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Abstract

In this report the approach developed by the authors, for systematically studying the
acceleration capabilities and acceleration properties of the end-effector of 2 planar 2 degree-of-
freedom manipulator, is extended to the general spatial manipulator with three degrees-of-freedom.
A central feature of this report is the determination of the properties of the quadratic mapping
between the "joint-velocity” space and the acceleration space of P which then makes it possible to
obtain analytical solutions for most acceleration properties of interest. We show that a fundamental
way of studying these quadratic mappings is in terms of the mapping of (input) line congruences
into (output) line congruences.




1 Introduction

In this paper, we apply the approach developed in (Desa and Kim, 1989-1) to the problem of determining
the acceleration capability and acceleration properties of (a reference point on) the end-effector of a spatial
three degree-of-freedom manipulator.

An informal statement of the problem is as follows:

Consider the general three degree-of-freedom revolute-joint manipulator shown schematically in Figure
1. We are interested in studying the acceleration of a reference point P on link 3. (P is typically a point
on the joint axis of the end-effector; the acceleration of P is therefore often referred to as the end-
effector acceleration). The usefulness of studying the acceleration of the end-effector has been discussed
in (Yoshikawa, 1985; Khatib and Burdick, 1987; Graettinger and Krogh, 1988; Desa and Kim, 1989-2;
Kim, 1989).

As shown, for example, in (Desa and Kim, 1989-1),the acceleration capability of the point P under
various conditions is best described by certain acceleration sets. Two properties which are used, in general,
to characterize these sets are the maximum possible magnitude of the acceleration of P and the maximum
magnitude of the acceleration of P which is available in all directions. The former property is simply
called the maximum acceleration of P and the latter the isotropic acceleration of P (Khatib and Burdick,
1987).

Acceleration properties of the end-effector have also been studied by (Yoshikawa, 1985; Khatib and
Burdick, 1987; Graettinger and Krogh, 1988). The approach of each of these researchers has been
discussed and compared with our approach in the paper (Desa and Kim, 1989-1) and we will not repeat
that discussion here. We will however repeat the fundamental hypothesis underlying our approach which
is as follows. By decomposing the functional relationships between the inputs (actuator torques and
joint variable rates) and the output (acceleration of P) into two fundamémal mappings, a linear mapping
between actuator torque space and the acceleration space of point P and a quadratic (nonlinear) mapping
between the “joint velocity” space and the acceleration space of P, and by deriving the properties of these
two mappings, it is possible to determine the properties of all acceleration sets which are the images of

the appropriate input sets under the two fundamental mappings.

The contributions of this paper are as follows:




1. The central contribution of this paper is the determination of the properties of the quadratic mapping
betweea the joint velocity space and the acceleration space of P which then makes it possible to
obtain analytical solutions for the isotropic acceleration. We show that a fundamental way of
developing the properties of the quadratic mappings of interest is in terms of the mapping of (input)

line congruences into (output) line congruences.

2. Closed-form analytic expressions are obtained relating important acceleration properties of manip-
ulators to all the manipulator parameters and input variables (torques, joint variable rates or “joint
velocities™) of interest. (The only exception is the maximum local acceleration which is specified
in terms of tight lower and upper bounds in section 6.)

3. Necessary and sufficient conditions for the existence of isotropic acceleration have been determined.
(Earlier studies seem to implicitly assume that isotropic acceleration always exists.) These conditions

are stated explicitly in terms of manipulator parameters and input variables.

4. Analytical expressions are derived for determining the maximum and isotropic acceleration of the

end-effector at any (“local”) configuration of the manipulator.

We will demonstrate the application of the theory to a particular three degree-of-freedom spatial
manipulator. The application of acceleration theory to problems in manipulator design has been dealt
with in (Desa and Kim, 1989-2). The next section, which describes our approach, also provides the dual
function of being a “road-map” of the paper.




2 Description of the approach

The approach for studying the acceleration of (a reference point P on) the end-effector, given in (Desa
and Kim, 1989) is as follows:

10.

. Define the input variables and output variables of interest (subsection 3.1). The output of interest

is the acceleration of the reference point P.

. Define the input sets of interest (subsection 3.1).

. Define the input-output functional relations. These are obtained from the dynamical and kinematical

equations of the manipulator (subsection 3.2).

Define fundamental mappings from these functional relations (subsection 3.3). There are two

fundamental mappings, a linear mapping and a quadratic mapping.

Define the image sets of the input sets under the mappings obtained in step 4 (subsection 3.4).

These image sets are the acceleration sets of interest.

Define general properties which can be used to characterize (“measure™) acceleration sets (subsection

3.5).

. Determine the properties of the mappings defined in step 4 (section 4).

. Determine the acceleration sets defined in step 5 using the properties of the mappings obtained in

step 7 (section 4).

Determine the specific properties of the acceleration sets determined in step 8 using the “measures”

or general properties defined in step 6 (section 5).

Determine the local acceleration properties for any configuration q of the manipulator using the

properties of the acceleration sets obtained in step 9 (section 6).
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Figure 1: Schematic diagram of a general three degree-of-freedom manipulator
3 Definition of the acceleration sets

3.1 Manipulator input and output variables

Consider the general spatial three degree-of-freedom manipulator with three revolute joints shown schemat-
ically in Figure 1. In this subsection, we define the link parametcss, the input variables, the input sets,
the output variables and the output sets for this general spatial manipulator. The manipulator is assumed
to be rigid with negligible joint friction.

The manipulator will be described by a set of geometric and inertia parameters, which will depend
on the manipulator type. The geometric and inertia parameters for the spatial three degree-of-freedom
manipulator of Figure 1 are also shown in Figure 9 are enumerated in the Appendix.

Next, we define the input variables, the input constraints and the corresponding input sets of the
three degree-of-freedom spatial manipulator. Let gy, g2, and ¢3 denote the generalized coordinates of the



manipulator (see Figure 9), g1, g2 and ¢3 being the joint variables, respectively, at joints 1, 2, 3. Define

q2 (D

to be the vector of joint variables; the corresponding vector space of all q is called the joint space. If
qr 2 qi <qu, i=1,2,3 @3]
represents the constraint on joint variable i, the workspace W of a manipulator is defined as
W= {qlqz < ¢ < qu, i=1,2,3}. 3
Let 41, ¢2. and 43 denote the joint variable rates. Define

Q1
Q2 4)

7§

i

to be the vector of the joint variable rates. If

1 4i 1< Gioy i=1,2,3 (5
denotes the constraints on the joint vaniable rates, then we can define

F={d4l |4il< qo, i=1,2,3} (6)

to be the set of all the possible joint variable rate vectors, represented by regular parallelopiped J1 K LiMJ2K3L M,
in Figure 2. (We will refer to this parallelopiped as the parallelopiped F for short.)

Let r, m;, and 73 denote the actuator torques, respectively, at joints 1, 2, and 3, and

) )

denotes the vector of actuator torque vectors. Let

| 7€ Ty £=1,2,3 (8)
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Figure 2: Set of the joint variable rates of a three degree-of-freedom manipuia
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Figure 3: Set of the actuator torques of a three degree-of-freedom manipulator

denote the constraints on the actuator torques at joints 1, 2, and 3. Define
T={TI|T"I_<_ Tio, i=1$273} (9)

as the set of the allowable actuator torques, represented by regular parallelopiped ABCDEFGH in Figure
3. (We will refer to this parallelopiped as the parallelopiped T for short.)
The vectors q, q and 7 will be referred to as the input variables (more precisely the input variable
vectors) of the manipulator. We will also refer to the vector q as a configuration of the manipulator.
Let (x1, x2, x3) denote the coordinates, in a reference frame fixed to the base, of a reference point P
on link 3 (see Figure 1) and define

x)

xp é x2 (10)

X3

as the vector of task coordinates; the corresponding vector space of all X7 is called the task space.




The velocity X” and the acceleration %° of the point P of the manipulator are, respectively, given by
X

X = b 9] an
| %3 J
and

X
X3

Y -l

The acceleration of P, %7, is the output variable of interest in the present work. The corresponding vector

space A of all possible ¥° is called the acceleration space, expressed by

A={x|xeR%. (13)

3.2 Functional relations between the inputs 4, 7 and the acceleration %?

The next step is to obtain the functional relations between the acceleration ¥ and the inputs q and r
for a given configuration q. In this subsection, we show how the necessary functional relations can be
obtained from the manipulator dynamic equations and the (so-called) manipulator Jacobian relationship.

The dynamic behavior of the most general three degree-of-freedom rigid spatial manipulator (Figure
1) can be written in the following symbolic form (Craig, 1985):

Dg+V(q, @+p=r1, (14)

where D is the so-called mass matrix of the manipulator, V(q, ) is the vector consisting of all terms
which are non-linear in the products of the joint variable rates ¢;, (i = 1, 2, 3), and p is a vector of all
terms due to gravity.

We next express non-linear terms V(q, ¢) as products of - matrix and a vector. To understand how

this is done, we first write V(q, q) in its most general expanded form,
41§} + U12dh + unndd + 2wnqidz + 2wiadads + wiadads
V= uz;iﬁ + uzzi]% + uz_-;i)% + 2w qiqa + 2w dagn + waainn | - 15)

UNGE + U323 + unds + 2w a2 + 2wndady + wid@y




Defining the two matrix operators,
up W2 U3
U= | un up un (16)
Uil U3z U3l
and
wil w2 w3
W=1wn wn wp amn
w31 W32 W33
and two vector operators
&
@ = | &\ (18)
8
and
21
9P = | 2¢205 | - (19)
2qn

we can decompose the non-linear term V(q, q) as follows:

M2 W3 a Wil w12 w3 2h¢

Vi, @ = | un un un G+ wn wa wna 20203 (20)
U Uy Uumn a3 w3l Wi w3 230

= U< q>2+Wq? 1)

Substituting equation (21) into (14), we can express the dynamic equation of a general spatial manipulator

by
Di+U< q>2+W(gl+p=T. (22)

This is the most general expression of describing the dynamics of a three degree-of-freedom spatial
manipulator in the joint space. The matrix D is the mass matrix of the manipulator and the vector p

denotes the gravitational terms which influence the dynamic behavior.

9




The relationship between the velocity, X,, of point P, and the joint variable rate vector q is well known
(Desa and Roth, 1985):

¥ =Jq (23)

where J is a (3 x 3) matrix called the manipulator Jacobian. The detailed expression of Jacobian matrix
is given in the Appendix.

To obtain the expression for the acceleration X? of the point P, we differentiate equation (23),
% = J§+Jq. (24}
The second term in equation (24), Jq, can be written in the form (see the Appendix)
Jg=-F < q4>% -Glq*. (25)
Substituting equations (25) into (24), we obtain
% =J4-F<q>?-G[q% (26)

Defining the quantities,

A = JD°}, @27
= —AU-F, (28)
N = -AW-G, (29)
(30)

and
s = —Ap, (31

we can easily show that the acceleration X7 of point P, obtained by combining equation (22) with equations

(26) through (31), is given by
¥ =Ar+B < q>2+N[q]*+s (32)

where A, B,N, s are configuration dependent and have the components a;;, bj;, a;j, si, (i, j = 1, 2, 3).

10




Equation (32) expresses the required (Input-Output) functional relation between the input variables,
q and r, and the acceleration %P of the point P (the output variable) at a given configuration q. It is
important to note that the definition of the matrix “operators” U, W, F and G and the vectors < q >2 and

[4]? enables us to write the dynamic equations in the compact form (32) which is critical in the sequel.

3.3 Mappings

In this subsection, we define two fundamental mappings between the input variables and the acceleration
%P of the point P (the output variable).
It is convenient to regard the functional relation (32) as a mapping between the input variables q and

7 and the output variable %¥? for a given configuration q of the manipulator. Furthermore, defining

ayy
2| q, | =Ar (33)
a3zr

and

(1153

%5 | ay | =B < q>? +Nlgl +s, 34

equation (32) can be written as

¥ =%+ xf’l (35)

It is convenient to think of the vector %2 as the contribution of the torques to the acceleration of
the reference point P, and the vector xg as the contribution of the joint variable rates and gravity to
the acceleration of P. Equation (35) expresses the fact that the sum of these two vectors gives us the
acceleration of P for a three degree-of-freedom manipulator.

Equation (33) can be viewed as a linear, configuration-dependent, mapping between the torque vector
r and its contribution ¥? to the acceleration of P. Similarly, equation (34) can be viewed as a quadratic,
configuration-dependent, mapping between the joint velocity vector q and its contribution xfl to the

acceleration of P for a given configuration q. These are the two mappings of interest in this section.

11




3.4 Manipulator acceleration sets

Having defined two fundamental mappings of interest, we are interested in the image sets of the input sets
under the mappings (33) and (34) at a given configuration q of the manipulator. There are three image
sets of interest.

3.4.1 Image set S, of the actuator torque set T under the linear mapping

For a given set T of the actuator torques T described by equation (9) and represented graphically by a
regular parallelopiped in the 7 - space (see Figure 3), we define the image set S, of T under the linear
mapping (33) as

S, ={&|%% = Ar,T € T}. (36)

(Note that S, lies in the acceleration space A.)

3.4.2 Image set Sq of the joint variable rate set F under the quadratic mapping '

For a given set F of the joint variable rates q described by equation (6) and represented graphically by a
regular parallelopiped (see Figure 2), we define the image set Sq of F under the quadratic mapping as

Sq = (%1% =B <  >2 +N[q)* +5,4 € F}. 37

(Note that Sq lies in the acceleration space A.) From equation (34) and the above definition (37), we see
that the image set Sq represents the set of all possible accelerations (the acceleration capability of the

manipulator) when the actuators are tumed off (» = 0) in any configuration q.

3.4.3 State acceleration set

When a manipulator is in motion, the dynamic state of a manipulator can be specified by the joint variables,
(q1. q2), and joint variable rates (41, ¢2). The state vector u which characterizes the dynamic state of the

manipulator is defined as follows:

u=| 1. (38)

12




For a specified dynamic state of a three degree-of-freedom manipulator, The second term of the

acceleration ¥ in equation (32) is a constant vector, which we denote by k(u) and define as follows:

-

k

k2

|

[ b3 + b2l + biads + 2nudnqz + 20120293 + 2n133n + 1

b @t + buh + bl + 2m1q142 + 2n20243 + 2n33G1 + 52

| 534t + 3283 + b33 + 2m314142 + 21324243 + 2133431 + 53

B < q>% +N[g}* +s. (39)

k(u)

Equation (32) can then be written as follows:
X=Ar+k. (40)

For a given dynamic state u of the manipulator, we define the state acceleration set Sy-as the image set

of T under the lincar mapping (40):
Su={¥P|X’ = Ar +k,T € T}. @1

Su is therefore the set of all possible accelerations at any given dynamic state u of the manipulator. Since
the dynamic state u of the manipulator essentially specifies the velocity x? of the point P in (11) in any
configuration, we can also interpret the state acceleration set Sy (the set of available accelerations) as the
acceleration capability of the manipulator when the manipulator is moving with the velocity X7 in a given

configuration q.

3.5 Properties of the acceleration sets

The definitions of the acceleration sets in the previous subsection will be used in section 5 to determine
them. Once these sets have been determined, one would like to charactenize them.

Consider an acceleration set S in the acceleration space X, and two spheres C; and C3: C, is the
smallest sphere centered at the origin which completely encloses the acceleration set and C is the largest

sphere centered at the origin which lies inside the acceleration set. The radius r; of the sphere C, is the

13




maximum available acceleration in S. The radius r; of sphere 2 represents the largest (magnitude of)
acceleration available in all directions.

We therefore define the following two properties of S:
e the maximum acceleration of S: gmax(S) = 1y,

e the isotropic acceleration of S: gis0(S) = r2.

Comments:

The isotropic and maximum acceleration are particularly attractive for characterizing set S, in contrast
to the average acceleration, since they can be readily extracted from the dynamic equations in “closed-
form” (or by appmpﬁatc bounds). The average acceleration, if required, can be numerically determined

from the description of the acceleration sets given in the next section.

14




Figure 4: Image set S, of a three degree-of-freedom manipulator

4 Determination of the acceleration sets

Analytic expressions for the determination of the three sets S, Sq and Sy are presented, respectively, in
section 4.1, 4.2 and 4.3. The determination of S, and the state acceleration set Sy follows direct!v from
well-known properties of linear mappings while the determination of the set Sq requires the derivation of
the properties of quadratic mappings which are new The approach for determining the set Sq under the

quadratic mapping is more fundamental than that given in (Desa and Kim, 1989).

4.1 Determination of the image set S,

The set S, is the image set of the actuator torque set T under the linear mapping (33). We determine the
image set S, of the linear mapping of a three degree-of-freedom manipulator in the X - space. Additionally,

we identify the boundaries of set S, which are planes in the X - space.

15




Result 1: The image set S, of the actuator torque set T under the linear mapping (34) is (the interior and

boundary of) the parallelopiped A'B'C’'D'E'F'G'H’ in the %-space whose vertices A', B, ..., H are

as follows:
A (@11 Te + G12T20 + Q13Te, QUT +Cu T2 +ENTY, BN Tie + AR + ENTVH) (42)
B (311710 — G127 + Q13T GUTIe — AR T + ABTe, A3 Tl — AR T% + A1) (43)
c (—aumn, — AT, +d13TIe, —0UTIe — OB + AN, —AN T, ~ ARTL + 013 Th) (44)
D (—a117ie + 81272 + Q13The, —GNTIH, + OG0T +ABTI, ~An T, + 30 TW + A1) (45)
E (aun, + 31T — A1373, AUTNe + 00T — OB, @31M0e + GRTW — 1 TLH) (46)
F (311N ~ G127 —~ Q13TSe, MU TNa — ART ~ A3, BT — AR T — AVBTI) “n
G (=a11Me — Q12T2% ~ G13TRe, —QUTIs — ANTW — ABTY, —d31No ~ T — AP TI0) (48)
H (—auN, + 01272 — Q13TIe, ~CUTIa +ANTHL — BT, —@NTo +ANTHL — ABT) (49)

where g;j, (i,j = 1, 2, 3), arc the elements of the matrix A. The centroid of the parallelopiped
A'B'...H is the origin of the X-plane (sce Figure 4).

Result 2: The (planar) sides of the parallelopiped S, are given by the following equations:

Pt )

ABFE : (apawn —apnan)t ~ (apan — andi)ts + (@an — aizan)ts = n, det(A) (50
D'C'GH : (aman - apen)t) ~ (uaw — anan)t: + (auan — anan)¥s = —n, det(A) (51)
ADHE : —(euaws - ananit +(auan ~ anaplt ~ (anay — anax )t = m, det(A) 52)
BC'G'F : (auan~anan)t - (auan — anan)®: +(auan — anan )ty = m, det(A), (53)
ABCD : (anan - anan)t — (@uan — anan)ts + (auazm — auau)ts = . det(A), (54
EFGH : (anam- anan)t - (auaw — anan)t: + (@uaz — auan )ty = —n, det(A) (55)

where det(A) is the determinant of the matrix A.

The following are well-known properties of a linear mapping:

1. A plane in the r-space will map into a plane in the X-plane. In particular, planes py (11 =0), p2 (2
= 0) and p; (m3 = 0) map, respectively, into planes p'x. p'z and p; whose equations are as follows:

' a» .
Py (Anady — anan)i - (G12a33 ~ @32813)%2 + (332423 — a13822)3 =0, (56)
P2 (@143 — anayn )iy — (@nds — andia)ia + (@n1an — a13dz )i =0, N
Py ¢ (anasy — anan)i; — (8n1a32 ~ anankiy +(a11822 — aaay )iy = 0. (58)

16




All three planes py, p, and p; pass through the origin of the X-plane.
2. Any plane g parallel to p1 maps into a plane g'l parallel to p'l.
3. Any plane g parallel to p; maps into a plane g, parallel to p;.

4. Any plane g3 parallel to p3 maps into a plane gy parallel to p;.

Proof of result 1:
By regarding the rectangular parallelopiped AB...H (set T) as a set of planes parallel to py, p2 and p3
one can casily show the well-known fact that the image of AB...H is a parallelopiped A'B’...H . The

vertices A', B', ..., H are the images, respectively, of the vertices 4, B, ..., H which are as follows:

Tio Tle —Tlo -Tlo
A ™0 B -7 C -T2 D ™0
T30 T30 T30 T30
To Tio —Tlo —Tlo

E ™0 Fl =mp G| -m H ™ |- (59)
—T30 —T30 — T30 —T30

into equation (33), we obtain the coordinates of the vertices A.B,. . H as given in equation (49).

From (49), we see thr the vertices A’ and G are equidistant from the origin and so are the pairs (8, H),

(C',E')and (D', F'). Therefore, the origin of the %-space is the centroid of the parallelopiped A'B’ .. .H .

Proof of result 2:

We next need to determine the equation of the planes A'B'FE, D'CGH, AD'HE', BCGF,
A'B'C'D' and EF'G'H which form the boundary of the parallelopiped A'B’ ... H in the %-space. The
plane A'B'F'E in the “space is the image of the plane ABFE whose equation is 7y = 7y, in the -space;
to obtain the equation of A'B'F E’, substitute the equation of ABFE (1, = r,) into (33) to obtain the

following parametric equations in m and r3:

i = anmo+anm+ain (60)

17




b o) Q21710 + G22T2 + 42373 61)

X3 a31T1o + G327 + G33T3. (62)

Eliminating the parameter 72 and ™ between equations (60), (61) and (62), we obtain the equations of
the plane A'B'F'E’ as given by equation (50). In a similar fashion, we obtain the equations of planes
D'CGH ,ADHE ,BCGF,ABCD, and EFGH as in equations (51) through (55).

4.2 Determination of the image set Sg

The set Sq is the image set of the joint rate set F under mapping (34) for a three degree-of-freedom
manipulator. We decompose the set F (Figure 5 (a)) into 3 subsets Fy, F2 and F3 described as follows:

Definition 1: The set F) is the truncated line congruence (Semple and Kneebone, 1952) consisting of
the doubly infinite set of line segments passing through the origin with one endpoint on the plane
J1KiM2L; and the other endpoint on the plane M|LiJ2K2. A typical member of F; is the line
segment g1 shown in Figure 5 (b). '

Definition 2: The set F2 is the truncated line congruence consisting of the doubly infinite set of line
segments passing through the origin with one endpoint on the plane J1L;K2M; and the other
endpoint on the plane K1M2J;L;. A typical member of F3 is the line segment g; shown in Figure
5 (c).

Definition 3: The set F3 is the truncated line congruence consisting of the doubly infinite set of line
segments passing through the origin with one endpoint on the plane J1K;L1M, and the other
endpoint on the plane L,M3J2K5. A typical member of F3 is the line segment g3 shown in Figure
5@).

We can now state the useful results which analytically describe Sq. the image of F.

Result 1:

1.(a) Every line of the type g; belonging 10 set Fi maps into a line g, in the %-space (Figure 6 (a)), one
endpoint of which is the point § whose coordinates s;, i = 1, 2, 3 are given by (40) and the other
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Figure 5: Image set Sq of a three degree-of-freedom manipulator
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e 6: Quadratic mappings of a three degree-of-freedom manipulator
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endpoint of which lies on the quadratic surface patch (Figure 6 (b)) whose parametric equation (in

g2 and §3) is:
X bug, + b2 +b13f + 21 Q1o + 2120 + 211383810 + 51
% | = | budd, +bng +bnf +2nfedr + 2m0f @ + 213 PBq0 ¥ 52 | (63)
X3 b, + b + bud + 2m Q1@ + 2m2dnp + 213310 + 53

where

~q10 <2< 42

~420 <33 < Q3

1.(b) The set F; maps into a set (Sq) in the X-plane which is a doubly-infinite system of line segments,
one endpoint of which is the point S with coordinates s; (i =1, 2, 3), given by (31) and the other
endpoint of which lies on the quadratic surface described by (63).

Result 2:

2.(a) Every line of the type g2 belonging to the set F2 maps into a line g, in the %-space (see Figure 6
(c)), one endpoint of which is the point S and the other endpoint of which lies on the quadratic
surface patch (Figure 6 (d)) whose parametric equation (in ¢3 and §y) is:
% by + b1, + s + 201 Q1420 + 2M242003 + 2013930 + 01
%2 | = | budd +bud, + bnd + 204140 + 212i20p + Lan3pi +52 | - 64)
X bt + badl, + 0338 + 2m1d1G20 + 213282083 + 201331 + 53

where

lqll < {10

(@] < 20

2.(b) The set F2 maps into a set (Sq)z in the %-plane which is a doubly-infinite system of line segments,
one endpoint of which is the point S and the other endpoint of which lies on the quadratic surface
described by (64).
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Result 3:

3.(a) Every line of the type g3 belonging to the set F3 maps into a line g'3 in the ¥-space (se¢ Figure 6
(e)). one end of which is the point S and the other end of which lies on the quadratic surface patch
(Figure 6 (f)) whose parametric equation (in ¢; and &) is:

X bud + b1 + b1z, + 211 o + 2mathdro + 2mi3rods + St
B | = | budd +bnd +bnd, + 2 ii1ga + ndaire + 2andrein +52 | - (65)
b <} b1 + bn@ + bl + 2m 12 + 2m282030 + 2m33 30 n + 53

where

-q1o < @1 < §10

<0<

3.(b) The set F3 maps into a set (Sq)3 in the X-plane which is a doubly-infinite system of line segments,
one endpoint of which is the point S and the other endpoint of which lies on the quadratic surface
described by (65).

Result 4:

The image set of Sq of the joint variable rate set F is the union of the sets (Sq)1, (S¢)2, (Sq)3 described
above.

Proof of Results 1, 2, and 3:
We will first derive certain useful properties of the quadratic mapping defined by equation (34):

¥ =B < q>% +N[q)° +s.
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The above equation can be written in the expanded form

X bu@ + b2l + b1ad3 + 2n1q1 G2 + 2m2d233 + 2n3 @3y + 51
B2 | = | bud +bnud+ bnd + 2nud1qa + 2n02d243 + 2n3i3n + 52 | - (66)
X3 b + b3 + by + 2m1 0132 + 20320203 + 21334341 + 53

Consider the (input) §-space. It is convenient to think of this space as being generated by the
continuous doubly-infinite set of lines (also called a line congruence) passing through the origin with

parametric equations

Q1=t
p=mt ;s =00 <m <00, ~00< m<oo. (67
g3 =mat

Each value of m; and m; gives us a member of the line congruence, a typical member of which is
the line ! shown in Figure 7. The image /' in the %-space of the line  is obtained by substituting (67) into

(66) and is described by the following parametric equations,

) m2 + 5y
X | = m«}_t2 + 82 (68)
b} m;z'2 + 53

where

I
my = byy + biam? + bysm3 + 2nymy + 2n12mimg + 2ny3my
m’z =by + bnmf + b23m§ + 2n31my + 2naamymay + 2nysm

m; =b3 + b32m% + b33m% + 2n31my + 2n32myma + 2n33mz.
From equation (67) and (68), one can infer the following facts:
Fact 1. The image of /, viz. [, is a straight line,

Fact 2. The origin of the q-space maps into the point S of the X-space.
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Fact 3. Two points with coordinates (41, &2, ¢3) and (-41, —§2, —43) map into the same point of the

X-space.

These results are shown graphically in Figure 7.

Fact 1 follows from the fact that (68) is the equation of a straight line in the parameter 2. Fact 2
follows from the fact that the point (0, 0, 0) in the q-space, represented by the parameter ¢ = 0 in (67),
maps into the point (51, 52, s3) in the X-space. If ¢ is the parameter corresponding to the point (41, 42,
¢3) in the q-space, then, from (67), —t is the parameter of the point (~§1, —§2. —¢3). From (68), we see
that points with parameters ¢ and —¢ will map into the same point in the ¥-space. This proves Fact 3.

The following two important properties of the quadratic mapping (33) (or (66)) follow directly from
the above facts:

Property 1: The image of a line / passing through the origin of the §-space is the half-line [, one endpoint
of which is the point S(s1, 52, 53) of the ¥-space (see Figure 7 (a)).

Property 2: Consider a line segment g passing through the origin of the §¢-space and with endpoints
Pi(q1,42, 43) and P2(~q1, -, —§3) comresponding, respectively, to parameters ¢ and —#; g maps
into a line segment g in the x-plane, with one endpoint at S(s1, 53, 53) and the other endpoint at Q

whose coordinates are given by (68) (see Fig 6 (b)). Q is the image of both points Py and P,.

Property 1 is basically a statement of the fundamental “folding™ property of the quadratic mapping.
Property 2 is more useful for our purposes.

We now determine the image, under the mapping (34), of the set F) which consists of the doubly-
infinite system of line segment of the type g1, (see Figure 6 (a) ), which passes through the origin and
which has endpoints P, and P,, respectively, on planes J1K1M,L, and M,L,J2K; (Figure 6 (a) ).

The plane J1KiM3L; is described by

a1 =4 (69)
and the plane ML/;K> is described by

41 = =10 (70)
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Therefore, if P; lying on J1K1M2L; has coordinates (41,42, 43), then P, lying on ML1J2K; has
coordinates (—§10, ~§2, —&3). By property 2 of the quadratic mapping, the line segment g; with endpoints
P) and P; will map into a line segment with one endpoint at S(s1,52,53) and the other endpoint at Q
(Figure 7), which is the image of both P, and P, and which we need to determine next. For every
point Py(410, 42, 43) lying in the plane J1K 1 M,L,, there is a point P2(—§1,, —§2, —§3) lying in the plane
MLyJ2K; which, by Fact 3 established above, has the same image as P;. Therefore, planes J;K1M3L,
and M\L,1/2K> have the same image. It is sufficient therefore o determine the image of plane J1K1M:L;.
Since plane J1K1M,L; is the set of all possible Py, the image of J1K 1ML, is the set of images of all
possible P;. To obtain the image of J1K1M2L,, we substitute its equation (69 ) into (66) to obtain (63)
which, because it is quadratic in the parameters ¢, and §», represents a quadratic surface in the X-plane.

The quadratic surface (63) is the image of the plane ML1/2K; as well as the image of the plane
J1K1MaL,. Any point Py of M1L1J2K> with coordinates (¢10, 42, ¢3) and any point P2 of J1K1M2L, with
coordinates (—§10, —§2, —§3) will have the same image Q with coordinates (%, X;, X3) given by (68).

We have thus shown that the line segment with the endpoints P, and P, will map into a line segment
in the %-plane with one endpoint at S(s1, s2,53) and the other endpoint Q lying on the quadratic surface
(63). This completes Result 1(a).

It is now a simple matter to determine the image (Sg)1 of F1. By Result 1(a), the doubly-infinite set of
line segments F; of the type g1 with endpoints P1(§10, 42, ¢3) and P3(—@10, — @2, —@3) lying, respectively,
in the planes M L;J>K> and J,K)M>L; will map into the doubly-infinite set of line segments (Sq); with
one endpoint (always) at S and the other endpoint on the quadratic surface (63). This completes the proof
of Result 1(b).

In exactly similar fashion, we can show Results 2(a) and 2(b) and Results 3(a) and 3(b).

Proof of Result 4:

Since the images of F, F; and F3 are, respectively, (Sq)1. (S¢)2, and (Sq)3, the image of F = FyUF2UF3
is Sq = (Sg)1 U (Sq)2 U (Sq)3. (Sg),(Sq)2 and (Sq)3 have been defined, respectively, in Results 1(b), 2(b),
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Figure 8: State acceleration set of a three degree-of-freedom manipulator

and 3(b). This completes the proof of Result 2.

Comment:
The analytical description of (Sq) by means of (Sgh, (Sq)2 and (Sq)s is sufficient for the extraction

of the acceleration properties which we are interested in.

4.3 Determination of the state acceleration set S,

The state acceleration Sy comresponding to a state u = (q, ¢)7 of the spatial manipulator was defined by
equation (41) and is the image set of the actuator torque set T under the mapping (40). We obtain the

following results for the state acceleration set Sy.
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Result 1: For every element %(S,) of the image set S,, there is a corresponding element %(Sy) of the

state acceleration set Sy, given by

X(Su) = X(S,) + k(q, 9, 1)
where
- "
k(q' Q) = k2
k3

[ b + b1 + @ + 2 + 2madnn + 2miadp gy + 51
= | bud +budi +buf +2mu iy + 20 + 2 + 52
| b + b0 +bnd + i + s + 2By + 53
B < ¢ >2 +N[q]? +s. (72)

Result 2: The state acceleration set Sy, corresponding to a state u = (q, )7 of the spatial three degree-

V-

of-freedom manipulator is the parallelopiped A"8"C"D"E"F'G"H" shown in Figure 8 obtained by
translating the set S, by the vector k(q, q) in the ¥-space. The centroid of Su is (ki, &2, &3).

Proof of Result 1:
The results 1 and 2 are straightforward.
From (36), a member X%(S,) of S, is given by

%(S,) = Ar. 73)
From (41), a member %(Sy) of Sy is given by

X(Su) = AT +k (74)
where k is given by equation (72). Combining (73) and (74), we obtain

%(Su) = X(S;) + k (75)

which is equation (71).

Proof of Result 2:
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From equation (71), we see that if we take a vector ¥(S,) of S; and add the vector k to it we obtain
the corresponding member X(Sy) of Sy. Therefore, if we add the vector k to every vector in the set S, we
obtain the required set Sy. Therefore, Sy is the parallelopiped A“B"C"D"E"F'G"H" (Figure 8) obtained
by translating the set S, (the parallelopiped A'B'C'D’'E'F'G'H' in Figure 8) by the vector k. The centroid

of S, is X(S;) = (0, 0). From (75), we see that the corresponding centroid of Sy is
XSy =0+k =k, ‘ (76)

This completes the proof of Result 2.
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5 Properties of the acceleration sets

In this section, we explain how to characterize the image set, S», Sq. and the state acceleration set, Sy.
using the results in section ??.
5.1 Properties of the acceleration set S,

We characterize the image set S, of the linear mapping as follows.

Result 1: The maximum acceleration of the acceleration set S, is denoted by amax(S-) and is given by

Gmax(S-) = max[d(0A"), d(OB),d(OC’), d(OD")] a7
where

dOA') = /(@uT. +aum, +3um.) +(aun, +an T, + AuTLF + (@3N + due + dn ™ P

d0B) = /@nm. — aum, +aum? + (@, - aamn, +anm.P +(@nn, — ATy, + ante)

dOC') = f(=anun, - aum. +aumP + (—aun, ~ Gz + TP + (—a5 M, ~ GuTs + AnTW)

dOD') = +/(=aun, +0uTe +a13TP + (=an N + an T + anT)? + (~an N, +dnTe + AnT6Y

Result 2: The isotropic acceleration of the acceleration set S, is denoted by aiso(S+) and is given by

iso = [(A'BFE), ADHE), p(A'B'CD") (78)
where
p(A'BIFIEI) = ‘ del(A) l No
V/(azan — apnan) +(auaw — anan ) +(auas - apan?
p(AIDIH'EI) - | de(A) | me
V(auayn - anan P +(anan — apan P + (auan ~ apan P
p(AIB/CoDI) - | dgt(A) | ™o

V(enan — anan) +(anaen — anan ? + (auan — anan ¥

Proof of Result 1:

The maximum acceleration of S, is the distance from the origin to the furthest vertex of the par-
allelopiped A'B'C’'D'E'F G'H . Letting d (O'A’) through d (O'H') denote, respectively, the distances of
vertices A’ through H' from the origin in the X-space, @max(S-) is given by

Amax(S-) = max(d(O'A’), d(O'B), ...,d(O'H)]. (79)
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A’ and G are equidistant from the origin O'. Also, B' and ', C' and E', and D' and F are equidistant
from the origin. S0, @max(S+) is given by

Gmax(S+) = max[d(0'A"),d(0'B),d(0'C'),d(0'D)]. (80)

Using (33) and the well-known “distance” formula, the distance d(0A') from the origin O to the point A
is given by

d(0A') = V(@i +a1272% + 81376 P + (Gu M. + a0 T, +An TP + (331 N6 +AnTh, + A0 TR g1

In exactly analogous fashion, we obtain

d(OB) = V(G11Te — G12T% + @13 + (2G0T — AR T + 3BTH)P + (a3 Te — G Tw +dAnTL P (82)

dOC) = \/(maun. - aum. + M) +(—aun. — dure + A3ML)Y +(—anTe ~ AT + TP (83)
and

doD'y = V(=a11Te + 312720 + Q13T +(—GU N6 + a2 T + EB TP + (AT, + AT, +anTL P, (84)

Equations (80), (81), (82), (83) and (84) comprise Result 1.

Proof of Result 2:
The isotropic acceleration of S is the shortest distance from the origin to the sides of the parallelopiped

A'BCDEFGH. Letting p (ABFE ), p(DCGH ). p(ADHE ), p(BCGF ) p(A'BCD

)and p ( EFGH ) denote, respectively, the distances from 0’ 1o each plane, ajso(S-) is given by
GaalS+) = min[+(A'B'FE), pD'C'GH'), pA'D'HE), B CGF), oABCD), p(EFGH). (85)

Since the origin is the centroid of the parallelopiped S, parallel faces of the parallelopiped A'B'C’'D'E F G H

must be equidistant from the origin. Therefore, we can write the following relations:

p(ABFE) = p(D'CGH), : (86)
sADHE) = pBCGF), 87
pA'B'CDy = pEFGH). (88)

Using (86), (87) and (88), (85) can be written as

[ ]

8i50(S;) = min(p(A'B'F'E'), p(A'D'HE'), p(A'B' C' D). (89)
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The distance p from the origin to a plane ax + by + cz+ k = 0 in the xyz - space is given by the

well-known equation:

k
p=\/a7~lt-l7,+?' ¢
Using equation (90) and equations (50), (52) and (54), we obtain
I ) Idet(A)lrlo
PABFE) = A , on
V/(@22433 — 823320 + (@12033 — G13a32)? + (a12023 — @13a2)?
i [ f U l mt(A) I m
PADHE) =2 —m—m—————— e 92)
V/(a21a33 — anan ) + (611613 — a13a31)* + (an1an — apay)?

V/(an1832 — apan ) +(anay — 612a31)? + (a11022 — a12a21)?
Substituting (91), (92) and (93) into equation (89), we can obtain the required result (78) fot the isotropic

acceleration g, (S~ ).

5.2 Properties of the acceleration set Sq

Since each element of the set Sq represents the total non-linearity, we characterize the set Sq by the
maximum magnitude element which denote the maximum non-linearity. Also, we calculate the maximum
distances from direction planes in subsection 4.1 to measure the effects of the non-linearity on the state
acceleration set.

Similar to a two degree-of-freedom manipulator, we illustrate the steps to the analytical expression of
the furthest point of set Sq, and the steps to the analytical expression of the furthest point from direction

planes.

Definition 1: Let fi, i = 1, 2, 3 denote, respectively, the following cubic functions in the joint variable
rates ¢;,i= 1, 2, 3;
filqr, &, )= (Budl + budh + bisdh + 2main + 2nadnds + sy + 1 Xbud +Aude +Annds)
+Hbudt +bndh + bl + 20 + 2mindy + 2y + s2)budy + A + nnd)
+budl + bud + bndh + 2mqign + 2B + 2mfsdn +3Xbudi + A +And) =0, (94)
£, @, @)= Gudi +budl + budl + 2med + admd + 21439 + 9 Xbudi +aud + )
Houdl + bndh + budl + g + 2y + Ly + 52Xbudi + s + ny )
Hbudi + bngh + bnd} + 2mqids + 2 + 2mpsis + Xoug +and +Anp) = 0 (95)
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Equations Variables | Notation used to denote solutions
AlGior & @) =0and 3§10, &2, 33)=0| 2. & &)
541, 200 @) =0 and fi(qh, §200 §3)=0 @ P, @
G @ o) =0amd (01, 2. B)=0| G & &, &
fil@1, @20, 30) =0 Q gy
@1, —G20, @30) =0 @ i
f2(q1os @2, §30) =0 1y} i
£ Q10r @20 =330) = 0 @ &
F5(Qor G20, 43) =0 a a5
@10y =20 @3) =0 o %

Table 1: Solutions of cubic equations

H= (butﬁ + bu#% + bm?% +2nud1dn + 2ndeds + 2nidndn + siXbugq + nudn + nisds)
~budt + bndh + bk + 2minip + 2mainds + 2malagy + 2 Xbudy + mudn + nndy)
Hbn gt + b + bud + 2mqiin + i + L + 55X budy + nandn +angs) = 0. (96)

where fi(q1, @1, @1). (i =1, 2, 3) is cubic in 41, & and ¢.

Definition 2: It is useful in our derivaions to be able to refer to the solutions of certain equations which
play an important role in obtaining the maximum acceleration of Sg, @max(Sq). Each equation or
equation pair of interest is given in column 1 and the corresponding variables are indicated in
column 2. All equations in column 1 are cubics in the variables in column 2. The notation used to

denote the solution of each equation or equation pair is given in column 3.

Definition 3:

Q) 2 U, 4.4
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(O11G + 5128 + b13dd + 2n1G1p + 202 + 2n3p iy + 51)°

A

= +(6ndt +budh + buih + 2niq1p + 2nngalp + 2anipin + 2t | - ©n
+ (DG + 0@ +bnG + 2141 + 20 + 2nn gy + 53)°

Definition 4: Let h;, i = 1, 2, 3 denote, respectively, the following linear equations in the joint variable

rates, ¢, i=1, 2, 3;

[- (a2a33 — axan)(buq1 + nug2 + m3gs) ]
h(q, &, $3) = + (a13a32 — @12a33)(baiqn + n21G2 + M3q3) (98)

|+ (@12a23 — au3an)(bn1q1 + n3192 + n3333) |

[ (anaszs ~ a3@32Xb12gt + nugz + ma2qs)

h2(q1, &2, ) + (a13a32 — 312a33)(b22q1 + n2142 + M3 @) 9%

|+ (312023 — @13a22)(b32d1 + 13192 + n3293) |

.- -

(anasz — apas2)(br13gr + m2g2 + m3qs)

+ (a13a33 ~ @12a33)(b2ady + n22G2 + N3 s) (100)

h3(q1 s qZ’ q3)

|+ (@12023 — @13a22)(b33d1 + 13292 + 13393) |

where Ai(q1, ¢2, @3), (i = 1, 2, 3) is linear in &1, &2 and §3.

Definition 5: It is also useful in our derivaions to be able to refer to the solutions of certain equations
which play an important role in obtaining pmax(X(Sq),pi), i = 1, 2, 3, defined below. In table 2,
each equation or equation pair of interest is given in column 1 and the comresponding variables are
indicated in column 2. All equations in column 1 are linear in the variables in column 2. The

notation used to denote the solution of each equation or equation pair is given in column 3.

Definition 6:

oy, & p)
= ((enap - anan)’ + (auan ~ anan)’ + (auan — anan)’) ™
(anay — anen)2(bud} + budh + b + 21y + 2aatndy + Ly +51)
+(anay - aan)2(budl + bad + budi + i + Ly + 2mand + 0 ‘
+(@uan — auan)2(budt + bud +bndi + 2udign + iy + Ly + )
aiqr, . &)

(1o1)
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Equations

Variables

Notation used to denote solutions

h2(q10s G2, ) =0and ha(q1o, 2, $3) =0 G2, @3

qlzl]. -31]

h(q1y G20, @) =0and M1, ¢, B)=0| @3, & g2,

hi(q1, 42y §30) =0 and h2(q1, @2, B0)=0| @1, @ g, &
(g1, 20, §30)=0 q g
hi(q1, —q20, §30) =0 a1 &
h2(q10, 42, §30) =0 0 P
h2oq10, 2, —430) = 0 I &)
h3(Q1os 200 §3)=0 & 28
h3(q100 G20 432 =0 3 !

Table 2: Solutions of linear equations

2 -
[(anay — ruan) + (auan — anan)® +(@anan — anan)’] 4

(Guan — apnan)2(budf + bud + bl + 21,015 + 2maieds + 2038 + 51)
+(anay — anan)2budf +buds + budl + Luiin + 2nmdads + 2ndsdy + 52)
+(anas — aiyan)2(bugt + buds + bud + 2 q1dn + 2aninds + 2madsdy + 5)

o), @2, P)

(aman ~ anan)’ +(anan ~ anan) + (anan — apan )]~

(anan ~ anan)2(budt +buds + byl + 21 + 208243 + 2nadady + 51)
+(anay ~ anan)Abudl + bnd + bndh + 2nudidn + 2magidy + 2y + 02)
+(anap ~ anan)2Abndt + buds + bundh + 2muqidy + 2mmiidy + My + )

(102)

(103)

Definition 7: Let p(%(Sq), P1), p(%(S4), p2) and P(X(Sq), p3) denote, respectively, the distance of any point

X(Sq) of Sq from the planes py, p2 and ps.

Pmax(X(Sq), P1) £ max p(k(Sq), p1),

Pmax(X(Sq), P2) & max p(%(Sq), p2),

Pmax(X(Sq), p3) & max p(%(Sg), p3)-

(104)
(105)
(106)

Pmax(X(Sq), p1), for example, represents the distance of that point of Sq furthest from plane py;
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Pmax(%(Sq); P1): Pmax(¥(Sq), P2) and Pmax (¥(Sq), p3) are necessary for determining the local isotropic

acceleration in subsection 5.4.

Result 1: For a general three degree-of-freedom spatial manipulator, the maximum acceleration of the

acceleration set S¢ will be denoted by amax(Sq) and is given by

where

amax(Sq) = max(lyy, @), .

Iy
lay
l3)
Ly
lisy
L)
leny
ls
ko)
Loy
lay
laz)

las)

Kq10,
a2,
1z,
K4,
1,
Uq10,
U(q10,
Ko,
Kq10,
(g1,
U410,
K10,

l(qlo’

.(1 {1
&, &)

oy &)
&, o)
2+ 430)
~82, $30)
&\ 330)
flg’)a -330)
320, G3)
~G20, G5
3201 Po)
Q20 —430)
~32%, —q30)

~q20, ‘730)

o layl

(107)

Result 2: For a general three degree-of-freedom manipulator, the maximum distance from an element of

Sq to the reference planes p1, p2 and p3 are, respectively, given by

max[P(x(Sq),Pn)]y i= 1’ 2» 3

max((o:)a), (i),

NN CAREN

(108)
(109)
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wiere

(el = oilqo, '2", '3”)

ez = Ui(t'I[lzl, @20, d;z])
(o = ai@, &, @0

(G = Ui('{", @20, o)

@51 = Olds ~420s 430)
(o) = (@i "26], 10)
©@)m = 0ldior & ~0)
(0 = 910y G20s iz&“‘)
@) = OUGior ~T20r &5
(@dnoy = oil@ro, ¢20 §30)
(@dpy = oddlo, G20, —§30)
(eduz = 0d@oy —§200 —P0)
@z = oddlo, —Q200 $30)

where ¢i(q1, §2. ¢3) (i = 1, 2, 3) are defined by equations (101), (102) and (103).

Proof of Result 1:
The magnitude squared of the acceleration of a point ¥(Sq) of Sq denoted by az(Sq) is given by

=

B, &, 3 =8, 0.0)+ 5@, @ &) +B@, &, &)

= (O + 51283 + b1 + 20uqudn + 2m2ay + 2003y + 51)°

+ (O +bud +bnii + 20132 + 2mdin + 2 d) + 52)°

+ (bndf +bndk +bnd + 2m i + 2mads + 2n3ny + 1) (110)

& Sq)

The maximum magnitude squared of the acceleration for the set Sq, denoted by a,z,m(Sq). is given by

@x(Sq) = (rgea;]lz(m, &), ai1)
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where F is shown in Figure 2 and is §pcciﬁcd by the constraints

l ‘71 |S 4109
| @2 1< §20-
I (7} 'S @30-

(112)
(113)
(114)

The maximum of (110) will occur at ¢ € F which is ecither inside F or on the boundaries of F

where one, two or three constraints might be active. In section 5.1.2, we showed that “opposite™ pairs of

bounding planes have the same set; Using very similar arguments to those used to demonstrate the result,

we can show that

1. The following pairs of bounding edges of F,

(K2L2),
(J2M2),
(L2M2),
(1K),
(1L2),
(K1M2),

KiL)
(1My)
(LiMy)
(/2K2)
(J2L1)
(KaMy)

have the same image set

2. The following pairs of vertices of F

Ly,
Ji,
Ki,
M3,

L
J2
K
M

have the same image.

Thercfore, tc obtain the maximum of (110) under the constraints (112), (113) and (114), we should

consider the following possibilities:
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1. Neither of the constraints is active, i.c., the max[2(41, §2,43)) occurs at a point { inside F.

2. One of the constraints (112), (113) and (114) is active, i.c., max[2(g1, ¢, ¢3)] occurs at a point 4
lying on the plane J1K1MzL, or J1LK:M) or LyM2J,K; of F.

3. Two of the constraints (112), (113) and (114) are active, i.c., max[/*(q1, ¢2, ¢3)] occurs at a point
G lying on the edge K>L;, JaMa, LM, J1K, J1L; and K\M; of F.

4. All of the constraints are active, i.e., max{2(g;, §2)] occurs at vertex Ly, vertex Jy, vertex Kj, or

vertex Ms.

To obtain the conditions for each one of the above cases to yield a maximum, we first differentiate
(g1, 42, ¢3) with respect to §1, 42 and 43 to obtain

il

aq

o

B

ar

943

where fi(q1, 2, @3), ( = 1, 2, 3), were defined in (94), (95) and (96).

4G, @2, §3) (115)

af(q, ¢, @3) ' (116)

4f3(q, @2, §3) (117

Now, we consider each case.

Case 1
To obtain the maximum of / for the case where all of the constraints are inactive, we set the right-hand

side of (115), (116) and (117) to zero. This gives us the equations

fiqn, @, 3)=0,G = 1,2, 3) (118)
and the solution

N=@0=¢=0 (119
of which actually corresponds to the minimum value of (g1, ¢, @3). iz, zero. Therefore, max(/2) does

not occur at a point q inside F which is to be expected.

Case 2
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Consider the case in which one of the constraints (112), (113) and (114) is active. When constraint
(112) is active on the plane /1K1 M,L; of the F, we have

&1 = §1, (constant). (120)

To obtain the maximum of /2, we set both 82/3y; = 0 and 812/34; = 0. We therefore set the
right-hand sides of both (116) and (117) to zero to obtain the following cubic equations:

f2 ( 0107 027 ¢'I3)=0, (121)

£ ( 410y @2, $3)=0. (122)

1| € §2. |@3] < §3, whose real solution, if it exists, is denoted by qg" and qg').

Therefore, max I(§1, q2, ¢3) for this case is given
max(ig1, &2, &) =Ko, &5, &) (123)

Comment:

Using simple arguments from algebraic geometry (Semple and Roth, 1949), we can show that if the
cubics (121) and (122) with constraints |§q2]| < 42 and (43| < §3, have real points of imcrscction. then
they can at most one real point of intersection. If 2(q1, 42, ¢3) does have a maximum Iney, then the
conditions 8/2/3¢, = 0 and 8/2/343 = 0 for obtaining F™**, and therefore the pair of equations (121) and
(122) which follow from them, are essentially conditions for the quadratic surface which is the image, in
the %-space, of the plane J)KyM,L; to have a common tangent plane with a sphere of radius g1, &, ¢3).
A sphere and a quadratic can have at most two points of tangency. Therefore, the simultaneous solutions
of (121) and (122) can have at most two real roots. However, since (121) and (122) are equations of
cubic curves, they will have, in general, nine points of intersection. If equations (121) and (122) had only
two real roots in common, the remaining seven common roots would have to be imaginary, which is not
possible. Therefore, (121) and (122) will have exactly one root, if we do not impase any constraints on
g2 and &3. In the case where &; and §3 are constrained the real root might lie outside the region specified
by the constraints.

In an analogous fashion, we obtain the following maximum for ! when constraint (113) is on plane
J1La KoMy

max{iq1, ¢, &) =UdP, d2, &), (124)
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where q(lz)’ qu) is the real solution of the following two cubic equations,

fl ( 45 G20, ‘?3)=09 (125)
H (&4, §2 $)=0. : (126)

We also can obtain the following maximum for ! when constraint (114) is active on plane LyM,J2K>:
max{{q1, &2, @) =4, &, Bo). (127)

where q?). q?) is the real solution of the following two cubic equations,

h ( Q, ¢, 1130)=0’ (128)
2 (&, @ §30)=0. (129)
Case 3

Consider the case in which two of the constraints (112), (113) and (114) are active. When constraints

(113) and (114) are active on the edge K2L; of F, we have the followig conditions,

& ¢, (constant), (130)

a @30 (constant). (131)

To obtain the maximum, we set 32/8g; = 0. We therefore set the right-hand side of (115) to zero
and set ¢2 = §2, and ¢ = §3, to obtain the cubic:

H(@1, G20, @30)=0. || < q10 (132)

Using arguments similar to those used above, we can show that (132) can have at most one real solution

which we denote by qﬁ" The comresponding value of [ is as follows:

max[l(g1, &, P =LEY, B0y B0)- (133)

In an analogous fashion, we can obtain the following maximum for [ when constraints (113) and (114)

are active on edge JoMs:
max{i@1, &2, @)1= 1D, ~&20, @30). (134)
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where qgs) is the real solution of the following cubic equation,
fi O &1, =42, $)=0;

For the case when constraints (112) and (114) are active on edge LoM>, we obtain
max{l(1, g2, )] = Hdtos 455 P30)s

where q§°’ is the solution of the following cubic equation:
L quo &2, $30)=0.

For the case when constraints (112) and (114) are active on edge /1K1, we obtain
max{lq1, 42, @)= Ud1os &5 —d30),

where qg') is the real solution of the following cubic equation:
(4, &2 —33)=0.

For the case when constraints (112) and (113) are active on edge J1L;, we obtain
max(ig1, &2, @)= Kdos G200 455

where qg" is the real solution of the following cubic equation,
i C Qo 0, §3)=0.

For the case when constraints (112) and (113) on edge K1M;, we obtain
max{i(q1, &2, @)1 = ldio, ~G200 &5,

where qg” is the real solution of the following cubic equation:

A Qloy =920 9)=0.

Case 4

42

(135)

(136)

(137

(138)

(139)

(140)

(141)

(142)

(143)




constraints are active, and if max[(q1, 42, ¢3)] occurs at L3(q10, 420, §30), then
max[l(q1, ¢, §3)]= 1o, Q201 P30)-

If the maximum of 2 occurs at J/1(¢10s G2or -¢30), then
max{i(q1, ¢2, §3)] = 1oy G200 —§30)-

If the maximum of # occurs at K1(J10, -0 -G30), then
max(i(§1, §2, @)1= U0y ~G20y ~@30)-

If the maximum of 2 occurs at M2(q10, -¢20. J30), then

max[l(qlr &, fb)]=l(01m =420, 930)'

Thus we have demonstrated Result 1.

Proof of Result 2:
The distance of any point i(Sq) of Sq from the line p;, i=1, 2, 3, is given by

o1(q1, &, §3)

np

p(X(Sq),P1)
p(X(Sq),P2)
P(X(Sq),P3)

I

UZ(Qla 02’ q3)

(1]

03(511, o, q3)

Consider the case in which all of the constraints (115), (116) and (117) are active.

When all three

(144)

(145)

(146)

(147)

Therefore, amax(Sq) (= max{1(q1, ¢z, &3))) is obtained as the maximum of thirteen quamitics defined
by equations (123), (124) (127), (133), (134), (136), (138), (140), (142), (144), (145), (146) and (147).

(148)
(149)
(150)

We first wish to determine pmex(¥(Sq).p1) the distance of py from that point of Sq furthest away from it

1)

X(Sq), 1) = max o1(g;1, ¢, ¢
Pmax(X(S¢), P1) ey 4, &, §)
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where F is shown in Figure 2 and is specified by the constraints

| 1< @100 : (152)
[ &2 1< G20 (153)
| & 1< §30. (154)

The maximum of (101) which is required in (151) will occur at point q € F which is either inside F or
on the boundaries of F where one or two or three constraints might be active. Using the same arguments
as in Result 1 above, to obtain the maximum of (101) under the constraints (152), (153) and (154), we

should consider the following possibilities:
1. Neither of the constraints is active, i.e., the max[o1(41, §2,§3)] occurs at a point ¢ inside F.

2. One of the constraints (152), (153) and (154) is active, i.e., max[c1(q1, 42, @3)] occurs at a point
q lying on the plane J1K1M2L; or plane J1L2K2M) or plane L;M2J2K; of F.

3. Two of the constraints (152), (153) and (154) are active, i.e., max{o1(q1, §2, ¢3)}-Occurs at a point
q lying on the edges K2Lp, JaM3, LoM,, J1Ky, J1L; and KM, of F.

4. All of the constraints are active, i.e., max[o1(q;1, ¢, ¢3)] occurs at a point q lying on the vertex

Ly, vertex Jy, vertex K or vertex M.}

To obtain the conditions for each one of the above cases to yield a maximum, we first differentiate
o1(q1, ¢, ¢3) with respect to g1, & and & to obtain
8oy hy

—a-q—l- = 2 (155)
dor _ h
I (156)
99y . ks (157)
s z

where A4;, (i = 1, 2, 3), have been defined in (98), (99) and (100) and
2= \/(anay; - anaxp)? + (12033 - anan)? + (@narn — anan)? (158)

1Since, by vinue of Fact 3 of subsection 3.1.2, the vertices J, and J; have the same image, we only need to consider either
Jy ot J3: we will choose J1. So are the vertices K; and K3 and vertices M; and M.
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Now, we consider each case.

Case 1
To obtain the maximum of p; for the case where all of the constraints are inactive, we set the right-hand

side of (155), (156) and (157) to zero. This gives us the equations
hi(qr, @2, $)=0,G=1, 2, 3),
and the solution
f=@=q¢p=0 (159)

of which actually corresponds to the minimum value of p1(§1, 2, §3), viz, zero. Therefore, max(p;)

does not occur at a point q inside F.

Case 2
Consider the case in which one of the constraints (152), (153) and (154) is active. When constraint
(152) is active on the plane J1K1M>L; of F, we have

41 = {1, (constant). (160)

To obtain the maximum of p;, we set both 9p1/842 = 0 and 9p;/833 = 0. We therefore set the

right-hand side of both (156) and (157) to zero to obtain the following two linear equations,
hy ( &0, @2, $3)=0, (161)
by ( G0, @2, $)=0. (162)
42| € 420, 143l < §30.

Denoting the solution ¢2 and & of (161) and (162) by q“', qg”. the maximum of / for this case is given
by

max(p1(1, @2, 93] = (@0, &, & (163)
In an analogous fashion, we can obtain the following maximum for p; when constraint (153) is active on

plane J1L2K:M:

max(p(en, @2, @)l =, @D, q0, &), (164)
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where g, q?‘ is the solution of the following two linear equations,

h (4, 42, $3)=0, (165)
ks (41, 420, $3)=0. (166)

We also can obtain the following maximum for p; when constraint (154) is active on plane LoM3J2K;:

max(p1(q1, 42, 43)1= 1D, &) ds0). (167)
where q{". 27%3] is the solution of the following two linear equations,

h @, 42 $32=0, (168)

ha ( ¢, &2, §30)=0. (169)
Case 3

Consider the case in which two of the constraints (152), (153) and (154) are active. When constraints

(153) and (154) are active on the edge KL, of F, we have the following conditions,

]

(7)) & (constant), (170)

i

/¢ @30 (constant). 171)

To obtain the maximum, we set 32/34; = 0. We therefore set the right-hand side of (155) to zero

and set ¢2 = ¢, and ¢4 = §3, to obtain
h(q1, 4200 B2) =0, |q1] < quo- (172)

From equation (172), we obtain the solution which is denoted by q{" . The comresponding value of pp is

as follows:

maxip1(q1, 42, 33} = M@, dor G20)- (173)

In an analogous fashion, we can obtain the following maximum for p; when constraints (153) and

(154) are active on edge JoM>
max(pi(g1, §2, @)= (@, =200 P0). (174)
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where q’,” is the solution of the following linear equation,
h (@, =42, B,)=0;

For the case when constraints (152) and (154) are active on edge L,M3, we obtain
max{(p\(q1, 42, 491 = P1(@10s G55 B30,

where ('1[26] is the solution of the following linear equation,

k2 ( q100 &2y $30)=0.

For the case when constraints (15’2) and (154) are active on edge J1K, we obtain
max(py@1r @2 @91 = P@ior 45, o)

where qg,] is the solution of the following linear equation:
h2 ( G0y &2, —330)=0.

For the case when constraints (152) and (153) are active on edge J1L;, we obtain
max{o1(q1, 42, 431 = P1(@10s G200 &),

{8]
3

where g3 is the solution of the following linear equation,

hs ( qioy @20y §3)=0.
For the case when constraints (152) and (153) on edge K1 M2, we obtain
max(py(q1, @2, )} = MWios —d200 G5),

(9]

where 43" is the solution of the following linear equation:

ks ( Qio» ~q2, $3)=0.

Case 4
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(175)

(176)

a7

(178)

(179)

(180)

(181)

(182)

(183)




Consider the case in which all of the constraints (152), (153) and (154) are active

constraints are active, and if max[p1(41, §2, ¢3)] occurs at L2(G10, 254 ¢30), then
max[p1(q1, §2)1 = P1(q10, G20, o)

If the maximum of p; occurs at J1(d10, ¢20. -§30). then
max[p1(q1, §2, §3)] = (@10, G20, ~§30),

If the maximum of p; occurs at K1(q10, -G20, “@30), then
max(p1(q1, §2, §3)1 = M{@10s —G200 —30),

If the maximum of p; occurs at M2(¢10s -20, §30), then

max{p1(q1, ¢2, $3)1 = P1(Q100 — G20+ 30)-

. When all three

(184)

(185)

(186)

(187)

Therefore, pmax(¥(Sq),p1) is obtained as the maximum of thirteen quantities defined by equations

(163), (164) (167), (173), (174), (176), (178), (180), (182), (184), (185), (186) and (

187). In exactly,

analogous fashion, pmex(X(Sq), p2) and pmax(X(Sq), p3) are obtained as in (109). thus we have demonstrated

Result 2.

§.3 Properties of the state acceleration set

Definition:

K : centroid of the acceleration set in the X-space with coordinates k;, k2 and k3 given by (40).

p(K, p1) : distance from point X to the reference plane p;.
p(K, p2) : distance from point K to the reference plane p;.

(K, p3) : distance from point K to the reference plane pj.

" " "

" " It H

p(A'B'F'E'), p(A"B"F'E"), ... : distance from the origin to plane A'B'F'E',A"B"F'E", ...
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Result 1: The maximum acceleration corresponding to any dynamic state u of the manipulator is denoted
bY Gmax(Su) and is given by

mea(Su) = max{d(0A”), d(OB"), dOC"), dOD"),d(OE"), d(OF"), d(OG"), d(OH )] (188)
v;/hcrc
d0A") = \/(@une+anTe +ante + kP +(0un. + @aTe + AT + k) + (G171 + AT + anm, + kP
d©B") = V(@111 ~ 127 + Q137 + k1P +(au N0 — Gu T + An3Tie + k2P + (@31 710 — anToe + a3 T0 + ks )2
doc”y = (@170 + A13™ — @137 — k1P + (AU, +anT% — a1 — k1) + (a5 Ne + AR 7% ~ 5T — k3P
dOD") = \/(@uTie~ aume — 3T = 1P + (A Tie — AT ~ BT ~ kP + (@071 ~ an T2 — AT = k3P
dOE") = \/(@uTio+ 0T~ 83™0 + k1P + (@ Na +an T — An3Tio + kP + (anTi + GnuTe — anym, + k3P
dOF") = \/(anme = aurie — aume + 1P +(@nTie - Gt — @™ + k2l + (@3N — auT — anTse + ks P
d0G’) = \/(@nne+anme +anme ~ k)2 +(@un. +0nTe +an e — kP + (1N, + dnre + dnre — k7
dOH') = \/(@une - anme +aume — kP +(@une — Gumo +anme — k2l +(@nNe — @t + A ™o — kP

Result 2: The necessary and sufficient conditions for the existence of the isotropic acceleration are the

following:
{de(A)n, — [(azay ~ anan)k +(ai3ax — a1283)k; +(Ardn — anailks| > 0, (189)
|det(A)mn — {(anawn ~ anan i + (anay — auandk; +(@uan — anaudks| > 0, (190)
[det(A)me = [(auaxm — amandk + (auan — auandks +(anaxn — auandks| > 0. (191)

Result 3: The isotropic acceleration corresponding to any dynamic state u of the manipulator is denoted
by @iso(Su) and is given by
Jdet(A)in, — |(azzaz —anyay ki +(@13a% ~a12033 )k + (312023 ~a 2013 )"31,

/(@nay ~anan P +@13dn 120 P+ @an —azan
min det(A) mo —(a23a3) —az1a33)k; +(@13813 —a13an )kz*(dnﬂv-andu)hl (192)
; (@23031 ~az1 833 P +(@11033 - a130y P+@11az —an a1

det(A)| o — |(a21 a1z —a 22631 )y +(a12a3) —a11a32)ka +(a11 822 ~a12071 I3
; (a12an ~anas; P+(aza3 —a11an P +(@nax ~aizay P

Proof of result 1:
Let d(OA") through d(OH"') denote, respectively, the distances of vertices A” through A~ from the
origin O in the X-space. Then am.(Su) is the distances of the furthest vertex of the set Sy which is the

" " H I 1

parallelopiped A“"B"C"D"E"F"G"H". Therefore, amu:(Su) is given by

Gans(Su) = max(d(OA”), KOB"), &OC"), dOD"), d(OE"), dOF"), d(0G"), d(OH")). (193)
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Using (49), the coordinates #1(A”), 2(4") and i3(A”) of vertex A” in the %-space are given by

#214") = 2A)+k =ayTio + a2, + 1373, + ki, (1%4)
#2(A") = B(A)+ k= anTi, + anT, + anTi, + ke, (195)
#3(A") = %a(A')+ ks = @370 + G327 + 333730 + k3. (196)

The distance d(OA”) from the origin O to the point A" is given by

00 A" )= \aune +aume + @137 + K1 + (@710 + AR + Ar3Tso + ko) + (31710 + AuTa + An3The + k3 2. (197)

In exactly analogous fashion, we obtain

w1

o0 B) = \(@une—aume+aume+ky + (@, — anrme +anme + k)2 +(@uTie — anto + e + k3 2(198)

" "

o0 C) = \J(aune +aume —ainme — kP +(@un. + anme — anne — Y + (@nne + aune — agn, — kA99)

a0’ D") = V(@170 = 31272 = G137 ~ k1P + (321 N0 = G T2 ~ B3T3 — k2)? + (@31 T1e ~ AR T2 — an3Tie — K2B0)

" _ N

0O E) = /(aume+81ums — a137Te + ki + (quTie + AT — 3537 + k2)? + (a1 7e + An T — anTie + k3 2(201)

1”1

0O F) = \/(aune —8ume —aune +h P +(@une — anme ~ antie + 2P + (a1 1o — au e — anne + k3[202)

”n "

00 G) = flanne +aums +a1me — kP +(@une + anme + anme — k2 + (a1, + ant, + anme — k3)P(203)

" "

0O H) = /(@une—aure+ainme ~ kP +(@une. — anm + anme — k) + (@310 — an ™ +anre — k3204)

Equations (193) and (197) through (204) comprises Result 1.

Proof of resuit 2 and 3:
The state acceleration set S, is the parallelopiped centered at k(u) = (ky, k2, k3), shown in Figure 8.

The centroids of S, and Sy are, respectively, by O and X.
Using equations (90), (72) and (56) through (58), the distance from K to the planes py, p2 and p3 are
given by

| (ax2a33 — anasdky + (313832 — @12a33)k1 + (@12a23 ~ anaia)ks |

oK,;1) = (205)
V/(@22a3) — ana3)? + (@13a32 — a12a33 ) + (G121 — ana13)*

oK. p2) | (@a1a33 — apan)k + (811833 — 13631 )k + (311023 ~ and3)ks | (206)
V/(@1as; ~ anass)? + (@nays - a13an ? +(anan — anan)?

oK, p3) | (aq1832 — apas )k + (312031 — anas)k; +(@11322 — @12a31)k3 | 207)

V(12832 ~ 33283, ) + (@1203; — anan)? + (316 — 41262
The distance p(K, pi) from the centroid K of Sy to the plane p; is equal to the perpendicular distance
between plane A'B'F' E’ and plane A"B"F"E" and also between the plane D'C’'G'H’ and plane D"C'G"H'".
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The distance p(X, p2) is equal to the perpendicular distance between plane A'D'H'E’ and plane A"D"H'E"
and also between plane B'C’'G'F’ and plane B'C”G" F". The distance p(K, p3) is equal to the perpendicular
distance between plane E'F'G'H and planc E'F'G"H".

The state isotropic acceleration diso(Su) is the maximum acceleration which is available in all direc-
tions. It is therefore equal to the minimum of the distances from the origin O (of the acceleration plane)

LS R | R [ )

to the six planes of A"B"C"'D"E"F'"G"H" (the set Sy).
Now, we can write the following expression for giso(Su):

0o 8

q”(s“) = min[p(A”B” Fu Eu )‘ p(A E H Du )' p(E” Fu G”H“ )’ p(D” Cu Gn Hu )’ p(Bu Cu Gu Fu ), p(A“ Bu Cu D:l )] (208)

(I | )

where p(A"B"F’E") is the (perpendicular) distance from O to plane A"B"F'E" and similarly for
pA"E'H'D"), (E'F'G"H"Y, D"C'G"H"), p(B"C"G"F"), (A"B"C"D"), all assumed positive by
definition. From the geometry, we can write,

" _1mn 1 [

A“BF'E"),pD"C"G'H"y= p(A'B'F'E") £ p(k, p1). (209)

(Comment: For example, p(A“B"F'E") = p(A'B'F'E")y + p(K,p1) and p(D"C"G"H") = p(D'C'G"H") -
(K, p1); the correct choice of signs will depend on the direction of the translation but as will be shown

below we do not have to worry about the correct choice of signs.)

Similarly,
p(A”D”H”E”), p(B”C"G"F") = p(A,D,H,E’) j: p(K,pz)’ (210)
WE'F'G'H'),pA"B"C"'D"y = p(E'FGH)%p&,p3), (211)

(The above comment holds for (210) and (211), t00.)
Combining equations (208), (209), (210) and (211), we obtain

Gino(Su) = min(p(A B F E' )2 oK, p1), s A D' H'E )% oK, p1), nEF G H)£ (K, ps). (12)

Since all distances p() in the above equation are positive by definition, we can rewrite the above equation
as

Buo(Su) = min{p(A'B'F.E ) = p(K, p1), A D H'E )= p(K, p2), pEF G H ~ p(K, py). 213)
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Substituting equations (56) through (58) and (205) through (207) into (213), we obtain the required
result (192).

Equation (213) clearly demonstrates that the isotropic acceleration gs0(Sy) for any state u # 0 is less
than aiso(S,) = min[p(A'B'FE), (A'D'H'E'), (E'F'G'H)). In fact, if p(K, p1), p(K, p2) and p(K, p3)
are sufficiently large (equivalently, the “noanlinearities™ k1, k2 and ks are sufficiently “large™), we may not
have any isotropic acceleration. The necessary and sufficient conditions for the existence of the isotropic
acceleration can be obtained either from (213) or (192). From (192), we obtain the following three

necessary and sufficient conditions for the existence of the isotropic acceleration:

7ol det(A)] > [(aza33 — anaxdks + (a13a32 — G12033)k2 + (312023 — ana13)ks| (214)
72| GEA)] > (321033 — apan)k + (an1a33 — d13andkz + (@110 — andiz)ks| (215)
ol det(A)] > |(a21932 — anandk +(a12an — anandks +(@11an — auank| (216)

These are exactly the necessary and sufficient conditions expressed in (189), (190) and (191) of result 2,
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§.4 Local acceleration properties

At any given (local) configuration q in the workspace, the following questions are of theoretical and

practical importance.
e Magnitude of the maximum acceleration at any configuration q in the workspace

o Magnitude of the isotropic acceleration at any configuration q in the workspace

Result 1: The local maximum acceleration @max,local Of a spatial three degree-of-freedom manipulator at

a given configuration q is specified by
(@max Jocal)ib < Gmaxlocal < (Tmax,local Jub (217)

where (@max local)ib is given by (188) with k;(q,q), k2(q,q), and ki(q,q) evaluated at that joint

variable vector q which maximizes /(§y, g2, 3) in equation (107), and
(@max,local)ub = max(Sq) + Gmax(S5) . (218)
where amax(Sq) is given by (107) and amax(S~) is given by (77).

Result 2: The local isotropic acceleration a0 10ca at @ given configuration q is specified by

Biso,local(Su)
A B'FE) - pmax(%(Sg), p1)
= min| pAD'HE) - puax(®(Sq):P2) | (219)

PA'BCD') - pmaa(X(Sg), P3)
where p(A'B'F'E'), HA'D'HE') and p(A'B'C'D’) are given, respectively, by equations (56) through
(58), and where pmux(¥(Sq), P1), Pmax(X(Sq),p2), and pmax(X(S4), p3) are given by equation (109).

Proof of result 1:
The local maximum acceleration amayx is the maximum acceleration over all possible state acceleration

sets Sy at a given position q in the workspace. Therefore, an,x can be written as

Gmax Jocal = Max(UgerSu)- (220)
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It is not possible to find an exact analytical expression for Gmax locast- However, we can find an upper

bound and lower bound which are very good approximations 10 Gmasx,jocal-

Corresponding to every point P of the set 4, we have a state acceleration set Sy(P). Let P’ be the
furthest point (from the origin) of S4, and let Su(P’) be the corresponding state acceleration set. Let the
set Sy(P') obtained by rotating the set Sy(P’) about P’ till the longest diagonal of Sy is collinear with the
line OP' joining the origin to the furthest point P of Sq. A lower bound for dmasoca is given by the
distance of the furthest vertex of Sy from the origin, viz

(Genax oout Yo = max[d(OA”'), d(OB" ), d(OC”" ), d(OD"'), d(OE” ), d(OF "), d(0G"), d(OH "}, @21)
and an upper bound for @is local iS given by

(Bmaxocat)ub = d(OP') + d(A" P'), (222)

(Gmax.Jocallub = Gmax(Sq) + Amax(Sr). (223)

Combining (221) with equation (197) through (204), we obtain equation (188). The values of ki, k2 '
and k3 in (188) correspond to the furthest vertex P’ of Sq from the origin, i.e., to that joipt variable vector
q which maximizes (q;, 42,43) in equation (107). ms is simply a matter of computing {§,, &2, ¢3) at
the thinteen vectors defined in subsection 5.2 and determining which of these thirteen vectors maximizes
I(¢1, ¢2, &). This completes the determination of the lower bound (@max jocat)is-

Substituting for @max(Sq) and Gmex(S-) from equations (107) and (77), respectively, we obtain equation
(218) for the upper bound (@max locat)iv- Thus, Result 1 is proved.

Proof of result 2:

The local isotropic acceleration is obtained in the following steps.

1. The maximum possible isotropic acceleration is obtained when ¢ = 0 and is equal 1o a;0(S,) as

given by equation (78).

2. Every state acceleration set will have an isotropic acceleration which is less than that given by
(78) because the “nonlinearities” effectively reduce the isotropic acceleration. The resulting state

isotropic acceleration is ag;,0(Su) which is given by equation (213).
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3. The local isotropic acceleration @jso ocal is the magnitude of the smallest state isotropic acceleration

at a given local configuration q, i.c.
Giso local = 22? Giso(Su). (224)

4. Using equation (213) and (224), we can express the local isotropic acceleration @iy local S

Giso, oo mi min[o(A' B F E') = p(K,p1), pA'D'H E')— p(K,p2), p(E F'G'H') - p(K,p»))

min[min{p(A'B'F E') ~ p(K,p,)}, min{p(A' D'H'E ) — p(K,p2), min{p(E F G H') - p(K, p(339)
qerF qer qer

5. Since p(A'B'F'E), (A'D'HE') and p(E F'G'H') are constants for a given manipulator and given
actuator constraints, (225) can be written as

Gisotoos = min{p(A'B'F'E') - max o(K, p1), pA' D'H' E') — max (K, p2), H(E F G H')— max (K, py)). (226)

where max[p(K, py)] is the distance from the plane p; to the element of S4 furthest away from py
which we denoted in subsection 5.2 by pmex(¥(Sq), p2). max{p(X, p2)] is the distance from the plane

P2 to the element of Sy furthest away from p; which we denoted in subsection 5.2 by pmax(%(S¢), P2)
and max[p(K, p3)] is the distance from the plane p; to the element of Sq furthest away from p;

which we denoted in subsection 5.2 by pmax(X(Sq),P3), We can therefore write

max p(K,p1) = Pmax(X(Sq),P1) (227)
maxp(K,p2) = Pmax(X(S¢).P2) (228)
max p(K,p3) = Pmax(X(Sq),P3) (229)

Combining (226), (227), (228) and (228), we obtain the required result (219). (Note that all
quantities in (219) have been analytically determined earlier.)
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6 Exampie:

To demonstrate the ease of applicability of the general acceleration set theory for spatial
manipulators developed in the previous sections, we have written simple computer codes to generate the
acceleration properties of the various acceleration sets for a common type of 3 d.o.f. spatial manipulator
which is shown in Figure 9 and whose o kinematical and dynamical equations are given in the Appendix.
(The axis of joint 1 in Figure 9 is vertical). The actual geometric and inertia parameters used in the example
are given in Table 3. The dynamical equations have been derived using Kane's dynamical equations (Kane
and Levinson 1983; Kane and Levinson 1985; Desa and Roth 1985).

The configuration chosen was q) = 0, @2 = 45° and q3 = 45°
The joint variable rate ("joint velocity”) constraints are
G S Go =1 radfs; i=123,

The torque constraints are
' ST , i=123,

Tio may be thought of as the size (or maximum torque rating) of the actuators; the numerical values of 710,
(1 = 1,2,3), are given in Table 3.

The properties of the state acceleration set were computed at 4] =0, q2 = 45° and q3 = 45°;
Qi =1radfs,o=1rad/s q3=-1rad/s

In order to show how the theory might be used for design purposes we have determined the
acceleration properties for three cases (Table 4). Five acceleration properties have been detemmined in each
case: the maximum and isotropic acceleration of the set S¢, the maximum and isotropic accleration of the

state acceleration set and the (local) isotropic acceleration at the configuration (0, 457, 45° )T.

In all three cases the sizes of the first two actuators remain constant (ty0 = 35 N-m and T30 = 8.2
Nm) and the size of the third actuator (driving link 3) is varied. In Case 1 of Table 4 (135 = 0.17 N-m), the
end-effector does not have either a state or local isotropic acceleration). When the size of actuator 3 is
increased to 0.4 N-m (Case 2), we obtain a state isotropic acceleration of 0.93 m/s2 but the local isotropic
acceleration is very small 0.03 m/s2. Therefore for given Tygand Tyg , T3g must be greater than 0.4 N-m in
order that we may have a local isotropic acceleration at the specified configuration q. Case 3 shows that for
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Figure 9: Schematic diagram of a three degree-of-freedom manipulator
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actuator size T3g0f 0.6 N-m we have a local isotropic acceleration of 1.61 m/s2. The designer must then
decide (from past experience) whether this magnitude of isotropic acceleration is reasonable.

Comments:

1. These computations can be repeated for various configurations in the workspace after which
decisions can be made regarding actuator sizes.

2. Algorithms for the determination of minimum actuator sizes to achieve a desired isotropic
acceleration are given in (Desa and Kim 1989-2) for the planar case. The extension to the spatial

case is relatively straightforward.

21 =00 22 = 0.303 Q3 = 0.254 (m)

a; = 0.0 a2 = 0.196 a3 = 0.094 (m)

m] = 3.5 my = 2.259 m3 = 1.129 kg)

I =12 n=— Ki = - (kg-m2)
Ip = .129 J = .129 Ky=0 (kg-m2)
I3 = 003 J3 = 003 K3=0 (kg-m2)

Table 3: Parameters for the spatial manipulator (see Figure 9 and the Appendix).

Actuator Torques Acceleration Properties

Tio T20 T30 Amax(st) Aiso(st) Amax(Su) Ajso(su) Aiso, local
(N-m) (N-m) (N-m) (m/s?) (m/s?) (m/s?) (m/s?) (mys?)
35 8.2 0.17 20.3 1.35 23.7 0 0

35 8.2 04 25.06 3.16 29.1 0.93 0.03

35 8.2 0.6 30.3 4.75 339 2.51 1.61

Table 4: Acceleration Properties for the manipulator of Section 6.
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7 Summary and Conclusions:

In this paper, we extended the acceleration set theory for planar manipulators, developed in (Desa and Kim,
1989-1), to spatial manipulators. As in the planar case we have accomplished the following:

* Given the kinematical and dynamical equations of a manipulator, we have defined the image set Sy
corresponding to the set T of actuator torques, and the image set Sq corresponding to the set F of the
joint variable rates. We have also defined the state acceleration set Sy at a specified point u in the
state space.

¢ We have determined the image sets, St and Sq, and the state mcdemdm set Sy.

* We have characterized the image sets S¢ and the state acceleration set Sy by their maximum and
isotropic acceleration. The image set SG has been also characterized by its maximum acceleration.

* At a configuration or position, q, in the workspace, we have established two local acceleration
properties: the local maximum acceleration and the local isotropic acceleration. The local maximum
acceleration specifies the magnitude of the maximum acceleration of (a reference point on) the end-
effector. The local isotropic acceleration specifies the magnitude of the maximum available
acceleration of the end-effector in all directions.

We then demonstrated the application of the acceleration set theory for spatial manipulator to the 3
d.o.f. spatial manipulator shown in Figure 9.

We have, therefore, demonstrated the hypothesis which we stated in the introduction, i.c., that the
analytical properties of acceleration sets can be determined from the properties of the linear and quadratic
mappings which define them (the acceleration sets). Furthermore, the acceleration properties of interest -
especially the isotropic acceleration - have been determined in terms of the manipulator parameters, the
torque limits and joint variable rate ("joint velocity”) limits. These results can therefore be applied to
manipulator design problems as demonstrated in (Desa and Kim, 1989-2).
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Appendix: Functional relationships for the spatial 3 d.o.f. manipulator of Figure 9.
Notation: (See Figure 9)

8],82,83: dextral orthogonal set of unit vectors fixed in link 1 and parallel to
the central principal moments of inertia of link 1.
b}, b2, b3: dextral orthogonal set of unit vectors fixed in link 2 and parallel to
the central principal moments of inertia of link 2.
€1.€2.¢€3: dextral orthogonal set of unit vectors fixed in link 3 and parailel to
the central principal moments of inertia of link 3.
¢: length of link 2
Q3: length of link 3
92: distance from joint axis of link 2 to center of mass of link 2
a3: distance from joint axis of link 3 W center of mass of link 3
m]: mass of link 1
m): mass of link 2
m3: mass of link 3
11.J1. K1 : central principal moments of inertia of link 1 for axes parallel to
a1, 87 and a3 respectively.]
I2,.12,K2: central principal moments of inertia of link 2 for axes parallel to
b1,b2 and b3 respectively.
13,J3.K3: central principal moments of inertia of link 3 for axes parallel to

€1. €2 and ¢3 respectively.
(The input and output variables are as defined in section 3.1)

L Jacobian matrix

The joint velocity is related to the velocity % of the point P in Cartesian space by the relation
£=Jq

The Jacobian matrix J for a spatial three degree-of-freedom manipulator in Figure 9 is the following:

[Ju Jiz Jis
J=| 0 j hs
M 2 M

where
n = sinqi(lzcos @y + h cos(q2 + ¢3))

, iz = —cosqu(lasing: + I3 5in(q2 + 1)

Jis = <hcosq sin(g2 +¢q3)

Ja = heosq+hcos(q2+@s)
M = hoos(a+qa)

1 For link 1, since the first joint axis is parallel to ay, only the principal moment I is of importance in
the dynamic equations.
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s = —cosqi(lacosqr + lycos(qz +¢3))
J2 = —sing (f2sin gz + l3sin(q2 + ¢3)
i3 = -—singqil3sin(q: +q3)
When the above relation is differentiated with respect to the time, we obtain the following equation,
£=J4+Jq9=J4-F < 4> -G[g] (230)

where F, G are matrices with the followiag elements:

0 0 fis
F=] 0 2 0 R
M M fim
where
Nis = cosqilycos(qs +q3)

S = hLsingx+lsin(g2+q)
fi1 = —sinqi(acosqy + i3 cos(qz + q3))
fiz = sinqi(acosq2 + i3 cos(q2 + q3))
fH3 = sinqilzcos(q2+q3) ,

and
0 g2 O
G=|0 gn O ,
0 832 0
where

812 = cosqilicos(qz +q3)
g = Ahsin(ga+q3)
83 = singilzcos(qz + 1)
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2. Dynamic equation

The dynamic behavior of the manipulator is described by the following equation:
D+U< q>2+W[qP+p=r. (231)

The components of matrices D, U, and W are as follows:

di 0 O
D=| 0 dx dn
0 din dis

where
diu = It + (I + ma})cos? gy + 15 cos’(qy + ¢3) + m3(lz cos g2 + 83 cos(gz + @3))°
da = Lr+mdl+J3+m(d}+2ashcosgs+B)
d- = J3+myd+aslzcosqs)
dy = dn

dy = J3 +m3a§

0 0 0

U=|uy 0 uxn

u3y upz 0

where
uy = (I3 +myd3)cosqasings +13cos(qz + ¢3)sin(gz + @3) +
+ my(l2cos g2 + a3 cos(qz + ¢3)X(12 sin @2 + a3 sin(g2 + ¢3))

U3 = myhaysings
u31 = I3cos(q2 +q3)sin(q2 + ¢3) + my(J2 cos g2 + a3 cos(g2 + §3))a3 sin(gz + q3)
Uy = Uy

wip 0 wp
W=1! 0 wyp 0
0 0 0
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where

wn = —[(l3+ma})cosgasin gy + Iy cos(g2 + g3) sin(gz + ¢3) +

+ m3(l2cos g2 + a3 cos(qz + ¢3))(}2 sin g2 + a3 sin(g2 + 3)))

wi3 =13 cos(q2 + ¢3) sin(qz + @3) + m3(l2 cos @2 + @3 cOs(q2 + ¢3))a3 sin(qa + ¢3))

wn = mshassing;

The nonlinear vectors, < ¢ >2 and {¢]? are as follows:

@
<q>*=| g
&
25142
(@r = | 242
283
0
P=| p2
P3
where
P2 = [majcosqs +ms(l2cos g2 + a3 cos(q2 + ¢3)))g
Py = mi(lycosqa + a3 cos(q2 + q3))g

3. Acceleration equation

The expression for the acceleration of the end-effector is as follows:

x=Ar+B < q>+N[q?+s
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where

2 w >

m-—l

—AU+F
-AW+G
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