local chcckpoinrs of a long-lived transaction.
Messages that are exchanged by participating transaction managers of a long-lived transaction contain message
number tags. Transaction managers of a long-lived transaction use monotonically increasing numbers in the tag of
its outgoing messages, and each maintains the tag numbers of the latest message it received from other participants.
On receiving a checkpoint request, a participant compares the message number attached to the request message with
the last tag number it received from the coordinator. The participant replies OK to the coordinator and executes
local checkpointing only if the request tag number is not less than the number it has maintained. Otherwise, it
reports to the coordinator that the checkpoint cannot be executed with that request message.

If all replies from the participants arrive and are all OK, the coordinator decides to make all local checkpoints
permanent. Otherwise, the decision is to discard the current checkpoint, and to initiate a new checkpoint. This deci-

*- sion is delivered to all participants. After a new permanent checkpoint is taken, any previous checkpoints will be
discarded at each site.

4. Performance Considerations
There are two performance measures that can be used in discussing the practicality of non-interfering check-

pointing: extra storage and extra workload required. The extra storage requirement of the algorithm is simply the
* CTV file size, which is a function of the expected number of ACPTs of the site, the number of data objects updated

by a typical transaction, and the size of the basic unit of information:
CTV file size = NA x(number of updates)x(size of the data object)

where NA is the expected number of ACPT of the site.

The CTV file may become unacceptably large if NA or the number of updates becomes very large. Unfor-
* tunately, they are determined dynamically from the characteristics of transactions submitted to the database system,

and hence cannot be controlled. Since NA is proportional to the execution time of the longest BCPT at the site, it

47

0i

would become unacceptably large if a long-lived transaction is being executed when a checkpoint begins at the site.
The only parameter we can change in order to reduce the CTV file size is the granularity of a data object. The size
of the CTV file can be minimized if we minimize the size of the data object. By doing so, however, the overhead of
normal transaction processing (e.g., locking and unlocking, deadlock detection, etc) will be increased. Also, there is
a trade-off between the degree of concurrency and the lock granularity[RIE79]. Therefore the granularity of a data
object should be determined carefully by considering all such trade-offs, and we cannot minimize the size of the
CTV file by simply minimizing the data object granularity.

There is no extra storage requirement in intrusive checkpointing mechanisms[DAD8O, KUS82, SCH80].
However this property is balanced by the cases in which the system must block the execution of an ACPT or abort
transactions because of the checkpointing process.

The extra workload imposed by the algorithm mainly consists of the workload for (1) determining the GCPN,
(2) committing ACPT (move data objects to the CTV file), (3) reflecting the CTV file (move committed temporary
versions from the CTV file to the database), and (4) clearing the CTV file when the reflect operation is finished.
Among these, the workload for (2) and (3) dominates the total extra workload. As in the estimation of extra storage,
the workload for (2) and (3) is determined by the number of ACPTs and the number of updates. Therefore, as long
as the values of these variables can be maintained below a certain threshold level, non-interfering checkpointing
would not severely degrade the performance of the system. A detailed discussion of the practicality of non-
interfering checkpointing is given in CSONs6b].

5. Site Failures

So far, we assumed that no failure occurs during checkpointing. This assumption can be justified if the proba-
bility of failures during a single checkpoint is extremely small. However, it is not always the case, and we now con-
sider the method to make the algorithm resilient to failures.

During the global mode of operation, the checkpointing process is insensitive to failures of subordinates. If a
subordinate fails before the broadcast of a Checkpoint Request Message, it is excluded from the next checkpoint. If
a subordinate does not send its LCPN to the coordinator, it is excluded from the current checkpoint. When the site
recovers, the recovery manager of the site must determine the GCPN of the latest checkpoint. After receiving infor-
mation about transactions which must be executed for recovery, the recovery ma: ager brings the database up to date
by executing all transactions whose timestamps are not greater than the latest (CPN. Other transactions are exe-
cuted after the state of the data objects at the site is saved by the checkpointing process.

An atomic commit protocol guarantees that a transaction is aborted if an'. participant fails before it sends a
Precommit message to the coordinator. Therefore, site failures during the execution of the algorithm cannot affect
the consistency of checkpoints because each checkpoint reflects only the updates of committed BCPTs.

In the local mode of operation, the failure of a participant prevents the coordinator from receiving OKs from
all participants, or prevents the participants from receiving the decision message from the coordinator. However,
because a transaction is aborted by an atomic commit protocol, it is not necessary to make checkpointing robust to
failures of participants.

The algorithm is, however, sensitive to failures of the coordinator. In particular, if the coordinator crashes
during the first phase of the global mode of operation (i.e., before the GCPN message is sent to subordinates), every

* transaction becomes an ACPT. requiring too much storage for committed temporary versions.

One possible solution to this involves the use of a number of backup processes; these are processes that can
assume responsibility for completing the coordinator's activity in the event of its failure. These backup processes
are in fact checkpointing subordinates. If the coordinator fails before it broadcasts the GCPN message, one of the
backups takes control. A similar mechanism is used in SDD-I [HAM80] for reliable commitment of transactions.

* 6. Recovery

A recovery from site crashes is called a site recovery. The complexity of a site recovery varies in distributed
database systems according to the failure situation[SCH80. If the crashed site has no replicated data objects and if
all recovery information is available at the crashed site, local recovery is sufficient. Global recovery is necessary
because of failures which require the global database to be restored to some earlier consistent state. For instance, if
the transaction log is partially destroyed at the crashed site, local recovery cannot be executed to completion.

* When a global recovery is required, the database system has two alternatives: a fast recovery and a complete
recovery. A fast recovery is a simple restoration of the latest global checkpoint. Since each checkpoint is globally

48

consistent, the restored state of the database is assured to be consistent. However, all transactions committed during
the time interval from the latest checkpoint to the time of crash would be lost. A complete recovery is performed to
restore as many transactions that can be redone as possible. The trade-offs between the two recovery methods are
the recovery time and the number of transactions saved by the recovery.

Quick recovery from failures is critical for some applications of distributed database systems which require
high availability (e.g., ballistic missile defense or air traffic control). For those applications, the fate of the mission,
or even the lives of human beings, may depend on the correct values of the data and the accessibility to it. Availabil-
ity of a consistent state is of primary concern for those applications, not the most up-to-date consistent state. If a
simple restoration of the latest checkpoint could bring the database to a consistent state, it may not be worthwhile to
spend time in recovery by executing a complete recovery to recover some of the transactions.

For the applications in which each committed transaction is so important that the most up-to-date consistent
state of the database is highly desirable, or if the checkpoint intervals are large such that a lot of transactions cannot
be recovered by a fast recovery, a complete recovery is appropriate. The cost of a complete recovery is the
increased recovery time which reduces availability of the database. Searching through the transaction log is neces-
sary for a complete recovery. The property that each checkpoint reflects all updates of transactions with earlier
timestamps than its GCPN is useful in reducing the amount of searching, because the set of transactions whose
updates must be redone can be determined by a simple comparison of the timestamps of transactions with the GCPN
of the checkpoint. Complete recovery mechanisms based on the special timestamp of checkpoints (e.g., GCPN)
have been proposed in [KUS82, SON86a].

After site recovery is completed using either a fast recovery procedure or a complete recovery procedure, the
recovering site checks whether it has completed local-mode checkpointing for any long-lived transactions. If any
local-mode checkpoint is found, those transactions can be restarted from the saved checkpoints. In this case, the
coordinator of the transaction requests all participants to restart from their checkpoints if and only if they all are able
to restart from that checkpoint. The coordinator decides whether to restart the transaction from the checkpoint or
from the beginning based on responses from the participants, and sends the decision message to all participants.
Such a two-phase recovery protocol is necessary to maintain consistency of the database in case of damaged check-
points at the failure site. A transaction will be restarted from the beginning if any participant is not able to restore
the checkpointed state of the transaction for any reason.

7. Concluding Remarks
During normal operation, checkpointing is performed to save information for recovery from failure. For better

recoverability and availability of distributed databases, checkpointing must allow construction of a globally con-
sistent database state without interfering with transaction processing. Site autonomy in distributed database systems
makes checkpointing more complicated than in centralized systems.

The role of the checkpointing coordinator is simply that of getting a uniformly agreed GCPN. Apart from this
function the coordinator is not essential to the operation of the proposed algorithm. If a uniformly agreed GCPN can
be made known to individual sites, then the centralized nature of the coordinator can be eliminated. One way to
achieve this is to preassign the clock values at which checkpoints will be taken. For example, we may take check-
points at clock values as a multiple of 1000. Whenever the local clock of a site crosses a multiple of this value,
checkpointing can begin.

If the frequency of checkpointing is related to load conditions and not necessarily to clock values, then the
preassigned GCPN will not work as well. In this case a node will have to assume the role of the checkpointing coor-
dinator to initiate the checkpoint. A unique node has to be identified as the coordinator. This may be achieved by
using solutions to the mutual exclusion problem(RIC81] and making the selection of the coordinator a critical sec-
tion activity.

* The properties of global conbW'stny and non-interference of checkpointing results in some overhead and
reduces the processing time of transactions during checkpointing. For applications where continuous processing is
so essential that the blocking of transaction processing for checkpointing is not feasible, we believe that a non-
interfering approach provides a practical solution to the problem of checkpointing and recovery in distributed data-
base systems.

49

Acknowledgement

* The author would like to thank Dr. Won Kim and Professor Robert Cook for their valuable suggestions and com-
ments on the previous version of this paper.

REFERENCES

0 [CHA851 Chandy, K. M., Lamport, L., Distributed Snapshots: Determining Global States of Distributed Systems,
ACM Trans. on Computer Systems, February 1985, pp 63-75.

[DAD80] Dadam, P. and Schlageter, G., Recovery in Distributed Databases Based on Non-synchronized Local
Checkpoints, Information Processing 80, North-Holland Publishing Company, Amsterdam, 1980, pp
457-462.

• [FIS82] Fischer, M. J., Griffeth, N. D. and Lynch, N. A., Global States of a Distributed System, IEEE Trans. on
Software Engineering, May 1982, pp 198-202.

[HAM80] Hammer, M. and Shipman, D., Reliability Mechanisms for SDD-1: A System for Distributed Databases,
ACM Trans. on Database Systems, December 1980, pp 431-466.

[KUS82] Kuss, H., On Totally Ordering Checkpoints in Distributed Databases, Proc. ACM SIGMOD, 1982, pp
293-302.

S([LAM78] Lamport, L., Time, Clocks and Ordering of Events in Distributed Systems, Commun. ACM, July 1978,
pp 558-565.

[RIC81] Ricar, G. and Agrawala, A., An Optimal Algorithm for Mutual Exclusion in Computer Networks, Com-
mun. of ACM, Jan. 1981, pp 9-17.

[RIE79] Ries, D., The Effect of Concurrency Control on The Performance of .k Distributed Data Management
* System, 4th Berkeley Conference on Distributed Data Management ai ' Computer Networks, Aug. 1979,

pp 221-234.

[SCH80] Schlageter, G. and Dadamn, P., Reconstruction of Consistent Globa' States in Distributed Databases,
International Symposium on Distributed Databases, North-Holland P blishing Company, INRIA, 1980,
pp 191-200.

(SON86a] Son, S. H. and Agrawala, A., An Algorithm for Database Reconstruction in Distributed Environments,
* 6th International Conference on Distributed Computing Systems, Cambridge, Massachusetts, May 1986,

pp 532-539.

(SON86b] Son, S. H. and Agrawala, A., Practicality of Non-Interfering Checkpoints in Distributed Database Sys-
tems, Proceedings of IEEE Real-Time Systems Symposium, New Orleans, Louisiana, December 1986,
pp 234-24 1.

[SON871 Son, S. H., "Synchronization of Replicated Data in Distributed Systems," Information Systems 12. 2,
* June 1987, pp 191-202.

[SON881 Son, S. H., An Adaptive Checkpointing Scheme for Distributed Databases with Mixed Types of Transac-
tions, Proceedings of Fourth International Conference on Data Engineenng, Los Angeles, February
1988, pp 528-535.

0

50

DISTRIBUTION LIST

1 - 6 Director
Naval Research Laboratory
Washington, DC 20375

Attention: Code 2627

7 - 18 Defense Technical Information Center, S47031
Building 5, Cameron Station
Alexandria, VA 22314

19 Dr. James G. Smith, Program Manager
Division of Applied Math and Computer Science
Code 1211
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

20-21 R.P. Cook, CS

22 S. H. Son, CS

23 A. K. Jones, CS

24 - 25 E. H. Pancake, Clark Hall

26 SEAS Preaward Administration Files

27 Mr. Michael McCracken
Administrative Contracting Officer
Office of Naval Research Resident Representative
818 Connecticut Avenue
Eighth Floor
Washington, DC 20006

0

0 JO#2739:ph

0

