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FOREWORD

. This report describes an exploratory study of acoustic horns as non-reflective
liners for water-filled anechoic tanks. The goal was to determine if a suitably shaped
horn could improve the reflection loss characteristics of acoustic materials.
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CHAPTER
INTRODUCTION

The successful absorption of sound often depends on the availability of a
material that has two characteristics: high internal sound absorption and low sound
reflection.

This study investigates the possibility of decreasing the reflectivity of the walls
of an anechoic tank by forming horns on the surface of an absorbing material, with
the purpose of coupling the energy into the material, thereby providing diminished
reflection.

There are several ways for implementing such a coupling:

1. The walls of the horn can be made reflecting and the throat absorbing with
the sound entering the mouth of the horn. Thisis similar to the case of a loud
speaker horn used backwards.

2. Both the horn walls and the thrcat are absorbing.

3. A number of small horns can be formed in the surface of an absorber.

4. A resistive-impedance horn can be designed to channel the wave into a
sound trap.

These four approaches have been investigated and the resuits form the content
of this report.

1-1
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CHAPTER 2
THEORY

The first theoretical treatment of horns appears to be that of Bernoulli (1764)
and Euler (1766). In more modern times, Rayleigh (1916) and Webster! (1919)
deduced the basic differential equation governing sound propagation in a horn:

o
= pR — (2-1)
e 62

at

ox

o

X

where E is Young's modulus, p the density of the medium, S the cross sectional area
which is a function of the distance x (Figure 2-1). The symbol { denotes the
displacement in the direction of x, and t is the time.

In organizing the information about horns, one must keep in mind that, in
general, only three factors have to be considered:

1. General shape of the horn;i.e., the function S{x) in Figure 2-1.
2. The scale of the physical implementation. In other words we consider
S=8,°*Fx
where S, is a scaling factor and F a function of x. The magnitude of S, relative to the
wavelength A, defines the response for a given general shape. This is a statement of
the "principle of similarity."2
3. Energy dissipation in the walls.

Let us consider these three aspectsin turn.

GENERAL SHAPE

The most commonly encountered horn shape or "flare” is the following
exponential law:

S=§c™m (2-2)
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CROSS SECTION S
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NOTE: THE CROSS SECTIONAL AREA IS A FUNCTION OF THE
DISTANCE FROM THE THROAT

FIGURE 2-1. AN ACOUSTIC HORN
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where mis th “are constant. The unitsof m arecm-1, and of S are cm2. The flare
constant is important in determining the frequency response since it can be shown
that a horn cuts off at frequencies below

mec
f = — (2 -3}
¢ 4n
where c is the speed of sound in the medium. The exponential horn has very
advantageous resistive behavior above f; (Figure 2-2) but a rather abrupt cutofT.

The horn cross-section can be either round or square with little acoustic
difference. The theory of exponential horns has received considerable attention.1, 3-8

Other horn shapes have also been used such as conical, hyperbolic, or parabolic.
Of them, the hyperbolic cosine type has often found application.5 It obeys the
formula

r = rylcosh (mx) + Tsinh (mx)) (2-4)

where the quantity r'r,, is a dimensionless shape scaling term and m is the flare
constant (cm-1).

The parameter T describes a family of horns and can vary from zero to infinity.
Very large values of T describe straight horns, while small values of T describe
strongly flared horns. At unity, the shape is exponential. Note that for hyperbolic
horns the radius and not the area is the variable (compare Equations (2-2) and (2-4)).

A special case9 is the so called "catenoidal” horn. The name comes from the fact
that a chain (from the latin "catena") takes this type of shape spontaneously. The
catenoid shape corresponds to T=o0in Equation (2-4) or

S = §, cosh2 (mx) (2-5)
The great advantage of the catenoid horn is that its impedance at the mouth is
more purely resistive than the exponential type if the horn is sufficiently long and
the frequency sufficiently high (Figure 2-3).

Finally, mention should be made of the "tractrix" horn that follows the
parametric equations

X = p - atanh (p/a) (2-6)
y = asech ( p/a) (2-7)

where a is a parameter called the generating arm (the length of the tangent from any
point on the curve, extending to the x axis), and p is another parameter.

The tractrix horn10 shows again a rather resistive behavior except close to
cutoff. There are many peaks on the frequency response curve, shown in Figure 2-4.
The equivalent wo the flare constant in this case is the tractrix length a. When
a< cd/w the horn cuts off, where w is the angular frequency and c is the speed of
sound.

2-3
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FIGURE 2-2. IMPEDANCE IN AN EXPONENTIAL HORN AT THE MOUTH OF THE HORN
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SCALE OF IMPLEMENTATION

An experimental proof of the principle of similarity as applied to hornsis given
by Goldman.2 In general, the water-filled horn will have the frequencies scaled from
the air horns by the ratio R of the two sound velocities

. ‘WATER 1500 s o_g
= = = . (2-8)
CAIR 330

In practice for a given horn size, the cutoff and any other feature related to
wavelength occur at higher frequencies.

WALL ABSORPTION

The case where there is dissipation within the horn has been discussed in 1940
by Phelps!! and more recently by Kergomard!2 and Watkinson.13 Sound absorption
in ducts and bars received, of course, extensive attention, see for example Sivian,14
Snowdon,15 or Benson.16

In a horn in which the walls absorb energy!1! the sound transmission can be
expressed in terms of a coefficient §":

1+(1 ~a)?
pr=pc— 2-9)
1—(1-a)

where a is the absorption coefficient of the wall.

This defines a coefficient a given by

2pc n 4 —mXx
a= — —)(]-e ) 2-10)
mf \ 50 2

where mis the exponential flare constant, S, is the throat area, and x is the
coordinate along the axis of the horn. The quantity within the parenthesis tends to
unify if the horn is sufficiently long.

The coefficient a, in turn, enters in the power loss expression:

SoA?
pC

Consequently, large attenuations will be obtained if: m is small (slow taper), if
S, is small (small horns), and if § is small (absorption coefficient is large).

P 2-11)

Power = P =

We now consider the problem of impedance matching. The specific acoustic
impedance is defined as:5

SOUND PRESSURE
Z = (2-12)
Particle Velocity

2-7
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If the medium has an impedance for longitudinal waves of pc (density times speed of
sound), then we can define the dimensionless impedance

¢ = (2-13)

BN

Admittance is the reciprocal of impedance. At high enough frequencies THROAT
becomes unity. The acoustic impedance for a duct is defined as the specific acoustic
impedance divided by the cross-sectional area, Z/S.

In order to obtain an expression of the impedance let us consider the
exponential horn equation!. 4,17 that can be written as:

(2-14)

where £ = particle displacement along the x-axis, ¢ = sound velocity ir water,
m = horn flare constant, and t = time. Upon solving the equation for { and
obtaining the acoustic impedance, the following expression is obtained (for a long

horn):
m '2 m
Vo-(5)
PANEE 2k

A graph of the imaginary part of the impedance versus the real part of the
impedance in units of pc/S, is given in Figure 2-5 and a set of values is given in
Table 2-1. Itis apparent that beyond about 20 kHz the horn should behave purely
resistive. This horn was constructed and the results are reported in a later section.

[q
z:g— 2-15)
[¢]

where k = w/c,

2-8
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TABLE 2-1. IMPEDANCE VERSUS FREQUENCY FOR HORN WITH FLARE
CONSTANTM=0.27

f m/2k Z
1kHz 3.2 0 + j 6.2 (double valued)
2kHz 1.6 0 + j4.4 (double valued)
5kHz 0.64 0.76 + j0.64
10 kHz 0.32 0.89 +30.32
20 kHz 0.16 0.97 + 0.064
50kHz 0.064 0.99 +;0.032
100 kHz 0.032 0.999 +;0.016

2-10
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CHAPTER3
REFLECTING WALL HORNS

As shown in Figure 2-5, the impedance of the horn becomes resistive at higher
frequencies. It should therefore be possible to acoustically match water to steel
using an appropriate ratio of mouth to throat areas.

A horn of sheet aluminum covered with closed pore air foam was constructed
for this purpose, with sides shown in Figure 3-1. The ratio SMOUTH/STHROAT is
197/6.25 = 31.5 thus in water, at the throat, the impedance should be increased by a
factor of 31 to match that of steel.

The factor of 31 was chosen so that

(¢)STEEL 79x5940  SMouth

(@ WATER 1x1500 SThroat

The flare rate of 0.27 is the same as the one used in obtaining the graph of Figure 2-5
which indicates no imaginary component over 50 kHz. A 1-foot steel rod was
connected to the horn as shown in Figure 3-2. It was expected, that if the coupling
was effective, and echo from the back surface of the steel rod would be obtained. It
was found to our surprise that an echo was obtained within the horn, possibly at the
throat or about 1-inch forward of the throat. These results have not been explained
satisfactorily, but several additional experiments with the horn alone showed the
same type of in-horn reflection. Therefore, a longer horn with the same curvature as
the one shown in Figure 3-1 was constructed with a throat area of 2cm2.

The reflections obtained are shown in Figure 3-3 as a function of the angle
through which the horn was rotated. The frequency of measurement was 200 kHz.

An overall attenuation of 4 dB on axis is present with practically no response
off axis. The major reflections occur at 0.75 cm and 2.5 cm from the throat inside the
horn. A weaker reflection was obtained at 5 cm from the throat. The phenomenon is
not clear to us. Defectsin the construction of the horns (that were hand-assembled
and glued) might be responsible.

We now consider the case of reflecting horns with inserted absorbers. If a small
iece of rubber is placed on axis (Figure 3-4 and 3-5), considerable reflection loss can
ge obtained. The nitrile rubber used was the Naval Surface Warfare Center (NSWC)
formulation 299-42 and the sample #3400 contained 3 percent air. The polar graphs

are shown in Figures 3-4 and 3-5.

3-1
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2

AREA 197 cm

e

REFLECTIVE WALLS

AREA 6.25 cm®

FIGURE 3-1. HORN INTENDED TO MATCH THE IMPEDANCE OF WATER TO THAT OF STEEL
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FIGURE 3-2. EXPERIMENTAL ARRANGEMENT FOR DETERMINING THE MATCHING OF THE IMPEDANCE
OF WATER TO THAT OF STEEL
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FIGURE 3-3. BEAM PATTERN OF A HORN WITH 2 cm2 THROAT AT 200 kH:z
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FIGURE 3-4. BEAM PATTERN MEASUREMEN AS IN FIGURE 3-3 WITH % INCH RUBBER ABSORBER,
SAMPLE 3400, IN FRONT OF HORN AT 200 kHz
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FIGURE 3-5. BEAMPATTERN OF HORN AS IN FIGURE 3-3WITH EXPONENTIALLY SHAPED ABSORBER
TINCH BY % INCH BY 2 INCHES, SAMPLE 3400, IN FRONT OF HORN AT 200 kHz .
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In conclusion, owing to the limited success of the experiments, little was gained
by using a horn as a reflection loss device. The 10 dB reduction shown in Figure 3-5
could probably be easily optimized to perhaps 15 to 20 dB by proper use
of horn flare, horn shape, and rubber absorber. However, other simple absorption
mechanisms could do as well or better at these frequencies. Lower frequency
behavior using the same size horn is theoretically possible but was not investigated
due to the limited time available.

An application that might make a superior sound absorber is shown in
Figure 3-6. This arrangement would operate as a sound trap coupling the sound into
an absorbing cavity.

3-7
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FIGURE 3-6. PROPOSED SOUND TRAP
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CHAPTER 4
ABSORBING WALL HORNS

A study was made of an exponential horn of m = 0.27 cm-! (same as in
Chapter 3) with a mouth area of 200 cm2 and a throat area of 2 cm2.

The material used was NSWC formulation 299-42 type Nitrile rubber with no
air inclusion and 1/4-inch thickness. The material has the following characteristics:

f Insertion Loss (dB) Reflection Loss (dB)

2kHz 0 -4
5kHz 0 -1
10 kHz -1 -1
25kHz -1 -2
50kHz -1 0
100 kHz -1 0
200 kHz -4 -3

The reflection attenuation was measured with a good reflector backing. The
reflector alone was taken as 0 dB. The measurements below 50 kHz are not very
reliable owing to the large wavelength and small tank size. The horn was measured
in three different arrangements as shown in Figure 4-1.

In configuration (D) the reflection data show very low values, in the 20 to 30 dB
range at 200 kHz. At lower frequencies, the attenuation dropped to about 10 dB, but
note that the material alone exhibits only 1 dB or less attenuation at those
frequencies. The data are shown in Figures 4-2 and 4-3.

In configuration (C) the horn shows, at 200 kHz, an insertion loss of 20 dB and a
reflection attenuation of 14 dB compared to a perfect reflector of the same size as the
mouth. Asexpected, the lack of throat loading had a negative effect on the reflected
sound.

The question remains, however, as to what shielding effect the horn hason a
reflecting wall. For this, the experiment on Figure 4-1 (E) was implemented. The
data are shown in Figure 4-4. The lossis a consistent 10 dB or more at high
frequencies. The data at low frequencies (<50 kHz) must be considered tentative
due to the abundance of echoes in the response.

4-1
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- 6 e 9 -
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RUBBER HORN
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I S -
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NOTE: (A) AND (B) SHOW THE EXPERIMENTAL ARRANGEMENT FOR
REFLECTION AND INSERTION LOSS. (C}, (D), AND (E) ILLUSTRATE
VARIOUS TYPES OF HORN CONFIGURATIONS

FIGURE 41. EXPERIMENTAL ARRANGEMENT FOR REFLECTION AND INSERTION LOSS
AND VARIOUS TYPES OF HORN CONFIGURATIONS
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FIGURE 4-2. POLAR DIAGRAM OF REFLECTION FROM RUBBER HORN OF FIGURE 4-1 (D)
AT 200 kHz
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CHAPTERS
SURFACE-MODIFIED MATERIALS

Given a sound absorbing material, a certain amount of acoustic energy is
always reflected upon entering the material.

Since the reflection in a horn may be smaller than that of a flat piece of the
same substance (see Chapter 4 for experimental data), it should be possible to reduce
the sound reflection from any sound absorber by creating a number of exponential
indentations in the surface as in Figure 5-1.

Since tue only materials considered are those that have good sound absorption,
the appropriate situation is that of a horn with wall loss. Phelps!1 shows in this
case, that the attenuation is exponentially dependent on a factor which is dependent
on various parameters as given in Equation (2-10).

EXPERIMENTAL DATA

The materials, whose surfaces were modified, were polyurethane foams
obtained from the Witco Chemical Corp., New Castle, Delaware. They had the
following characteristics:

Sound
Material Description Density  Velocity (M/S)
DRZ 22-95 0.89 801
’ DRZ 22-138 0.96 600

The material was machined into two forms: (1) a 2-inch thick disk of 2-inch
diameter and (2) the same form but with a horn shaped cavity machined in it (see
Figure 5-2). The curvature of (2) was approximately exponential withm = 0.7. A
special tool was made for this purpose.

The samples were measured in a 2-inch diameter by 13-foot long impedance
tube. The results are shown in Figure 5-3. An improvementin high frequency
reflection loss of roughly 5 to 10 dB is obtained to the presence of the exponential
shaped cavities.

5-1
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ACOUSTIC ENERGY

SOUND
REFLECTOR SOUND ABSORBER

FIGURE 5-1. CROSS SECTION OF EXPONENTIAL INDENTATIONS
IN THE SURFACE OF A SOUND ABSORBER
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FIGURE 5-2. CYLINDRICAL URETHANE HORN
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FIGURE 5-3. REFLECTION LOSS OF A 2-INCH SAMPLE OF DRZ-22-138
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The effect for the horn used, which is of high "m," cuts off (Equaticn (2-3)) at
about:

mc
f = — < 8kHz
¢ 4n

It is expected that perhaps the improvement can be extended down to about
5 kHzor even to 2 kHz by rearranging the horn shape.

Note that the quantity of material present in the horn is smaller than in the
disk. Some of the peaksin the disk response are favorably due to half wave thickness
resonances. In Figure 5-3 these rescnances appear at 6.5 and 13 kHz which are
harmonically related.

MULTIPLE HORNS ON POLYURETHANE

It is expected that, for a small flare m, the wavelength limitations of the horn
mouth can be improved by forming a multitude of horns on a surface. Such a unit
was constructed on a sheet of polyurethane DRZ-TOTO-138, 1-inch thick and 1-foot
square. The polyurethane density was 64 1b/ft3. The ensemble is shown in
Figure 5-4.

The horns (holes) were 2 cm deep and approximately 3/4-inch apart. The
exponential flare was 2.0 cm-1.

The responsc was compared between direct and reversed position of the horns
with respect to the sound beam. In this way the same amount of absorber is
compared for two different cases. The results are shown in Figures 5-5 and 5-6 where
both insertion and reflection loss (backed by a good reflector) were measured.

From Figure 5-5 it can be seen in both cases that the insertion loss is high
indicating that little energy is being transmitted through the material. Thus,
almost all of the incident beam is either absorbed or reflected. From Figure 5-6 it
can be seen that when the horn surface is facing the incident wave, an additional 2 to
6 dB increase in reflection loss is obtained over the reverse case. Thus the presence
of the horn array clearly improves the process in which energy enters the material so
that it may be absorbed.
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CHAPTER 6
CONCLUSIONS

It has been shown that an exponentially shaped surface in a polyurethane foam
can be used to absorb waterborne acoustic energy. Testing clearly demonstrated
that a set of these cavities could be placed in the surface of a viscoelastic material to
achieve acoustic energy absorption over a large area. There is the possibility,
however, that this system could give rise to diffraction effects which could increase
the reflected signal at certain spatial points. Due to time limitations, this area was
not explored.

Itis very possible that an efficient underwater measurements tank lining could
be developed using the principle of an absorbing horn.
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