
* 1ThFILE C Sw

~OF

-THE CHALLENGE -1

~ OF
SOFTWARE MAINTENANCE COSTING

Technical Report

Dr. Roland D. Kankey IIW

- - AU.-AFIT-LSQ-89-l

* . ------- DPART ENTOF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

89 10 19 077

THE CHALLENGE
OF

SOFTWARE MAINTENANCE COSTING

Technical Report

Dr. Roland D. Kankey

AU-AFIT-LSQ-89-1

The views expressed herein are those of the author and do not

necessarily reflect the views of the Air University, the United
States Air Force, or the Department of Defense.

Approved for release as requested

in acrcordance with AFP 19 0 -1.

ABSTRACT

Software is already a critical element of most DOD and Air

Force weapon systems and its role is increasing. From a
resources point of view, its acquisition cost is growing as
a percentage of the system cost, while its maintenance cost
can be many times its acquisition cost. This project
addressed the critical area of software cost estimation and
in particular, software maintenance estimation. At this
point in time software cost estimation is not well
understood. A number of approaches, techniques, and models
are available. This study attempted to evaluate techniques
for software, and software maintenance, costing.>,

The sponsor of the study, Lt Col John Long c f ASD/ALT,
indicated that the primary area of concern was software
maintenance, so the strongest focus of the literature review
and the report is on software maintenance costing. A number
of textbooks, technical reports, and articles were included.
One of the initial problems with software maintenance is the
disagreement on the concept and definition. One author
considers the word "maintenance" to be inappropriate for
this activity, preferring instead the words "continuing
development". The rationale is that since software does not
wear out, it does not need to be maintained. For many
people, maintenance implies activity with lesser skill
demands, yet in software "maintenance" several claim the
maintainers need to have essentially the same skills as the
original developers. Other phrases that are used to express
this activity are software support, and post-deployment
software support. The actual types of work included in each
case differ slightly, as indicated in the report.

The various proposed techniques are reviewed, with
prior evaluations summarized. The report ends with a select

bibliography of published work in the area and a selection
of definitions. 0 j

This research received significant sponsorship and support
from Lt Col John Long, Aeronautical Systems Division/ALT,
from January 1988 through March 1989. Reference ASD Reserve
Project 88-012-DAY, Partitions for Software Costing.

"Ii

fri

THE CHALLENGE OF SOFTWARE MAINTENANCE COSTING

Roland D. Kankey

March 1989

1. BACKGROUND

In the distant past, witchcraft and spells were

imagined to be required to motivate inert matter to

activity. More recently, mechanical or chemical interaction

was used, with widespread acceptance and understanding. The

unseen tool of electricity has been in use for about a

century and its mechanisms are generally understood and

accepted. However, during the last four decades hardware

has reverted to control of something more like witchcraft

and spells. Software, once installed, cannot be measured in

a normal sense. To many people, software is not well

understood, let alone accepted.

What is software? One expressed view is that computer

software is the pattern of electrical charges in the

computer's memory and storage media. Boehm (81) defines it

as the entire set of programs, procedures, and related

documentation associated with a system and especially a

computer system. Attempts to estimate the cost of this

software over a system's life cycle have been only partially

successful.

Several interesting reasons have been advanced that

relate to this difficulty. Weinberg (71) indicates that

computer programming can be seen as an attempt at

communication between two alien species, with programming

languages designed to make this communication easier for the

human species. Baker and Fisher (82) maintain that software

development is seen as an art, with concurrent lack of

discipline being the core of current difficulties.

While decision makers depend upon forecasts to help

make better decisions, their reliance on a forecast is

determined somewhat by how well it can be defended and

explained. Software estimators are thus not only hampered

because of the unseen product, but also because it is

difficult for an analyst or manager to vigorously defend an

estimate supported by questionable data, inaccurate models,

and hunches (Brooks, 78). Fox (82) indicated software

estimation was imprecise and personal and referred to

software estimating as a black art. Woodward, as cited by

Fox (82), maintained that it was almost impossible to

predict the results of any development work in terms of time

or money. Fox then insists this is even a stronger truth

for software development, since the product is not even

tangible. Software development shares this characteristic

with hardware development. The time and cost to develop new

things cannot be accurately forecasted.

Given that software is a critical element of most DOD

and Air Force weapon systems, that its role is increasing,

that its acquisition cost is growing as a percentage of the

system cost, and that its maintenance cost can be many times

its acquisition cost, a study of software maintenance cost

is highly appropriate. This study effort is aimed at

evaluating techniques for software costing particularly for

the system's operating and support life cycle phase.

2

2. LITERATURE REVIEW: SOFTWARE MAINTENANCE

A misnomer. Software does not require maintenance in

the standard sense. Yet Paul McIlvaine (82) indicated that

while development might cost $75 per deliverable line of

code, maintenance of that software over it's life could run

$4000 per line of code. Fox (82) calls this work continued

development, since it includes additions to the program and

correction of latent errors. He insists that the term

software maintenance understates the challenge of this work.

Boehm (81) defined software maintenance as "the process of

modifying existing operational software while leaving its

primary functions intact".

In spite of Fox's comments, the term software

maintenance seems to be most common. Brooks (78) indicated

program maintenance deals with changes made after delivery.

Others using the term maintenance include Boehm and Swanson

(80), and Grove (82). McIlvaine (82) equates software

maintenance and software support. The Joint Logistics

Commanders in the Workshop 84 advanced the phrase "Post

Deployment Software Support". This seems to include the

traditional software maintenance as well as efforts during

production/deployment that help assure a maintainable

product that will support the mission. It also echoes the

word support. (cited by Martin and Deasey, 87)

Software maintenance as a percentage of software life

cycle cost is estimated as often 50%, or as high as 70-80%

(Fox), 70% (Grove), and 50-75% (Bochm & Swanson, per Martin

3

and Deasy). The impact of this on a program depends upon

the proportion of that program's cost that is due to

software. This of course varies, but Doane (82) indicated

that software costs of C 3 systems were approaching 80%. Fox

(82) related that software maintenance costs could be very

small or very large proportions of software life cycle costs

depending upon the length of time used, the stability of the

external environment, and the quality of the software when

developed.

Before considering the elements and subdivisions of

software maintenance, it is reasonable to review the phases

of a software project and of the software life cycle.

Metzger (81), in his book on managing a programming project,

cites six phases:

o Definition

o Design

o Programming

o System Test

o Acceptance

o Installation and Operation

Notably absent from this listing is a specific phase called

maintenance or support. Fox (82) only listed three phases

for a program's life: Development, Use, and Continued

Development. But he cited six phases for development:

o Requirements Definition

o Design

o Writing the Instructions

4

o Construction

o Testing, or Verification

o Documentation

Fox's three program life phases can be compared to the

standard life cycle phases of : Research and Development,

Production, Ownership, and Disposal. A first item to note

is that software does not have a serious Production phase

(Fox, 82). Once software is developed, it is merely copied.

The costs of this copying (and perhaps printing of

documentation) is relatively minor. The third traditional

phase is Ownership (or Operating and Support). This phase

must be compared to Fox's Use and Continued Development

phases. The Ownership phase includes activities that occur

after deployment of the system. Software maintenance would

fall in this phase. The last phase is usually disposal. No

references were found dealing with disposal costs of

software, they are assumed to be minimal.

It is interesting to note that, for software to be

considered 2quivalently to hardware, the ownership phase

should include costs of both operation and support; with

support roughly equivalent to maintenance. The question of

whether there are differences in operating costs for

different software alternatives is held open. The next

section deals with the elements of software maintenance.

5

2.1 Elements of Software Maintenance

Software maintenance (some say modification) has been

classified in several different ways. Swanson is cited for

the following categories (also used by Boehm):

Corrective - correcting an error found after

the software is operational

Perfective - improvements to respond to new needs

or desires of the user

Adaptive - adapting to new environmental

changes, such as a new operating

system or new hardware

(Martin and Deasey, 87)

Corrective maintenance probably best corresponds to Class IV

Modifications, which on aircraft systems are part of

ownership costs. Perfective maintenance probably best

corresponds to Class V Modifications, which are not

considered Ownership Cost for aircraft systems. Adaptive

maintenance seems to fall somewhere in between the first two

in terms of appropriateness for Ownership cost. Clearly

absent from the above list is a category for development

work on known requirements deferred until after the software

is operational. The categories given avoid the problem, but

do not resolve it.

The biggest definitional difference between software

and hardware maintenance is the consideration of perfective

maintenance. This activity is similar to that referred to

by Fox as continued development. Another aspect, cited by

6

Martin and Deasey (87), is that there is actually a transfer

of intellectual property from the developer to the

maintainer. The developer's approach and style must be

available to the maintainer. As McIlvaine (82) states, the

maintainer "must be capable of designing the software in the

first place". The maintainer's skill level must be

comparable to that of the designer.

There is some variety in the work that should be

considered software maintenance. Fox (82) indicated the

tasks were to add new functions, update functions, adjust

for hardware updates, and to correct errors in the code.

Boehm (81) discusses software update and software repair.

Software repair leaves the functional specifications intact,

while software update results in a changed functional

specification. Boehm does limit the magnitude of changes

that he feels should be considered as maintenance. Redesign

and redevelopment of smaller portions (less that 50% new

code) of an existing software package is considered

maintenance. Design and development of a smaller

interfacing software package which requires some redesign

(less than 20%) of the existing software product, is

considered maintenance. On the other hand Boehm does not

consider data processing system operations, data entry, anJ

modification of values in the data base to be software

maintenance.

7

2.2 Approaches for Software Maintenance

The actual maintenance of software can be done through

organic support, developer support, or independent

contractors. (Martin & Deasey, 87) The approach to be used

must be known early in development since each approach

raises peculiar design and contract needs.

If the maintenance is to be done organically, i.e. by

the user, then three items are desirable.

o good software tools and solid documentation

o involvement of government personnel during the

system's development

o good training program for support personnel

(Martin and Deasey, 87)

An AIA/EIA White Paper published in Concepts (Aut 82)

clearly states that if the customer wishes to be able to

accomplish post delivery modifications, then the software

must be designed from the beginning to facilitate such

customer modifiability. The White Paper also indicated the

pertinent software development tools used in generating the

originally delivered software need to be identified,

preserved, and appropriate rights acquired. Fox (82)

indicates that the function called support engineering

(usually in the production phase for hardware) needs to be

included in the development phas for software. Its

purpose - to make the software easier to fix or change after

it is in use. The White Paper also states that post-

delivery modification requirements may have a significant

8

impact on the appropriate applications software design and

the reqLirements for documentation and delivery of support

software.

If the intent is to let the developer of the software

also do the maintenance, government requirements are

lessened. Failure to procure the tools, documentation, and

rights discussed in the organic approach will put the

government in a very weak negotiating position if any later

decision is made to drop developer maintenance. Mcllvain

(82) indicated that maintenance required a sustained level

of effort over the operational phase of a systems life

cycle. If this level can be accurately determined, the

maintenance could be included in the original contract. An

approach might be to include a contract option with a few

discrete levels of effort and related contract prices.

If the third approach, use of independent contractors,

is selected, the developer would certainly protect any

procedures they considered competitive assets. The

government should definitely assure that all development

tools and documentation were available, and that the

government had adequate rights so they could be given to a

competitor.

Regardless of the desired maintenance approach, we

should keep this in mind:

There are two roles of software. The first is to
make the coi.puter hardware do th job. The second
is to be amenable to change. We must control its
development so it can be changed. [paraphrased
from Fox (82)]

9

2.3 Variables that Affect Software Maintenance Costs

Numerous factors affect software maintenance costs.

Referring back to the comments by Fox (82), three clear

variables are the length of the operations phase, the

stability of the external environment, and the quality of

the original product. The effects on cost should be clear,

but the causation is not one way. When these variables are

known at the start of development, they will affect the

product as well as the cost. Software designed for a one

year application will be different than that designed for a

ten year operational phase, etc.

Items discussed in Section 2.2 will also affect costs.

Organic support would include different Work Breakdown

Structure elements than contracted support and could well

have lower costs for maintaining the same software. The

trade off would be the cost of the increased effort during

development. The availability of tools and documentation

(and appropriate rights) will affect costs.

The inclusion of a support engineering function into

development, and how well this is done, will clearly affect

maintenance costs. The AIA/EIA White Paper (82) indicated

that well thought out provisions for post delivery

modifications were the exception.

Boehm (81) indicates tnat several program goals are in

conflict. Development speed, program efficiency, extreme

reliability, and ease of use are all seen to be in conflict

with ease of maintenance. Shorter development time would

10

probably create the abandon-function syndrome referenced by

Fox (82). As the due date approaches, more functions are

deferred for later implementation. Since this later

implementation is after installation, maintenance costs will

increase. Efficiency is gained by better adapting the

program to its environment, but Weinberg (71) cites Fisher's

Fundamental Theorem

The better adapted a system is to a particular
environment, the less adaptable it is to new
environments.

A highly efficient program will then be more susceptible to

needing substantial maintenance as the software is ,xpected

to adapt the hardware to an ever changing environment.

Other variables that would affect cost include the type

of computer system where it will run, and Lhe specifications

for the program's operation (time, accuracy). The type of

software (embedded, semi-detached, or organic) will affect

development and maintenance costs.

2.4 Software Cost Estimation

Metzger (81) lists twelve steps in estimating software:

1. Design the program system.

2. Estimate the total size of the program system

(LOC).

3. Estimate programming manpower (LOC/manday

factor).

4. Estimate (developmental) support manpower.

5. Estimate equipment costs.

11

6. Estimate facilities, supplies, relocation,

trips, pubs, etc.

7. Add contingencies (a multiplier).

8. Consider other factors (his Fig 2.8).

9. Convert to money (yields est. of direct cost).

10. Add overhead, profit, fees.

11. Write down the assumptions.

12. Re-estimate as the project progresses.

One critique of these steps is that the assumptions should

be surfaced and agreed upon much earlier in the process.

Boehm (81) lists only seven basic steps in software

cost estimation:

1. Establish objectives

2. Plan for the required data and resources

3. Pin down software requirements

4. Work out as much detail as possible

5. Use several independent techniques and sources

6. Compare and iterate estimate

7. Follow up

By deleting the word software in the third step, they could

be used for any estimation problem.

What are the independent techniques? Boehm mentions

seven software cost estimation techniques. These are:

1. Algorithmic.

2. Expert jadgement.

3. Analogy.

4. Parkinson-equate cost to available resources.

12

5. Price to win.

6. Top down: estimate at top, allocate down.

7. Bottom up: estimate components, sum up.

Techniques 4 and 5 might be useful for corporate estimators,

but they are not realistic for us as a customer. So long as

we recognize Boehm's Algorithmic technique as our standard

parametric technique, his reduced list of five corresponds

well to those in regular cost analysis work.

It seems the desired approach, historically, for

development costs is to use an algorithmic type cost model.

An OSD(C) report authored by Bailey, Frazier, and Bailey

(86) indicated that model use should be mandated. Their

survey reflected big advantages through use of any model.

Differences among model results were found to be small by

comparison to no model. They did indicate more than one

model should be used whenever possible. This is consistent

with recent work indicating the robustness of combinations

of forecasts (Litteral, 88).

Recent discussions with Captain Joe Dean (88) dealt

with the attempt to develop an Artificial Intelligence (AI)

approach to software estimation. This approach would differ

at a basic level from that attributed to Metzger in Section

2.4, and to most other software cost models, in that it

would not be based on lines of code. This effort is

consistent with the CMIP Road Map published by the Air Force

Systems Command/Comptroller (85), which called for

development of models not based on lines of code. Outputs

13

of the model are expected to include cost, lines of code,

and man-months. When questioned about the use of function

points rather than lines of code, Captain Dean's opinion was

that function points would not be known until critical

design review - which he felt was too late. The AI model

will probably be designed to consider software modules, some

feel for dispersion of possible costs for each module, then

some overall probability statements on the output variables

for the entire software project. It is not clear at this

time how this model will address software maintenance.

2.5 Software Maintenance Cost Estimation

Most of the emphasis for software costing continues to

be placed on development. Bunyard and Coward (82)

indicated little attention was being paid to the overall

life cycle cost. They cited this neglect as a contributor

to further rise in maintenance costs through latent software

errors (reduced test), inflexible software design,

insufficient documentation, and insufficient support

software.

Estimating software maintenance cost is a rather heroic

venture. As Fox (82) related, software takes up the slack

for the failures of other subsystems. Because it is "soft",

it is easier to modify software to cover other subsystem's

slips and errors. He gives an example of hardware (a

satellite) that was inserted into the wrong orbit. The

instruments could not work as designed. The software was

14

then modified to get the job done, saving years of time and

the cost of a new $50 million satellite. Of course the

customer complained about the $3 million overrun on the

software.

One of the primary principals of estimation is to

disaggregate whenever possible. Boehm (81) indicated that a

large software project may contain several subprojects that

operate differently and almost independently. Estimating

them separately would be desirable.

A basic concept in software maintenance seems to be

Annual Change Traffic (ACT) as used in the Constructive Cost

Model (COCOMO). Boehm (81) defines this as the fraction of

a software product's source instructions which (are expected

to) undergo change during a typical year, either through

addition or modification. Boehm discusses this percent as a

multiplier for development man months, yielding the man

months needed annually for maintenance. This of course

implies that errors in maintenance estimates can derive from

errors in ACT, as well as any error in the development man

months estimate.

Other models, such as SLIM, use an expected pattern of

software costs (the Rayleigh Curve) to estimate development

and maintenance costs. The PRICE-SL model for software

support uses algorithms for software support cost, but their

development and nature are clouded by their proprietary

nature.

15

17

Ferens (84) concluded that the quantitative accuracy of

existing software support cost models could not be

ascertained. His recommendation was to look into the

qualitative differences between the available models, then

consider their own needs and the situation before selecting

a model or models.

2.6 Summary

According to Grove (82), software was once considered

technical data, and was purchased in the same manner as

technical drawings. Software is now recognized as a

critical element of a weapon system, the element that can

adjust for failure of hardware to match specifications (Fox,

82). As Boehm (82) indicates, software is an evolving

field. All software cost estimation techniques are based

upon previous projects. Fox (82) indicated estimates should

be done by the most experienced person in the area, even

suggesting outside consultants.

Thibodeau (81) recognized the difficulty of identifying

analogous projects. He recommended using the simplest model

structure and carefully calibrating it to represent the

environment. Even then he was not optimistic as to

accuracy.

The desirability of estimating software costs seems

clear. However, our ability to do this is less universally

supported. The first step in a program is Definition, or

identification of the requirement. Doane (82) states that

16

we are unable to accurately state what is needed. The

requirement is subject to change and redefinition on a

shorter time scale than the development cycle. At best we

would have an accurate estimate of inaccurate requirements.

On the other hand, Metzger (81) stated that:

Before long, reliable programs, produced within
the limitations of a budget and on time, will no
longer be a rarity, although it will take some
time before they become an every day occurrence.

The most common metric used in software cost estimation

is the expected size of the program, expressed in terms of

lines of code. This has resulted in some logic problems

since all programmers know they can reduce lines of code by

tighter programming (additional effort). Fox (82) indicates

that lines of code is prone to gamesmanship, while Boehm

(82) acknowledges they do not represent the essence of the

product. The AFSC "CMIP Road Map" (85) and discussions with

Captain Joe Dean indicated efforts are underway to stop

defaulting to this LOC metric.

Software costing, and software maintenance (continued

development or support) costing in particular, are still in

a very dynamic position. Significant efforts towards

improvement of the software development and maintenance

process have been driven by the essential and continuing

role played by software in today's systems. The

questionable data base for historic software maintenance,

changing languages and tools, more powerful equipment, and

improving software development and maintenance processes

provide significant challenges to the software coster.

17

/q

BIBLIOGRAPHY

AIA/EIA White Paper (82), "Suggestions for DOD Management of
Computer Software", Concepts, Vol 5, No 4 (Autumn). AIA -
Aerospace Industries Association, EIA - Electronic
Industries Association.

Bailey, E.K., T.P. Frazier, J.W. Bailey (86), "A Descriptive
Evaluation of Automated Software Cost-Estimation Models",
IDA Paper P-1979; published by the OSD(C), October.

Baker, E.R. and M.J. Fisher (82), "A Software Quality
Framework", Concepts, Vol 5, No 4 (Autumn 82).

Boehm, B.W., (81) Software Engineering Economics, Englewood
Cliffs, NJ, Prentice-Hall.

Brooks, F.P., Jr., (78) The Mythical Man-Month, Essays on
Software Engineering, Addison-Wesley.

Bunyard, J.M. and J.M. Coward (82), "Today's Risks in
Software Development - Can they be Significantly Reduced?",
Concepts, Vol 5, No 4 (Autumn 82).

Dean, J. (88), discussion with Captain Joe Dean at ESD on 2
December 1988.

Doane, R.B. (82), "The Evolving Nature of the C 3 Systems
Acquisition Process", Concepts, Vol 5, No 4 (Autumn).

Ferens, D.V. (84), "Software Support Cost Models: Quo
Vadis?", J. of Parametrics, Vol 4, No 4, Dec, pp 64-79.

Fox, J.M., (82) Software and Its Development, Englewood
Cliffs, NJ, Prentice-Hall.

Graver, C.A. (85), "Air Force Systems Command Cost Research
Roadmap", Prepared for AFSC/ACCE by Tecolote Research, Inc,
September. Cover indicates "Cost Methods Improvement
Program (CMIP) Roadmap".

Grove, H.M. (82), "Foreword to Special Edition", Concepts,
Vol 5, No 4 (Autumn).

Litteral, L.A. (88), "On Combining Forecasts", ICA
Newsletter, June 1988.

McIlvaine, P.J. (82), "Softwae Logistics: A Sleeping
Giant", Concepts, Vol 5, No 4 (Autumn).

Martin, A.C. and K.M. Deasy (87), "The Effect of Software
Support Needs on the Department of Defense Acquisition

18

Policy: Part 1", CMU/SEI-87-TR-2 and ESD-TR-87-102, January.
(AD-A178 971)

Metzger, P.W., (81) Managing a Programming Project, 2nd Ed,
Prentice-Hall.

Park, I.K. (85), "Software Cost Estimation Through Bayesian
Inference of Software Size", Naval Postgraduate School
Thesis, September (AD-A161184)

Stratland, N. (86) Controlling Software Development, J.
Wiley and Sons.

Thibodeau, R. (81), "An Evaluation of Software Cost
Estimating Models", RADC-TR-81-144, Final Technical Report
June 1981.
(AD A104226)

Weinberg, G.M. (71), The Psychology of Computer
Programming, Van Nostrand Reinhold.

19

Partial Listing of Software Acronyms and Definitions

Acceptance Test - Also called demonstration testing,

performance test, product verification, etc. The desired

outcome is written acceptance of the product by the

customer. (Metzger, pg 155)

Ada - an eponym. A DOD computer language. Refers to

Augusta Ada Byron, the worlds first recognized programmer.

Ada did her work for Babbage's analytical engine (which was

never built). Ada was the daughter of Lord Byron. (Grove,

1982, pg 24)

Applications Software - does the job, ex. payroll or

navigation. (Fox, pg 46)

Big Projects - Do you need a big project? You can

accomplish a great deal with a handful of really good people
who are well managed. "If you propose a significantly

smaller number of people than your competitors propose, your

people obviously just don't understand the problem." "Since

the customer expects big numbers, you'd better propose

them." Ex. He has seen numbers tripled arbitrarily to be

consistent with manpower used on a similar project. All

people assigned will do something. (Metzger, pg 165/6)

Block Change Process - used for software maintenance.

Requested changes are accumulated, all are then made at

once. (Ferens, 84)

COCOMO - Constructive Cost Model (Boehm)

Continued Development - the third phase of the software life

cycle. Additions to the program and fixing latent errors.
(Fox, 1982, pg 7).

DEMI - Deliverable, executable machine instructions.
(Boehm, pg 477-479)

Development - Effort from the beginning of product design to

the end of integration and test. (Boehm, pg 59)

DSI - Delivered source instructions. DSI is expanded

differently (to DEMI) on various machines. (Boehm pg 477-

479)

ECR - Embedded Computer Resources. Generally involves
equipment that is an integral part of a weapon or weapon

system. (Grove, 1982, pg 9)

Embedded Computer Resources - see ECR and Embedded
Computers. All computer equipDment, programs, data,
documentation, personnel and supplies integral to a defense

system from the design, acquisition or operations and

support point of view [DODD 5000.29]. Excludes general
purpose, commercially available A.D.P. equipment used to
administer data processing [DODD 5100.40] (Grove, 1982, pg
9)

Embedded Computers - no universally accepted definition.
Often described as "incorporated as an integral part of,
dedicated to, or required for direct support of, or for the
upgrading or modification of major or less-than major
systems". Similar to mission-critical computer resources.
Becker (82), pg 38.

Environment - Source of influencing forces that are external
to the product being developed. (Thibodeau, pg 1-li)

Environmental Factors - experience, tools, facilities.
These may appear explicitly in cost estimating procedures
or, more often, they may influence the applicability of a
given model to a given development environment in some
unknown way. A major consideration in evaluating models for
AF use is measuring the ability of the model to define the
environmental parameters. This is because the AF must
always make its estimates at arms length. It must know how
the cost of software is influenced by how it is developed
and who develops it. (Thibodeau, pg 1-2) There is very
little objective basis for distinguishing among projects to
determine whether they (prior projects and data) are truly
applicable to the proposed environment. This capability is
essential if the AF is to properly evaluate software
development and maintenance proposals from different
organizations. (Thibodeau, pg 1-3)

FAST - Freiman Analysis of Systems Technique

Flow Charts - The detailed blow-by-blow flow chart, however,
is an obsolete nuisance, suitable only for initiating
beginners into algorithmic thinking. (Brooks, pg 168)

ISA - Instruction Set Architecture

Instruction Set Architecture - The rules and procedures by
which the hardware executes instructions or computer
programs. Or tne structure of a computer that the
programmer needs to know to write time-independent machine
language that will run correctly on the computer. (Becker,
1982, pg 39) The attributes of a computer as seen by a
machine language programmer. (Grove, 1982, pg 30)

Libraries - A set of programs. At least three levels of
control: working copies have no restrictions on their use
or modification, system integration sublibrary included
programs that were ready to integrate (changes only with
permission), while the current version library was touched
only to fix crippling bugs. (Brooks, pg 133)

Life Cycle Phases - Thibodeau compares hardware life cycle
phases with software life cycle phases on page 3-10.

Life Cycle Cost - Technological advances in the computer
field have ... shifted the systems life-cycle cost from
hardware to software. Hardware life-cycle cost now
represents only a small percentage of the total system cost.
(H. Mark Grove in the foreword to Concepts, Vol 5, #4, Au
82, pg 7)

Life Cycle Costing - an issue that has yet to be resolved.
The models currently used are poor, and there is very little
correlation from one model to another, indicating effort is
needed in the technology base. (Grove, Concepts, Au 82, pg
25)

Lines of Code - No common definition. May or may not
include comment lines. May or may not include specification
statements. May or may not include copied lines from prior
files. (Thibodeau, pg 4-4)

Man Month - COCOMO uses 152 hours of working tine per man
month, or nineteen man-days per man-month. (Boehm, pg 59)

Multiprocessing - The use of more than one CPU, attached to
a common memory or memories, with one operating system in
control. (Fox, pg 279)

Multiprogramming - A systems software technique that manages
the computer in a way to switch from one program to another
without loading or unloading either program. (Fox, pg 278)

Obsolete Equipment - Equipment that no longer meets the
requirements and equipment that can no longer be
logistically supported. (Becker, Concepts, Au 82, pg 39)

SLIM - Software Life-Cycle Management. A model marketed by
Quantitative Software Management, Inc. Estimates the
development cost (which is not defined the same way in all
models) for the entire system, then extends the scope to
include the requirements and specification phases. The
design and coding, integration and testing, and installation
phases are fixed portions of the developmen- phase. in one
operating mode, SLIM is a top level estimate constructed
from individual subsystem size estimates. (Thibodeau, pg 4-
12)

Software - The entire set of programs, procedures, and
related documentation associated with a system and
especially a computer system. (Boehn, pg 16) No longer
merely a part of a majo. system, but a system that performs
the integration functions for the systems, whether they are
avionics, or missiles, or command and control functions.
(Grove, Concepts, Au 82, pg 12)

Software Development - A project, not a job shop. (Metzger,
pg 91)

Software Efficiency - ex. A program spent over 10% of a $6
million computer's time for two years calculating A =
B*SQRT(2). Programmer foryot to change SQRT(2) to

1.4140678. (Boehm, pg 721)

Software Life Cycle Phases - Three phases: development, use,
continued development. (Fox, 1982, pg 7)

Software Maintenance - The process of modifying existing
operational software while leaving its primary functions
intact. Falls in the two classes of 1) Software Update
which results in a changed functional specification, and 2)

Software Repair which leaves functional specifications
intact. (Boehm, pg 54) Approximately 70% of the

(software?) life cycle cost for most weapon systems.
(Grove, 1982, pg 7) The modification of program code to

correct an existing error, adapt the program to accommodate
an environmental change, or perfect the program by improving
its capabilities. (Smith, class report, 1983, pg 4) Smith
cites Munson for: 70% adapt/perfect, only 30% due to errors.

Software Maintenance Cost - It is estimated that software
maintenance cost is approximately 70% of the life cycle cost
for most weapon systems. (Grove, Concepts, Au 82, pg 7)

Software Repair - does not change functional specifications.
Falls in three classes: 1) Corrective Maintenance of

processing, performance, or implementation failures. 2)
Adaptive Maintenance to changes in the processing or data

environment. 3) Perfective Maintenance for enhancing

performance or maintainability. (Boehm, pg 55)

Structured Programming - the design, writing, and testing of
a program in a prescribed pattern of organization; rigor
and s-ructure in programming; order, clarity, readability.

(Metzger, pg 87)

Structured Walk Through - An organized review of a project
member's work by other project members. Developer gives a
tutori-a±, then walks the reviewers through, step by step.
Four to six participants, one of them is always a moderator.

Up to two hours in a session. Purpose is to find any

errors. (Metzger, pg 95)

Success Schedules - Those that 3re based on everything
coming in on time. (Fox, pg 251)

Support Software - programs that help programmers and
management create software that runs at use time, ex.
compilers and assemblers. (Fox, pg 46)

System - a structured combination of interacting parts
satisfying an objective. (Metzger, pg 23)

System Software - manages the resources of the computer such
as the disks, main memory, CPU), ex. operating system. Fox
claims that systems programs are the most difficult to
develop and the toughest to visualize and understand. More
complex by far than applications programs, and more complex
than support programs. Fox claims systems software is nine
times more difficult to develop than applications software
due to logical intensity. Fox cites Brooks on this.

Throughput - a measure of the total system: the CPU, the
memory, the tape drives, the software, and the operators.
(Fox, pg 30)

Types of Software - Embedded, semi-detached, and organic.
(Boehm)

Users - The seasoned systems manager knows that to design a
system to fit the idiosyncrasies of one or a group of
powerful users is to doom the system to a short life.
Systems that are this personalized never survive the
departure of the user they were designed for. This problem
is encountered far more often in military systems than
anywhere else. (Fox, pg 107)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

I Form Approved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distri-
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE but ion unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AU-AFIT-LSQ-89-1

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Department of Quantitative (if applicable)

Management AFIT/LSQ

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Air Force Institute of Technology
School of Systems and Logistics
Wright-Patterson AFB OH 45433-6583

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK " WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

The Challenge of Software Maintenance Costing

12. PERSONAL AUTHOR(S)
Dr. Roland D. Kankey

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Technical FROM -TO 1989 March 27
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP12 05 Software Costing, Software Maintenance Costing

05 03
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Software is already a critical element of most DOD and Air Force weapon
systems and its role is increasing. From a resources point of view, its
acquisition cost is growing as a percentage of the system cost, while its

maintenance cost can be many times its acquisition cost. This project
addressed the critical area of software cost estimation and in particular,
software maintenance estimation. At this point in time software cost
estimation is not well understood. A number of approaches, techniques, and

models are available. This study attempted to evaluate techniques for soft-
ware, and software maintenance, costing.

The sponsor of the study, Lt Col John Long cf ASD/ALT, indicated that the
primary area of concern was software maintenance, so the strongest focus of
the literature review and the report is on software maintenance costing. A

20 DISTRIBUTION /AVAILABILITY OF ABSRACT 21. ABSTRACT SECURITY CLASSIFICATION

-UNCLASSIFIED/UNLIMITED 1- SAME AS RPT. [] DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DR. ROLAND D. KANKEY 513-255-8410 AFIT/LSQ

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED
rl!,

UNCLASSIFIED

19. Abstract (Cont'd)

number of textbooks, technical reports, and articles were included.
One of the initial problems with software maintenance is the dis-
agreement on the concept and definition. One author considers
the word "maintenance" to be inappropriate for this activity,
preferring instead the words "continuing development". The
rationale is that since software does not wear out, it does not
need to be maintained. For many people, maintenance implies
activity with lesser skill demands, yet in software "maintenance"
several claim the maintainers need to have essentially the same
skills as the original developers. Other phrases that are used
to express this activity are software support, and post-deploy-
ment software support. The actual types of work included in
each case differ slightly, as indicated in the report.

The various proposed techniques are reviewed, with prior
evaluations summarized. The report ends with a select biblio-
graphy of published work in the area and a selection of
definitions.

UNCLASSIFIED

