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ABSTRACT

Identification of ice floes and their outlines in satellite images is impor-
tant for understanding physical processes in the polar regions, for transporta-
tion in ice-covered seas and for the design of offshore structures intended to
survive in the presence of ice. At present this is done manually, a long and
tedious process which precludes full use of the great volume of relevant
images now available.

We describe an automatic and accurate method for identifying ice floes
and their outlines. Floe outlines are modeled as closed principal curves (Has-
tie and Stuetzle, 1989), a flexible class of smooth non-parametric curves. We
propose a robust method of estimating closed principal curves which reduces
both bias and variance. Initial estimates of floe outlines come from the
erosion-propagation (EP) algorithm, which combines erosion from mathemati-
cal morphology with local propagation of information about floe edges.

The edge pixels from the EP algorithm are grouped into floe outlines
using a new clustering algorithm. This extends existing clustering methods by
allowing groups to be centered about principal curves rather than points or
lines. This may open the way to efficient feature extraction using cluster
analysis in images more generally. The method is implemented in an object-
oriented programming environment for which it is well suited, and is quite
computationally efficient.”

KEYWORDS: Erosion; Feature extraction; LANDSAT; Non-parametric
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1. INTRODUCTION

Knowledge of the shapes, sizes and spatial distribution of ice floes is important for
understanding the physical processes operating on the ice pack in the polar regions. It is also
important for practical problems associated with transportation in ice-covered seas and for the

design of offshore structures intended to survive in the presence of ice.

Such information can be found in satellite images of the polar regions such as Figure 1,
which exist in large and rapidly increasing nambers. Practical use of such images requires
identification of the outlines of ice floes above a certain size. To date this has been done
manually (Rothrock and Thomdike, 1984), a slow and tedious process that often takes a day
or more to record the data from a single image and effectively precludes full use of the data.
Automating the process is inherently difficult. Problems include the presence of many smaller
floes and of melt ponds on the surface of floes which ensure that floes often do not appear as

homogeneous blocks of ice in the image.

In this article we describe an automatic method for identifying the outlines of ice floes.
The outcome of this is shown in Figure 2, and is almost the same as the result of very careful
manual digitization. We model ice floe outlines as closed principal curves (Hastie and Stuet-
zle, 1989 - hereafter HS), a flexible family of one-dimensional non-parametric curves in a
higher-dimensional space. Our method consists of identifying a set of edge pixels and group-
ing them into clusters which are centered about a principal curve. Each cluster corresponds to

a floe and the corresponding principal curve is the estimated floe outiine.
The method involves several new statistical techniques:

(1) A way of estimating closed principal curves that reduces both bias and variance and is
robust to outliers. Here, outliers take the form of melt ponds on the surface of ice floes

(Section 2).

{2) The erosion-propagation (EP) algorithm provides initial estimates of floc outlines. This
combines the existing idea of erosion fron. mathematical wmorphology (Matheron 1975,
Serra 1982) with that of local propagation of information about floe boundaries (Section

3).




Figure 1. A polar LANDSAT image shewing ice floes. This is a 200x200 pixel image,

where each pixel is 80m square; it thus represents a [5x 15 km area.
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(3) A method for clustering about principal curves. Existing clustering algorithms separate
data into groups, each of which is clustered about some central point (Gordon 1981,
1987; Murtagh 1985; Committee on Applied and Theoretical Statistics 1989). Here we
generalize this to allow each group to be clustered about a different principal curve. This
opens the possibility that cluster analysis may be useful more generally for fast feature

extraction in images (Section 4).

The method is implemented in an object-oriented programming environment for which it is

well suited, and seems computationally efficient.

2. ESTIMATING CLOSED PRINCIPAL CURVES

In this section, we first review the definition and basic properties of principal curves
(Section 2.1). We then describe a new algorithm for estimating closed principal curves that

reduces both bias and variance and is robust (Section 2.2).

2.1 Principal curves

A principal curve is a smooth one-dimensional curve that passes through the middie of
an m-dimensional data set, such as that shown in Figure 3, for which m=2. It is non-
parametric and its shape is suggested by the data; it thus provides a non-linear summary of
the data. The idea was introduced and developed by Hastie (1984), Hastie and Stuetzle (1985)
and HS.

A one-dimensional curve in m-space ic an m-vector consisting of m functions of a sin-
gle variable A, called coordinate functions. The variable A parameterizes the curves and pro-
vides an ordering along it; A will often be arc-length along the curve. Let X e R™ be a con-

tinuous random vector. Then f(A) is a principal curve of X if
E[XIF(X)=A] = A,
where

Fi(x) = max (A |[x-f0)|| =iﬂf|lx—f(u>|l }.




o)
o
G ® o 8 0
OJQ;O o) o)
o)
0oo 0 1] o
o)
0 %o
o) o) o)
° 0
o)
0 ¢
o)
o)
o)
o
Oc)cD
o 0O O
0g ©
O o0 o)
0 °O
o © odp
o 009 °oo
o)
® o %
® o)
0 o ® 5
0 0 O 0O o0
0 o]

Figure 3. Data for illustrating the fitting of closed principal curves. The data were obtained
by generating points uniformly on the circumference of a circle, and perturbing them ran-

domly along the normal to the circle according to a Gaussian distribution.
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Given the distribution of X, HS proposed the following algorithm for finding f:
f; ) = EIXI7IX) =4, 2.0

where f is the i th iterate.

When the distribution of X is unknown, this extends to estimation of f from a data set
{Xy, ... .X,} by estimating E [x | f7}(X)=A]. HS do this by means of scatterplot smoothing,
using neighborhoods of each point defined by their projections onto the current estimate of the

principal curve, rather than by their position in R”.

Let f; be the ith iterate and let A =f7'(x;) (=1...., n). Let A! be the jth order
statistic of the set (X{, C 7\,: }, and let x("j) be the data point that projects onto 7\.,' Then let
N} be the set of data points x{, such that A/ is in a neighborhood of A/; the size of the neigh-
borhood is controlled by the span. equal to the fraction of all the data points which are in the
neighborhood. The next iterate is then

f,.qW) = E[XIN]]. (2.2)

This is calculated using a coordinatewise scatterplot smoother, and various possibilities are

discussed by HS.

There is no formal proof that the algorithm converges, but HS report that they have had
no convergence problems with more than 40 real and simulated examples. Figure 4 shows

the result of applying the HS estimation procedure to the data in Figure 3.

2.2 An algorithm for estimating closed principal curves that reduces both bias and vari-

ance and is robust

Scatterplot smoothers generally produce curves that are biased towards the center of cur-
vature. It is clear from Figure 4 that the estimated principal curve suffers from this problem,
and that the bias increases with the span. In most statistical problems there is a tradeoff
between bias on one hand, and smoothness and variance on the other. For closed curves, the
center of curvature is interior to the curve (except for small local regions in non-convex
curves). We can use this fact to modify the HS principal curve estimation algorithm so as to

reduce bias and variance at once.




Figure 4. Estimated principal curves for the data in Figure 3. The principal curves were

estimated using the algorithm (2.2) of HS with spans of 0.2 (thin line), 0.3 (medium line) and
0.5 (thick line).
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If the distribution of X is known, let 8 (X,A) = f; ,,(A) ~f,(}) be the change in the calcu-

lated curve from iteration / to ‘teration i +1 in the algorithm (2.1). Then
(X, =EX-f,M 17 1(X)=A).

This suggests that when the distribution is unknown and is estimated from the data using an
iterative algorithm such as (2.2), the projections of the data in N", rather than the data them-
selves, should be used to calculate ?H](K). Let 5;=?i+l().})—fi (7\}) be the change in the esti-
mate of f from the ith to the (i +1)th iteration, let pj:x(il-,-fi (kj) be the projection of x(ij-)
onto f;, and let 5} be the coordinatewise average of the projections of the data in Nj onto f;.
Then we calculate f",,,, by setting 8]‘ =ﬁ;.

Figure 5 compares this algorithm with that of HS for various spans. Our algorithm does
not suffer from the bias problem inherent in that of HS. Figure 6 shows that our algorithm
produces a much smoother curve when the span is small enough for that of HS to yield a

relatively unbiased curve.

Outliers arise in the form of shallow but sometimes large melt ponds on the surface of
the ice floe. An example of this is Figure 7, which shows the edge pixels of one floe in Figure
1 identified by the EP algorithm. The points near the left side interior to the floe are from
melt ponds. Since they do not belong to the edge of the floe, we need to ensure that they not

affect the estimate of the principal curve.

To eliminate the effect of outliers we use a slight modification of an approach suggested
by HS. In the scatterplot smoothers we use a weighted average, where the weight of a point
depends on its distance from the current estimate of the principal curve. We calculate the
standard deviation of the lengths of the projections and set the weight for a point to zero if it
is more than three standard deviations from the current estimate of the principal curve, and to
unity otherwise. Figure 8 shows the result of this robust procedure for the data in Figure 7.
as well as that of the non-robust procedure which uses the mean of all the data in each neigh

borhood. The robust procedure has clearly achieved its goai.
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Figure 5. Comparison of the HS algorithm for estimating closed principal curves with that
proposed here. This shows the principal curves resulting from the HS algoritiim (thin line) and

the algorithm proposed here with spans of (A) 0.2, (B) 0.3 and (C) 0.5.
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Figure 6. The principal curve from the HS algorithm (thin line) at a span small enough to
eliminate most of the bias, compared with the es*imate proposed here (thick line) with a span
of 0.2. The smaller the span, the less the bias and the rougher the estimated curve. Notice

how rough the HS curve is, compared with the present estimate.
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Figure 7. Ice floc edges with melt ponds. The small circles are the edge pixels for one of the

floes in Figure 1, as iqentified by the EP algorithm. The points interior to the floe are from

melt ponds.
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Figure 8. Principal curve estimated using the robust procedure described in the text (thick
line), compared with the estimate from the non-robust procedure (thin line). The robust esti-

mate is unaffected by the melt ponds, while the non-robust estimate is pulled towards them.
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3. THE EROSION-PROPAGATION (EP) ALGORITHM

To select the potential edge pixels and provide an initial grouping of them into floe out-
lines, we use the EP algorithm. This operates on binary images. However, images of ice floes
such as Figure 1 are usually greyscale. The marginal distribution of pixel intensities is highly
bimodal, and so we work with the simpler binary image obtained by thresholding the original

image; see Figure 9. The final result is relatively insensitive to the precise choice of threshold.

The erosion part of the EP algorithm, which identifies the potential edge elements, is a
standard application of ideas in mathematical morphology (Serra, 1982). The propagation part
of the EP algorithm keeps track of the floe to which an edge pixel belongs by locally pro-
pagating the information about edge elements into the interior of the floe as it is eroded. This

is facilitated by the object-oriented programming environment.

The algorithm is iterative and operates on a binary image consisting of figures (ice floes)
on a contrasting background (water). At the first iteration, if a pixel is ice and a specified sub-
set of its neighbors is water, the pixel is "melted” and becomes water, so that the figure to
which it belongs is eroded. In our implementation, a pixel is "melted” if any of the eight
neighboring pixels is water. At the second iteration, the same operation is performed on the
image resulting from the first iteration, and so on. This can be formally described in terms of
structuring elements using the terminology of mathematical morphology (Banfield 1988). Any
edge locating operator can be used to provide the initial set of potential edge pixels. We use

the pixels "melted” at the first iteration of the EP algorithm.

Some results are shown in Figure 10. We can control the minimum size of the floes by
waiting until a specified number of iterations, i, , have passed before recording a floe. The
smallest floe which can be recorded is then a square of side (2i;,+ 1) pixels. Smaller floes

"melt" and are not recorded.

The idea of the propagation part of the EP algorithm is that the locations of the edge
pixels are propagated towards the interior of the figure as it is eroded. At the end of the pro-
cess, a single interior point of the figure will "know" the locations of all the edge pixels to
which it corresponds. The location information is passed to only a few pixels which are taken

as far from the eroded pixel as possible subject to them not belonging to a different floe. This
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Figure 9. Binary version of Figure 1 for two threshold levels. The results are similar. How-
ever, (A) has a Jower threshold level than (B) and therefore has more clutter in the water but

less noise interior to the floes.
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Figure 10. The results of applying the EP algorithm to Figure 9(A) after (A) 3 iterations, (B)

7 iterations and (C) 12 iterations.
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ensures that the amount of location information to be processed does not become unmanage-
able. It also prevents loss of information due to irregularity of the floe, melt ponds, or pixel

misclassification at the thresholding stage.

The key to the propagation part of the EP algorithm is that it is never necessary for any
pixel to know the direction of the interior of the floe. If a pixel is eroded at the the ith itera-
tion, then it was the center of a (2i +1) by (2i +1) square of ice pixels before the start of the
erosion process. Thus its location may be passed anywhere within the square of side (2i +1)
pixels surrounding it without any risk of the information being passed to another floe. We
have found that it is enough to pass the location information in two opposite directions within
the square. All of the eroded pixels are processed in exactly the same manner and it is this
uniform processing that allows the algorithm to be implemented on parallel processing

machines.

In Figure 11 we show the results of the EP algorithm applied to the data in Figure 1, as
thresholded in Figure 9(B) with a minimum floe size of 15x15 pixels (i.e. 1.2 km. square).
The results are reasonably good: of the 35 floes identified by the EP algorithm, 23 are "right”

in the sense of being close to floes identified by careful manual digitization.

However, the EP algorithm tends to subdivide floes. This can occur when the floes are
non-convex or when they have noise in the interior. Figure 12 shows an example of the non-
convex case. As the floe shown in Figure 12(A) was eroded, the narrow middle section was
pinched in and the floe was divided into two partial floes, shown in Figures 12(B, C). Figure
13(A) is an example of a floe with melt ponds that cause the EP algorithm to produce three
partial floes, as seen in Figures 13(B, C, D).

4. CLUSTERING ABOUT CLOSED PRINCIPAL CURVES

The EP algorithm tends to subdivide floes. We have therefore developed a method for
determining which of the floes identified by the EP algorithm should be merged, based on an
algorithm for clustering about closed principal curves. Since we want to find out whether to

merge tentatively identified floes, this is hierarchical and agglomerative.
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Figure 11. Result of the EP algorithm applied to Figure 9(A), where floes are not recorded
unless they have survived at least 7 iterations. This corresponds to a minimum floe size of
15x 15 pixels, or 1.2 km square. The points are the edge elements identified by the EP algo-
rithm and the numbers interior to each floe are the centers found by the EP algorithm. Note
that centers 1 and 4 are on the same floe, which was subdivided because of the melt ponds.

Other floes were also subdivided.
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Figure 12. When a non-convex floe (A) is eroded the narrow region can be "pinched off"

resulting in two partial floes (B) and (C).
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Figure 13. Noise in the interior of a floe can erode outwards and cause the floe to be subdi-

vided. In this case, the melt ponds in (A) caused the floe to be subdivided into three partial

floes (B), (C) and (D)
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The objective of cluster analysis is to group a set of observations into "interesting” sub-
sets. In practice, this has usually meant grouping observations which are close to one another.
Ward (1963) proposed a hicrarchical agglomerative algorithm for dividing data into g groups
such that the sum of the within-group sums of squares is minimized. The algorithun starts by
assigning each observation to a separate group. At each agglomeration two groups are
merged, chosen so as to minimize the increase in the sum of within-group sums of squares.
This clustering criterion is optimal if the data are generated by a finite mixture of spherical
Normal distributions. This corresponds to clusters which tend to be of the same size and

spherical

Murtagh and Raftery (1984) proposed decomposing the within-group sum of squares into
parts and using a weighted sum of the parts as the clustering criterion, with weights chosen so
as to emphasize aspects of interest in the application. For two-dimensional data, they sug-
gested deconiposing the within-group sum of squares into parts parallel and perpendicular to
the first principal component of the group and downweighting the parallel part. This criterion
was generalized by Banfield and Raftery (1989) who also showed that it is optimal when the
data are generated by a mixture of Normal distributions with covariance matrices whose
eigenvalues are constant across clusters. This corresponds to clusters which tend to be ellipti-

cal with the same size and shape but different orientations.

We now apply the idea of decomposing and reweighting the within-group sum of squares

to the present problem. The edge pixels for an ice floe that has not been subdivided should be
(a) tightly clustered about the floe outline, as estimated by the principal curve, and

(b) regularly spaced along the outline, so that the variance of the distances between neigh-

boring edge pixels should be small; see Figure 14 and Figure 15.

We decompose the variance, V, for a group of edge pixels into parts corresponding to
(a) and (b) and a residual part, as follows. Let the locations of the edge pixels be
x; (j=1,....,n), ordered so that ?(Xj)=x}- and A, < - - - <A,, where { is the principal
curve of the group, estimated by the method of Section 2.2. Let €; =f(kj)—f(lj+l) be the vec-

tor defined by two adjacent projections onto the estimated principal curve. Since we are work-

ing with closed curves, all subscripting is modulo .
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Figure 14. A complete fioe, showing the edge pixels identified by the EP algorithm (open cir-
cles) and their projections onto the estimated principal curve (dark circles). The projections

onto the principal curve are regularly spaced, and so the variance of the distance between

adjacent projections is small.
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Figure 15. A partial floe. There are large gaps between the projections of the edge pixels
onto the estimated principal curve, and so the variance of the distance between adjacent pro-

jections is large.
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We may now write the within group variance as

n
V=3 llx -
j=1

= +V

about along + vresidual '

n " n
where Vo = X lIx; =A% and V,,,, =2 3 l€; —E1% V,pou is a measure of lack of
j=1 j=1

tightness of the distribution of the edge pixels about the floe outline, and thus of the extent to
which requirement (a) is not satisfied. V,,,, is a measure of the lack of regularity of the dis-
tribution of the pixels along the floe outline, and thus of the extent to which requirement (b)
is not satisfied. It is shown by Banfield (1988) that

n n
Vre:idual = '/ZZ “e/ ”2 + Zr} d r}"”’
j=1 J=1

where r; =T(k]- )— % y ?(Xj) and e denotes the dot product. It follows that V, ./ is a meas-
k=1

ure of the overall size of the floe. The general reweighted within-group variance is thus

o Vaboul + B Valong + Yvresidual :

V,esiduat CONtains no information of interest to us here, so we set y=0. Also, without loss of

generality we set B= 1. Our clustering criterion is therefore

V= Vopow TV

along -

To determine whether a set of groups should be merged, we first calculate V* for each of
the individual groups and then we calculate V* for the union of the groups. If the union has a
smaller value of V* than any of the individual groups we merge them, and otherwise not. To
make the number of candidate mergers manageable, we note that if a floe has been subdivided
the partial floes will have common edge pixels, but not conversely. Therefore, only mergers of

groups with common edge pixels are considered.
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To determine «, we note that by arguments similar to those of Banfield and Raftery
(1989) V* will be an optimal criterion, conditional on the estimated principal curves, if the
edge pixels are normally distiibuted about the tloe outlines and if E[V i, 1= E[V 0, ]
We therefore estimate a as the average of V., /'V,,, for the floes that we know were not
subdivided, namely those which have no shared edge elements. Using a span of 0.3 to esti-

mate the principal curves, this yielded & =0.39.

Table 1 shows the results of merging the partial floes in Figure 11, and Table 2 shows
the results of trying tc merge floes that should not be merged. In each case our method gives
a result which is both correct and clearcut. Figure 16 shows the final resuiis of the procedure,

together with the identified edge pixels.

5. DISCUSSION

We have developed an automatic method for finding the outlines of ice floes in satellite
images. It is accurate and computationally efficient. It involves three new statistical tech-
niques: a way of estimating closed principal curves that reduces both bias and variance and is

robust, the EP algoritim, and a method for clustering about principal curves.

The epproach would seem to be applicable more gei.erally to the detection of non-linear
features in imagec It extends cluster analysis to the case where similar pixels tend to be
grouped about arbitrary curved features, open or closed, using the idea of decomposing and
reweighting the within-group sum of squares proposed by Murtagh and Raftery (1984). This

suggests that cluster analysis may be useful for feature extraction in images more generally.

The procedure is implemented in an object-oriented programming environment. One of
the advantages of this environment is that each floe resulting from the procedure can be
represented as an instance of a "floe object” ard can carry with it, in the form of instance
variables, specific information about the floe to be used in further analysis. it is relatively
fast: a 512x512 8-bit image can be analyzed in approximately one hour on a Symbolics 3600
and should be considerably faster on some of the newer work<tations (e.g. about 20 minutes
on a Sun-3/80 and under 10 minutes on a Sun SPARCstation 1). The processing time is

linear i1: the number of pixels, but does depend upon the complexity of the image.
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Figure 16. Principal curves of the floes found after using the clustering method to merge the

partial floes found by the EP algorithm (solid curves). The circles are the edge elements found

by the EP algorithm.
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In our implementation of the EP algorithm we erode an ice pixel if any of its eight
neighbors are water. Other rules for eroding a floe may be used and they can change the rate
of erosion, the effect of pixel misclassification and the shape of the floes that can be found.
The rules may also be changed as the erosion procedes. For example, dilating the image, or
"refreezing” the ice, at an early iteration could eliminate some pixel misclassifications and
other noise in the interior of the floes. The EP algorithm has the potential of being imple-

mented on parallel processing machines.

To date, the development of automated techniques for the analysis of polar satellite
images has been limited to ice floe tracking (Ninnis, Emery and Collins 1986; Fily and
Rothrock 1986, 1987; Vesecky, Samadani, Smith, Daida and Bracewell 1988). The primary
tool in these automated tracking methods is cross-correlation, which provides the ability to
match regions in two different images, but does not give any information about the morphol-
ogy of the individual ice floes or the spatial structure of the ice pack. Vesecky et al. (1988)
use segments of ice floe boundaries to track ice floe movements, but this does not provide the
type of information needed to study ice floe morphology and spatial structure. The need for
more information on both morphology and spatial structure was clearly shown by the 1984

Marginal Ice Zone Experiment (Bums er al. 1987; Campbell er al. 1987).

The problem considered here does not fall neatly into one of the problem areas in image
understanding that have been intensely studied in recent years, namely image restoration,
classification, segmentation and feature extraction. It does, however, combine elements from
all of them. Image restoration attempts to reconstruct a degraded image. Image classification
tries to assign each pixel to one of several predetermined categories; it may be regarded as a
special case of restoration. Image segmentation (Rosenfeld and Kak, 1982; Chellappa and
Sawchuk, 1985) seeks to identify areas of contiguous pixels that are, for example, devoted to

the same crop. The aim of feature extraction is to find linear or curvilinear features in images.

Our problem shares goals with feature extraction, segmentation and classification. While
restoration is not an explicit goal, we would expect the methods developed here to work well
in the presence of degradation. Restoration and classification methods do not, by themselves,
address the present problem. Current feature detectors would seem to have difficulty locating

features as arbitrary as ice floes. For example, the Hough transform (Hough 1962; Ballard
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Table 1. Floe merger results. This table shows the values of the merger criterion V* for the
subdivided floes from Figure 11. The value of the criterion for the individual partial floes is
shown under the "Individual’ column. The value under the "Merged" column is the criterion
value when the floes in the left column are merged. The floe numbers refer to the center
numbers in Figure 11. The fact that the value under the "Merged' column is smaller than

any of the values under the "Individual' column indicates that the floes should be merged.

Criterion Values
Floes
Individual Merged

Floe 1 11.36
Floe 4 5.71 0.64
Floe 5 4.07
Floe 8 10.86 2.36
Floe 12 8.29
Floe 2 1.32
Floe 3 1.36 .86
Floe 10 6.95
Floe 6 4.37
Floe 11 3.71 .60
Floe 25 1.33
Floe 34 1.90 33
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Table 2. Floe non-merger results. This table shows the values of the merger criterion V* for
non-subdivided floes from Figure 11. The value of the criterion for the individual partial
foes is shown under the "Individual” column. The value under the "Merged' column is the
criterion value when the floes in the left column are merged. The floe numbers refer to th:
center numbers in Figure 11. The fact that the value under the "Mevzed' column is larger
than anv of the values under the "Individual" column indicates that the floes should not be

merged.

Criterion Values
Floes

Individuval  Merged
Floe 27 .24
Floe 13 39 10.70
Floe 34 1.90
Floe 25 1.33 741
Floe 7 .20
Floe 30 .59
Floe 31 o3 2.27

1981; Davis 1982), an obvious candidate for locating closed curves, requires an initial pattern
description which it then tries to find in the image. It would be difficult to provide an initial
pattern description that is general enough to accommodate the wide range of commonly found
ice floe shapes. Our approach may also be applicable to segmentation problems, especially

those concemed with identifying not only regions but also the shapes of their outlines.

The Bayesian and stochastic relaxation approach of Geman and Geman (1984) may weli
be applicable to the present problem, although it has to date been used mainly for restoration.

It would require extensive modeling assumptions for the ice floe problem, and experience

——
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suggests that it would be computationally expensive. The computational burden might be
reduced by using as an approximation the ICM algorithm of Besag (1986), although this does
not yet appear to have been applied to problems such as the present one. Qur procedure o
the other hand requires only the assumption that the ice floe boundaries be closed curves, and

it is relatively fast.
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