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In this report the approach developed by the authors, for systematically studying the

acceleration capabilities and acceleration properties of the end-effector of a planar 2 degree-of-

freedom manipulator, is extended to the general spatial manipulator with three degrees-of-freedom.

A central feature of this report is the determination of the properties of the quadratic mapping

between the "joint-velocity" space and the acceleration space of P which then makes it possible to

obtain analytical solutions for most acceleration properties of interest. We show that a fundamental

way of studying these quadratic mappings is in terms of the mapping of (input) line congruences

into (output) line congruences.



1 Introduction

In this paper, we apply the approach developed in (Desa and Kim, 1989-1) to the problem of determining

the acceleration capability and acceleration properties of (a reference point on) the end-effector of a spatial

three degree-of-freedom manipulator.

An informal statement of the problem is as follows:

Consider the general three degree-of-freedom revolute-joint manipulator shown schematically in Figure

1. We are interested in studying the acceleration of a reference point P on link 3. (P is typically a point

on the joint axis of the end-effector, the acceleration of P is therefore often referred to as the end-

effector acceleration). The usefulness of studying the acceleration of the end-effector has been discussed

in (Yoshikawa. 1985; Khatib and Burdick, 1987; Graettinger and Krogh, 1988; Desa and Kim, 1989-2;

Kim, 1989).

As shown, for example, in (Desa and Kim, 1989-1),the acceleration capability of the point P under

various conditions is best described by certain acceleration sets. Two properties which arm used, in general,

to characterize these sets are the maximum possible magnitude of the acceleration of P and the maximum

magnitude of the acceleration of P which is available in all directions. The former property is simply

called the maximum acceleration of P and the latter the isotropic acceleration of P (Khatib and Burdick.

1987).

Acceleration properties of the end-effector have also been studied by (Yoshikawa. 1985; Khatib and

Burdick, 1987; Graettinger and Krogh, 1988). The approach of each of these researchers has been

discussed and compared with our approach in the paper (Desa and Kim, 1989-1) and we will not repeat

that discussion here. We will however repeat the fundamental hypothesis underlying our approach which

is as follows. By decomposing the functional relationships between the inputs (actuator torques and

joint variable rates) and the output (acceleration of P) into two fundamental mappings, a linear mapping

between actuator torque space and the acceleration space of point P and a quadratic (nonlinear) mapping

between the "joint velocity" space and the acceleration space of P. and by deriving the properties of these

two mappings, it is possible to determine the properties of all acceleration sets which are the images of

the appropriate input sets under the two fundamental mappings.

The contributions of this paper are as follows:

I I II I I I I II



1. The central contribution of this paper is the determination of the properties of the quadratic mapping

between the joint velocity space and the acceleration space of P which then makes it possible to

obtain analytical solutions for the isotropic acceleration. We show that a fundamental way of

developing the properties of the quadratic mappings of interest is in terms of the mapping of (input)

line congruences into (output) line congruences.

2. Closed-form analytic expressions ate obtained relating important acceleration properties of manip-

ulators to all the manipulator parameters and input variables (torques, joint variable rates or "joint

velocities") of interest. (The only exception is the maximum local acceleration which is specified

in terms of tight lower and upper bounds in section 6.)

3. Necessary and sufficient conditions for the existence of isotropic acceleration have been determined.

(Earlier studies seem to implicitly assume that isotropic acceleration always exists.) These conditions

are stated explicitly in terms of manipulator parameters and input variables.

4. Analytical expressions are derived for determining the maximum and isotropic acceleration of the

end-effector at any ("local") configuration of the manipulator.

We will demonstrate the application of the theory to a particular three degree-of-freedom spatial

manipulator. The application of acceleration theory to problems in manipulator design has been dealt

with in (Desa and Kim, 1989-2). The next section, which describes our approach, also provides the dual

function of being a "road-map" of the paper.
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2 Description of the approach

The approach for studying the acceleration of (a reference point P on) the end-effector, given in (Desa

and Kim, 1989) is as follows:

1. Define the input variables and output variables of interest (subsection 3.1). The output of interest

is the acceleration of the reference point P.

2. Define the input sets of interest (subsection 3.1).

3. Define the input-output functional relations. These are obtained from the dynamical and kinematical

equations of the manipulator (subsection 3.2).

4. Define fundamental mappings from these functional relations (subsection 3.3). There are two

fundamental mappings, a linear mapping and a quadratic mapping.

5. Define the image sets of the input sets under the mappings obtained in step 4 (subsection 3.4).

These image sets are the acceleration sets of interest.

6. Define general properties which can be used to characterize ("measure") acceleration sets (subsection

3.5).

7. Determine the properties of the mappings defined in step 4 (section 4).

8. Determine the acceleration sets defined in step 5 using the properties of the mappings obtained in

step 7 (section 4).

9. Determine the specific properties of the acceleration sets determined in step 8 using the "measures"

or general properties defined in step 6 (section 5).

10. Determine the local acceleration properties for any configuration q of the manipulator using the

properties of the acceleration sets obtained in step 9 (section 6).

3
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Figure 1: Schematc diagram of a geeral thnte degree-of-feedom manipulat

3 Definition of the acceleration sets

3.1 Manipulator input and output variables

Consider the general spatial three degree-of-freedom manipulator with three revolute joints shown schemat-

ically in Figure 1. In this subsection, we define the link parametws, the input variables, the input sets,

the output variables and the output sets for this general spatial manipulator. The manipulator is assumed

to be rigid with negligible joint friction.

The manipulator will be described by a set of geometric and inertia parameters. which will depend

on the manipulator type. The geometric and inertia parameters for the spatial three degree-of-freedom

manipulator of Figure I am also shown in Figure 9 are enumerated in the Appendix.

Next, we define the input variables, the input constraints and the corresponding input sets of the

three degree-of-freedom spatial manipulator. Let qI, q2, and q3 denote the generalized coordinates of the
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manipulator (see Figure 9), q1, q2 and q3 being the joint variables, respectively, at joints 1, 2, 3. Define

[q1

q " q2 (1)

q3

to be the vector of joint variables- the corresponding vector space of all q is called the joint space. If

qL ' qi < q u, i = 1,2,3 (2)

represents the constraint on joint variable i, the workspace W of a manipulator is defined as

W= {q qir < qi :_ qiu, i= 1,2,3}. (3)

Let 41, qz, and 43 denote the joint variable rates. Define

q1

b q 4 [2 (4)

to be the vector of the joint variable rates. If

1ql 4i i,, i = 1, 2, 3 (5)

denotes the constraints on the joint variable rates, then we can define

F -= {q J 1 4ii J!<  4i, i --- 1, 2 , 31 (6)

to be the set of all the possible joint variable rate vectors, represented by regulay parallelopiped Ji KI L1 MIJ2 K2LM 1

in Figure 2. (We will refer to this parallelopiped as the parallelopiped F for short.)

Let r1 , r2, and r3 denote the actuator torques, respectively, at joints 1, 2. and 3, and

rl

,a (7 )

denotes the vector of actuator torque vectors. Let

, =1,2,3 (8)



L2

43

M2

Figure 2:. Set of the joint variable rates of a three degree-Of-frAOrn manipulator
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Figure 3: Set of the actuator torques of a three degree-of-freedom manipulator

denote the constraints on the actuator torques at joints 1, 2, and 3. Define

T= {JrI I r; 15 ri, i= 1,2,3} (9)

as the set of the allowable actuator torques, represented by regular parallelopiped ABCDEFGH in Figure

3. (We will refer to this parallelopiped as the parallelopiped T for short.)

The vectors q, q and r will be referred to as the input variables (more precisely the input variable

vectors) of the manipulator. We will also refer to the vector q as a configuration of the manipulator.

Let (xI, x2, X3) denote the coordinates, in a reference frame fixed to the base, of a reference point P

on link 3 (see Figure 1) and define

P X2 (10)

X3

as the vector of task coordinates; the corresponding vector space of all V is called the task space.
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The velocity V and the acceleration VP of the point P of the manipulator are, respectively, given by

ip td= ,2 0( 1 )

and

= 2 •(12)

13

The acceleration of P, %P, is the output variable of interest in the present work. The corresponding vector

space A of all possible V is called the acceleration space, expressed by

A = {k IE R3}. (13)

3.2 Functional relations between the inputs 4, r and the acceleration V'P

The next step is to obtain the functional relations between the acceleration P and the inputs q and r

for a given configuration q. In this subsection, we show how the necessary functional relations can be

obtained from the manipulator dynamic equations and the (so-called) manipulator Jacobian relationship.

The dynamic behavior of the most general three degree-of-freedom rigid spatial manipulator (Figure

1) can be written in the following symbolic form (Craig, 1985):

Dq + V(q, 4) + p = r, (14)

where D is the so-called mass matrix of the manipulator, V(q, 4) is the vector consisting of all terms

which are non-linear in the products of the joint variable rates 4i, (i = 1, 2, 3), and p is a vector of all

terms due to gravity.

We next express non-linear terms V(q, q) as products of " matrix and a vector. To understand how

this is done, we first write V(q, 4) in its most general expanded form,

U) 41 + U1242 + U1343 + 2wI q1q2 + 2W124243 + W13q3q1

V U21j + U2242 + u23 q3 + 2w21142 + 2W2 2 42q3 + W23q341 (15)

U31 1 + U3242 + U3343 + 2w314142 + 2w324243 + W334341
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Defining the two matrix operators,

[ U 12 U13

U-- U21 U22 U23 
(16)

u3! U32 U33

and

W11 W12 W13

W= W2 1 w 22 w23 
(17)

W31 W32 W33

and two vector operators

[421
(o = 2 

(18)

and

24,42

2423 i J(19)
2 41 J

we can decompose the non-linear term V(q, q) as follows:

U11 12j 13 1[ 1I W11 W12 W13 121
V(q, q) = u2 u2 u 22 + W21 w2.2 W23 2423 (20)

U31 U32 U33 J j W31 W32 W33 L24/3 J
= U < q > 2 +W[q] 2 . (21)

Substituting equation (21) into (14), we can express the dynamic equation of a general spatial manipulator

by

Dq + U < q >2 +W[q1 2 + p =,r. (22)

This is the most general expression of describing the dynamics of a three degree-of-freedom spatial

manipulator in the joint space. The matrix D is the mass matrix of the manipulator and the vector p

denotes the gravitational terms which influence the dynamic behavior.

9



The relationship between the velocity, i., of point P, and the joint variable rate vector q is well known

(Desa and Roth, 1985):

e= Jq (23)

where J is a (3 x 3) matrix called the manipulator Jacobian. The detailed expression of Jacobian matrix

is given in the Appendix.

To obtain the expression for the acceleration V of the point P, we differentiate equation (23),

v = J4 + Jq. (24)

The second term in equation (24), jq, can be written in the form (see the Appendix)

q = -F < q > 2 -G[4] 2 . (25)

Substituting equations (25) into (24), we obtain

iP = Jq - F < q >2 -G[4] 2 . (26)

Defining the quantities,

A = JD- 1, (27)

B = -AU- F, (28)

N = -AW-G, (29)

(30)

and

s = -Ap, (31)

we can easily show that the acceleration V of point P, obtained by combining equation (22) with equations

(26) through (31), is given by

= Ar + B < 4 >2 +N(4] 2 + s (32)

where A, B, N, s are configuration dependent and have the components ai, bij, nij, si, (i, j = 1, 2. 3).

10



Equation (32) expresses the required (Input-Output) functional relation between the input variables,

q and r, and the acceleration V of the point P (the output variable) at a given configuration q. It is

important to note that the definition of the matrix "operators" U, W, F and G and the vectors < 4 >2 and

[4]2 enables us to write the dynamic equations in the compact form (32) which is critical in the sequel.

3.3 Mappings

In this subsection, we define two fundamental mappings between the input variables and the acceleration

RP of the point P (the output variable).

It is convenient to regard the functional relation (32) as a mapping between the input variables q and

r and the output variable IP for a given configuration q of the manipulator. Furthermore, defining

I a27 Ar (33)

a3,-

and

a14

== B < q > 2 +N[q1 2 + s, (34)

a 34

equation (32) can be written as

9 = + (35)

It is convenient to think of the vector 4 as the contribution of the torques to the acceleration of

the reference point P, and the vector it as the contribution of the joint variable rates and gravity to

the acceleration of P. Equation (35) expresses the fact that the sum of these two vectors gives us the

acceleration of P for a three degree-of-freedom manipulator.

Equation (33) can be viewed as a linear, configuration-dependent, mapping between the torque vector

r and its contribution V, to the acceleration of P. Similarly, equation (34) can be viewed as a quadratic.

configuration-dependent, mapping between the joint velocity vector q and its contribution i! to the

acceleration of P for a given configuration q. These are the two mappings of interest in this section.
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3.4 Manipulator acceleration sets

Having defined two fundamental mappings of interest, we are interested in the image sets of the input sets

under the mappings (33) and (34) at a given configuration q of the manipulator. There are three image

sets of interest.

3.4.1 Image set S, of the actuator torque set T under the linear mapping

For a given set T of the actuator torques r described by equation (9) and represented graphically by a

regular parallelopiped in the r - space (see Figure 3), we define the image set S, of T under the linear

mapping (33) as

S, = { JV* = Ar, r E T}. (36)

(Note that S . lies in the acceleration space A.)

3.4.2 Image set Sq of the joint variable rate set F under the quadratic mapping

For a given set F of the joint variable rates q described by equation (6) and represented graphically by a

regular parallelopiped (see Figure 2), we define the image set Sq of F under the quadratic mapping as

S4= (Vl = B < q >2 +N[q]2 +s,q E F}. (37)

(Note that Sq lies in the acceleration space A.) From equation (34) and the above definition (37), we see

that the image set Sq represents the set of all possible accelerations (the acceleration capability of the

manipulator) when the actuators are turned off (" = 0) in any configuration q.

3.4.3 State acceleration set

When a manipulator is in motion, the dynamic state of a manipulator can be specified by the joint variables,

(ql, q2), and joint variable rates (q, /2). The state vector u which characterizes the dynamic state of the

manipulator is defined as follows:

u q (38)

12



For a specified dynamic state of a three degree-of-freedom manipulator, The second term of the

acceleration VP in equation (32) is a constant vector, which we denote by k(u) and define as follows:

ki

k(u) = k2

k3

b11i + b + bl3€3+ 2n14'2 + 2nl2q243 + 2n13q3q1 + SI

- b212 + b22#2+ b233 + 2n214142 + 2n22q 2q3 + 2n2343q1 + S2

bI3i42 + b32q2 + b33q3 + 2n314'42 + 2n324243 + 2n33434 + s3

SB< q >2 +N[q]2 + s. (39)

Equation (32) can then be written as follows:

k = Ar + k. (40)

For a given dynamic state u of the manipulator, we define the state acceleration set Su -as the image set

of T under the linear mapping (40):

Su = (xIx = Ar + k, r E T}. (41)

Su is therefore the set of all possible accelerations at any given dynamic state u of the manipulator. Since

the dynamic state u of the manipulator essentially specifies the velocity V of the point P in (11) in any

configuration, we can also interpret the state acceleration set Su (the set of available accelerations) as the

acceleration capability of the manipulator when the manipulator is moving with the velocity V in a given

configuration q.

3.5 Properties of the acceleration sets

The definitions of the acceleration sets in the previous subsection will be used in section 5 to determine

them. Once these sets have been determined, one would like to characterize them.

Consider an acceleration set S in the acceleration space k, and two spheres C, and C2: C1 is the

smallest sphere centered at the origin which completely encloses the acceleration set and C2 is the largest

sphere centered at the origin which lies inside the acceleration set. The radius r, of the sphere C1 is the

13



maximum available acceleration in S. The radius r2 of sphere 2 represents the largest (magnitude of)

acceleration available in all directions.

We therefore define the following two properties of S:

a the maximum acceleration of S: a,,,(S) = rl,

a the isotropic acceleration of S: aio(S) = r2.

Comments:

The isotropic and maximum acceleration are particularly attractive for characterizing set S. in contrast

to the average acceleration, since they can be readily extracted from the dynamic equations in "closed-

form" (or by appropriate bounds). The average acceleration, if required, can be numerically determined

from the description of the acceleration sets given in the next section.

14



5L2

H

Figure 4: Image set S, of a three degree-of-freedom manipulator

4 Determination of the acceleration sets

Analytic expressions for the determination of the three sets S,, S4 and Su are presented, respectively, in

section 4.1, 4.2 and 4.3. The determination of St and the state acceleration set Su follows directly from

well-known properties of linear mappings while the determination of the set S4 requires the derivation of

the properties of quadratic mappings which are new The approach for determining the set S4 under the

quadratic mapping is more fundamental than that given in (Desa and Kim, 1989).

4.1 Determination of the image set S,

The set S,. is the image set of the actuator torque set T under the linear mapping (33). We determine the

image set S, of the linear mapping of a three degree-of-freedom manipulator in the k - space. Additionally,

we identify the boundaries of set S,., which are planes in the x - space.

15



Result 1: The image set S, of the actuator torque set T under the linear mapping (34) is (the interior and
boundary of) the paralelopiped A'B'C'D'E'F'G'H' in the xi-space whose vertices A',, .H are
as follows:

A (aolTi*+au7ra+a31r, an.i+a~z.+a23,., a3lt1.+a0n1iv+0Df3) (42)

B (Jun. &-a27,+ a1 3 r3., an j- ar + 23j*, aurt. - aur~o+ann.) (43)

C (-ali1j. - 012n.+a13rje, -Gaion. 01'.+a2rio, -a3ifl. -aG,2u+aI 3 r3.) (44)

D (-aGun. +an. + 01s?, -O2,?l. +a22r+ a23ru, -aoln. + ann. +aor.) (45)

E (ann. +a12n. -aOIn.J, a2nn.P+a22ru- a23rn, a3l'n. +a32r. -a33ri.,) (46)

F (aln.o- auien. 03T3, ain. -aniu-fro a 311. - anr,.,,- an.) (47)

G (-a,,n. -a012,'u-a137A., -ari. -aGnla- a237, -a3Ir. -annr - ann.) (48)

H (-anr,. +a2T-a13ro, -ann.s+ a22IU- 023rn., -an a~an. J- anT3.) (49)

where aij, (i~j = 1, 2, 3), are the elements of the matrix A. The centroid of the parallelopiped

A'B' If. ' is the origin of the it-plane (see Figure 4).

Result 2: The (planar) sides of the parallelopiped S, are given by the following equations:

A' B' :'E (anam - anau)2l - (012an - a32al) )l + (ftft - aiialn)23 = nt. det(A) (50)

D' eG'H' (anan - anan)2 1 - (aizon - aua13)12 +1 (auzan - alla=)23 = -. de(A) (51)

A'D'H'E -(auian - 021031)1+ 4(anan - a3101)122 - (aiiat - alla,.)23 = ruz det(A) (52)

B C G F (anan - aa3)X - (allam - a310l3)22 + (an102 - al3a~j)23 = udet(A), (53)

AB'C'D (anau - anax1)2, - (ailan - aiiau)1 + (anian - a12a2l)23 = ri. det(A), (54)

E'FI'G'H' (an an - a22a31)XI - (au anz - au10an)12 + (a, lan - auazj)XI = - ri . det(A) (55)

where det(A) is the determinant of the matrix A.

The following are well-known properties of a linear mapping:

1. A plane in the r-space will map into a plane in the xR-plane. In particular, planes P1 (TI 0), p2 (r2

=0) and P3 (r3 = 0) map, respectively, into planes p1 , P2 and p; whose equations are as follows:

PI : (a22a)) - a23a32)11 - (al2a33 - a32aI3)x2 + (al2a23 - al3a22)xt3 -0, (56)

Pz : (a2Ial - a23a31 )X - (a11033 -a31a13)xa + (aia23-al3a2l)Xi30, (57)

PO3 : (a21a32 - 22a31)Xil- (aza32 - a3la12)Xi2+(alia22- 12a2l)X3-0. (58)

16



All three planes pl, p2 and P3 pass through the origin of the x-plane.

2. Any plane gi parallel to pt maps into a plane g' parallel to Pi*

3. Any plane g2 parallel to p2 maps into a plane g2 parallel to P2.

4. Any plane g3 parallel to p3 maps into a plane g3 parallel to P3.

Proof of result 1:

By regarding the rectangular parallelopiped AB... H (set 7) as a set of planes parallel to Pl, p2 and P3

one can easily show the well-known fact that the image of AB...H is a parallelopiped A'B'...H'. The

vertices A', B', ... , H' are the images, respectively, of the vertices A, B, .... H which are as follows:

3 oo -"3o -73o

( 1 io (-rio (-rio

E r F - r G -7"2. H ( "2o (59)

\ 3-o -o -3o -3o

into equation (33), we obtain the coordinates of the vertices A', B', .... ' as given in equation (49).

From (49), we see thr the vertices A' and G' are equidistant from the origin and so are the pairs (B',/-'),

(C', E') and (D', F'). Therefore, the origin of the X-space is the centroid of the parallelopiped A'B' ... H'.

Proof of result 2:

We next need to determine the equation of the planes A'B'F'E', D'C'G'I-, A'D'H'E', B'C'G'F',

A'B'C'D' and E'F'G'H' which form the boundary of the parallelopiped A'B' ... H' in the i-space. The

plane A'B'F'E' in the 'Lspace is the image of the plane ABFE whose equation is r, = rlo in the --space;

to obtain the equation of A'B'FE', substitute the equation of ABFE (r = ro) into (33) to obtain the

following parametric equations in T2 and 3:

= ait'o+ a12 + a3r3  (60)
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x2 = a21rI+a222 +a23r3 (61)

X3 - a3 Il 0o+a 32 72 +a 33r3. (62)

Eliminating the parameter r2 and r3 between equations (60), (61) and (62), we obtain the equations of

the plane A'B'F'E' as given by equation (50). In a similar fashion, we obtain the equations of planes

D' C'G'H', AV'D 'E', B'C' G'I, A'B'C'D', and E'F'G'Hf as in equations (51) through (55).

4.2 Determination of the image set Sq

The set Sq is the image set of the joint rate set F under mapping (34) for a three degree-of-freedom

manipulator. We decompose the set F (Figure 5 (a)) into 3 subsets FI, F2 and F3 described as follows:

Definition 1: The set F1 is the truncated line congruence (Semple and Kneebone, 1952) consisting of

the doubly infinite set of line segments passing through the origin with one endpoint on the plane

J1 K1 M2L2 and the other endpoint on the plane MIL 1J2K2. A typical member of F1 is the line

segment gi shown in Figure 5 (b).

Definition 2: The set F2 is the truncated line congruence consisting of the doubly infinite set of line

segments passing through the origin with one endpoint on the plane JIL2K2MI and the other

endpoint on the plane K1M2J2LI. A typical member of F2 is the line segment g2 shown in Figure

5 (c).

Definition 3: The set F3 is the truncated line congruence consisting of the doubly infinite set of line

segments passing through the origin with one endpoint on the plane JIKIL1 M and the other

endpoint on the plane L2M2J2K2. A typical member of F3 is the line segment g3 shown in Figure

5 (d).

We can now state the useful results which analytically describe Sq, the image of F.

Result 1:

L.(a) Every line of the type g, belonging to set F1 maps into a line gi in the i-space (Figure 6 (a)), one

endpoint of which is the point S whose coordinates s,, i = 1, 2, 3 are given by (40) and the other
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Figure 6: Quadratic mappings of a three degree-Of-freedom manipulator
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endpoint of which lies on the quadratic surface patch (Figure 6 (b)) whose parametric equation (in

42 and 43) is:I2 = [ 41o + n + L,2 + U2141.o2 + 2n2242q3 + 2n343o + S2 (63)

13 b3421o+ b32422 + b3 343 + 2nI3l14i.2 + 2rn32420 + 2 n330~41, + 3

where

-4io < 42 <42.o

-q2o < 43 < q3o

1.(b) The set F, maps into a set (S) 1 in the i-plane which is a doubly-infinite system of line segments,

one endpoint of which is the point S with coordinates si (i = 1, 2, 3), given by (31) and the other

endpoint of which lies on the quadratic surface described by (63).

Result 2:

2.(a) Every line of the type g2 belonging to the set F2 maps into a line g in the i-space (see Figure 6

(c)), one endpoint of which is the point S and the other endpoint of which lies on the quadratic

surface patch (Figure 6 (d)) whose parametric equation (in 43 and 41) is:

1 b 1 42 + bu212i + b2343 + 2n2142l1 + 2n 2 42.43 + 2n23 434 1 +S2 1
13 b3141 + b342 + 33+21i2 + 2 n42.3 + 2n34i + (64

where

1I1 < q1,

1q21 < 42o

2.(b) The set F2 maps into a set (Sq)2 in the k-plane which is a doubly-infinite system of line segments,

one endpoint of which is the point S and the other endpoint of which lies on the quadratic surface

described by (64).
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Result 3:

3.(a) Every line of the type g3 belonging to the set F3 maps into a line g3 in the k-space (see Figure 6

(e)), one end of which is the point S and the other end of which lies on the quadratic surface patch

(Figure 6 (f)) whose parametric equation (in 41 and 42) is:

X1 b11421+ b12422 + b13432. + 2nl112 + 2nI2q2q3. + 2n13q'3oq' + Si1

24 +b23432 +212 + 2n2 0 +2n23 3.4 +S2 (65)

23 b31 Iq + b32422 + b33 20 + 231qlq2 2+32q2q3 + 2nl3343.4 1 + S3

where

- 42o < 42 < 4Uo

3.(b) The set F3 maps into a set (S) 3 in the i-plane which is a doubly-infinite system of line segments,

one endpoint of which is the point S and the other endpoint of which lies on the quadratic surface

described by (65).

Result 4:

The image set of Sq of the joint variable rate set F is the union of the sets (Sq)), (Sq)2, (Sq)3 described

above.

Proof of Results 1, 2, and 3:

We will first derive certain useful properties of the quadratic mapping defined by equation (34):

V = B < q >2 +N[4] 2 + s.
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The above equation can be written in the expanded form

X1 b,1411 + b1242 + b133 + 2n1141412 + 2n1241243 + 2n13;1341 + S1

2 ] b21q2 + b22q + b23 q2 + 2n211;12 + 2n=q243 + 2n234341 + S2 (66)

3 b31I' + b322 + b334 + 2n311;2 + 2n32;2413 + 2n334341 + S3

Consider the (input) q-space. It is convenient to think of this space as being generated by the

continuous doubly-infinite set of lines (also called a line congruence) passing through the origin with
parametric equations

41 =t{ 2 mlt ; -00 < mI < oo, -oo < n2 < oo. (67)

43 m2t

Each value of ml and m2 gives us a member of the line congruence, a typical member of winich is

the line I shown in Figure 7. The image tin the x-space of the line I is obtained by substituting (67) into

(66) and is described by the following parametric equations,

X1 mI t2 + S,

= 2 + 2  (68)
-i3 M3 t+ S3

where

m = bil + b12m1 + b13M2 + 2ntImi + 2nj2mtm2 + 2n13m2

m2 = b2l + b22n~ + b23m2 + 2n2im1 + 2n22mjm2 + 2n23m2

M= b3l +bnm?+ b33m + 2n31ml + 2n32mlm2 + 2n33m2.

From equation (67) and (68), one can infer the following facts:

Fact 1. The image of 1, viz. t, is a straight line.

Fact 2. The origin of the q-space maps into the point S of the i-space.
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Fact 3. Two points with coordinates (41/, qz, 43) and (-q1, -q2, -q3) map into the same point of the

i-space.

These results are shown graphically in Figure 7.

Fact 1 follows from the fact that (68) is the equation of a straight line in the parameter 2. Fact 2

follows from the fact that the point (0, 0, 0) in the q-space, represented by the parameter t = 0 in (67),

maps into the point (Si, S2, S3) in the x-space. If t is the parameter corresponding to the point (q1, '12,

43) in the q-space, then, from (67), -t is the parameter of the point (-i1, -//2, -/3). From (68), we see

that points with parameters r and -t will map into the same point in the x-space. This proves Fact 3.

The following two important properties of the quadratic mapping (33) (or (66)) follow directly from

the above facts:

Property 1: The image of a line I passing through the origin of the q-space is the half-line ', one endpoint

of which is the point S(s , s2, s3) of the i-space (see Figure 7 (a)).

Property 2: Consider a line segment g passing through the origin of the q-space and with endpoints

PI(41,42,43) and P2(-4 1 , -#, -43) corresponding, respectively, to parameters t and -r g maps

into a line segment g' in the I-plane, with one endpoint at S(si, s2, s3) and the other endpoint at Q

whose coordinates are given by (68) (see Fig 6 (b)). Q is the image of both points P and P2 .

Property I is basically a statement of the fundamental "folding" property of the quadratic mapping.

Property 2 is more useful for our purposes.

We now determine the image, under the mapping (34), of the set F, which consists of the doubly-

infinite system of line segment of the type gi, (see Figure 6 (a) ), which passes through the origin and

which has endpoints P1 and P2, respectively, on planes J1KtM2L2 and M1 L1J2K2 (Figure 6 (a)).

The plane JIKtM2L2 is described by

q1 = 1o (69)

and the plane MILIJ 2K2 is described by

i1 = -41o. (70)
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Therefore, if P1 lying on J1 K1 M2L2 has coordinates (41,42,43), then P2 lying on M1LtJ2K2 has

coordinates (-410, -42, -43). By property 2 of the quadratic mapping, the line segment gi with endpoints

P, and P2 will map into a line segment with one endpoint at S(st, Sz, S3) and the other endpoint at Q

(Figure 7), which is the image of both PI and P2 and which we need to determine next. For every

point Pj(q1o,42,q3) lying in the plane J1KM 2L2, there is a point P2(-qj,,-4 2,-4 3) lying in the plane

M1L1J2K2 which, by Fact 3 established above, has the same image as P1. Therefore, planes JKM2L2

and M1LIJ2K2 have the same image. It is sufficient therefore to determine the image of plane J1KiM 2L2.

Since plane 11K1M2L2 is the set of all possible P1, the image of J1K 1M2L2 is the set of images of all

possible P1. To obtain the image of JK 1 M2L2, we substitute its equation (69 ) into (66) to obtain (63)

which, because it is quadratic in the parameters 41 and 42, represents a quadratic surface in the !-plane.

The quadratic surface (63) is the image of the plane MjLjJ 2K2 as well as the image of the plane

JIK1M2L 2. Any point P1 of MILIJ 2K2 with coordinates (41,, 41, q3) and any point P2 of JiKM2L2 with

coordinates (-41., -42, -43) will have the same image Q with coordinates (Xi, x2, X3) given by (68).

We have thus shown that the line segment with the endpoints Pi and P2 will map into a line segment

in the x-plane with one endpoint at S(sI, S2, S3) and the other endpoint Q lying on the quadratic surface

(63). This completes Result l(a).

It is now a simple matter to determine the image (Sq)1 of Fl. By Result l(a), the doubly-infinite set of

line segments F 1 of the type gi with endpoints P1 (410, 42, 43) and P2(-410 , -42, -43) lying, respectively,

in the planes MILIJ 2K2 and JKM2L2 will map into the doubly-infinite set of line segments (S4)t with

one endpoint (always) at S and the other endpoint on the quadratic surface (63). This completes the proof

of Result l(b).

In exactly similar fashion, we can show Results 2(a) and 2(b) and Results 3(a) and 3(b).

Proof of Result 4:

Since the images ofF1 , F2 and F3 are, respectively, (Sq)1, (Sq)2. and (S4)3, the image ofF = F1 UF2uF 3

is S4 = (Sq)1 U (S4)2 U (Sq)3. (S) 1, (S4)2 and (S4)3 have been defined, respectively, in Results l(b), 2(b),
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Figure 8: State acceleration set of a dree degree-of-ftreedom manipulator

and 3(b). This completes the proof of Result 2.

Comment:

The analytical description of (Sq) by means of (Sq)i, (Sq)2 and (Sq)3 is sufficient for the extraction

of the acceleration properties which we are interested in.

4.3 Determination of the state acceleration set Su

The state acceleration Su corresponding to a state u = (L)T of the spatial manipulator was defined by

equation (41) and is the image set of the actuator torque set T under the mapping (40). We obtain the

following results for the state acceleration set Su.
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Result 1: For every element :(S,.) of the image set S, there is a corresponding element I(Su) of the

state acceleration set Su, given by

x(Su)= x(S, .) + k(q, 4), (71)

where

k(q, ) 2= [
k3[b,142, + b1242 + b143 + 2nj142+U12443 + Un134341 + S1

-b 24,'?+ bzzii + b2343 + 2nzq4142 +2n22q243 + 2n23q341 + S2

b3i 41+ b32412+ b3343+ 231qM4+213223 +213331 + S3j

= B<i > 2 +N[4i2 +s. (72)

Result 2: The state acceleration set Su, corresponding to a state u = (q, 4 )T of the spatial three degree-

of-freedom manipulator is the parallelopiped A"B"C"D"E"F"G"H' shown in Figure 8 obtained by

translating the set S,. by the vector k(q, 4) in the i-space. The centruid of Su is (ki, k2, k3).

Proof of Result 1:

The results 1 and 2 are straightforward.

From (36), a member k(S,) of S,. is given by

i(S,) = At. (73)

From (41), a member x(Su) of Su is given by

i(Su) = Ar + k (74)

where k is given by equation (72). Combining (73) and (74), we obtain

k(Su) = k(S,) + k (75)

which is equation (71).

Proof of Result 2:
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From equation (71), we see that if we take a vector k(S,) of S, and add the vector k to it we obtain

the corresponding member ji(Su) of Su. Therefore, if we add the vector k to every vector in the set S, we

obtain the required set Su. Therefore, Su is the parallelopiped A"B"C"D"E"F"G"H" (Figure 8) obtained

by translating the set S, (the parallelopiped A'B'C'D'E'F'G'-' in Figure 8) by the vector k. The centroid

of S,. is i(S,.) = (0, 0). From (75), we see that the corresponding centroid of Su is

k(S) = 0 + k = k. (76)

This completes the proof of Result 2.
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5 Properties of the acceleration sets

In this section, we explain how to characterize the image set, S., Sq, and the state acceleration set, Su.

using the results in section ??.

5.1 Properties of the acceleration set S,

We characterize the image set S, of the linear mapping as follows.

Result 1: The maximum acceleration of the acceleration set S,. is denoted by ama.x(S-) and is given by

a..,(S,.) = max[d(OA'), d(OB'), d(OC'), d(OD')] (77)

where

d(OA') = /i(air, +auo +atsr) 2 +(ann. +atnm. + ai3 r) 2 + (a3irt. +au +a3j.,)4

d(OB') = (arj. - a1ur +a,3r ,)2 +(anri. - an.m +aznru) 2 +(a3ur1. - anr, +a 3 3
. )2

d(OC') - V/(-aun. - auru +aln.)2 + (-avr. - a= n. +a2r.) 2 + (-a31r. - an . +a3r.)2

d(OD') = ./(-ajjr, + an + a 43r,)2 + (-a'xri. + a,.,. + aor3.)2 4 (-a3 r°. a'nrU . +a )

Result 2: The isotropic acceleration of the acceleration set S, is denoted by ais(S,) and is given by

ais = [p(A' B'F'E'), p(A'D'H'E'), p(A'B'C'D')] (78)

where

p(ABFE) = I det(A) I n.
( F) an - aia32a. + (aama - a,3aa)2 + (auaf - al3a=Y)

p(A.DH) = Idet(A)I r ,
V'(a21a3 - a23a3l) 2 + 4an - ajuax)

2 + (aulan - nn2

.. ..B'C ' = ,I det(A) I
v(anan- a2ax)2 + (aian - alzaml) + (auan - alau 2

Proof of Result 1:

The maximum acceleration of S. is the distance from the origin to the furthest vertex of the par-

allelopiped A'B'C''EF'G'H'. Letting d (O'A') through d (O'H ) denote, respectively, the distances of

vertices A' through H' from the origin in the x-space, am.(S,.) is given by

am.,(S,) = max[d(O'A'), d(O'B'), ... ,d(O'H')]. (79)
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A' and G' are equidistant from the origin 0'. Also, B' and H', C' and E', and D' and F' ae equidistant

from the origin. So, a..(S .) is given by

a,.(S . ) = max[d(O' A'), d(O'B'), d(O'C'), d(O'D')]. (80)

Using (33) and the well-known "distance" formula, the distance d(OA') from the origin 0 to the point A'
is given by

d(OA') =-( + a 2 + + a 3nr.) 2 + (an. + an. + ar) + (a3m. + a3r,. + a3n.) 2 . (81)

In exactly analogous fashion, we obtain

d(OB') = .f(aur. -a. + ai3r.) 2 + (ai. - a2. + a-n.) 2 + (a31n - a, 2,, +ano) (82)

d(OC') = V/(-azri. - a,7. + aOr.,)2 + (-a= n. - a-,. + anrj.)2 + (-a3ln. - a,,,l. + az.)2 (83)

and

d(OD') = ,/(-aiin. +ati. +a3rU,)2 +(-azn.+a22,.+anrn.) +(-a31 . +a3r. +a33r.)2. (84)

Equations (80), (81), (82), (83) and (84) comprise Result 1.

Proof of Result 2:
The isotropic acceleration of S,. is the shortest distance from the origin to the sides of the parallelopiped

A'B'C'D'E'F'G'-'. Letting p ( A'B'F'E' ), p ( D'C'G'J-t ), p ( A'D' 'E' ), p ( B' C' G'F' ), p ( A'B'C'D'

) and p ( E'F'G'H' ) denote, respectively, the distances from 0' to each plane, ai.,(S,-) is given by

&,(S,) = min,(A'B F'E'), p(D'C'G' H'), p(A' D'l'E'), p(B'C'GF), p(A'B'C'D'), p(E F1GH')]. (85)

Since the origin is the centroid of the parallelopiped S., parallel faces of the parallelopiped A'B'C'D'E'F'G'H'

must be equidistant from the origin. Therefore, we can write the following relations:

p(A'B'F'E') = p(D'C G'I-H'), (86)

p(A'D'H'E') = p(B'C'G'F'), (87)

p(A'B'C'D') = p(E'F'G'H'). (88)

Using (86), (87) and (88), (85) can be written as

aiso(S,) = min(p(A'B'F'E'), p(A'D'H-E'), p(A'B' C'D')]. (89)
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The distance p from the origin to a plane ax + by + cz + k = 0 in the xyz - space is given by the

well-known equation:

P = J I k (90)

Using equation (90) and equations (50), (52) and (54), we obtain

p(A'B'F'E') = 'det(A) I rio (91)
7(2 3- a23a32)9 + (a12a33 - a13a32)2 + (ai2a23 - a13a, 2

2

p(A'D'H'E') = I det(A) I r (92)
N/(a2xa33 - a23 a3l)3 + (aila33 - a13a31) 2 + (a, la23 - al 3a 2l)

2 '

p(A'B'C'D') = I det(A) Io (93)
V(azxa32 - aua3l)2 + (a11a32 - a12a31 )

2 + (aiia22 - al2 a 2 l )2  (3

Substituting (91), (92) and (93) into equation (89), we can obtain the required result (78) fot the isotropic

acceleration Am(S,).

5.2 Properties of the acceleration set Sq

Since each element of the set Sq represents the total non-linearity, we characterize the set S4 by the

maximum magnitude element which denote the maximum non-linearity. Also, we calculate the maximum

distances from direction planes in subsection 4.1 to measure the effects of the non-linearity on the state

acceleration set.

Similar to a two degree-of-freedom manipulator, we illustrate the steps to the analytical expression of

the furthest point of set Sq, and the steps to the analytical expression of the furthest point from direction

planes.

Definition 1: LetfA, i = 1, 2. 3 denote, respectively, the following cubic functions in the joint variable

rates ii, i = 1, 2, 3;

+(4i, 42, 43) =bu4 O + b 2e2 + 2l12423 + 24 + , + ni42 + n343)

2+ bn432 + 2nt4t4 + 24243 + 2AM4341 +iS)(b2i 4+210l +nM4)

034,+ n42+ b42+ 2M + 2n43+ 2n33434 + 3Xb3I4I + "31111 + nl33401 = 0, (94)

fi(4i, '42, 43) = (u + bd+ b3+ 2nuMii + 2nu2443 + 2fll3341 + slXbU4i + nzi~z + n33

+(n?+b22 z42+ fM nO4 f44 + S2Xb211 + n142 + -4)

+(bni4l + bnd~ + b-42 + 2iii42a + 2t23+ 2ml334, + s3Xb3t41 + i 42 + niu4) = 0 (95)
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Equations Variables Notation used to denote solutions

f2(41o, 42, 43) = 0 and f3(41o, 42, 43) = 0 q2, 43 421) 431)

f3 (1, 420, #) = 0 andf,(41, 2o, 43) = 0 43,q41 Q(), -()

f(1, 42, 43.) = 0 and f2(1, 42, 3o) = 0 41,42 ()

fl(410,4. 43o) = 0 41 41

A( 1, -42o, 43o) 0 4 _ _ _ _ _

f3(41o, -42, 43) = 0 3 429)

Table 1: Solutions of cubic equations

,= (bni + + bi eb+ 2nijiM + 2n-2z4 + 2A34 + siX + ,n42 + n)

-,b 41 4ni+b 0+2t411+2=23+2 i+S2Xb11 +f42 + n234)

+(b4 +b34'/ + 42 n14ii + 2nf44 + 2n334 41 + s3Xbn1i + nx + nm4) = 0. (96)

where f( 1 , 41, 41), (i = 1, 2, 3) is cubic in 41, #2 and 43.

Definition 2: It is useful in our derivaions to be able to refer to the solutions of certain equations which

play an important role in obtaining the maximum acceleration of Sq, am.,(S4). Each equation or

equation pair of interest is given in column I and the corresponding variables are indicated in

column 2. All equations in column I are cubics in the variables in column 2. The notation used to

denote the solution of each equation or equation pair is given in column 3.

Definition 3:
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((b1141 + b1242 + b143+ 2n 1 40 2 + 2n124243 + 2n1343 41+ SI)2

+ (214 + b4 + b 23 23 + 2n21 i4 + 2n22cq + 2n2 341 +s2) 2  (97)

+ (b3142 + b32 +2 + + U314142 + 2n32q443 + 2n33434 1 + S3) 2

Definition 4: Let hi, i = 1, 2, 3 denote, respectively, the following linear equations in the joint variable

rates, qi, i = 1, 2, 3;

(a22a33 - a23a32)(blil + nhq2 + n 13 3)

h1( 1, q , q3) = + (a13a32 - al2a33)(b21lq + n2142 + n2343) (98)

+ (al2a23 - a13a22)(b3lil + n31q2 + n3343)

(a22a33 - aZsa 32)(b12i1 + niz2 + n1243)

h2(41, 42, 43) = + (al3a32 - a 12 a33 )(b2=4 1 + n2142 + n234 3 ) (99)

+ (a2az3 - al 3 az2)(b32q4 + n3142 + n324 3 )

(a22a33 - a23a32)(b13qi + n12Q2 + n13Q3)

h3(4 1 , 1]2, 43) -- + (a3a32 - a1 2a 33 )(b234 1 + n2242 + n234 3 ) (100)

+ (al2a23 - al 3 a 22 )(b33 4 1 + n32q2 + n3343)

where hi(q1, 42, q3), (i = 1, 2, 3) is linear in 41, i/ and q3.

Definition 5: It is also useful in our derivaions to be able to refer to the solutions of certain equations

which play an important role in obtaining p,.(k(Sq),pi), i = 1, 2, 3, defined below. In table 2,

rach equation or equation pair of interest is given in column I and the corresponding variables are

indicated in column 2. All equations in column 1 are linear in the variables in column 2. The

notation used to denote the solution of each equation or equation pair is given in column 3.

Definition 6:

[(a-a3 - a .aa2 + (aua33 - a-a3)? + (a2a23 - a,3ad) - '

((a22a" - a2a)(,41+ b142+ b13+ 2nui4ph~ + 2nu42z43 + ZM3i34i +sI)

+ (anau - aua13)2(bzu + + b +l + 2n tj4j4 + 2n=i 243+ 2 n434i + s2) (101)

" a~n- a13an)2(bsi4?2 + bUw + biji + 2ft31442 + 2nf4 + 2 "44, + s3,)

0'2(41, 42, 1h)
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Equations Variables Notation used to denote solutions

h2(q 1o, 42, 43) = 0 and h3(41o, ,2, 43) = 0 q2, 43 4 1 - 471

h3 (41 , 2o, 43)=0andhi(q, 42o, 3) = 0 q3,ql 4 1 1 )

h(ql, 42, 43o) = 0 and h2(ql, #2, 43o) = 0 I, q2 431, 1

.f4)hl(41, 42o, 43o) = 0 41 414

1]
h1 (4 1 , -q2,, #3)O 0 q ____________

h2(q1o, 42, 43.)= 0 2 261

h2(41o, 42, -q3o) = 0 '12 4271

h3(41., 42, 43)= 0 q3 [8
h3(41o, -42o, 43) = 0 43 491

Table 2: Solutions of linear equations

[(asa3 - r.a3) + (aj3a31 - aria3) 2 + (a2a13 - aua3)l - i( (ana33 - a z,,)2(b + u2 +b342 +2n.14,4.2+ n223 + 2,13434i +,,I)
+ (a31 a3 - auja3)2(bn2 + b + b3 + 2n344 4 2 n1402 + 2n,4 + s2) (102)

+ (alla23 - aj3a2j)2(b31iq+b 4+ b + 2nxth + 2ft4Iz + 2A33434 + S3)

(a2a - aza3l) 2 + (alia, - ailaid + (aiaz, - ala )] -((axaz - ftan)2(bz42 b,2422 + b1332 + 2n1,il4:+.2I24243 +2'tii434i + si)

+ (a3lat2 - aua)2(biet + bud + b2 + 2n-414z + 2fnl4Z43 + ZnI34341 + SO (103)

+ (a11an - al2 a2l)2(bj42 + 2 + b4 + 2n3002 + 2nn4,4 + 2n343 + s3)

Definition 7: Let p(k(Sq),pi), p(X(Sq),p2) and p((Sq),P3) denote, respectively, the distance of any point

x(Sq) of Sq from the planes pt, P2 and p3.

pmax((S,),p1) 4 max p(k(Sq),p1), (104)

PAx(X(S),p 2) = max P((Sq),p2), (105)

pArnxC((S),P 3 ) 4 max pC(SSq),p3). (106)

Pmx((Sq),P), for example, represents the distance of that point of Sq furhest from plane pi;
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p,..(k(S),pi). pn.(I(Sq),p2) and Pn=(k(Sq),P3) are necessary for determining the local isotropic

acceleration in subsection 5.4.

Result 1: For a general three degree-of-freedom spatial manipulator, the maximum acceleration of the

acceleration set Sq will be denoted by amx(Sq) and is given by

am(Sq) = maxtl(), 1(2), ... , 1(13)] (107)

where

= .(1) (1)

1) = 41o, ¢<2 , qi3)

1(2) -1(2) (2)

1(3) = (€3), -(3)
"q , q3o)

1(4) q 4 2o, 43o)
-- os)= t€ q , - 42, #3o)

1(6) = l(¢1o, * (6), 43o)

1(7) = 1(41o, q2  -43 0)

1(8) = 1(410, 420, 43(8))

1(9) = I(1o, -42o, 413))

1(10) = 1(41o, 42o, 43o)

1(1) = l(h1o, 42o, -43o)

102) = (i 1o, -42 0 , -43o)

1(3) = 1(41o, -2 0 , 430 )

Result 2: For a general three degree-of-freedom manipulator, the maximum distance from an element of

Sq to the reference planes pt. p2 and p3 are, respectively, given by

max[p(k(Sq),p)], i = 1,2,3 (108)

- max[(ai)(I), (cri)(2), ,(O'i)(13)] (109)
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where

(Oi)[21 = ai( j, 42, 2J)

(C0i)(31 = O'( 7 , 4 3, 43o)

(ai)[4) = ai(ij41, 42, 43o)

(Oa)LS] = ai(A51 , -42o, 43-)

= o'~(j 10, 61 ~(ai)[61 = ai(41o, 6, 43 0)

(ai)mn = a o(o, e, -43o)

(ai)(si = ai(41o, q2o, 43813)

(a igi =  a(#i0, -,4z., 391)

(o)ihio = ai(4'o, q20 , -43o)

(0,)pu = i(qAzo, -,-43o)

('i)(131 = ai(41o, -42o, 43o)

where ai(41, 2, 43) (i = 1, 2, 3) are defined by equations (101), (102) and (103).

Proof of Result 1:

The magnitude squared of the acceleration of a point X(Sq) of Sq denoted by a2(Sq) is given by

a'(Sq) 1 (4t, 42, 43)=I'(4i, 42,43)+12(41, 42, 403+3(1, 42, 43)

= ++ 2nu442 ++2 44 2n3q + )2

+ (b0242 + b 247 +b g + 2n2 142 + 2n2223 + 2n2 4 + s2)2

+ ( f + b3242 + 3 + 2 3t 1 4 + 21324242 + 2n33 4q4 + s3) 2 . (110)

The maximum magnitude squared of the acceleration for the set Sq, denoted by a (Sq), is given by

a .1 (Sq) = maxl 2 (41 , , (111)
(qEFI
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where F is shown in Figure 2 and is specified by the constraints

I q1 1 o10, (112)
14 1! 4S 2o. (113)

I3 1< q30 . (114)

The maximum of (110) will occur at q E F which is either inside F or on the boundaries of F

where one, two or three constraints might be active. In section 5.1.2, we showed that "opposite" pairs of

bounding planes have the same set; Using very similar arguments to those used to demonstrate the result,

we can show that

1. The following pairs of bounding edges of F,

(K2L2), (KILI)

(J2M2), (JIMI)

(L2M 2), (LIM I)

(JIKf), (J2K 2)

(JIL2), (J2LI)

(KIM), (K2M)

have the same image set

2. The following pairs of vertices of F

L2, LI

JI, J2

KI, K2

M2, MI

have the same image.

Therefore, tc obtain the maximum of (110) under the constraints (112), (113) and (114), we should

consider the following possibilities:
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1. Neither of the constraints is active, i.e., the max[2(q1, 2, 43)) occurs at a point 4 inside F.

2. One of the constraints (112), (113) and (114) is active, i.e., max[12(q, 42, 43)] occurs at a point q

lying on the plane JIKIM2 L2 or JIL2K 2MI or L2M 2J 2K 2 of F.

3. Two of the constraints (112), (113) and (114) are active, i.e., max[12(q1, 42, 43)] occurs at a point

4 lying on the edge K2L2, J2M2 , L2M2, JIKI, J1L2 and K1M2 of F.

4. All of the constraints are active, i.e., max[ 2(41, 42)] occurs at vertex L2, vertex J1 , vertex KI, or

vertex M2 .

To obtain the conditions for each one of the above cases to yield a maximum, we first differentiate

12(41,42, 43) with respect to 41, 42 and 43 to obtain

812

= 4f,(41, 42, q3) (115)

812
= 4f2(4i, 42, 43) (116)

a42
812

= 4f3(41, 42, 43) (117)

where fi(41, 42, 43), (i = 1, 2, 3), were defined in (94), (95) and (96).

Now, we consider each case.

Case 1

To obtain the maximum of I for the case where all of the constraints are inactive, we set the right-hand

side of (115), (116) and (117) to zero. This gives us the equations

fi(41, 42, 43)=0, (i = 1, 2, 3) (118)

and the solution

41=42=43-0 (119)

of which actually corresponds to the minimum value of 12(41, 42, 43), viz, zero. Therefore, max(12) does

not occur at a point q inside F which is to be expected.

Case 2
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Consider the case in which one of the constraints (112), (113) and (114) is active. When constraint

(112) is active on the plane J1 K1M2L2 of the F, we have

41 = q/ 1 (constant). (120)

To obtain the maximum of 12, we set both 8(2/8942 = 0 and 812/8q3 = 0. We therefore set the

right-hand sides of both (116) and (117) to zero to obtain the following cubic equations:

f2 ( 4io, 42, q3) =O, (121)

fA ( 4io, 42, 03)= 0. (122)

1 <41.,1431 :5 <43o whose real solution, if it exists, is denoted by 4(21 and 43

Therefore, max 1(41, 43, /3) for this case is given

max[1(q, 41, 43)] = l(1o, 4/0) 4(3. (123)

Comment:

Using simple arguments from algebraic geometry (Semple and Roth, 1949), we can show that if the

cubics (121) and (122) with constraints 1421 <q2o and 1431 <4 /3o have real points of intersection, then

they can at most one real point of intersection. If 12(41, 42, th) does have a maximum I.., then the

conditions 812/8/2 = 0 and 912/8L43 = 0 for obtaining pF, and therefore the pair of equations (121) and

(122) which follow from them, are essentially conditions for the quadratic surface which is the image, in

the x-space, of the plane JIKIM2L2 to have a common tangent plane with a sphere of radius l(i, 42, 43).

A sphere and a quadratic can have at most two points of tangency. Therefore, the simultaneous solutions

of (121) and (122) can have at most two real roots. However, since (121) and (122) are equations of

cubic curves, they will have, in general, nine points of intersection. If equations (121) and (122) had only

two real roots in common, the remaining seven common roots would have to be imaginary, which is not

possible. Therefore, (121) and (122) will have exactly one root, if we do not impose any constraints on

42 and /3. In the case where i2 and 43 are constrained the real root might lie outside the region specified

by the constraints.

In an analogous fashion, we obtain the following maximum for I when constraint (113) is on plane

J1 L2 K 2 MI:

max[/(4i, 02, 43A = 1(/(12 ) 1 '2, /) 4 (124)
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where 41), q) is the real solution of the following two cubic equations,

A ( Mt, 42o, 3)= o, (125)

f3 ( M3, 42o, 4/3) = 0 . (126)

We also can obtain the following maximum for I when constraint (114) is active on plane L 2M2J2 K2:

max[l(qt, 42, 43)) = l(10) 42, 0) (127)

where 4(), 423) is the real solution of the following two cubic equations,

fA ( 41, 42, 4o) = o, (128)
f2 4, 2, 43.) = 0 -  (129)

Case 3

Consider the case in which two of the constraints (112), (113) and (114) are active. When constraints

(113) and (114) am active on the edge K2L2 of F, we have the followig conditions,

42 = , (constant), (130)

43 = 430 (constant). (131)

To obtain the maximum, we set 812/8q1 = 0. We therefore set the right-hand side of (115) to zero

and set 42 - 42o and 43 = 43o to obtain the cubic:

f(41, 42o, 43o)=0. 1411 <: Mo (132)

Using arguments similar to those used above, we can show that (132) can have at most one real solution

which we denote by 4') The corresponding value of I is as follows:

max[l(, , 2,)] = j(j 4), , 3). (133)

In an analogous fashion, we can obtain the following maximum for I when constraints (113) and (114)

are active on edge J2M2 :

max[l(q1, 42, 43)) - I(q ) , -42o , q3O). (134)
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where 4(5) is the real solution of the following zubic equation,

A ( 4, - , o) = o; (135)

For the case when constraints (112) and (114) are active on edge L2M 2 , we obtain

max[t(//1, 42, /3)] = 1(1o, 42 143.), (136)

where q( is the solution of the following cubic equation:

f2 ( 41o, 42, 3o) = 0. (137)

For the case when constraints (112) and (114) are active on edge J1KI, we obtain

maxIl(4i, 4 43A = 1(4o, 4 , -i43.), (138)

where q is the real solution of the following cubic equation:

f2 ( 4!, 472, -43 0) = 0. (139)

For the case when constraints (112) and (113) are active on edge J1L2, we obtain

max(i(41, 42, 43)] = 1(4wo, i2o, 8 )), (140)

where 43) is the real solution of the following cubic equation,

f3 ( 41o, 42o, 43) = 0. (141)

For the case when constraints (112) and (113) on edge KIM 2, we obtain

max(1(4i, 42, 431 = 1(4io, -42o, 49)), (142)

where 43) is the real solution of the following cubic equation:

fA ( 41o, -42o, 43) = 0. (143)

Case 4
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Consider the case in which all of the constraints (115), (116) and (117) are active. When all three

constraints am active, and if max[12(4, 42, 43)] occurs at L2(q1o, q20 , q30), then

max[1(41, 2, 43)] = l(41o, 42o, 43). (144)

If the maximum of 12 occurs at 11(#1o, 4 4, -43o), then

max[1(4', 2, 43)) = l(41o, 42o, -#3o). (145)

If the maximum of 12 occurs at K 1(41o, -420, -q30), then

max[1(4 1, #2, 43)] = 1(41o, -42, -43o). (146)

If the maximum of 12 occurs at M2(41., - ,, 430 ), then

max[(#1, 42, 4)) = 1(4'o, -42o, 3o)- (147)

Therefore, ama,(Sq) (= max[l(41, 2, 43)]) is obtained as the maximum of thirteen quantities defined

by equations (123), (124) (127), (133), (134), (136), (138), (140), (142), (144), (145), (146) and (147).

Thus we have demonstrated Result 1.

Proof of Result 2:

The distance of any point k(Sq) of Sq from the line pi, i=1, 2, 3, is given by

p(k(Sq),P) = o'(41, #2, 43) (148)

p(k(Sq),p2) a o2(41, 42, 43) (149)

p(x(Sq),p3) 03(41, 42, 43). (150)

We first wish to determine pm., ((Sq).pj) the distance of pl from that point of Sq furthest away from it

(pI).

Pm~x(k(S4),Pj) = max o1(41, 02, 4/) (151)
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where F is shown in Figure 2 and is specified by the constraints

I41 1-< 40, (152)

42 1:5 42. -(153)

q3 1:. 430. (154)

The maximum of (101) which is required in (151) will occur at point q E F which is either inside F or

on the boundaries of F where one or two or three constraints might be active. Using the same arguments

as in Result I above, to obtain the maximum of (101) under the constraints (152), (153) and (154), we

should consider the following possibilities:

1. Neither of the constraints is active, i.e., the max[i(4i, 42,4q3)] occurs at a point q, inside F.

2. One of the constraints (152), (153) and (154) is active, i.e., max[a 1(q1 , 412, 43)] occurs at a point

q lying on the plane J1 KIM 2L2 or plane JL 2K2MI or plane L2M2J2K2 of F.

3. Two of the constraints (152), (153) and (154) are active, i.e., max(oi (41, 42, 43)] occurs at a point

q lying on the edges K2L2, J2M2, L2M2, JIK1 , JIL2 and KIM 2 of F.

4. All of the constraints are active, i.e., max[ol(q 1 , 4,2, 43)] occurs at a point q lying on the vertex

L2, vertex JA, vertex K, or vertex M2.1

To obtain the conditions for each one of the above cases to yield a maximum, we first differentiate

ai(41, 42, 43) with respect to 4t,/ 2 and 43 to obtain

._. = hi (155)
,941 z

=l -h 2  (156)
a42 z
i.ol = h3 (157)
a #3 z

where hi, (i - 1, 2, 3), have been defined in (98), (99) and (100) and

z = /(a22a33 - a23a32)2 + (a,2a33 - a32a13) 2 + (a,2a23 - al3a22)2  (158)

'Since, by virtue of Fact 3 of subsection 3.1.2 the vertices J, and ,/2 have the same image, we only need to consider either

J, or .12: we will choose 1. So are the vertices K, and K2 and vertices M, and M2 .
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Now, we consider each case.

Case 1

To obtain the maximum of pi for the case where all of the constraints are inactive, we set the right-hand

side of (155), (156) and (157) to zero. This gives us the equations

hj(41, q2, q3) = 0,(i = 1, 2, 3),

and the solution

= = =4 ==0 (159)

of which actually corresponds to the minimum value of Pl(qi, 42, 43), viz, zero. Therefore, max(pl)

does not occur at a point q inside F.

Case 2

Consider the case in which one of the constraints (152), (153) and (154) is active. When constraint

(152) is active on the plane J1K1 M2L2 of F, we have

'i1 = 41. (constant). (160)

To obtain the maximum of pa, we set both 0p1/04'2 = 0 and Opl/0q3 = 0. We therefore set the

right-hand side of both (156) and (157) to zero to obtain the following two linear equations,

h-2 41€o, 42, 3) = 0, (161)

h3 ( 41o , 3) = 0. (162)

1421 <-42o, 1431 < 43°.

Denoting the solution 42 and 43 of (161) and (162) by ,  , the maximum of I for this case is given

by

max[pt(qi, 42, 43) = P(4o, 4i4, il1). (163)

In an analogous fashion, we can obtain the following maximum for P, when constraint (153) is active on

plane JIL2 K2MI:

maxpi (&1, 42, 43))=Pi(q 2l , 11zo, pi3), (164)
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where 4*, 4l is the solution of the following two linear equations,

hi ( 41, 42, 43) = O, (165)

h3 ' ( €1, 42o, €3)--0.- (166)

We also can obtain the following maximum for p, when constraint (154) is active on plane L2M2J2K2 :

max(pi(4i, 42, 43)] = ,,(//31 , 3, qo). (167)

where /3], 4 is the solution of the following two linear equations,

hi ( 4t, 42, 43o) = 0 , (168)

h2 ( 41, 42, 43o) = 0. (169)

Case 3

Consider the case in which two of the constraints (152), (153) and (154) are active. When constraints

(153) and (154) are active on the edge K2L2 of F, we have the following conditions,

42 = 4 p (constant), (170)

43 = 43o (constant). (171)

To obtain the maximum, we set 812/8q1 - 0. We therefore set the right-hand side of (155) to zero

and set q2 = 2, and q3 = 43, to obtain

hi(¢1, 42, 43o) = 0, 1 S M/o. (172)

From equation (172). we obtain the solution which is denoted by 141. The corresponding value of Pt is

as follows:

maxpi(¢t, 42, 43)) = P1(% , q2o, 43.). (173)

In an analogous fashion, we can obtain the following maximum for pi when constraints (153) and

(154) are active on edge J2M2

max[pl(41, 42, 43 ) = P1(4 , -42o, 43o). (174)
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where '1s is the solution of the following linear equation,

h ( 1, -42o, q3o) = 0; (175)

For the case when constraints (152) and (154) are active on edge L 2M 2 , we obtain

max[pl(1, q2, 43)] = p9(/1o, '16I q)3o (176)

where q82I is the solution of the following linear equation,

h2 ( 4/1o, 42, /3o) = 0. (177)

For the case when constraints (152) and (154) are active on edge JIK1 , we obtain

maxtpi('1, '2, '13)A = PI(1lo, 42, -'13o), (178)

where 42 is the solution of the following linear equation:

h2  ( q1o, q2, -43o) = 0. (179)

For the case when constraints (152) and (153) are active on edge J1L2, we obtain

max[pl(i1, '2, '3)] = pl(1i, 24, 481), (180)

where ' 3'1 is the solution of the following linear equation,

h3 ( 41 o, 4'2o, 43) = 0. (181)

For the case when constraints (152) and (153) on edge KIM 2 , we obtain

max[mp(1, '2, '13)] = pl('1lo, -1, 491), (182)

where 4191 is the solution of the following linear equation:

h3 ( 1 o, -12o, q)= 0. (183)

Case 4
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Consider the case in which all of the constraints (152), (151) and (154) are active. When all three

constraints are active, and if max[pl(ii, 42, 3)] occurs at L2(4j., 42., q3.), then

max[p1(/ 1, 42)] = pl(iio, 42o, 43.). (184)

If the maximum of P, occurs at JI(4i10, 4U, -430), then

max[p1(q1, /2, /3)] = Pl(io, 42o, -3.), (185)

If the maximum of P, occurs at K1(q10 , -420, -3 0), then

max[p 1(41, 2, 43) = Pi(4lo, -2 0 , -3o), (186)

If the maximum of P, occurs at M2(41., -20, 43.), then

max[pl(qi, 42, q3) = Pl(1, -42o, 43o)- (187)

Therefore, Pmx(k(Sq),pi) is obtained as the maximum of thirteen quantities defined by equations

(163), (164) (167), (173), (174), (176), (178), (180), (182), (184), (185), (186) and (187). In exactly,

analogous fashion, p1,x(k(S4),p 2) and pm--(k(S4),p 3) are obtained as in (109). thus we have demonstrated

Result 2.

5.3 Properties of the state acceleration set

Definition:

K : centroid of the acceleration set in the k-space with coordinates kj, k2 and k3 given by (40).

p(K, Pl): distance from point K to the reference plane P1.

p(K, p2): distance from point K to the reference plane p2.

p(K, P3) : distance from point K to the reference plane P3.

p(A'B'F'E'), p(A"B"F"E") . distance from the origin to plane A'B'F'E', A "B"F"E", ...
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Result 1: TMe maximum acceleration corresponding to any dynamic state u of the manipulator is denoted

by am,.(Su) and is given by

amu(Su) =max[d(OA ), d(OB"), d(OC"), d(OD"), d(OE"), d(OF"), d(OG"), d(OH")] (188)

where

d(OA) = \/al .+ajrj + aj3r3. +k&) +,(on fl. + anr" +a7uri. + k2)2 + (a31r1. +a32rl. +an3rU + k3 ?

d(OB") = y(aun., - aaru +a137). +kI) 2 +(an rj. - anvrj. + a~,~ +k2)2 + (antr. - an1r, +aj3r3. +k)

d(OC) V (alr.+a~u- a3.- k$+(all n.+a~nlu- auria - 22+ail a21 3r,-k)

d(OD) = (aiiri, - aizrU - alsr%, - kI)2 +e (aziri. - fr.- a2r.- kZ2 (a 1ri. - a3r.- an3.~ - k3 )'

d(OE) = V'(atiri. +ar, - al13,1 "02 .4.(afjrl +ftr - a2r3 + k2)2 + (a3jrl. + ay2r2. - a3-.+k2

d(OF) = V/(a]ixfl. - aum.2 - alr3, +k2 + (an r. .- anr. - a237,. + k2)2 + (ani. - a32r. - a33ri, +k2

d(OG) = V(alutio + acm,. + al37-. - kj)2 + (a=71. +ann. + a23-. - k22+ (atri. + auzn. + a373 - k3$

d(OH) = N/(aiiri. - alr2 + a,3r3 - kj)2 + (aain. - ann. + a23r. - k2>
2 + (a3lil. - 032ti. + a33r3g - k)

Result 2: The necessary and sufficient conditions for the existence of the isotropic acceleration are the

following:

I det(A)Il. - I(a~an -a23a3)k 1 + (a,3ai - auan3)k:+(aua23- anal3)k3 > 0, (189)

1 det(A)Inl. - I(a,.ia3 - a,2a3 l)kl +4 (auia33 - a13anj)k2 + (aUGU2 - azja13)k3I > 0, (190)

I det(A)jn3. - i(a2iaia ananl)k + (aW2a31- alza3)k 2 +(aliay - au2a)k 3I > 0. (191)

Result 3: The isotropic acceleration corresponding to any dynamic state u of the manipulator is denoted

by ai, 0(Su) and is given by

rIde(A)In.- I(a22an -a2a3l )k1 +(ai3a -ax2aM) k2+(lan3-a2al3 )k31

,./(a22a3l-a23a3l)'+(ai3a32-aa3)+(al2.23-a2a3) 2

min Idet(A)k'1.- I(a23a3l - 21 a33)k1 e(auan -81131 i)k2+(a11a,23-a 2 lal 3)k3 I (192)I V(-aal -822 t23)2 +(al 3 033-aI3a3l $+(4lla23-a21013$2
Idt(A).- I(alan -a22a~ )k1 4(a120,1 -01 1a)k 24(a1 ia2-012821 'k3 I

L (aua32-anan )'(aUa031-alla32)$+(alian -all)'

Proof of result 1:
Let d(OA") through d(OH") denote, respectively, the distances of vertices A" through Y' from the

origin 0 in the k-space. Then an.ax(Su) is the distances of the furthest vertex of the set Su which is the

parallelopiped A"B"C"If E"F"G"H-f'. Therefore, an.x,(Su) is given by

a,,.(Su) =max(d(OA ), d(OB"), d(OC"), d(OD"), d(OE"), d(OF"), d(OG"), d(OH")]. (193)
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Using (49), the coordinates xtz(A"), x2(A") and I3(A") of vertex A" in the i-space are given by

xI(A") = II(A') + k = allrlo + a2r2o + a13r3o + ki, (194)

12(A") = -t2(A')+k2=a2lrlo+a ".1o+a23r3o+k2, (195)

3(A") = *3(A')+k 3 =a31flo+a32 2o+a33r3o+k3. (196)

The distance d(OA") from the origin 0 to the point A" is given by

o(O"A) = y/(alino +aul +a,3ru 4-k1)2 + (anr1. +a2r.*+ a23r3. + k2) + (aujrj + auru + a33r3, k3). (197)

In exactly analogous fashion, we obtain

o(O"B") ( - ara. +a133,2 +k) 2 + (a2 r1. - ar,+ ar-. +k2)2 +(alr1. - a4 ,r+ .+k 3)$(198)

u(O" C") = /(ann. + atui-. - a13u. - ki)2 + (an. + ouar - ann. - k2 )1 + (ainn. + anr - anru - k3 l90%

a(OD") = -/(auri. - a2n,. - a131r. - kI)2 
+ (an. - - a.2,r - k )2 + (auri. - an-?u - a33r, - WaO)

,(O"E") = V(aun. + aari. - an ri + k)z + (aa r. + an. - anl1i + k2)2 + (an nf. + a32,7 - a3 i. + k3)2(201)

a,(O"F" = /(aiun. - a2 . - a13'. + it)' + (Onn. - a2n - a-3r + Z)2 + (a 7n. - a32 - a3siJ, + Z1102)

ou(O"G") = V(aun. +a,2'. +al .- k) +(anl +aU77. +-J. -k2)2 +(a3n° +aMri. +aaGr. - k3)
2(203)

a(O"H") = N/(aCun, - a,,no +al3rU - k& + (az n. - anim. +a23ru - k2)2 + (ann. - aw,7 +ann. - k31104)

Equations (193) and (197) through (204) comprises Result 1.

Proof of result 2 and 3:

The state acceleration set S. is the parallelopiped centered at k(u) = (ki,k 2 ,k 3), shown in Figure 8.

The centroids of S. and Su are, respectively, by 0 and K.

Using equations (90), (72) and (56) through (58), the distance from K to the planes pl, P2 and p3 are

given by

p(K, p1 ) = I (a2a33 - aaa32)kl + (ansa32 - a,2a33)k2 + (a,2a2 - anal3)k3 I (205)
/(a22a ] - a23a31)

2 + (aua32 - ai2a33)2 + (a,2a23 - a,2al3)2

p(K, p 2) - I (a2la3 - a23a3i)kl + (ailas3 - aj3a~j)k2 + (alia2 - a2 aI3)k3  (206)
V/(azza3z - ala33)

2 + (al a33 - a3a3l) 2 + (aIa23 - a21a13)
2

p(K,p3) = a21 a32 - ana3 Oki + (al 2a3l - a,1an)k2 + (alIa2 - a,2a21)k3 I (207)
/'(al2 a3 - a22a3 )

2 + (a12a3l - aiian)2 + (a11a2 - alza2l)2

The distance p(K, pl) from the centroid K of Su to the plane P, is equal to the perpendicular distance

between plane A'B'F'E' and plane A"B"F"E" and also between the plane D''G'l- and plane D"C"G"H".
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The distance p(K, p2) is equal to the perpendicular distance between plane A'D'JIE' and plane A"D"I'E"

and also between plane B'C'G'F' and plane B"C"G"F". The distance p(K,p 3) is equal to the perpendicular

distance between plane E'F'G'H' and plane E"F"G"H"'.

The state isotropic acceleration aj,(Su) is the maximum acceleration which is available in all direc-

tions. It is therefore equal to the minimum of the distances from the origin 0 (of the acceleration plane)

to the six planes of A "B"C"D"E"F"G"I' (the set S).

Now, we can write the following expression for ais(Su):

&.(Su)=min[p(A"B F E ), p(A E H D ), p(E F G H ), p(D C G H ), p(B C G F ), p(A B C D )](208)

where p(A"B"F"E") is the (perpendicular) distance from 0 to plane A"B"F"E" and similarly for

p(A"E"Y'"D"), p(E"F"G"'), p(D"C"G"H"), p(B"C"G"F"), p(A"B"C"D"), all assumed positive by

definition. From the geometry, we can write,

p(A"B"F" E"),p(D"C"G"H") = p(A'B'F"E") ± p(K, Pt). (209)

(Comment: For example, p(A"B"F"E") = p(A'B'F"'E") + p(K, p) and p(D"C"G"Yh') = p(D'C'G"H") -

p(Kpl); the correct choice of signs will depend on the direction of the translation but as will be shown

below we do not have to worry about the correct choice of signs.)

Similarly,

p(A"D"H"E"),p(B"C"G" F") = p(A'D'H'E')±p(K,p 2), (210)

p(E"F"G"H"),p(A"B"C"D") = p(E'F'G'H') ± p(K, p3), (211)

(The above comment holds for (210) and (21 1), too.)

Combining equations (208), (209), (210) and (211), we obtain

aj.(Su) = minp(ABF'E).± p(K, pl), p(ADHE) ± p(K, p2), p('F'G'H') ± (K, P3)]. (212)

Since all distances PO in the above equation are positive by definition, we can rewrite the above equation

as

ao(Su) = min[p(A B F,E )- p(K, pi), p(AD H.E!) - p(K, p2), p(E F G H - p(K, p3)], (213)
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Substituting equations (56) through (58) and (205) through (207) into (213), we obtain the required

result (192).

Equation (213) clearly demonstrates that the isotropic acceleration aio(Su) for any state u # 0 is less

than aio(S.,) = min[p(A'B'F' E'),p(A'D'H'E'),p(E'F'G H')]• In fact, if p(K, pi). p(K, p2) and p(K, P3)

are sufficiently large (equivalently, the "nonlinearities" ki, k2 and k3 are sufficiently "large"), we may not

have any isotropic acceleration. The necessary and sufficient conditions for the existence of the isotropic

acceleration can be obtained either from (213) or (192). From (192), we obtain the following three

necessary and sufficient conditions for the existence of the isotropic acceleration:

7r".j det(A)f > j(a22a33 - a23a,)k + (a13a32 - a12a33)k2 + (aI2a23 - a22a13)k3I (214)

r2j det(A)j _ j(a21a33 - a23a31)kl + (aria33 - a1 3a3l)k2 + (ala23 - a21a 3)k3 I (215)

?3.j det(A)j - I(a21a32 - a22 a31)kl + (a2a3l - a1 la32)k2 + (aia2 - al2a2)kI (216)

These are exactly the necessary and sufficient conditions expressed in (189), (190) and (191) of result 2.
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5.4 Local acceleration properties

At any given (local) configuration q in the workspace, the following questions are of theoretical and

practical importance.

* Magnitude of the maximum acceleration at any configuration q in the workspace

9 Magnitude of the isotropic acceleration at any configuration q in the workspace

Result 1: The local maximum acceleration a of a spatial three degree-of-freedom manipulator at

a given configuration q is specified by

(ama,jocg)lb 5 am1 ,,ow (aax,Jo)ub (217)

where (a.,Io )l is given by (188) with k1(q, 4), k2(q, 4), and k3(q, 4) evaluated at that joint

variable vector q which maximizes /(41, 42, q3) in equation (107), and

(amx, ,o )ub = a .,(S4) + alu(S) (218)

where amax(Sq) is given by (107) and am.x(S.) is given by (77).

Result 2: The local isotropic acceleration aisood at a given configuration q is specified by

aisojlow(S.)

p(A'B'F'E') - p,=(k(Sq),,pI)

=min p(A'D'H'E') - Pmai(k(Sq),P2) (219)

p(A'B'C'D') - pmu(X(S4),p 3) J

where p(A'B'F'E), p(A'D'H'YE) and p(A'B'C'D') are given, respectively, by equations (56) through

(58), and where p ,(:(Se),pI), pm.(k(S),p2), and pmx(x0(S4),p3) are given by equation (109).

Proof of result 1:

The local maximum acceleration amx is the maximum acceleration over all possible state acceleration

sets Su at a given position q in the workspace. Therefore, a,,, can be written as

amax,local = max(UqEFSU). (220)
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It is not possible to find an exact analytical expression for , However, we can find an upper

bound and lower bound which arm very good approximations to a..,lw.

Corresponding to every point P of the set S4, we have a state acceleration set Su(P). Let P' be the
furthest point (from the origin) of Sq, and let Su(P') be the corresponding state acceleration set. Let the

set Su(P') obtained by rotating the set Su(P') about P' till the longest diagonal of Su is collinear with the
line OP joining the origin to the furthest point P' of Sq. A lower bound for a1.,jIo is given by the

distance of the furthest vertex of So from the origin, viz

(aw)m = max[d(OA"), d(OB"), d(OC"), d(OD"), d(OE"), d(OF"), d(OG"), d(OH")], (221)

and an upper bound for &ojo.g is given by

(aa, w.).b = d(OP') + d(A"P'), (222)

(amJo1Xb = a (S4) + am(S,). (223)

Combining (221) with equation (197) through (204), we obtain equation (188). The values of kI, k2

and k3 in (188) correspond to the furthest vertex P' of Sq from the origin, i.e., to that joint variable vector

q which maximizes 1(q, #2, q ) in equation (107). This is simply a matter of computing 1(1, 42, 43) at

the thirteen vectors defined in subsection 5.2 and determining which of these thirteen vectors maximizes

1(41, 42, 43). This completes the determination of the lower bound (a1,.,lo.,I)b.

Substituting for am.,(Sq) and a..(S,) from equations (107) and (77), respectively, we obtain equation

(218) for the upper bound (a Jamg)tb. Thus, Result I is proved.

Proof of result 2:

The local isotropic acceleration is obtained in the following steps.

1. The maximum possible isotropic acceleration is obtained when q = 0 and is equal to ai,(S,) as

given by equation (78).

2. Every state acceleration set will have an isotropic acceleration which is less than that given by

(78) because the "nonlinearities" effectively reduce the isotropic acceleration. The resulting state

isotropic acceleration is ai(Su) which is given by equation (213).
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3. The local isotropic acceleration a is the magnitude of the smallest state isotropic acceleration

at a given local configuration q, i.e.

ai =, = min ai(Su). (224)

qOF

4. Using equation (213) and (224), we can express the local isotropic acceleration aj, I. as

a.,j = minmin(p(A'BFE) - p(Kp 1 ), , p(A'D'HE) .F'G'H) - P(KPA

= minfminip(A BF E)- p(K~pi)}, minfp(A'D'H') -p(Kp), mni p(EF'G'H') - p(K, p")
qGF qeF qEF

5. Since p(A'B'F"E'), p(A'D'H'E') and p(E'F'G'R') are constants for a given manipulator and given

actuator constraints, (225) can be written as

at.,,. .i min[p(A'B'F'E') - maxp(K,pt), p(A'D'H'E) - max p(Kp2), p(EIFIGtH') - maxp(K,p 3)]. (226)

where max[p(K,pl)] is the distance from the plane Pi to the element of Sq furthest away from Pi

which we denoted in subsection 5.2 by pnax(I(Sq),p2), max[p(K,p 2 )I is the distance from the plane

p2 to the element of Sq furthest away from P2 which we denoted in subsection 5.2 by pmz(I(Sq),/p2)

and max[p(Kp 3)] is the distance from the plane p3 to the element of Sq furthest away from P3

which we denoted in subsection 5.2 by Pmx(t(Sq),P3), We can therefore write

maxp(K,pt) = Pm=((Sq),P0) (227)

maxp(K,p2) = Pmax(R(Sq),P2) (228)

maxp(K,p3) = Pmu(x(Sq),P3) (229)

Combining (226), (227), (228) and (228), we obtain the required result (219). (Note that all

quantities in (219) have been analytically detennined earlier.)
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6 EnM*:
To demonstrate the ease of applicability of the general acceleration set theory for spatial

manipulators developed in the previous sections, we have written simple computer codes to generate the

acceleration properties of the various acceleration sets for a common type of 3 d.o.f. spatial manipulator

which is shown in Figure 9 and whose o kinematical and dynamical equations are given in the Appendix.

(The axis of joint I in Figure 9 is vertical). The actual geometric and inertia parameters used in the example

are given in Table 3. The dynamical equations have been derived using Kane's dynamical equations (Kane

and Levinson 1983; Kane and Levinson 1985; Desa and Roth 1985).

The configuration chosen was q1 = o, q2 = 45' and q3 = 45"

The joint variable rate ("joint velocity") constraints are

4 li !5 = 1 rad/s; i= ,2,3.

The torque constraints ar

_ x < o , i= 1,2,3.

Tio may be thought of as the size (or maximum torque rating) of the actuators; the numerical values of T 1,
(i = 1,2,3), are given in Table 3.

The properties of the state acceleration set were computed at qI = o, o2 = 45" and q3 = 45"

41 = I ad/s, 2 = I rad/s i - 1 rad/s

In order to show how the theory might be used for design purposes we have determined the

acceleration properties for three cases (Table 4). Five acceleration properties have been determined in each
case: the maximum and isotropic acceleration of the set St, the maximum and isotropic accleration of the

state acceleration set and the (local) isotropic acceleration at the configuration (0, 45', 45" )T.

In all three cases the sizes of the first two actuators remain constant ('do = 35 N-rn and 20 = 8.2

Nm) and the size of the third actuator (driving link 3) is varied. In Case I of Table 4 (r3o = 0.17 N-m), the

end-effector does not have either a state or local isotropic acceleration). When the size of actuator 3 is

increased to 0.4 N-m (Case 2). we obtain a state isotropic acceleration of 0.93 m/s 2 but the local isotropic

acceleration is very small 0.03 m/s 2. Therefore for given 'do and '2o , -30 must be greater than 0.4 N-m in

order that we may have a local isotropic acceleration at the specified configuration q. Case 3 shows that for
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q,

Figure 9. Schematic diagram of a thrM degree-of-freedom manipulator
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actuator size '30 of 0.6 N-rn we have a local isotropic acceleration of 1.61 m/s 2. The designer must then

decide (from past experience) whether this magnitude of isotropic acceleration is reasonable.

1. These computations can be repeated for various configurations in the workspace after which

decisions can be made regarding actuator sizes.

2. Algorithms for the determination of minimum actuator sizes to achieve a desired isotropic
acceleration are given in (Desa and Kim 1989-2) for the planar case. The extension to the spatial

case is relatively straightforward.

Q i= 0.0 2 0.303 3 =0.254 (in)

al =0.0 a2 0.196 a3 0.094 ()

Sl= 3.5 m2 =2.259 m3= 1.129 (kg)

11 =1.2 I - KI - (kg-m2)

12 = .129 J2 = .129 K2 v 0 (kg-m2).

13 .003 J3 =.003 K3 M 0 (kg-m2)

Table 3: Parameters for the spatial manipulator (see Figure 9 and the Appendix).

AcUmTor ques Acceleration Propeies

T1O T2o 13o Aw(sg) Ajso(st) Amax(su) Aiso(su) Aiso, jocaj
Case (N-m) (N-m) (N-m) (m/s2) (m/s 2) (m/s2) (m/s2 ) (m/s 2)

1. 35 8.2 0.17 20.3 1.35 23.7 0 0

2. 35 8.2 0.4 25.06 3.16 29.1 0.93 0.03

3. 35 8.2 0.6 30.3 4.75 33.9 2.51 1.61

Table 4: Acceleration Properties for the manipulator of Section 6.
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7 Smma and Ohdus

In this paper, we extended the acceleration set theory for planar manipulators, developed in (Desa and Kim,

1989-1), to spatial manipulators. As in the planar case we have accomplished the following:

Given the kinematical and dynamical equations of a manipulator, we have defined the image set ST

coresponding to the set T of actuator torques, and the image set S4 corresponding to the set F of the
joint variable rates. We have also defined the state acceleration set Su at a specified point u in the

state space.

* We have determined the image sets, ST and S4, and the state acceleration set Su.

• We have characterized the image sets ST and the state acceleration set Su by their maximum and

isotropic acceleration. The image set S4 has been also characterized by its maximum acceleration.

At a configuration or position, q, in the workspace, we have established two local acceleration

properties: the local maximum acceleration and the local isotropic acceleration. The local maximum

acceleration specifies the magnitude of the maximum acceleration of (a reference point on) the end-

effector. The local isotropic acceleration specifies the magnitude of the maximum available

acceleration of the end-effector in all directions.

We then demonstrated the application of the acceleration set theory for spatial manipulator to the 3

d.o.f. spatial manipulator shown in Figure 9.

We have, therefore, demonstrated the hypothesis which we stated in the introduction, i.e., that the

analytical properties of acceleration sets can be determined from the properties of the linear and quadratic

mappings which define them (the acceleration sets). Furthermore, the acceleration properties of interest -
especially the isotropic acceleration - have been determined in terms of the manipulator parameters, the

torque limits and joint variable rate ("joint velocity") limits. These results can therefore be applied to

manipulator design problems as demonstrated in (Desa and Kim, 1989-2).
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Appendix: Funcdanul rdaiiondps fot de f stil 3 d.L. umnipultor o F gmre 9.

Noaion: (See Figure 9)
al. a2, a3: dexual orthogonal set of utit vectors fixed in link I and paallel to

the cenral principal moments of inertia of link 1.
b, b2, b3: dexm orthogoal at of unit vectors fixed in link 2 and parallel to

the cetral principal moments of inertia of link 2.
Cc2,C3: dextal orthogonal ad of unit vectors fixed in link 3 nd parullel to

the central principal moments of inertia of link 3.

length of link 2
R3 :length of link 3
a2: distance from joint axis of link 2 to center of mass of link 2
a3: distance from joint axis of link 3 to center of man of link 3
ml :mass of link I
12: mass of link 2
m3: mass of link 3

11. Jl, KI: central principal moments of inertia of link I for axes parallel to
&l. 2 and a3 respectively. 1

12, J2 , K2: central principal moments of inertia of link 2 for axes parallel to
blb2 and b3 respectively.

13. J3, K3: central principal moments of inertia of link 3 for axes parallel to
l, C2 and C3 respectively.

CThe input and output variables we as defined in section 3.1)

L Jacobian nutrix

The joint velocity is related to the velocity A of the point P in Cartesian space by the relation
i=(6.

The Jacobian matrix J for a spatial three degree-of-freedom manipulator in Figure 9 is the following:

KII J12 13]

where

j11 sin ql(/2cos + 6cos(q% + ¢))

j12 = -cosqt(12sinq2 +3sin(q2 + ))

J13 = -13 cos qi sin(q2 + q3)

J - cosq2+13Cos(q2+q3)

J23 13Cos(q2+q3)

1 For link 1, since the first joint axis is parallel to al, only the principal moment I1 is of importance in

de dynamic equations.
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in =  - cosq 1 2 cosq2 +13cos(q2 + q3))

j32 = -sinq 1 2sinqz+13sin(q2+q3))

j33 - -sinqll3sin(q2+q3)

When the above relation is differntiated with respect to the time, we obtain the following equation,

' = J4 + 14 = J4 - F < 4 >2 -G[4] 2  (230)

whe F, G are matrices with the followiag elements:

F= 0 0 A ,

Fl3= 0oq/ j5s2'a + 0
where

A13 = cosql13cos(q2+q3)

f22 = 12sinq2+13sin(q2+q3)

f31 = -sinq(12cosqz+13cos(q2+q3))

f2 - sinqj(lacosqz +13cos(qz+q3))

A3 = sin ql3 cos(q2 + q3)

and

0 g12 0
G= 0 = 0

0 932 0

wher

912 = cosqll 3 cos(q2 +q3)

g22 = 13sin(q2+q3)

g23 = sinqIl3cos(q2+q3)
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2. Dynamic equaton

The dynamic behavior of the manipulator is described by the following equaion:

Dq +U < 4 >2 +W[4]2 + p - r. (231)

The components of matrices D. U, and W are as follows:

dit 0 0 1
D= 0 d22 dm

0 d32 433

where

dl "11 +(I2+Mr~a)cos2q.lScos 2 (4 2+3)+m3(12cosq2+a3cos(q2+q3)) 2

d22  J2 + m~+3 +3(a3+ 2a32 cosqs +

d. J 3 + m3(a3 + a3t2 cos q3 )

d32 =d2

d33  J3 +m3a2

0 0 0

U U21 0 U J
U31 "W32 0

where

U2 = (12z + M2a2) cos q2 sin q2 + 13 cos(q2 + q3) sin(q2 + q3) +

+ m3(12 cos q2 + a3 cos(q2 + q3))(12 sin q2 + a3 sin(q2 + q3))

U23 m3l2a3 Sin q3

U31 13 cos(q2 + q3) sin(q2 + q3) + m3(12 cos q2 + a0 cos(q2 + q3))a3 sin(q2 + q3)

U32 Lu23

w) 0 W136
W= 0 W22 0

0 0 0



where

WI - -[(12 + Mz1) cos q2 sin q + 13 cos(q2+ q3) sin(q2 q3) +

+ m3(12 COS q2 +a3 cos(q2 + q3)X2 s q2 + a3 sin(q2 + q3))]

W13 = -V13 4os(q2 + q) sin(q2 + q) + M3(12 cos q2 + a3 cos(qz + q3))a3 sin(q2 + q3)]

W22 = m312a3sinq3

The nonlinear vectors, < >2 and (]2 are as follows:

[42]
<4>2= 422

2142[4) 24243
[q2= 2 I

24341

0

P -"P2

P3

where

P2 = [m2a2cosq2+m3(12COSq2+a 3 cos(q 2 +q3 ))g

3= m3(12 cos q2 + a3 os(q2 + q3))g

3. Acceleration equation

The expression for the acceleration of the end-effector is as follows:

i = Ar + B < 4 >2 +N[4] 2 + s (232)
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where

B - -AU+F

m . -AW+G (233)

6 = -Ap
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