
LS

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Il

TIESIS
PERFORMANCE EVALUATIONS OF A

PARALLEL AND EXPANDABLE
DATABASE COMPUTER --

THE MULTI-BACKEND DATABASE COMPUTER

by

James E. Hall

June 1989

Thesis Advisor: David K. Hsiao

Approved for public release; distribution unlimited

DTIC
SELECTEafS SE2 11989f

17B-
++jC 174+ +

Unclassified
Security Classification of this page

REPORT DOCUMENTATION PAGE
la Report Security Classification lb Resncuve MarkingsUNCLASSIFIED __________________

2a Security Classification Authority 3 Distribution Availability of Report

2b Declassieatiorvtwngrading Schedule Approved for public release; distribution is unlimited.

4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)

6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
(If Applicable)

Naval Postgraduate School 52 Naval Postgraduate School
6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Fding/Sponsoring Organization 8b O..ice Symbol 9 Procurement Instrument Idenification Number

(If Applicable)

8c Address (city, state, and ZIP code) 10 Source of Funding Numbers
Pmpwn Elniati Nmwnbe I Projc No TakNoI Wack Umt Actoaon No

11 Title (Include Security Classification)
PERFORMANCE EVALUATIONS OF A PARALLEL AND EXPANDABLE DATABASE COMPUTER --

THE MULTI-BACKEND DATABASE COMPUTER
12 Personal Author(s)

Hall, James E.
13a Type of Report 13b Time Covered 14 Date of Report (year, monthday) 15 Page Count

Master's Thesis From To June 1989 100
16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block number)

Field Grup Subgroup Database Computer, Parallel Processing, Performance Evaluation,
Benchmarking, Muti-Backend Computer.

19 Abstract (continue on reverse if necessary and identify by block number
.. This sctdy is the actual application of a performance evaluation technique known as benchmarking to an
experimental database management system (DBMS). The specific DBMS evaluated is the Multi-Backend
Database System (MBDS) which is a software multiple-backend database system. The unconventional nature of a
multiple-backend computer system required the development of a special performance evaluation methodology
which was the topic of several related theses. A previously developed performance evaluation methodology and
the computer assisted benchmarking tools developed to implement the methodology had only been applied to
MBDS on a very small scale and had not been used with the current set of modern MBDS hardware.

The focus of this thesis is the verification of the performance claims made by the implemei~tor of MBDS.
These performance claims were, in fact, validated by conducting a series of relatively large-scale benchmarking
experiments in which MBDS performed, generally, as predicted by its implementor. While the results are
encouraging, future benchmarking experiments need to be conducted on an even larger database to examine
MBDS performance under an extreme load. This will require the development of a high-speed database loading
utility which is not the focus of this thesis. Here, we report on the test databases, test transactions and test results
(which constitute the benchmarks) used to verify the MBDS implementor's claims of response-time reduction and
response-time invariance.
2D Distribution/Availability of Abstract 21 Abstract Security Classification

Z ucasitjniied h-- s as repor DilCusers UNCLASSIFIED
22a Name of Responsible Individual 22b Telephone (Include Area code) 22c Office Symbol

Prof. David K. Hsiao (408) 646-2253 Code 52Hq
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted secunrty classification of this page

All other editions are obsol- Unclassified

Approved for public release; distribution is unlimited.

Performance Evaluations of a Parallel and Expandable

Database Computer -- the Multi-Backend Database Computer

by

James E. Hall

Captain, United States Marine Corps
B.S., National University, 198,

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1989

Author: /,:4 . CZ{
James E. Hall

Approved by: IKKL -7(J/")' --
David K. Hsiao, Thesis Advisor

C.Thomas Second Reader

Robert B. McGhee, Chairman

Department of Computer Sciencex. .- .

Dean of Information and Policy Scienc

ii

ABSTRACT

This study is the actual application of a performance evaluation technique

known as benchmarking to an experimental database management system

(DBMS). The specific DBMS evaluated is the Multi-Backend Database

System (MBDS) which is a software multiple-backend database system. The

unconventional nature of a multiple-backend computer system required the

development of a special performance evaluation methodology which was the

topic of several related theses. A previously developed performance evaluation

methodology and the computer assisted benchmarking tools developed to

implement the methodology had only been applied to MBDS on a very small

scale and had not been used with the current set of modem MBDS hardware.

The focus of this thesis is the verification of the performance claims made

by the implementor of MBDS. These performance claims were, in fact.

validated by conducting a series of relatively large-scale benchmarking

experiments in which MBDS performed, generally, as predicted by its

implementor. While the results are encouraging, future benchmarking

experiments need to be conducted on an even larger database to examine

MBDS performance under an extreme load. This will require the development

of a high-speed database loading utility program which is not the focus of this

thesis. Here, we report on the test databases, test transactions and test results

(which constitute the benchmarks) used to verify the MBDS implementor's

claims of response-time reduction and response-time invariance.

ae-sn n For

IT A&I
11 17

I,_' I CI I'ca 1 I_

Diatrl :t. Ion/

Avn11tn'Illty Codes
/ cJAVaI arndior

4"'{,7 Diat $Poc 1.1iii I

TABLE OF CONTENTS

I. INTRODUCTION .. I

A. BACKGROUND 1

1. The Field of Study 1

2. Performance Evaluation in General 5

3. Our Area of Research 6

4. The Research Environment 6

5. The Importance of this Research 6

B. RESEARCH QUESTIONS AND OBJECTIVES 7

1. MBDS Performance Claims 7

2. Primary and Subsidiary Research Questions 8

C. SCOPE, LIMITATIONS AND ASSUMPTIONS 8

1. The Scope 8

2. Lim itations 8

a. The Test Database Size 8

b. The Block Size 10

c. The Test Transactions 11

d. The Computer-Aided Tools 11

3. A ssum ptions 12

D. A LITERATURE REVIEW AND THE METHODOLOGY 12

1. The Previous Research 12

2. Research Methodology 13

E. DEFINITIONS AND ABBREVIATIONS 13

1. Definitions 13

2. Abbreviations 14

F. A SUMMARY OF FINDINGS 15

G. THE ORGANIZATION OF THIS STUDY 15

iv

II. THE MULTIPLE-BACKEND DATABASE SYSTEM (MBDS) 17

A. AN OVERVIEW OF MBDS 17

B. MBDS DESIGN FEATURES 18

1. The Backend Controller 18

2. The Communications Bus 18

3. The Backend Computers 20

4. The Database Layout 20

a. Data Placement 20

b. Clustering 21

c. The Physical Distribution of Records 21

C. THE ATTRIBUTE-BASED DATA MODEL 24

1. The Base Data 25

2. The Meta Data 25

3. The Directory 26

D. THE AIRIBUTE-BASED DATA LANGUAGE 26

1. The Insert Request 27

2. The Delete Request 27

3. The Update Request 27

4. The Retrieve Request 28
5. The Retrieve-Common Request 28

6. A Summary of ABDL 29

E. THE MBDS HARDWARE 29

1. Generic Unix Computers 29

2. The Disk Drives 30
3. The Broadcast Bus 30

I. THE COMPUTER-AIDED BENCHMARKING SYSTEM (CABS) . . 31

A. AN OVERVIEW 31

B. THE COMPONENTS OF CABS 32
1. The Database Generator 32

v

a. The Design of the Test Database 32

b. The Record File 35

c. The Template and Descriptor File 36

2. The Test Transaction Mix 37

3. The Generation of the Evaluator Reports 39

C. HOW TO USE CABS 39

1. Running the program 39

2. The Output 41

a. The Database Files 42

b. The Transaction Mix Files 44

c. The Report Files 44

D. THE BENCHMARKING METHODOLOGY 45

1. The Initial System Setup 45

2. Operating the Test Interface 45

a. Starting the System 45

b. Loading the Test Database 46

L. Conducting Performance Testing 47

d. Collecting the Performance Data 50

e. Exiting the Test Interface 51

IV. THE MEASURES 52

A. AN OVERVIEW 52

B. THE RESPONSE-TIME REDUCTION MEASURE 52

C. THE RESPONSE-TIME INVARIANCE MEASURE 53

V. THE PERFORMANCE DATA 55

A. THE BASE CONFIGURATION 55

B. THE TWO-BACKEND CONFIGURATION 56

1. RTR Results 56

2. RTI Results 57

C. THE THREE-BACKEND CONFIGURATION 58

vi

1. RTR Results 58

2. RT I Results 59
D. THE FOUR-BACKEND CONFIGURATION 60

1. RTR Results 60

2. RTI Results 61
E. THE FIVE-BACKEND CONFIGURATION 62

1. RTR Results 62

2. RTI Results 63
F. THE SIX-BACKEND CONFIGURATION 64

1. RTR Results 64

2. RTI Results 65

G. THE SEVEN-BACKEND CONFIGURATION 66

1. RTR Results 66

2. RTI Results 67

H. THE EIGHT-BACKEND CONFIGURATION 68

1. RTR Results 68

2. RTI Results 69

I. AVERAGE PERFORMANCE BY TRANSACTION TYPE ... 70

VI. ANALYSIS AND INTERPRETATION OF THE TEST DATA 72

A. AN ANALYSIS OF MBDS RESPONSE-TIME REDUCTION 72

1. RTR Performance on Overhead-Intensive Transactions 72

2. RTR Performance on Data-Intensive Transactions 75

B. AN ANALYSIS OF MBDS RESPONSE-TIME INVARIANCE 81
I. The RTI Testing in General 81

2. RTI Performance on Overhead-Intensive Transactions81
3. RTI Performance on Data-Intensive Transactions 83

VII. CONCLUSIONS AND RECOMMENDATIONS 86

LIST OF REFERENCES 88
INITIAL DISTRIBUTION LIST 89

vii

LIST OF TABLES

1. TIME TO LOAD LARGE SCALE DATABASE 9

2. THE SLNGLE-BACKEND RESPONSE TIMES 55

3. SINGLE-BACKEND RECORD DISTRIBUTIONS 55

4. THE TWO-BACKEND RTR PERFORMANCE 56

5. TWO-BE RTR RECORD DISTRIBUTIONS 56

6. THE TWO-BACKEND RTI PERFORMANCE 57

7. TWO-BACKEND RTI RECORD DISTRIBUTIONS 57

8. THE THREE-BACKEND RTR PERFORMANCE 58

9. THREE-BACKEND RTR RECORD DISTRIBUTIONS 58

10. THE THREE-BACKEND RTI PERFORMANCE 59

11. THREE-BACKEND RTI RECORD DISTRIBUTIONS 59

12. THE FOUR-BACKEND RTR PERFORMANCE 60

13. FOUR-BACKEND RTR RECORD DISTRIBUTIONS 60

14. THE FOUR-BACKEND RTI PERFORMANCE 61

15. FOUR-BACKEND RTI RECORD DISTRIBUTIONS 61

16. THE FIVE-BACKEND RTR PERFORMANCE 62

17. FIVE-BACKEND RTR RECORD DISTRIBUTIONS 62

18. THE FIVE-BACKEND RTI PERFORMANCE 63

19. FIVE-BACKEND RTI RECORD DISTRIBUTIONS 63

20. THE SIX-BACKEND RTR PERFORMANCE 64

21. SIX-BACKEND RTR RECORD DISTRIBUTIONS 64

22. THE SIX-BACKEND RTI PERFORMANCE 65

23. SIX-BACKEND RTI RECORD DISTRIBUTIONS 65

24. THE SEVEN-BACKEND RTR PERFORMANCE 66

25. SEVEN-BACKEND RTR RECORD DISTRIBUTIONS 66

26. THE SEVEN-BACKEND RTI PERFORMANCE 67

27. SEVEN-BACKEND RTI RECORD DISTRIBUTIONS 67

28. THE EIGHT-BACKEND RTR PERFORMANCE 68

29. EIGHT-BACKEND RTR RECORD DISTRIBUTION 68

viii

30. THE EIGHT-BA ,KEN-D RTI PERFORMANCE.................69

31. EIGHT-BACKEND RTI RECORD DISTRIBUTIONS 69

32. AVERAGE RTR PERFORMANCE TIMES.................... 71
33. IDEAL RTR PERFORMANCE TIMES....................... 71
34. AVERAGE RTI PERFORMANCE TIMES.................... 71

ix

LIST OF FIGURES

1. Conventional Mainframe Approach 2

2. Single-Backend Approach 2

3. M ulti-Backend Approach 3

4. Clusters of Records 22

5. The Structure of the Test Database 38

6. RTR Performance on Transaction #1 73

7. RTR Performance on Transaction #6 74

8. RTR Performance on Transaction #2 76

9. RTR Performance on Transaction #3 77
10. RTR Performance on Transaction #4 78

11. RTR Performance on Transaction #5 79

12. RTR Performance on Transaction #7 80

13. Overhead-Intensive RTI Performance Analysis 82

14. A Comparison Chart of Data-Intensive RTI Performance 84

15. An Analysis of Data-Intensive RTI Perfcrmance 85

x

I. INTRODUCTION

A. BACKGROUND

1. The Field of Study

There was an early warning about the onset of a revolution in the

field of database management provided by [Ref. f]:

Database machines are coming, database ma .vines are coming!

After more than a decade of research and development, it is clear that database

machines are here to stay. Database machires are special-purpose computers

(usually mini-computers) which nrovide on-line database management services

and control their own secondary storage (disk) systems. Database machines

have private, high bandwidth I/O subsystems which permit these special-

purpose computers to perform the data-intensive (I/O intensive) functions

associated with database management in an efficient and uninterrupted manner.

By comparison, the general-purpose mainframe computer is geared towards the

computation-intensive execution of multiple programs (processes). In addition

to sharing the CPU, the processes in a mainframe system also share (and

compete for) data channels and secondary storage resources. As a result,

mainframe-based database systems are crippled by the shared nature of the

system resources. Figure 1 depicts the conventional mainframe based database

approach.

Database machines are ordinarily connected to one or more host

(frontend) mainframe computers via a two-way communications link. In such

a configuration, the database machine is known as a backend processor. There

are two basic database machine configurations -- single-backend and multiple-

backend. Figures 2 and 3 depict both database machine topologies. Both

configurations move the database management fu,,ction from the busy frontend

mainframe computer to the dedicated backend database machine. The frontend

i il I I I I I I I I l1

Mainfrwne Coputer

l pications Operating Database On-Line Rawe Disk

Prr~ System Mangement 1/ Daa 0Cntroller

I

Figure 1. Conventional Mainframe Approach

Host

Applications Operating

Prograns System

Transaction Backend
Answer Database On-Line w Disk--I

Transaction Answer Management 1/ Data" Controller

Host __'____

Applications Operating

P'ograns Systen

Figure 2. Single-Backend Approach

- i rnnt W-rn

Cortroller 8US N~rarolkr

Ims5ct ion,
Host

Figure 3. Multi-Backend Approach

3

computer receives user requests in the form of database transactions which are

transmitted to the database machine. These transactions are processed by the

database machine which returns the answer for a given transaction to the user

over the communications link. Although a single-backend database machine is

a far more efficient database manager than a conventional mainframe-based

database system, the performance of a single-backend system degrades

predictably as the database size increases (much like a conventional mainframe-

based database syste -). This analogy between a single-backend and

mainframe-based systc., is also true in the area of performance upgrades. The

only performance upgrade option is to buy the next generation of hardware or

software. This results in relatively low performance increases on the order of

10-20% for a premium price. Additionally, performance increases of this small

magnitude are consumed quickly by any database growth.

Multiple-backend database machines have the potential for both high-

performance transaction processing and large capacity growth. Inzreasing the

number of backends and distributing the database evenly over each of the

backends should demonstrate predictable performance gains and capacity

growth in a multiple-backend system. In order to determine the performance

capabilities of a given multiple-backend configuration, the database

administrator must have some empirical method for measuring system

performance. The performance evaluation of multiple-backend database

machines is more complex than the performance evaluatior of either the

conventional mainframe-based system or the single-backend system. This

study is the performance evaluation of the experimental Multi-Backend

Database System (MBDS) which is under development in the Laboratory for

Database Systemns Research of the Naval PostgrJuate School.

4

2. Performance Evaluation in General
Although computer software engineering techniques have evolved

and improved over time, software engineering remains more of an "art" than an
engineering discipline. In other engineering disciplines, performance

specification and evaluation are more integral parts of the design process.
Automotive engineers, for instance, can establish the performance specifications
for a sports car early in the design process, assemble the necessary components
and measure the car's performance with standardized tests (i.e., horsepower,
cornering force, 1/4 mile elapsed time). Unfortunately, computer software

engineers tend to handle this process differently. Computer software
performance evaluation is often a separate, postdevelopment process. Modem
software engineering techniques focus on computer program correctness,
modularity and maintainability rather than focusing on efficiency. This

difference is due in large part to the enormous (and growing) demand for
software, the overall performance increases of the computer hardware, the
many problems associated with software maintenance and the need for reliable
application software. If a program doesn't work, it doesn't matter how fast it

runs [Ref. 2).

Modern computer hardware speed and capacity has served to mask
the inefficiencies of our software by allowing the programs to run fast enough

to be acceptable to users. This does not make computer system performance
evaluation a dead issue. Computer system (system, for short) performance
evaluation is a growing subdiscipline of computer science. Performance
evaluation has important applications in the following areas:

* Procurement -- The establishment of measurable selection criteria.

* Improvement -- The modification of an existing system to improve
performance.

* Capacity Planning -- The modeling of changes to a system and/or its
workload to determine whether or not the system can support the
changes.

* Design -- The verification of system design claims.

5

These performance evaluation categories were originally identified in [Ref. 31
and [Ref. 41. Complete hardware/software systems or individual system

components can be the targets of performance evaluation studies.

3. Our Area of Research

This study is the actual application of a performance evaluation

technique known as benchmarking to an experimental database management

system (DBMS) known as the Multi-Ba kend Database System (MBDS) in an

attempt to verify the implementor's peormance claims. Because the system

under study is a DBMS, the research is in the general area of database systems

and machines. Since the DBMS under study employs a parallel and

expandable computer architecture, this research is also in the area of parallel

processing by computers.

4. The Research Environment

The research was conducted in a controlled environment of the NPS

Laboratory for Database Systems Research on a network of modem UNIX

workstations. The research was aided by using an existing set of computer-

aided design (CAD) tools for performance evaluation known as the Computer-

Aided Benchmarking System (CABS). The DBMS under study is the

experimental Multiple Backend Database System (MBDS). The maintenance

and on-going development of MBDS is conducted by a team of professional
programmers. Since MBDS is still under development, a working version was

set aside for the benchmarking experiment to prevent side-effects from any

enhancements made to MBDS during the testing process.

5. The Importance of this Research

This study is primarily in the performance evaluation category of

design verification. The focus of MBDS development has primarily been on

software correctness and not on software performance. As a result, MBDS

performance had never been tested to any great extent. Therefore, verification

of the system's design goals in the areas of performance and capacity growth

6

was important to the implementors and supporters of MBDS. The results of

this study also have significant implications for MBDS in the remaining areas

of performance evaluation. The results could be used to evaluate the cost

effectiveness of an actual implementation of MBDS, to identify any bottlenecks

in MBDS for future optimization efforts or to extrapolate the MBDS capacity

for database growth. This research is based on the practical application of a

previously developed and largely untested CAD benchmarking methodology.

The utility, generality and applicability of CABS as a CAD tool for use in

future performance evaluation efforts became apparent though extensive use of

CABS during this research.

B. RESEARCH QUESTIONS AND OBJECTIVES

1. MBDS Performance Claims.

As an expandable computer, MBDS may employ one or more

database backends. MBDS was designed to exploit the opportunities for

parallel processing presented by distributing the database over more than one

backend. The following is a summary of the performance claims that have

been made by the designer and implementor of MBDS:

* Response-Time Reduction (RTR). The response-time reduction of a
transaction is inversely proportional to the multiplicity of the backends.
This means that as the number of backends increases, the response-time
reduction for a given transaction is expected to improve (e.g., moving
from one backend to three backends should yield a response-time
which is just one-third the original response time).

" Response-Time Invariance (RTI). The response-time invariance of a
transaction in response to the increase of the database size is
maintained by a corresponding increase in the multiplicity of the
backends (e.g., when the database doubles in size, doubling the nurr" er
of backends will yield the original response-time).

7

2. Primary and Subsidiary Research Questions

The primary research question is to determine to what degree MBDS
demonstrates the response-time reduction and/or the response-time invariance.
The subsidiary research questions of determining an appropriate test database,
test transaction set and test configurations were already solved by the designers
and implementor of CABS. Since CABS provided the tools necessary to

benchmark MBDS, the objectives of this research were to learn how to use
CABS, to learn how to load various configurations (" MBDS, to run the
benchmark experiments methodically and then to interpL.. the results.

C. SCOPE, LIMITATIONS AND ASSUMPTIONS

1. The Scope

The scope of the thesis covers the following three areas:
* Application of a benchmarking methodology to a configurable

computer with a variable number of parallel database processors and
stores.

* Collection of benchmarking results from the parallel database computer
under various transaction loads.

* Interpretation of the performance data and correlation of the data with
the predicted performance gains and growth capacity.

2. Limitations

a. The Test Database Size

The original intent of this study was to test a very large-scale

database with as much as 300 megabytes of base data per backend. The
capability of generating such a database was central to the CABS methodology.

Unfortunately, neither the designers nor the implementor of CABS considered
the time necessary to actually build a database of this size -- record by record.
At the outset of this study, the MBDS insertion rate was only one record every

eight seconds. The insertion process is complex and had never been optimized
since MBDS is still under development. Because the scale of the desired

8

database would require a very rapid record insertion rate, considerable time

was spent in optimizing the insert process before starting the testing. A rate as

high as two records a second (for small records) was achieved as the result of

the optimization effort. This was a marked improvement but what was needed

an improvement of several orders of magnitude.

Even at nearly two records a second, the test database could be
built at a rate of only one megabyte per hour. The time necessary to load a

single 300 megabyte configuration of MBDS would take nearly two weeks of

co..stant computer processing time. The CABS methodology calls for three

database sizes with 15 different test configurations each. Each database must

be loaded a minimum of nine times to set up the test configurations. The non-

stop computer processing time required for a full test is shown in Table 1.

TABLE 1. TIME TO LOAD LARGE SCALE DATABASE

Database size Conuter Time

Large (300 Mb) 9 * 2 weeks

Medium (150 Mb) 9 * 1 week

Small (70 Mb) 9 * 1/2 week

31.5 weeks !!!

Clearly, the amount of time necessary to 'oad a very large-scale

database was prohibitive, so the decision was made to reduce the maximum

database size per backend to 30 megabytes. Unfortunately, this goal proved

unobtainable as well, when a peculiar system problem occurred six to seven

hours into the lengthy loading process. At this point in the loading process,

9

there is a tremendous and inexplicable slowing of MBDS processing by the
UNIX operating system. The insertion of records continues correctly but at a
very slow rate of about one record a minute. This phenomena occurred every
time a long duration load was attempted.

The slowing of the insert process is strictly the result of lengthy
computer processing time rather than an actual degradation in the performance
of MBDS as the database grows. The fact that the MBDS insertion rate
remains constant for a given record length was demonstrated by stoppin the

slowed processes manually and then restarting MBDS. The system woul,: start
inserting at the normal rate, adding to the seven plus megabytes of data already

loaded. A problem associated with stopping and restarting the system was to

determine exactly which record was the last record successfully inserted so that
the input file could be altered for reuse. The benchmarking methodology
depends on a specific number of records which made the restart procedure time

consuming since missing or duplicate records would be unacceptable. As a
result of these technical limitations, the decision was made to go forward with
only the smallest of the three database sizes provided for testing by CABS. In
Chapter III, we discuss CABS in more detail. The small database amounts to
nearly seven megabytes of base data per backend and consists of more than

30,000 records per backend. The database size chosen was large enough to put
MBDS through its most comprehensive test to date and to provide a clear

indication of MBDS performance characteristics.

b. The Block Size

The block size is an integral part of the way MBDS distributes

the database. The block size assumed by the CABS methodology was 2000
bytes. Unfortunately, during the optimization process for the INSERT
transaction, this assumption was overlooked. The block size is a system
constant which can be adjusted by changing the value and recompiling the
MBDS source code. The optimum block size arrived at for insertions was
eight kilobytes, the basic unit of communication between backends and the

10

secondary storage devices. The problem is that the larger block size caused
MBDS to load the test databases more unevenly than if the smaller block size

was used instead. The CABS methodology creates so many clusters (many
nearly empty anyway) that the problem was not immediately noticeable and it
was not discovered until near the end of the study. Even with the correct
block size, MBDS loads the database unevenly. A test was conducted to assess

the impact of this oversight. The system performance was virtually even (with
the large block size slightly faster), but the insertion rate was much slower.
The decision was made to complete the testing with the eight kilobyte block

size.

c. The Test Transactions

The original intent was to evaluate all five of the database
request types: INSERT, DELETE, RETRIEVE, RETRIEVE-COMMON and

UPDATE. However, UPDATE and RETRIEVE-COMMON were not available
for this study because these transactions were undergoing modification and

optimization during the testing. Additionally, during the course of loading the
test databases, it became apparent that testing the INSERT transaction was
unnecessary. After literally logging days of constant INSERT transaction
processing, the performance of the MBDS INSERT transactions was constant

for a given record size.

d. The Computer-Aided Tools

The actual version of CABS available did not provide all of the
reports and files that the system is supposed to produce (see Chapter III).
Most of the reports generated are based on the incorrect assumption of perfect

database record distribution which renders them useless. The most serious flaw
discovered in the CABS output was the MBDS descriptor file which is the

basis for the clustering and database distribution. The file generated did not
implement the CABS design methodology due to a complex programming

error. The file generated was huge and grouped all of the records into two
record clusters. This presented a lengthy setback in the testing process.

11

Finally, the logic error was discovered and then corrected by the MBDS system
programmers. The current version of CABS generates the correct descriptor

files.

3. Assumptions

Since the objective of this benchmarking effort was the design
verification of MBDS, the system was always tested in a best-case scenario.
For the purpose of this study, best-case means that the only load on the
frontend and backend computers was MBDS and that the database was always
as evenly distributed as possible. Modeling real-world processing loads and
database loads and database distributions is beyond the scope of this study and
the capabilities of CABS. However, the make-up of the artificial database
generated by CABS is a challenging test for MBDS and is discussed in more
detail in Chapter III.

D. A LITERATURE REVIEW AND THE METHODOLOGY

1. The Previous Research

Over the past six years, a considerable amount of thought and work
has gone into the development of the methodology and CAD tools used in this
study. Below is a chronological list of pr(vious work with a brief summary of
the contribution of the work:

" Performance Evaluation Tools for a Multi-Backend Database System by
Joseph G. Kovalchik, December 1983. This thesis presents a design
foundation for a set of ideal database performance evaluation tools.

* A Methodology for Benchmarking Relational Database Machines by
Paula R. Strawser, March 1984. This dissertation presents standards
for the performance evaluation of relational database machines.

" Internal and External Performance Measurement Methodologies for
Database Systems by Robert C. Tekampe and Robert J. Watson, June
1984. This thesis documents the actual instrumentation of MBDS for
internal and external performance evaluation. A small scale
benchmarking experiment was performed manually with promising
results. Recommendations were made for automated benchmarking
tools and a more complete system test.

12

" A Performance Measurement Methodology for Software Multiple-
Backend Database System by James R. Vincent, June 1985. This thesis
laid the design groundwork for the automated generation of test
database and test transaction sets.

* A Computer Aided Design for the Generation of Test Transactions and
Test Databases and for the Benchmarking of Parallel, Multiple-Backend
Database Systems by George Patrick Fenton, Jun 1986. This thesis
was the actual implementation of CABS.

2. Research Methodology

Beyond the papers listed above (many of which reference each

other), a library subject catalog search was conducted with limited results.

Few books exist on computer system performance evaluation in general and

database system performance evaluation in particular. [Ref. 3] and the updated

[Ref. 4] were useful and are considered standard references in the field of

performance evaluation.

E. DEFINITIONS AND ABBREVIATIONS

1. Definitions

* Backend -- A backend processor (or just backend) is a dedicated set of
computer hardware (including secondary storage) and software used to
accomplish specialized tasks, in this case database management.
Backend processors are connected to frontend computer which typically
perform the routine tasks (such as user interface) and control access to
the backends.

• Base Data -- The actual records which makeup the database.

* Benchmark -- A performance measurement which is repeatable and
provides a standard for comparison.

* Bottleneck -- The computer system component which is the limiting
factor for the entire system. Given the correct circumstances, hardware
performance (especially secondary storage), software performance and
communications capacities are all candidates for the label of system
bottleneck.

• Cluster -- A group of logically related records. An individual record
can only map to a single cluster of records.

13

" Configure/Configurable -- The assembly of a set of hardware and
associated software to create a new version of a computer system.
MBDS is said to be configurable because any number of backends can
be added to makeup a particular implementation of the system.

* Database Machine -- Special-purpose computers (usually mini-
computers) which provide on-line database management services and
control their own secondary storage (disk) systems.

" Data-Intensive -- A database query transaction which accesses a large
percentage of the base data. Since access to secondary storage is very
slow when compared to computer processing speed, the time spent
accessing the base data is the limiting performance factor, rather than
the time spent processing the transaction (looking up the records for
the system to access).

" Frontend -- The frontend computer is the machine between the user and
the backend processors. The frontend has minimal processing
responsibilities which are normally limited to relaying user transactions
to the backends and backend responses to the user.

* Meta Data -- Information about the database which includes indexing
data and record format data.

" Overhead-Intensive -- A database query transaction which accesses a
very small percentage of the base data. The time spent processing the
transaction becomes more significant and could become the limiting
performance factor.

* Response Time -- The elapsed time from the instant a database query
is released for processing to the instant the system is ready to report a
result. Normally, the time necessary to actually display the result is
not included, because this display time could vary greatly.

2. Abbreviations

* ABDL -- Attribute-Based Data Language

* CABS -- Computer-Aided Benchmarking System

* DBMS -- Database Management System

* MBDS -- Multi-Backend Database System

* RTI -- Response-Time Invariance

" RTR -- Response-Time Reduction

14

F. A SUMMARY OF FINDINGS
While CABS proved useful, the lack of a rapid database loader for CABS

limited the size of the test database. Even with a scaled-down database, the

performance characteristics of MBDS were clear. MBDS demonstrates strong
response-time invariance and response-time reduction. This is especially true

for data-intensive transactions since any added overhead due to

communications with additional backend processors becomes insignificant.
These findings were expected and originally thought to be heavily dependent

on perfectly even loading of the backend computers. Due to random selection

of the first backend for a given cluster of records, perfectly even loading of the

backend computers was not always possible. Surprisingly, nearly ideal

performance was still achievable with fairly uneven loading. This gave insight

into the performance achievable with a real database which would seldom, if

ever, be completely evenly loaded.

G. THE ORGANIZATION OF THIS STUDY
The remainder of this thesis is organized as follows:

* In Chapter II, we expand on MBDS. A more detailed description of
the target computer on which the benchmarks were performed.

" In Chapter III, we elaborate on CABS. A detailed description of the
benchmarking methodology and tools used to collect the benchmarking
data.

* In Chapter IV, we establish the measures. A description of the
performance-gain and capacity-growth measures in terms of response-
time reduction and response-time invariance, respectively, is given.

* In Chapter V, the test data are presented. Tabulation and
presentation of the data collected by transaction type and backend
multiplicity are included.

" In Chapter VI, data analysis and interpretation are given. The
correlated test data is related to the response-time reduction and
response-time invariance performance claims made about MBDS.

15

* In Chapter VII, we make our conclusions and recommendations.
Summarizes the benchmarking experience and indicates future work.

16

II. THE MULTIPLE-BACKEND DATABASE SYSTEM (MBDS)

A. AN OVERVIEW OF MBDS

The target system of this study is the prototype database machine known

as the Multiple-Backend Database System (MBDS) which is under development

in the Laboratory for Database Systems Research of the Naval Postgraduate

School (NPS). MBDS is a configurable database machine which employs one

or more backend computers which are connected parallelly via a broadcast bus.
This approach to database machine design is known as the software multiple-

backend approach. This approach is described in [Ref. 5]:

These backends have identical and replicated software and their own disk
systems. In a software multiple-backend configuration, there is a backend
controller (i.e., master) which is responsible for supervising the execution
of database transactions and for interfacing with the hosts and users. The
backends (slaves) perform the database operations with the database
stored on the disk systems of the backends ... Users access the system
either by way of the hosts or though the controller directly.

The ability of MBDS to share the workload among backend computers is the

source of potential performance gains and capacity growth in proportion to the

number of backends. MiBDS was designed to be easily expandable. This

design goal is realized through the use of generic computer hardware (UNIX

machines) which permits the use of identical software on each backend slave

computer. This means there is no new programming requirement when adding

backend computers to MBDS. Since special-purpose backend computers are

not required, it is possible to use different models of a given generic class of

computers for MBDS.

17

B. MBDS DESIGN FEATURES

1. The Backend Controller
While it is possible to configure a single backend implementation of

MBDS, the more effective and interesting MBDS configurations consist of two

or more backend computers. Further, one machine acts as the backend

controller and the remaining machines manage equal portions of the database.
The design of the MBDS backend controller is described by [Ref. 51:

The verall design goal of a backend controller should focus on
miniriazing the work done by the controller. The controller receives a
user transaction either from a host or through a terminal and sends the
transaction to all of the backends for execution. The controller also
collects all of the results produced by the backends for the user
transaction and routes the results to the host or to the terminal. As such,
the controller becomes a prime candidate for the bottleneck of the system.
By minimizing the work of the controller, and by offloading all of the
database management operations to the backends, the controller may
reduce the possibility of becoming the system bottleneck. Overall, the
functions of the controller are reduced to the pre-processing of the user
transactions, the post-processing of the transaction results, the sending
and receiving of data from the backends and hosts, and the arbitration of
data insertion into the database.

User database transactions are reformatted during pre-processing and placed on
the broadcast bus. They are transmitted or broadcast to all of the backends

simultaneously. The post-processing function combines the records received
from the backends in response to a transaction and performs any aggregate

operations (AVG, SUM, etc.) requested before forwarding the complete results

to the user.

2. The Communications Bus
MBDS uses a broadcast bus for the communications chores primarily

to ensure easy expansion of the number of backends. The task of adding

another backend to a given system requires the simple connection the backend
computer's communications transceiver to the local-area network which is

connecting the MBDS machines. Other bus topologies are conceivable, but
each of them has been disqualified due to its drawbacks as it is applied to a

18

parallel and expandable architecture like MBDS. For instance, the standard

token-ring type of bus does permit easy expansion but as the number of

backends increases, the delay in the message passing also grows. Another

alternative is a point-to-point or direct connection from the controller to the

backends and from each backend to all the other backends. This approach

offers the highest speed and capacity potential. However, expansion is limited

to the number of physical connection points provided on the computers. For

these reasons, the broadcast bus was selected for MBDS.

By using a broadcast bus, MBDS can achieve parallel execution of

user transactions. When the controller puts a message on the bus for the

backends, the message is broadcast to all the backends at once and is received

by the backends almost simultaneously. This form of controller-to-backend

communication is very fast when compared with the overhead involved in

point-to-point communications, which is also in keeping with the MBDS design

goal of minimizing the work done by the controller. The backends can make

use of the broadcast bus to communicate with other backends when necessary

and, mainly, to return the (partial) result of transactions to the controller for

postpfocessing. Fortunately, the answers to database queries tend to be much

smaller than the amount of base data actually accessed so congestion of the bus

by the backends is unlikely. The majority of the data is accessed over the

backend's own internal, high speed data bus connected to the secondary

storage. Even in the worst-case scenario of an exhaustive search or involved

merge operations where the broadcast bus would very likely be loaded with

output from the backends, the broadcast bus remains acceptable. This is

because some delay is expected by the user in such an operation from which

the user is expecting considerable operations and results from the system.

Ethernet, the industry standard broadcast bus, has a data transfer rate of ten

megabits per second which provides a fairly substantial bandwidth. If required

by the users or sheer size of the database, higher bandwidth broadcast buses do

exist. Such a bus would increase the transfer rate enormously and shift the

limiting factor to the speed and memory size of the controller.

19

3. The Backend Computers

The backends are the workhorses of the system, faithfully listening to
the broadcast bus for the next transaction which is executed at the earliest

opportunity as rapidly as possible. Each of the backends operates only on its

portion of the database and returns a partial result for assembly by the

controller. The design of the MBDS backends is described by [Ref. 5]:
... the backends of the system all have identical software to allow
replication of the softw re on a new backend. Additionally, the backends
must have romplete s- ware to perform all of the database management
functions. These functions include directory management, concurrency
control, record processing, and communications. The directory
management function is responsible for managing indices, calculating
record clusters, allocating the secondary-storage addresses for record
insertion, maintaining secondary-storage tables of indices, cluster
numbers, and addresses, processing transactions against the directory
tables, and providing record addresses for subsequent database access
operations. The concurrency control function oversees various accesses to
the directory tables and the user data facilities the concurrent execution of
transaction. The record processing function is used to stage the user data
from the secondary storage to the primary memory, to process the staged
data, to store data onto the secondary storage, and to return the responses
to the controller. Finally, there are communication functions in each
backend to control communications among backends and between the
backend and the controller. It is necessary to minimize the
communications among backends, in order to reduce the communications
traffic among them.

4. The Database Layout

a. Data Placement
In order to realize the full performance potential of MBDS, the

database must be spread out evenly across the backends. The design of the

MBDS database is described by [Ref. 5]:

In a multi-backend database system, a database must be placed on the
secondary storage in such a way so that all of the subsequent accesses to
the database will result in block-parallel-and-record-serial operation. In
other words, all of the backends are accessing, in parallel, the secondary-
storage blocks of the same database in their respective disk systems.
although the records in the blocks which may satisfy the same transaction
or different transactions are being accessed by the backends serially.
Thus, the issue really focuses on how to ensure an even distribution of the

20

user database across the disk systems of the backends. Such a
distribution requires a data placement algorithm. To achieve an even
distribution of data, there must be a processor in the multi-backend
database system that is responsible for overseeing the record-insertion
process. The controller has an overview of the entire system, and is the
logical choice for arbitrating the record insertion process, i.e., controlling
the data placement.

b. Clustering

To achieve block-parallel-and-record-serial operation, MBDS

partitions logically related records into clusters of records (often referred to as

just clusters). The clusters, in turn, are made up of one or more blocks of

storage space. A block is a preset unit of secondary storage (disk) space which

must be large enough to contain the largest record defined in the database, but

small enough to allow fragmentation of the cluster into multiple blocks. When

the first record of a given cluster is inserted, the data placement algorithm in
the controller selects the starting backend for the cluster at random and the

backend allocates one block of disk space in which to store the record. This

block becomes the active block of the cluster. As more record insertions into

the cluster occur, the active block will eventually run out of free space and the

backend with the active block must notify the controller. The controller

arbitrates this by simply sending the insert transaction to the next backend in a
round-robin manner. Figure 4 depicts the concepts of clusters, blocks and

records.

c. The Physical Distribution of Records
With an appropriately small block size, this data placement

(clustering) methodology assures a fairly even distribution of each cluster of
records over the backends. As shown in Figure 4, this cluctering methodology

can easily cause a certain amount of uneven loading. This is especially true
when the block size is much larger than the record size or the number of

records in a given cluster is small. This uneven loading phenomena is virtually

unavoidable because of the random selection of the first backend of each

cluster and the variable number of records possible in each cluster.

21

-el -l[If f c I 1-,Pc r m,~ u

I~~~~ -CO holPC C PI

_________ 8 7 PCII

Figure 4. Clusters of Records

Because the selection of the first backend of a given cluster is a

random decision, it is possible that certain backends could be selected more

often than others. This is especially true in a computer-based system because

there is not a true random number generator available to the computer

programmer. MBDS uses a pseudo-random number generator from the UNIX

system function library and like any good pseudo-random number generator it

tends to pick, on the average, a number near the middle of the range involved

(usually zero to unity, so one half should be the mean). This has a noticeable
effect on the distribution of records. In practice, the controller does tend to

pick certain backends for the starting block of a cluster more often than the

rest of the backends. Even if the selection of the first backend for each cluster

was perfectly fair, the only time a cluster of records can be distributed perfectly

evenly over all of the backends is the special case with the following

characteristics:
" All of the blocks in the cluster are full.

* The total number of blocks in the cluster can be evenly divided by the
number of backends (e.g., 30 blocks could be evenly distributed over
three backends, but not four backends).

In order to realize perfectly even loading of each of the backends, this special

case must be true for every cluster of records in the database! Thus, it makes

some uneven loading inevitable in any realistic database.

These problems are exacerbated by an excessively large block

size. Conversely, these problems are minimized by small block sizes and large

numbers of records. Since MBDS is designed to support very large databases
and the block size is under the control of the database administrator, these

problem areas have little effect on the application of MBDS to a carefuliy

designed database. However, the potential for uneven loading exists and must

be addressed early in the database design process. It is interesting to note that

no previous study has evaluated the effectiveness of the data placement

algorithm. This is especially true of the design of the CABS database where

the impression is given that perfectly even loading is both easily accomplished

23

and necessary for optimal performance. This discussion shows that a perfect

distribution must be contrived and would be quite difficult to accomplish. See

Chapters III and V for discussion on the database distribution created by

CABS. See Chapter VI for discussion on the performance costs of uneven

loading.

C. THE ATTRIBUTE-BASED DATA MODEL

The database model used by MBDS is the attribute based data model.

The attribute-based data model provides a high-level abstr . ion which permits

the user to view the logical properties of the database while concealing

implementation details of the database and DBMS. A concise description of

the attribute-based data model from [Ref. 5] is provided below:

In the attribute-based data model, the data is considered in the following
constructs: database, file, record, attribute-value pair, keyword, attribute-
value range, directory keyword, non-directory keyword, directory, record
body, keyword predicate, and query. Informally, a database consists of a
collection of files. Each file contains a group of records which are
characterized by a unique set of directory keywords. A record is
composed of two parts. The first part is a collection of attribute-value
pairs or keywords. An attribute-value pair is a member of the Cartesian
product of the attribute name and the value domain of the attribute. As
an example, <POPULATION,25000> is an attribute-value pair having
25000 as the value for the population attribute. A record contains at most
one attribute-value pair for each attribute defined in the database. Certain
attribute-value pairs of a record (or a file) are called the directory
keywords of the record (file), because either the attribute-value pairs or
their attribute-value ranges are kept in a directory for identifying the
records (files). Those attribute-value pairs which are not kept in a
directory are called non-directory keywords. The rest of the record is
textual information, which is referred to as the record body.

These constructs make up the two kinds of data used by MBDS, base data and

meta data.

24

1. The Base Data

The actual files of records make up the bulk of the data stored by

MBDS. The records are stored in secondary storage as a collection of

attribute-value pairs followed, optionally, by a variable-length record body
which is just extual information attached to the record by the user (Note: this

record body feature has not been implemented). An entire block of records for

any given cluster is stored together in contiguous disk space. The contents of

an example record is depicted below:

(<FILE,CardFie>,<TITLE,PC World>,<MAG_NO,2356>,

{Windows evaluation))
The convention for denoting an attribute-value pair is enclosing the attribute
name and value in angle brackets (e.g.,< name, value >). The convention for

denoting the texual record body is enclosing the text in curly braces. The

concept of an attribute-value pair is equivalent to the conventional database
management and data processing term a field of a record or just field. The

term the field name is equivalent to the attribute name and the term the field
value is equivalent to the attribute value. The first attribute-value pair (FILE)

in every record of a given file of records is the file name and is identical to the
rest of the records in the file. This first attribute value pair is mandatory and

permits a first, coarse partitioning of the database by file name.

2. The Meta Data

MBDS must store enough information about the base data so that the

records can be accessed quickly and directly. Information about base data is
termed meta data. MBDS meta data is made up of attributes, descriptors and

clusters. All of the meta data about the database makes up the directory of

the database. Attributes represent the different possible types of base data.
Descriptors are used to describe the specific values (Type-A descriptors) or
ranges of values (Type-B descriptors) that an attribute can assume. When more

than one descriptor is specified for a given attribute, the descriptors must be
mutually exclusive. Clusters are groups of logically related records. Clusters

25

are identified by a set of different possible descriptor values or value ranges,

although the minimum number is just one (the FILE descriptor described

above). In order for a record to map to a cluster it must satisfy all of the

descriptors specified for the cluster. Because the descriptors are mutually

exclusive, the total number of clusters possible can be determined by

calculating the Cartesian product of the number of different possible values or

value ranges defined for all the descriptors. In effect, the database is

partitioned into completely separate equivalence classes. This permits the us, r

to specify the desired clusters exactly and the access precision is improved.

3. The Directory

The directory is made up of three user-defined tables:
* The Attribute Table (AT)

" The Descriptor-to-Descriptor-Id Table (DDIT)

" The Cluster Definition Table (CDT)

The attribute table points or maps directory attributes to the descriptors defined

for them in the descriptor-to-descriptor-id table. The descriptor-to-descriptor-id

table associates a unique descriptor identification number to each descriptor.

The cluster definition table maps each set descriptor identification numbers to a

unique cluster identification number and the identification numbers of the

records in that cluster.

D. THE ATTRIBUTE-BASED DATA LANGUAGE

The attribute-based data language (ABDL) is the native data

manipulation language of MBDS which permits users to write queries to access

the database. The definition of ABDL appears in [Ref. 6]. ABDL is a simple

language which includes just five primary database operations: INSERT,

DELETE, UPDATE, RETRIEVE and RETRIEVE-COMMON. An ABDL

request is made up of a primary operation and a qualification. A qualification

is a combination of keyword predicates that specifies the records in the

26

database to which the operation applies. An ABDL transaction is made up of

two or more requests.

1. The Insert Request

The ABDL INSERT request adds new records to the database. The

qualification part of the request lists the attribute-value pairs to be inserted:

INSERT (<FILE,CardFile>,Title<pcworld>,MagNo<2356>)

This request would insert a record into the FILE called CardFile with a Title

attribute value of 'pcworld' and MagNo attribute value of 2356. Keywords

need a value, but non-directory attributes and the record body can be omitted if

there is no initial value.

2. The Delete Request

The ABDL DELETE request can be used to mark one or more

records for deletion. MBDS finds the record(s) specified by the qualification

and changes the record type code. Since the record is not physically deleted,

this opens up the possibility for an UNDELETE operation and creates the need

for a garbage collection routine. Neither of these utility, production system

type operations exist yet because MBDS is still an experimental system. The

following is a sample DELETE request:

DELETE ((FILE=CardFile)and(Title=pcweek))

This delete request would delete all the database records in the FILE called

CardFile with a Title of 'pc week'.

3. The Update Request

The ABDL UPDATE request can be used to modify the values in the

records of the database. The UPDATE request is made up of a query part and

a modifier part. The query identifies the records to be changed and the

modifier specifies how the records are to be changed. The following is a

sample UPDATE request:

UPDATE ((FILE=CardFile) (LastUpdate = 1/13/89))

This UPDATE request would change the LastUpdate attribute value to

'1/13/89' in all the records of the FILE called CardFile.

27

4. The Retrieve Request

The ABDL RETRIEVE request can be used to extract information

from the database. The RETRIEVE request is made up of a query, a target-list

and an optional by-clause. The query part of the request is used to identify the

record(s) from which the user needs information. The query can specify a

single record, a set of records, or the entire contents of a file. In response to a

RETRIEVE request, each backend moves all of the records in the clusters

specified by the query to main memory and then forwards only the records

which completely satisfy the query (non-directory attributes can also be used in

a RETRIEVE request so there is a possibility of fetching records which match

on the directory attributes and later screen out because of the non-directory

attribute specification in the query). An exhaustive search of the database
(which is a collection of files) is considered a pathological case and is not

directly supported. The user can, however, perform an exhaustive search of a

given file by making the file attribute the only directory attribute in the query.

The target-list allows the user to specify the attributes needed in the output.

An empty target-list is the default which displays all of the attribute-values in

the records found by the query. The by-clause is an optional operation which

is performed by the controller during post-processing of the records retrieved.

These operations are termed aggregate operations and include the AVG,

COUNT, SUM, MIN and MAX functions. The following is a sample

RETRIEVE request:
RETRIEVE ((FILE=CardFile) and (Title=pcworld) COUNT(Title))

This request would retrieve all of the CardFile records with a Title of
'pcworld' and count them.

5. The Retrieve-Common Request

The ABDL RETRIEVE-COMMON can be used for relational

database operations such as merging or comparing files in the database by

shared attribute-values. The format of the RETRIEVE-COMMON is given

below:

28

RETRIEVE (Query #1)(Target-List#1)

COMMON (Attribute #1, Attribute #2)
RETRIEVE (Query #2)(Target-List #2)

This simple format of two RETRIEVE requests joined by the COMMON

clause provides considerable database processing power to the user. The
attributes in the COMMON clause are the attribute names shared between the
first RETRIEVE request and the second RETRIEVE request. The records in

each file that satisfy both the query and the COMMON clause are selected.
RETRIEVE ((FILE=CardFile) and (Keyword=MSDOS)(MagNo))

COMMON (Keyword, Keyword)
RETRIEVE ((FILE=Abstracts) and (Keyword=MSDOS)(AbstractNo))

This request would retrieve and report all the CardFile MagNo's and Abstracts

AbstractNo's which have a Keyword attribute value of 'MSDOS'.

6. A Summary of ABDL

ABDL provides a complete set of the basic tools necessary to
perform database management operations. The RETRIEVE-COMMON
transaction in particular provides an easy mechanism for the user to specify

complex, multi-file queries. ABDL is a low level language and has no
procedural constructs. Presently, MBDS uses a large test interface (TI)
program to parse higher-level DBMS language (like SQL) commands into a

series of ABDL commands. TI also permits users to submit ABDL commands
directly. This is the mode in which TI was used for this study.

E. THE MBDS HARDWARE

1. Generic Unix Computers

The computers used for this study are the Integrated Solutions, Inc.
(ISI) mini-computers. Each of these machines uses a 16.67 MHz Motorola

CPU and have four megabytes of main memory. The operating system used is
4.3 BSD UNIX. A total of nine ISI computers were available for this study, so

the largest configuration possible was an eight-backend system.

29

2. The Disk Drives

All of the computers have a small, hard disk drive to support the
UNIX file system. In addition to this UNIX-system disk drive, each backend

computer has two hard disk drives dedicated to supporting MBDS operations.
The "small" disk is used to store the MBDS meta data and has a formatted

capacity of 100 megabytes. The "big" disk is used to store the MBDS base
data and has a formatted capacity of 400 megabytes. These disk drives are

connected to the high-speed, internal VME data bus of their respective backend

computers.

3. The Broadcast Bus

In keeping with the spirit of the use of generic system components,
the prototype MBDS uses the industry standard Ethernet communications bus.
All of the MBDS computers are connected to a private local area network with

only one machine (the controller) acting as a gateway to other, external
computers in the School. The Ethernet has a relatively large capacity and
greatly simplifies the task of adding backends to MBDS configurations.

30

III. THE COMPUTER-AIDED BENCHMARKING SYSTEM (CABS)

A. AN OVERVIEW

It is the flexible nature of MBDS that makes the Lcorfigurable and parallel
database machine so powerful and unique. It is the same flexibility and
uniqueness that makes designing a test database for performance evaluation of
the system such a headache. There are several system-configuration parameters

available to the MBDS database administrator. Changes to key system-
configuration parameters can have a profound effect on the performance of a

given MBDS configuration. The key parameters include:
* The number of backends used.

0 The number of clusters possible.

• The number of records per cluster.

* The block size.

The previous work of Strawser [Ref. 7], Tekampe and Watson [Ref. 8],
and Vincent [Ref. 9] culminated in Fenton's implementation of CABS
[Ref. 10]. With just three essential parameters from the user, CABS will
generate a test database and a mix of test transactions. The test database is
designed to be partitioned evenly over each of the possible MBDS test
configurations. The maximum number of backends is input by the user.

Special descriptor files are created by CABS to accomplish this distribution,
along with the raw data records to insert in order to build the database. The
database generated, although tailored for MBDS, is also general enough to
permit testing on any relational DBMS. This is a key performance evaluation
requirement in [Ref. 3] and [Ref. 4]. System independence is the extent to

which a model can be transported from system to system while remaining

sufficiently representative [Ref. 3]. Although not included in this study, this

31

generality of the database would permit a valid comparison of MBDS with
another relational DBMS. To use the database in a relational DBMS, the
evaluator would merely discontinue the use the MBDS template and descriptor
files. The other output of CABS is the set of test transactions which are

closely linked to the user-input database size. The automatic generation of the
database input files and test tranasactions removes a great deal of tedious stup
work from the system evaluator. CABS could be included as a production

MBDS tool enabling the database administrator an efficient means of
comparing different possible database configurations. In a more general role,
the CABS database could be used to compare different DBMS products or
different hardware running the same DBMS.

B. THE COMPONENTS OF CABS

1. The Database Generator

a. The Design of the Test Database

Partitioning a database for optimal performance is conventionally

the realm of the database administrator. MBDS is unique because the
partitioning or clustering of the database records is an integral function of the
system. To design a test database that can be evenly split (by the MBDS data
placement algorithm) among a given number of backends and is generic

enough to work on other database systems is a complex task and presented a

significant challenge to the designers of CABS. To make a comprehensive
performance evaluation of MBDS, there were three different database sizes
recommended by [Ref. 9]:

" Large (N bytes)

• Medium (N/2 bytes)

" Small (N/4 bytes)

32

Each of the two smaller database sizes is a multiple of the

original database. To make the test more challenging, CABS uses Strawser's

recommendation [Ref. 7] to use four different record sizes:
* Large (N)

* Medium-Lg (N/2)

• Medium (N/4)

0 Small (N/10)

Again, each of the smaller record sizes must be able to divide the original,

large record size evenly. All three of the test databases are made up of:
* 25% Large records

* 25% Medium-Large records

* 25% Medium records

* 25% Small records

This distribution is designed to give insight into DBMS

performance when the number of bytes of base data is kept constant and the

number of records is changed. The first step in finding a database of size N,

which can be distributed evenly between a given number of backends, is

determining the least common multiple (LCM) of the number of backends to

be tested. CABS uses a lookup table of precalculated LCMs. Using the LCM

in 'he database calculation ensures that for each configuration, the number of

backends can be divided evenly into the number of records used.

CABS uses the LCM to calculate the size in bytes of the

smallest database building 'lock which can be split evenly between the

backends. This building block is known as the database multiple (DBM). The

DBM is a multiple of 32 [Ref. 9], because the database must be divisible by

four since the database has to be quartered into the four different record sizes.

The small database size is one quarter the original (N) size database. Finally,

the implementation of CABS was simplified by using database size divisible by

33

two. The calculation to arrive at 32 as the factor was simply (4 * 4 * 2) = 32.
which ensures the divisibility of the DBM. The last element of the DBM

calculation is the large record size which is completely system dependent. In
Strawser's originial scheme [Ref. 7], the large record size is based on the disk
track size. Unfortunately, modem disk drive capacity (30 or more
kilobytes/track) makes such a record size impractical and unrealistic, as well,
since database records are normally much smaller than 30,000 bytes. For this
study a larg record size of 1,000 bytes was chosen because it was large
enough to tkce MBDS to fragment the records on the communications bus,
but small enough to permit the use of a scaled-down database. The actual
database multiple for this study then became:

• DBM = LCM(1,2,3,4,5,6,7,8) * 32 * 1000 bytes

• DBM = 840 * 32 * 1000 bytes

* DBM = 26,880,000 bytes

This was, in fact, as close as CABS could get to the scaled-down database
target size of 30 megabytes. The three database sizes provided by CABS were:

" Large 26,880,000 bytes

" Medium 13,440,000 bytes

* Small 6,720,000 bytes

Note that these calculations are actually carried out in base ten by CABS,

apparently to simplify the actual calculations. There are several example charts
in [Ref. 10] and in the actual output of CABS that are incorrectly labeled
megabytes. If values in actual megabytes aze required, a simple conversion is
necessary (e.g., 26,880,000 bytes/1,024,000 bytes/MB = 26.25 MB).

34

b. The Record File

Obviously, the largest output file is the record file needed to

build the database record-by-record. The current version of CABS produces a

single record file of the size requested by the user (large, medium or small) in

order to conserve disk space. According to [Ref. 101, CABS is supposed to

generate two types of record files. One for use in response-time reduction

(RTR) test. The other, a set of files for use in response-time invariance (RTI)

testing. RTR testing requires only one such input file which is reused for each

test configuration tested regardless of the number of backends. RTI testing

requires an extra input file for each of the backends in the test (i.e., an eight

backend test requires eight input record files for the RTI testing). The goal is

to double (triple, etc.) the total size of the database as the number of backends

is doubled (tripled, etc.) to make the load on each backend equivelant to a one

backend configuration. Unfortunately, this feature was not implemented in the

actual software that resulted from [Ref. 101. The only record file generated is

the RTR file.

Contained in the record file generated by CABS are the input

codes and raw attribute-value data necessary to build the database for all four

record sizes. The record file is the input for the Test Interface (TI) mass load

utility. The first three fields of each record are directory attributes which are

used to cluster the records. The first attribute is a Type-B attribute which

means the values the attribute can take on are limited to a specific set of

values. This attribute is the mandatory "FILE" attribute, as well. The four

possible "FILE" values are:

* Templg -- the large records

* Tempmedlg -- the medium-large records

* Tempmed -- the medium records

* Tempsmall -- the small records

35

The second and third attributes in each record are Type-A attributes which

means there is a range of possible values for each attribute. These attributes

are also defined as integer values. CABS simply inserts the consecutive record

number starting from one for each record class. The second field is titled

INTONE and is used to coarsely partition the database into nine cluster

categories. The third field is tidled INTflWO and is used to partition the

database into hundreds of smaller clusters. The fourth attribute is titled the

MULTIPLE attribute. The original intent in [Ref. 10] was to use the

MULTIPLE attribute to diff. .ntiate one RTI file from another. The RTR file

has a MULTIPLE value of "One". The RTI record file for two BEs would be

"Two" and so on. Again, this feature is not implemented in the current version

of CABS since the RTI files are not generated. This field was not used during

our study. The test transactions do not check this field and MBDS does not
protect against duplicate records, so the RTR file was inserted repeatedly to

build RTI test databases.

c. The Template and Descriptor File

While the record file is fairly generic and could be used as the

input file for other DBMS tests, the template and descriptor files are

specifically created to support the lo,.ding of the various MBDS test

configurations. Every DBMS needs a data definition language (DDL). MBDS

uses the template file to load the data definitions to the system. A single

template file is generated by CABS which is shared by each of the three test

databases (large, medium-large, medium and small). The record format

remains the same for each of the three database sizes. The number of records

is the difference between database sizes. The template file lists the names of

both directory and non-directory attributes and their associated data types.

The descriptor file provides MBDS with the indexing

information necessary to define the record clusters of the database. The name

of each directory attribute is listed, its classification (Type-A or Type-B), and

its datatype. Type-B descriptors are followed by a list of the allowable values.

36

Type-A descriptors are followed by a list of the attribute-value ranges that
specify each cluster category. Taken together as a set of values for any given
record, the descriptors identify a unique cluster of records. The clustering
methodology of CABS creates a realistic and challenging database for the

benchmarking experiment. Hundreds of clusters are created and the clusters

are loaded unevenly. Figure 5 shows the effect of the CABS generated
descriptor file cluster definitions on the structure of the test database used for
this study. The first clusters in each file (large, med-large, medium and small)
are lightly loaded and the number of records per cluster is incrementally raised
to five times as many records per cluster in the last clusters in the file. This
uneven loading of the database was meant to further tax the system and add

some realism to this artificial workload model.

2. The Test Transaction Mix

The test transaction mix was designed to allow the system
performance evaluator to use one set of test transactions for all of the test
configurations of each of the three database sizes. So three sets of test
transactions are generated by CABS, each accessing a proportional number of
clusters and records. Each set of transactions has four subsets of transactions,
one for each record size (large, medium-large, medium and small). Each of
these subsets of transactions is made up of 24 different ABDL transactions

made up from each of the five primary database operations. Each of which

falls into the following categories:

• Overhead-intensive

* Data-intensive

• Multi-file (relational)

The number of transactions generated is fairly large and considerable overlap is
apparent. The system evaluator can pick an effective subset of these
transactions by selecting representative transactions from the three query

categories above.

37

10oCds/cuser

A8B M~ byte mrods
14h lustrs

Databa~see%. i10 lstr
\ 84B

140 Clvst~rs

Figure 5. The Structure of the Test Database

38

3. The Generation of the Evaluator Reports

A considerable number of formatted tables are generated by CABS.

Some of the reports proved useful, especially since the reports can be generated

without necessarily having to actually produce the record file. This permits the

evaluator to see the results of his input and make changes if necessary before

actually building a huge record file. A minor problem with the reports is the

column titles which read Megabytes with column values in base ten which

should have been converted to megabytes. The problem which rendered the

majority of the reports useless was the underlying assumption that MBDS
would distribute the records perfectly evenly. The ideal distributions projected

by CABS are far form the actual distributions achieved during testing.

Another problem with the CABS reports is the lack of an evaluator's

guide. According to [Ref. 10], CABS is supposed to produce a complete set of

narrative instructions along with the tables:

The second set of files comprises a number of reports describing the test
databases and the test-transaction mixes. In conjunction with the second
set of files, the CAD system interleaves a number of standard text files
that present a narrative for the evaluator providing instructions on how to
interface the CAD generated test-database and test-transaction-mix with
MBDS. The text files also present a discussion for interpreting and
analyzing the empirical data calculated by the CAD system.

Such an evaluator's report is not generated by the version of CABS used for

this study.

C. HOW TO USE CABS

1. Running the program

The program is executed by simply issuing the command "cad" at the

UNIX system command line in the "Bench" subdirectory of the current MBDS

system. The first user prompt is:

Input the number of backends in the system> 8

39

The evaluator must input the maximum number of backends to be

included in the test. In this case that value is eight. This is an important entry

because expanding a benchmarking experiment using the CABS methodology

initially setup for a lower number of backends requires a new set of files and

repeating the testing. This study was a good example of the need for this type

of planning. Initially, only six of the eight possible backend computers were

operational due to back-ordered hardware components. Even though it was

unlikely that all eight would become available for testing, the tes database files
generated by CABS were based on an eight-backend maximui. configuration.
Fortunately, the repair parts arrived in time for the inclusion of a seven and

eight backend configuration to the existing data. There would not have been

time to repeat the test from the beginning, had the initial data have been based

on a maximum of six backends.

The next piece of information decides the record sizes used by CABS

for the test database. The number entered at the the prompt below represents

double the number of bytes the evaluator has set as the large record size. This
value is also the block size assumed by CABS (track size is synonymous with

block size as far as CABS is concerned). To permit splitting the large record

size evenly into the three smaller record sizes, the large record size must be

divisible by two, five and ten. This is the track size prompt:

Input the disk track size in the system in bytes > 2000

Next, the evaluator must set the maximum amount of data to be

loaded to any single backend computer at the prompt given below:

Input the max disk storage of a single backend
in whole mega bytes (NEYTES)> 30

40

There is a possibility of a run-time error due to insufficient disk space for the

record file. The evaluator must ensure there is adequate disk space in the

UNIX file system for the record file size specified.

The evaluator can run the program repeatedly without actually

-enerating the record file. This permits evaluation of the reports before the

lengthy record file generation is activated. Report generation can also be

suppressed. The remaining CABS prompts and run-time output are provided

below:

Do you want to generate the reports> y

Reports will be generated

Do you want the record files generated ?(y/ni y

PERFORMING INITIAL CALCULATIONS

GENERATING THE TEMPLATE FILES

GENERATING THE DESCRIPTOR FILES

GENERATING THE RECORD FILE

Create (s)mall, (m)edium, or (1)arge record file? s

Creating a small record file.

GENERATING THE TRANSACTION MIX FILES

GENERATING THE REPORT FILES

2. The Output

CABS produces a total of 49 different files during execution and

deposits the files in the directory from which the program is executed. There

are three main groups of files produced:

* Database input files

• Transaction mix files

* Report files

41

The first two groups of files in the directory can be listed with the

standard UNIX "Is" command:

LDBLGR#1 WEB SMR#1 14D8 MLR#1 SDE MDR#1 TEST.di TEST.r
WDE l.0R#1 MDELGR#l MD9SMR#l SDBEMLR#l TEST.An TEST.t
WEbffR#1 BMDR#1 SDBLGR#1 SDESER#1 TESTdAX cad*

The report files are hidden but can be listed by using the optional UNIX "is -a"

command. The report files now appear as listed below:

Am tmmdb-igr_rpt WEB MLR#1
Atm mdb igr wi LWEsR4R#l

.ev be tbl_1 tmmbmrrtMDliMDR#l
.evbe~tbl- mtm-mdb mdx viM9-D~
Sevbetbl s .tmrdM l-Mrrpt 9-Ll
.ev-rcd bicEkrel-tbl .tm mdb~mir-w viiSM#
.ev rcdy--_er clus cat-tbl Atm mdb-smr -rpt SDB LGR#1
.ev '-test config__1db .tm mdb smr vi SDBJ4DR#1
. ev -test-configmpdb . tma-db.igr-rpt SDB3MLR#l
.ev, test config_sdb .tm sdb lgr vi SDBSMR#i
.tmr ldb ilg3;rpt Atm sdbmpdx rpt TESTAdl
.tmldb&lgr vi Atm sdbnmdr vi TEST.dm
.tmdldb mdxr rpt .tmCsdbmixrptTET

.tmlbrndrtM at~dbiv TEST.rs

tmldb&mlrrpt tmC-sd-smrrpt TESTAt
tmi-dbmir vi . tm ,-db smr vi cad*

Ar-dbsWEp LBLGRT1 -cadrun

.tmidb-smr-vi _D-D~

a. The Database Files

The CABS files necessary to build the test databases are the

following:

* TEST.t - the MBDS template file

* TEST~dI - the MBDS descriptor file (large database)

* TEST.dm - the MBDS descriptor file (medium database)

" TEST.ds - the MBDS descriptor file (small database)

" TEST.r - the base data to be inserted

42

In order to load the test database, the evaluator has to manually copy or move

the above files to the appropriate directories. The "UserFiles" directory on the

backend controller needs to contain the following files:

* TEST.t

" TEST.d

" TEST.r

Note that there is only one descriptor file listed above. The evaluator must

select the appropriate descriptor file for the database (small, medium or large)

and rename it to TEST.d. The UserFiles directory on each of the backends

must contain the following files:

" TEST.t

" TEST.d

The descriptor file is the same as the one on the controller. This is a key area

for errors on the part of the evaluator, especially when moving from one

database size to another. MBDS will still work with, for example, the small

database descriptor files and the medium or even the large database record file.

The problem is that the clustering will be completely wrong. Once MBDS

runs out of the defined clusters in the small database descriptor file, the system

will deposit all of the remaining records in a catch all cluster which exists to

store records which do not match any set of defined directory attributes. Using

the example of the medium database size generated by CABS which is double

the small database size, one half of the database would end up in the catch all

cluster. The effect on the performance is devastating which is a good

argument for clustering in itself.

43

b. The Transaction Mix Files

The ABDL test-transaction files created by CABS:
" LDBLGR#1, LDBMLR#1, LDBMDR#1, LDBSMR#1

" MDBLGR#I, MDBMLR#1, MDBMDR#1, MDBSMR#1

* SDBLGR#1, SDBMLR#1, SDBMDR#1, SDBSMR#l

Each file contains 24 transactions which is more than enough for a complete

test. These files are text files which can be modified in a text editor, if a
smaller set of transactions can meet the evaluator's needs. The file names can
be changed by the evaluator, as well, but the naming convention using a pound

sign followed by a number must be maintained. The transaction files are the
input for the test interface (TI) and are imported by using the TI "select

transaction unit" option. These files must also be moved to the controllers

UserFiles subdirectory.

c. The Report Files

All the remaining files in the directory are report files. The

evaluator report files can be printed out by using the Unix command:

tbl <filename> I psroff -me
There are a large number of reports, but because they do not reflect the actual

distribution of records, the reports are not very useful. The CABS files listed

below do provide a good description of the "ideal" database topology which

can be used as a comparison with the actual database:
• .evtestconfig_ldb

• .evtestconfig-mdb

• .evtestconfigsdb

44

D. THE BENCHMARKING METHODOLOGY

1. The Initial System Setup

Before the loading of a test database can take place, the evaluator

must ensure that the secondary storage devices are clear of any other data. The

backend controller has a subdirectory named "test". This subdirectory is

further subdivided into directories for each possible MBDS configuration and

are appropriately titled 1, 2, 3, 4, 5, 6, 7 and 8. By selecting the directory
appropriate to the configuration under study, an executable script file named
"zero" is available to the evaluator. Entering the command "zero" will cause

the meta data and base data disks used by MBDS to be cleared. This process

takes about one hour per backend.

2. Operating the Test Interface

a. Starting the System

To run the test interface (TI), the evaluator must manually move
(with the UNIX "cd" command) to the test subdirectory appropriate to the

configuration under study. Along with the "zero" script file is another

executable script file named "run". Issuing the "run" command will start TI,
the MBDS processes on the controller and the processes on the appropriate

backends. The initial start-up takes some time because communications

between the controller and backends must be established. Once MBDS is

online and the TI main menu is presented, select menu choice "a":

The Multi-Lingual/Multi-Backend Database System

Select an operation:

(a) - Execute the attribute-based/ABDL interface
(r) - Execute the relational/SQL interface
(h) - Execute the hierarchical/DL/I interface
(n) - Execute the network/CODASYL interface
(f) - Execute the functional/DAPLEX interfaze
(x) - Exit to the operating system

Select-> a

45

b. Loading the Test Database

To load the test database, the evaluator needs to select the Load

a database option from the menu below:

The attribute-based/ABDL interface:

(g) - Generate a database
(1) - Load a database
(r) - Request interface
(x) - Exit to the previous menu

Select-> 1

The next step is to load the test database template file by
selecting Use a database from the menu below and responding to the prompt
for the database name with "test" which is the test database name:

Select an operation:
(u) - Use a database
(r) - Mass load a file of records
(x) - Exit, return to previous menu

Select-> u

Enter the name of the database: test

At this point, the system is ready to begin the mass-loading of
the record file. To accomplish this, select the Mass load a file of records

option from the menu below and respond to the prompt with the record file

name "TEST.r".

Select an operation:
(u) - Use a database
(r) - Mass load a file of records
(x) - Exit, return to previous menu

Select-> r

Enter the record file name: TEST.r

46

The loading process will start and provide feedback on the

progress of the mass-loading utility every ten records. Initially, he records load

at a rate of about one megabyte an hour and after six to seven hours the UNIX

operating system slows the entire process considerably. The only practical

solution to this problem, currently, is to split the input record file into a series

cf six megabyte files. Since MBDS must run for many hours to build the

eatabase, it is advisable to enter the following key strokes once the loading

process is running to cause MBDS to end the session normally and save the

meta data:
U <C>
test <CR>z <CR>
z <CR>
z <CR>

The operating system will buffer this input and accept the commands when the

loading process finishes. This frees the evaluator from monitoring the progress

of the mass-load process and limits the damage should one of the MBDS

computers crash after a successful load. Ending normally writes the meta data

to secondary storage which permits restarting the system at a later date. An

abnormal end (such as a crash) after a successful mass-load could be costly

because reloading the database is the only way to build the meta data.

c. Conducting Performance Testing

Once the test database is loaded, the evaluator can begin the
actual performance evaluation. The first step is to ensure that there are no

other users on the controller nor on any of the backends. Next, the evaluator

must start TI from the same system subdirectory used to load the test

configuration. From the main menu below, select the Execute the
attribute-basedABDL interface option:

47

t ****************

Multi-Lingual/Multi-Backend Database System

Select an operation:
(a) - Execute the attribute-based/ABDL interface
(r) - Execute the relational/SQL interface
(h) - Execute the hierarchical/DL/I interface
(n) - Execute the network/CODASYL interface
(f) - Execute the functional/DAPLEX interface
(x) - Exit to the operating system

Select-> a

Next, select the Request interface option from the menu below ant.

respond to the prompt for the database name with "test":
** • * a ****

The attribute-based/ABDL interface:
(g) - Generate a database
(1) - Load a database
(r) - Request interface
(x) - Exit to the previous menu

Select-> r
Enter the database id: test

Next, select the Performance Testing option from the menu below:

Select a subsession:
(s) SELECT: select traffic units from an existing list

(or give new traffic units) for execution

(n) NEW LIST: create a new list of traffic units
(d) NEW DATABASE: choose a new database
(p) * PERFORMANCE TESTING
(r) * REDIRECT OUTPUT: select output for answers
(m) * MODIFY: modify an exist Tng list of traffic units
(o) * OLD LIST: execute all the traffic units in an

existing list
(x) EXIT: return to previous menu

Refer to the MLDS/MBDS user manual before choosing
subsessions marked with an asterisk (*)

Select-> p

48

The next step is to enable the system timers, select the Turn on

external timer option from the menu below and then select the Exit to previous

menu option as shown below:

Select an operation:

(e) Turn on external timer.
(i) Turn on internal timers.
(a) ABORT..Abandon all requested actions.
(x) Exit to previous menu.

Select-> e

External Timer On

Select an operation:

(e) Turn on external timer.
(i) Turn on internal timers.
(a) ABORT..Abandon all requested actions.
(x) Exit to previous menu.

Select-> x

The next step is to load a set of test transactions to run against

the database. To accomplish this, select the first menu choice from the menu

below and respond to the prompt with the name of one of the four transaction

sets appropriate for the size of the database under study:

Select a subsession:
(s) SELECT: select traffic units from an existing list

(or give new traffic units) for execution
(n) NEW LIST: create a new list of traffic units
(d) NEW DATABASE: choose a new database
(p) * PERFORMANCE TESTING
(r) * REDIRECT OUTPUT: select output for answers
(i) * MODIFY: modify an existing list of traffic units
(o) * OLD LIST: execute all the traffic units in an

existing list
(x) EXIT: return to previous menu

Refer to the MLDS/MBDS user manual before choosing
subsessions marked with an asterisk (*)

49

Select-> a

Enter the name for the traffic unit file
It may be up to 40 characters long including the .ext.
Filenames may include only one '#' character
as the first character before the version number.

FILE NAME-> SDB_SMR#l

d. Collecting the Performance Data

Once the transaction set is loaded, the evaluator just needs to

enter the transaction number (they are numbered from zero) at the menu below:

Select Options:
(d) redisplay the traffic units in the list
(n) enter a new traffic unit to be executed
(num) execute the traffic unit at [num]

from the above list
(x) exit from this SELECT subsession

Option-> 0

(<CNT (INTONESMALL) , 320>)
Start: 08:32:31 Stop: 08:32:33 Elapsed Time : 2.167

The response time of the transaction is displayed as shown above. The

evaluator must, unfortunately, manually transcribe the times for later analysis.
To move to the next record size test transaction set, exit from this submenu,

choose the select option again and change to the next test transaction file name.

The technique used during this study was to enter transaction "0"

several times in rapid succession followed by the number of the next

transaction to be timed. There were two important reasons for this process:
• UNIX will automatically swap processes which are inactive for several

seconds out of memory. This creates a considerable delay as MBDS
processes are re-activated. A stream of transactions keeps all of the
necessary processes active.

• If a given transaction is executed more than once in succession, the
response time tends to be improved by the location of the hard disk
read/write heads which stay in the locality of the last read operation.
The stream of transaction number "0" entries ensures the fact that each

50

time a transaction is tested the disk drive heads start from the same

spot.

In addition to the above technique, the first time for any test transaction was
always thrown out because it often varied widely from subsequent times for the
same transaction. The timing procedure above was repeated for every
transaction until a constant result was obtained (e.g., within 0.050 seconds for
data-intensive transactions and 0.017 seconds for overhead-intensive

transactions).

e. Exiting the Test Interface
To exit TI, use the menu selections to end normally. When the

user ends normally, all of the MBDS controller and backend processes are also
stopped. Although exiting TI by using the CONTROL-C keypress is possible,
this leaves most of the MBDS processes running which will interfere with the
processes started the next time TI is run. If it is necessary to end abnormally,
there is a script file in each configuration subdirectory named "burn" which
will stop all MBDS processes.

51

IV. THE MEASURES

A. AN OVERVIEW

The MBDS software can be conditionally compiled to include the code

necessary to instrument the system for the timing experiments. The added

code creates checkpoints which are used to clock the response time of a given

MBDS request. The response time of a request is defined as the time which

elapses between the time the request is released by the user and the time the

system is ready to display the response to the request. Actual display time is

not included since this could vary greatly. The readings are based on times

taken from the controller's computer system clock. Once MBDS is compiled

with the timing flags on, the request timer is activated within the test interface

as outlined in Chapter III. The timing data is displayed on the terminal screen

and must be manually recorded and analyzed off-line using the perfomance

measures.

B. THE RESPONSE-TIME REDUCTION MEASURE
Adding backends to a given MBDS configuration and redistributing the

database evenly should, intuitively, improve the performance of the system.

The increase in system performance should, in turn, be observable in request

response time. This increase in performance is attributable to the increased

parallelism in request processing. In other words, the work is shared between

more backends. With the increase in the number of backends, there is also a

possibility that the overhead of coordinating communications could cause a

measurable impact on system performance and could actually become the

limiting factor when considering the optimal number of backends.

The MBDS response-time reduction (RTR) performance claim made by

the designer and implementor of MBDS was introduced in Chapter I and is

repeated here for completeness:

52

* Response-Time Reduction (RTR). The response-time reduction of a
transaction is inversely proportional to the multiplicity of the backends.
This means that as the number of backends increases, the response-time
reduction for a given transaction is expected to improve (e.g., moving
from one backend to three backends should yield a response-time
which is just one-third the original response time).

To measure the degree to which MBDS demonstrates response-time reduction,

the actual performance of the system as measured during the benchmarking of
each multi-backend configuration must be compared with the base times of a
single-backend configurations. This means that the ideal time for a given

transaction is defined as the single-backend transaction response time divided
by the number of backends used by the multi-backend test configuration. This
measure permits direct, graphical comparison of an easily calculated ideal time
with the actual performance data collected.

C. THE RESPONSE-TIME INVARIANCE MEASURE
The most important claim made about MBDS is the large capacity for

database growth while maintaining an acceptable level of performance. The
MBDS response-time invariance (RTI) performance claim made by the
designer and implementor of MBDS was introduced in Chapter I and is
repeated here for completeness:

• Response-Time Invariance (RTI). The response-time invariance of a
transaction in response to the increase of the database size is
maintained by a corresponding increase in the multiplicity of the
backends (e.g., when the database doubles in size, doubling the number
of backends will yield the original response-time).

Response-time invariance testing requires maintaining the original single-

backend (base system) load on each backend of the multi-backend

configuration. This is accomplished by inserting the batch of database records
repeatedly, twice for a two-backend test, three times for a three backend test

and so on. To measure the degree to which MBDS demonstrates response-time
invariance, the actual performance of the system as measured during the

benchmarking of each fully loaded multi-backend configuration must be

53

compared with the base times of a single-backend configuration. This means

that the ideal time for a given transaction is defined as the single-backend

transaction response time. This measure permits direct, graphical comparison

of the ideal time with the actual performance data collected.

Half of the multi-backend configurations were tested with record

distributions as distributed by MBDS. The remainder of the multi-backends

were artificially loaded perfectly even. This was accomplished by loading one

backend and copying the meta data and base data to the remaining backends.

This process was much faster than repeated batch loading and permitted the

analysis of even loading.

54

V. THE PERFORMANCE DATA

A. THE BASE CONFIGURATION

The ideal times for both the response-time reduction and response-time

invariance testing are based on the single-backend or baseline configuration.

Table 2 lists the transaction response times in seconds recorded for the single-

backend configuration. Table 3 lists the number of records of each record size.

TABLE 2. THE SINGLE-BACKEND RESPONSE TIMES

Rei.ponse-Times by Record Size
in Seconds

Trans # SMR MDR MLR LGR

TR 1 2.067 1.900 1.830 1.817
TR 2 13.366 11.833 11.216 10.933
TR 3 25.899 23.149 22.299 21.082
TR 4 46.815 43.015 41.648 40.632
TR 5 25.549 23.716 22.766 22.282
TR 6 2.600 2.483 2.567 2.417
TR 7 79.347 79.897 80.763 77.714

TABLE 3. SINGLE-BACKEND RECORD DISTRIBUTIONS

Rec Size BE #1

Large 1680
Med-Large 3360
Medium 8400
Small 16800

Total 30240

55

B. THE TWO-BACKEND CONFIGURATION

1. RTR Results

Table 4 lists the transaction response times in seconds recorded for

the two-backend RTR configuration. Table 5 lists the number of records of

each record size distributed by MBDS on each backend.

TABL " 4. THE TWO-BACKEND RTR PERFORMANCE

Response-Times by Record Size
in Seconds

Trans # SMR MDR MLR LGR

TR 1 1.650 1.200 1.200 1.250
TR 2 8.283 6.750 6.750 7.350
TR 3 13.661 11.833 11.833 11.833
TR 4 25.482 22.366 22.366 23.382
TR 5 13.416 11.850 11.850 11.566
TR 6 2.050 1.633 1.633 1.550
TR 7 41.265 39.748 39.748 41.315

TABLE 5. TWO-BE RTR RECORD DISTRIBUTIONS

Rec Size BE #1 BE #2 Total

Large 870 810 1680
Med-Large 1712 1648 3360
Medium 4206 4194 8400
Small 7734 9066 16800

Total 14522 15718 30240

56

2. RTI Results
Table 6 lists the transaction response times in seconds recorded for

the two-backend RTI configuration. Table 7 lists the number of records of

each record size distributed by MBDS on each backend.

TABLE 6. THE TWO-BACKEND RTI PERFORMANCE

Response-Times by Record Size
j.i seconds

Trans # SMR MDR KLR LGR

TR 1 2.783 2.117 1.95 1.867
TR 2 14.049 12.166 11.816 12.400
TR 3 25.916 23.282 22.932 22.232
TR 4 47.798 44.415 44.098 44.198
TR 5 26.082 24.582 23.916 23.632
TR 6 3.383 2.917 2.583 2.483
TR 7 77.197 76.647 80.397 77.730

TABLE 7. TWO-BACKEND RTI RECORD DISTRIBUTIONS

Rec Size BE #1 BE #2 Total

Large 1672 1688 3360
Med-Large 3368 3352 6720
Medium 8396 8404 16800
Small 17421 16179 33600

Total 30857 29623 60480

57

C. THE THREE-BACKEND CONFIGURATION

1, RTR Results

Table 8 lists the transaction response times in seconds recorded for

the three-backend RTR configuration. Table 9 lists the number of records of

each record size distributed by MBDS on each backend.

TABLE 8. THE THRFE-BACKEND RTR PERFORMANCE

Response-Times by Record Size
in seconds

Trans # SMR MDR MLR LGR

TR 1 1.200 1.183 1.017 0.933
TR 2 6.383 5.116 4.983 4.916
TR 3 9.983 8.233 7.900 8.300
TR 4 19.016 15.916 15.899 15.499
TR 5 9.966 8.333 8.016 8.233
TR 6 1.450 1.433 1.317 1.200
TR 7 31.132 27.966 27.966 27.082

TABLE 9. THREE-BACKEND RTR RECORD DISTRIBUTIONS

Rec Size BE #1 BE #2 BE #3 Total

Large 528 582 570 1680
Med-Large 1168 1008 1184 3360
Medium 2776 2644 2980 8400
Small 4626 5478 6696 16800

Total 9098 9712 11430 30240

58

2. RTI Results
Table 10 lists the transaction response times recorded for the three-

backend RTI configuration. Table 11 lists the number of records of each

record size distributed by MBDS on each backend.

TABLE 10. THE THREE-BACKEND RTI PERFORMANCE

Response-Times by Record Size
in Seconds

Trans # SMR MDR MLR LGR

TR 1 2.650 2.367 2.167 2.283
TR 2 14.433 12.150 12.016 12.933
TR 3 26.532 23.132 22.482 22.516
TR 4 48.765 45.931 47.115 46.648
TR 5 27.982 24.099 22.582 22.482
TR 6 3.450 3.200 3.017 2.967
TR 7 80.063 79.597 79.607 80.230

TABLE 11. THREE-BACKEND RTI RECORD DISTRIBUTIONS

Rec Size BE #1 BE #2 BE #3 Total

Large 1660 1668 1712 5040
Med-Large 3357 3311 3412 10080
Medium 8256 8373 8571 25200
Small 15964 16665 17771 50400

Total 29237 30017 31466 90720

59

D. THE FOUR-BACKEND CONFIGURATION

RTR Rpciuztc

Table 12 lists the transaction response times in seconds recorded for

the four-backend RTR configuration. Table 13 lists the number of records of

each record size distributed by MBDS on each backend.

TABLE 12. THE FOUR-BACKEND RTR PERFORMANCE

Response-Times by Record Size
in Seconds

Trans # SMR MDR MLR LGR

TR 1 1.200 0.833 0.817 0.833
TR 2 4.600 4.017 3.950 4.233
TR 3 7.450 6.233 6.550 7.283
TR 4 14.049 12.233 12.200 13.566
TR 5 7.450 6.200 6.550 7.333
TR 6 1.450 1.067 0.950 1.067
TR 7 22.499 21.299 21.149 23.849

TABLE 13. FOUR-BACKEND RTR RECORD DISTRIBUTIONS

Rec Size BE #1 BE #2 BE #3 BE #4 Total

Large 440 364 370 506 1680
Med-large 876 820 772 892 3360
Medium 1906 2152 2288 2054 8400
Small 4124 3810 4942 3924 16800

Total 7346 7146 8372 7376 30240

60

2. RTI Results

Table 14 lists the transaction response times in seconds recorded for

the four-backend RTI configuration. Table 15 lists the number of records of

each record size distributed by MBDS on each backend.

TABLE 14. THE FOUR-BACKEND RTI PERFORMANCE

Response-Times by Record Size
in Seconds

Trans # SMR MDR MLR LGR

TR 1 2.517 2.267 2.200 2.133
TR 2 13.683 11.866 11.700 12.600
TR 3 26.199 23.549 22.849 22.700
TR 4 47.015 44.519 44.498 45.948
TR 5 26.249 24.282 24.016 23.749
TR 6 3.217 2.933 2.933 2.850
TR 7 77.997 78.130 78.130 80.647

TABLE 15. FOUR-BACKEND RTI RECORD DISTRIBUTIONS

Rec Size BE #1 BE #2 BE #3 BE #4 Total

Large 1672 1616 1672 1760 6720
Med-Large 3344 3409 3295 3392 13440
Medium 8327 8166 8444 8663 33600
Small 16571 16276 17452 16901 67200

Total 29914 29467 30863 30716 120960

61

t I I I I I I

E. THE FIVE-BACKEND CONFIGURATION

1. RTR Results

Table 16 lists the transaction response times in seconds recorded for

the five-backend RTR configuration. Table 17 lists the number of records of

each record size distributed by MBDS on each backend.

TABLE 16. THE FIVE-BACKEND RTR PERFORIM' ANCE

Response-Times by Record Size
in Seconds

Trans # SMR MDR MLR LGR

TR 1 0.900 0.833 0.850 0.750
TR 2 3.900 3.500 3.450 3.833
TR 3 6.566 5.566 5.266 5.416
TR 4 10.950 10.883 10.883 10.183
TR 5 6.566 5.583 5.300 5.983
TR 6 1.083 1.117 1.200 1.033
TR 7 17.660 18.716 18.849 19.066

TABLE 17. FIVE-BACKEND RTR RECORD DISTRIBUTIONS

Rec Size BE #1 BE #2 BE #3 BE #4 BE #5 Total

Large 404 310 296 322 348 1680
Med-Large 488 760 672 628 812 3360
Medium 1794 1596 1398 2052 1560 8400
Small 3378 3940 3302 2804 3376 16800

Total 6064 6606 5668 5806 6096 30240

62

2. RTI Results

Table 18 lists the transaction response times in seconds recorded for

the five-backend RTI configuration. Table 19 lists the number of records of

each record size distributed evenly on each backend.

TABLE 18. THE FIVE-BACKEND RTI PERFORMANCE

Response-Times by Record Size
in Seconds

Trans # SMR MDR MCLR LGR

TR 1 2.150 1.983 1.967 1.933
TR 2 13.733 12.466 12.150 11.966
TR 3 26.266 23.432 22.932 22.699
TR 4 48.481 47.998 47.231 47.665
TR 5 26.282 23.366 22.816 22.799
TR 6 2.617 2.583 2.583 2.467
TR 7 80.863 81.147 80.780 80.530

TABLE 19. FIVE-BACKEND RTI RECORD DISTRIBUTIONS

Rec Size BE #1 BE #2 BE #3 BE #4 BE #5 Total

Large 1680 1680 1680 1680 1680 8400
Med-Large 3360 3360 3360 3360 3360 16800
Medium 8400 8400 8400 8400 8400 42000
Small 16800 16800 16800 16800 16800 84000

Total 30240 30240 30240 30240 30240 151200

63

F. THE SIX-BACKEND CONFIGURATION

1. RTR Results

Table 20 lists the transaction response times in seconds recorded for

the six-backend RTR configuration. Table 21 lists the number of records of

each record size distributed by MBDS on each backend.

TABLE 20. THE SIX-BACKEND RTR PERFORMANCE

Response-Times by Record Size
in Seconds

Trans # SMR MR MLR LGR

TR 1 0.984 0.833 0.767 0.733
TR 2 4.183 3.150 3.133 3.333
TR 3 5.283 5.016 4.683 4.866
TR 4 10.350 8.016 8.400 8.450
TR 5 5.333 5.016 4.683 4.850
TR 6 1.217 1.117 0.883 0.817
TR 7 16.333 13.949 14.683 16.083

TABLE 21. SIX-BACKEND RTR RECORD DISTRIBUTIONS

-BE i3 BE 04 BE 5 *5

298 35' 290 240 232 280 680
L54 492 568 604 516 6"6 3363

446 1384 1488 1330 1260 1492 84CC

2226 2332 3694 2400 3146 3002 '6800

4524 4558 6040 4574 5154 5390 3024C

64

2. RTI Results

Table 22 lists the transaction response times in seconds recorded for

the six-backend RTI configuration. Table 23 lists the number of records of

each record size distributed by MBDS on each backend.

TABLE 22. THE SIX-BACKEND RTI PERFORMANCE

Response-Times by Record Size
in Seconds

Trans # SMR MDR MLR LGR

TR 1 2.600 2.383 2.400 2.200
TR 2 14.516 12.200 12.583 12.616
TR 3 26.532 22.882 22.932 22.949
TR 4 47.581 44.065 44.982 44.248
TR 5 26.332 24.749 23.216 22.982
TR 6 3.117 3.233 3.283 2.917
TR 7 78.230 76.914 77.947 80.463

TABLE 23. SIX-BACKEND RTI RECORD DISTRIBUTIONS

Rec Size BE N' H 42 B.. k3 BE 04 BE #5 BE 46 Total

Large 16 6 1704 1680 1664 1676 1680 I0080
ved- -arae 3264 3288 34 6 34C: 34C9 3382 2: 60

... 8297 8,!3 8578 85CC 8368 8314 50400
Sa. 6 17669 16839 1739- 16793 100800

Tota" 292-4 294C: 31342 30404 30850 30169 181440

65

G. THE SEVEN-BACKEND CONFIGURATION

1. RTR Results

Table 24 lists the transaction response times in seconds recorded for

the seven-backend RTR configuration. Table 25 lists the ntmber of records of

each record size distributed by MBDS on each backend.

TABLE 24. THE SEVEN-BACKEND RTR PERFORMANCE

Response-Times by Record Size
in Seconds

Trans # SMR MR MLR LGR

TR 1 0.833 0.833 0.767 0.733
TR 2 3.467 2.650 3.683 2.783
TR 3 4.966 4.266 4.500 3.950
TR 4 8.116 7.366 7.350 7. 483
TR 5 4.966 4.283 4.500 3.967
TR 6 0.967 0.950 0.850 0.867
TR 7 12.333 12.933 12.733 13.916

TABLE 25. SEVEN-BACKEND RTR RECORD DISTRIBUTIONS

: 2 e 9 h 5 -2 R =- BE *4 BE 45 BE 6 BE 7 CToa I

ZD 8 299 2: 218 216 193 263 1680
Me-Larc 485 448 520 540 376 464 524 3360

e_ : 0 ",2 1184 -328 1360 C18 932 840
S-a 24 2592 2268 2402 2230 2800 2284 16800

4240 463% 4222 4488 4182 4472 400
^
0 30240

66

2. RTI Results

Table 26 lists the transaction response times in seconds recorded for

the seven-backend RTI configuration. Table 27 lists the number of records of

each record size distnbuted evenly on each backend.

THE TABLE 26. THE SEVEN-BACKEND RTI PERFORMANCE

Response-Times by Record Size
in Seconds

Trans # SMR MDR MLR LGR

TR 1 2.167 2.017 1.983 1.967
TR 2 13.916 12.533 12.150 12.383
TR 3 27.266 23.516 22.932 22.649
TR 4 51.698 48.281 47.181 47.265
TR 5 27.399 23.516 22.432 22.666
TR 6 2.650 2.600 2.533 2.667
TR 7 82.663 80.130 80.413 8A ,17

TABLE 27. SEVEN-BACKEND RTI RECORD DISTRIBUTIONS

Rec Size BE 1 BE i2 BE 03 BE *4 BE #5 BE #6 BE *7 Total

Large 1680 1680 1680 1680 1680 1680 168C 11760
Med-Large 3363 3360 3360 3360 3360 3360 3360 23520
Ve - 8433 840C 8433 840 8433 8433 58833

6833 1833 16833 16803 1683 16800 683 1:176c

T32'
^

3244 3024, 324C 3024C 30240 3024C 21683

67

H. THE EIGHT-BACKEND CONFIGURATION

1. RTR Results

Table 28 lists the transaction response times in seconds recorded for

the eight-backend RTR configuration. Table 29 lists the number of records of

each record size distributed by MBDS on each backend.

TABLE 28. THE EIGHT-BACKEND RTR PERFORMANCE

Response-Times by Record Size
in Seconds

Trans # SMR MDR MLR LGR

TR 1 1.117 0.700 0.833 0.617
TR 2 2.883 2.383 2.983 2.650
TR 3 4.716 3.583 3.783 4.400
TR 4 7.500 6.516 7.083 7.533
TR 5 4.716 3.600 3.767 4.400
TR 6 1.267 0.917 0.950 0.750
TR 7 11.100 11.333 12.366 13.049

TABLE 29. EIGHT-BACKEND RTR RECORD DISTRIBUTION

e Size 3- ,, BE -2 BE -3 BE 04 BE 45 BE 16 BE 7o E P9

arqe 248 224 172 228 192 140 198 278 1680
Yed-Large 46C 356 312 383 416 464 463 512 3360

897 _165 187 973 ICIC :079 1204 1085 84C0
S7"2 1962 2355 1584 1817 1856 2578 2348 1680C

. -a35 3607 3926 3165 3435 3539 4443 4223 3C240

68

2. RTI Results

Table 30 lists the transaction response times in seconds recorded for

the eight-backend RTI configuration. Table 31 lists the number of records of

each record size distributed evenly on each backend.

TABLE 30. THE EIGHT-BACKEND RTI PERFORMANCE

Response-Time by Record-Size
in Seconds

Trans # SMR MDR MLR LGR

TR 1 2.167 2.017 2.017 1.983
TR 2 13.966 12.483 12.316 12.316
TR 3 27.466 23.599 23.032 22.732
TR 4 50.115 48.448 47.598 47.098
TR 5 27.882 23.582 23.066 22.766
TR 6 2.667 2.650 2.650 2.583
TR 7 87.363 83.480 83.880 80.197

TABLE 31. EIGHT-BACKEND RTI RECORD DISTRIBUTIONS

Rec Size B al BE 02 BE -3 BE i4 BE 45 BE k6 BE #7 BE #8 TctaI

Large 168C 1680 1683 1680 1680 1683 1680 1680 13440
Yea-Large 3360 3360 3360 3360 3360 3360 3360 3360 26880

8ed"- R 4 4 .^ C 8400 8403 840. 840 6 200
Sr 8 1E "683 16800 16800 16800 6800 168C3 :34400

C3 42 3024C 3024C 30240 3024C 3C240 30240 30240 24:920

69

I. AVERAGE PERFORMANCE BY TRANSACTION TYPE

To permit the evaluation of MBDS performance across all four record

sizes, the response times of the all four record sizes were averaged for each

test-transaction number. This process helped consolidate and smooth the data

collected. Table 32 presents the average RTR test-transaction response times

for each test-transaction number and MBDS configuration tested. Table 33

presents the ideal RTR times calculated for use in evaluating system
, -formance. The ideal times are based on the average performance of the

baseline, single-backend MBDS configuration on all four test-transaction record

sizes. Table 34 presents the average RTI test-transaction response times for

each test-transaction number and MBDS configuration tested.

70

TABLE 32. AVERAGE RTR PERFORMANCE TIMES

Average Response-Times by TransacsIcn Number in Seconds

7NE 3F TWO THREE BE FCUR BE FIVE BE SIX BE SEVEN BE EGr'HT BE
Trans# AVG AVG TR AVG RTR AVG RTR AVG RTR AVG RTR AVG RTR AVG RTR

TRI 1.939 1.325 1.083 0.921 0.833 0.829 0.791 0.817
TR2 11.837 7.283 5.349 4.200 3.671 3.450 3.46 2.725
TR3 23.107 12.290 8.604 6.879 5.704 4.962 4.420 4.120
TR4 43.028 23.399 16 582 13.012 10.725 8.804 7.579 7.158
TR5 23-578 12.171 8.637 6.883 5.858 4.970 4.429 4.121
TR6 2.517 1.7!6 1.350 1.133 1.108 1.008 0.908 0.971
"R7 79.433 4n.519 28.536 22.99 18.573 15.262 12.979 1!.962

TABLE 33. IDEAL RTR PERFORMANCE TIMES

Averace Resconse-Ti--es by Transaction Number In Seconds

s. C"E H !B5/2 1SE/3 135/4 'BE/5 IBE/6 IBE!' 135/8

199 .953 0.633 0.475 0.380 0.317 C.271 0.237

32 ..37 :.9 3944 2.958 2.367 1.972 1.693 1.479
23.1_7 11.575 - 5. 87 4.633 3.858 3.307 2.?94
43.-28 2 .18 1.3? . 8.603 7.169 6.145 5.377

TR25 23.57 11.858 7.9C5 5.929 4.743 3.953 3.388 2.965
T; 2.51- 1.242 C.828 .6 0 497 0.414 C.355 3.31C
,R7 9.430 39.949 22.632 9.97 4 15.979 13.316 11.414 9.987

TABLE 34. AVERAGE RTI PERFORMANCE TIMES

A;.'erae Respcnse-TI-es by Transaction Numnber in Seconds

C SE B TWO BE THREE BE FOUR BE 7IVE BE SIX BE SEVEN BE EIGHT B

--ansr AVL AVG RTI AVG RT. AVG R23 AVS RTI AVG RTI AVG R-1 AVG RT:

7R: 1.9"3 2.179 2.367 2.279 2.008 2.396 2.334 2.346
11.8?' 12.5E9 12.e83 12.462 12.579 12.979 12.745 12.7?'

3. 23 .: 2 2. 66 23.824 23.832 23.824 24.091 24.237
43 .38 45.1?2 47. '3 45.495 47 .844 45.219 48.606 48.315
23.58 24.553 24.286 24.574 23 .816 24.320 24.003 24.324

THE 2.5I 2.841 3.359 2.983 2.563 3.137 2.622 2.638
TR

-
9.430 77.993 79.874 78.726 83.830 78.388 81.838 83.733

71

VI. ANALYSIS AND INTERPRETATION OF THE TEST DATA

A. AN ANALYSIS OF MBDS RESPONSE-TIME REDUCTION

1. RTR Performance on Overhead-Intensive Transactions

Test transactions number one and number two are overhead-intensive

transactions whiO access (read) only 4% of the database. Of the database

records retrieved, only about half satisfy the query or 2% of the database.

Very little time is spent actually reading the database, most of the time is spent

looking up the clusters and on communications between the controller and the

backends.

Figure 6 shows the RTR performance of MBDS on test transaction

number one, a RETRIEVE transaction. Figure 7 shows the RTR performance

of MBDS on test transaction number six, a DELETE transaction. Clearly, the

actual performance lags behind the ideal estimate of the performance

improvement for both overhead-intensive transactions. Redistributing the data

across additional backends ceases to be beneficial at the four or five backend

mark. The addition of backends beyond tilis point becomes futile because the

system overhead has become the limiting factor. It is intereting to note that

while the performance levels off at this point, it does not seem to worsen, even

though more communications overhead is introduced. Note that the ideal

performance curve, too, goes asymptotic with the X axis as the number of

backends increases. The scale on the Y axis should also be noted to put the

(sub-second) difference between actual and ideal performance in perspective.

72

2-

Atual

IdeaI

C
0
Lu

0.5

U I I I I I

1 2 3 4 5 6 7 8

of Backenc5

Figure 6. RTR Performance on Transaction #1

73

Actual

I dea I

0 1.5

0.5

0 l i

1 2 3 4 5 6 7 8

0 of flackerMs

Figure 7. RTR Performance on Transaction #6

74

2. RTR Performance on Data-Intensive Transactions

The remaining five test transactions are data-intensive transactions.

These transactions cause the backends to access as much as 100% of the

database records. In data-intensive cases, accesses to secondary storage are

prevailing and overshadow data communications time and computer processing

time. This means the secondary storage access time is the limiting factor, not

the system overhead. This can be seen in the response times which are in the

tens of seconds. Sharing this sort of workload is ideally suited for MBDS as

the RTR performance results demonstrate:

* Test transaction number two is a data-intensive RETRIEVE transaction
which accesses 26% of the database with 96% of the records retrieved
(25% of the database) satisfying the query. Figure 8 shows the RTR
test results for test transaction number two.

Test transaction number three is a data-intensive RETRIEVE
transaction which accesses 50% of the database with half of the records
retrieved (25% of the database) satisfying the query. Figure 9 shows
the RTR test results for test transaction number three.

Test transaction number four is a data-intensive RETRIEVE transaction
which accesses 100% of the database with half of the records retrieved
(50% of the database) satisfying the query. Figure 10 shows the RTR
test results for test transaction number four.

Test transaction number five is a data-intensive RETRIEVE transaction
which accesses 50% of the database with half of the records retrieved
(25% of the database) satisfying the query. Figure 11 shows the RTR
test results for test transaction number five.

Test transaction number seven is a data-intensive DELETE transaction
which accesses 100% of the database with half of the records retrieved
(50% of the database) satisfying the query. Figure 12 shows the RTR
test results for test transaction number seven.

75

ktuai
12

Idea I

10

0
U
0

2

0 of Backends

Figure 8. RTR Pertormance on Transaction #2

76

25

ACt ua I

20

15

0
u

10

5

0

1 2 J 4 5 6 7 8

I of OacKenas

Figure 9. RTR Performance on Transaction #3

77

35 Ideal1

30

25
C
0
U

20-

15-

10-

5

0 1 1 1 1
1 2 3 1 5 5 7 8

of sdcend5

Figure 10. RTR Performance on Transaction #4

7 8

90

80 A~tual

X

70 Idea 1

60

50
C
0
U00
U]

30

20 -

10

I I I I I I

1 2 3 4 5 6 7 8

U ,,f Backers

Figure 11. RTR Performance on Transaction #5

79

45

40 Actual

3 I ded I

30

o 25
C
0
U
02

15

10

5

0 F I I I I I
1 2 3 4 5 6 7 8

5 of Dackenis

Figure 12. RTR Performnance on Transaction #7

80

B. AN ANALYSIS OF MBDS RESPONSE-TIME INVARIANCE

1. The RTI Testing in General

The RTI testing uses the same test-transaction set as the RTR test, so
the percentage of the database records accessed remains the same. It is the
size of the test databases that makes the RTI a demanding test. The number of

database records (and therefore the size of the database) is doubled, tripled and

so on as the number of backends is incremented proportionally. The goal is to
maintain baseline performance in spite of the increased load. It is virtually

guaranteed that a conventional database system's response time would be
doubled if the same test-transaction is subjected to the test by doubling the
database size and number of records retrieved. MBDS attempts to overcome
the conventional DBMS's response-time increases.

2. RTI Performance on Overhead-Intensive Transactions
RTI testing of MBDS daring this study demonstrated the system's

sensitivity to uneven loading when subjected to overhead-intensive transactions.

Recall from Chapter V that the configurations with five, seven and eight

backends were artificially loaded with perfectly even databases. Figure 13
gives a clear indication of the performance results. Perfect or ideal RTI

performance would mean the matching of the one-backend configuration times.
The unevenly loaded configur tion response-times were close, but clearly the
response-times suffered. These differences were measurable, but take note of

the time scale in Figure 13. The variances were under one second tor a given

transaction.
Without the evenly loaded configurations, an incorrect conclusion

might have been drawn by blaming the heavy increase in the database size for

the loss of performance on overhead-intensive transactions. The evenly loaded
configurations nearly matched the one-backend times with five, seven and eight

times as large a database! The test-transactions still only accessed four percent
of the database. However, much more meta data had to be searched. The

81

Transl

Trans 16

0
uo;
U

V)

8-

1-1

a- -- - - -

N of ckends

Figure 13. Overhead-Intensive RTI Performance Analysis

82

unevenly loaded configurations lagged behind the perfectly evenly loaded

configurations because of the uneven loading and not because of an increase in

system overhead. A parallel system such as MBDS can only be as fast as the

slowest backend. By loading the backends unevenly, overall MBDS

performance is limited to the performance of the backend with the heaviest
load of records which match a given query. If maximum overhead-intensive

transaction processing speed is a priority, a MBDS database administrator must

take steps to ensure even database loading. If overhead-intensive transaction
processing is infrequent and data-intensive transaction processing is the
priority, the subsecond variances on overhead-intensive transactions are a

small price to pay for a phenomenal increase in database size.

3. RTI Performance on Data-Intensive Transactions
Where the RTI testing demonstrated sensitivity to uneven loading on

overhead-intensive transactions, the opposite was true of data-intensive

transactions. Again, ideal RTI performance would mean matching the
response-times of the one-backend or baseline configuration. Figure 14 shows

MBDS test transaction performance during RTI testing (test transactions three

and five access the same amount of the database and, therefore, have nearly
identical response times and plotted over the top of one another). An ideal

RTI test transaction performance would be a horizontal line on this graph. The

actual RTI performance on the test transactions proved to be only slightly

worse than the baseline times and seemingly oblivious to uneven loading. This
indicates that minor imbalances between backends 'ave little impact on the

response-time of data-intensive transactions. The season for this behavior is

the relatively small number (100s to 1000s) of "extra" records the heavily
loaded backend has to process compared to the total number of records read to

meet the query (tens of thousands). Additional fractions or whole seconds

have little effect when the query runs for tens of seconds. In general, the

response-time remained relatively constant. Figure 15 is provided to show the

minimal overall variance from the ideal baseline time.

83

80

so Trals&2

70 TransN3

50 -
Trans'14

TransW5
o 40

30
Trans#

20

10 W - U U

I I i I I I I I
1 2 3 4 5 6 7 8

S of BackonOs

Figure 14. A Comparison Chart of Data-Intensive RTI Performance

84

180 Trans#2

Tr60 M

Trans#4

0

4)

Trans#?

1 2 3 1 5 6 *7 8

A of Backends

Figure 15. An Analysis of Data-Intensive RTL Performance

85

VII. CONCLUSIONS AND RECOMMENDATIONS

The focus of this thesis was the verification of performance claims made

about MBDS. The system was designed to be configurable, to demonstrate

response-time reductions and to demonstrate response-time invariances. To

conduct the performance evaluation of MBDS, a previously designed and

impl, -nented computer-aided benchmarking methodology and system (CABS)

was ,tilized for the first time. Difficulty in loading a truly large-scale test

database required the use of a scaled-down database. However, the database

size used was large enough to put MBDS through the most comprehensive test
to date and to provide clear insight into the performance potential of MBDS.

During the overhead-intensive portion of the performance evaluation,
MBDS demonstrated acceptable levels of response-time reductions and

response-time invariances. Overhead-intensive transactions are the most

difficult type of transaction for a parallel computer system to process, but

MBDS did perform well in these tests. A notable sensitivity to uneven
database distribution was observed during the overhead-intensive transaction

testing. Optimal overhead-intensive transaction processing depends on even

distribution of the database records among the backends.
During the data-intensive portion of the performance evaluat-on, MBDS

demonstrated strong response-time reductions and response-time invariances.

Data-intensive transactions are exactly what MBDS is designed to perform

most effectively. A remarkable tolerance of uneven database distribution when

processing data-intensive transactions was observed. Nearly optimal data-

intensive transaction processing is acheiveable by MBDS in spite of moderate

uneven database record distribution.

Future work in this area of study should begin with a study of the

UPDATE and RETRIEVE-COMMON transactions. Next, an even larger-scale

test should be attempted but this will require an off-line, high-speed database

86

mass-loading utility program. CABS would also have to be extended to

produce output to tapes rather than to hard disks which limit file size. Another

possible research topic is the analysis of the data placement algorithm used by

MBDS. The random selection of the first backend which contains an available

block of secondary storage for placing the first block of a given cluster of

records causes (somewhat) uneven distribution of the database. Alternative

first-backend selection criteria could be developed and tested. Overall, the

benchmarking test results were encouraging and enlightening. MBDS has met

its designed performance goals.

87

LIST OF REFERENCES

1. Hsiao, D.K., Guest editor's introduction: Database machines are coming,
database machines are coming! Computer, Vol. 12, No.3.

2. Kernigan and Plquger, The Elements of Programming Style, Mcgraw-Hill,
1978.

3. Ferrari, D., Computer Systems Performance Evaluation, Prentice-Hall,
Englewood Cliffs, NJ, 1978.

4. Ferrari, et al., Measurement and Tuning of Computer Systems, Prentice-
Hall, Englewood Cliffs, NJ, 1983.

5. Demurjian, Hsiao, and Menon, A Multi-Backend Database System for
Performance Gains, Capacity Growth and Hardware Upgrade, 2nd International
Conference on Data Engineering, IEEE Computer Society, Feb. 1986.

6. Banerjee, J. and Hsiao, D.K., DBC Software Requirements for Supporting
Relational Databases, The Ohio State University, Tech. Rep. No. OSU-CISRC-
TR-77-7, November 1977.

7. Strawser, P. R., A Methodology for Benchmarking Relational Database
Machines. Ph.D. Dissertation, The Ohio State University, Columbus, OH,
1984.

8. Tekampe, R. C. and Watson R. J., Internal and External Performance
Measurement Methodologies for Datbase Systems, M.S. Thesis, Naval Post
Graduate School, Monterey, CA, June 1984.

9. Vincent, J. R., A Performance Measurement Methodology for Software
Multiple-Backend Database Systems, M.S. Thesis, Naval Postgraduate School,
Monterey, CA, June 1985.

10. Fenton, G. P., A Computer Aided Design for the Generation of Test
Transactions and Test Databases and for the Benchmarking of Parallel,
Multiple Backend Database Systems, M.S. Thesis, Naval Post Graduate School,
Monterey, CA, June 1986.

88

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Commandant of the Marine Corps 1
Code TN 06
Headquarters, U.S. Marine Corps
Washington, D.C. 20380-0001

4. Department Chairman, Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5002

5. Curriculum Officer, Code 37 1
Computer Technology Programs
Naval Postgraduate School
Monterey, CA 93943-5002

6. Professor David K. Haleo, Code 52Hq 5
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

7. Captain James Z. Hall
MCTSSA
Coimunications and Intelligence Branch
Camp Pendleton, CA 92055-5018

89

