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FOREWORD

This Interim Technical Report was prepared by the University
of Dayton Research Institute, 300 College Park Avenue, Dayton, OH
45469-0001, under Air Force Contract No. F33615-87-C-5239. It
was administered under the direction of the Materials Laboratory,
Wright Research and Development Center, Air Force Systems
Command, Wright-Patterson Air Force Base, OH, with Mr. Marvin
Knight (WRDC/MLBM) as the Project Engineer.

The use of commercial names of materials in this report is
included for completeness and ease of scientific comparison only.
It in no way constitutes an endorsement of these materials or
manufacturers.

This report covers work conducted from January through
December 1988.
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1. INTRODUCTION

— Carbon fibers are extremely important components in high
performance composites as they are the primary reinforcing
material. Because the mechanical properties of fibers are
dependent on their structures, the structure of carbon fibers has
been examined by many researchers [1-13]. A continued interest
in this area results from the emergence of new carbon fibers with
improved properties.

Pitch-based fibers traditionally had high stiffnesses but
had weak tensile strengths. PAN-based fibers were strong but
lacked high moduli. Recent developments have improved these
fibers' properties, and more work is focusing on the compressive
properties as well. These property changes result from struc-
tural differences created during the fiber manufacture. - -

Several diffraction techniques have been used to examine the
crystalline microstructure of carbon fibers. Wide-angle x-ray
diffraction (WAXD), as its name implies, uses the diffraction of
x-rays to examine the basic crystalline structure at scattering
angles in excess of several degrees (i.e. >5°). Structures about
the size of crystalline interplanar spacings (1 to 153) are
studied. Small-angle x-ray scattering (SAXS), on the other hand,
examines the scattering of x-rays at lower angles. In SAXS
larger structures, such as crystallites, are examined (sizes up
to several 10003). Both x-ray methods examine relatively large
volume (1 mm3), bulk properties. Smaller sample volumes can be
examined using selected area diffraction (SAD) which uses scat-
tering of electrons to examined structures which are comparable
in size to those in WAXD but using much smaller sample volumes
(0.1 pm3). SAD also has the advantage of being used in conjunc-
tion with transmission electron microscopy (TEM) so that images
of the diffracting area may be obtained (but of course also has
the complex sample preparation difficulties of TEM).




WAXD has been used to examine carbon fibers [1-3,14] in
terms of the basic graphitic-like crystals present. This tech-
nique is now usually used only to quantify specific properties
such as graphite plane orientation and degree of graphitization.
In this study some of the newer fibers were examined with WAXD,
and some interesting and heretofore unreported properties of the
crystalline nature of carbon fibers were discovered.

Most of the publications on x-ray diffraction of carbon
fibers are either aimed at experts or only use this technique in
a minor role. For this reason significant space in this report
is devoted to explaining the terms and notations used in WAXD.




2. NOMENCLATURE

2.1 HEXAGONAL INDEXING

Carbon fibers have a graphite-like crystal nature. Graphite
unit cell is hexagonal corresponding to the hexagonal grid of the
basal plane structure. In Figure 1 the hexagonal grid represents
the aromatic C-C bonds in the basal plane sheets; a carbon atom
is located at each grid vertex.

Conventional Miller's indices for crystals consist of three
numbers: h, k, and 1 written as (hkl). These numbers equal the
reciprocal value of where the designated plane cuts the unit cell
boundaries along the x-, y-, and z-axes respectively. Thus an
index set of (210) describes a plane which is parallel to the
z-axis and cuts the unit cell at a/2 and b/1 (a, b, and c are the
dimensions of the unit cell along respective axes). Planes that
intersect the unit cell on a negative axis have a bar over them
(e.qg., IIT). For orthorhombic unit cells, a, b, ¢ are different
but all at right angles which resemble a rectangular box. Figure

2 shows several examples of planes defined by their Miller's
indices.

The literature shows several ways in which the graphitic

planes of carbon and graphite fibers are described by Miller
indices:

(hk)  (hkl) = (hkil) = (hk,1l)

(10) (100) (1010) (10,0)
(11) (110) (1120) (11,0)
(002) (06002) (00,2)
(112) (1122) (11,2)

In hexagonal crystals, such as graphite, the angle between
the a- and b-axes is 120°. Here, three axes of symmetry of which
two are arbitrarily assigned as unit cell axes in the three index
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Figure 2. Diagrams of Planes Having Various Miller Indices in an
Orthorhombic Unit Cell with Edges a, b, and ¢ (from
Alexander [15]).




systems are given above or all three assigned as in the four in-
dex system. Figure 1 shows these unit cell axes as well as the
example (hk,0) crystal plane projections from the first two rows
above (the crystal planes are perpendicular to the diagrammed
plane). Recognize that because the a and b axes are arbitrarily
assigned, there are equivalent planes at *+120° from those
diagrammed. The c-axis is perpendicular to the graphite basal
plane so that the (00,2) crystal planes coincide with the basal
planes.

The first column listed actually refers to single graphitic
sheets, as these 2-D crystals require only two indices; these are
important in carbon fibers as will be explained later. The
second and fourth columns are abbreviations of the third column
in hexagonal indices. The second column, while used extensively
in the literature, does not convey the hexagonal nature of the
crystals (versus orthorhombic for example) to the reader as do
the last two columns. The third column is the typical hexagonal
indices which includes a third in-plane index defined such that
the first three indices always sum to zero. Since that third
in-plane index is defined by the first two, it is unnecessary:
thus the last column line fully defines the crystal planes and
conveys their hexagonal nature.

The advantage of column three over four is the ability to
spot equivalent planes from the indices. Generally in graphite
one refers to only one set of indices when discussing that family
of equivalent planes, negating that advantage. As a matter of
convenience, the indices as shown in the last column will be used
in the report.

2.2 DIFFRACTOMETER

For any crystalline plane to appear in WAXD, it must meet
the Bragg conditions (see Figure 3). This means that the crystal
plane normal must lie in the x-ray collection plane (plane con-
taining the incident beam and diffracted ray detector) and
bisects the incident and diffracted rays. To understand this one
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must first understand the multiple "geometries" of the data col-
lection system, the sample, the crystals within the sample, and
crystal planes within the crystals.

There are two typical types of data collection: flat-film
and diffractometer. In the flat-film technique, a fiber bundle
is placed directly in front of the collimators (metal tubes with
small holes in either end that only allow parallel beams of
x-rays to pass), and a flat film pack is placed on the other side
perpendicular to the x-ray main~beam and parallel to the fiber
bundle (see Figure 4). The sample-to-film distances are typi-
cally 29 or 50 mm for WAXD and much longer (e.g. 290 mm) for
SAXS. The upper limit of diffraction angle accessible in flat-
film photos is about 50° 24. Figure 5 is a typical flat~film
photo of a carbon fiber. Appendix A contains flat-film photo-
graphs of the commercially available fibers examined.

The diffractometer is much more general in its sample posi-
tioning and data collection precision. The main x-ray beam is
collimated to hit the center of a 4-circle sample holder; the
detector is in the horizontal plane pivoting about the center of
the sample holder. Figure 6 shows the rotations available in the
sample holder of a 4-circle diffractometer (this diffractometer
is basically a computer-controlled 4-axis sample holder) relative
to a fiber sample. The sample holder is rotated one half the
scattering angle of the detector in the so-called ¢-2¢# collection
geometry; these rotations are the first and second circles. You
may wish the sample to be other than this simple arrangement, and
the second circle (omega) allows one to deviate from the §-24
condition but still keep the rotation about a vertical line.

Note that some machines define omega as the total angle the
sample plane moves or theta plus omega by the current definition.
The azimuthal circle (chi) tilts the sample in the vertical plane
defined by the first two circles. The last circle (phi) is a
rotation of the sample about its base as defined by the first
three circles. (Note that if chi=0°, then phi rotation is the
same as an omega rotation.)




1Meridlan

Equator

Figure 4. Schematic of X-ray Flat-Film Camera (S,, S,, and S3
are the camera's collimator) (from Alexander [15]).

(10,1)

(10,1) Satellite

(00,2)

(10,0)

Amorphous Glue

Halo

Figure 5. Flat-Film WAXD Photograph of P-100 Carbon Fiber.
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Single crystal diffraction yields spots for each crystal
plane which meets the Bragg condition. To measure the intensity
of these spots, the 2§ detector scans must be made at sample
orientations of all phi, chi, and omega. The other extreme is
powder samples (or bulk crystallized polymers) which have within
their sample volume crystals already oriented in all directions.
Powder samples produce rings instead of spots, and therefore
simple Bragg scans are adequate.

Common diffraction scans for powders and polymers include
Bragg and azimmthal (or chi) scans. A Bragg scan is when a
sample's scattering intensity is measured by stepping the detec-
tor through 24 (usually in steps of 0.1°) while the sample plane
is moved one-half that angle (¢-24 collection geometry). The
azimuthal scan is when the scattering intensity is measured by
rotating the sample through the chi circle (or fraction of the
chi circle since each quadrant is equivalent) with the detector
at a fixed Bragg angle. In both scans phi and omega may be fixed
at any desired position.

2.3 FIBER DIFFRACTION

Fibers in general and carbon fibers specifically are axially
symmetric; that is, a rotation about the fiber axis (phi) does
not change its diffraction pattern. Any axial nonsymmetry in
individual fibers can be averaged out by using a randomly
assembled fiber bundle so that the fiber bundle pattern is
axially symmetric.

The easiest way of understanding the terminology of fiber
diffraction is to imagine the fiber stretched from pole to pole
of a hollow globe. "Equatorial" reflections result from crystal
planes parallel to the fiber axis such that their normals all
fall in the sample equatorial plane, and diffraction appears at
the globe's equator with both the main and diffracted beams in
the equatorial plane (chi=0°, see Figure 7). 1In flat-film photos
the equatorial reflections appear along the horizontal axis when
the fibers were held vertically (see Figure 4).

11
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Figure 7. Equatorial Diffraction Geometry.
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"Meridional" reflections are from crystal planes in the
fiber that are perpendicular to the fiber axis such that their
normals are parallel to the fiber axis or pointed to the globe's
poles. These diffraction spots appear on any of the globe's
meridians as the main and diffracted beams occur at the same
latitude on opposite sides of the globe. The fiber must be at
chi=90° to fulfill that condition (see Figure 8). 1In a flat-film
photo meridional reflections should not be visible, although they
sometimes are due to misalignment of the crystals in the fiber
which will be discussed below.

"off-axis" reflections arise from crystal planes tilted at
some angle other than 90° and 0° to the fiber axis. The plane
normals will sweep out a cone at both ends of the globe (see
Figure 9) requiring the fiber to be tilted. 1In fact the angle
the crystal planes make with the fiber axis (one-half the cone
angle) is the amount of tilt the fiber must make from the
meridional conditions to show off-axis reflections. Figure 10
shows the fiber being tilted by an omega rotation, and Figure 11
shows a chi rotation (90° minus one-half the cone angle).

The need to tilt the fibers to observe off-axis diffraction
was recognized for Pitch-based carbon fibers in early electron
diffraction SAD studies [16]. The SAD technique looks at a small
section of the fiber and is very sensitive to local variations in
the crystal alignment. PAN-based fibers of that day showed no
off-axis reflections in either SAD or WAXD. The same rules apply
to WAXD except the average misalignment in a fiber bundle is
generally large enough to generate the required tilt for some of
the crystals even if the bundle isn't tilted.

Off-axis reflections show up on flat-film photos only when ¢
equals one-half the cone angle (and when misalignment allows the
crystal to fulfill the Bragg condition). The graphite sheets in
carbon fibers only lie approximately parallel to the fiber axis
(see section 3.1) with varying degrees of misalignment (or tilt-
ing) of those planes away from the fiber axis. 1In carbon fibers
the (10,1) reflection occurs at 26=44.6°, and this plane is

13
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Figure 9. Cone Defined by Fiber Off-Axis Plane Normals.
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tilted 17.6° from the fiber axis; since the difference between
22.3° and 17.6° is less than the typical basal plane misalign-
ment, the (10,1) reflection should be visible in flat-film photos
and can be seen in high modulus fibers such as P-100 (see
Appendix 3).

Meridional reflections can be seen as special cases of the
general off-axis case; crystal plane tilt is 0°, therefore the
cone angle is zero and diffraction occurs at chi=90° and
omega=0°. Likewise in the equatorial reflections, the crystal
tilt is 90° from the fiber axis in which case the cone has opened
up to 180° or simply the equatorial plane.

18




3. CARBON/GRAPHITE REFLECTIONS

3.1 GRAPHITE CRYSTALS

In carbon fibers the orientations of the crystalline
graphite planes are approximately parallel to the fiber bundle
but randomly placed within the fiber cross section with the
a- and b-axes of the graphite planes randomly oriented. Thus the
(00,1) reflections are equatorial while (hk,0) are usually
associated with the meridional region.

The graphite sheets in carbon fibers are by themselves two-
dimensional crystals (i.e. the atoms that make up the sheets are
in precise locations relative to the other atoms). If these two-
dimensional crystalline graphitic sheets are randomly placed with
respect to the next sheet, this is the so-called "turbostratic"
structure. In highly graphitized fibers, 3-D crystals are formed
when the atoms of one sheet are placed in a specific position
relative to the atoms in the next sheet (i.e., in precise crys-

tallographic registry). Figure 12 shows a comparison of the
above two cases.

A review by Ruland [17] gives the "best" values for the
graphite crystal dimensions as a = b = 2.4614&, c = 6.707A.
These values are slightly different from the JCPDS [18] values
for basal crystalline graphite but not significantly so for most
carbon fiber work (a = b = 2.4633, c = 6.7145). Ruland [17]) also
lists an interplane spacing for turbostratic carbon of 3.440A
(interplane spacing in crystalline graphite = 3.35353).

Because the a- and b-axes are randomly oriented with respect
to the fiber axis, the (hk,0) plane normals sweep out a complete
circle in the sample planes parallel to the fiber; and because
the fibers are axially symmetric, the normals of all the (hk,0)
planes sweep out a complete sphere. Such planes should have a
ring-like diffraction pattern similar to that for a powder but,
in fact, behave like meridional reflections.

The graphite planes in fibers, however, are not large flat
sheets. Several models of carbon fiber microstructure are shown

19
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here. These include the entwined fibrils observed oy Diefendorf
and Tokarsky [8] (Figure 13), the wavy fibrils of Perret et al.
[(1-3] (Figure 14), the thumb-print cross section of Bacon [5])
(Figure 15), and the holey curved bundles of graphite sheets of
Barnet and Noor (6,7] (Figure 16) and Bennett and Johnson [9,10]
(Figure 17). In the fiber axis direction, the ordering of atoms
in the (hk,0) planes is sufficient to generate diffraction. That
is to say that along the fiber, the number of crystal planes is
sufficiently large enough to produce constructive interference in
a Bragg scan. The size of this stack of planes is called the
persistence length.

The average random orientation of the a- and b-axes in the
graphite sheets or bundles is such that all (hk,0) planes that
can produce diffraction do so in the meridional region. Sheets
or bundles that produce the (10) or (10,0) reflection will not
show the (11) or (11,0) reflection, but other sheets or bundles
will. Also a distribution of orientations within those bundles
will generate diffraction; as one rotates from vertical to hori-
zontal, the persistence length along the effective flat area
drops dramatically. Thus the effective size of the (hk) crystals
and number capable of diffracting decrease. From the globe anal-
ogy (section 2.2) instead of the probabilities all concentrated
at the poles coincident with the fiber bundle, a distribution of
probabilities exist, centered about poles, finite but rapidly
decreasing as one gets further away from the poles. This analogy
is also complicated by the change in the crystals sizes and
orientations.

The off-axis (hk,1l) plane normals in graphite will sweep out
the cone described in section 2.2 above at each pole. If the
graphite planes were large and flat, they would sweep out an
entire sphere minus the cone at the poles. As described in the
paragraph above, the (hk,l) reflections also have probabilities
of diffracting at more than the ring on the globe defined by the
cone. Note however that the cone defines the upper limit for the
probabilities with zero probability at latitudes greater and a
decreasing probability at lower latitudes.
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Figure 14.

Morphology of Diefendorf and Tokarsky [8].

The Wavy Fibrils Model of Carbon Fiber Morphology of
Perret etal. [1-3].

22




%///

\ﬁ

FIBER CROSS SECTION
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Figure 16. The Holey Curved Bundles of Graphite Sheets Model
of Carbon Fiber Morphology of Barnet and Noor [6,7].
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Figure 17. The Holey Curved Bundles of Graphite Sheets
Model of Carbon Fiber Morphology of Bennett
and Johnson [9,10].
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3.2 TWO-DIMENSIONAL LATTICES

The dimensionality of the graphitic crystals in carbon fiber
is a source of some controversy -~ the turbostratic carbon struc-
ture being 2-D and crystalline graphite being 3-D. Carbon fibers
of low modulus <25 Msi being predominantly turbostratic and
gradually increasing to more crystalline graphitic nature as one
goes to higher modulus fibers. The observation of off-axis
reflections is considered necessary proof of 3-D crystals; and
generally only high modulus Pitch based carbon fibers exhibit
these off-axis reflections.

The diffraction from a three-dimensional crystal lattice is
very nearly symmetric. That is, the maximum peak intensity is
very close to the position with equal intensity on both sides
(the peak centroid). This is true whether the intensity is
plotted versus 2¢ or versus s-space. S-space is the inverse of
the interplane spacing (d) and is commonly used to express the
scattering position independent of the wavelength (it is also the
magnitude of the reciprocal space vector). A peak's position is
determined by the interplane spacing of the crystal plane dif-
fracting according to Bragg's Law.

d

nr/2 sing Bragg's Law (1)

0n
1

2 sind /) s-space (2)

Two~dimensional lattices do not produce symmetrical peaks.
This is of particular interest in carbon fibers since many of the
fibers are turbostratic composed of graphitic sheets randomly
arrayed in stacks. Each of those sheets constitutes a 2-D
lattice.

Several workers [14,19-22) have calculated the line profiles
from randomly oriented 2-D reflections. Warren and Bodenstein
[14) estimated the shape of 2-D reflections of finite size in the
commonly-used crystal size equation:
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_ 1.77 ) :
L(hk) = B(1/2,20) cos? Warren and Bodenstein (3)

where L is the crystal size and B(1/2,24) is the full width in 24
at 1/2 the peak maximum.

Ruland [22] calculated the exact solution for randomly
oriented crystals of finite size (see Equations 4 and 5):

I(s) = 35 (2 V2 r(5g (s?-s) - —%;5)1 (4)
2 1/2
F(z) = ({2H1—*2)1/2 (5)

z2°+1

Figure 18 shows several of Ruland's theoretical intensity pro-
files. Ruland and Tompa [23] calculated the profiles for highly
ordered infinite 2-D reflections which showed an intensity dis-
tribution similar to that shown in Figure 19 with an intensity
profile similar to that of the randomly ordered 2-D crystals.

The exact profiles of oriented finite sized such as the (hk)
reflections in carbon fibers has not been published. One can
assume that the size and profiles of randomly oriented finite
sized 2-D crystals of equations 3-5 will apply with an intensity
probability distribution as given in Figure 19.

3.3 CRYSTALLITE SIZES

In the previous section the effects on WAXD profiles from
finite sized crystals were introduced. Derived for 2-D crystals,
equation 3 is most commonly used in the literature with (10) and
(11) profiles to obtain the persistence lengths (La) of the
graphite sheets parallel to the fiber as shown in Figures 13 and
14. A similar equation was derived by Ruland [22,17]:

= 1.84 )
L(hk) T B(1/2,26) cosé (6)

The constant in equation 3 differs from equation 6 due to
the assumptions of Gaussian versus Cauchy distribution of sizes:
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the latter allowing an exact solution. A Gaussian distribution
defines the well known "normal” bell-shaped curve. The Cauchy
(or modified Lorentzian) distribution is commonly used in defin-
ing x-ray peaks and is characterized by a slightly different
curve which has greater area in the tail regions and less area in
the center (see Figure 20).

Similarly the shift to higher angie in the peak maximum from
2~D crystals is related to this size:

Link) = s - s (73
The constant k' has values of 0.28 to 0.39 dependiﬁg on the

distribution of sizes used in the derivation (0.32 in Ruland's
analysis).

Neither method is applicable if 3-D crystals are present,
since the measured profiles result from overlapping 2-D and 3-D
reflections or only 3-D (not likely in fibers but would use
Scherrer equation below). Neither method distinguished among
size, disorder, and strain broadening effects, but since the
atoms in the sheets are covalently bonded, size should dominate
(this has been disputed in pyrolyzed carbons [24]). Also the
methods that can separate these factors require higher order
reflections which are not present in most carbon fibers.

The graphite bundle thickness (Lc) shown in Figures 13 and
14 is most commonly measured by WAXD (17] using the (00,2)
reflection profile in the Scherrer equation [25):

= KX __
L = 5 cos? Scherrer (8)
where K is a shape parameter usually taken as unity and g is the
integral breadth in 24.

More advanced methods also using the (00,4) and (00,6)
reflections are not commonly used because of the complexity of
the calculations. They can be used to separate the size informa-
tion from strain and disorder. The details are explained
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elsewhere [15], but simply stated the breadth of a series of
reflections such as (00,2), (00,4), and (00,6) increases at the
higher order because of the crystalline disorder and strain.
Hosemann [26] plots the square of the sample integral breadth (52
or (6s)2) versus m4 (where m is 1, 2, and 3 respectively with

d = doo’z); while B;chanan ang Miller (27] (assuming Gaussian
profiles) plot (6§s)® versus s“. The intercept in both cases is
the square of the reciprocal crystal size:

(63)2 (1/L2) + [(ngII)4 m4/d2] Hosemann (9)

(1/L2) + 4 ezs2 Buchanan and Miller (10)

(65)2

The intercept in either plot is inversely related to the crystal
size, L. The slope of these plots are related to the crystal
disorder; both J11 and e above are described as average relative
deviations of the lattice spacing (ad/d). Similar equations can
be derived for Cauchy distributions and look the same as above

with each term the square root of the terms in the equations
above.

A major complication of the size analysis for both (hk) and
(00,1) reflections is the measured broadening resulting from both
the sample and instrumental sources. A profile of instrumental
broadening can be measured using large near-perfect crystals such
as beryllium acetate. Figure 21 shows the diffraction of beryl-
lium acetate at 61.8° 24 with an angular spread of 0.25° fit to a
Gaussian curve. Separation of the breadths resulting from the
convoluted profiles (convolution means two profiles are folded
into each other) uses one of the these two equations (the instru-
mental profile is nearly Gaussian favoring equation 11):

2 _ 2 2 .
(68)p = (8s8)] + (8s), Gaussian (11)

asm = 6si + 650 Cauchy (12)
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An example of the convolution effect of the instrumental
broadening on a theoretical (00,2) reflection of L, = 100A is
shown in Figure 22 along with the original curve. With larger
graphite crystals with narrower profiles, this effect is more
pronounced. A theoretical asymmetric 2-D profile constructed
from equations 4 and 5 is shown in Figure 23 as well as this
reflection convoiuted with the instrumental profile. Note that
convolution of the theoretical peak with the instrumental breadth
not only increases the profile width but shifts the peak maximum
to a higher angle as well.

3.4 MISORIENTATION

The structural models shown in section 3.1 show varying
amounts of misorientation of the graphite crystals relative to
the fiber axis. Guigon et al. [11-13) have recently shown that
there are two forms of misalignment: the broad meandering of
fibrils as shown in Figures 13 and 14, as well as crystals within
fibrils misaligned in so-called "wrinkled sheets." WAXD only
sees the average misalignment including the internal structures
and any misalignment of the fibers in the sample bundle.

Figure 24 shows two typical fiber bundles mounted for WAXD;
both show very little if any misalignment of the fibers in their
bundles. This source of error can be considered negligible.

The primary effect of crystal misalignment in WAXD is to
broaden the azimuthal dependence of the intensity. For perfectly
aligned crystals, intensity should be confined to a pair of spots
in a WAXD photo; as the crystals become more misaligned, the
spots will grow into arcs which will eventually become rings for
completely random arrangements of crystals. This broadening of
arcs can be seen in the WAXD photos in Appendix A by examining
the P-series whose arcs become narrower as the fiber modulus
increases.

Several methods for quantifying the azimuthal dependence
have been tabulated [5,17,29], but at best they are only useful
for relative ranking of materials. The absolute values of the
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azimuthal dependence have been used [see e.g. 13,28] to estimate
fiber modulus, but these semi-empirical techniques are not as
accurate as direct mechanical measurements of the fibers.

Figure 25 shows two azimuthal distributions for fibers show-
ing the greater breadth for the lower modulus fiber. Reduction of
the intensity distributions to single numbers includes:

Z = B(1/2,¢) = full-width at half maximum in ¢ (13)
x/2
‘4. I(g) sin3¢ d¢
Roz = " x/2 (14)

Jﬁ I(¢) sing d¢

x/18
[ wr)? as
aj10 = o«/2 (15)

[ r)? a
0

where ¢ is the fiber colatitude (90°-chi when the fiber is paral-

lel to chi = 0°), F(¢) is the azimuthal intensity normalized to
¢ 0°, and n/18 = 10°.

Equations 14 and 15 require significantly more work than
equation 13 but do not give any additional or more useful infor-
mation. Egquation 13 is the method of choice for misorientation

of the fibers' graphite planes using the (00,2) reflection full-
width at half maximum (FW-HM).

Misorientation of the graphitic planes has been shown above
to generate azimuthal dependence of intensity. For the (00,2)
reflection, this is equivalent to the crystal plane normals
sweeping out not a plane but a solid figure centered about the
equator. One can think of a continuous mountain ridge of con-
stant height circling the equator, the height of this ridge
proportional to the probability of a crystal normal existing at
that latitude. A very sharp ridge corresponds to a highly
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oriented fiber, and a poorly oriented fiber would have a gently
sloping ridge.

The meridional reflections' (hk) and (hk,0) normals orienta-
tion probabilities can be viewed as mountains at each of the
poles. The (00,2) full-width at half maximum will also define
the (hk) and (hk,0) misorientation mountain FW-HM (this will be
convoluted into the persistence length probabilities mountain of
section 3.1). Misorientation is the major reason the (10) and/or
(10,0) reflection is visible in flat-film photos and why its
intensity decreases as the crystal orientation increases (see
again the P-series of photos in Appendix A).

Off-axis reflections also become visible from misorientation
as explained near the end of section 2.2. The intensity of the
(10,1) reflections in the WAXD photos of higher modulus fibers is
generally greater than (10) and (10,0) even though the maximum
probability is lower, because at the collection angles relative
to the fiber axis (also called colatitudes) which are equal to
one-half the respective Bragg angles, the probabilities are
generally greater.
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4. RESULTS

4.1 MATERIALS

A series of commercially available carbon fibers were exam-
ined in this study. Those fibers, their manufacturers, and some
of their published mechanical properties are listed in Table 1.
These fibers were picked because of their range of properties and
availability. Both Pitch-based (P-series) and PAN-based fibers
were included for comparison.

In addition, an experimental annealed vapor grown carbon
fiber was included as an example of a very highly graphitized
fiber. This fiber was supplied courtesy of Dr. Karren K. Brito
of Applied Sciences, Inc., Yellow Springs, OH.

4.2 (00,2) RESULTS

The (00,2) results from WAXD for the samples above are given
in Table 2. These results include d00,2' L., and 200'2. The
d00,2 is from the position of the (00,2) reflection measured by
curve fitting [34] the WAXD Bragg scan at chi=0° (equatorial
scan) and using Bragg's Law (equation 2). Figure 26 shows ar
example of the curve-fit (00,2) reflection using P-55 with a g8 =
0.859° and d00,2 = 3.523A from a maximum at 25.28° 2¢. 1In this
table Lc is calculated from the Scherrer equation (equation 8)
using the same curve fit as doo’2 corrected for instrumental
broadening by equation 11. An azimuthal scan of (00,2) reflec-
tion was curve fit to obtain the full-width at half maximum or
Zoo'2 of each fiber. Figure 27 shows P-55's azimuthal scan for

the (00,2) reflection (Zoo'2 = 14.1°).

The trends seen here have been observed before: doo’2 and
ZOO,Z decrease, while Lc increases as the measured tensile modu-
lus increases. Apparently the big changes occur as the modulus
passes 50 Msi: Lc increases from 20-3OA to greater than 100&,
and 200,2 drops rapidly to single digits.

The differences between Pitch- and PAN-based fibers can be
seen by comparing equivalent (modulus) pairs of fibers; e.g. P-25
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Fiber
P-25
P-55
P-75
P-100
P-120

T-300
AS4
T-40
G40-700
IMe6
G45-~700
HMS
T-50
GY-70

na ~ Not

Manufacturer
AMOCO
11]
”
”

AMOCO
Hercules/Magnamite
AMOCO

BASF/Celion
Hercules/Magnanite
BASF/Celion
Hercules/Magnamite
AMOCO

BASF/Celion

available

TABLE 1
FIBER MECHANICAL PROPERTIES [30-33]

Tensile
Modulus

Msi (GPa)

23
55
75
105
120

34
34
42
44
45
45
50
57
75

41

(159)
(379)
(517)
(724)
(827)

(231)
(231)
(290)
(300)
(308)
(310)
(345)
(393)
(517)

Tensile
Strength
ksi (GPa)

200
250
300
325
325

470
528
500
720
620
700
320
350
270

(1.38)
(1.72)
(2.07)
(2.24)
(2.24)

(3.24)
(3.64)
(3.45)
(4.96)
(4.27)
(4.83)
(2.21)
(2.41)
(1.86)

Compressive
Strength
ksi (GPa)

167
123
100
70
65

417
390
400

233
153

(1.15)
(0.85)
(0.69)
(0.48)
(0.45)

(2.88)
(2.69)
(2.76)
na
na
na
na
(1.61)
(1.05)




TABLE 2
SUMMARY OF (00,2) WAXD CARBON FIBER RESULTS

990, 2 Lo 00,2
Fiber (Angstroms) (Angstroms) (degrees FW-HM)

Pitch-Based
P-25 3.479 26 31.9
P-55 3.426 114 14.1
P-75 3.416 157 11.0
P-100 3.385 208 5.6
P-120 3.378 228 5.6
PAN-Based
T-300 3.496 16 35.1
AS4 3.521 10 36.8
T-40 3.515 17 30.2
G40-700 3.495 21 29.1
IMé6 3.464 20 33.7
G45-700 3.470 25 26.7
HMS 3.427 62 19.7
T-50 3.429 57 16.4
GY-70 3.405 173 9.6
Vapor Grown
Applied
Sclences 3.373 345 14.8
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and AS4, P-55 and T-50, and P-75 and GY-70. The first and third
pairs' properties are roughly equivalent. In the second pair
P-55 appears to have made the morphological jump to larger, more
perfect crystals and T-50 is intermediate between the higher and
lower modulus morphology indicating some lag in the development
of larger structures in PAN-based fibers as the modulus is
built-up in processing.

The vapor grown Applied Sciences carbon fiber does not have
as highly oriented planes (Zoo,2 = 14.8°) but the graphitiza?ion
is much higher than the other f}bers since the doo'2 = 3.373A i§
the closest to the ideal 3.3535A and the crystal size, L, = 3453,

is the largest measured.

4.3 ADVANCED Lc RESULTS

The advanced Lc techniques of Hosemann or Buchanan and
Miller require higher order reflections. Figure 28 shows a com-
plete equatorial scan of P-100 with the higher order (00,1)
reflections. Only 8 of the 15 fibers examined had all three
(00,1) reflections resolvable for use in determining which of the
techniques to use (the remaining 7 fibers did have two orders).

The two techniques for separating crystalline disorder from
size broadening of Hosemann and Buchanan and Miller each
expressed for both Gaussian (equations 9 and 10) or Cauchy dis-
tributions yield four possible plots. Figures 29-32 show these
four plots for P-55. Table 3 gives each plot's correlation coef-

ficient and root mean square error (averages for the 8 fibers
used here).

While the correlation coefficient for both of the Buchanan
and-Miller plots is only slightly smaller than the Hosemann plots
and the Gaussian line actually gives the lowest RMS, this method
was not considered correct since as often as not the intercept

values were negative. This would give a physically impossible
negative crystallite size.
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TABLE 3
ADVANCED Lc ANALYSIS COMPARISON

Correlation Root Mean
Coefficient Square
Hosemann
Gaussian 0.984 0.00014
Cauchy 0.994 0.00069
Buchanan and Miller
Gaussian 0.976 0.00008
Cauchy 0.972 0.00140

The RMS for the Gaussian plots of Hosemann were less than a
quarter of the Cauchy plots RMS. This, plus the fact that
Gaussian is more likely from a theoretical point of view, led to
its use for all of the fibers. Table 4 shows the Hosemann
Gaussian results and compares the crystal sizes to the values
found by the Scherrer equation. 1In general this Hosemann
analysis gives crystal sizes slightly greater than the Scherrer
equation as expected, and of course the relative rankings of the
fiber's crystal sizes are the same. The break in properties near
50 Msi fiber modulus is also seen in the disorder parameter, 911
as it falls below 0.03 as the modulus increases past this range.

4.4 3-D AND La RESULTS

There are several factors to consider in obtaining a measure
of the crystal size, La‘ The first is which of the several
methods mentioned in sections 3.2 and 3.3 should be used, and
second is the effects of instrumental broadening on the measured
profiles. Table 5 has the calculated La values for two fibers
(P-25 and AS4) from both the (10) and (11) reflections.

The equations of Warren and Bodenstein [14] (Egn. 7 w/ k' =
0.28 and Eqn. 3) and Ruland [22] (Egn. 7 w/ k' = 0.32 and Egn. 6)
were used to generate La values in the top half of the table from
the peak maximum positions and peak breadths respectively. The
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Fiber

Pitch~Based

P-25
P-55
P-75
P-100
P-120

PAN~-Based

T-300
AS4
T-40
G40~700
IM6
G45-700
HMS
T-50
GY-70

Vapor Grown

Applied
Sciences

TABLE 4

ADVANCED Lc ANALYSIS RESULTS

Nunmber of
Orders Used

w W w Ww N

W W WD NN WN

Lc (Angstroms)

Hosemann

36
99
140
159
188

19
15
21
27
24
29
78
66
138

374

52

Scherrer

26
114
157
208
228

16
10
17
21
20
25
62
57
173

345

Disorder
(977)

0.0794
0.0301
0.0233
0.0166
0.0182

0.0820
0.0694
0.0688
0.0707
0.0785
0.0626
0.0413
0.0409
0.0305

0.00828




o 20 0 o

[}

TABLE 5
SUMMARY OF (hk) WAXD CRYSTAL PLANE SIZE (La) MEASUREMENT
TECHNIQUES (SIZES IN ANGSTROMS)

P-25 AS4
(10) (11) (10) (11)
Warren & Bodenstein
Position? 35 26 31 19
BreadthP 49 39 41 30
Ruland
Position® 40 29 35 22
Breadth 51 40 43 31
Warren & Bodenstein®
Position 50 36 42 24
Breadth 53 42 43 31
Rula df
Position 48 38 42 26
Breadth 55 44 44 33
- Equation 7 with k' = 0.28
- Equation 3
- Equation 7 with k' = 0.32
- Equation 6

- Theoretical profiles [14] convoluted with the instrumental
breadth profile

- Theoretical profiles from Equations 4 and 5 [22] convoluted
with the instrumental breadth profile
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bottom half of the table went back to the original equations
(such as equations 4 and 5) for these workers, generated a series
of profiles for varying crystal sizes, and then folded the
instrumental profiles into those theoretical curves. These con-
voluted profiles were then compared to the experimental curves to
again get measures of L, from the peak maximum positions and
breadths.

As pictured in Figure 23, the instrumental broadening
affects the measured profiles; but at the crystal sizes of these
fibers, the differences are not as great as the differences be-
tween the position and breadth calculations. The variation
between the two groups is even less. Considering the work in-
volved in the correction for the instrumental broadening and the
lack of better results when it is used (except to make the posi-
tion and breadth results closer), it should be dropped. A good

compromise in effort and results is to use Equation 6 to calcu-
late La values.

The reason P-25 and AS4 were chosen for Table 5 is that both
show no evidence of 3~dimensional crystals. The presence of 3-D
crystals is another problem associated with calculating La since
the equations used above all assume simple 2-D crystals and are
not valid for 3-D or mixtures of 2-D and 3-D crystal reflections.
Once the presence of 3-D crystals is detected, one can assume
that mixed reflections are confounding the measurements.

Three-dimensional crystals are not easy to detect in merid-
ional scans. As mentioned in section 2.3, off-axis reflections
can be seen in meridional scans only when crystal misorientation
is larger than the crystal tilt from the fiber axis; as will be
seen below, 3-D crystals occur in fibers with low misorientation.
Tilting fibers to chi<90° or by the omega circle is necessary to
reveal emerging 3-D reflections. This can be seen in Figure 33
which is a multiple plot of P-100 fiber diffraction obtained at
chi=90°, chi=70° (at omega=0°) and chi=90° (at omega=20°). The
chi=90° or meridional scan shows absolutely no sign of the
(10,1), but the other two scans are dominated by that reflection.
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Figure 34 is a complete meridional scan of P-100, and Figure 35
is a complete scan taken at chi=70°. Both scans have the major
reflections annotated.

The two major off-axis reflections (10,1) and (11,2) are
tilted 17.6° and 20.2° from the fiber axis so that chi=70° (90°-
20°) (or omega=20°) is close enough to the crystal tilt angle to
observe either reflection. The error in (10,1) of 2.4° is less
than any of these fibers misorientation and errs at an angle on
the far side of the (10,0) reflection which is the major source
of interference. 1Ideally each reflection should be examined at
its optimum tilt angle, but practical considerations limited the
current data collection.

The ideal locations [18] of the (10,0) and (10,1) reflec-
tions are 42.4° and 44.6° respectively. Since each these peaks
have typical full-widths at half-maximum of a few degrees, finite
crystal sizes push the 2-D reflections to higher angles, and
crystalline disorder of 3-D crystals push their reflections to
lower angles, these reflections will almost always overlap. This
overlap is shown in Figure 33 for P-100 which is generally
accepted as having significant 3-D crystalline character. Only
in the Applied Sciences' vapor grown carbon fiber are the (10,0)
and (10,1) reflections resolved (see Appendix B).

The (11,2) off-axis reflection is more useful than the
(10,1) to look for since it can be resolved better as the ideal
locations [18] of the (11,0) and (11,2) reflections are 77.5° and
83.5° (see Appendix C). This is particularly obvious in transi-
tion fibers such as P-75 and GY-70; their (10,1) regions show
what appears to be overlapping peaks, but their (11,2) regions
show definite emergence of the off-axis reflection. Individual
scans are in Appendices B and C, while multiple plots of several
Pitch-based fibers are shown in Figures 36 (10,1) and 37 (11,2)
and in Figures 38 (10,1) and 39 (11,2) for PAN-based fibers.

In the (10,1) region multiple plots, the overlap between
(10,0) and (10,1) apparent in P-75 and GY-70 is also possible for
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the next lower modulus pairs of P-55 and T-50. Claiming partial
3-D crystals from this data alone is definitely unwarranted. The
fact that each series peak maxima coincide precisely for P-55 and
P-75, and T-50 and GY-70 but not with the lower modulus fiber,
supports the claim of some 3-D crystals. Returning to Table 5,
note that the (10) reflection yields larger L, values than the
(11) reflection for both of those fibers. This is true for other
fibers as well, as seen in Table 6 (L, values calculated using
equation 6) except in the cases of known or surmised 3-D crys-
tals.

Three-dimensional crystals have been reported for both Pitch
and PAN-based carbon fibers [34] but only at moduli at or greater
than 100 Msi. The observation of 3-D crystals at lower moduli in
this study is a direct result of the use of the tilted fiber
technique.

Table 6 should have been the last word on La values here but
for the 3-D crystal problem and the truncation in 24 of the (hk)
patterns as shown in Figure 19. This truncation reduces the
breadth of the diffraction peak resulting in a higher value L,
although the complete lack of (hk,1l) interference is helprul.
These crystals should be larger as measured at the chi=90° com-
pared to chi=70° leading to the conclusion that the last two
columns in Table 6 should be considered as maximum limiting
values.

If one assumes that when the value of La at chi=70° from
(10) falls near or below the value from (11) this is an indica-
tion of 3-D crystals developing (two paragraphs above), then the
suspected sam, les with 3-D crystals in the last paragraph are
confirmed. This point also coincides with a large deviation in
measured La between chi=90° and chi=70°, but that may be fortui-
tous. Table 7 lists the fibers and whether they contain 2-D
crystals only, some 3-D crystals, or suspected 3-D crystals.
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TABLE 6
SUMMARY OF (hk) WAXD CRYSTAL PLANE SIZES (La IN ANGSTROMS)

Chi = 70° chi = 90°

Fiber (10) (11) (10) {11)
Pitch-Based
P-25 51 40 49 43
P-55 83 111 236 201
P-75 64 172 265 276
P-100 ‘na? 306 328 372
P-120 na? 327 379 395
PAN-Based
T-300 43 37 46 36
AS4 43 31 47 39
T-40 44 34 54 38
G40-700 64 49 75 62
IM6 naP na® 58 52
G45-700 61 45 77 61
HMS 143 96 181 171
T-50 91 88 177 165
GY-70 62 153 265 293
Vapor Grown
Applied
Sciences 338 394 333 395

na - Not available

a - (10,1) obviously dominating the scan area
b - Bragg scan not obtained
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TABLE 7
SUMMARY OF CARBON FIBER 2-D AND 3-D CRYSTAL CONTENT

2-D Crystals 3-D Crystals
Fiber only Suspected Definite

Pitch-Based
P-25 X _ _
P-55 - X
P-75 - -
P-100 - -
P-120 - -
puPont - -

-

AN-Based
T-300

AS4

T-40
G40-700
IM6
G45-700
HMS

T-50
GY-70 - _ %

M oM X X X X X
|
|

!
>
|

vVa Gro

Applied
Sciences - _ %
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4.5 OTHER

In Figure 5 the diffraction of P-100 (and P-120 from
Appendix A) shows satellite intensity of the (10,1) reflection at
the 60° positions relative to the main intensity at chi=90°. The
source of these peaks is obviously from flattened graphitic bun-
dles with sufficiently large flat regions to allow diffraction
from the equivalent (hk,1l) crystal planes of the reflection gen-
erating the main peak. Preferred orientation of the large
bundles is also necessary, since with random orientation of the
a-axis and flattening of the bundles, a ring should develop as
those equivalent crystal planes would also be random (see section
3.1). Because satellite peaks have developed only at specific
locations around the ring area, only those sheet bundles properly
oriented can flatten out during the general crystal orientation
and perfecting processing.

Additional data, including (11,2) orientation, is required
to properly interpret these hints of structure in highly
oriented, high modulus carbon fibers.
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5. CONCLUSIONS

The general crystalline structure of Pitch~ and PAN-based
carbon fibers is roughly equivalent for fibers of approximately
the same tensile modulus. The major structural changes occur in
fibers of 50~60 Msi modulus, with the PAN~based fibers lagging
behind the Pitch-based fibers only slightly in terms of structure
versus modulus development. Some of the major differences
between these two classes of fibers is due more to the difficulty
of processing to achieve PAN-based fibers with sufficiently high
modulus to compare with common Pitch-based fibers than any inher-
ent structural differences.

The large strength differences in these classes of fibers
are apparently not directly related to the crystal sizes and
average orientation of those crystals. Internal crystal arrange-
ment and gross flaws, which are not detectable in WAXD measure-
ments on neat fibers, may be responsible for the strength
characteristics.
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APPENDIX A

FLAT-FILM WAXD PHOTOGRAPHS OF CARBON FIBERS

Pitch —PAN
P-25 T-300 G45-700
P-55 AS4 HMS
P-75 T-40 T-50
P-100 G40-700 GY-70
P-120 IMé6

71




72

P-55

P-25




00T

d

GL-d

73




00€-L 0¢1~-d

74




75

T-40

AS4




IWI - 00L-0%9

76




SWH 00L=-S¥D

77




0L-XD 0S-4

78




APPENDIX B

DIFFRACTION SCANS (CHI=70°) OF THE (10) AND (10,1) REGION
OF THE CARBON FIBERS

Pitch
P-25
P-55
P-75
P-100

P-120

T-300
AS4
T-40

G40-700

_PAN Vapor Grown
G45-700 Applied Sciences
HMS
T-50
GY-70
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APPENDIX C

DIFFRACTION SCANS (CHI=70°) OF THE (11) AND (11,2) REGION
OF THE CARBON FIBERS

Pitch _PAN _ Vapor Grown
P-25 T-300 G45-700 Applied Sciences
P-55 AS4 HMS

P-75 T-40 T-50

P-100 G40-700 GY-70

P-120
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