A "14’/5,

$x f::,%

. oA
o | Final Report on Research
q:

in Computer Vision for
Autonomous Systems

DTIC

FILECTE L "
SEP 1319831 E

Avi Kak D
Mark Yoder

Keith Andress

Steve Blask

Tom Underwood
Bishara Shamec

Approved o1 purliz releasel
Dismienn-=n Ual.mied

f DISTRIBUTION STATEMENT A

Robot Vision Lab

School of Electrical Iingincering
Purduc University
West Lafayctte, Indiana 47907

Project Period: January 1986 through December 1988 2 4

89 9 13

T

. DISTRIBUTION STATEMENTS
' reccive .

Please check sppropriate block:
. l. Copies are being forvarded.
. —— ~ Iondicate vhether Statement A, 8, C, D, E, P, or X applies.

DISTRIBUTION STATEMENT A

k]

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED.

DISTRIBUTION STATEMENT B:

! .
DISTRIBUTION LIMITED TO U.S. GOVERNMENT AGENCIES ONLY; (Indicate Reason and
Data). OTHER REQUESTS FOR THIS DOCUMENT MUST BE REFERRED TO (Indicace

Controlling DoD Office).
DISTRIBUTION STATEMENT C:

DISTRIBUTION LIMITED TO U.S. GOVERNMENT AGENCIES AND THEIR CONTRACTORS;
(Indicats Reason and Data). OTHER REQUESTS FOR THIS DOCUMENT MUST BE REFERRED TO
(Indicate Controlling DoD Office).

DISTRIBUTION STATEMENT D:

DISTRIBUTION LIMITED TO DOD AND DOD CONTRACTORS ONLY: (Indicate Reason and
Date). OTHER REQUESTS MUST BE REFERRED TO (Indicate Controlling DoD Office).

DISTRIBUTION STATEMENT E:

DISTRIBUTION LIMITED TO DOD COMPONENTS ONLY; {Indicata Reason and Date).
OTHER REQUESTS MUST BE REFERRED TO (Indicate Controlling DoD Office).
[] DISTRIBUTION STATEMENT F: -

FURTHER DISSEMINATION ONLY AS DIRECTED BY (Indicate Controlling DoD Office
and Dacs) or HIGHER DOD AUTHORITY.

DISTRIBUTION STATEMENT X:

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND PRIVATE INDIVIDUALS
‘ OR ENTERPRISES ELIGIBLE TO OBTAIN EXPORT-CONTROLLED TECHNICAL DATA IN- ACCORDANCE
WITH REGULATIONS IMPLEMENTING 10 U.S.C. 140c (Indicate Date of Decermination).

-OTHER REQUESTS MUST BE REFERRED TO (Indicate Controlling DoD Office).

For further informacion on withholding of export-controlled, unclassified
technical data as referred to in Distribution Statement X, see DoD Directive v.r;.
5230.25, Withholding of Unclassified Technical Data Froa Public Disclosure, - X T~
issued 6 Nov 1984,

[] 2. This document was previously forwarded to DTIC on (date) and the
AD nuamber is .

LX)

[:] 3. In accordance with the jrovisions of Department of Defense instructiocans, the .
document requested is not supplied because:

[J 1c ts TOP sEcmxt.

It is excepted in accordance with DoD instructions pertaining to
comsunications and electroanic intalligeaces.

It is a registered publicacion.

It 1sa a contract or grant proposal, or an order.

Will be published at s later dace. (Eater approxizate date, Lf known).

oooa

Ocher (Give reason).

TIMOTHY J. WILLIAMS
Print or Type Name

l‘m#@i W Ll anna] ~May 89

Auchorized S{gnature

703-664-6066
Telephone Number

- A

-

| LASSIFICATION HIS PA

REPORT DOCUMENTATION PAGE

Form Approved
OM8 No. 0704-0188

1a REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

28. SECURITY CLASSIFICATION AUTHORITY

3 O TRIBUNISY FRTABILIT 2 DF REPORY | Y

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE

Approved fcr publiz rejs o
Diziributicn Un'iziiicd

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

S. MONI | ATTON REPOURT RNOMBERSY

6a. NAME OF PERFORMING ORGANIZATION

Purdue Research Foundation

6b. OFFICE SYMBOL
(If applicable)

7a NAME OF MONITORING ORGANIZATION

Center for Night Vision and Elecro-Cptics

6¢. ADDRESS (City, State, and 2IP Code)

Hovde Hall
West Lafayette, TN 47907

7b. ADDRESS (City, State, and ZIP Code)

Fort Belvoir, Virginia 22060

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION Center for Night

Vision and Electro-Optics

8b. OFFICE SYmMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

DAAKP2O=RE—C 0203~ DﬁﬁL¢V~lfovqg#f6

8c ADDRESS (City, State, and 2IP Code)
Fort Belvoir, Virginia 22060

10. SOURCE OF FUNDING NUMBERS

WORK UNIT
f\CCESSION NO.

TASK

PROGRAM PROJECT
NO.

ELEMENT NO. NO.

11. TITLE (Include Securrty Classification)

Research in Computer Vision for Autonomous Systems

12. PERSONAL AUTHOR(S)

Kak, Avi; Ycder, Mark; Aandress, Keith; Blask, Steve; Underwood, Tom; Shamee, Bishara

14. DATE OF REPORT (Year, Month, Day)

1S. PAGE COUNT

13a. TYPE OF REPORT
Frogress

13b. 1IME COVERED
grom June 88 1o Sept .88

163

15-Sept . -148

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELO GRQUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)‘

e
-

. s
! . T

’

v P
b

~
5

. -

U 4

.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report addresses FLIR processing, LADAR processing and electronic terrain board model-
ing. In our discussion on FLIR processing, we have analyzed the issues of classifiability of
FLIR features, computationally efficient algorithms for target segmentation, metrics, etc. The
discussion on LADAR includes a comparison of a number of different approaches to the seg-
mentation of target surfaces from range images, extraction of silhouettes at different ranges, and
reasoning strategies for the recognition of targets and estimation of their aspects. Regarding
electronic terrain board modeling, we have shown how the readily available wire-frame data for
strategic targets can be converted into volumetric models utilizing the concepts of constructive
solid geometry; we then show how from the resulting volumetric models it is possible to gen-
erate synthetic range images that are very similar to real LADAR images. We also show how
sensor noise can be added to these synthetic images to make them even more realistic.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

O UNCLASSIFIEOUNLIMITED [SAME AS RPT

3 onic USERS

21 ABSTRACT SECURITY CLASSIFICATION
Unclassified

22s. NAME OF RESPONSIBLE INDIVIDUAL
Avi Kak

22b TELEPHONE (Include Area Code) | 22¢

317-494-3551

OFFICE SYMBOL

DO Form 1473, JUN 86

—_

Previous editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

Final Report
on
Research in Computer Vision for Autonomous Systems

Contract Number
DBAAK20-85-C-0293

DARL /- £S-C -5,

7

Submitted to

Tim Williams
Center for Night Vision and Electro-Optics
Fort Belvoir, VA 22060-5677

Prepared by

Avi Kak
Mark Yoder
Keith Andress
Steve Biask
Tom Underwood
Bishara Shamee

Robot Vision Lab
School of Electrical Engineering
Purdue University
West Lafayette, IN 47907

Project Period: January 1986 through December 1988

-——

1i

ACKNOWLEDGMENT

Our collective thinking on the current state of ATR methodologies and their limitations
has been much influenced by ongoing dialogue with Dr. Lynn Garn.

The research and development work presented in this report would not have been
possible without the technical support provided by Matt Carroll and Jeff Lewis.

Accesion For

L
NTIS CRA& o
DTIC TAB O

a

Unannounced
Justification

BY
Dist:ibution |

Availabiity Codes
.

. {Avad yadfor
Dist Special

i1
TABLE OF CONTENTS
Page
L. INTRODUCTION.... .ottt sessetsteserasstsaes et es st snesssessnst st es et st esesesasasasesssesenenns 1-1
2. FLIR PROCESSING.......c.ociciimiitineineteteet s ssesieeaassesassessseseastasessaesssesetesssrassssssnsasesssnnsenses 2-1
2.1. CLASSIFIABILITY OF FLIR FEATURES AND METRICS.......cccccocvriininieriinnrnnn. 2-1
2.1.1. Information Content of FLIR Features for
INterclass SEPArationceueeceiuiiieeineeniei e et eten e ae et aseane st e rserseas e resseans 2-1
2.1.2. Algorithm and IMage MEHiCScoceuueeerrierneniemiiernaeesesesseseaea e ssessansesnsesesssnns 2-37
2.2. TWO FLIR SEGMENTERS.......ccoivinierrercenecinereeseancrerssesss et sssnsssssesesssssesn s 2-55
2.2.1. An EGT Based Segmenter for FLIR Dataccccccvivienrceneneernrienineeeen e eseaees 2-55
2.2.2. FLIR Segmentation by Tree Traversal..........cccccoceeeoereenriereeniensieeee e eseseesscesenens 2-73
2.2.3. FULUTE WOTK ..ottt ettt es bt 2-92
2.3. THE USE OF HIGH LEVEL REASONING TO IMPROVE THE
CLASSIFICATION OF FLIR DATA.....ooioiiiriee ettt et et 2-92
2.3.1. Data Structures for Symbolic REasoningc...ccoceeverereririvesresenrennsierereeecee . 2-93
2.3.2. Pixel Level Hierarchical Data StUCIUTES.............ccveveerurrereeeesenrenreeseseeeeseeeeseneresens 2-99
2.3.3. Using A Global Map to Improve Edge Labeling............cccccovvererrrerrivneennicnnnnns 2-104
3. LASER RADAR RANGE DATA PROCESSING.........ccceoviirermrrrrecereteteeeteeeese v 3-1
3.1. DATA DESCRIPTIONS........ccotitiertieieeeeeeiseestes e terasssasses et et es s as st sens e ssss s essens 3-1
3.1.1. Description of the 1986 A.P. Hill Laser Radar Datacccceocoovirireineciinnne. 3-1
3.1.2. Description of the 1987 A.P. Hill Laser Radar Datacccccovrvevereicreenrrcernne. 3-1
3.2. EVALUATION OF LADAR IMAGES.....c.cccoiiiiiinni ettt 3-38
3.2.1. Preliminary Results of Measuring Classifiability
VS. Range in LADAR ...ttt sttt er e bt seens 3-38
3.2.2. Further Experimentation to Determine Classifiability
VS, RANGE oottt e e st b e es e e er e ete s sr et st ebeensne 3-40
3.2.3. Optimal Sampling of the Feature SPaceccoccoeeeieriveeevrvecenieieee e 3-45
3.2.4. Target Detection Using LADAR Data.....c..cocooooeerveuimieireeeeeeeeee e 3-63
3.3. LOW LEVEL PROCESSING OF LADAR DATA......ccoooommeeeieeeeeeeeeee e 3-102
3.3.1. Low Levcl LADAR Range Data Processingc.ccoeuevrreireersnninesseesisssnecsenienens 3-106
3.3.2. New Low Level Processing SCheme.ccovuevriiiniereeiieessitneereseeseessseesceneea. 3-120
3.3.3. A Study of Five Laser Radar Range Data Segmentersc....cooevvreeeererevererinnnena. 3-169
3.3.4. Results of Classifying the 1986 A.P. Hill Laser Range Dataccovcunrnnnnn. 3-193

iv
3.4. HIGH LEVEL LADAR PROCESSINGccccceovirirmmeniceeite et 3-203
3.4.1. Production Systems for Target RECOZNItioNcccoeevinviinmicniciniiine s 3-203
3.4.2. A Multi-Resolution Data Structure for Model-Based
Geometric REASONMINEG.......cccvvrieviimiiiiiiecectntestter et er s 3-231
4. ELECTRONIC TERRAIN BOARD MODELINGccocuveimieieieecienieenretee et 4-1
4.1, ETBM via PADL ..ottt e st e sttt sa s st st sre s sa s e 4-1
4.1.1. Geometric Models Of TAIZELSccoveriieiriiieeceitiee et etereeeetanuetessese s etesesersennas 4-1
4.1.2. Modeling CIULIETcoiiiiiirtee et e e sese e st cbesae e st s eaae e ereneaaes 4-16
4.1.3. Noise Degradation of Synthetic Range Imagery..........c.cccoeveivennnccnncinnveencncnn. 4-24
4.2, ETBM via TWIN ..ottt ettt b et eaae e sbe e v e sa bt 4-45
4.2.1. The TWIN Solid Modeling Package............ccceurerinieieneanenientiinenieeieseseecsveneenens 4-52
4.2.2. The Electronic Field Test........ccccivirriirinineiincennienteiese et etereeseasse e sscrsennanas 4-57
4.2.3. Conversion of BRL Objects to TWIN ObjJECESc.cceovreereerernrerenerierieeeeseeneennns 4-70
4.2.4. Conclusions......... e et b e se e et et eR SR A et ek £ et et shen e et e e s 4-74
S. REFERENCES ...ttt et et e va st st as e bttt et et st st escasese s et 7-1
APPENDIX A ..ottt et sttt ab s b e s e e sttt ebantrtene e enas A-1
APPENDIX B Lottt ettt s eb ettt b et e s et saane B-1
APPENDIX € .ottt sttt sa et s rss e e st sr s e b sesa st en st s s st esasassananeasas C-1
APPENDIX D .ottt ettt ae et sae bt st a e se et st e e ssss s e n s D-1
APPENDIX D ..ottt sttt e ebesv s st et s s e e s bt snte sase s bensennsernean E-1
APPENDIX Foooiiaae ettt sttt e s te s bt aesbe et esseerasneereenneraans F-1

1. INTRODUCTION

This is the final report describing CNVEO sponsored research at Purdue Robot Vision Lab.
This research program had three major goals: 1) Evaluation of the currently used image pro-
cessing and pattern classification procedures for FLIR data; 2) Development of algorithms for
LADAR imagery; and 3) Development of techniques for Electronic Terrain Board Modeling.
We believe that these three goals are all vital to the advancement of ATR science, in the sense
that their synergy will be reflected in most breakthroughs of the future.

As far as FLIR processing is concerned, our work centered on measuring the information
content of FLIR features from the standpoint of interclass separability, and an evaluation of
image and algorithm metrics. We also strived to improve the different aspects of FLIR process-
ing. Since image segmentation is a critical step in this processing, we developed several dif-
ferent approaches to the problem. Our motivation was simply to see which techniques might be
best suited for FLIR.

We believe that laser and millimeter radar range data, when avaiiable, would serve as an
important adjunct to FLIR information for target classification. Our hope is that a synergistic
integration of our current LADAR work with the developments made (and to be made) in FLIR
would probably lead to the most effective procedures for ATR. It is entirely possible that in the
ATR systems of the future, FLIR would play the role of focusing the attention of a processor at
potential targets, a laser-based system could then examine the geometrical attributes of spatial
data in the neighborhoods of these points to confirm or disconfirm the initial guesses and to also
classify the detected targets.

As is well known, during the past few years many algorithms have been developed by us
(and many other researchers in the country) for analyzing range maps using geometrical
approaches. These algorithms attempt to first extract from a 3-D scene the constituent surfaces
of objects, and then inferences about the objects are generated by reasoning over these surfaces
and their relationships. Although it is entirely possible that the available resolution today would
not permit the application of such geometrical approaches for target identification, we neverthe-
less think that such processing schemes should not be entirely ignored for LADAR imagery.
There is always the chance that even today such schemes could pay off at close ranges, and then
there is always the possibility that future LADAR systems would have much higher resolution —
making geometrical approaches the method of choice.

To augment our development of new algorithms for LADAR, we also worked on Elec-
tronic Terrain Board Modeling. The ETBM work is based on the following rationale: Although
it is desirable to use actual sensor data for the development and testing of ATR algorithms,
unfortunately such data is not always readily available — owing to the fact that field tests are
expensive and often postponed, not to mention the physical impossibility of carrying out experi-
mentation on all conceivable configurations of targets, sensors, environmental conditions and
terrain make-up. Anyone with a validated ETBM system should be able to run ‘‘electronic’’

_——

1-2

field tests and generate realistic data without the time and cost of a conventional field test.

The use of ETBM for modeling also provided another payoff: the development of a
multi-resolution data structure for model-based geometric reasoning. This technique provides a
natural means of degrading the more complex geometric models of targets (which we hope will
be applicable in future high-resolution LADAR processing) to simpler silhouette-like models
(which are applicable to the present resolution) by utilizing the relationship between discernible
target detail and the range of the target.

In 1986, the first year of the effort, we largely fulfilled the requirements of the first main
goal by creating the software for testing the classifiability of FLIR features. The software was
based on Parzen estimation techniques. In 1987 and 1988, we concurrently carried out investi-
gations into LADAR processing and ETBM. In 1987, we showed how by a combination of solid
modeling for targets, fractal representation for topography, and productions for terrain features,
we could construct synthetic images for the purpose of testing LADAR algorithms. Another
highlight of 1987 was our initial attempt at the development of LADAR algorithms for recog-
nizing objects on the basis of their geometrical attributes. Being preliminary in nature, the algo-
rithms assumed that the sensor was located at a particular vantage point with respect to the tar-
get. Our current work makes such assumptions unnecessary and the targets can be in any pose
in relation to the sensors. We also gained a better understanding of how the modeling work in
ETBM can aid in the evaluation of LADAR algorithms. The fact that we are using target and
terrain modeling for algorithm evaluation proves an important point we have made all along
that to score future breakthroughs in the ATR science there must occur concomitant develop-
ments in LADAR, ETBM and FiLIR.

We now describe our major accomplishments as they relate to our three main goals.

i.1 FLIR PROCESSING

The following are our achievements in working with FLIR imagery. Our goals in this area
were to evaluate the current state of the art in FLIR data processing, to improve FLIR segmenta-
tion techniques, and to utiiize high level reasoning to improve the classification of FLIR data.

1.1.1 Evaluation of FLIR Processing

Information Content of FLIR Features for Interclass Separation

We set out to measure information content of FLIR features from the standpoint of inter-
class separability by testing the following conjecture:
In a typical single static FLIR frame there does not exist enough information for

M

1-3

target classification. [It is important to note that excluded from our consideration are
close range images or images taken under ideal environmental conditions. |

The software that we developed for this purpose includes modules for Parzen estimation tech-
niques that are used for obtaining lower and upper bounds on classification errors. We believe
that the upper bound thus obtained is tight and a good measure of the classification information
contained in a given set of features. For comparison, we also have a module that for a given set
of features computes the Bhattacharya distance between two classes as a measure of interclass
separability. In order to conduct a full scale study on FLIR features, we compiled a superset of
the FLIR features used by NVL contractors.

All the software that was developed in the first trimester for measuring classifiability of
FLIR features was applied to NVL simulated terrain board data. Unfortunately, this data set
could not be used to either prove or disprove our non-classifiability conjecture because of inade-
quate viewpoint spread in the acquired imagery. In the azimuthal plane, the viewpoints were
45° apart (which is too large a spread for our study); moreover, there was no variation with the
elevation angle. Also, many of the images were taken from exactly the same viewpoint.

We also ran our classifiability software on the BRITT data. Since for some of the target
types we did not have enough images for a single range, we had to group together images taken
at different ranges to huild a large enough sample size for statistically meaningful conclusions.
On hand-picked target images of good quality and using the bounded-rectangle method for seg-
mentation, our computed lower bound on classification error was 43% using gray scale features.
(As we have explained, it is not possible to use all the features at the same time, because with
the resulting high-dimensionality of the feature space we are also required to have a correspond-
ingly large sample size. So for any classification study, the dimensionality of the selected
feature set is limited by how much data is available for training the classifier.)

It is possible that we could reduce the 43% classification error estimate if we used a supe-
rior segmentatiou strategy, such as those derived from wire frame models. The error estimate
would surely go up if we did not limit ourselves to good quality hand-picked images. At the
time, it was too early to tell whether these results proved or disproved our non-classifiability
conjecture. All these preliminary results are presented in Section 2.1.1.4.

We improved our software for testing the classifiability of FLIR features by incorporating
in the software an advanced Parzen estimator for computing bounds on classification error.
This advanced estimator, based on Prof. Fukunaga’s recent work, makes dccision thresholds
also a function of the class covariances, as opposed to only their prior probabilities, which is the
case with the more traditional Parzen estimators. Other upgrades to this software consisted of
our adding more features to the set we had reported on before, and the use of a superior segmen-
tation algorithm. Using these changes on the same BRITT data resulted in the classification
error for grey scale features to change from a lower bound of 2.2% to a lower bound of
12.7%. These results are reported in Section 2.1.1.4.

1-4

Algorithm and Image Metrics

We set ou: *» investigate algorithm and image metrics for ATR characterization. The con-
clusion that we have arrived at with regard to image metrics is that the independence of metrics
is probably a necessary, but definitely not a sufficient, criterion for their selection. As stated in
Section 2.1.2, we believe that the dependence of a metric on different variables must be
discovered by theoretically analyzing algorithms for their performance, as opposed to by heuris-
tic specification. The point being made here is that if, say, our goal is target detection and we
wish to characterize the complexity of an image with regard to target detection, we should
theoretically analyze the algorithm used for the purpose and thus discover the form of the
metric. Such a metric would be both task oriented and algorithm dependent, which is how it
should be. There can be no absolute measures of image complexity even for specific processes
such as target detection. Since it is possible to use different algorithms for detection, the meas-
ure of complexity must take into account the nature of the algorithm.

While in the first trimester we showed that T/R? was not a reliable metric for target detec-
tion, in the second trimester we have established that TBIR? also suffers from serious
deficiencies when it comes to measuring image complexity with regard to target segmenta-
tion. These results are presented in Section 2.1.2.

As a first step in our attempts to come up with new metrics, we have in Section 2.1.2.2
proposed a method that might be able to measure the complexity of images from the standpoint
of segmentation using thresholding. Although it has fared better than the TBIR? metric in
assessing the difficulty of segmentation on the images we have tested it on, we are not yet ready
to give it the label of a new metric as many questions that it has raised remain unanswered.

1.1.2 Two FLIR Segmenters
EGT

Section 2.2.1 presents results obtained with our new edge guided segmenter for FLIR data.
This segmenter is much simpler than the Hughes segmenter, yet its performance is comparable,
at least on the images that both were tested on. Our segmentation algorithm is based on the fact
that in the traditional histogram based procedures the hardest problem is the selection of a good
threshold. Our contention is that in the vicinity of the valley where a good threshold might be
placed to separate the target from the background, the shape of the histogram is distorted by the
boundary pixels. That is because the boundary pixels have gray levels that are intermediate
between the target and the background. Therefore, in ocur new segmentation algorithm, we
delete the contributions made to the histogram by boundary piels.

1-5

Tree Traversal

Our long term aim is still to integrate with LADAR the FLIR algorithms we have
developed and reported on previously. However, such an integration will only come about after
we have stabilized the set of algorithms for LADAR processing. In the meantime, we have con-
tinued to improve the different aspects of FLIR processing. Since image segmentation is a criti-
cal step in this processing, we implemented a totally different approach to this problem — seg-
mentation by tree traversal. Our motivation was simply to compare three or four different
approaches to segmentation and to see what techniques might be best suited for FLIR. This
work is reported in Section 2.2.2.

1.1.3 The Use of High Level Reasoning to Improve the Classification of FLIR Data

Because of the emphasis that we placed on the feature classifiability study, our progress on
the application of hierarchical vision techniques to FLIR images has been less than what was
criginally anticipated. We have conceived of methods to carry out hierarchical reasoning, but
haven't fully implemented any particular strategies.

Data Structures for Symbolic Reasoning

We took an important first step toward the eventual development of more sophisticated
algorithms tor ATR. This consisted of devising procedures for converting numerical pixel level
information in an image into a symbolic map. In Section 2.3.1, we have shown symbolic data
structures that will be used for associating pixels with the lowest level symbolic features, such
as lines, edges and blobs. It is important that efficient data structures be put into place;
since if that is not done, simple questions like what edges a particular pixel might belong to
can lead to exhaustive and grossly inefficient searches in an image. An important side
benefit of a good data structure is that it can reduce some types of elementary symbolic reason-
ing to simple operations such as a table look-up.

Pixel Level Hierarchical Data Structures

In hierarchical vision, we conducted some studies on the loss of classifiable information as
we go up a pyramid representation of a FLIR image. The pyramid representation was obtained
by simple 4x4 averaging. To our surprise, we were for the most part unable to see any
appreciable change in classification error as we moved up the pyramid. To us this means
that at this time there is probably a mismatch between the resolution implied by the
matrix sizes used for FLIR images and the intrinsic FLIR sensor resolution. This material

1-6

appears in Section 2.3.2.
Global Map to Improve Edge Labeling

Data Structures for symbolic reasoning have been proposed. Under development in the
Robot Vision Lab is a general purpose software tool for integrating map knowledge with
images. This system, called PSEIKI (a Production System Environment for Integrating
Knowledge with Images), is briefly described in Section 2.3.3. The symbolic reasoning struc-
tures previously developed will be used in conjunction with this system for applying spatial rea-
soning techniques to FLIR images.

1.2 Laser Radar Range Data Processing

Data Descriptions

Our second major area of accomplishment was getting a handle on the various aspects of
the A. P. Hill LADAR data. We now understand the nature of the noise in the AM and the FM
part of the data and, since the AM noise has much lower variance than the FM noise, we can
now separate from the high-noise composite data supplied to us a version whose noise-
properties are substantially the same as that of the AM part alone.

In Section 3.3, we have reported on our preliminary processing of the A. P. Hill data. This
data, which is a composite of absolute range information through the FM channel and relative
range information obtained through the AM channel, has some peculiar noise characteristics
since the noise variances of the two channels are very different. While the variance of the FM
channel is around 9 meters — this happens to be close to half of the ambiguity interval of 18.75
meters — the variance of the AM channel is only about a meter. The composite data therefore
suffers from the worst of the two variances. Section 3.3 shows how, for the purpose of target
recognition, it might be possible to extract from tlle composite data a range map whose noise
properties are as good as that of the AM channel. Another purpose of that section is to show
that in this trimester definite progress was made by us in gaining a full understanding of the A.
P. iiill data.

1.2.2 3% -uation of LADAR Images

* Since Teuon 3.3 was first written, the AM-only data has been made available to us,
therefore lec :..ng the need 1o extract the AM data from the composite data.

Classifiability vs. Range Experiments

Our preliminary work on the classification of LADAR imagery was extended to include
the effect of range. The rationale for the study was that a most important characteristic of any
LADAR algorithm is the nature of degradation of its performance with increasing range. Since
only noiseless synthetic data was used in the preliminary work, the classification accuracies we
obtained were unrealistically high. Noisy synthetic data ~ which is a more accurate representa-
tion of the real world case — was later processed through the same software to obtain more
meaningful results. The range dependence of classification accuracy is reported in Section
3.22.

Optimal Sampling of the Feature Space

Since at large distances from a LADAR sensor it is unlikely that geometrical features, such
as relationships between different surfaces, would be discemible, target recognition would have
to depend upon silhouette information. A silhouette based recognition strategy is made compli-
cated by the fact that silhouette features vary considerably over the range of all possible
viewpoints. To get around this difficulty, the usual practice is to represent the space of all
viewpoints by a small set of distinguished viewpoints such that each viewpoint in the small set
corresponds to a Gaussian distribution for the silhouette parameters of interest and that the
Gaussian distributions for all the viewpoints are as different as possible. This selection of dis-
tinguished viewpoints has hitherto been done by a human on the basis of his intuitive under-
standing of the dependence of silhouette features on viewpoints.

We made a first attempt at automatic selection of these distinguished viewpoints by first
computing the first order probability density associated with a silhouette feature of interest.
This density was computed using a large number of silhouettes uniformly sampled around the
object. We then sought a small number of silhouettes that would allow us to compute the same
density function with minimum error. An alternative to this method is to use clustering in the
silhouette space. For that purpose, we conducted a survey of the various automatic clustering
procedures that are available. This brief survey is included in Section 3.2.3.7. An immediate
practical usefulness of this work is that it would allow us to greatly reduce the number of
training images needed to train a silhouette based classifier. This work is reported in Sec-
tion 3.2.3.

Target Detection Experiments

We developed an algorithm for target detection from single LADAR lines. This detection
algorithm, described in Section 3.2.4, is more sophisticated than, and subsumes, simple schemes

1-8

that base decisions on the presence of constant range lines between two range discontinuity
points. We say our algorithm subsumes simple approaches because, with appropriate settings in
the software, the algorithm can be made to base detection decisions on mere presence of con-
stant range lines or, for that matter, even sloping range lines for targets whose flat surfaces are
at angles other than 90° with respect to the angle of look. Before the detection algorithm can be
used, it must be trained on sample data; the statistical similarity between the backgrounds
shown to the detector in the training phase and the background in the test phase then becomes
an important determinant of detector performance. In Section 3.2.4, we have also shown that
the detector performance can be improved by the enforcement of constraints like the minimum
number of detected pixels that must be contiguous for a target to be declared present.

We then generalized the single-line LADAR target detection algorithm to the case of
multi-line input. This work, discussed in Section 3.2.4, is aimed at examining the premise that it
should be possible to improve the detector performance by combining data from different
LADAR scan lines. We have examined two schemes for the multi-line case: In the first scheme
if a decision is based on L adjacent lines and M pixels from each line, we simply treat the detec-
tion problem as testing a binary hypothesis in an MxL dimensional space. In the second scheme,
the L lines for the multi-line case are considered to constitute L independent detectors, the sub-
detectors for each line working in exactly in the same manner as the single line detector
described in Section 3.2.4. Using both these methods our conclusion is that, from the standpoint
of enhancing target detection and minimizing false alarms, it is better, if possible, to have all the
MxL samples in a single line, as opposed to being distributed over L lines. We have demon-
strated that detectors utilizing a few LADAR lines may not be practical because of excessively
large false alarm rates associated with them.

1.2.3 Low Level Processing of LADAR

In Section 3.4.1, we will describe in detail the low level processing that is required before
any geometrical reasoning strategies can be invoked.

Edge Detection & Surface Labeling

In the first trimester of 1988, we discovered that the traditional approach to LADAR seg-
mentation, which starts with the extraction of jump and curvature edges, is too sensitive to the
higk variance noise and the large number of dropouts that characterize real LADAR data.
Therefore, in the second trimester of 1988 we focussed on the development of a new segmenta-
tion algorithm, which, we are happy to report, is indeed better. To compare the performance of
the new segmentation algorithm with the old, we had to develop criteria for judging the quality
of a segmentation.

1-9

Region Growing Approach

To carry out geometric reasoning over LADAR data, one must first extract the individual
surfaces of the visible part of the target. In our previous work, this was done with the help of
edge detection algorithms, the edges being mostly range jump discontinuities, roof-type edges,
and curvature maximas. We started out with edge detection for low level processing because
that is a common thing to do in industrial 3D robot vision and we felt that we should first try the
already proven approaches. Our experience with LADAR data has shown that edge detection
may not be the best approach for LADAR especially when such data is characterized by high
variance noise and frequent dropouts. We therefore implemented a region growing approach to
identifying the target surfaces. We report our new LADAR segmentation procedure in Section
3.3.2. It owes its superior performance in part to the fact that, prior to the computation of sur-
face normals, we fit 2-D B-splines to the range map. As a result, we obtain bicubic approxima-
tions to object surfaces that are guaranteed to be continuous in first- and second-order deriva-
tives. This leads to a great deal of noise suppression and results in smooth range maps and high
quality segmentations. In Section 3.3.2.3, we show the results on synthetic data. Results on the
real A. P. Hill LADAR data are shown in Section 3.3.2.4. In Section 3.3.2.5, we then present
objective measures for testing the quality of a segmentation and report on an algorithm evalua-
tion experiment in Section 3.3.2.6.

Study of Five LADAR Segmenters

In Section 3.3.3 we have presented a comparison of the following five different segmenta-
tion algorithms for LADAR imagery:

1. Planar-Patch Fitting Error

2. Variance-Based using 3x3 and 5x5 Windows
3. Rockwell Algorithm

4. Nettleton method using 3x3 and 5x5 Windows
5. Variance-Less-One using 3x3 Window

The last algorithm represents a heuristic fix for the problems caused by noise spikes in the other
algorithms. Our comparison illustrates the sensitivity of each algorithm to the thresholds
selected for segmenting out the object from the background. These silhouette-based algorithms
are applicable to the present low-resolution imagery and images with distant targets, where
geometric approaches are not appropriate due to lack of sufficient detail.

1-10

Classification Results

Section 3.3.4 reports on some preliminary work on the classification of targets in LADAR
imagery. Since the silhouettes of the segmented outputs from LADAR data seem to be of good
quality in many cases, in our initial classification work we have chosen to use features identical
to those extracted from FLIR silhouettes. Although the classification results thus appear to be
promising — the accuracy achieved was over 90% on one set of data — we want to impress upon
the reader that ultimately LADAR classification must exploit the geometrical information con-
tained in range maps. What we are trying to say is that given objects in arbitrary orientations
with respect to the sensor, a classification strategy would work best if it is based on matching in
a relational sense the geometrical features extracted from a LADAR image with the geometri-
cal features extracted from object models, such matching being graph-theoretic in nature.

1.2.4 High Level Processing of LADAR

One of our major accomplishments was the development of a set of algorithms for recog-
nizing targets in LADAR imagery on the basis of geometrical features. We are, of course, aware
of the fact that with the sensor resolution available at this time, geometrical features will not be
discernible for targets farther away than, say, a kilometer. However, as with most technologies,
we can expect the sensor resolution to improve over the next few years, especially since there
appear to be no fundamental reasons to preclude that. Therefore, the algorithms we are
developing, although applicable currently to close-range targets, are really aimed more for the
future. The initial set of algorithms discussed in this report is only meant to be an educational
exercise to help us formulate our ideas on how one should reason over geometrical features;
therefore, these algorithms only analyze range images from a single viewpoint.

Production Systems for Target Recognition

In Section 3.4.1, we have reported on some novel reasoning strategies for drawing infer-
ences about a target using geometrical features derived from LADAR data. In one of these
novel strategies, the system performs default reasoning, which can best be explained in the fol-
lowing manner: Let’s say that from a given viewpoint a LADAR sensor is able to see N sur-
faces. However, because of data acquisition and processing limitations, the target recognition
program is only able to discern M surfaces, where M < N. If the geometrical characteristics of
these M surfaces and their spatial inter-relationships are the same as those of some M of the N
surfaces expected to be seen on the target, we want our computer program to declare the target
present, albeit with a reduced probability. As we have shown, the computation required for this
kind of a recognition strategy is vastly simplified if we assume defaults for the missing object
surfaces. We will show how these defaults are automatically generated in two different

I-11

computational paradigms, one based on Prolog and the other on OPS.
Multi-Resolution Data Structure for Model-Based Geometric Reasoning

Availability of LADAR data has opened the door to recognition of objects by geometric
reasoning. However, one must first contend with the issue of a target being in any of an infinity
of possible poses with respect to the sensor. Researchers have advanced the notion of aspect
graphs to deal with this difficulty. The nodes of an aspect graph represent the clustering of all
viewpoints into a small number on the basis of topological equivalences. The idea behind the
use of aspect graphs is that given a target at an unknown orientation with respect to the sensor,
we should first determine the aspect graph node to which the target data corresponds; we should
then invoke node-specific strategies for a more precise determination of the orientation with
respect to the sensor. In the context of LADAR, since not all geometrical features are equally
visible from different ranges, we must use a hierarchy of aspect graphs instead of using a single
aspect graph for a target. This has led to the notion of a multi-resolution aspect graph reported
in Section 3.4.2 By using the TWIN solid modeling system, we are now able to generate multi-
resolution aspect graphs for targets.

Another major accomplishment concemns the problem of how to incorporate the dimin-
ished sensor resolution into a target model as the model is moved away from the sensor. This is
a hard problem, not generally amenable to analytical solution in its full three dimensional form.
We have shown results from a scheme that deleted object surfaces on the basis of their visible
areas as the object was moved away. Later we felt that since much recognition is driven by edge
information, and since the ability of a sensor to discern an edge is a function of the dihedral
angle at the edge, and, further, since the measurement of a dihedral angle suffers as the object is
moved away, we needed to capture this effect in our model degradation process. An edge-
deletion based scheme for graceful degradation of a target model as the model is moved away
from the sensor is reported in Section 3.4.2, where we have also shown results on a couple of
different targets. As a target is moved farther away from a sensor, its edges are removed selec-
tively on the basis of one or both of edge-length and dihedral angle.

1.3 Electronic Terrain Board Modeling

One of our most significant accomplishments was the development of the software for
Electronic Terrain Board Modeling. We believe that ultimately any such software will have to
have the following features: 1) geometric models of targets, 2) models of background and fore-
ground clutter, 3) models of environmental conditions, and 4) validation routines for testing the
integrity of the simulated data. We have succeeded in developing the software for all four of
these items. We are able to convert wire-frame models into solid models using PADL

1-12

descriptions. The PADL solid descriptions are then used to generate synthetic range maps. We
model the background terrain in 3-D by using fractals. Finally, a production system is used for
modeling clutter such as trees. One advantage of our procedure for generating trees is that every
tree can be different, which is unlike some of the other terrain modeling systems. Finally, to the
resulting synthetic 3-D imagery we add noise with the same drop-off statistics as the real
LADAR data. All this work is reported in Section 4.1.

Using the PADL based system, we were able to create ground-truth-images of the 1987
A.P. Hill field test. This was done by using the target location information in the headers of the
field test images as input to our ETBM. The ETBM placed the target models as the real targets
were placed in the field test and then generated the corresponding image. These images proved
to be very useful in helping us understand the location and relative position of the targets in the
real images. Another advance was that we acquired the BRL solid-modeler. We attempted to
integrate it with the original ETBM software. It appeared at the time that the integration of the
BRL software with the rest of our system was a necessary pre-requisite before we could show
more sophisticated synthetic imagery. The PADL solid modeling system we had used was
unable to handle a large number of surfaces that we need for our ETBM modeling. We had
hoped this difficulty would be alleviated by the BRL software.

In Section 4.2, we show that with the TWIN solid modeler we were able to generate more
complex ETBM imagery. We also discuss the conversion of BRL models to TWIN and talk
about the difficulties we ran into in this regard; these difficulties owe their origins to the toler-
ance problem in solid modeling.

2. FLIR PROCESSING

In this chapter, we will discuss our work on FLIR. Much of work in FLIR has been
motivated by our concerns about the low information content of features exwracted from FLIR
data, especially when targets and terrain are more than a kilometer from the scnsor and when
the atmospheric conditions are less than ideal. Notwithstanding this concern, it remains that
FLIR being passive is an excellent sensor for monitoring battlefield activity. The overall goal
for the research community therefore is how to best exploit this potential of FLIR with the
available discriminatory power of the current sensors. In the work we have reported in this
chapter, we will focus on the classifiability aspects of FLIR features, on the segmentation pro-
cedures that appear to work well without being excessively demanding on computational
resources, and on data structures that facilitate high level reasoning in such images.

2.1. CLASSIFIABILITY OF FLIR FEATURES AND METRICS

In 1987 we examined a large amount of FLIR data taken under different conditions. Since
even the best of data did not inspire confidence in us, we decided to set up a conjecture about
the information content of FLIR features; we of course maintained an open mind about the
truthfulness or falsity of the conjecture. As the following section demonstrates. the conjecture
was tested by using techniques based on Parzen estimation theory, which is capable of yielding,
in a non-parametric manner, lower and upper bounds on the classification error. Although, on
account of dimensionality issues we were not able to test the conjecture in the full feature space,
we did examine the appropriate subspaces and arrived at the conclusion that was not sufficient
information contained in the features used by most contractors at this time to warrant hardware
implementations of FLIR-based ATR.

2.1.1. Information Content of Flir Features for Interclass Separation

As mentioned in the Introduction, our basic aim here is to test the following conjecture

In a typical single static FLIR image, there does not exist enough information for
accurate target classification.

The conditions on the conjecture are that the single frame should be typical of FLIR imagery
(likely to be recorded under actual conditions) and definitely excluded are close-range FLIR
images and images recorded under ideal environmental conditions.

We state this conjecture because typical FLIR imagery is characterized by low resolution;
another reason for our conjecture is the strong dependence of FLIR target signatures on environ-
mental conditions. These factors cause us to question the viability of statistical classification
methods applied to features extracted from single frames.

By processing single static frames, we mean that no context-based, time-sequential,
expectation-driven or knowledge-based processing is performed.

.

R R R R R R R R OO R O RO R EREEEE=,

2-2

To test the conjecture we are compiling a superset of features that are used by the NVL
contractors and have developed a software package that for any given set of features computes
upper and lower bounds on their interclass separability. This is done via the computation of pro-
bability of classification error through Parzen and advanced Parzen estimation techniques.
Obviously, how much classifiability information is contained in a set of features can be readily
determined by calculating for a given set of features the upper and lower bounds on the proba-
bility of classification error .

As is well known, a common technique used for target classification of FLIR images is to
segment the image into regions and extract various features (such as mean gray value, region
height, and region width) for each region and based on these features statistically classify the
region as one of the targets. By using this procedure on known data, one can determine the
extent of classifiability information contained in a set of features. The basic steps of our
classification study are:

1. Segment FLIR images so that each region contains a single target.
2. Extract a superset of the features that have been revealed to us by NVL contractors.

3. Use the Parzen and advanced Parzen estimates to compute the underlying density func-
tions for the different classes.

4. The extent of overlap between the density functions corresponding to different classes is a
measure of interclass separability. Compute upper and lower bounds on interclass separa-
bility.

The next section discusses the automatic segmenter we used. Section 2.1.1.2 presents in
detail the features used in the experiments. A brief review of the Bayesian decision process and
Bayesian error estimation via the Parzen and advanced Parzen density estimates follow in Sec-
tion 2.1.1.3. Preliminary results on interclass separability based on the Eglin Turntable Data,
NVL terrain board data, and the BRITT data are given in Section 2.1.1.4. Finally, future exper-
iments are discussed in Section 2.1.1.5.

2.1.1.1. Segmentation

In order to obtain better target silhouettes for more accurate feature calculation and there-
fore more meaningful classification resuits, we implemented the likelihood segmenter described
in the Bandwidth Reduction and Intelligent Target Tracking (BRITT) Phase One Final Report
by Hughes Aircraft Company’s Electro-Optical & Data Systems Group [Hughes84]. We
present here (see Figure 2.1.1) the target silhouettes produced by the segmenter for images with
various qualities, but due to the proprietary nature of the Hughes report we will not discuss the
segmentation algorithm itself.

The input images we used are from the BRITT Target Recognizer Classifier Training data
set. The best segmentation output was produced for images similar to those in Figure 2.1.1 (a),

(a) britt040 : type=APC, range=5km, aspect=45deg
small "hot" target

(b) britt238 : type=APC, range=3.5km, aspcct=270deg
small "cool" target

w4
=
-

(¢) britt137 : 1type=TRUCK, range=2.5km, aspcct=90dcg
large "hot" target

Figure 2.1.1 Sample segmenter output.

(d) bri029 : type=TRUCK, range=2.5km, aspect=180deg
large "cool" target

(e) britt003 : type=APC, range=5km, aspect=180deg
no visible target where there should be one

(N britt515 : type=APC, range=5km, aspcct=270deg
noisy target

Figure 2.1.1 Continued.

(g) britt347 : type=TANK, range=2.5km, aspect=45deg
noisy background

(h) britt277 : type=TANK, range=2.5km, aspcct=270deg
target with extreme hot & cold spots

Figure 2.1.1 Continued.

2-6

(b), and (c).

2.1.1.2. Feature Extraction

Feature extraction is a critical step in ATR because the selection of features greatly
influences the ability to classify. We are currently using a superset of features used by other
NVL contractors.

The following description of the features assumes that G (x,y) is the grey level value of the
image containing the target, and T is the target region in the xy plane.

1. Mean grey value of the target

F=—— ¥ Gay

IT! (x.y)T

2. Standard deviation of the target grey value

1 _2
°=\/T—T'T Y Gixy)-g
(xy)T

3. Target height

hr = max (x;)—min(x;) for all x;eT
4. Target width

wr = max (y;)-min(y;) for all y;eT
5. Minimum grey value of the target

m =min {G(x,y)} for all (x,y)eT
6. Maximum grey value of the target

M =max {G(x,y))} Jor all (x,y)eT
7. Area of the target

A= 1{(x,y): (x,y) €T}

Second and third order moment invariants
9. Maina’s beta functions (six of them)

10. Height to width ratio of the target

11. Perimeter to width ratio of ine target
_ perimeter

Ppw
P wr

12. Rectangularity measure
No2M20 — N
where Mg, N20, N1 are normalized central moments.
13. Square of width to height
(wr/hr)?
14. Normalized contrast
@& - b)lo
where b is the background average.
15. Range
16. Depression angle

a = sin”! (elevation / range)
17. Square of the perimeter over the area
(perimeter)? | A
18. Square of the height over the area
h%/A
19. Height times range squared
(hy*Range)
20. Area times Range squared
A*Range 2

21. The sign of the normalized contrast

, +1 if (g-b)o20
sign(x) = PR
-1 if (g-p)6<0

We rederived all of the features used by Martin Marietta to check for correctness. Detailed
denivations of the features are presented in Appendix C. These derivations uncovered an incon-
sistency in one of Hu’s invariants. This error was traced back to a typographical error in Hu's

2-8

original paper [Hu62]. Further study showed that this error had been reported in [Ma79]. The
feature in error was M, which was given as:

Hpq
o= prg
oo 2
but should have been:
_ Hpg
e = ~prg
oo 2

Unfortunately n,, appears in all of Hu’s invariant moments, so none of the invariant moments
computed by Martin Marietta could have been correct.

Maitra’s invariants (derived in Appendix C) are invariant under scale, rotation, transla-
tions, and illumination. These invariants were used in [MM84], however when ¢5 is negative,
B4 is undefined. We have found that the following new definition for B4 is more stable:

9s
B4 = ¢%

2.1.1.3. Classification of FLIR Imagery

The classification problem, as it applies to FLIR imagery can be stated as follows: Once
an object is detected in an image, it is usually desired to determine what type of object it is. To
do this, a vector of features, X, is extracted from the object (e.g. mean grey value, various
moments, etc.). The vector can then be used to estimate the probability that the object belongs
to any given class. Assuming that the object can only be from one of two classes, w; or w,, the
following decision rule is applied. If the probability that the object is from class 1 is greater
then the probability that the object is from class 2, the object is assigned class 1 membership;
otherwise, it is assigned to class 2. This can be stated mathematically as

0 PXew!X)2P(Xewy1X)
X -
0, PXenyIX)>PXew; 1X)

where ®; stands for class i, and X -w; indicates that X is classified to class i. The decision rule
(for the one dimensional case) is shown graphically in 1gure 2.1.2.

Bayes’ theorem shows a way to find the a-posteriori probability of P (X e w;!X) given the
a-priori conditional probability P (X | Xe w;). Bayes’ theorem can be expressed as
PX1Xew;) PXew;)
p(X)

PXew;1X)=

e

Classi;\y Yo W, C lasstry to W,

Figure 2.1.2 Classification Decision Rule

If we define the likelihood ratio as

P(X1Xew)

X = X TXeap

the above decision rule can be expressed as

o ~In((X)) <t
@y ~In(I(X)) >t

X -

where the decision threshold, t, is defined as
3 P(xew;)

=-Ip— 2.2.1
nP(xeu)2) (2.2.1)

It can be shown that the probability of error for the Bayesian decision rule is the area of the
shaded portion of the graph in Figure 2.1.2. The decision rule can be extended to m classes,
w;, W, ..., W, which is expressed as:

X - {m‘. | ln(P(Xeo),-IX))?.ln(P(XeoojIX))} i=1,2,...m 2.12)
ift=0.

2.1.1.3.1. The Parzen Density Estimate

If the distribution of the features, X, is known or can be determined parametrically, the
problem of finding the classification error is easy. Unfortunately, in this case we must estimate
the density function. Given N samples, X, X5, ..., Xy, from a density function, the Parzen
estimate of a density function can be defined as

N
FX)= % 3 (LA™ (X—X;)/h)

i=1

where k(-) is called the kernel of the estimate and should be a nonnegative Borel measurable
function satisfying j'k (X)dX = 1. An example of a one dimensional Parzen estimate is shown in
Figure 2.1.3. Each sample X; is shown with its corresponding kemnel. These kernels are
summed to give the estimate p(X). It should be noted that the only parameters needed for the
Parzen density estimate are the form and size of the kernel function.

The Parzen density can be used to estimate the probability of error in the following
manner. If N; is the number of samples of class j and N is the total number of samples,
P (X e wj) can be approximated with N;/N. If X;; is the i th sample from the j th class, we can let

(

1

3 ~N

~
P
Figure 2.1.3 The Parzen Density Estimate

/\\
X X,

2-12

piX)=PXew;|X)
_ PXiXew;) PXew;)

B pX)
P(Xeap N

) N

3 (VA (X=X;;)/h)

=1

Qu—a

p
N;

=1); A"k ((X~Xij)/h)

pX)

21'3

L
N;

removing terms that will appear in all classes yields ;3 /(X), which is defined by
~ N;
p;iX)= Y ki((X-X;)h) j=12,..m (2.1.3)
i=1

If we substitute Equation (2.1.3) into Equation (2.1.2) we can classify

X - {m,lﬁ,(X)Zp",-(X)} i=12,..,m

If all samples, X;;, are classified in this manner and we let N,,,,, be the count of misclassified
samples, the probability of error can be approximated by

Nerror

Porror = N

It should be noted that the contribution of the sample itself is taken into account when the pro-
bability that it belongs to its true class is being computed; this corresponds to the case where
the classifier is designed and tested using the same data set. This produces the so called resub-
stitution error [Fu72]. It can be shown that this gives a lower bound on the true probability of
error.

To get an upper bound on the probability of error, one can use the leaving one out method.
Basically, in this method we ignore the effect a sample has on the density estimate of its true
class, and then the probability of error is computed in the same manner as before. When we
leave out a sample, the equation for estimating the sample’s class density becomes

N N
p,-(X)=) { Zk ((X-=X;;)h)—k; (0)} where X € ;

] i=1

2-13

2.1.1.3.2. Estimation of Classification Error in FLIR Data

In our classification experiments, our long term aim is to find the error when classifying
between four objects: a tank, a truck, a jeep, and clutter. The Parzen estimation procedure will
be used to find the classification error of a Bayesian scheme using commonly used features from
FLIR images (real and simulated). Each class of objects will be split into two clusters (subc-
lasses): front/rear view and side view. This will be done in an attempt to assure the classes
have a Gaussian distribution. If it is determined that resulting clusters are still not Gaussianly
distributed, it may be necessary to create three clusters per class: front, rear and side views.

Unfortunately, to produce statistically meaningful results, the number of samples per clus-
ter must be at least an order of magnitude greater then the dimensionality of the data [KaLa83].
This is needed to accurately calculate the sample covariance matrices. Because we are going to
have two or three clusters per class, if we use approximately ten features we need to have
200-300 samples of each object to accurately determine the Bayesian probability of error.

As was mentioned in the previous section, the only parameters needed to use the Parzen
estimate are the kernel size and shape. We will use a Gaussian kernel of variable size. The
Gaussian kernel is used frequently in Parzen density estimation, and can be shown to be optimal
for classification error estimation if the classes have Gaussian densities. The Gaussian kernel
can be expressed as

1 xX-z. -1 (x-1)
kj(X~Y)= ————— exp [- h’2 }

LR (PN

where n is the dimensionality (i.e. the number of features), h is the kernel size, Z; is the covari-
ance matrix of class j, and (X -V isx-Y transposed. Removing terms that will appear in all
the kernel functions yields the final kernel function

L o [_ (X~Y)Tz,-"(x—r>}
1%, h?

ki(X-Y) =

The kernel size parameter, h, will be varied to give the lowest leaving-one-out error; this gives
the optimal kernel size.

2.1.1.3.3. Advanced Parzen Error Estimation Techniques

The Parzen error estimation technique described up to this point has generally been con-
sidered state-of-the-art. However, recent work at Purdue has been performed focusing on
improving the results produced by the Parzen error estimation procedure [FuHu87]. The major-
ity of this work has been centered on changing the decision threshold from the value defined in

2-14

Equation 2.2.1. The incentive behind this work is the realization that, under certain conditions,
the expected value of the estimated density with respect to X is

E{p) =piX)*(1/h™)k (X Ih) 2.14)

where * represents convolution in R”. This equation is valid if the covariance of the kemel
function is set equal to the covariance of the data samples, Z;. If this is done, the covariance of
the scaled kemnel, (1/h™)k (X/h), is given by h?Z;. As can be seen by Equation 2.1.4, the
estimated density is a smoothed version of the true density function, and as h becomes small,
the estimated density approaches the true density. However, although the bias of the estimate
decreases for small h, the variance increases rapidly. Therefore, the choice of the sample scal-
ing factor is critical,

The bias of the estimate can be solved for explicitly if the true density is assumed to be
Gaussian. When p;(X) and (1/h")k;(X/h) are normal densities with covariances X; and h22,~,
the convolution produces another normal density with covariance (1+h2)Z,-. As h increases, the
variance of the estimate decreases. Thus, a new estimate can be formed

2
In(p (X)) = (1+hHIn pX)) + hTIn(IEI)

Using this new estimate, the decision threshold in Equaticn 2.2.1 can be changed to
1 P(Xew;) h? 1Z)
- 5-In - 3 In
1+A% PXew)) 201+4%) 1%4;)
It should be noticed that if all classes have the same number of samples and the determinant of

the covariances of all classes are equal, then this expression is equal to the one shown in Equa-
tion 2.2.1.

=

2.1.1.4. Preliminary Classification Results

This section details the results of all the classification experiments performed to date. One
experiment was reported in the first report, and three more classification experiments were
reported in the second. In the time since the second report, one further experiment has been
performed. All experiments used the Parzen classification error estimation procedure described
in Section 2.1.1.3. The source of data used in these experiments was:

1) Gaussian data with known interclass overlap

2) Eglin turntable data.

3) Simulated FLIR from the NVL terrain board.

4) A subset of the targets from the BRITT database

The following explains each of the experiments.

2-15

2.1.1.4.1. Experiment 1 — Gaussian Data

The experiment on the first set of data was conducted to test the performance and demon-
strate the statistical validity of the Parzen error estimation technique. In this experiment, the
procedure was performed on Gaussian data with known Bayesian error. This test of the Parzen
technique was performed for two reasons. First, it was desired to see qualitatively how tight the
upper and lower bounds produced by the original and advanced Parzen error estimates were to
the known error. Second, it was also desired to compare the results with the upper bound given
by the Bhattacharrya [Fu72] distance and a parametric classifier for Gaussian data. The Bhatta-
charrya distance is a special case of the Chernoff bound [Ch62] and is commonly used to esti-
mate the upper bound of the error probability. It was desired to compare the two methods to see
if the Parzen estimate would yield a tighter upper bound then the one provided by the Bhatta-
charrya distance. The parametric technique for classifying Gaussian data is known as a qua-
dratic classifier; this classifier which should give the best results possible for Gaussian data.
Thus, the error bounds produced by the quadratic classifier are a good standard by which to
measure the non-parametric techniques’ performance.

Two separate sets of data were used in this experiment. The first data set tested perfor-
mance when the means of the distributions of the classes differed. The second data set tested
performance when the distributions of the data from the two classes had different covariance
matrices. See Tables 2.1.1 and 2.1.2 for the parameters of the data for the two experiments.

2.1.1.4.1. Results

Ten trials were run on each data set, with results being reported for each trial. The ten tri-
als were also averaged and the means and variances have also been reported. The experimental
results of both the individual and averaged trials for the two sets of data are shown in Tables
2.1.1 through 2.1.4. As can be seen from the tables, the upper bound sometimes falls under the
true error and the lower bound is sometimes slightly larger then the true error. This is due to the
statistical nature of the data and occurs in all types of error estimation schemes. On the aver-
age, the bounds provided by the Parzen techniques prove to be very tight. This can be seen
when the results of the Parzen and Bhattacharrya upper bounds are compared; in most cases, the
Bhattacharrya bound reports almost twice the amount of actual error, while the output of the
Parzen techniques closely matches the quadratic output.

2.1.1.4.2. Experiment 2 — Eglin Turntable Data

For the purpose of the first report, preliminary results were obtained simply to demonstrate
that the software for computing interclass separability is in place. These preliminary results
were obtained by using the Eglin turntable data. The data consists of 40 FLIR images of one
target (a .ank) rotating on a turntable. The images were segmented by hand (to reduce the
chance of segmentation error) and the features discussed in [MMg4] were extracted for each of

Table 2.1.1 Error Bounds of 10% gaussian data using Parzen error estimates.

true error: 10%

Trial Original Advanced
Upper | Lower | Upper | Lower

0 9.5 55 8.0 1.5

1 9.0 9.0 8.0 7.0

2 11.0 10.5 10.0 9.5

3 11.5 11.0 11.5 11.0

4 6.5 6.0 8.0 8.0

5 8.0 7.0 9.0 8.5

6 9.0 9.0 9.0 8.5

7 8.5 8.5 8.0 7.0

8 11.0 10.5 12.5 12.0

9 9.5 9.0 9.5 9.0
avg - mean 10.3 9.5 9.4 8.8
avg - s.d. 22 1.8 1.5 1.7

True error: 10 %
Dimension: 8

Samples per Class: 100

Covariances: >, = I, ¥, = 1

means:

[0]

=
I
coocoOoCOhy

Table 2.1.2 Error Bounds of 9% gaussian data using Parzen error estimates.

true error: 9%
Trial Original Advanced
Upper | Lower | Upper | Lower

0 7.0 4.5 3.0 N5

1 15.0 7.0 11.5 9.0

2 9.0 5.0 5.5 4.5

3 10.0 5.5 7.0 6.5

4 15.0 9.0 10.0 7.0

5 12.0 10.5 9.5 7.0

6 9.5 4.5 7.5 6.0

7 11.0 6.0 8.0 6.0

8 10.5 55 6.5 5.0

9 11.0 7.5 8.0 7.0
avg - mean 11.2 6.1 7.8 6.1
avg - s.d. 26 1.4 24 1.9

True error: § %
Dimension: 8

Samples per Class: 100

I

ccoccoo™

[\
Qo

Covariances: &, = [, ¥, = 4l

means:

oo

[e I oo I e e e

M2=

"Tcocococooo

Table 2.1.3 Error Bounds of 10% gaussian data using Quadratic and Bhattacharrya estimates.

true error: 10%
Trial Quadratic Bhattacharrya
Upper | Lower Distance

0 85 1.5 18.3

1 9.5 1.5 19.9

2 120 9.5 204

3 13.5 11.0 18.0

4 8.5 8.0 19.7

5 10.0 8.5 19.8

6 9.5 8.5 189

7 8.5 1.5 19.2

8 13.0 12.0 209

9 10.5 9.0 20.2
avg - mean 10.3 8.9 19.5
avg - s.d. 1.9 1.5 0.9

Table 2.1.4 Error Bounds of 9% gaussian data using Quadratic and Bhattacharrya estimates.

true error: 9%
Trial Quadratic Bhattacharrya
Upper | Lower Distance

0 35 20 14.5

1 15.5 12.0 20.5

2 8.0 5.0 19.7

3 8.0 7.0 17.1

4 11.0 8.5 18.9

5 10.0 7.0 17.6

6 8.5 8.0 19.4

7 10.0 7.0 19.4

8 8.0 5.5 17.7

9 8.0 7.0 17.9
avg - mean 9.1 6.9 18.3
avg - s.d. 3.0 2.6 1.7

2-18

the images. These features were examined and two features were selected to be used in each of
the classification experiments. The image database contains only 40 images of one target, so
the classification experiment was designed to classify the front and back views irom the side
view of the tank. Only two features in each experiment were used because there were less than
20 images per class and at least 10 samples per feature are needed for each class [KaLa83].

Figure 2.1.4 shows three sample views from the Eglin turntable data, and the correspond-
ing binary segmented images. Table 2.1.5 shows the values of the features extracted from
images in Figure 2.1.4. The moments presented in Table 2.1.5 were computed with the correct
invariants, as discussed in Section 2.1.1.2.

The results of six classification experiments are in presented in Table 2.1.6. The
classification errors varied from 0 to 25% for a lower bound, and 0O to 37.5% for an upper
bound. Due to the very limited size of the input data, the only real conclusions that can be
drawn from this classification data is that we are able to run classification experiments.

2.1.1.4.3. Experiment 3 — Simulated FLIR '

The data set for the third experiment was generated from the simulated FLIR obtained
from the Night Vision Lab’s terrain board. The terrain board data included three types of tar-
gets: APCs, tanks and trucks. In the database, each type of target was rotated through 360
degrees, in 45 degree increments. There were eleven images of each target for each target
orientation, however, the target images for any orientation were nearly identical. Each image in
the data set included three targets, one of each type of target. Because of the relatively large
size and high definition of the vehicles in this database, target detection and identification was
extremely easy.

2.1.1.4.3. Target Classes

Two experiments were performed on the terrain board data. The first experiment used the
three classes of targets mentioned above. The second experiment was performed to determine if
the classifiability of the targets would improve if subclasses (clusters) were formed based on tar-
get orientation. In this experiment, each class of targets was split into two clusters, one for the
front/rear view and another for the side views.

2.1.1.4.3. Features

In this experiment, three different feature sets werc used; they fall in the following
categories

1) segmentation features

2) grey scale features

‘(a) - . o)

(c) (d)

(e) (f)

Figure 2.1.4 Sample images from Eglin turntable data. (a) Front view of tank (FILEO1). (b)
Segmented front view. (c) Side view of tank (FILE1S). (d) Segmented side
view. (e) Back view of tank (FILE27). (f) Segmented back view.

—

Table 2.1.5. Features extracted from images in Figure 2.1.4.

Seature front view side view back view
FILEQ1 FILE1S FILE27
height 45 43 44
width 47 98 49
area 1511 2996 1800
height/width 0.957447 0438776 0.897959
max 140 215 210
min 59 67 62
mean 102.860359 114.354805 124.765556
variance 250.677017 845.803650 1963.733765
sigma 15.832783 29.082705 44314037
moments
mo00 1.5542e+05 3.4261e+05 2.2458e+05
m10 9.8136e+06 2.3239e+07 1.5123e+07
mo01 1.0338e+07 2.4963e+07 1.5022¢+07
m20 6.3890e+08 1.6087e+09 1.0442¢+09
mll 6.5201e+08 1.6958¢+09 1.0108¢+09
m02 7.0811e+08 2.0093¢+09 1.0347e+09
m30 4.2751e+10 1.1344e+11 7.3732¢+10
m2l 4.2411e+10 1.1747e+11 6.9740e+10
ml2 4.4663¢+10 1.3701e+11 6.9576¢+10
mi3 4.9827e+10 1.7383e+11 7.3235e+10
central
moments
u00 1.5542¢+05 3.4261e+05 2.2458e+05
u2f 1.9255e+07 3.2411e+07 2.57190e+Q7
ull -7.4096¢+05 2.6444¢+06 -8.5466¢+05
u02 2.0482¢+07 1.9047e+08 2.9887e+07
u30 -2.1256¢+07 -7.3833¢+07 -6.1042e+07
u2l 8.0478e+06 -9.4706e+07 5.7593e+06
ul2 5.0408¢+07 3.3233e+08 9.4191e+06
u03 1.7111e+06 -3.2683¢+08 2.2330e+07
normalized
moments
n20 7.9712¢-04 2.7613¢-04 5.1136¢-04
nll -3.0674¢-05 2.2530e-05 -1.6946¢-05
n02 8.4790c-04 1.6227¢-03 5.9258e-04
n30 -2.2320¢-06 -1.0746¢-06 -2.5540¢-06
n2l 8.4507¢-07 -1.3784¢-06 2.4096e-07
nl2 5.2932¢-06 4.8370e-06 3.9409¢-07
n03 1.7968¢-07 -4.7570e-06 9.3428e-07

feature front view side view back view
FILEO1 FILE1S FILE27
Hu’s
invariants
pl 3.9737e+07 2.2288¢+08 5.5678e+07
p2 3.7010¢+12 2.5010c+16 1.9705¢+13
p3 3.0252¢+16 1.1485¢+18 8.0000¢+15
pd 9.4508c+14 2.4451e+17 3.4540e+15
pS -2.2993e+30 1 2865¢+35 3.5068¢+29
pé -1.7689¢+21 1.6371e+25 -2.7280e+21
p7 4.5000c+30 -1.5427¢+34 1.8153e+31
Hu’s normalized
invariants
f1 1.6450¢-03 1.8988¢-03 1.1039¢-03
2 6.3426¢-09 1.8152¢-06 7.7465¢-09
3 3.3358¢-10 2.4330¢-10 1.4004¢-11
4 1.0421e-11 5.1799e-11 6.0463¢-12
fs -2.7955¢-22 5.7737e-21 1.0746¢-24
fé6 -8.0745¢e-16 2.9547e-14 -9.4682¢-17
7 5.4712¢-22 -6.9235¢-22 5.5626¢-23
beta’s
(Maitra’s)
bl 2.3438¢-03 5.0347¢-01 6.3564¢-03
b2 3.1971e+01 7.0591e-02 1.6376¢+00
b3 3.1240¢-02 2.1290e-01 4.3175¢-01
b4 (new) -2.5743e+00 2.1519¢+00 2.9394¢-02
bS -4.7102¢-02 3.0041e-01 -1.4185e-02
b6 -1.9571e+00 -1.1991e-01 5.1766¢+01

Table 2.1.6. Classification error estimates based on Eglin turntable data.

Experiment Features h Lower Bound Upper Bound
Error Error

I Height 2.7500 5.00% 5.00%
Width

2 Area, 3.5000 5.00% 5.00%
Height/Width ratio

3 max grey level 0.1000 17.50% 37.50%
min grey level

4 mean grey level 0.1500 2.50% 5.00%
sigma of grey level

5 betal 1.0000 0.00% 0.00%
beta2

6 beta6 0.2500 25.00% 35.00%

2-23

3) Maitra’s beta functions

The first set of features depends only on the target segmentation; that is, the grey-scale values of
the target do not affect them at all. These features include parameters such as the target’s
height, width and area. Statistical parameters of the target’s grey-scale values comprised the
second feature set. The third feature set consisted of the Maitra’s beta functions. Table 2.1.7
shows the features used in each feature set.

Table 2.1.7 Features used for classification.

Features Used

target width

feature target height
set 1 target area
(segmentation) height / width
min grey level
feature max grey level
set 2 mean grey level
(grey scale) variance grey level
sigma grey level
feature Maitra’s beta functions
set 3 (1,2,4,5,6)

(beta functions)

2.1.1.4.3. Segmentation

Hand thresholding was used to segment the targets. Only one segmentation was used for
all eleven target images of any given orientation. This was done because all target images of
any orientation were almost identical. It should be noted that because the targets in each
orientation were segmented identically, there were not enough independent samples using
the segmentation features to give statistically meaningful results. Furthermore, in the exper-
iment where the classes were split into clusters, no results for the segmentation features were
obtained because the covariance matrices became singular because the images were nearly
identical.

2-24

2.1.1.4.3. Results

The upper and lower bounds for both experiments are shown in Table 2.1.8. Feature set
one is not statistically valid because the covariance matrices became singular. These results
show that FLIR targets are reliably classifiable if they are well defined and are of a rela-
tively large size. The results also show that the bounds given by the Parzen error estimation
technique remain fairly tight when applied to real world data. This experiment also confirms
one of the Parzen technique’s major shortcomings, its need for a large number of samples.

Table 2.1.8 Results of classifiability experiments on simulated FLIR.

feature with clusters no clusters
set upper | lower | upper | lower
1 -k -k 0.0* 0.0*
2 224% | 42% | 221% | 3.3%
136% | 03% | 139% | 03%

* not statistically valid

One surprising result is found when comparing the results of the non-clustered and
clustered experiments. It was originally thought that by splitting the classes into clusters would
improve classifiability. However, the results of this experiment show that no improvement is
made when splitting the classes into the front/rear and side views. Since the classes were split
solely on the hueristic argument that the statistics of the classes shou'd change the most between
the two views, the lack of improvement of classifiability may be due to inappropriate clustering.
A statistical clustering technique may be used to verify if inappropriate clustering was the cause
of this lack of improvement.

2.1.1.4.4. Experiment 4 — BRITT Data

The targets from the BRITT database consists of tanks, trucks, APCs and jeeps. The data-
base contains images where the targets range in quality from highly distinguishable to virtually
invisible. All images were collected at a range of either 2.5, 3.5, or 5 kilometers with the height
of the FLIR sensor varied from 100 feet to 200 feet to give a constant angle of declination.

2-25

2.1.1.4.4. Target Classes

The experiment was run with three classes: tanks, trucks and APCs. The database was
manually searched and 50 of the most visible targets from each class were selected. Unfor-
tunately there were not enough targets to enable an entire class to consist of a single type of
vehicle at a fixed range; because of this, two target classes consisted of multiple target types at
varying ranges. Table 2.1.9 shows the make-up of the different classes, and Figures 2.1.5, 2.1.6,
and 2.1.7 are the actual targets.

Table 2.1.9 Target types of classes.

Class compositions
Class Number Type Distance
Tanks 50 M551 2.5km
APCs 25 M113 2.5km
25 Ml114 2.5km
Trucks 18 M35 2.5km
18 M35 3.5km
14 M35 Skm

2.1.1.4.4. Features

The features used were identical to the ones used on the simulated FLIR in experiment 2.

2.1.1.4.4. Segmentation

The targets were segmented by hand. The method used consisted of enclosing each target
in a bounding rectangle as shown in Figures 2.1.5, 2.1.6, and 2.1.7. This was done because of
the highly varying grey level value of any given target ruled out simple thresholding as a seg-
mentation technique. It is hoped that either a wire frame segmentation technique or a segmenta-
tion method currently employed by industry can be used in the future.

2.1.1.4.4. Resuits

Table 2.1.10 reports the upper and lower classification error bounds for the different
feature sets. The confusion matrices for the different feature sets are given Tables 2.1.11 -
2.1.16. The results show that statistical classifier performance is extremely poor. There are a
number of reasons for this. First, the targets are hard to classify; a human operator is hard

Figure 2.1.5 Fifty images in Tanks class with bounding rectangle segmentation shown.

Figure 2.1.6 Fifty images in APCs class with bounding rectangle segmentation shown.

Figure 2.1.7 Fifty images in Trucks class with bounding rectangle segmentation shown.

2-29

pressed to classify the targets in many cases. Secondly, it is thought that the segmentation
method used severely reduced classification ability. The next section shows that because the
segmentation features and beta functions are highly shape dependent, the classification perfor-
mance improves when a more sophisticated segmentation technique is used. Lastly, it is hard to
determine classifier performance when using the beta function feature set because of the width
of the error bounds. In the next section we show that much tighter bounds can be obtained by
using an advanced Parzen error estimation technique.

Table 2.1.10 Results of classifiability experiments on BRITT Data.

feature set upper bound | lower bound
segmentation 51.3% 42.0%
grey scale 46.7% 42.7%
beta functions 63.6% 11.1%

Table 2.1.11 Confusion matrix for leave-one-out error of segmentation features (51.3% error).

true classified as

class | APCs | tanks | trucks
APCs 34 14 2
tanks 21 28 1
trucks 30 9 11

2-30

Table 2.1.12 Confusion matrix for resubstitution error of segmentation features (42.0% error).

true classified as

class | APCs | tanks | trucks
APCs 42 8 G
tanks 18 32 0
trucks 29 8 13

Table 2.1.13 Confusion matrix for leave-one-out error of grey scale features (33.3% error).

true classified as

class | APCs | tanks | trucks
APCs 30 15 5
tanks 10 35 5
trucks 3 12 35

Table 2.1.14 Confusion matrix for resubstitution error of grey scale features (8.7% error).

true classified as

class { APCs | tanks | trucks
APCs 40 8 2
tanks 1 47 2
trucks 0 0 50

2-31

Table 2.1.15 Confusion matrix for leave-one-out error of Beta functions (52.7% error).

true classified as

class | APCs | tauks | trucks
APCs 36 7 7
tanks 30 18 2
trucks 20 13 17

Table 2.1.16 Confusion matrix for resubstitution error of Beta functions (8.0% error).

true classified as
class | APCs | tanks | trucks
APCs 42 2 6
tanks 0 50 0
trucks 0 4 46
2.1.1.4.5. Experiment 5 — BRITT Data — Improved Techniques

The fifth experiment was run to determine if any improvement in classifiability could be
gained by using a sophisticated technique to segment real world targets. To enable comparison,
the targets used were the same as those of experiment 4. The experiment was also run to test
the performance of the advanced Parzen error estimation scheme on data with unknown distri-

butions.

2.1.1.4.5. Target Classes

The experiment was run with three classes: tanks, trucks and APCs. The classes were
composed of the same hand picked targets as experiment 4 and are shown in Table 2.1.9.

2-32

2.1.1.4.5. Features

Three feature sets used were identical to the ones used on the simulated FLIR and the first
BRITT experiment in experiments 2 and 3 respectively. However, two new feature sets were
also used; Table 2.1.17 shows the features used in these new sets.

Table 2.1.17 Features used f~~ classification.

Features Used
rectangularity
feature perimeter”2 / area
set 4 height™2 / area

height™2 * range™2

normalized contrast

feature depression angle
set 5 area * range™2
(width / height)™2

2.1.1.4.5. Segmentation

The targets in this experiment were segmented using the Hughes scgmenter referenced in
Section 2.1.1.1. The parameters of the segmenter used in this experiment were set bv hand to
produce optimal results. Because the BRITT database includes target locations, no uctection
scheme was needed to locate the targets. Figures 2.1.8, 2.1.9, 2.1.10 show the segmented tar-
gets.

2.1.1.4.5. Results

Table 2.1.18 reports the upper and lower classification error bounds for the different
feature sets using the original Parzen error estimation procedure. The results show the expected
improvement in classifiability over the results for experiment 3. In most cases, the upper bound
using the new segmentation techniques is near the lower bound produced by the bounding rec-
tangle method. This increase in performance is due to the improved segmentation scheme. The
results of applying the advanced Parzen techinique to the data is shown in Table 2.1.19. The
results show that the error bounds have been tightened in three of the five feature sets.
Although the tightening affect is not as drastic as had been hoped for, the improvement shown
is not insignificant. Because of the improvement in results shown and the theoretical argument
presented earlier, the advanced Parzen error estimation technique will be used in all future

8 & & 8 e o &

s Y o TR S A el o,

AT
» g

¥ O e v v Sogp S
- ® - 2 @ @ o &

Figure 2.1.8 Fifty images in Tanks class after automatic segmentation.

2 @& W e & 5 %

» S e .-“Qqcﬂ-'

Figure 2.1.9 Fifty images in APCs class after automatic segmentation.

Figure 2.1.10 Fifty images in Trucks class after automatic segmentation,

‘

2-36

experiments. Some people at the Night Vision Labs have also expressed an interest in seeing
the results from a parametric error estimation scheme. Table 2.1.20 shows the error bound
found by a parametric (quadratic) error estimator. This table points out the major flaw of
parametric error estimates. Although they do not require as many samples to produce results
and they do produce valid upper bounds, the upper bounds that they produce are often unneces-
sarily high and their lower bounds are valid only if the samples are drawn from a distribution of
the expected form (in this case Gaussian).

Table 2.1.18 Results of classifiability experiments on BRITT Data, original Parzen estimate.

feature set upper bound | lower bound
segmentation 43.3% 6.7%
grey scale 34.7% 2.7%
beta functions 47.3% 50.0%
feature set 4 47.3% 21.3%
featre set 5 36.7% 19.3%

Table 2.1.19 esults of classifiability experiments on BRITT Data, advanced Parzen estimate.

feature set upper bound | lower bound
_segmcntation 43.3% 10.7%
grey scale 34.0% 12.7%
beta functions 47.3% 28.0%
feature set 4 48.0% 20.7%
feature set 5 37.3% 24.0%

2-37

Table 2.1.20 Results of classifiability experiments on BRITT Data, quadratic estimate.

feature set upper bound | lower bound
segmentation 53.3% 49.3%
grey scale 38.7% 30.7%
beta functions 54.7% 52.0%
feature set 4 62.0% 60.0%
feature set 5 42.0% 38.7%

2.1.1.5. Future Work

The preceding experiments demonstrate that we have the tools available to find the
classifiability of a set of targets represented as grey-scale images. Our future work in this area
will be aimed at using these techniques to find the error bounds with a larger number of features
per sample vector. It is believed that experiments with large sample vectors will show that
classifier performance on FLIR targets is acceptable if the targets are highly defined and enough
features are used for classification. As was mentioned previously in this report, the techniques
presented here will require a minimum of 200 samples per class to prove our conjecture with
large feature vectors. Once acceptable results have been obtained, we plan to find the
classifiability of FLIR targets from data typical of the type drawn from the real world. Targets
will be drawn at random from the database with no regard for target definition and a clutter
class will be introduced. The motivation for the introduction of the clutter class is the fact that
any target detection scheme will allow a significant number of false detections to occur if the
probability that a target is missed is minimized. We plan to simulate these false target detec-
tions with the introduction of the clutter class. We hope to use this final experiment to prove
our conjecture that there is not enough information in » single FLIR frame to accurately classify
a random sampling of typical FLIR targets and clutter.

2.1.2. Algorithm and Image Metrics

Image metrics are supposed to provide us with an independent set of variables for image
and algorithm characterization. The approach is to partition all ATRs (automatic target recog-
nizers) into three functional areas: detection, segmentation, and classification, as shown in Fig-
ure 2.1.11. The image metrics are then used as sets of independent variables which will
independently characterize each of the functional areas.

——

Detection

(Conditioned)
Image

Classification
. (Includes
7'y Segmentation ’ feature —T—
extraction)
Object Defined Classified
Coordinates Object Regions Targets

Figure 2.1.11 ERIM’s Generic ATR Process.

2-39

Section 2.1.2.1 discusses some of the metrics proposed by ERIM and Section 2.1.2.2 pro-
posed a new segmentation metric for threshold based segmenters.

2.1.2.1. Evaluation of ERIM’s Metrics

ERIM has proposed many metrics for image and algorithm characterization. The follow-
ing sections examine some of these metrics and show that there are many times when these
metric give meaningless results. The next subsection discusses the characterization of target
detection and gives examples of where images with the same TIR?’s (and therefore the same
complexity) have very different P;’s, showing that there are cases where TIR? does not meas-
ure complexity with respect to the probability of detection.

Section 2.1.2.1.2 presents the results of our study of TBIR? as a metric for segmentation.
We show that images with the same TBIR? can have different segmentation accuracies. There-
fore image complexity with regard to segmentation cannot be measured by this metric.

2.1.2.1.1. Characterization of Target Detection

According to ERIM formulation, the performance of a detection algorithm can be
evaluated by plotting P, against the following ‘‘independent” variables:

Target-Interference Ratio Squared (TIR?)
Resolution Cells on Object (RNg)
Expected Resolution Cells on Object (RE ()
Edge Strength Ratio (ESR)

Our basic criticism of this characterization methodology is based on the conviction:

hall o

It can be misieading to examine the performance of an algorithm against a col-
lection of variables individually, particularly when it can be shown from ele-
mentary theoretical analysis that the performance might in fact be dependent
upon some combination of these variables.

What we are trying to say is that when detection algorithms are theoretically analyzed, one can
demonstrate that the P; must be a function of the product of the average contrast difference
(between the target and background) and the effective size of the target, which is given by
RN,." Therefore, examining separately the dependence of P, on TIR 2 and RNg can be

This statement is bascd on the following clementary result from the classical decision theory
[Trees68). Suppose we want to detect a deterministic signal s(t) that is corrupted by additive
random noise n(t); the observed signal being denoted by r(t). Optimum detection is obtained by
conducting the following likelihood ratio test

NE ¢ %

E
r@)s®)de ><lmm + —
Nog Ho n No

2-40

misleading.

Put another way, suppose we confine our attention to performance as measured by P, vs
TIR?. The probability of detection, Py, is the probability that an actual object of interest is
detected at least once, measured over all the actual objects of interest. TIR? is defined as:

- 2
(XO—Xb)

o}

TIR? =

It is possible to construct two different examples of targets with identical 7/R? measurcs but
responding very differently to the process of detection. Suppose we have an image with the
grey scale values of the background and the target pixels distributed as show in Figure 2.1.12.
TIR? would predict a certain level of complexity for that image. Suppose we had a second
image in which 6, and 6, were the same as the first image, but the difference in the grey level
of the background and the target was greater (as shown on the bottom of Figure 2.1.12). T IR?
would predict that the second image is less complex. This is a correct prediction because there
is less overlap between the distributions, and therefore less possibility for error.

Figure 2.1.13 shows a similar example. this time the difference in means is the same, but
o), has decreased. TIR? again predicts a less complex image, which is correct since there is less
overlap.

The major flaw in the TIR? measure is that O,, the variance of the object, does not appear
in the TIR? equation. Therefore all the distributions in Figure 2.1.14 have the same TIR?.
However the complexity will be very different for each because the overlap in the grey scale
values varies greatly from one distribution to another.

That this is indeed so was verified by the following experiments, one involving uncorre-
lated additive noise and the other correlated noise; the latter we believe is more representative
of what happens in practice. First we show the case of uncorrelated noise.

In Figure 2.1.15, we ha .z shown a sequence of synthesized target images. These images
are constructed by first adding an elliptical ‘‘target” to a uniform background and then adding
uncorrelated random Gaussian random noise to the composite.

The following procedure, which we believe is close to what the NVL contractors are using,
was implemented for target detection in these images. We first construct a histogram of the
brightness values, the value corresponding to the most prominent valley in the histogram is used
for segmentation by thresholding. The segmented output is then integrated and compared
against 80 percent of the expected area of the actual target to determine whether the target is

where H j is the hypothesis that the signal is present and H gy that it is absent. E is the total energy
in the signal, N ¢ the noise variance, and T the total obscrvauon time. For our application, the left
hand side would be proportional o the product of T/R 2 and RN o for simple constant gray scale
targets. Similar conclusions can be drawn from the more advanced detection theory in [Trees71]
where the signal s(t) is allowed to be a random process.

pixel X X
count b °
1 I .’
- Oh—» Ty . p'xe!
intensity
X X,
< d+A—
pixel
count
-
“gp> <0, _ pixel
intensity

Figure 2.1.12 Change in TIR? with change in (%, X,)*.

pixel % X
count b 2
T >
-Oh— Oy pixel
intensity
pixel Xp Xo
count
I | —
ixel
Q> o> . P .
b ° intensity

Figure 2.1.13 Change in TIR? with change in G,

pixel X <
X
count b N
—
+— O0h —»a— 0y pixel
intensity
pixel - -
X X
count b 0
-
- Oph —p pixel
-0y —> intensity
pixel Xp X,
count
4_>
-—0p —> .
-— 05— DIXB!
intensity

Figure 2.1.14 Distributions for images with same T/R 2 and different complexities.

—

10

20

Figure 2.1.15 x=100, 6,=10, and x=125 for each of these images so that the value of TIR? for

Noisy Image Histogram Segmented Detected?

Image
&.-,
160 -
128 4
Yes
"1
v
T W " i e 2
200 1
"y
2 1
Yes
.
v
. —
N w - 129 164w
250 -
160 1
19 1
No
.
.
- w = 18 10 e
o
148 4
120 4
No
™
v
' . = 10 14 me

all the four simulated target images in the left hand column is the same and is
equal to 6.25. Each image consists of an ellipse embedded in a uniform back-
ground. To the composite thus obtained is added uncorrelated noise.

2-45

found.* In the middl» column of Figure 2.1.15, we have shown the histograms for the gray lev-
els, in the right column are illustrated segmentation outputs. As 1. evident from the figure, the
detection process completely fails for some of the targets, although they all have the same
TIR? measures.

We will now demonstrate similar results with correlated noise. First a few words about
how noise patterns with controlled correlations were generated. Suppose Vv(x,y) represents an
array of uncorrelated random numbers, which are easily generated by a standard random
number generator. If we now construct a new array by using the following recursion

'Y(X,)’) = a'Y(x‘l,)’) + b‘Y(xuy—l) + V(xa)’) - ab'Y(x“l,)"‘l)
we can show [RosKak82] that the resulting noise pattern has the following correlation function
R(i J) - e'aiif—bljl
This assumes that the noise pattern is zero-mean and of unit variance. This pattern can be mul-
tiplied by an appropriate scaling factor to obtain a desired signal-to-noise ratio when the patten

is added to the synthesized target image. In the experiments reported here, we have used
a=b=4.

In Figure 2.1.16, we have shown results for the case of correlated noise that are similar to
those in Figure 2.1.15.

2.1.2.1.2. Characterization of Target Segmentation

The next step in the ATR process, after a target is detected, is to segment the target. ERIM
proposes characterizing segmentation with the following independent variables.

1. Resolution Cells on Object (RNg)

Expected Resolution Cells on Object (RE ()
Target-Background Interference Ratio Squared (TBIR?)
Edge Strength Ratio (ESR)

= »w N

According to ERIM, the performance of a segmentation algorithm can be measured by plotting
segmentation accuracy, A;, versus these variables. The segmentation accuracy is defined to be
the ratio of two factors: the first factor is equal to the intersection of the segmented region for an
object and the true image region corresponding to that object; and the second {actor is the union
of these two regions. The basic idea in the ERIM methodology can be summed up as follows:
Let’s say we have two target images /, and /,, with the value of TBIR? for] 2 larger than what

—

If approximate range to the target is known, which means if the size of the target one is looking
for is approximately known, it is unlikely that onc would accept I+ - than about 80 percent of that
area from the segmenter in order to declare the target as present.

Noisy Image Histogram Segmented Detected?
Image
UO
0
10
20
30

Figure 2.1.16 Same as Figure 2.1.15, except that the noise added to the image is now corre-
lated.

I R R R R S EEE———_—

2-47 kak/yoder

it is for /. Then, according to ERIM, the segmentation accuracy for /; must be poorer than it
would be for 7. Equivalently, if we have two images of the same TBIR? value, then it should
be possible to segment them both with the same accuracy.

In this report, we will show it is possible to easily construct simulated examples of two dif-
ferent target images of the same TBIR? value, these two images yielding very different segmen-
tation accuracies. This was done by taking a theoretical look at TBIR? to see where it might
have problems, and then construct examples which exploit the problems.

TBIR? is defined as:
__ 2
(X,—Xp)
G,0p

TBIR? =

Take for example the histogram in Figure 2.1.17a, which shows a distribution for the back-
ground and the object. The TBIR? measure would predict that an image with such a distribu-
tion would be as complex as another image with a smaller difference in means (X,—x3) if:

1. The object had a smaller variance as shown in Figure 2.1.17b,
2. The background had a smaller variance as shown in Figure 2.1.17c, or
3. Both the object and the backgrounds has smaller variances as shown in Figure 2.1.17d.

This seems like a reasonable relationship to have for Gaussian distributions, as illustrated in
Figure 2.1.17, because the changes always result in distribution in which a given pixel is as
likely to be correctly associated with the proper class (i.e. background or object).

One problem with using distributions to characterize an image is that spatial information is
lost. Many segmentation errors are caused by targets which do not have uniform intensities.
The pixels in the target whose grey scale values are close to the mean of the background can
cause the segmenter to split the target into two or more segments.

To illustrate this point consider an synthetic eiliptical target with a non-uniform intensity.
Figure 2.1.18 show a 3D plot of such a target, plotting the grey value on the z-axis. Figure
2.1.19 shows four noisy targets which were created by adding uncorrelated Gaussian noise to
the target and the background so that the images have the same TB/R2. The noise statistics for
the targets are shown in Table 2.1.21. The segmentation procedure used is the same as used in
Figure 2.1.15 of Section 2.1.2.1.

The thresholded images show that for X,~x; equal to 20 and 30, the image is split into two
segments. For x,—x; equal to 40 and 50, the image is left intact. Figure 2.1.19 therefore shows
that two images with the same TBIR 2 can have very different segmentation accuracies.

4 o
Op
fe——]
pixel (a)
count
—>
Xp Xo pixel
intensity
A il
Op
fe——
pixel
count (o))
[T >
Xp Xo . pixel
intensity
To
b
l—
pixel (c)
count
t ¢ -
Xp Xo _ pixel
intensity
To
e
fe——
pixel (d)
count
' ' —
Xp Xo pixel
intensity

Figure 2.1.17 Histograms of images with the same TBIR 2.

ﬂll - T T i
(& ™ N [
< ™ No) <
> ™M L o)
[™ Nl o
© ™ No) ’
N ™ — =

Figure 2.1.18 A 3D plot of a synthetic elliptical target with the grey values plotted on the z-

axis.

,) Thresholded
- Noisy Image Histogram image
(Xo_xb) g

20

Figurc 2.1.19 Four synthetic targets with the same TBIR? and different segmentation accura-
cies. See Table 2.1.21 for target and background statistics.

e

Table 2.1.21 Target and background statistics for Figure 2.1.19.

Target Background
X,—Xp X, o, X o TBIR?
=20 94.277 149373 | 74.3395 4.2310 | 6.25000
=30 104.738 15.0986 | 74.4031 9.5723 | 6.36703
=4() 114246 14.6105 | 74.5912 16.9540 | §5.34826
=50 125.025 14.3981 | 74.2249 28.4308 | 6.30434

2-52

2.1.2.1.3. Conclusions

The conclusions to be drawn from these studies is that simple metrics such as TIR? and
TBIR? may measure the complexity of an image for the purpose of detection or segmentation
some of the time. However, it is easy to construct examgles which show they completelv fail
to measure image complexity. Therefore there are many cases where TIR? and TBI ' say
nothing at all about the process of detection or segmentation.

2.1.2.2. Preliminary Work in the Formulation of New Metrics

Metrics have been devised for the systematic characterization of the algorithms in the ATR
process. The approach to characterization has been to divide the ATR process into three steps,
detection, segmentation, and classification. Although different metrics for each step have be
proposed, the previous sections have shown that these metrics don’t work for all images. We
propose that each step of the ATR process should be broken down into less general algorithms
and metrics be devised for each of the algorithms. Experience gained in designing metrics for
the less general algorithms could then provide insight on how to design a metric for the more
general algorithms (if such a metric can be found). The following subsection proposes a new
metric for characterizing a threshold based segmenter.

2.1.2.2.1. A Metric for Characterizing Threshold Based Segmenters

The most critical step in a threshold based segmenter is the selection of the threshold value
(or values if it is a more sophisticated segmenter). Our first attempt at designing a threshold
based segmenter assumes that the complexity of an image (with respect to segmentation) is
related to the number of threshold values which will give a certain segmentation accuracy .
Some images are easy to segment with a threshold based segmenter because there are many
threshold values which will give a good segmentation accuracy. Other images will have few, if
any, threshold values which will give good accuracy and are therefore difficult to segment. The
segmentation threshold (ST) metric proposed here measures the segmentation complexity of an
image with respect to a threshold based segmenter by measuring the number of threshold values
which will result in a certain segmentation accuracy.

The ST metric works like this: The image to be characterized is thresholded at a value x
by assigning all pixels below x to the background and all pixels equal to and above x to the tar-
get. The largest region is found and all other regions are deleted. (A region is defined to consist
of a group of pixels that are four-connected to each other.) The segmentation accuracy (Ag) of
the remaining region is computed relative to a ground truth image. The above process is
repeated for all possible threshold values. Finally Ag vs. the threshold value is plotted. Figure

.

This of course assumes that the images being characterized have the same number of
quantization levels. For now, this is a valid assumption since the data we have been given have all
uscd eight bits per pixel.

2-53

2.1.20 shows the Ag vs. threshold plots in the senter column for the same images as in Figure
2.1.19. The x-axis is the value of the threshold and the y-axis is the segmentation accuracy.
The wider the peak, the more thresholds which will give a certain accuracy. We can see that the
(X,—Xp) = 20 target is difficult to segment using a threshold based segmenter because there is
only one threshold value that will give a segmentation accuracy greater than 70%. The
(X,—Xp; = 30 target is easier to segment because there are several threshold values which will
give greater than 85% segmentation accuracy. The remaining two images are increasingly easy
to segment because as the plots show, there are more values that will give a greater than 85%
segmentation accuracy. The plots in the right column of Figure 2.1.20 show the number of
thresholds vs. Ag. The plots show that there are:

1. very few values (only 1) for the (x,—x;) = 20 image,
2. =15 values for the (X,—X;) = 30 image,

3. =20 values for the (¥,—x}) = 40 image, and

4. greater than 30 values for the (x,~x;) = 50 image,

which give a segmentation accuracy of greater than 75%. Therefore the images increasingly
easier to segment (using a threshold based segmenter) as you move from the top image to the
bottom image of Figure 2.1.20.

2.1.2.2.2. Conclusions

The ST metric correctly predicted which of the synthesized images are more difficult to
segment. These were the same images that fooled the TBIR? measure. The major flaw with
this method is that it tells us how many thresholds will give us a certain segmentation accuracy,
but it won’t tell us how hard it is to find those thresholds. For example the ST metric will be
fooled if there is no overlap in the pixel values for the foreground and the background. In such
a case it is very easy to pick a threshold. For example, suppose all the background pixels for a
given image have the value 10, and all the target values are 200, then any threshold between 10
and 200 would give perfect segmentation. Consider a second image with the same background
values and the target values equal to 20. It is as easy to segment as the previous image, how-
ever our measure would say that it is harder to segment because there are fewer thresholds that
will give the proper segmentation.

Although the ST mctric is based a single threshcld value, it works well for the synthesized
images. Future work will include:

1. testing the ST metric on real FLIR images to see how well it measures segmentability, and

2. looking into making it a more robust measure by basing it on a Bayes Classifier for
minimal error. Such an approach views segmentation as a problem of classifying each
pixel as either background or target. This makes it possible to find optimal thresholds.

(Xo Xp) Noisy Image Ag vs. Number of Thresholds
Threshold vs. Ag

Segeentat on ACCU Iy
——
Humber of \hwesholds
g ¥
| S |
————

0

" wn
meee 2 2000
raee = son
* win " e

’ » - » we 19 " " " ' besse PI00S MIINGS DTIGNS NGBS GIINKE TINess 6TIees) SMM
Thv eshola Segmentat on ACCw aCy (Re)

1 ssen ~ o
"un ne e

e 190 o0
>
X k:
‘3‘ wun 2 1mw
ks H
z
§ L] “ 1 e
30 : R
i 1700 i " e
4
I
a0 sene
rseee = ane
o sasee - » Hone
. » “ " s o m om e ¥ aatet 23000 £300e M0 200008 AN TINete S7Nee | Mees
Threshold Segaent ation ACCur aCy (RAS)
o senne ~ uu]
Co e oy
o 18 see
2
3 g
2 arsee g 1 e
& 1
2 .
40 £ svne S e
3 %
i 00 I
:]
»
esten “ o0
e » e
* s - " seone o
3 . - e w wm m m T RReeE 1Z3%e IWe) I7I0NE WMEeN uIEE Mess STIMES 1 S8is
Threshold Segmental ion Accur acy (Aw)
1 sense re e
oriave e o
aver 1.
>
i 5
Y awne 2 imoenm
S %
x .
2
§ snene R R
50 ; :
2 N
i Ireee S W s
§ !
eeer “ e
1rsene » ne
* venne l sonn
. » - - o wm o m Vonee 1% Feese ITBer Meses Arweel Peeet ITSNE ¢ MW
Trresnold SeqaenisLion Boour Aty 1980

Figure 2.1.20 Plots showing the ST metric for the same images as in Figure 2.1.19.

2-55

2.2. TWO FLIR SEGMENTERS

Although most of the effort this time has been in processing LADAR data, work is still
continuing in FLIR processing. We believe that one must be able to perform reasonable low
level processing on a given sensor before trying to fuse it with other sensors. This section
presents our experiences with using two different segmenters (edge guided threshold, and tree
traversal) on FLIR images. These experience should prove to be useful when fusing FLIR with
LADAR.

2.2.1. An EGT Based Segmenter for FLIR Data

A tunable edge-guided threshold-based (EGT) segmenter was developed for the automatic
extraction of target silhouettes from FLIR images. The segmenter was designed to be part of an
intelligent target recognizer. It is ‘‘tunable’’ in that one may specify the expected brightness
range of the targets and the expected target areas. The expected brightness is specified as a per-
centage range. For example, from time of day and weather information, and possibly
knowledge of how active the targets have been, we might expect the targets to consist of the
hottest 10% to 20% of the pixels in the image. This percentage estimate also depends on the
expected size of the targets relative to the image size. The expected target area (in pixels) is
also specified as a range of values, and may be calculated from range information. Once poten-
tial target regions have been extracted, the segmentation results may be evaluated by an expert
system and the segmenter called again with new parameters.

2.2.1.1. The Algorithm

The first step in the segmentation process is to perform edge detection on the original gray
scale FLIR image. The edge detection process produces candidate object edge pixels by adap-
tively thresholding the Sobel edge magnitude image. The original image is convolved with the
horizontal and vertical Sobel edge masks to produce the horizontal and vertical edge gradients
(H and V), as illustrated in Figure 2.2.1. The absolute values of H and V are then used to calcu-
late the edge magnitude M. The mean value of M over the edge magnitude image is computed,
and an edge threshold of 2.25*Mean applied to M produces the final edge image.

Once edge pixels have been found, histograms of the gray scale values of the edge and
nonedge (object) pixels in the original FLIR image are computed separately for the purpose of
selecting a threshold to use to segment the image. This is preferable to computing the histo-
gram of the entire original image because edge pixels typically have gray values between those
of the regions that they separate, and so they tend to make the modes of the regions blend
together by filling in the valley between them. This makes threshold selection more difficult.
Computing separate histograms for object and edge pixels should result in more distinct (non-
overlapping) modes in the object histogram, and peaks in the edge histogram corresponding to
the valleys between these modes (see Figure 2.2.2). The gray values at which these resulting
peaks in the edge pixel histogram or deeper valleys in the object pixel histogram occur are good

SHOAH

‘weidelp yoolq ssa201d UOI083ap 98pH 17T N3

NVHN * §¢°¢
LY
A'TOHSHYH.L

!

W d0
NVIN
JLOAdNOD

[t

(¢

TAF

11— & 1I- b
I ¢ 1
10 I—

20¢|+(O1=H

JOVINI

omng
)
.-
58]
B - S N
w0 3450 4 -
e e oL, e Ll . [, -
o TELC3 32 L300 kw U0 7€ NNNT v ng g (60 080 192 003 229 SUl 26 40
Iy SLogram OF e v Lo LT AGe
1644 CIC 4
eoocosd
| ey
| I =
|0 anon !
- M P
! e
! - I =
[7{ f) -
i ' o e
! hl
T oLty — - ! - =
1 1
.)
; . =
i o
9 00§05 e S p e - ==

>y,

C 30000 3¢ GJ0C 6% 000C 56 3000 1eB 000 160 020 (192 Col 22+ §0C

L) Chrect pixel iouggsam
167 13
oy
B
. L —-
: : EIERRE g
) v b

Figure 2.2.2 TNlustration of effect of histogramming object and edge pixels separately.

2-58

candidates for thresholds for segmenting the image.

The image threshold is then selected as follows. Suppose the lower and upper brightness
percentage limits are LPCT and UPCT (e.g. to specify that a target should consist of the bright-
est 10% to 20% of the image pixels, LPCT =0.10 and UPCT =0.20). Upper and lower pixel
count limits are then calculated as LOWER=LPCT*X*Y and UPPER=UPCT*X*Y, where X
and Y are the image dimensions. One then starts at the rightmost object histogram bin
(corresponding to the brightest gray values) and works towards the left, keeping a running sum
of the number of pixels in each bin. The bins for which the running sum first exceeds LOWER
and UPPER are marked, thereby specifying the interval of interest in the histogram in which
we expect to find a good threshold. We select as our threshold the gray value of the bin with the
minimum value in this interval. This value should correspond to the deepest valley in the object
histogram in the interval of interest.

The threshold is then applied to the original image, with pixels whose value is less than the
threshold being set to zero and the others retaining their original value. A median filter may be
applied to the result in order to reduce some of the border noise and holes usually accompany-
ing a threshold segmentation. Whether or not this filter is applied depends on the expected tar-
get size. The filter would not be applied if the target was small enough to become disconnected
by it.

Finally, connected component labeling is performed and component areas are calculated.
The target area limits are AMIN and AMAX, and are specified at the same time 2s LPCT and
UPCT. Note that these target area limits have nothing to ¢ with LOWER and UPPER, which
were used to find a proper image threshold. Only those components within the specified area
limits are kept as possible target silhouettes. Since gray level information was kept when gen-
erating the silhouettes, the label and final silhouette images are the only ones necessary for cal-
culating both binary and gray-level features.

2.2.1.2. Results

Here we present results obtained by running the EGT segmenter on both simulated and
actual FLIR images. Figure 2.2.3 shows the histograms for the entire image, the edge pixels
only, and the nonedge (object) pixels only for a tank from our Eglin Turntable data set (file
eglinl5). Note that histograming the object and edge pixels separately helped bring out a small
valley in the object histogram near the bin corresponding roughly to pixels with gray value 96.
The bnightness range specified was 10-20%, which was found to correspond to the gray level
range 84-95, and the area range was 500-2500 pixels. As indicated, a threshold of 94 was
chosen automatically. Figure 2.2.4 shows the original FLIR image, and intermediate and final
segmentation results.

A simulated FLIR image of a tank was obtained by digitizing a blurry image of a dark tank
model on a light background, resampling it from 512 by 480 down to 128 by 120, and inverting
it. The EGT segmenter was run on this image with brightness range 10-20% and area range

Figure 2.2.3 Histograms for FLIR image from Lglin Turntable data set.

original sobel edges

thresholded segmented

Figure 2.2.4 Original I'LIR image from liglin Turntable data set and processing results.

_’

2-61

500-2500. The brightness range was found to correspond to gray level value range 148-199,
and a threshold value of 182 was chosen automatically. Figure 2.2.5 demonstrates the deepen-
ing of the valley between the modes of the object histogram due to histograming the edge pixels
separately, and Figure 2.2.6 contains the original, intermediate, and final result images.

2.2.1.3. Comparison with Hughes Segmenter

In previous reports we showed composite images of 50 APC’s, 50 tanks, and 50 trucks
used for an interclass separation experiment. These targets were hand extracted by first enclos-
ing the targets within tight rectangular windows and then within each window using the com-
plex likelihood segmenter described in the Bandwidth Reduction and Intelligent Target Track-
ing (BRITT) Phase One Final Report by Hughes Aircraft Company’s Electro-Optical & Data
Systems Group [Hughes84]. The 150 target images used were from the BRITT data set.

We also ran the EGT segmenter on this data set. The brightness range specified was 0-
10% and the area range was 100-2500 pixels. The same limits were used for all 150 images
(the segmenter was NOT tuned for each image). Even with this disadvantage (remember the
Hughes segmenter was provided windows around the targets via human input which guarantee
the target to be in the center of the window and at least a five pixel border between the target
and the window), our simple segmenter produced results comparable to those achieved by
Hughes. Figures 2.2.7, 2.2.10, and 2.2.13 are composites of the original FLIR images, Figures
2.2.8,2.2.11, and 2.2.14 are Hughes segmentation results, and Figures 2.2.9, 2.2.12, and 2.2.15
are EGT results. Because the same limits were used for the entire data set (which contained tar-
gets at several ranges) sometimes the EGT silhouettes were slightly larger or smaller than they
should be. Also, some of the target images with low target-to-background contrast were broken
up into several components because a median filter was applied to clean up some of the
threshold-produced noise and make the silhouette borders appear better. if a component of such
a broken up target was below the lower area limit, it was classified as an invalid target region
and thrown away. These were the two chief causes of the few poor EGT segmentation results.

2.2.1.4. Summary

We have presented an edge guided threshold based segmenter for FLIR images. Although
it is much simpler than the segmenter used by Hughes, its performance is comparable to that of
the Hughes’ segmenter, at least for the images that both were tested on.

One of the notable features of our segmenter is that it is ‘‘tunable’’, that is, one can specify
the expected brightness (or darkness) range of the target. This tunability will play an important
role in our production system based approach to fusing LADAR and FLIR di talAndKak87]. As
data is gathered from both sensors, hypotheses will be made as to what the target will look like.
The FLIR segmenter can then be tuned to try to accurately segment the target and then the
hypotheses can bte verified.

Figure 2.2.5 Histograms for simulated FLIR image of a tank.

original sobel edges
‘ i i '
thresholited seemented

Figure 2.2.6 <imulated FLIR image of a tank and processing results.

Original apc’s

Figure 2.2.7 Composite of 50 original FLIR nmees of APCs fronn the BRUVPT data set.

Figure 2.2.8 Composite of the APC segmentation results from the Hughes likelihcod

segmenter.

Figure 2.2.9 Composite of the APC segmentation results from the edge-guided thres-

hold segmenter.

Original tanks

Figure 2.2.10 Composite of 50 original FLIR images of tanks from the BRITT data set.

dughes tanks

Figure 2.2.11 Composite of the tank segmentation results from the Iughes likelihood

seginenter.

EGT tanks

Fig .re 2.2.12 Composite of the tank segmentation results from the edge-guided thres-

hold segmenter.

Original trucks

Figure 2.2.13 Composite of 50 original FLIR images of trucks from the BRITT data set.

Hughes trucks

Figure 2.2.14 Composite of the truck segmentation results from the Hughes likelithood

segmenter.

EGT trucks

Figure 2.2.15 Composite of the truck segmentation results from the edge-guided

threshold segmenter.

2-73

2.2.2. FLIR Segmentation by Tree Traversal

This section presents the tree traversal segmentation algorithm in [HoPa76], and evaluates
its merits as a FLIR segmenter. Although only FLIR data is used here, the algorithm is general
enough to apply to many different types of images including LADAR by merely changing the
segmentation criteria.

The following is a discussion of the algorithm and some FLIR segmentation results. The
implementation of the algorithm presented here uses criteria suitable for segmentation of
reflectance or FLIR imagery. Although not pursued yet, it may be possible to "tune" portions of
the implementation to take advantage of some special FLIR characteristics. This is a topic for
future work.

2.2.2.1. The Algorithm
The algorithm consists of three main steps:
(1) Split and merge using a tree representation of the image.
(2) Merging based on adjacency in the image plane.
(3) Further merging of image plane regions based on some "nearest neighbor” criterion.

In steps one and two the difference between minimum and maximum gray level is the cri-
terion used on the FLIR data. In step one, if the difference between the maximum and
minimum gray levels of a region is too great, the region is split. For both steps one and two,
regions may be merged provided the difference between the maximum and minimum gray lev-
els of the resulting region is small enough.

The "nearest neighbor” criterion of step three is average region gray level. Two adjacent
regions can only be merged if the difference between their respective average gray levels is
small enough. The following sections discuss each step in more detail.

2.2.2.1.1. Split and Merge Using a Tree Representation

In this portion of the algorithm ail operations on segments of the image are performed
within the confines of a tree structure. Thus in order to begin, the tree structure must be initial-
ized to represent the necessary information about the image. This means that an initial segmen-
tation of the image which assigns each pixel of the image plane to a node of the tree (see Figure
2.2.16) must be chosen. This actually corresponds to selecting a starting level within the tree
structure. Each node of this level contains: the (x,y) position of the block it represents, the
number of pixels to a side of this block, and the largest and smallest gray level within the block.

Following this initial segmentation of the image plane, each node representing a square
block of the image is examined to determine whether the block should be broken into tour
smaller blocks based on the min/max criterion described above. Using this same criterion, four
blocks whose nodes share a common parent node are examined to determine if they should be

Leaves represent individual pixels

Figure 2.2.16 Visual representation of tree data structure.

2-75

merged into one larger block.

Note that a block which is created by a split operation cannot be the object of a merge
operation within the same tree structure. Nor can a block that is the result of a merge operation
be subject to a split. Therefore, only one pass is necessary, and the nodes forming the final
cutset of the tree structure represent the result of the "split and merge" portion of the algorithm.
See Figure 2.2.17 for an example of the results of this step.

An important effect of the tree structure representation is the limitation that it imposes on
the merge operation. Note that only nodes sharing a common immediate parent are considered
for merging. Because of this, the next step of the algorithm departs from the tree representation
and again applies the min/max criterion to determine if blocks of the final cutset should be
merged into larger, not necessarily square, regions.

2.2.2.1.2. Grouping of Final Cutset Segments

After completion of the previous step the image consists of square segments that range in
size from single pixels, to the entire image. This is the final cutset mentioned above. Each of
these segments is now examined to determine if it can be merged with the blocks adjacent to it
in the image plane.

The present implementation of the algorithm does not use any particular order in examin-
ing these segments. This is a portion of the algorithm in which it may be possible to take
advantage of special FLIR imagery characteristics as well as other a priori information in order
to improve segmentation results. Some ideas are discussed in the future work section.

2.2.2.1.3. Further Region Grouping Based on " Nearest Neighbor" Criterion

Now the image consists of irregular regions in which the difference between maximum
and minimum gray level is within tolerance. To begin the next step of the processing, the aver-
age gray level of cach region is co- nuted. In this step the criterion used is "closeness” in terms
of average gray level. All adjacc.. 1egions are checked, and the "closest", if it is "close" enough,
is merged with the region in question. After updating the average gray level of this new region,
all of its neighbors are ranked according to closest average gray level, and the operation is
repeated in this fashion until merging is no longer possible. The next region is then examined
in the same way, and this is rep=ated until all regions of the image have been considered.

Here again the merging operation proceeds from region to region in an arbitrary order. As
for the previous step, possible ordering criteria based on FLIR imagery characteristics as well as
other a priori information, are discussed in the future work section.

Figure 2.2.17 Test input image, and "segmentation” by split and merge step. (Arbitrary gray
level assignment to distinguish regions.)

2-77

2.2.2.2. Some Segmentation Resuits

To tesi the flexibility of the algorithm in segmenting different types of FLIR imagery,
several representative FLIR images taken from the BRITT data set are segmented below (see
Figures 2.2.18 - 2.2.21). Table 2.2.1 summarizes the performance of the segmenter for each of
these images.

As seen in these examples the segmentation results of the algorithm can be quite noisy.
Especially for low contrast images. Most non-target regions may be eliminated, however, by
invoking size constraints, perimeter-area ratio constraints, etc.

Although a sophisticated algorithm was not implemented here, a very simpic cleanup
using size and brightness constraints was used to enhance, in most cases, the segmentation
results. The size constraint discards regions outside the 100 to 2500 pixel-area range.

NOTE: The brightness constraint applied here discards regions with an average gray level
below that of the overall image. This could not be used in general since targets may occasion-
ally be darker than background.

One of the most important features of this segmentation algorithm is its ability to segment
regions within regions. This is shown in Figure 2.2.19 where the hot engine of the truck is seg-
mented from the truck body. Such information could prove to be very valuable in later process-
ing where "hot spot” locations within a target may be very useful for classification purposes.

NOTE: This information is not retained by the cleanup process in these examples simply
because the routine is not sophisticated enough to recognize such situations.

It is important to note that the quality of the segmentation results presented here is due to
some experience in selecting thresholds for the criteria. The results are very sensitive to the
selection of these thresholds.

2.2.2.3. Comparison with EGT and Hughes Segmenters

To determine how well this segmenter really performs it was run on the same three sets of
50 images that the EGT and Hughes segmenters were run in Section 2.1.1.1. The results appear
in Figures 2.2.22 - 2.2.30.

2.2.2.3.1. Threshold Selection

The original FLIR images were separated according to the characteristics mentioned in
Table 2.2.1 (i.e. contrast, striatedness, etc.), and thresholds were chosen based on experience.
This, admittedly, gives the tree traversal algorithm an advantage over the constant threshold
used in the EGT results. About ten segmentations were improved by it.

As betore, a cleanup routine was run on the segmentation results. Since the routine is not,
nor is it meant to be, very sophisticated, it sometimes discards some of the small interior regions
of targets. Recall that the ability to extract regions from within regions is one of the more

brin238

brin040

segmented

segmented

after cleanup

after cleanup

A "hot" and a "cool" target.

Figure 2.2.18

britt137 britt029

segmented segmented

after cleanup after cleanup

Figure 2.2.19 Multiple region targets.

brin277 brins1s

after cleanup after cleanup

Figure 2.2.20 Multiple targets.

brit347

after cleanup

Figure 2.2.21 Very difficult segmentations.

brin003

after cleanup

Figure 2.2.22 Composite of 50 original FLIR images of APC’s from the BRITT data set.

Figure 2.2.23 Composite of the APC segmentation results.

N & W w ¥ 2+ + B
f##‘ﬁh‘
> AN & | - - - &
& B S G Wk = 9
- ¢ 9 = t“:‘

M w A JF gp W = =

. o

Figure 2.2.24 Composite of the APC results after cleanup.

Figure 2.2.25 50 original FLIR images of tanks from the BRITT data set.

Figure 2.2.26 Composite of the tank segmentation results.

& A 8 B e gy &
Y i I R
T 6 4 o egh
- = # QG @ & ¥

-ty J% GE 4 e 0
A i wy o - 2 =
5 %

Figure 2.2.27 Composite of the tank results after cleanup.

Figure 2.2.28 Composite of 50 original FLIR images of trucks from the BRITT data set.

Figure 2.2.29 Composite of the truck segmentation results. -

= & g s @ A i
dhudh = ¢ & Sg- =
~ s By - - -
-2 e = 2 o 8
B o sgohih - ~

o o e 5 = » @

«ih i

Figure 2.2.30 Composite of the truck results after cleanup.

Table 2.2.1

Comments on the tree traversal segmenter’s performance on the BRITT data.

Images

Ground Truth

Thresholds

Comments

britt040

apc dead center

iniaa - minl=10
aver. thresh, = 40

This is a high contrast image which means
there is a large difference between target
and background average gray level. A high
average criterion threshold produces a sharp
scgmentation.

brit238

apc dead center

Imax - minl=10
aver. thresh. =5

This is a low contrast image so the average
critcrion threshold is much lower causing
the background to be broken into multiple
rcgions. Most of these regions arc removed
by the cleanup routine, however.

britt137
briti029

truck dead center

Imax - minl=10
aver. thresh. = 20

Within these targets there are "warm” and
"hot" regions. The engine, for example, is
much warmer than the rest of the target.
The average criterion is selected 10 separate
the target from the background while also
scparating the engine from the target body.
This ability to segment a target into regions
is a very nice property that may be useful
for classification purposes.

brit277

tank dcad center
tank lower left

Imax - mini=10
aver. thresh, = 20

Here there are many bright spots visible 10
the naked cyc. The average criterion thres-
hold causes the background to be broken
into multiple regions. Again, most of thesc
arc rcmoved by the cleanup routine, but
there is apparently some background clutter
which does not disappear. Also, note that
the dark region in the center of the original
imagce, and “pulled out” by the segmenta-
tion, is discarded by the cleanup routine.
This could be the tread portion of the tank,
and therefore, should not have been ignored.

brit515

apc dead center
tank top center

Imax - mini=20
aver. thresh. = 20

The striated nature of this image calls for
modification of the min/max criterion thres-
hold. The criterion is increased from that
used in the previous images in order to
bridge the striated regions.

brit347

tank dcad center

Imax - minl=10
avcr. thresh. = 20

The target region was found in the segmen-
tation. Howcver, it was rcmoved by the
clcanup routine since it was smaller than
100 pixcls.

brit1i003

apc dcad cenler

Imax - minl=6
aver. thresh. = S

Here the contrast is simply 10 low to pick
out the wargcet.

2-92

desirable aspects of this segmentation algorithm. For this reason the cleanup routine was given
a size constraint of 20 to 2500 pixels for this experiment. Of course the smaller lower bound
tends to increase the number of extraneous regions retained.

2.2.2.3.2. Comparison Summary

Following the cleanup routine the segmentation results tend to be comparable to those of
the EGT and Hughes segmenters. This is impressive since the algorithm is very general and not
specifically written for FLIR segmentation. In addition to this, the algorithm also segments hot
and cold regions within a target. In other words, multiple levels of segmentation are possible.
Not just target and non-target distinctions.

In contrast to the EGT segmenter, however, this algorithm is very sensitive to threshold
selection. This could make the segmenter difficult to use in an ATR environment since thres-
holds must be chosen very accurately in order to produce useful results.

2.2.3. Future Work

As mentioned during the discussion of the tree traversal segmentation algorithm, portions
of the implementation could be modified to take advantage of FLIR characteristics and any
other a priori information. For example, if interest points within the image are identified prior
to segmentation attempts, this information could be used to direct the region growing of steps
two and three. Points of interest would be examined first during these region growing
processes, and, especially for low contrast imagery, this would reduce the possibility of
"interest regions” being absorbed into the background. With regard to the classification prob-
lem, the ability to segment hot and cold regions within a target will probably become important.
Engine location, for example, will be very useful information when determining target class. Of
course before the tree traversal segmentation algorithm can be used in an ATR environment,
methods of automatic threshold selection must be developed.

We now have available three segmenters which work well with FLIR imagery. In the
future we will be using these segmenters (one or more of them) to assist in fusing the FLIR data
with the LADAR data.

2.3. THE USE OF HIGH LEVEL REASONING TO IMPROVE THE CLASSIFICA-
TION OF FLIR DATA

Current production algorithms for processing FLIR images work in a bottom-up approach.
That is, they start at the pixzl level and segment the image into regions and then label (i.e. clas-
sify) each region based on its contents. The labeling of a given region is generally done in a
context-independent manner without consulting the spatial inferences in neighboring regions.
More consistent labeling and therefore better recognition accuracy may be obtainable by using
global information about the scene. Such an approach could examine each region individually
and give each a label and a confidence value for that label. Next all the regions could be

—“

2-93

examined io sce if the labeling is consistent. If the labeling is not consistent, hypotheses for
relabeling could be generated based on partial evidence in each region and global information
about the scene. The regions could then be reexamined to try to verify these hypotheses.

Hypothesize-and-verify approaches are difficult to incorporate in purely bottom-up algo-
rithms, therefore we are investigating the use of hierarchical data structures which will lend
themselves to the construction of scene hypothesis at different scales. We are currently investi-
gating LoG channels (Laplacian-of-Gaussian), pyramids, and quadtrees which could comprise
the lower levels of a hierarchy.

Section 2.3.1. presents some possible symbolic data structures and discusses the advan-
tages of each. Section 2.3.2. presents the various pixel level data hierarchies. At some point we
feel it will be necessary to switch from a pixel description of an image to a symbolic description
where each location in the image will have information describing which higher level objects in
the scene it is part of. Such information will greatly help the reasoning process. Section 2.3.3.
presents a high-level reasoning system which converts edge descriptions to symbols and uses
global information to construct hypothesis to aid in make the edge labeling consistent in a
scene.

2.3.1. Data Structures for Symbolic Reasoning

The following is a brief description of some preliminary ideas for a data structure for sym-
bolic reasoning. This symbolic list provides a link between the pixel level segmentation and the
high level reasoning by taking pixel level features (such as lines, edges, and regions) and storing
them in a data structure so that a high level reasoning process can easily access related informa-
tion. Once an image is decomposed into edges and regions, graph theory provides a natural
means for describing the image. The following section gives some common graph theory
definitions which will then be used in describing the symbolic data structure.

2.3.1.1. Some Graph Theory Definitions

A segmented image may be thought of as a planar graph. There are edges (line segments),
vertices (line segment intersection points), and faces (regions). The following paragraphs
describe these objects.

An edge is a line segment terminated by two vertices or by a single vertex if it is a loop.
A vertex is the endpoint of a single edge, an arbitrary single point in a closed edge (loop), or the
intersection point of three or more edges. If the degree of a vertex is defined as the number of
edges incident with it, each loop counting as two edges [BonMur76], then with the above
definitions of edge and vertex the only way for a vertex to be of degree 2 is if it is part of a loop.
A vertex of degree 1 is simply a way of specify the endpoint of a ‘‘dangling’’ edge. Aside from
the above two cases (the termination point of an edge or its intersection with itself), the only
other place vertices occur is at the intersection of 3 or more edges. This is important in that no
matter how many crazy turns an edge makes, a vertex will only be defined if it intersects

2-94

something. This keeps 90-180 degree bends in an edge from being defined as vertices.

Let us consider regions next. First let us define a walk. A walk is a non-null sequence
W =vge vie,vy -+ - e,v, whose terms are alternately vertices and edges. such that for 1<i<k
the ends of ¢; are v; _; and v;. v¢ and v, are the origin and terminus of W, respectively, and W
is said to be of length k [BonMur76]. A region therefore may be specified by the closed walk
(terminus = origin = v) defining its border. Let us define a region as such a walk W of length
k surrounding area A(W) such that there are not two shorter walks X of length i and Y of length
J»i<kand j <k, with A(X) (A (Y)=A (W), if there are any closed walks contained in walk
W, the regions defined by those walks are not included in the region defined by W. (i.e. regions
are non-overlapping.)

2.3.1.2. The Data Structures

Figure 2.3.1 shows a target which has been segmented into edges, vertices, and regions,
each of which has been labeled. The edges, vertices, and regions of any image which has been
segmented as in Figure 2.3.1 can be represented symbolically by the following data structures.

1. A List of Edges
The edge list stores a count of the number of edges in the image and has a pointer to a
linked list containing all the edges. The edge label, length of edge, and the location of
endpoints are stored for each edge as shown in Figure 2.3.1.

2. A List of Vertices
The vertices list keeps a count of the number of vertices and points to a linked list of them.
The degree of a given vertex, the vertex label, and the location of the vertex are stored for
each vertex (see Figure 2.3.1).

3. A List of Regions
The regions list contains a count of the regions in the image and a pointer to a linked list
of regions, each containing the region label, a count of edges, and a pointer to a linked list
of edges and vertices tracing the walk that defines the region. (See Figure 2.3.1.)

The three lists above provide a compact means of storing the individual edge, vertex, and
region data. The following tables store information about the relationships between the various
edges, vertices, and regions.

1. Adjacency Table
The adjacency table (for an example see Table 2.3.1 and Figure 2.3.1) has one column and
one row for each vertex in the image. Entry adjacency[i](j] gives the number of edges
joining v; and v;. This table is useful for finding loops since a non zero entry at
adjacencyl[i][i] shows that vertex v; is part of a loop.

2. Region Boundary Table
The boundary table (see Table 2.3.2 for an example) has one column for each edge and

"samionns eep oHoquwiks Jurpuodsarioo oy
pue ‘suor3ar pue ‘s301sA ‘s33po our pauawSas usdq sey Yorym 195re) sidureg 1°¢z 231

6o
¥
4T lg 2y lig Olg
A Okp 6 8A LA
8A %s SA
€
‘e YA ! €A
¥a
7Y f ey
0 by)
A ¢
A %a
‘o

¢t 1€ 0E 6C 824C 92 G2 2 €222 1202 6L 8L LL GL SL VL ELSLLL OL 6 8 £ 9 S ¥ € 2

9l
18
142
148
cl
(41
ot

- N MO T DO N @

o

length
of edge

pointer to
edge #\ / next edge
edges e |1 19— e|2 (31| —" 14 7| T
14| TP 15,3 | 25,7 15,3 | 15,5 27,11)27, 11 -
\ number \L— location of edge endpoints
of edges
degree of
vertex#\ / the vertex
ertices vit] 3| t—®|v|2|3|oeT—® |v|[11|2|*T——L
11| o}——{ 15,3 15,5 27, 11 -
\ number of vertices \ location of vertex
ion # # of edges
region \ in region
regions r{1{a|T—Pr|2]{2]1T—" 91 |
9T ! ! ! -
number v
of regions Vi1 Yi 1!
pointer i +
to el €5 4] 9
v
1 v v
pointer Val ® V211¢ Vi1 e g
to t e
®
el P 3
V3 L V1 .—l—j_
94 T
v, ;
Al
Figure 2.3.1 Continued.

2-97

Table 2.3.1 The adjacency table for Figure 2.3.1. It has one row and one column for each

vertex.
vertices

Adjacency [1 2 3 4 5 6 7 8 9 10 11
1 6 2 0 1 0 0 0 O O 0 0

2 2 01 0 O O 0 O O 0 0

3 6 1.0 1 1 O O O O 0 0

4 1 0 1.0 0 1 0 0 O 0 0

5 0o 01 0 O 2 0 O O 0 0

6 0 0 0 1t 2 0 0 0 O 0 0

7 0 0 0 0o 0 0 1 0 O 0 0

8 6 0 0o 0 0 0 0 1t O 0 0

9 6 0 0 0 0 0 0 0 1 0 0

10 0O 0 0 0 0 0 0 0 O 1 0

11 0 0 0 0 0 0 0 0 O 0 1

one row for each region in the image. If boundary[i]{j] = 1, edge e; is part of the boun-
dary of region r;.

This table can be used to easily compute the number of edges around region r; by
summing the entries in row i. It can also be used to see if a region completely contains
another region. To test to see if region r; is completely surrounded by another region, find
a list of edges bounding r; by looking for the set of edges, E, which have a 1 in row r; of
the boundary table. If each edge in E bounds the same region, r;#r;, then r; completely
surrounds ;.

3. The Incidence Table
The incidence table (Table 2.3.3 is an example) has one column for each edge and one
row for each vertex. incidence[i][j] equals the number of times v; and e ; are incident.

2.3.1.3. An Example of Reasoning with the Symbolic Data Structure

A number of useful reasoning processes can be easily supported by the above lists and
tables. For example, suppose we are trying to recognize the target in Figure 2.3.1. Suppose a
rule in our knowledge base was:

Due to the nature of treads on a tank, you will find several loops in a horizontal line near
the bottom of the target.

"—“

2-98

Table 2.3.2 The boundary table for Figure 2.3.1. It has one column for each edge and one row
for each region.

edges
boundary |1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 1 1. 0 1 1 0 1 0 1 0 0 0 0 0
1 1 0 1.1 0 1t O 0 O 0 0 0 0 0
2 60 1.1 0 0 0 0 0 O 0 0 0 0 0
3 0o 0 0 0 1 1 1 1 O 0 0 0 0 0
4 0O 0 0 0 0 0 0 1 1 1 1 1 1 1
5 0O 0 0 0 0 0 0 o0 O 1 0 0 0 0
6 6 0 0 0 0 0 0 0 O 0 1 0 0 0
7 0O 0 0 0 0 0 0 0 O 0 0 1 0 0
8 0o 0 0 0 0 0 0 0 O 0 0 0 1 0
9 O 0 0 0 0 0 0 0 O 0 0 0 0 1

Table 2.3.3 The incidence table for Figure 2.3.1. It has one column for each edge and one
row for each vertex.

edges

incidence { 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 1.1 0 0 O 0 O O 0 0 0 0 0
2 O 11 1 0 O O O O 0 0 0 0 0
3 O 0 0 1 1 1 0 o0 O 0 0 0 0 0
4 I 0 0 0 0 1t 1 0 O 0 0 0 0 0
5 O 0 0 0 1 0 0 1 1 0 0 0 0 0
6 6 0 0 0 0 0 1 1 1 0 0 0 0 0
7 0O 0 0 0 0 0 0 0 O 2 0 0 0 0
8 0O 0 0 0 0 O O O O 0 2 0 0 0
9 0O 0 0 0 0 0 0 0 O 0 0 2 0 0
10 0O 0 0 0 0 0 O 0 O 0 0 0 2 0
11 6 0 0 0 0 0 0 0 O 0 0 0 0 2

Our reasoner wants to find support for this rule, so it looks for loops by consulting the diagonal
of the adjacency table. It finds that v7 - vy, are all loops (they all have a non zero value on the
diagonal). The incidence table shows that v; - v, are incident on edges e o - €14 respectively.
Consulting the boundary table shows that edges e g - €4 all bound region r4 and individually

e ————————————]

-

2-99

bound regions rs - rg respectively. This means rs - rg are all completely contained in r4.
Consulting the coordinates for e g - €14, (stored in the edge list), shows that e g - €14 are hor-
izontal. Therefore we have found support for the above rule by simply consulting the lists and
table.

2.3.1.4. Conclusions

We have described the symbolic structures we are currently using and have shown that
they are useful for supporting the queries of a reasoning process. These structures will change
as different methods of reasoning are tried and weaknesses in the structures are found. It is our
hope that combining the symbolic data structures with the hierarchical methods will result in a
powerful, yet compact, method for storing the relevant information in an image so that it can be
used by some sort of high level reasoning program.

2.3.2. Pixel Level Hierarchical Data Structures

The lower few levels of our hierarchy will probably not contain any symbolic information,
instead it will contain the low level pixel information. The following two sections discuss three
popular data structures for pixel level hierarchies. Section 2.3.2.3. approaches the problem of
determining where in a hierarchy (which level) to start looking for targets.

2.3.2.1. Lot Channels

LoG channels are a popular research topic because they process images much like the
human visual system does. A LoG channel is computed by taking a Laplacian of a Gaussian
transform; the Laplacian is the orientation independent second order derivative operator, and
the Gaussian provides a tunable smoothing, i.e. it allows one to select how much smoothing to
use. Figure 2.3.2 shows a LoG model of the human visual system. Initially processing is done
at the coarsest levels where everything becomes blob-like. At this level blobs in the left image
are easily matched with blobs in the right image. As more information is needed, the higher
resolution levels are consulted. Figure 2.3.3 shows a FLIR image and four of its LoG images.
A hierarchical vision system would examine each of these representations and try to construct
hypotheses about the contents of the scene.

It is interesting to note that while it may be difficult to hypothesize the existence of a road
at the lowest channels (because the lowest channels are more dominated by small pixel-to-pixel
variations and are less capable of grouping together pixels to construct large scale detail), the
same task could prove relatively easy in a coarser channel.

2.3.2.2. Pyramids and Quadtrees

Pyramids and quadtrees may be the most promising hierarchical data structures for reason-
ing in computer vision because they are naturally a hierarchy with less information stored in the
upper level and more details stored at the lower levels. Such an arrangement allows for quick

]’

aondasriag

dase

sButss0d0-0492

PN

ERLEY FETN

s3uiss010-0492
YreN

ERLEY-SETN

s3u1ss045-0132
e

300a310a

s3uissorr -0z
YW

ERYUEY-JEYY

S2)nqglIYe 313y} pae
3uissos1-013z PeIXY

20Uty 500G

"WISAS [BNSIA URWINY JO [9poW [auueyd DO 7' AN

53)0qUNE 112y pus
301550130302 12TNXTF

p=0m
g (suueq)

sd1Nqlije 1ay) pue
3u1ss012-0332 12R4XY

6=
p |ouusy)

"\

$3)0GLINe 413y} pue
3a155010-0127 12eNXY

1=
¢ jauuey)

$3INquiye i9Y) pue
2a1s5010-0437 12841X

|ouueyd 353SIB0D

ge=0m
7 |ouuEy)

$3INQLIIB 1Y) pus
31550470102 10843X7]

[ougegd 1520

£9=0m
1 _wcnan—o

$91nqQUIIR J19Y) pue
301550150437 V2. XT]

p=Tm
G [ouueq)

83INQUINE JY) pus
3uisso10-0132 oBIYXTY

8=Im
¥ (oaueq)

s3utss010-0132
PIEN

S3INQUIIE L9y} pus
Butss010-0132 eLXY

L1=0m
¢ jaausy)

sajnquIe H1dY) pue
3u1s5010-0192 1EIX]]

[auueyd 15951800

cg=0m
Z |3uney)

ATy
-—

£9=Im
1 puusg)

>

IKdDI. ;asnodsay aspndu|

aka 14y

EYCRITL|

£ L
5 » C a
i - »
’ . ‘. s e 1e7T
© 4 - - v e S S
¥ (4) o T, T
- & * - . B
. ’ " -« v R
i_* - - " N w" -

Figure 2.3.3 LoG channels of a FLIR image. (a) W,p=32, (b) W,,=16, (c) Wop=8, (d)
Wyp=4, (¢) Original image.

—“

2-102

location of relevant parts of the image while ignoring irrelevant details.

Figure 2.3.4 shows a 256 x 256 FLIR image of three targets which is mapped to each
higher level by taking an average over the four pixels below it. A hierarchical vision system
would scan the 4 x 4, 8 x 8, and 16 x 16 level and not find much of interest. This is because
there is nothing large in the image. The bright spots and dark spots at the 32 x 32 level may
contain something of interest. The pyramids below these spots could then be examined in
hopes of finding a target. The pyramid has reduced the search space from blindly searching all
256 x 256 = 64k pixels of the original image to searching 4 x 4 + 8 x 8 + 16 x 16 + 32 x 32 =
1360 pixels. After searching these pixels the search was directed to area of the image that were
most likely to contain information of interest.

This example has shown how a pyramid constructed by averaging pixels as a map between
levels can reduce the number of pixels to be searched. (A similar example could be constructed
for quadtrees.)

2.3.2.3. Classification on a Pyramid

A question to ask is, How do you know which level to start searching on? To answer
this question we constructed pyramids out of each of the targets used in the BRITT data
classification experiment. Each level of each of the pyramids were constructed by averaging
the four pixels from the level below as discussed in the previous paragraphs. We then ran the
classification experiments on each of the levels. We had hoped to see the classification errors
rise slowly as we moved up the pyramid since there was less information at each level. Then
we expected to see the error rate jump once we hit a level where too much information was
averaged out. However, Table 2.3.4 shows that results of are not the results we expected.

Table 2.3.4 Results of classification experiments on pyramid built from BRITT data. The
values in the table are the percentage of the targets misclassified.

feature set 1 feature set 2 feature set 3
level | upper lower | upper lower | upper lower

0 623% 51.0% | 46.7% 427% | 63.6% 11.1%
1 61.8 53.2 48.0 44.4 57.8 53.8
2 60.2 52.7 47.6 311 59.6 324
3 61.3 579 49.3 41.8 61.3 61.3
4 59.1 46.2 56.0 54.7 64.9 64.9

The results show that the error rates do not really increase as we move up the pyramid to levels

Figure 2.3.4 Different levels of a pyramid representation of a 320 x 496 FLIR image padded
to 512 x 512. (a)4x4,(b)8x8,(c) 16 x 16,(d) 32 x 32, (e) 64 x 64, (f) 128 x
128, (g) 256 x 256, (h) original 512 x 512 image.

2-104

with less information. One could hastly conclude that the important information is preserved
from level to level in the pyramid. However, take for example the 62.3% lower bound error
rate for feature set 1 on level zero. This is a very poor error rate (as discussed in Section
2.1.1.4.4.) the error rate is so poor on level 0, it should be no surprise that it does not ge. much
worse at higher levels simply because it is hard to make any more errors. With three classes
to pick from, a random guess would result in an error rate of 66.6%. And level O already has an
upper bound of 62.3%.

One can draw one more conclusion from these results: There is a mismatch between the
digital sampling rates implied by the matrix sizes used for FLIR data and the intrinsic resolution
of a FLIR sensor. As demonstrated by the feature set 2 above, a reduced representation of a
FLIR image on a much smaller matrix does not cause any noticeable reduction in the
classification information.

2.3.3. Using a Global Map to Improve Edge Labeling

FLIR images rarely have enough clarity and pixels on target to extract and accurately label
detailed edges as shown in Figure 2.3.1. More often the line segments will consist of several
edges separated by gaps, edges with many noise edges attached, or both. Many schemes have
been devised to eliminate noise edges and close gaps between edges in the same line. A better
approach to the problem is to include global information about the area being processed. For
example assume we have a global map of the area being viewed by the sensor and a rough idea
of where the sensor is in the map. The map would contain objects such as rivers, roads, lakes,
mountains, etc. The location of the sensor could be found by some global navigation system.
The map and approximate location are then used to build an approximate model of what is
being viewed by the sensor and the model is used to guide the labeling of the edges. The
regions bounded by the edges could be labeled as sky, mountains, plains, forest, etc. Such
classification could then be used to direct the target detector where to look for targets.

In the Robot Vision Lab we are building a general purpose software tool called PSEIKI
[AndKak87] (a Production System Environment for Integrating Knowledge with Images). Our
plan is to apply PSEIKI to NVL projects where symbolic reasoning and integration with world
knowledge can be applied. PSEIKI is a rule based system written in OPS.

The following section describes a system which takes some images at various locations on
a sidewalk and uses a global map of the sidewalk to help label the edge segments which belong
to each edge of the sidewalk. We could have used FLIR data however, we do not have any glo-
bal maps which correspond with the FLIR images in our database.

2.3.3.1. System Goals

The first goal of PSEIKI is: given an approximate location on the sidewalk and a
corresponding view, find the edges of the sidewalk. Figure 2.3.5 shows the kinds of views that
were taken of the sidewalk. The images on the right, used for drawing inferences about the

Figure 2.3.5 Typical images to be processed by PSEIKI.

m‘

2-106

location and the direction of the sidewalk, were obtained by applying edge detection and thin-
ning operators to the images on the left. The architecture for the edge labeling process is shown
in Figure 2.3.6. The process has two subsections: the preprocessor/pixel-to-symbol converter
and a rule-based edge labeler.

2.3.3.2. Preprocessing and Conversion to Symbolic Form

The preprocessor accepts digitized images and outputs binary edges suitable for conver-
sion into symbolic form. The edges are detected by applying a Sobel operator to the digitized
gray scale image. These edges are then thinned via Eberlein’s algorithm [Eber76] and thres-
holded. The resulting binary images are thinned again to produce edges that are at most one
pixel wide. Small edges are also deleted by the preprocessor. At this point, the image is ready
to be converted into symbolic form.

The conversion to symbolic form is accomplished via an algorithm based on the Nevatia-
Babu line-finder [NeBa80). In this process, the following steps are performed. First, some pix-
els are labeled as vertices. The pixels so labeled are edge endpoints and the points at which two
or more edges intersect. The edges in the segmented image are then traced from the starting to
ending vertices and are represented as broken line segments. After each edge is converted to
symbolic form, it contains the following information: edge number, start vertex, end vertex,
length and strength (average gradient magnitude). Likewise, each vertex contains the following
information: row coordinate, column coordinate, vertex number and degree.

2.3.3.3. Rule Based Edge Finder

The rule-based labeling system is written in OPSS [BFKMS86] and is split into three subsys-
tems. The first subsystem is statement driven and does not employ an inexact reasoning
scheme. Its purpose is to overcome segmentation deficiencies and reduce the amount of data
seen by the sections that do use inexact reasoning. There are two main ways that the current
segmentation is deficient. First the segmentation procedure leaves small edges caused by noise.
Although many of these edges are eliminated during the segmentation process, others still
remain because they are connected 1o longer segments. These noise-edges often look like the
example in Figure 2.3.7. The first section of the expert system eliminates these ‘‘dangling”’
edges (all segments which are shorter than a specified length and have a degree one vertex).
Figure 2.3.8 is a pseudo-code example of one the rules used to delete a small, dangling edge.

IMAGE PREPROCESSOR IN C

—— — — — —— — —— —— — — — — — — —— —— — S—

PRODUCTION SYSTEM IN OPS

small edge remover

@ edge joiner

edge merger

initializer global
working
disbelief updater

global linking |
global belief update @

—— ——— — — —— —— — — — —— — —

|
I
|
|
|
: belief updater memory
|
|
|
|
|

global disbelief update:

@ : Data Reduction
: Update beliefs using local consistency

: Update beliefs using global consistency

Figure 2.3.6 Architecture for edge labeling process.

Figure 2.3.7 Example of a noise-edge.

2-109

RULE: remove-small-segments
IF: current context 1s remove-small-segments
AND: segment with name <small-segment> has
length < 4 and
start vertex with name <start> and
end vertex with name <end>
AND: vertex with name <start> has
degree 1
THEN: delete segment <small-segment>
AN"D: make contexts to decrement the degrees
of vertices <start> and <end>

Figure 2.3.8 Rule to delete small edges.

The segmentation used also produces artifacts that break lines into smaller line segments. The
system tries to compensate for this fact by rejoining these broken line segments. Finally the
first section combines, into a single line, segments that are joined at a degree-two vertex. This
action is demonstrated in Figure 2.3.9 and the pseudo-code for a rule that performs the merging
action is shown in Figure 2.3.10.
RULE: merge-joined-segments
IF: current context is merge-joined-segments
AND vertex with name <common-vertex> has degree 2
AND segment with name <segmentl> ends at vertex <common-vertex>
AND segment with name <segment2> ends at vertex <common-vertex>
THEN: remove <common-vertex>, <segmentl>, <segment2>
AND create a new segment to replace <segmentl> and <segment2>

Figure 2.3.10 Rule to merge connected segments into a single segment.

The overall result of these subprocesses is a cleaner image containing a substantially reduced
number of line segments. Experimental results demonstrate that the amount of pruning is
between 66% and 75%; this is obviously a large reduction in the amount of data. Figure 2.3.11
shows an example of input to and output from the first section of the expert system.

The second subsystem performs segment labeling and confidence estimation. The system
uses the expected position in the global map to estimate where it should see the sidewalk’s
edges in its field of view. (for example, if the sidewalk is expected to have a right hand turn, it
should see the left and right edges for the sidewalk before the turn and the top and bottom edges
for the sidewalk after the turn.) The expert system was designed to use the position of expected
(model) edges to label those found in the segmented image. The edge labels assigned consist of
the following information: the name of the corresponding model edge and a certainty factor
hetween 1 and —1 describing the confidence attached to that labeling. All segments are initially

remove

add

Figure 2.3.9 Example of edge merging.

(a)

(b)

(c)

Figure 2.3.11 Example of the first section of the expert system. (a) Input image. (b) Output of

preprocessor. (c) Output of first section of expert system.

S

2-112

labeled as the model edge to which they correspond most closely.

The initial labels and confidence estimates are based on the collinearity between the edge
in question and the model edge. Collinearity is defined as follows

Dmu-Dseg

cos O
D max

Col (<segment 1>,<segment2>) =

where @ is the angle between the detected and the model segment; Dy, is the distance from the
middle of the segment to the model edge and D o, is the maximum possible distance from the
model edge to the detected edge (see Figure 2.3.12). If the edge is further than D ,,, away from
the model edge, the collinearity is defined to be zero.

After the initial labels are assigned, they can not be changed. However, every segment’s
confidence value is updated based on the consistency between the labels of all other segments
and the expected geometry. The belief that a segment’s label is correct based on new evidence
1s computed separately from the confidence that it is incorrect (its disbelief). New and old evi-
dence is combined using a variant of the Dempster-Shafer theory of evidence [Shaf76]. The
following rules demonstrate how the (dis)belief that a segment’s label is correct is updated
using labels of other segments. If a segment is thought to lie on the same model edge, the
confidence that the label is correct is increased if the segments are highly collinear. This is
expressed as shown in Figure 2.3.13

RULE: update-belief-compatible
IF current context is update-certainty of <segmentl>
AND: label of <segmentl> is <labell>
AND: there is a segment named <segment2>
with label <label2?2> and
certainty factor <cf> > 0.2
AND: the angle between the models
with labels <labell> and <label2> = 0
THEN: new certainty that label for <segmentl> is correct is equal to
Col (<segmentl>, <segment2>) * <cf>

Figure 2.3.13 Rule used to update belief of segments believed collinear.

If the two segments are believed to correspond to different model edges, a segment’s confidence
is updated based on how closely the angle between the two segments matches the corresponding
model angle. The new belief is defined as the cosine of the difference between the expected and
measured angles multiplied by the confidence value of the updating edge. Figure 2.3.14 shows
an example of a rule that is used to update a segment’s belief if the two segments correspond to
different model edges.

Figure 2.3.12 Geometry used in definition of colinearity.

2-114

RULE: update-belief-incompatible
IF current context is update-certainty of <segmentl>
AND: label of <segmentl> is <labell> and
length <length>
AND: there is a segment named <segment2>
with label <label2> that
makes an angle of <true-angle> with <segmentl>
and has a certainty factor <cf> > 0.2
AND: the angle between the models
with labels <labell> and <label2> is <model-angle>
THEN: new certainty that label for <segmentl> is correct is equal to
cos (<true-angle> - <model-angle>) * <cf> * <scale-factor>

Figure 2.3.14 Rule used to update belief of segments believed noncollinear.

Therefore, if the angle expected between the edges is exactly the angle found, the new belief
that the labeling is correct is equal to the belief that the updating edge’s label is correct. Like-
wise, the new disbelief is defined as the sine of the difference of the angles scaled by the
confidence of the updating edge’s label. This is demonstrated by the rule in Figure 2.3.15.

RULE: update-disbelief-incompatible
IF current context is update-certainty of <segmentl>
AND: label of <segmentl> is <labell> and
length <length>
AND: there is a segment named <segmentz>
with label <label2> that
makes an angle of <true-angle> with <segmentl>
and has a certainty factor <cf> > (0.2
AND: the angle between the models
with labels <labell> and <label2> is <model-angle>
THEN: new certainty that label for <segmentl> is incorrect is equal to
sin(<true-angle> - <model-angle>) * <cf> * <scale-factor>

Figure 2.3.15 Rule used to update disbelief.

For example, if the expected angle between segments was 60° but the measured difference was
30° the new disbelief would be one half the belief that the updating segment’s label was correct.

2-115

The third subsystem used in PSEIKI is not yet complete; it will duplicate the processes
used in the first two but will work on groups of edges instead of singletons. Work also must be
done to incorporate camera calibration information into the reasoning system; this will remove
distortions due to perspective imaging.

2.3.3.4. Experimental Data

The expert system was run on data from a number of digitized images, one of which is
presented here. The image shown was taken slightly to the left of the center of of a straight sec-
tion of sidewalk. This tests the expert system in the case of a positional error. Figure 2.3.11.a
shows the unprocessed image. The image in Figure 2.3.11.b shows the output of the image seg-
menter, as can be seen it contains a large number of broken, noisy line segments. The output of
the first section of the expert system is shown in Figure 2.3.11.c. The number of segments was
reduced from 99 to 25 segments in this image. Figure 2.3.16 shows the segments labeled as left
and right edges of the sidewalk for all labels with positive certainty. As can be seen by the
results, the system performed admirably on this image. It found both edges of the sidewalk and
only included one segment that was not a sidewalk edge.

2.3.3.5. Conclusion

The present expert system demonstrates the validity of using a production system to imple-
ment a geometric reasoning system. Such a system could a applied to FLIR images to identify
major components of the image such as the sky, mountains, forests, etc. Each of the three com-
ponents of the ATR process (detection, segmentation, and classification) co'd produce more
accurate results once these regions are found and correctly labeled. For example, the detector
would know not to look in the sky for tanks. The segmenter could use special segmentation
algorithms tuned to the type of region it is segmenting. Finally the classifier could use the type
of region information to tune its classification process.

Figure 2.3.16 Example of edges labeled by the second section of expert system. (a) Input to
second section of expert system. (b) Segments labeled as the left edge. (c) Seg-
ments labeled as the right edge. vertices

3. LASER RADAR RANGE DATA PROCESSING

We believe that in the multi-sensor ATR systems of the future, LADAR will play an
important role for verification of targets detected by FLIR; LADAR will also play an important
role in estimating the aspect of a target -- an important piece of information about the hostile
intent of the target. In this section, we will discuss the extensive amount of work we have done
on segmentation of targets from LADAR range images; we will also report on the exploratory
work carried out by us on different reasoning strategies that could be employed for identifying
targets and estimating their aspects. It appears to us that for targets positioned within a kilome-
ter from a sensor with current resolution capability, it should be possible to carry out
identification and aspect estimation by reasoning in terms of target surfaces and their inter-
relationships. However, for targets farther than a kilometer, sensors of today do not permit a
reliable extraction of surfaces and recognition and aspect estimation must depend upon just the
silhouette.

3.1. DATA DESCRIPTIONS

LADAR data from two field tests were used in addition to synthetic data. The following
sections describe the data that was collected.

3.1.1. Description of the 1986 A.P. Hill Laser Radar Data

The laser radar range images described as the 1986 AP Hill Laser Radar Data were taken
by the LADAR sensor described in [Rayt] at Fort A. P. Hill, Virginia on the 24th through the
28th of March 1986. Six images were selected from all the data taken at A. P. Hill field test.
These images, shown in Figures 3.1.1-3.1.6, were selected to give a representative sampling of
targets, ranges, clutter, fields of view, and occlusion. Note that these figures show both a FLIR
image (top) and a LADAR image (bottom), only the range images were used for these exper-
iments. Each LADAR image is 160 by 96 pixels, with 8 bits per pixel. The LADAR sensor
can collect range images at different fields of view (FOV); Table 3.1.1 shows the instantaneous
FOV’s and the FOV of each image for the three FOV’s used in Figures 3.1.1-3.1.6.

Table 3.1.1 Field of views for the LADAR images in Figures 3.1.1-3.1.6.

Instantaneous FOV
FOV # FOV d
Azimuth x Elevation (mrad) OV (mrad)
1 0.1 x0.1 16 x 9.6
2 0.1x0.2 16 x 19.2
5 02x0.2 32x19.2

File = rvll:~nvl/range-data/324/tlir/images/im03

Size =320 x 192
TARGET= U1H HELICOPTER
ASPECT= SIDE VIEW
RANGE= 1KM
FRAME 09951 RUNNO. 3
DATE 03/24/86 TIME 1335.46.069
TEST SITE FT A.P. HILL, VA
THE TEST SITE IS AT THE DROP ZONE AT A.P. HILL
File: rvil:~nvi/range-data/

324/1aser/images/im03

5% R

Size = 160 x 96

TARGET - UH-1
ASPECT - BSR
FIELD-OF-VIEW - FOV5

Figure 3.1.1 FLIR and Laser Radar Range image for target ap1.32403.

M‘f

File = rvll:~nvl/range-data/324/flir/images/im11

Size =320 x 192
TARGET= M60A2
ASPECT=RIGHT VIEW
KANGE=2050M
FRAME 86247 RUNNO. 8
DATE 03/24/86 TIME 1616.01.692
TEST SITE FT A.P. HILL, VA
THE TEST SITE IS AT THE DROP ZONE AT A.P. HILL

File: rvl1: ~nvl/rang,e data/’%24/1aser/1magcs/1ml1

Size = 160 x 96

TARGET - M60A2
ASPECT - BSR
FIELD-OF-VIEW - [FQV2

Figure 3.1.2 FLIR and Laser Radar Range image for target apl 32411, |

M

File = rvll:~nvl/range-data/325/flir/images/im04

Size =320 x 192
TARGET= M60A2
ASPECT=RIGHT VIEW
RANGE= 1935M
FRAME 27691 RUNNO. 2
DATE 03/25/86 TIME 0909.34.192
TEST SITE FT A.P. HILL, VA
THE TEST SITE 1S AT THE DROP ZONE AT A.P. HILL

Fllc rvll ~nvl/range ddta/325/laser/1mages/1m04

Size = 160 x 96

TARGET - M60A2
ASPECT - BSR
FIELD-OF-VIEW - FOV1

Figure 3.1.3 FLIR and Laser Radar Ra.:ge image for target ap1.32504.

| File = rvll:~nvl/range-data/326/flir/images/in3

Size = 320 x 192
TARGET= M60A2
ASPECT= RIGHT VIEW
RANGE= 1190M
FRAME 30200 RUN NO. !38
DATE 03/26/86 TIME 0400.01.1(%)
TEST SITE FT A.P. HILL, VA
THE TEST SITE 1S AT THE DROP ZONE AT A.P. HILL

File: rvll:~nvl/range-data/326/Jaser/images/im33

Stze = 160 x 90

TARGLET - MO6OA?
ASPLCT - BSR
FILLD-OFF VIEW - 1OV

Figure 3.1.4 FLIR and Laser Radar Range image for target ap1.32633.

————

File = rvll:~nvl/range-data/328/flir/images/im37

Size =320 x 192

TARGET= CENTER OF CLUSTER
ASPECT= RIGHT VIEWS
RANGE-= 1540M
FRAME 30322 RUNNO. 7
DATE 03/28/86 TIME 0030.00.102
TEST SITE FT A.P. HILL, VA
THE TEST SITE IS AT THE DROP ZONE AT A.P. HILL
File: rvl1:~nvl/range-data/328/las

. N8

er/images/im37

LT Ty

Size = 160 x 96
TARGET - 2-M60A2/2. 5TT
ASPECT - BSR
FIELD-OF-VIEW - FOV1

Figure 3.1.5 FLIR and Laser Radar Runge image for target ap1.32837.

File = rvl1:~nvl/range-data/328/flir/images/im39

Size =320 x 192

TARGET= A CLUSTER OF OBJECTS

ASPECT= RIGHT VIEWS

RANGE= 1540M

FRAME ?>353 RUNNO. 10

DATE 03/28/86 TIME 216:.40.270

TEST SITE FT AP. HILL, VA

THE TEST SITE IS AT THE DROP ZONE AT A.P. HILL

File: rvitl :~nvl/range_data/328/lase
Tl i ‘_. “ gy ., ’ _

r/images/i

P2

Size = 160 x Y6

TARGET - 2-M60A2/2.51T
ASPECT - BSR

Figure 3.1.6 FLIR and Laser Rad»r Range image for targer apl.32839.

3-8

3.1.2. Description of the 1987 A. P. Hill Laser Radar Data

The laser radar range images described as the 1987 AP Hill Laser Radar Data were col-
lected at Fort A. P. Hill, Virginia in June of 1987. For the experiments four images (shown in
Figures 3.1.7-3.1.10) were selected to give a variety of ranges, targets and weather conditions.
The following sections give information about which images were used and how they were
modeled using the ground truth information. Detailed information about the field test can be
found in [NeSm87].

3.1.2.1. The Types of Data Collected
During the June 1987 field test five types of data were collected:

FLIR,

LADAR AM,

LADAR FM,

LADAR return intensity, and
millimeter wave (MMW) radar.

The FLIR, MMW and LADAR images were collected from three different sensors each in a dif-
ferent van and are therefore not pixel registered. The three LADAR signals were collected by
the same sensor and are all pixel registered. Although this report centers on the processing of
the LADAR data, future work will include fusing other sensors such as FLIR and MMW radar
with LADAR images. The FLIR images in Figures 3.1.7.1-3.1.10 are shown only to give addi-
tional information about the targets in the field test and were not used in any of the processing
in this section. The following paragraphs discuss the three types of LADAR data.

The LADAR AM data is like the data collected during the 1986 A. P. Hill field test dis-
cussed in Section 3.1.1. This data gives very fine relative range resolution (as good as 7.2 cm
between adjacent range values), but is based on the phase angle of the return signal so that there
are range ambiguities caused by phase wrap around. The AM data was collect using 8 bits per
pixel. The ambiguity interval is 1875 cm.

The LADAR FM image gives absolute range at a much coarser resolution than the AM
data. It was collected using 12 bits per pixel. However neither the AM nor the FM images
were distributed. Instead, the LADAR AM and the LADAR FM images were combined to
form a lADAR*resolved range image which, in theory, should give absolute range with very
fine resolution. The LADAR resolved range image (referred to as LADAR in the rest of this
section) was distributed using 32 bits per pixel where each pixel value represents the absolute
distance in centimeters to the object.

* In practice, the noisc component of the FM signal has been measured to be as much as 9
meters on a target at 1400 meters and therefore offsets many of the advantages of the AM
component’s fine resolution

clétd. flir

(©)

Figure 3.1.7

(b)
cl4ta3.mod

(a)

cl4ta3.gt.above

cl4ta3d.gt

-5

(e))

Image c/4ra3 a) Original 32 bit per pixel image linerly rescaled to 8 bits per
pixel, b) Range slice with black being everything in fiont of 1400m and white
being everything behind 1471.4 meters, c) FLIR image of same target, d) origi-
nal image mod 1875.) Model of ground truth as seen by the sensor. e) Model of
ground truth rotated by 45° to see the orientation of the target.

c10ml.res

(b)

c¢10m1.mod

€10m1.fir

Figure 3.1.8

c¢10ml.gt

(e) ()

Image c/Oml a) Original 32 bit per pixel image linerly rescaled to 8 bits per
pixel, b) Range slice with black being everything in front of 1015m and white
being everything benind 1086.4 meters, ¢) FLIR image of same targets, d) origi-
nal image mod 1875. ¢) Model of ground truth as sezii by the sensor. f) Model of
ground truth rotated by 45° to see the relative spacing and orientation of the tar-

gets.

1671/1adar/image19 _

©) (d)

¢17m3.gt c17m3.gt.above

(e) M

Figure 3.1.9 Image c/7m3 a) Original 32 bit per pixel image linerly rescaled to 8 bits per
pixel, b) Range slice with black being everything in front of 1650m and white
being everything behind 1721.4 meters, c) FLIR image of same targets, d) origi-
nal image mod 1875. €) Model of ground truth as seen by the sensor. f) Model of
ground truth rotated by 45° to see the relative spacing and orientation of the tar-

gets.

¢17m).flir

© (d)

c17ml.gt cl7ml.gt.above

(e)

32 bit per pixel image linerly rescaled to 8 bits per

Figure 3.1.10 Image c¢/7ml a) Onginai
black being everything in tront of 1625m and white

pixel, b) Range slice with
being everything behind 1695.4 meters, c) FLIR image of same targets, d) origi-

nal image mod 1875. ¢) Model of ground truth as seen by the sensor. f) Model of
ground truth rotated by 45° to see the relative spacing and orientation of the tar-

gets.

3-13

In the third type of LADAR data, the LADAR return intensity , each pixel is linearly pro-
portional to the strength of the return LADAR signal. The larger the pixel value, the stronger
the retum signal. Such information might be useful as a confidence value associated with each
returned range pixel value. If the return signal is strong, a high confidence valu: can be associ-
ated with the corresponding resolved range value. Unfortunately the intensity data that was col-
lected is not usable since there were some problems during the field test which resulted in not
zi" of the data being linear [Phil87]. This data was therefore not used.

The LADAR sensor is capable of collecting images using different resolutions and dif-
ferent frame sizes. All the experiments presented in this section used data with a resolution of
0.05 mrad in both directions and a frame size of 511 by 256 (horizontal by vertical). (Called
type 7C in [NeSm87].)

3.1.2.2. The Test Images

The images in Figures 3.1.7-3.1.10 all have the same arrangement with (a) being the 32 bit
LADAR image and (c) being the 8 bit FLIR image of the same scene. The following para-
graphs present the general approach used to produce the other images. Table 3.1.2 is a sum-
mary of the LADAR and FLIR image header information. Table 3.1.3 gives specific comments
on each of the test images.

The upper left image (a) in Figures 3.1.7-7.3.1.10 is the 32 bit per pixel LADAR range
image. Because of the large dynamic range, it was linearly rescaled to display as 8 bits per
pixel. Rescaling tends to cause the targets to blend into the background and are often not visi-
ble in the image. The upper right image (b) is a LADAR range slice of the same image. The
range slice was found by apply the following formula to each of the pixels:

pixely;.. = (pixel - offset) / scale
if pixel slice < 0
then pixelg;., =0
else if pixely;., > 255
then pixely;., = 255

The resulting image has all pixels in front of offset set to black and all those behind the slice
(those greater than offset + scale * 255) set to white. Figures 3.1.6-3.1.10 list the front and the
back of the range slice in meters. A scale of at least 7 should be used since the range data is
given in centimeters, but the sensor can only resolve to 7.2 centimeters. Since the lower 2 bits
of the AM relative range sensor might be noisy, at scale of 28 was used when displaying
images. Note: all processing was done on the 32 bit data. The rescaling was only used for
display purposes

The left image on the second row (c) is a FLIR image taken of the same configuration of

targets using a narrow field of view. The right image on the second row (d) is computed from
the LADAR image on a pixel by pixel basis using the following formula:

Table 3.1.2 Summary of LADAR and FLIR header files for Figures 3.1.7-3.1.10.

cldtal c10ml c17m3 c17ml

FILE NAME LD60977C14TA3 | LD61577C10M1 | LD61677C17TM3 LD61777C17M1
M551 TANK, M113 APC, M113 APC,
TARGET TYPE M60A1 TANK CJS JEEP 2.5 TON TRUCK
’) N CK
M113 APC CJ5 JEEP 2.5 TONTRU
SITE 1400 M 1020 M 1700 M 1700 M
RANGE 1427 M n/a 1693 1693
DATE 9-JUN-1987 15-JUN-1987 16-JUN-1987 17-JUN-1987
HAZY/ HOT/HAZY/
A
WEATHER OVERCAST HUMID HAZY CLEAR
ladar
TIME 15:20:44.53 14:43:57.42 14:56:10.89 09:59:03.50
FOV 0.8 X 1.6 DEG 08 X 1.6 DEG 0.8 X 1.6 DEG 0.8 X 1.6 DEG
7C 7C 7C 7C

DATA SHIFT -18 -18 -18 -18
MIRROR REFLECTION | NO NO NO NO
MODE IMAGE IMAGE IMAGE IMAGE
RESOLVED RANGE CENTIMETERS CENTIMETERS | CENTIMETERS CENTIMETERS
flir
TIME 1520.39.424 1454.43.928 1456.00.272 0958.53.059
FOV N N N N
BRIGHTNESS 240 200 190 190
CONTRAST 120 40 70 80

Table 3.1.3 Comments about the test images selected from the 1987 A.P. Hill field test.

Figure

Comment

3.1.7 ab

This is a single M60A1 at 1400 meters. As with most
LADAR, the sky is easily found because it appears a
random return values on the upper part of the image.

3.1.7d

The target is on a wrap around line since the dark right
side must be farther than the white left side. This is one
of the problems with the relative range AM data.
However this does show that large geometric features
(such as the various planer surfaces of a target) will
appear in LADAR data even at 1400 meters.

3.17ef

This field test involved taking images with the turret

at different rotations. The ground truth data is unclear as
to the location of the reference to which the rotation
angles were measured. Since our model currently does
not rotate the turret apart from the rest of the tank,

the ground truth image might be inaccurate.

3.18ab

There are three targets (M60AT1, Jeep, M113) at about
1000 meters.

3.1.8d

The mod 1875 image makes the targets more visible
than the range slice image.

3.1.8ef

Although the locations of the targets match the LADAR
Log ground truth, the relative positions of the three

targets appear wrong in the ground truth image. The FLIR
image (c) clearly shows that all three targets are
unoccluded. It is possible the angle to the sensor was
miss-measured.

3.19a-d

There are three targets (M113, Jeep, 2.5 ton truck) taken
at 1700 meters on a humid hazy day. The targets are
almost undetectable accept of in the FLIR image (c) in
which they are clearly visible.

3.1.10 a-d

There are two targets (M113, 2.5 ton truck) at 1700
meters. The weather was clear and the targets are more
visible than the targets in Figure 3.1.9.

3-16

pixelapm = pixel mod 1875

Since the resolved range image is in centimeters and the AM ambiguity interval is 1875 cm, the
AM portion of the signal can be found by taking the mod 1875 of each pixel. That is why these
images look similar to the images in Section 3.1.1. Close inspection of the mod 1875 images
reveals that there is less noise on target than shown in the range slice image. We believe this is
caused by the noise present in both the AM and FM components of the return signal. The FM
signal is used to decide which absolute range bin to which the relative AM signal corresponds.
The resolved range image, which is a combination of both the AM and FM signals, therefore
has the noise of both signals. When the mod 1875 image is taken, the effects of the FM signal
(and its noise) are removed which results in a cleaner image. The FM noise has been measured
to be as much as 9 meters at a range of 1400 meters. [Phil87].

The images on the bottom row (e and f) were constructed using the ground truth data from
the Laser Radar Log [NeSm87). This data gives the type and position of each target relative to
a reference marker as show in Figure 3.1.11. The data for image c10m! is:

SV =132 degrees (position of sensor)
Right target
APC
RR - 52 feet (52 feet to right rear)
CT =5 degrees
ST =55 degrees
Center target
Jeep

LF - 58 feet *(58 feet to left front)
CT =335 degrees

ST =55 degrees

Left target
Tank

RF - 1 foot *(1 foot to right front)
CT = 355 degrees

ST = 150 degrees

* The LADAR LOG reports the Jeep CT to be 355 © and the Tank CT to be 335 °, however
these figures were corrected as shown during a phone conversation with Bob Dockery from the
Center for Night Vision.

270 <

REFERENCE
MARKER

LADAR
VAN

Figure 3.1.11 Relative placement of targets as given in the LASER RADAR LOG [NeSm87].

3-18

The following function, written in LISP, converts this data into PADL statements which posi-
tions the targets.

(defun group (van stream &rest targets)
; van - angle from reference to LADAR van
; stream - place to write output data
; targets - list of targets in scene
(let ((count 0)) ; number of targets
(mapc #’ (lambda (target) ; convert each target in the list of targe
(format stream ; write the following to stream.
;7 The following is code written for PADL.
"target~“a = ~“a_"a at (degz="a, movx="a, degz="a) %"
count
(type target)
(corner target)
;: The rotation about the center must be
;; corrected because the ct below will turn the
;; target too.
(-~ (ct target) (st target)) ; Rotation
; about center
; of target
(* (offset target) 0.3048) ; Convert feet to meters
(- (ct target)))
(setqg count (1+ count)))
targets)
(format stream "all = (targetO™)
(dotimes (i (1- count))
(format stream " un target~a"™ (1+ 1i)))

(format stream ") at degz="a %" van)}))
(defmacro type (x) ; Type of target
‘(car ,x))
(defmacro corner (x) ; Corner to measure to. (one of 1f, rf, 1lr, rr)
‘(nth 1 ,x%))
(defmacro offset (x) ; Distance from corner to reference marker.
‘(nth 2 ,Xx))
(defmacro ct (x) ; Angle from reference to corner of target
‘(nth 3 ,x))
(defmacro st (x) ; Rotation about the target’s axis.

‘(nth 4 ,x)}

—-_j

3-19

This input:

;2:; This is a padl description of the targets for TAPE DF1572
:2; Time: 1430

(group 132 t
f(mll3 rr 52 5 595)
"(ml51 1f 58 335 145)
" (m60al rf 1 355 150))

produces the following PADL code for image c10m! .

target0 = mll3 rr at (degz=-50, movx=15.8496, degz=-5)
targetl = ml51_1f at (degz=190, movx=17.6784, degz=-335)
target?2 m60al rf at (degz=205, movx=0.3048, degz=-355)
all = (target0 un targetl un target2) at degz=132

I

The first line of input to the group routine states that the van with the LADAR sensor is a 132
degrees from the reference. The second line of input to the group routine places the right rear
comner of the M113 APC at 52 feet and 5 degrees from the reference. The APC is rotated about
its axis S5 degrees. This translates into PADL code by arbitrarily identifying the APC as tar-
get0. target0) places ml13 rr (the right rear of a M113) by rotating it —50 degrees about its
axis. (It is a negative amount since PADL defines rotations opposite from that used in the
LADAR Log. Itis only 50 degrees not 55 since the second rotation will take it the needed extra
S degrees.) Next the APC is moved 15.8496 meters (52 feet) from the reference and then
rotated 5 degrees about the reference. The same is done for the M151 and the M60A 1.

This data was used by the Electronic Terrain Board Model discussed in Section 4 to pro-
duce the ground truth images. The left image is of the scene as viewed by the sensor, and the
right image is the same view rotated 45° to give a better view of the relative spacing and orien-
tation of the targets. Figure 3.1.12 is the targets in image cI/0Oml as viewed from above. The
marking show that the targets are placed as described in the LADAR LOG, however when
viewed from the sensor position, the targets do not appear to have the same relative positions.
We are unable to explain the differences at this time. One possibility is that our selection of
wire frame models is limited so the models used in the ground truth images most likely do not
match exactly the actual targets used in the field test. If, for example, our M60A1 model was
wider than the actual target it would occlude the Jeep as shown.

3.1.2.3. Preprocessing the Data

Close inspection of the targets in the range slices of the*resolved range data shows that the
targets, though distinctive in three of the four test images, all contain considerable impulse

* Apparently image c/7m3 was taken on a very hazy day and the targets are not as visible in it.

Figure 3.1.12 Targets in image c/0Om/ 25 viewed from above.

3-21

noise. Images (c) and (d) in Figures 3.1.13-3.1.16 show that using a 3 by 3 and a 5 by 5 median
filter on the images removes much of the noise. To better see the affects of the filtering opera-
tion, the tank and the APC from image ¢/0ml and the APC and the 2.5 ton truck from image
¢17ml enlarged in Figures 3.1.17-3.1.20 Some observations are in order. Note the jagged left
edge of the tank in Figure 3.1.17(b) and the jagged right edge of the APC in Figure 3.1.18(b).
The jaggedness is caused by the sensor scanning alternate lines in different directions. (i.e. If
the even lines are scanned from left to right, then the odd lines will be scanned from right to
left.) Unfortunately near the edges of the image the alternate lines do not line up exactly as
shown in these images. This lack of alignment is obscured in the resolved range image, but
made clear in the mod 1875 image. Apparently this problem didn’t occur in the c/7ml images.

Median filtering removes much of the impulse noise as shown in Figures 3.1.21-3.1.24
unfortunately it may also be removing much of the fine structure information on the target. The
great dynamic range of 32 bit data presents some problems not present in 8 bit data. In this data
a noise spike can cause a pixel value to appear a kilometer or two away from the target. Such
noise must be removed, but at the same time the fine ‘‘10’s of centimeters’’ resolution must be
preserved since it might contain structural information about the target.

The mod 1875 images provide the first clue as to how the process the 32 bit data. The tar-
gets are often more visible in these images that in the original resolved range images. The
impulse noise on target appears to be much lower which means the FM data must have con-
tained noise which caused the pixel value to be put in the wrong range bin. Our median based
range bin corrector (MBRBC) attempts to fix this problem by looking the the median value of
all the pixels in a window around a given pixel. If the given pixel is more than one ambiguity
interval (1875 cm) away from the median, an integer number of ambiguity values will be added
(or subtracted) from the pixel value until it is within an ambiguity interval of the median. If the
image has no range bins errors, the pixel value will be within an ambiguity interval to the
median and with therefore not be changed. If the pixel is misplaced by a range bin error it will
be placed back into the correct bin (assuming the median of the neighbors is within the correct
bin). Images (d) and (f) in Figures 3.1.13-3.1.16 show the test images after using the MBRBC
filter. These images show that there is no great improvement in the overall appearance, how-
ever, Figures 3.1.25-3.1.28 show the close ups of the four targets used before and their MBRBC
images. Here it is clear that the standard median filter tends to remove what might be structural
details and smooth out the image. The MBRBC images have the same noise spikes removed,
but still have the information that might allow fine structural details to be extracted.

3.1.2.4. Comments on the Quality of the Data

The LADAR sensor requires careful tuning before it will produce good images. The qual-
ity of the data taken during the 1987 field test appears to vary greatly from one set of images to
another. An example is images c/7ml and c/7m3 which were taken at the same distance and
field of view, but the targets in ¢/7m3 are much more visible that those in ¢/7ml . This could

(e 63

Figure 3.1.13 Image c/4ta3 a) Range slice as in Figure 3.1.7, b) mod 1875, ¢) Median using 3
by 3 window, d) Smart median using a 3 by 3 window, e) vedian using a 5 by 5
window, f) Smart median using a 5 by S window.

ﬁ—-—L

_ clOmlres o c10m1.mod

(c) (d)

(e) (3]

Figure 3.1.14 Image cIOml a) Range slice as in Figure 3.1.8, b) mod 1875, ¢) Median using 3
by 3 window, d) Smart median using a 3 by 3 window, €) Median using a 5 by S

window, f) Smart median using a 5 by 5 window.

S

Figure 3.1.15 Image c/7m3 a) Range slice as in Figure 3.1.2. b) mod 1875, c) Median using 3
by 3 window, d) Smart median using a 3 by 3 window, ¢) Median using a 5 by 5
window, f) Smart median using a 5 by 5 window.

c17ml.mod

(e) ()

Figure 3.1.16 Image c/7ml a) Range slice as in Figure 3.1.10, b) mod 1878, ¢) Median using 3
by 3 window, d) Smart median using a 3 by 3 window, ¢) Median using a 5 by 5
window, f) Smart median using a 5 by 5 window.

Figure 3.1.17 Tank from image c/Oml. The upper left corner of this image is pixel 100, 110
from image c]0ml a) Rescaled image, b) mod 1875 image.

Figure 3.1.18 APC from image c/Oml . The upper left corner of this image is pixel 300, 110
from image c/0ml . a) Rescaled image, b) mod 1875 image.

(b)

Figure 3.1.19 APC from image c/7ml . The upper left corner of this image is pixel 144,115
from image c/7ml . 2) Rescaled image, b) mod 1875 image.

(b)

Figure 3.1.20 2.5 ton truck from image c17ml . The upper left corner of this image is pixel
251, 120 from image c/7ml . 4) Rescaled image, b) mod 1875 image.

I e

(b)

Figure 3.1.21 Median filtered tank from image ¢/0ml . The upper left corner of this image 1s
pixel 100, 110 from image c/Om/ a) 3 by 3 window, b) 5 by 5 window.

(a)

(b)

Figure 3.1.22 Median filtered APC from image c/0m/ . The :pper left corner of this image is
pixel 300, 110 from image c/Oml . a) 3 by 3 window, b) 5 by 5 window.

(b)

Figure 3.1.23 Median filtered APC from image c/7ml . The upper left corner of this image is
pixel 144,115 from image ¢c/7ml . a) 3 by 3 window, b) 5 by 5 window.

(b)

Figure 3.1.24 Median filtered 2.5 tor wuck from image c17i«/ . The upper left corner of this
image is pixel 251, 120 from image c/7m/ . a} 3 by 3 window, b) 5 by 5 win-
dow.

(a)

(b)

Figure 3..25 MBRBC filtered tank from image c/Oml . The upper left corner of this image is
pixel 100, 110 from image c/0ml a) 3 by 3 window, b) Sby 5 window.

(b)

Figure 3.1.26 MBRBC filtered APC from image c/0ml . The upper left corner of this image is
pixel 300, 110 from image c/0Oml . a) 3 by 3 window, b) 5 by § window.

(b)

Figure 3.1.27 MBRBC filtered APC from image c17m/ . Tiie upper lett corner of this image is
pixel 144,115 from image c¢/7ml . a) 3 by 3 window, b) 5 by 5 window.

(b)

Figure 3.1.28 MBRBC filtered 2.5 ton truck from image c/7m! . The upper left comer of this
image is pixel 251, 120 from image c¢/7m!. a) 3 by 3 window, b) 5 by 5 win-
dow.

R

3-38

be caused by the weather being clear the day c/7ml was taken and hazy the day c/7m3 was
taken, or it could be caused by improper tuning. Such variation in results, whether caused by
tuning or the weather, make it difficuli to estimate the maximum distance such a sensor can be
used.

Another problem with the data is the misalignment between the even and odd scan lines.
A simple solution is to only use every other scan line, but such an approach then throws out half
of the data.

3.1.2.5. Future Work

Since this is the first report in which the 1987 A. P. Hill data was examined, there are
many areas that need more work. The following paragraphs details on the following ideas:

1. Create ground truth images using the Electronic Terrain Board Model.
2. Devise a method to measure the effectiveness of the processing filters.

The Electronic Terrain Board Model need to be improved so that it can produce images,
based in the ground truth information given for each image, which are accurate enough to be
considered ground truth images. This model needs to include both the targets and the terrain
We expect these changes to be brought about by switching to the BRL-CAD modeler which
will allow the very detailed BRL models to be used.

We need to develop a method of measuring the effectiveness of the median and MBRBC
filters. Visually speaking, the median filter appears to remove some fine structure information,
however we have no way of measuring how much information is lost. One good method would
be to

1) use the ground truth data to know location and orientation of the planer regions,
2) filter the LADAR data with the preprocessor to be tested,

3) extract the geometric features as presented in Section 3.3.1,

4) compare the extracted features to those in the ground truth data.

Such a procedure should give a very accurate measure to a filter’s effectiveness provided the
models used in the ground truth data are close enough to the targets which actually appeared in
the image.

3.2. EVALUATION OF LADAR IMAGES

3.2.1. Preliminary Results of Measuring Classifiability vs. Range in LADAR

One of the unanswered questions about range data is: ‘‘At what range can targets be accu-
rately classified?’’ Of course the answer depends on may factors including the sensor, the
weather, and the target. In the work presented here an attempt has been made to find an upper

3-39

bound on the classification accuracy by measuring the classifiably of noiseless synthetic data.
The only noise present in such data is the spatial quantization noise caused by having fewer pix-
els on target as the target is farther away. The following section presents the results of the
study.

3.2.1.1. The Synthetic Images

The synthetic images were generated as shown in Section 4.1. The four targets used in
these experiments are the M60A1, M113, BMP, and BRDM2. Each target was viewed from
zero elevation (slant angle of zero). The targets were rotated from zero to 360 degrees and an
image was taken every size degrees for a total of sixty images per class. Section 4.1.3 discussed
how to add noise to an image, however for these experiments, no noise was added.

3.2.1.2. The Segmentation and Features

Since synthetic data is used, the data is perfectly segmented, therefore no segmenter is
needed. The same two feature sets were used as in Section 3.3.4.2.

3.2.1.3. Classification Results

Tables 3.2.1 and 3.2.2 show the results of the experiment for each feature set.
Table 3.2.1 Classification accuracy of noiseless synthetic LADAR data. 60 each of M60A1,
M113, BMP, MRDM2s using shape features.

Shape features (Table 3.3.10)
Distance | Lower Bound | Upper Bound

500m 0.0 0.42

1km 0.0 0.42

2km 0.0 0.0

3km 0.83 1.67

4km 4.17 5.83

5km 0.00 0.00

As expected (due to lack of sensor noise) the classification accuracies were very high. In gen-
eral the accuracies decreased as the distance to the target increased. Unexpected resuits appear
at Skm using the shape feature set and at 4km using the Beta feature set. We can offer no expla-
nation for this happening at this time.

3.2.1.4. Conclusion and Future Work

Since noiseless data is being used conclusion about real data cannct be made. (Other than
the obvious ‘‘the classification accuracy will decrease with distance.’’)

3-40

Table 3.2.2 Classification accuracy of noiseless synthetic LADAR data. 60 each of M60A1,
M113, BMP, MRDM2s using Beta features.

Beta features (Table 3.3.11)
Distance | Lower Bound | Upper Bound
500m 0.0 0.0
1km 0.83 0.83
2km 2.08 2.50
3km 1.67 4.17
4km 1.25 3.33
Skm 3.33 5.00

Future work in the area will start with using synthetic data with noise added. Section 4.1.3
gives details on how such data is being created.

3.2.2. Further Experimentation to Determine Classifiability vs. Range

In continuing the study of classifiability vs. range, the classification experiment in Section
3.2.1 was expanded by generating synthetic targets and artificially degrading them with noise as
in Section 4.1.3. The same orientation angle is still used, but the samples now include targets
from four target classes at ranges of 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0 km.

In addition, each synthetic LADAR image from a particular target class and range was cor-
rupted with nine different noise characteristics, bringing the total sample size to 216. The noise
characteristics were created by combining various levels of "drop out" and Gaussian noise.
Realistic levels of these noise types were determined using the table of results presented in Sec-
tion 4.1.3. From this data, overall minimums, maximums, and averages were determined for
each noise type. For convenience we define three noise levels (low, medium, and high).
These levels are shown in Table 3.2.3.

Table 3.2.3 Noise levels used in classifiability experiment.

Noise Parameters

Drop Out | Gaussian Standard
Level

Probability Deviation
low 0.005 7.00
medium 0.043 10.45

high 0.102 17.20

3-41

3.2.2.1. Segmentation

The planar patch fitting algorithm of Section 3.3.3.1 was again used to segment the sam-
ples. Unfortunately, the automatic threshold selection of this algorithm worked very poorly on
these images, and the segmentation became an iterative process of choosing segmentation thres-
holds and observing results. The best segmentation of this step was then further processed with
the aid of connected component labeling to remove holes in the silhouette as well as false target
regions outside the silhouette. Figures 3.2.1 and 3.2.2 show some examples of synthetic
imagery and the corresponding final segmentations.

3.2.2.2. Classification Results

Although separate experiments using both the shape and moment feature sets were run as
before, problems which will require further investigation were encountered with the moment
feature set experiment. The covariance matrices computed for these experiments were nearly
singular, thus making the classification results useless.

Three experiments using the shape feature set produced valid results, however, and these
appear in Tables 3.2.4, 3.2.5, and 3.2.6. Table 3.2.4 directly addresses the question of
classifiability vs. range, while Table 3.2.5 examines the effects of noise on classifiability. Table
3.2.6 conveys the results of an overall classification experiment in which samples wh=re not
separated according to range or noise.

Table 3.2.4 Classifiability vs. Range study.

Classtfiability vs. Range
Shape feature set

Range (km) | Error (Lower bound)
0.5 0.0 % (0/36)
1.0 2.8 % (1/36)
20 0.0 % (0/36)
30 19.4 % (7/36)
4.0 2.8 % (1/36)
5.0 0.0 % (0/36)

3.2.2.3. Conclusion

Originally the experiment presented here was to be performed on a much larger scale with
60 orientations for each target class. At this point, however the processing steps involved are
not sufficiently refined and automated to make such an experiment possible for this reportt.

t Currently such an experiment would require an estimated month of continuous computer

Synthetic image, Noise: L/L

Segmented image, Noise: L/L

Synthetic image, Noise: H/H

Segmented image, Noise: H/H

Figure 3.2.1 Segmentation examples. Synthetic image of M 113 at 0.5 km.

Synthetic image, Noise: L/L

Segmented image, Noise: L/L

Synthetic image,

Segmented image, Noise: H/H

Figure 3.2.2 Segmentation examples. Synthetic image of M 1135 at 5.0 km.

3-44 S

Table 3.2.5 Classifiability vs. Noise study. Noise characteristics are specified as: Drop Out
Probability/Gaussian Standard Deviation. Letters indicate the noise level, i.e. L_ow, M_edium,
or H_igh.

Classifiability vs. Noise
Shape feature set

Noise | Error (Lower bound)
L/L 4.2 % (1/24)
L/M 42 % (1/24)
L/H 4.2 % (1/24)
M/L 4.2 % (1/24)
M/M 0.0 % (0/24)
M/H 8.3 % (2/24)
H/L 4.2 % (1/24)
HM 4.2 % (1/24)
H/H 4.2 % (1/24)

Table 3.2.6 Overall classification experiment. Classification experiment using all samples, i.e.
no separation by range or noise.

Overall Classification Experimerit
Shape feature set

Lower bound Upper bound
4.2 % (9/216) | 13.4 % (29/216)

Because of this, the sample set here is still too small to be of great help. In each range set, for
example, there were only 36 samples. Each noise set only had 24 samples. This was the reason
for not estimating the upper bound error in these two experiments. This estimate requires one
sample to be left out, and with so few samples to begin with, the results would be questionable.

It is strange that no trend is evident in either of these experiments. This could be due to
the small sample sizes. Another interesting point is the error jump in the range experiment for
the 3 km case. The reason for this is still unknown, but the small sample size could have exag-
gerated the problem.

time alone, not i.:c'uding the user interaction needed 1o be sure all thresholds were set properly.

3-45

3.2.2.4. Future Work

The next step in this study of classifiability vs. range is the addition of orientation. Ideally
the experiment will be an expansion of the work presented in Section 3.2.1 where synthetic
images of the same four target classes were used. In this study, 60 different orientations of each
sample were included. To run the above experiment with this many orientations would require
processing 12,960 images. Obviously this experiment may need to be trimmed down to a more
reasonavle level, but in any case, some aspects of the classification process (such as segmenta-
tion) must be improved before such a large scale study can be attempted.

3.2.3. Optimal Sampling of the Feature Space

With the availability of synthetic imagery, endless data can be generated for a given exper-
iment. Unfortunately experiments run on endless data complete after endless time. The syn-
thetic test data must be carefully chosen to represent the types of images which will be viewed
in real situations. This section presents two approaches to intelligently reducing the amount of
data used in a classification experiment. The first approach, presented in Sections 3.2.3.1 -
3.2.3.6, uses a new method based on the Reduced Parzen Classifier. The second approach is
classical clustering which is surveyed in Section 3.2.3.7.

3.2.3.1. Motivation

This section pursues the design of a statistical classifier for use in the classifiability of
LADAR silhouette data vs. range experiment of [KaYo088]. The thrust of the experiment is to
measure the decreasing classifiability of noisy synthetic LADAR silhouette data with increasing
distance to the target. The initial approach was to train the classifier using 60 images of each
target. An image was generated for every six degrees of target rotation. It was noted that this
uniform sampling of rotation space was not the optimal approach to solving the problem. In this
section we show a method of selecting a subset of available data to use as design samples for
the classifier.

Originally it was hoped that this work would lead to a drastic reduction in the amount of
processing necessary 1o train the staristical classifier by identifying a set of "key orientations”
for the design samples that could be used for all ranges and noise levels. The results presented
here indicate that this reduction in processing will not be possible, but it does appear that it may
be possible to use fewer than 60 design samples in training the classifier. This would reduce the
computation necessary for classification. In any case, the results of this work are interesting and
have proven uscful in understanding the estimation of class densities for purposes of
classification.

3-46

3.2.3.2. The Feature Space

This section is merely an effort to better understand the problem at hand by drawing atten-
tion away from the target orientation question and focusing it on the feature space. It is the
result of much thought toward better understanding the problem of density estirnation and,
although not actually implemented, should serve as an instructive prelude to the algorithm
presented in the next section.

Since our statistical classification experiments are based on target class density estimation,
it seems reasonable to pose the problem as follows:

Given that r* samples are sufficient to represent a class density p(x), and a "good” density

estimate py(x) is available, what r sample subset of the N available samples gives the best

density estimate p,(x)?

Breaking the problem down a bit further: If j samples (j<r) have been chnsen to estimate
the class density p (x), which of the N-j remaining samples should be chosen next? Is there a
portion of the class density that is under represented? Of the N-j remaining samples, suppose
we choose the least likely sample given the current class density estimate, p;(x). In other
words, choose the sample, S, from the N-j remaining samples such that p;(S) is a minimum.
This should force the r representative samples to be spread well over the N available samples,
and could be accomplished through a simple application of Parzen density estimation tech-
niques.

Although this procedure should space the r representative samples well across the class
density’s extent, nothing has been done to indicate sample populations in the regions surround-
ing the r representative samples. An obvious approach to this problem is to assign a weight to
each representative sample based on how many of the N-r remaining samples are closer to it
than any other representative sample. The commonly used distance metric, (X -‘Y)Ti—l X-Y),
could be used here. The sample covariance, f. is calculated using the N available samples.

3.2.3.3. The Reduced Parzen Classifier [FuHa)

Another approach to the problem of selecting r samples is to determine which of several r
element subsets produce the best density estimate, p,(x). The Reduced Parzen Classifier (RPC)
[FuHa] algorithm uses this approach, and is based on computing a figure of merit by which den-
sity estimates are compared. This figure of merit is actually an entropy expression.

pr(x)

pn(x)

In ﬁN(x)dx <0

The inequality, In(a)<a—1, may be used to show the buund on this expression. Strict equality

* How to sclect the size of the reduced sample sct, r, is briefly addressed in Section 3.2.3.6.

3-47

holds iff p,(x)=py(x). This expectation is replaced by a sample mean calculation in the actual
algorithm.

N
=T:/_Z(ln[p“,(x,-)]—ln [AvX)D)
i=1

As in the last section, density estimates are computed using Parzen estimation techniques.
If the computational burden were not an issue this criterion could be maximized over all possi-
ble r element subseis of the N available samples to select the optimum reduced sample set. To
make the computation expense reasonable, however, a simplification is made in the algorithm:
(1) Arbitrarily select an initial assignment of r samples from the N sample data set. Call the r
sample set STORE and the remaining N-r samples TEST.

(2) For each element, X,, in TEST, compute the change in J that results if the sample is
transferred to STORE. AJ(X,)=/, .1 (X,)/, .

(3) Pick the element, X, corresponding to the largest A/, (and call it X;).

(4) For each element, X, in STORE, compute the change in J that results if the sample is
transferred to TEST. AJ,(X)=/, (Xs)J,41-

(5) Find the element, X, corresponding to the largest AJ, (and call it X .

(6) The change of J due to these two operations is AJ/=AJ {+AJ,. If X : exists such that AJ >0,
transfer X ; to TEST, transfer X : to STORE, and go to step 2.

(7) Otherwise, find the element, X,, corresponding to the next largest AJ; (and call it X ,‘).
8 IfX : exists, go to step 4.
(9) Otherwise, stop.

As pointed out in {FuHa], this algorithm does not necessarily select the optimal reduced
sample set, but experimentation has shown the algorithm to work well.

An important point to note is that, just as in the work of the last section, this algorithm
depends upon a "good" density estimate, py(x). It is first used in the selection of the reduced
sample set, and then in designing the Bayes classifier where a good sample covariance estimate
is needed.

This is the primary reason that the initial hopes of this study are not reali=~' © The results
of the next section show that class densities are so drastically chang .n features are
extracted from noisy images that it makes no sense to estimate them with the same orientation
samples chosen for a noiseless case. In other words, there does not appear to be a set of "key
orientations” for designing a general classifier.

3-48

3.2.3.4. Experimental Results

The Reduced Parzen Classifier of Section 3.2.3.3 was implemented and the experiments of

this section are meant to increase our understanding of the density estimation problem so that
we may intelligently approach the classification vs. range experiment.

)]

()
(3
4)
5)
(6)

(1)

(2)

3)

(4)
(5)

The primary questions addressed are:

Given 60 images generated at six degree orientation intervals for a single target model at
0.5 km., which ten orientations best estimate the target’s class density?

Are the same ten orientations chosen for a different target?

How does range affect which samples are chosen for the reduced sample set?
How does noise affect the selection?

How does the feature set used affect the selection?

How does classification accuracy vary with the size of the reduced sample set?
The following experiments were performed to answer these questions:

Silhouettes extracted from 60 noiseless, 0.5 km., BRDM2 synthetic images. Area and
H?/Area features computed for these silhouettes. RPC algorithm used to select ten
optimal samples for density estimation. Repeated for M60A1 target class.

Experiment (1) repeated for 5.0 km. data.

Experiment (1) repeated with high noise (PDO=0.102, GSD=17.2)* added to synthetic
imagery.

Experiment (3) repeated with Area and Rectangularity features.

Experiments (3) and (4) repeated using reduced sample set sizes of 1,3,5,7,30 and 50 to
train the classifier. Classification accuracies computed for each case.

All of these experiments were performed on two target classes in a two dimensional

feature space, but may be generalized to M classes in an N dimensional feature space.
NOTE:

The feature samples of the following scatter plots have been transformed through a simul-
taneous diagonalization process which diagonalizes both covariance matrices leaving one
equal to the identity matrix. Thus, the samples no longer possess the physical meaning
indicated by the axes labels, but were derived from these features.

* As defined in [KaYo87). PDO=Probability of Drop Out, GSD=Gaussian Standard Deviation.

¥

3-49

3.2.3.4.1. Reduced Samples Sets for Two Noiseless Target Classes

Figures 3.2.3(b) and 3.2.4 show the ten orientations chosen to estimate the BRDM2 class
density for a 0.5 km. sample set. The chosen samples fall very near one another in the feature
space. Some, in fact, lie directly on top of one another since their orientations differ by exactly
180 degrees. These results seem to contradict the reasoning of Section 3.2.3.2 where it was sug-
gested that the representative samples be spread well across the class density. It may be, how-
ever, that the weighting procedure of the same section would produce results similar to those
seen here by "zeroing-out" fringe samples.

Figures 3.2.3(b) and 3.2.5 show the ten orientations ‘chosen to estimate the M60A1 class
density for a 0.5 km. sample set. Since the silhouette characteristics for the two classes are very
different (at least we hope so for classification purposes), it is entirely reasonable that different
reduced sample sets were chosen to represent the two classes.

3.2.3.4.2. Effects of Range

Does it make sense that the orientations chosen for the reduced sample set will be different
at 5.0 km. than they were at 0.5 km? This probably depends on the target since certain target
characteristics may be distinguishable at close range, but disappear at long range with fewer
pixels on target. For example, the main gun of a tank may be invisible at 5.0 km., and this
could significantly affect which silhouette angles best represent this target class.

Figure 3.2.6 shows the sets of ten samples chosen by the RPC algorithm for the two targets
at 5.0 km. Although the orientations of the 0.5 km. reduced sample sets are different from those
of the 5.0 km., Figure 3.2.7 shows that the feature samples fall in similar regions of the 5.0 km.
scatter plots and produce equal resubstitution errors of 0%.*

3.2.3.4.3. Effects of Noise

Figure 3.2.8 shows that classification becomes much less accurate when noise is added to
the target images making silhouette segmentation, and therefore feature extraction, much more
difficult. It is also evident that the feature samples are not just perturbed by the noise, but the
shape of the class density is drastically affected. Will the same orientations chosen to estimate
noiseless class densities be most useful in representing noisy densities? Figure 3.2.9 clearly
indicates that this is not the case.

The orientations of the reduced sample sets chosen using the noisy class densities are
entirely different from those “hat were chosen from noiseless images. The resubstitution error is
well over three times worse when the orientations chosen from the noiseless densities are used
to design the reduced Parzen classifier for noisy samples.

* Resubstitution error is the error computed when the classifier is tested using samples of the
design set [Fu72].

Figure 3.2.3

Two Class Scatter (0.5 km)

HA2/Area

20

HA2/Area

(a) Sixty samples ot eacn target class. Resubstitution error=0%
(b) Ten samples of each reduced sample set. Dots denote samples NOT
chosen for the reduced sample set. Resubstitution error=0%.

10 +

| * BROMZ2
f ; + MBOA
"
+
b
1]
» M
1 RN T 1 i
14 12 -10 -8 6 4
Area

Reduced Samples (0.5 km)

. I * BRDM2 (10)
! + MBOAT (10)

10 A
.

] 1) 1 T
-14 -12 -10 -8 -6 -4
Area

Corresponding target orientations:

BRDM2: 30,36,42,138,144,150,210,216,324,330 degrees
M60AT1: 42,47,84,132,138,228,234,264,312,318 degrees

144 degrees 150 degrees

210 degrees 216 degrees

324 degrees 330 degrees

Figure 3.2.4 BRDM2 silhouettes chosen for 0.5 km. reduced sample set.

312 degrees 2) 8 degrees

Figure 3.2.5 M60AI silhouettes chosen for 0.5 km. reduced sample set.

Two Class Scatter (5.0 km)

$3 * BROM2
6 * 3 + MBOAT
) w+ 1
@ S5 +*
: ++
< 44 $+ n
< 1 * Il
e 3 4 » o
L +4 %
2 + X
L
|
1 T T -
-30 20 10 0
Area

Reduced Samples (5.0 km)

7
1 i * BROM2 (10)
6 + % + MBOAT (10)
1+ .
s 5 +
2
< 44 !
~N J i
< ¢
I 4 X
3 ' o
2- t
.
1 i i
-30 20 10 0

Area

Figure 3.2.6 (a) Sixty samples of each target class. Resubstitution error=0%.
(b) Ten samples of each reduced sample set. Dots denote samples NOT
c! osen for the reduced sample set. Resubstitution error=0%.
Corresponding target orientations:
BRDM?2: 30,36,42,132,138,144,204,210,318,324 degrees
M60A1: 78,96,104,132,228,234,306,312,318,324 cegrees

Location of Reduced Sample Sets in 5.0 km. Class Densities

7
1 $ * BRDM2 (10)
6 - ¢+i, + MB0A1 (10)
@ 5 -+
©] .
I 4- -
N 4 H 1,
< H
T |
3-1 ' n
2-4)
1 T T
30 -20 -10 0
Area
7
1 ii * BRDM2 (10)
6 - L4 +4 + M60A1 (10)
] ++

HA2/Area
P
1

Area

Figure 3.2.7 (a) Reduced sample sets chosen using < ‘) km. data. Resubstitution error=0%
(b) Reduced sample sets chosen using 0.5 km. data. Resubstitution error=0%
(Dots denote samples NOT chosen for the reduced sample sets.)

HA2/Area

HA2/Area

Figure 3.2.8 (a) Sixty samples of each target class. Resubstitution error=3.3%
(b) Ten samples of each reduced sample set. Dots denote samples NOT chosen

Noisy Two Class Scatter (0.5 km)

0
+
+ o
+ +
»e+] »
{ oMM M + -t
M E+ N NGE MM YO ¢ MM N
+ +++ i +
+ + +
#+ +
.10 -+ + H+ + +
+ # +HH+ +
+ 4+ -+ + +
+ # + + +
+
* BRDM?2
+ MB0OAY
-20 T 1 RE
0 1 2 3
Area

Noisy Reduced Samples (0.5 km)

0
.k.
+
» - -
E » . . -
- - oM o W e =M e
+ +- .
+
-104- +-
+ - e enes
R +
W * BRDM2 (10)
+« MB0A1 (10)
-20 T =1 - T
o] 1 2 3
Area

for the reduced sample set. Resubstitution error=3.3%

Corresponding target orientations:
BRDM2: (0,84,2¢4,282,300,306,318,330,342,354 degrecs

M60A1: 84,126,150,174,192,210,264,288,318,351 degrees

Location of Reduced Sample Sets in 0.5 km. Noisy Class Densities

0
.n.
+
” - -
4 » »-
- - - M o+ M N -
aQ + + .
2) +
< 104 .
o~ + .. 4 e eaas
< + -t +
T . - .
1 * BRDM2 (10)
+ M60A1 (10)
-20 T T LS
0 1 2 3 4
Area
4]
o | T e e o T
2 . .
f RIEE + + .
Iy - . o derene
:‘ + 4
b o + -
1 * BRDM2 (10)
+ MB0A1 (10)
-20 —T ~T T
0 1 2 3 4
Area

Figure 3.2.9 (a) Reduced sample set chosen using noisy 0.5 km. data. Resubstitution error=3.3%
(b) Reduced sample set chosen using noiseless 0.5 km. data. Resubstitution error=11.7%

(Dots denote samples NOT chosen for the reduced sample sets.)

3-57

3.2.3.4.4. The Feature Space and Selection of the Reduced Sample Set

Figure 3.2.10 examines the class densities for noisy samples using a different feature
space. As expected, the orientations chosen for the reduced sample set in this feature space are
different from those chosen in the previous feature space. Also, the overlap is different for the
two feature spaces as evidenced by the resubstitution errors.

3.2.3.4.5. Classification Accuracy and the Size of the Reduced Sample Set

Although no theoretical analysis was performed to determine an optimal size for the
reduced sample set, some interesting experimental results are discussed here. Since the samples
of Figures 3.2.8(a) and 3.2.10(a) exhibited class overlap, they provided an excellent opportunity
to determine how classification accuracy varies with the size of the reduced sample set.

Ten was arbitrarily chosen as the size of the reduced sample sets used in all of the previous
plots, and, as shown by the graphs of Figure 3.2.11, is an interesting sample size. In the
Area—H%YArea feature space, the classification accuracy is the same as that attained using all
60 samples. For the Area—Rectangularity feature space the ten sample set produces one of the
best classification accuracies. Better than that attained using all 60 samples!

It is important to note that these experiments do not establish ten as an important number.
The results presented here are for two dimensional feature spaces with only two target classes
present. The classification accuracy vs. sample size could be very different in higher dimen-
sional feature spaces with multiple target classes.

Nonetheless, it is interesting to see that reduced sample sets can improve classification
accuracy. This may occur because of cutlier or boundary samples in large sample sets which, in
addition to being misclassified, may, when included in the design set, cause the
misclassification of other samples.

3.2.3.5. SUMMARY

Several interesting results have been found using the reduced Parzen classifier of Section
3.2.3.3. It was interesting to see, for instance, that the feature samples chosen for the reduced
sample sets were not spread across the entire class density, but were actually grouped together.
This may not seem intuitive from a density estimation point of view, but the classification accu-
racies exhibited by the reduced sample sets certainly validate it from the classifier design per-
spective. It was also instructive to see that a carefully selected smaller set of design samples
can produce classification results comparable with those of larger design sets.

Finally, the results of this study clearly show that it will not be possible to select a set of
key target orientations which will provide optimal target discrimination under all noise condi-
tions.

Noisy Two Class Scatter (0.5 km)

40
* BRDM2 +
+ MB0A1
30 -
® +
o
- + +
+ +
< ++
20 A + + .
-+
s, Wy Br ot
» + 4 '“‘f* +*
u F+ +
o R T
10 T T T
4 6 8 10 12

Rectangularity

Noisy Reduced Samples (0.5 km)

40
* BROM2 (10)
+ MBOA1 (10)
30
-}
. +
< ..
20
+ » + s +
XN e :
10 T Y T
4 6 8 10 12

Rectangularity

Figure 3.2.10 (a) Sixty samples of each target class. Resubstitution error=2.5%
(b) Ten samples of each reduced sample set. Dots denote samples NOT
chosen for reduced sample set. Resubstitution error=1.7%
Corresponding target orientations:
BRDM2: 18,42,66,90,96,138,156,174,306,312 degrees
M60AT1: 150,168,180,186,210,228,252,276,282,342 degrees

Classification Error vs. Set Size

(%)
[+)]

\ Features: Area, HA2/Area

Resubstitution Error
w
1

1 T T T T T T '

0 10 20 30 40 50 60 70
Reduced Sample Size

Classification Error vs. Set Size

(%)

. Features: Area, Rectangularity

1 L 1)] i T 1
0 10 20 30 40 50 60 70
Reduced Sample Size

Resubstltution Error

Figure 3.2.11 Some classification errors obtained using various reduced sample sizes.

3-60

3.2.3.6. Future Work

The results of this study should be verified in higher dimensional feature spaces with mul-
tiple target classes. Also, a more rigorous study to determine the optimal size of the reduced
sample set should be performed. A first step might be to generalize the classification error vs.
sample size experiment of this study, to the multiple target, N dimensional feature space situa-
tion.

3.2.3.7. A Survey of Classical Clustering Techniques

What follows is a look at some well-known clustering techniques. One primary use of
clustering (unsupervised leaming) has been pattern recognition when no a priori labels are
available.

Our hope is that one, or a combination, of these classical techniques may be useful in parti-
tioning a target class into regions of similar samples that may be represented by a set of dis-
tinguished viewpoints.

This goal, however, may meet the same difficulties seen in the study of [KaYo88]. Clus-
tering is a con'pletely different approach, however, and it may be reasonable to expect groups of
similar samples to stay grouped under various levels of imagery noise and range characteristics
even though the class density as a whole is completely distorted.

3.2.3.7.1. Outline of methods

Below is an outline of some of the oldest and most well-known clustering techniques.
These techniques fall into one of two categories:

1) Hierarchical: Elements split/merged at one level remain splitmerged at all
lower/higher levels.

2) Non-hierarchical
1. Hierarchical Clustering Techniques
A) Agglomerative Methods (bottom-up)
1) Linkage
a) Single-linkage (Nearest-neighbor)
e Joins clusters by their two nearest elements

e Terminates when the shortest distance between the nearest elements of any
two clusters exceeds some threshold

e Corresponds to the minimum spanning tree of graph theory if the threshold
is not met and grouping continues through all elements

e Has a “chaining" characteristic which is good at finding long, winding clus-
ters.

IL

3-61

b) Complete-linkage (Furthest-neighbor)

° Joins clusters if their two most distant elements are closer than some thres-
hold

e Terminates when no clusters may be merged under this threshold
e Each cluster corresponds to a complete subgraph in graph theory
e "Chaining" is discouraged.

c¢) Compromise

e Some type of averaging criterion is used rather than the extremum meas-
urements

e Tend to handle outliers better.
2) Centroid Methods
] Clusters with the closest means (centroids) are merged.
3) Error Sum-of-Squares

e Ateach level of merging the clustering must be the one which increases this cri-
terion by the least. (Ex. [Wa63])

B) Divisive (top-down)
e Little mention in the literature. Works on splitting rather than merging.
Non-hierarchical
A) Fixed number of clusters
1) Nearest Centroid Sorting

e Start with seed elements and merge in elements according to which cluster cen-
troid is nearest. (Ex. [Fo65], [Ma67])

B) Variable number of clusters
e These algorithms usually ha : -5 ne device for either:
1) reducing the number of « . - --rs if two clusters are very near one another, or

2) increasing the number of clusters if a data unit is too far from all existing clus-
ters.

(Ex. MacQueen’s k-mean method with coarsening and refining parameters [Ma67],

ISODATA (very elaborate and expensive) [BaHa65])

3.2.3.7.2. Some Criteria for Driving a Clustering Algorithm

The algorithms above use various criteria for determining which partition is optimum. The

nearest centroid sorting methods, for instance, try to minimize the error sum-of-squares by con-
structing cloud-like clusters closely packed around a centroid. Some other criteria are:

3-62
e Minimize:
) I Sw!
tr Sw, \Swl, tr ST Sw ., TR error sum—of —squares
T
e Maximize:
tr SwSp

where

i=1 xEﬂ,-

T
SW:ZC:{ X (X-M:)X-M;) }; Q; denotes cluster i

[l (o
Sp=Y ny(M;-M)M~M)T ; == mM;
i=1

i=1

AY 1'=S w+S B

The eigenvalues of Sy measure the spread of the samples (within their respective clusters)
along the feature space coordinate axes. Minimization of tr Sy is, in fact, the same as minimiz.
ing the error sum-of-squares. The eigenvalues of Sg, on the other hand, indicate the spread of
the clusters within the entire class density which should be maximized. The # S% Sp criterion
is a measure of the ratio of these with the between-class spread in the numerator.

Note that since the total-scatter matrix, S, is invariant to the cluster partitioning chosen, a
linear transformation can be used to make the scatter white (Sy=/) thereby reducing these cri-
teria to functions of Sy.

Other types of criteria have also been used. Some work has been done, for instance, by
viewing classes as mixtures of multivariate normal distributions. Examples can be found in
[ScSy71] and [Wo70].

3.2.3.7.3. Choosing a Method

Most clustering techniques are good at identifying a specific type of cluster. For example,
the single-linkage method has a unique ability to find long, winding clusters through a charac-
teristic called “chaining.” The nearest centroid sorting methods, on the other hand, tend to
group samples into "cloud-like" clusters.

The best strategy in approaching a clustering problem may be to use some combination of
techniques. Three such strategies are listed by [And73]:

1) Obtaining a rough idea of the clusters with some inexpensive algorithm may be very
useful in determining which of the more elaborate methods to use next. A nearest
centroid sorting method may be most useful if the number of clusters is known, but
otherwise some hierarchical technique may be best.

3-63

2) Once clusters are found their removal can facilitate later processing. After a particu-
lar technique has found certain types of clusters, other methods may be used to
turther group the data.

3) A hierarchical method may be used as a way of "seeding” nearest centroid sorting
algorithms.

3.2.3.7.4. Summary

There are a multitude of algorithms available for performing cluster analysis and in
many cases some combination of them is necessary to solve the problem. The works of
Scott and Symons, and Wolfe which treated class densities as mixtures of clusters having
normal distributions may be of particular interest in the problem of determining dis-
tinguished viewpoints for classifier design.

Before placing much confidence in the potential of the above techniques, however,
some study should be performed to determine the effects of noise and range on cluster
structure. It may be that the set of distinguished viewpoints will vary with these
phenomena as seen in [KaYo88].

3.2.4. Target Detection Using Ladar Data

Recently, the Night Vision Lab has centered much intercst on the detection of tactical
targets using LADAR data. However, because of the active nature of a LADAR sensor
and the amount of time that it needs to gather data, it is advantageous to limit the number
of scans that the sensor makes across a scene during the detection process. In fact, it
would be ideal if a tactical target could be detected using data from a single LADAR scan
line. Although reliable detection using a single LADAR scan line would be ideal, it is
generally believed that more than a single scan line needs to fall on a target for the detector
to work reliably. Thus the following question arises: How many LADAR scan lines need
to fall on a tactical target for it to be reliably detected?

We have undertaken an exhaustive study to investigate the performance of a target
detector when data from a limited number of LADAR scan lines is available. The study is
aimed at determining the performance of the detector as the number of lines that fall on a
target is varied. We are also investigating detector performance when various preprocess-
ing techniques are applied to the raw LADAR data.

The following section reports on the results of detecting a target using a single scan
line from a LADAR sensor. Section 3.2.4.3 - 3.2.4.5 expands these experiments to see if
the false alarm rate can be reduced by using multiple scan lines are on target. The descrip-
tion of the code used to generated these results in presented in Appendix B.

3-64

3.2.4.1. Target Detection Using a Single Line of LADAR Data

Night Vision Lab has centered much interest on the detection of tactical targets using
a single stripe of LADAR data. We want to determine if a single scan line of LADAR data
contains enough information to allow a system to determine the presence and approxi-
mately location of a iarget. In this section we present two approaches to this problem, the
first is to simply measure the length between range discontinuities, and if the length falls
between two thresholds, it is labeled as a target. The second method draws on detection
theory in that it measures the characteristics of the background and the targets in a known
image, and then classifies an unknown scan line by comparing it to the known characteris-
tics. The following sections present more details about each of the approaches and shows
that the second approach subsumes the first approach. -

3.24.1.1. 5~ Simple Target Detector

This section presents a possible solution to the detection problem that is deterministic
and is easily expressed algorithmically. This method is similar to the approach currently
used by commercial groups today. It works as follows: First, the scan line is broken up
into piecewise linear segments (i.e. if the range values of a pixel is within a certain dis-
tance from those of its neighbors, it would be said to lie in the same piece). Next the
detector makes a decision via the following rule

IF segment length is > MIN_LENGTH

AND segment length is < MAX_LENGTH

AND there is a jump discontinuity > MIN_DISTANCE
THEN the segment represents a target.

Because of the effect of the background noise and the statistical variation of the target
range values, one would most likely find that such a detector is not robust.

3.24.2. A Detection Theory Based Approach to Target Detection

We have chosen to apply concepts from detection theory to the problem of robustly
detecting tactical targets with a limited amount of LADAR data. We are able to apply
these concepts by temporarily assuming that only a single scan line of LADAR data is
used to detect the targets. If this assumption is true, then the detector is, in effect, working
on one dimensional signals. Therefore, the problem to be solved is the classic problem of
detecting signals with unknown parameters in noise [Trees68] where the signal parame-
ters depend on the type of target, orientation of the target, and position of the scan line on
the target. Detection theory describes the optimal method of solving this type of problem
by using estimates of the probability density functions of the target and background. Once
we have described this target detection method using a single LADAR scan line, we will
show how to generalize it so that multiple LADAR scan lines may be used to make the

3-65

detection process more robust.

3.2.4.3. Target Detection Using a Single Scan Line of LADAR Data

When designing the detector, it is helpful to assume (temporarily) that all targets will
be a constant distance from the LADAR sensor and the sensor will have a constant field of
view. Based on these assumptions, it may also be assumed that at most N range pixels
from a single-line fall on the target. Since jump discontinuity information provides strong
evidence that a pixel belongs to a target, it is advantageous to guarantee that at least one
jump discontinuity will be included in the data for any target pixel. This is accomplished
by using the range values of a pixel and its M=N+2 neighbors on the same scan line. The
data values for a pixel and its M1 closest neighbors can be interpreted as a data vector
representing a single point in M dimensional space. Therefore, the collection of all possi-
ble target (or background) data vectors comprises a probability density function in M
dimensional space. Such density functions can be estimated and the estimates used by a
robust target detector. One type of target detector that uses estimated density functions
works as follows: Denote the density function corresponding to the target as

ftarge!(xly Xq, .. XM)

and the background density function as

fbackground(xly X2y .0 XM).

If the following M points, Py =(dy, d4, . . ., dy), correspond to the data vector from
some pixel, then

ftarget(dla da, ..., dy)

and

fbackground(dly d2a e dy)

can be computed at P. The pixel can then be said to belong to an object if

ftarget(dls d27 o0y dM) > C xfbackground(dl’ d21 ‘e ey dM) (3-1)

where C is equivalent to a threshold and depends on a-priori class probabilities and the
costs of false alarms and detection misses. In order to make the problem tractable, the
functional form of the density functions are usually assumed to be Gaussian; thus, the den-
sity functions can be expressed as:

1 -
piX) = —==" exp [XM, X-,) |
2n" 1%
where I; and M; are the covariance matrix and mean of density i respectively and the
superscript T stands for the transpose of a matrix. Substituting this functional form for the

3-66

distribution into equation (3.1) and taking the natural log of both sides allows us to classify
a pixel as belonging to a target if:

1 C
2 15,1 2 \15, 1

The subscripts ¢ and b denote the target and background densities, respectively. Taking the
negative natural log allows the pixel to be classified as belonging to a target if

WIniZt + LX-M) Z, 1 (X-M,) < =In(C) + KInIZy 1 + XM, T~ (X-M,)

exp [-%(x—MoTz," <X—M,)] > exp [—%<X—Mb)fzb'l (X—Mb)]

This can also be expressed as

15,
A

X-Mp)Z, 1 (X-Mp) - X-M)TZ, 1 (X-M,) + ln{ } <2n(C)

The left-hand side of this equation is commonly called the log-likelihood ratio. Note that
if the value for a pixel is replaced by its log-likelihood ratio,

1Z 1
(X—-Mb)TZb_l(X—Mb)—(X_Mt)sz_l(X_M‘)+ln{ IZbl }
t

then the optimal value of C can be determined by performing a threshold over the entire
image. The more positive values of the log-likelihood ratio will represent pixels that are
strongly believed to be part of the background and more negative values of the log-
likelihood ratio will represent pixels that are strongly believed to be part of the target. We
will call the image formed by replacing every pixel by its log-likelihood value the log-
likelihood image.

INoie wnat by assuming that the disaibutions are Gaussian, the decision function is
completely specified by the mean vectors and covariance matrices of the distributions (M,,
X, My, ;). Thus, these are the only parameters that the detector needs in order to
operate. This type of statistical detection scheme is fairly robust because of its ability to
handle random variations of the signal coming off of the target. It also minimizes false
alarms by compensating for the statistical nature of the background. Note that this detec-
tion scheme is easily augmented to handle randomly sized targets caused by objects at
varying ranges and the imaging device using different fields of view. Randomly sized tar-
gets can be accommodated by resampling the scan line around the pixel being classified to
produce the correct sampling density.

It should be noted that this approach subsumes simpler approaches like the first detec-
tor presented. To show this, we will look at a simple example. For the purpose of the
example, assume that the background is purely random and that the target is a box of
length L and is being scanned on one of its sides as is show in Figure 3.2.12. In the deter-
ministic approach, based on recording lengths of constant range values, there are two pro-
perties that a linear segment must possess in order to be classified as a target. First of all,

Figure 3.2.12 A single LADAR scan line scanning a box of length L..

3-68

the leng:t of the segment must be between two bounds, MIN_LENGTH < { < MAX_LENGTH
wher 7 is the length of the segment actually detected. In the statistical detector, this same
requirement is expressed by forcing target pixels to have { highly correlated pixels. The
deterministic approach also requires that a jump discontinuity greater than the
MIN_DISTANCE be present for a piece to be classified as a object. This requirement also
appears in the statistical detector; it is expressed as highly uncorrelated pixels with mean
values that differ greatly from the pixel being classified. In the deterministic approach the
decision boundary for a pixel corresponds to the rectangular area shown in Figure 3.2.13c.
In the statistical approach, the decision boundary can have arbitrary shape depending
solely on the shape of the density functions. Some commonly used decision boundary
shapes appear in Figure 3.2.13.

3.2.4.3.1. Results of Detection Experiments

Five experiments were run to test the detection procedure discussed above. Each
experiment was run on six images representative of the images that we possess. These
sample images are shown at the bottom of Figures 3.1.1-3.1.6. Two types of experiments
were run; the first three experiments used the data vector generation procedure discussed
in Section 3.2.4.3 The dimensionalities of the data vectors in these experiments were M =
25, 11 and 5. In each experiment the data was down-sampled to the correct dimensionality
if necessary. After the images were run through the detector, some simple post-processing
was done to improve the output. This post-processing consisted of labeling as false detec-
tions all detections that were less then 3 pixels long. Figure 3.2.14 (b-d) shows the output
of the detector (after post processing) for the first three experiments. As is readily seen,
the performance of the detector is satisfactory when large (M = 25) data vectors were used.
The degradation of the detector’s results when using small dimensional data vectors is
probably due to the large loss of information that occurs when the data is drastically
down-sampled. Table 3.2.7 lists the probability of detection and the false alarm rate for
the first three experiments. Note that the parameters listed in Table 3.2.8 do not refiect the
decrease in false alarm rate or probability of detection produced by the post-processing.
Also note that changing the decision threshold would improve detection performance for
small dimensional data vectors. It should also be noted that the detector completely
missed some of the targets on scan lines in which a relatively thir portion of the target was
scanned (e.g. on tank turrets).

A second type of detection experiment was also performed; this one was highly tuned
to detect targets in data typical of the first LADAR data set. In these experiments, the
detector worked on the same principle as many of the LADAR segmenters currently under
investigation. Like the segmenters, the detector based its decision on the high variance of
the background pixels. In this scheme, if the variance of the range values of the local
neighborhood of a pixel was low, the pixel was labeled as belonging to a target; oiherwise,
it was labeled as background. For these experiments, the data vectors were composed of a

discontinuity disconununy
distance ditunce
/ Target
background -
target \\ S
- S
length length

; Quadiate Bounds
Linear Boundry Jund Y

discontinmn discontinuity

distance distance

Target

_

Target

length length

Piecewise-Linear Boundry Circular Boundry

Figure 3.2.13 Commonly used decision boundaries.

() (b) (c)

Detected using 25 pixels Detected using 10 pixels

apl.32403

= —apD-Z = T
R - . RO O il
= - - -

- = e T
i — —_— g
- e e— 0 OO0 - - - - - - - IR ap s~

= . o e AR

- t =

- .= .

- ——— - & - oo -

apl.3241i

P el
—_ Temn ~ - o - =
- -
- - - — -

|
1
1 :II
L}
|':
lI
*Il
1
L]
L}
1:' ¢
vl
1
l|
1
]
o

e "

apl.32633

.=

apl.32837 _ -
‘ - - _ _.: =
apl.32839 S _‘—__;E_- - e -4

rigure 3.2.14 Output of a target detcctor which uses only a single scan line of LADAR data.

(d) (e) (f)

Detected using 5 pixels Detected using 5 (continuous) pixels Detected using 3 (continuous) pixels

apl 32403 =

apl 32411~

apl.32504 :

ap1.32633

apl 32837 .

apl 32839 -

Figure 3.2.14 (continued)

3-72

Table 3.2.7 Probabilities of detection and false alarm rates for the first three experiments.

. . . Probability of | False Alarm
Experiment || Dimension .
I Detection Rate
1 25 85.8% 1.3%
11 82.3% 17.8%
5 73.8% 16.9%

pixel’s range value and the range values of the pixel’s M—1 immediate neighbors. Two
experiments of this type were run. The data vector in the first experiment was 3 dimen-
sional and consisted of the range value of a pixel and the range values of its left neighbor
and its right neighbor. A 5 dimensional data vector was used in the second experiment.
The vector was composed of the range value of a pixel and the range values of the two
closest neighbors to its left and to its right. Figure 3.2.14 (e,f) shows the output of the
detector after post-processing. Table 3.2.8 indicates the probability of detection and false
alarm rate of the last two experiments. In these two experiments the targets were detected
fairly reliably because of the high variance of the background pixels. It is expected that
performance of this detection scheme will drop radically when absolute-range LADAR
data becomes available.

Table 3.2.8 Probabilities of detection and false alarm rates for the last two experiments.

. . . Probability of | False Alarm
Experiment || Dimension .
Detection Rate
4 S5 90.9% 9.6%
IE 84.6% 9.0%

3.2.4.3.2. Conclusions

These two types of experiments were run to demonstrate the flexibility of the detec-
tion programs and to show that detector performance depends on data vector composition.
The same programs were used in both experiments; however, the data vector generator
was prevented from down-sampling the scan lines in the second scheme. This approach to
detection shows a relatively low false alarm rate, especially with methods 4 and S which
use postprocessing with a small dimensional space to achieve an error rate under 10%.

3.2.4.4. Target Detection Using a Multiple Lines of LADAR Data — Approach 1

We have extended our work on LADAR detection to investigate the effects of using
more than one scan line to detect a target. It is hoped that using the information from mul-
tiple scan lines will improve detector performance. For this report, two techniques for
multi-line detection were investigated. Both techniques are simple extensions of the

-

3-73

statistical based approach discussed previously.

In the single line case, a range pixel was classified as either belonging to a target or to
the background based on its range value and the range values of M — 1 neighbors on the
same scan line. An obvious extension to enable this procedure to handle data from multi-
ple scan lines is to take M data points from all the scan lines being used to make the deci-
sion. Therefore, if L lines are being used in the decision process, the dimensionality of the
data vector would now be:

Dim=M xL

where Dim is the dimensionality of the multi-line vector, M is the dimensionality of the
single-line vector and L is the number of scan lines.

The second extension to multi-line detection is slightly more complicated than the
first. Conceptually, this extension can be viewed as L independent single line detectors
whose outputs are combined to produce a single decision. The subdetectors for each line
work exactly in the same manner as the single line detector previously described. After
each subdetector decides if it has found a target, it sends its decision to the main detector
along with the confidence associated with that decision. The main detector then combines
the results from the subdetectors and arrives at a single decision on whether a target is
present or not. Because the subdetectors in this extension are independent, the size of the
data vectors are limited so that only M pixels at any time were needed by the detector; this
is a large improvement over the first extension which needed M x L pixels for detection.
In the previous detection experiments, the output of the detector indicated only if the pixel
was to be classified as target or background and gave no indication of the certainty
attached to that decision. This detection scheme weights the evidence provided by the
subdetectors according to the confidence values attached to their decisions. It does this as
follows: Define Sy, as the sum of all the confidence values of the scan-lines that assert
that a target has been detected and Spackground s the sum of all the confidence values of the
scan-lines that deny the presence of a target. Finally define S,,, as

Stotal = Starget - Sbackground

Now, if S, is positive then the assertion is made that there is a target somewhere in the
lines that were scanned; otherwise, the presence of a target is denied.

Once the presence of a target is hypothesized, the detector tries to establish which
scan-lines fell on the target. It accomplishes this by classifying as a target one pixel per
scan line that contributed t0 S4-ge:.

3.2.4.4.1. Experimental Procedure

A number of experiments were run to establish if either extension out performed the
other. For each experiment, we have plotted the probability of detection and false alarm

3.74

rate when there were between one and five scan lines on target. In addition to the two
extended detectors, the original classifier was also run to provide a baseline for com-
parison. Five pixels per scan-line were used in the experiments on the extended detectors.
The size of the data vector for the baseline experiment depended on the number of scan
lines used in the extended experiments. For example, if L scan lines were used in the
multi-line experiments, 5 x L were used in the baseline experiment. Thus the size of the
final data vectors for the baseline and first extension were equal for all experiments.
Because the dimensionalities of the two data vectors are equal, it should be possible to
compare the results of the two techniques to see the affect of using multiple lines to detect
the target. Otherwise, it would not be possible to determine if any increase in performance
was due to additional information contained in the other scan lines or if it was due to the
increase in dimensionality of the data vectors.

Four sets of experiments were run using the three detection techniques. Two of the
four experiments were run using the simple post-processor described in Section 3.2.4.3.1.
This post processor simply removes detections that are shorter than a specified threshold.
The other two experiments did not use the post-processor. Theses two types of experi-
ments were further subdivided based on how the probability of detection and false alarm
rate were defined.

The first method of defining the above statistics was the same as the method
presented for the single line case; that is, on a pixel by pixel basis. In this case, the proba-
bility of detection can be defined as

Ttwgel

P getect =
true

where Ty,.4,, is the number of target pixels classified correctly and T, is the total number
of target pixels present in the ground-truth image. Likewise, the false alarm rate can be
defined as

B target

Pratse =

Birue

where B, is the number of background pixels classified as target pixels and B,,,, is the
total number of background pixels present in the ground-truth image. We shall call this
method of defining the statistics the single-pixel method.

The second method of defining the statistics is based on calling any group of con-
nected target pixels a single detection. (a group of pixels on the same scan line are con-
nected if all of them are labeled as target pixels and each of them is adjacent to at least one
other pixel in the group.) If any pixel of a detection lies on the target then the target is
labeled as found and the detection is said to be correct. In this method, the probability of
detection can be defined as

Trarger

P detect =
Ty

where Tigrp is the number of target detections touching the target and T, is the total
number of target stripes present in the ground-truth image. Likewise, the false alarm rate
can be defined as

Pfalse - Dbackground
Diotar
where Dyaciground is the number of detections that do not touch a target stripe, and D,y is
the total number of detections found in the image. We shall call this method of defining
the statistics the multi-pixel method. Note that there is a fundamental difference in how
the false alarm rate is defined in the two methods. In the single pixel method, the false
alarm rate is defined to be the percentage of misclassified background pixels. In the
multi-pixel method, the false alarm rate is defined to be the percentage of misclassified tar-

get detections.

3.2.4.4.2. Experimental Resuits

Figures 3.2.15 and 3.2.16 show graphs from the experiment with no post processing
using the single-pixel method of generating the statistics. These graphs are shown so an
idea of how the different techniques compare can be gathered without any masking effects
of the postprocessor being present. Note that Pg,,,., for all three techniques is constant at
about 70% independent of the number of scan lines used. However, the false alarm rate
varies significantly depending on the technique and the number of scan lines used. In this
case, the baseline technique gave the lowest false alarm rate followed by the first and
second extensions in that order. Please note that the statistics yielded by all three detection
techniques will be equivalent when only one scan line is used because both extensions
reduce to the single-scan line detector in this degenerate case. Figures 3.2.17 and 3.2.18
are graphs of the statistics for the same experiment using the multi-pixel detection cri-
terion. Figure 3.2.17 demonstrates that increasing the number of scan lines used for detec-
tion did not change the probability of detection for the two extended techniques but did
decrease the probability of detection for the baseline experiment. This decrease is thought
to be due to the decrease in the total number of detections that occurred in the base line
case as the number of scan lines were increased. Note that Figure 3.2.18 shows that about
98% of all detections are false alarms. It also demonstrates that changing the number of
scan lines used had little affect on the false alarm rate in all three techniques.

Figures 3.2.19 - 3.2.22 show how detection is affected when a simple post-processor
is used to remove some false alarms. Figures 3.2.19 and 3.2.20 show the graphs of the
single-pixel statistics when the postprocessor was used. These graphs show that the post-
processor reduced both P, and Pgy,. They also show that almost no gains in

100 00O 1

87

7?5

62

S0

37

25

Probh of Deteclion (single-pixel)

9 00000 +—

5000

0000

5000

0000

S000

00090

3000

Prob of detection (no postiprocessing)

baseline

first extension

second extension

on b

ry 4
w
I
w

3Can 1 res

Figure 3.2.15 Probability of detection vs. number of scan lines using single-pixel method and
no postprocessing.

(single~-pixel)

Rate

QI(‘)V(\

Falge

Figure 3.2.16

False Alarm Rate (no postprocessing)

100 000 1
i
87 5000 -
ZCX baseline
7S 06000 A [:] first extension
O second extension
62 5000 A
S0 G000 A
J —
37 5000 o ~ \\\ﬁ*“““”“—~—-____4n .
| \\\;\\\S\\\\\\\\\ o v-\\\\\\\\{
} \\\B '
25 0500 \‘\5‘\\5\‘\5‘\i5\\\\\\\\\\\\\\\
2 5000
2 05000 4 .]
1

Y
w
L
w

scan lines

False alarm rate vs. number of scan lines using single-pixel method and no post-

processing.

Prob of Detection (multi-pixel)

Figure 3.2.17

Prob of detection (No postprocessing)

100 000

87 S000 A

75 0000 7

62 5000 4

50 ooooﬁ

37 5000 4 baseline

first extension

oud b

second extension

scsn li1nes

Probability of detection vs. number ci scan lines using multi-pixel method and
no postprocessing.

False Alarm Rate (no postprocessing?

100 000
% —8— — —B

2 ™

87 5000
7?5 0000 -

62 5000

9 0009 A basceline
. D first extension

37 5900 A
O seeonad extension

o Alarm Rate (multi-pixel)
n

25 0000 A
gy
L
12 5000 -+
!
+
!
0 CO0000 +— —r T)
] J 3 Y 5

scan lines

Figure 3.2.18 False alarm rate vs. number of scan lines using multi-pixel method and no post-
processing.

Prob of detection (uith postprocessing’
100 000

87 5000 A

7S 0000 -

62 5000

S0 0500 e
3 o \\(‘T

1

37 5000 _
baseline

25 0000 first extension

Prob of Netection (single-pixel)

OO >

second extension

i

12 5000

3 00000 + T . : -
1 2 3 u ‘.

scan li1nes

Figure 3.2.19 Probability of detection vs. number of scan lines using single-pixel method and
with postprocessing.

N

False Alarm Rate (uwith posiprocessing

100 000 A
87 5000 A
A baselhine
75 0000
D nrstextension
62 S000 A '
second extension
!
S0 0C0¢ 1

25 06C0

False Alarm Rate (single-pixel)

[en]
o«
(&)
O
(e8]
(@]

Figure 3.2.20 False alarm rate vs. number of scan lines using single-pixel method and with
postprocessing.

Prob of detection (wilh postprocess.nrg’

100 00C -

87 5000

75 0000

(R SNSNU W

52 3000

(multi-pirxel)

AR

5 36 0c0ec

& i

7 37 =200 -

s A baseline

-, 25 0C0C - D first extension

&

o ? O second extension
£ os0o

000620 4 — - .

(2%}
)

£
n

Figure 3.2.21 Probability of detection vs. number of scan lines using multi-pixel method and
with postprocessing.

False Alarm Rate (uith DOSLprocessing)

1CC 000

o

% r
X
a
-

£
s

@ ; .!
- :

M i
[_K : .

; A baseline

E i

S _ _ |
— | l first extension i
ot : |
@ | :

JOO0n 0L - (::) sevond extension
— |

- i
: |

; i
~ AN _i‘____ e .
: 3 4 < !

Figure 3.2.22 False alarm rate vs. number of scan lines using multi-pixel method and with rcp
postprocessing.

3-84

performance are realized by increasing the number of scan lines when the post-processor
was used. Finally, Figures 3.2.21 and 3.2.22 show the same experiment (with postproces-
sor) using the multi-pixel statistic generation technique. Both P, and Pgy, were
reduced in this experiment also. However, The number of scan lines did affect the false
alarm rate to different degrees for the various techniques. In this experiment, the baseline
experiment benefited the most by increasing the number of scan lines used. The second
extension also improved slightly with an increasing number of scan lines. The number of
scan lines used had no affect on the performance of the first extended detector.

3.2.4.4.3. Discussion and Future Work

The detection results from both techniques were disappointing. Neither technique
showed any significant improvement when the number of scan lines used was increased.
Furthermore, if either technique did show some improvement with an increasing number
of scan lines, the baseline experiment usually showed greater improvement. It is hoped
that some other techniques can be used to extend the single line detector to show improved
performance with multiple scan lines.

3.2.4.5. Target Detection Using Multiple Lines of LADAR Data — Approach 2

The single-line detector described here can be extended to detect targets using multi-
ple lines of LADAR data if the value for each pixel is replaced by its log-likelihood ratio.
The extension is achieved by combining the log-likelihood ratios for multiple lines pro-
duced by the single-line detector into a single value for each pixel. One method for com-
bining the log-likelihood values from a single-line detectors, based on a weighted-voting
scheme, was first described in {[KaYo087]; an extension of that method, based on meta-
classifiers, is used to combine the single-line values in this report. This combination tech-
nique is statistically based and mirrors the classification process performed by the single-
line detector.

To combine the log-likelihood values from L scan lines, the log-likelihood values for
the pixels undergoing combination are first grouped into a single L-dimensional data-
vector. The data-vectors are built by sampling the values in the log-likelihood image per-
pendicular to the scanning direction (the values are sampled perpendicularly so that they
all come from different scan lines). As in the single-line case, the data-vectors are
assumed to be samples from one of two probability density functions, one for the target
and one for the background. We can re_iesent the log-likelihooc: density function for the
target as

f'targel(ll, Iy, ... I)
and the background log-likelihood density function as

£ background(l1, L2, . . Ip).

|

3-85

Using the process described in previous section, we can compute
f g1, Lae <. 1)

and
£ backgrouna(1, 12, - . IL)

for each sample. The pixel can then be said to belong to an object if
frarga1s 0200 1) > C X f backgrounal s L2, - - 1)

where, once again, C " is equivalent to a threshold. If the density functions are assumed to
be Gaussian then the pixel can be classified as belonging to part of a target if

X-M)T, T X-Mp) - X-M")T Z ' X-M")+1n <2n(C) (3.2)

t

Where M ',, s, M 'b, Z'b are the mean vectors and covariance matrices for the log-
likelihood target and background densities, respectively. Note that inequality (3.2) is the
functional expression of a quadratic classifier. Once again, if the pixel values are set to the
value produced by the left hand side of the inequality (3.2), then the optimal value for C '
can be found by thresholding the image so formed.

It is informative to compare the multi-line detection scheme described in this report
with the techniques for multiline detection discussed in [KaYo87]. The first technique
presented in that report did not break the multi-line detection process into the two step pro-
cess used here. Instead, it increased the dimensionality of the sample vector to include
more data from the multiple scan lines. Using this scheme, if the dimension of the data
vector for each line is M and L scan lines are used in the detection process, then the dimen-
sionality of the multiline data vector would be Dim = MxL. Obviously, this process can
become computationally infeasible very quickly as the single-line dimensionality or the
number of scan lines increases.

The second extension to multiline detection presented in that report used a two-part
process similar to the one described here. However, instead of using a quadratic classifier
to combine the output of the scan lines, as the current method does, the previous scheme
added the log-likelihood values for the scan lines being combined. If the sum of the values
was less than zero, the detector would indicate the presence of a target. This combination
process was viewed as a weighted-voting scheme where the weights of the votes were pro-
portional to the decision’s confidence. To relate this process to the current combination
scheme, it should be noted that the summation process can be viewed as classifying the
feature vectors (composed of the log-likelihood values from the single-line detector) with a
linear classifier. It is possible to view the process as a linear classification because the
summation can be expressed as Sy, =W'X where W' is a M dimensional row vector

-

3-86

whose elements are all 1’s and X is the data vector. Thus, if S;,;» Was negative, the detec-
tor would assert the presence of a target; otherwise, it would deny a target’s presence.
Since the linear classifier can be viewed as a special case of the quadratic classifier (a qua-
dratic classifier degenerates to a linear classifier if the covariance matrices of all classes
are equal), the current scheme using a quadratic classifier can be viewed as an extension to
the previous voting scheme. Note that the current scheme can be viewed as a further gen-
eraiization of the previous scheme because the previous scheme used a fixed threshold of
zero where the current scheme allows an optimal threshold to be set.

Since we are comparing the current experiment with those performed in the past, the
differences between the data in the new experiment and the data in the old experiments
should be explored. The data obtained for the past experiments was very preliminary and
had some unusual properties that could be exploited by target detectors and segmenters.
For example, valid data was produced by the sensor for only a few ambiguity intervals. If
the sensor did not detect any object in this valid range, it would output high variance noise.
Thus, the technicians at the data collection sight had to tune the sensor for every target
scanned to guarantee that the target would fall within the valid range interval. Although it
would seem that the sensor providing random measurements for some pixels would hinder
target detection and segmentation, it actually made both processes much easier (the techni-
cians tunning the system can be though of as a preprocessing step with perfect knowledge).
Past segmenters and detectors were able to take advantage of the variance of out of band
signals by labeling any group of pixels with low variance as a target and all other pixels as
background. Since the current data has valid AM data for all pixels, this technique is not
available with the current data set.

3.2.4.6. Experimental Procedure

Three sets of experiments were run to determine the performance of the detector
when the number of scan lines used in the detection process was varied. A different
method of building the data vector was used in each experimental set. The performance of
the detector was determined in each experimental set when 1, 2, 3, 4, 5, 10, 15, 20 and 25
scan lines were used in the detection process. Furthermore, the performance of the detec-
tor was determined when both horizontal and vertical raster-scanning was used to scan the
image.

In the first experimental set, no preprocessing was applied to the image before the
data vectors were built. In this experiment, 51 dimensional data vectors were used for the
single-line detector when horizontal scanning was used; 38 dimensional data vectors were
used for vertical scanning. However, when horizontal scanning was used, only 50 (37 for
vertical scanning) of the data vector’s values were taken from the LADAR resolved-range
image; the final value for the data vectors was set equal to the LADAR's return amplitude.
The experiment in which no preprocessing was applied to the image will be referred to as

3-87

the raw-data experiment. Some preprocessing was applied to the data in the second exper-
imental set. The pixel values in this set were set equal to the resolved-range value modulo
1875. This process was meant to recover, to the greatest extent possible, the raw AM
LADAR data. Besides this preprocessing, this experiment was equivalent to the first. That
is, the data vectors were 51 (38) dimensional with 50 (37) values representing the
resolved-range and one value representing the return-amplitude. This experiment will be
referred to as the pseudo-AM experiment. The data vectors used in the final experiment
were built differently then those used in the first two experiments. This experiment was
designed to mimic the variance-based segmenters that have been applied to previous
LADAR data sets. To mimic these segmenters, the pixel values were set to the resolved-
range modulo 1875 as in the pseudo-AM experiment. However, the data vectors were 5
dimensional in this experiment and were built from the values of the pixel and its two
immediate neighbors on each side. It was hoped that the pseudo-AM values for the on-
target pixels would have a lower variance than those off-target; the detector should then be
able to distinguish between the on-target and off-target pixels via their variances. This
experiment will be referred to as the variance experiment.

In both the single-line and multi-line detection procedures, a simple post-processing
scheme was applied to the image after the pixels were classified by the detector. This
post-processing scheme deleted all detections that were only a single pixel long in order to
lower the detector’s false alarm rate.

In the following experiments, any connected group of pixels classified as belonging
to a target is considered to be a single detection. (A group of pixels on the same scan line
are connected if all of them are labeled as target pixels and each of them is adjacent to at
least one other pixel in the group.) If any pixel of a detection touches the target then the
target is labeled as found and the detection is said to be correct. If more than one detection
touches a single target stripe, then the target stripe is only counted as being detected once.
Since the detections are defined in this manner, the probability of detection can be defined
as

Ttarget

Paetect = T
true

where T4, is the number of target stripes touched by at least one detection and T,,,, is

the total number of target stripes present in the ground-truth image. Likewise, the false
alarm rate can be defined as

- D background
P false = _Dtolal_—

where Dyaciground is the number of detections that do not touch a target stripe, and D,y is
the total number of detections found in the image. Note that this defines the false alarm
rate to be the percentage of target detections that are incorrect.

3-88

The data used to determine the detector’s performance consisted of the four typical
LADAR images described in Section 3.1.2; these images are shown in Figure 3.2.23. The
targets in the images were hand-segmented to provide ground truth values for the detector
training process. The borders of the targets are shown in Figure 3.2.23 as white outlines.
Note that the results of the experiments presented here are better than could be expected in
the real world because the detector was trained and run on the same data set.

3.2.4.7. Experimental Results

Figures 3.2.24, 3.2.25 and 3.2.26 show the log-likelihood images produced by the
single-line detector for the raw, the pseudo-AM and the variance experiments, respec-
tively. Pixels in these images with negative log-likelihood values (shown as the light pix-
els here) are pixels that the detector hypothesized as belonging to part of a target. As indi-
cated by these images, the single-line detector performed very poorly on the LADAR data.
Figures 3.2.27, 3.2.28 and 3.2.29 show the detector statistics for the three experiments;
they show the probability of detection and false alarm rates for a range of thresholds. The
probability of detection is indicated in these figures with a solid line and the false alarm
rate is indicated with a dashed line. Although the three detectors performed poorly, we
believe that the statistics reported are biased by the large amount of background area.
Since there are about two orders of magnitude more background pixels than target pixels, a
small percentage of background pixels misclassified as belonging to a target will result in a
large false alarm rate. Note that in each of these experiments, the false alarm rate when
vertical scanning was used was slightly lower than when horizontal scanning was used.
We believe that this effect is due to the nonhomogeneity of the horizontal scan lines that
made it difficult to model the samples with a single density function. When horizontal
scanning is used to scan the image, the properties of the scan lines differed significantly
with their placement on the images. For example, scan lines near the top of the images
consisted almost entirely of "sky" pixels; these pixels typically had very small return-
amplitude values and took random range values. Scan lines from the center of the image
on down usually produced progressively smaller range values as the position of the scan
line moved down the image. Conversely, when vertical scan lines were used to scan the
image, all scan lines exhibited the same properties regardless of their position in the
image. As the scan moved down the scan line from the top, most scan lines started with
"sky" pixels and progressed to valid range pixels. Furthermore, for multi-line detection,
since targets usually are wider than the are tall, vertical scan lines can be spaced farther
apart than horizontal scan lines can and still provide the same number of scan-lines on tar-
get.

Figures 3.2.30 - 3.2.35 show the probability of detection and false alarm rates for the
three experimental sets when multiple scan lines were used to detect the targets. These
figures show the detection statistics for a range of thresholds. (The statistics shown in
these figures for large thresholds (> 200) is meaningless. If the detection with the

c10m1 cl4ta3

cl7mi c¢17m3

Figure 3.2.23 This figure shows the unprocessed data used in the three experiments. The out-
lines of the hand-segmented targets used to train the detector are shown in white.

Figure 3.2.24 This figure shows the log-likelihood images produced by the detector when
presented with raw-data. The top four images are the output when vertical scan-
ning is used and the bottom four show the cutput when horizontal scanning is
used.

Figurc

3.2.25 This figure shows the log-likelihood images produced by the detector when
presented with pseudo-AM data. The top four irmages are the output when verti-
cal scanning is used and the bottom four show the output when horizontal scan-
ning is used.

Figure 3.2.26 This figure shows the log-likelihood iniages produced by the detector when
presented with variance data. The top four images are the output when vertical

scanning is used and the bottom four show the output when horizontal scanning
is used.

—

! scan line

100 000 -

8?7 5000 4

73 0000
62 socol

S0 0000 A

per cent

37 5000 J

235 0000 4

12 5000 A

3 ogeoo T T T T T —+— nl
~256 -192 -128 64 0 64 128 192 256

threshold
Statistics using vertical scanning

1 scanm lipe

100 000 -‘

87 5000

7S 0000

62 5000

50 0000 A

percent

37 5000 W

25 0000 A

12 5000 1

g 0000 T T T - T T T
-256 -192 -1e8 -64] 64 128 192 256

threshold
statistics using horizontal scanning

Figure 3.2.27 This figure shows the probability of deteciion (solid line) and false alarm rates
(dashed line) for the raw-data experiment using a single scan line. The top and
bottom graphs show the statistics for vertical and horizontal scanning,

tively.

1 scan line

100 000

87 5000 4 .7

7S 0000

62 5000

S0 0000 A

percent

37 5000 A

25 0000 4

12 5000 w

0 00000 T T T T T T T —
-256 ~192 -128 -64 0 64 128 192 236

threshold
statistics using vertical scanning

1 scan line

100 000
87 5000 4 -~
75 0000 -
62 5000

ggo0 w

percent
(v}
o

37 5000 4
25 0000 4

12 5000 7

0 00000 "—*—ﬁ“—r—«—q——-—-ﬁ————-,_——_,—___ﬁ_ -

-236 -192 -1e8 -64 1) [128 192 256

thresholag
stati1stics using horizontal scanning

Figure 3.2.28 This figure shows the probability of detection {solid line) and false alarm rates

(dashed line) for the pseudo-AM experiment using a single scan line. The top
and bottom graphs show the statistics for vertical and horizontal scanning,
respectively.

100 gna

1 scan line

87 5000

?S 0D00

62 5000 J

S0 0008 4

percent

37 5000

25 9000 o

12 5000 ‘l

|

\

-

0 00000 +

~256

—

~64

T

Y - T T !
-192 -128 0 128 192 256

threshold
statlistics using vertical scanning

1 scan line

100 000

87 5000 o

75 0000 A

62 5000 A

50 0000

percent

37 S000 A

25 0000 A

12 3000

0 00000

-236

—— -

T T T u nl
~-192 -i1o8 -64 [&4 128 192 236

threshold

SLatistics usinNg horizontal scanning

Figure 3.2.29 This figure shows the probability cof detection (solid line) and false alarm rates
(dashed line) for the variance experiment using a single scan line. The top and
bottom graphs show the statistics for vertical and horizontal scanning, respec-

tively.

probability of detection

false ajlarm rate

Figure 3.2.30 This figure shows the probability of detection (top graph) and false alarm rates
(bottom graph) for the raw-data experiment using horizontal scanning. Both
graphs show the statistics for a number of scan lines and a range of thresholds.

probabirlity of detection

false alarm rate

Figure 3.2.31 This figure shows the probability of detection (top graph) and false alarm rates
(bottom graph) for the raw-data experiment using vertical scanning. Both
graphs show the statistics for a number of scan lines and a range of thresholds.

probabllity of detection

100 0

80 OOJ
60 G0 A
40 00 -

20 u0 A

false alarm rate

100 0
soou{

€7 00 4

w3 00 1

20 00%

2 D-C?OE Sk‘

Figure 3.2.32 This figure shows the probability of detection (top graph) and false alarm rates
(bottom graph) for the psewdo-AM expenment using horizontal scanning. Both
graphs show the statistics for a number of scan lines a:'J a range of thresholds.

probability of detection

false alarm rate

Figure 3.2.33 This figure shows the probability of detection (top graph) and false alarm rates
(bottom graph) for the pseudo-AM experiment using vertical scanning. Both
graphs show the statistics for a number of scan lines and a range of thresholds.

probability of detection

100 0

80 ¢

60 00

false alarm rate

25

15\}: /9 e?
135 A7 A
235)

'~
@shojq

Figure 3.2.34 This figure shows the probability of detection (top graph) and false alarm rates
(bottom graph) for the variance experiment using horizontal scanning. Both
graphs show the statistics for a number of scan lines and a range of thresholds.

probability of detection

100 ¢
80 00
60 00
40 09
20 00

0 coa
-ezg

false alarm rate

Figure 3.2.35 This figure shows the probability of detection (top graph) and false alarm rates
(bottom graph) for the variance experiment using vertical scanning. Both graphs

show the statistics for a number of scan lines and a range of thresholds.

3-102

strongest belief was correct then these values indicate that there is a 0% false alarm rate
for the large thresholds; otherwise, the values indicate that there is a 100% false alarm rate
for the large thresholds. In either case, the correctness of the detection with the largest
belief is insignificant.) As can be seen by the graphs, only a very subtle improvement was
realized when an increased number of scan lines was used to detect the targets. For some
of the experiments, it was easier to select a valid detection thresiold when a large number
of scan lines were used to detect the targets. When only a small number of scan lines were
used to detect the targets, there was only a small number of thresholds where the detector
did not classify all pixels as belonging to part of the target or classify all pixels as belong-
ing to part of the background. The number of valid detection thresholds in the transition
region between these two cases grew as the number of scan lines increased. Figures
3.2.36, 3.2.37, and 3.2.38 show the log-likelihood images for the three experiments when
25 lines were used to scan the image.

3.2.4.8. Discussion

The results produced by the statistical detector for all three experiments is disappoint-
ing. The false alarm rate in all three experiments, due to the large area of the background,
was large enough to render the detector unusable. We are also disappointed with the ina-
bility of the muiti-line detector to improve upon the results of the single-line detector. We
believe that the output of the single-line detector was so poor that there was not enough
information in the log-likelihood images that it produced to enable the multi-line detector
to improve the performance. Because of the poor performance of the detector, we do not
believe that there is much promise for the development of a reliable detector based on the
simple statistical scheme presented here; thus, we believe that resources would be better
spent investigating other avenues for detecting tactical targets with a limited amount of
LADAR data.

3.3. LOW LEVEL PROCESSING OF LADAR DATA

This section describes our progress in the low level processing of LADAR data which
will feed the geometric methods in Section 3.4. As proposed in [KaYo88], we have
moved beyond our initial low level edge detection and component labeling scheme for sur-
face extraction in favor of a more noise immune region growing approach. We have also
implemented two optional preprocessing steps to help diminish the effects of the noise so
prevalent in current LADAR imagery. Processing results illustrating the performance of
our new algorithms are presented for both synthetic and actual LADAR data. The algo-
rithms are also evaluated more rigorously via a newly defined feature set for surfaces and
several performance measures.

Figure 3.2.36 This figure shows the raw-data log-likelihood images produced by the multi-line
detector when 25 lines were used to scan the images. The top four images are

the output when vertical scanning is used and the bottom four show the output
when horizontal scanning is used.

Figure 3.2.37 This figure shows the pseudo-AM log-likelihood images produced by the multi-
line detector when 25 lines were used to scan the images. The top four images
are the output when vertical scanning is used and the bottom four show the out-

put when horizontal scanning is used.

Figure 3.2.38 This figure shows the variance log-likelihood images produced by the multi-line
detector when 25 lines were used to scan the images. The top four images are
the output when vertical scanninug is used and the bottom four show the output
when horizontal scanning is used.

3-106

3.3.1. Low Level LADAR Range Data Processing

We are developing the special purpose low level software aecessary to process
LADAR imagery. Thus far we have implemented the surface segmentation :cheme
described in Section 3.4.2.1.1. This section addresses some of the difficulties encountered
when processing LADAR data and presents the algorithms and techniques we have
designed to overcome them. Determination of Surface Normals

Aside from the (x,y,z) locations of pixels, surface normals are the most important
information we can get out of a range image. It is important to do the best job possible
when determining surface normals because most subsequent processing steps use them.
Since they are based on first order derivatives of the range map, however, their computa-
tion is susceptible to the effects of quantization error, dropouts, sparseness of data, and
noise.

Figure 3.3.1 is a range image of an M60A1 tank which was generated using our Elec-
tronic Terrain Board Model (see Section 4). The resolution of the range image is compar-
able to a LADAR image taken at 500 meters, in the sense that the sampling in the x and y
directions is similar to that of LADAR at that range. However, our simulated tank image
has greated resolution in the z direction (the full dynamic range of gray scale values is used
on target). The coordinate system convention we have adopted for range images is that the
image sits in the x,y-plane, with the origin in the upper-left-hand comer, the x-axis point-
ing from left to right, and the y-axis pointing from top to bottom. The positive z-axis must
be the cross product of the x- and y-axes, and so points into the image.

We computed surface normals for the tank image by fitting symmetric planar patches
to the data as described in Section 3.3.3.1. The (x,y,z) components of a surface normal are
easily expressed in terms of the coefficients of the planar patch fit equation z =ax + by + ¢
as: (5.Sy,5;) =(a,b,-1). Figures 3.3.2 and 3.3.3 illustrate the (x,y,z) components of the
surface normals computed using 3 by 3 and 5 by S windows, respectively. The darker the
pixel in the images, the larger the particular component of its surface normal. The wavy
noise in the component images is due to the quantization error of PADL-generated 8-bit
integer range images. While the effects of having only 256 available gray values in a
range image are not apparent to the naked eye, moderately sized window operators can
detect the step from one quantization level to the next as one moves along an oblique sur-
face. Using windows that are too small can cause these steps to appear as false edges, as
demonstrated by the 3 by 3 windows of Figure 3.3.2. Using larger windows reduces the
effect, but can make actual edges appear blurry, as seen in Figure 3.3.3. If windows that
are too large are used, the edges may become transitional surfaces between the actual sur-
faces they separate.

We have devised a way to remove the effects of quantization error and some other
noise without producing fat edges or false surfaces. The surface normals are determined in
a two step process [KaCh87, ChKa88]. The first step fits symmetric planar patches as

Figure 3 3 |

(a) X Component (b) Y Component

(c) Z Component

Figure 3.3.2 Surface normal components using 3 by 3 windows.

(a) X Component (b) Y Component

(c) Z Component

Figure 3.3.3 Surface normal components using 5 by S windows.

3-110

before, and computes the mean square fit error for each patch. The window size used is
large enough to remove the effects of noise. We found that 9 by 9 windows work well for
targets at 500 meter resolution. During the second step another pass is made over the
image, examining the fit error of pixels within the processing window used to compute the
surface normal of the current pixel. These pixels contributed to the computation of the
current pixel’s planar patch, and conversely, the current pixel contributed to the computa-
tion of theirs. We may therefore conclude that if the fitted planar patch for one of these
neighboring pixels has smaller fit error ¢, than that of the current pixel e, it is reasonable
to consider the current pixel to be part of that better fitting patch (since it contributed to it),
and to assign the same surface normal to the current pixel. Since pixels in the same pro-
cessing window could actually be any distance away from the current pixel in 3-D space,
we normalize their fit error by this distance when we make the comparison:

€cn < €,

where

€en = e,,(\/(xc—. 'n)z + (.YC_)’n)z + (Zc—zn)2 +1)

is the neighbor’s error normalized by its distance. This prevents pixels from being
assigned to surfaces which are a substantial distance away from them, and makes the reas-
signment process local.

Figure 3.3.4 is a 2-D example illustrating the two step process. Figure 3.3.4(a) shows
a range map of four surfaces surfaces separated by the three types of edges we are
interested in detecting (see Section 3.4.2.1.1 and Section 3.3.1.2). The bars below the x-
axis indicate the consecutive positions of a 5 pixel wide processing window as it moves
across the data. At each window position a minimal mean square error linear fit is com-
puted for the sample points, corresponding to fitting a planar patch in the 3-D case. The
vector in the x,z-plane orthogonal to the fitted line (corresponding to a 3-D surface normal)
is associated with the pixel in the center of the window, as is the fit error e.. Figure
3.3.4(b) illustrates the "normals"” for these fitted "patches.” Figure 3.3.4(c) shows the "sur-
face normal" assignments made during the second pass over the data by examining the fit
error €., of pixels within the processing window used to calculate the current "normal” and
fit error e.. Remember that e., is a neighbor’s fit error normalized by its distance away
from the current pixel (the one in the center of the window). Note that the "normals" of
Figure 3.3.4(c) are much better than those of (b), and will produce better results when used
in later processing.

The above procedure has a two-fold effect. First, it performs a kind of smoothing,
producing more uniform surfaces and eliminating noise. Second, it automatically does
edge thinning, yielding surfaces with maximal area. Figure 3.3.5 shows the surface normal
components computed for the range image of Figure 3.3.1 using a 9 by 9 window. Now
that we have the best surface normals possible without extensive preprocessing, our later

jump surface curvature

cdge normal maxima
\ disparity edge
cdge v
2 A ¥ O ©°

o o

o O 0O 0O O o o O
(e} o]
o o}
O O 0O O O O

. e s .) h “ J X
window — - —) rom— —
[p— | J
. —] e J
locations s 4

(a) Range Map and S Pixcl Wide Windows

1S S O G “o o
“ o

SN

1 1 1 1 T 1 T T 1 T

(b) Nommals For Fitted Patchcs

z |

T
ISP I S I “ o
\)\
ISP PP

1 1 T T T T L 1 1 T T i LI

(c) Assigned Normals After Examining Fit Error

Figure 3.3.4 Computation of surface normals.

(a) X Component (b) Y Component

(c) Z Component (d) Modified Range Pixels

5 (a)-(c) Surface normal components using 9 by 9 windows and reassignment to
patches with minimal error. (d) Range pixels modified to improve curvature cal-

culation.

Figure 3.3

3-113

processing should also generate better results.

3.3.1.1. Curvature Computation

If we were to estimate curvature by merely convolving the range map with the win-
dow operators described in [BeJa85, BeJa86, YaKa86a], we would not be taking advan-
tage of the noise removal performed by our surface normal determination technique. Since
curvature computation requires second order derivatives of the range map, the estimate is
already very sensitive to noise. In order to get better results, a modified range map is
created as surface normal assignment is performed during the second step of the aforemen-
tioned technique. If the e., of a neighboring pixel is less than e, then as the neighboring
surface normal is assigned to the current pixel, the current pixel is also moved in the
modified range map to its projected position on the better fitting planar patch. This
modified range map is then convolved with curvature window operators which are the
same size as the surface normal computation windows.

Figure 3.3.5(d) shows the range pixels which were moved in the modified range map
of the tank image. White pixels were not moved at all, gray pixels were moved a negligi-
ble amount, and pixels in the gray to black range (like those near the edges of the gun bar-
rel) are darker if they were moved farther. The images of Figure 3.3.6 show the signs of
the Gaussian and mean curvatures obtained by convolving the modified range map with 9
by 9 window operators. Gray indicates roughly zero curvature (planar), white is positive
curvature (convex), and black is negative curvature (concave). Note that even with the
steps taken to provide a better range map, curvature is still fairly noisy even for synthetic
images due to the fact that it is a second order operation.

3.3.1.2. Edge Detection and Surface Labeling

The next task is to find the edges between surfaces, and then label the individual sur-
faces. The types of edges to be found include jump edges, curvature maxima edges, and
surface normal disparity edges, as described below. The edge labels retain information
about the pixel’s specific edge type, which is useful during high level processing of the
scene.

The most obvious edges occur where 3-D distance from a point to one of its neigh-
bors is greater than some threshold. A pixel meeting this criteria is labeled as a jump edge.
In order to prevent every pixel on an oblique surface from being labeled as an edge, just
the ones at the front and back, the range discontinuity to the neighbor on the opposite side
of the one under question must be significantly less. Figure 3.3.7(a) shows jump edges
detected for the tank image. Both coarse and fine thresholds are used. A coarse jump edge
would separate the top of a target from background, while a finer threshold allows detec-
tion of jumps resulting from one surface of the object occluding another, such as the gun
barrel or hatch occluding a portion of the turret.

(a) Gaussian Curvature

(b) Mean Curvature

Figure 3.3.6 Signs of curvatures calculated by convolving modified range map with 9 by 9
window operators. Gray is zero curvature (planar), black is negative curvature
(concave), and white is positive curvature (convex).

(a) Jump Edges

(b) Surface Normal Disparity Edges

(c) Curvature Edges

Figure 3.3.7 Detected edges.

3-116

The next most obvious boundary between surfaces is formed by points where surface
normals differ significantly in orientation. These are known as surface normal disparity
edges. We use a threshold value of 25 degrees difference in orientation to identify these
pixels. Figure 3.3.7(b) is an example surface normal disparity edge image. The results are
very good because of good surface normal determination.

An improvement in the performance of edge segmentation can sometimes be gained
by considering curvature information. Thresholds corresponding to some minimum allow-
able radii of curvature are set, and if the magnitude of the mean of Gaussian curvatures
exceed these thresholds, the pixel is labelled as curvature maxima edge. Whether the edge
is concave or convex may be determined by looking at the sign of the curvature. Figure
3.3.7(c) illustrates curvature edges for a minimum allowable radius of a tenth of a meter
for both Gaussian and mean curvature. These edges are poorer than the previous types
because curvature is generally noisy. However, if one looks back at the sign of the mean
curvature image in Figure 3.3.6, one can immediately tell which edges are convex and
concave.

The remaining pixels are now given a label corresponding to what surface they
belong to via a connected component labeling algorithm. Figure 3.3.8 shows the resulting
labels when curvature information is and isn’t taken advantage of. In these images, each
surface is given a unique gray value. Note that even though the curvature edges are not as
clean, they do help fill in the gaps between other edges which lead to incorrect labeling.

3.3.1.3. Results on Noisy Images

The M60A1 tank image we have been working with was downsampled by a factor of
four to obtain an image roughly equivalent in resolution to a LADAR image taken at two
kilometers (same x and y resolution, but finer z resolution as discussed in the beginning of
this section).. The ‘mage was then degraded with noise as described in Section 4.1.3 using
two dropout rates and three different Gaussian variances. Variances of 1, 3, and 7 were
used with a dropout probability of 0.005, and a Gaussian variance of 3 was used with a
dropout probability of 0.05. The cleanest LADAR images found when determining the
noise characteristics of the actual data had a Gaussian variance of 7 for their gray values
and dropout rate of 0.005. Note that we have a higher resolution in the z direction (in our
gray values), and that a Gaussian variance of 7 in gray values for us corresponds to an
error of 0.29 meters, which is pretty high for the size of the targets and the kind of process-
ing we hope to do. For completeness, a variance of 3 for us corresponds to 0.125 meters,
and a 1 gray value variance corresponds to 0.04 meters.

Figure 3.3.9 contains the original degraded downsampled range images, while Figure
3.3.10 shows the results of processing them using 5 by 5 processing windows and no cur-
vature information (it is too noisy). Higher level processing (Section 3.4) should be able to
handle the low level results of Figure 3.3.10(a) & (b) with no problem, would fail

(a) Using Curvature

(b) Without Curvature

Figure 3.3.8 Surface label images.

Solf P narairdy

(a) Var = 1, Prob. Dropout = 0.005 (b) Var = 3,Prob. Dropout = 0.005

(c) Var = 7, Prob. Dropout = 0.005 (d) Var = 3, Prob. Dropout = 0.05

Figure 3.3.9 Original degraded range images.

(a) Var = 1, Prob. Dropout = 0.005

(¢) Var = 7, Prob. Dropout = 0.005

curvature information.

Figure 3.3.10 Labeled surfaces for degraded images using 5 by 5 processing windows and no

(b) Var = 3, Prob. Dropout = 0.005

-t

(d) Var = 3, Prob. Dropout = 0.05

3-120

miserably for (c), and may or may not be able to make sense out of (d).

3.3.1.4. Conclusions and Future Work

Our algorithms and techniques work well for reasonable range data. Additional
preprocessing may be necessary to rid actual LADAR of noise, and we might not be able
to use a geometric approach if later LADAR data does not prove to have the resolution
necessary to provide adequate surface information. If this is found to be the case, we
would be forced to use the 2-D, silhouette-based approach we have been using in our pro-
cessing of FLIR data. The only advantage of using LADAR would be better silhouette
segmentation immune to the variance found in FLIR and other reflectance imagery.

As far as surface segmentation goes, a region growing scheme may fare better than
our present edge detection/surface labeling scheme. A region growing approach would not
be susceptible to gaps in edges, since it does not depend on them explicitly. With this
exploration of region growing we will also try using normal curvature instead of Gaussian
and mean curvature. Since normal curvature uses surface normal information directly, it
will be able to take advantage of our improved surface normal routines and should not be
as noisy as Gaussian and mean curvature. Also, since normal curvature is defined between
two points it gives information regarding edge direction, whereas Gaussian and mean cur-
vatures only provide magnitudes with no directional information.

In the future, our low level routines will be extended to calculate the surface attri-
butes and relations necessary for our high level processing, once we have determined what
these attributed and relations are.

3.3.2. New Low Level Processing Scheme

We initiated our research effort by applying our existing general 3-D vision software
to LADAR data. As described in [KaYo088, CroKa87], this scheme entailed the generation
of (x,y,z) locations (the range map), computation of surface normals and curvature, label-
ing of edge pixels, and labeling of surface regions, followed by determination of surface
attributes and relations and invocation of domain-specific classification rules. Surface
extraction by first detecting edges and then performing connected component labeling on
the remainder of the image proved to be too sensitive to the high variance noise and large
number of dropouts present in actual LADAR data. This large amount of noise also made
Gaussian and mean curvature information, which is derived from the second order deriva-
tives of the range map, relatively useless.

Figure 3.3.11 illustrates our new approach to surface extraction. As before, the first
step is to convert the range image into a range map of (x,y,z) locations. This is followed
by two optional range map preprocessing steps for noise removal, as indicated by the
dashed bubbles in the figure. These will be presented in the next section. Surface normals
are then computed using the planar patch fitting, minimal error assignment algorithm

Convert Range Image to Range Map

R -
- -~ -

. Median Filter Range Map !
\ Fit 2-D B-spline to Range Map R

Dl -
il -

Compute Surface Normals

Surface Labels via Region Growing

Figure 3.3.11 Extraction of surfaces from range images.

3-122 kak/yoder

discussed in [KaYo88, KaCh87, ChKa88]. Finally, surface labels are assigned by a region
growing algorithm to be discussed in detail in Section 3.3.2.2. As before, surface extrac-
tion is to be followed by determination of surface attributes and relations, and finally
object classification via the high level routines.

3.3.2.1. Preprocessing

The study of the noise characteristics of the 1986 A.P. Hill LADAR data reported in
[KaYo88] indicates that the FM component of the resolved range data may be off as much
as 9 meters on a target at 1400 meters, and that the AM portion is corrupted by Gaussian
noise with a typical standard deviation of 0.75 meters. Various dropout rates are also
present in the imagery. Until a more rigorous noise model is found for the sensor, proven
general purpose methods of removing noise must be relied upon.

One such method is the simp'e application of a 2-D median filter to the range map.
Because the output of the median filter at a given location could be any of the pixel values
within the processing window, there was some concern that the median filter may destroy
some of the fine surface information present in the original range map. A simple experi-
ment, presented in Section 3.3.2.3, was carried out in order to determine how median
filtering the range map affects the results of later processing steps. Based on that experi-
ment and processing results for synthetic and actual LADAR images, we found that a 3 by
3 median filter improved the ability of our programs to successfully extract surfaces. It is
therefore included as an optional preprocessing step in our overall scheme.

A second approach to handling noisy data involves fitting surfaces to it. We have
already shown how fitting planar patches can be useful for surface normal computation.
However, real surfaces in real data are seldom planar. We therefore propose the fitting of
higher order surtaces to the data. Yang and Kak [YaKa86a, YaKa86b] have shown how
2-D B-splines may be used to fit a bicubic surface patch. A bicubic patch is of third order,
guaranteeing continuity of the first-order and second-order derivatives, and so usually
yields the smoothest fit to the data points. 2-D B-splines are fit to successive 4 by 4 win-
dows of the range map. The fit does not necessarily pass through the 16 data values, but
merely uses themn as control points. At a given window position the fit is computed for the
four points in the center of the window. Continuity up to the second order derivative is
guaranteed between the current patch and the one computed for the next window position.
See [FaPr79] for a discussion of the merits of splines over other interpolation schemes.

While 2-D B-spline interpolation definitely yields a smooth range map, it does not
remove the effects of dropouts. Single noise pixels which have values that differ greatly
from the true distance to the surface can cause large distortions in the fitted surface. It is
therefore desirable to remove dropouts via median filtering or median-based range bin
correction (MBRBC) [KaYo088] before fitting B-splines. The fitting of 2-D B-splines is
included as an optional step in the preprocessing of the range map.

3-123

Besides the using the median filter and 2-D B-splines, we have also tried processing
the AM component of the data alone and the "range bin corrected” AM/FM resolved range
data (3 by 3 MBRBC in [KaYo088]). The AM component of the data is obtained by taking
mod 1875 of the original AM/FM resolved range. The magnitude of the noise in this data
is considerably smaller than in the combined AM/FM. The MBRBC data is basically a
median filter of the FM component of the data, and so is an attempt to remove the larger
noise component from the combined AM/FM.

3.3.2.2. Region Growing Approach

We have adopted a region growing algorithm for labeling surfaces in our range map
after preprocessing and surface normal computation. There are three criteria which must
be satisfied by a neighboring pixel b at (x,y,z) location 7, in order for it to be included in
the same region as the current pixel a at 7. First, the neighbor’s distance from the current
pixel must be less than a specified threshold dst thr. Second, the angle between the
neighbor’s unit surface normal 7, and the current pixel’s unit normal n, cannot exceed
ang_thr. Finally, the normal curvature defined between the neighboring pixel and the
current one must be less than crv_thr. The expression we use for normal curvature is

2sin(arccos(ng np)/2)

Kn = > -5
ra—rpl

which is merely the sine of half the angle between the surface normals divided by half the
distance between the two pixels. This expression for normal curvature has been found to
be less sensitive to noise than the mean and Gaussian curvatures used previously
[ChKa88]. This is due in part to the fact that the explicit computation of the second order
derivatives of the range map is not necessary in order to determine the normal curvature.

If all three of the above criteria are met, the neighboring pixel is considered to be part
of the region to which the current pixel belongs. The 8-neighbors of the current pixel are
considered for annexation to the current region, resulting in 8-connected surfaces. Our
implementation of the region growing algorithm is a two-pass labeling scheme which is
more efficient than the usual recursive implementation. The algorithm also discards sur-
faces made up of fewer pixels than the processing window used in surface normal compu-
tation. For example, if a 5 by 5 processing window was used to compute the surface nor-
mals, then surfaces containing less than 25 pixels would be considered too small and dis-
carded. The following section presents results obtained by this new low level for surface
extraction. Of course, the criteria used to evaluate the processing results is the examina-
tion of how well the extracted surfaces compare with those present in our models.

3-124

3.3.2.3. Results on Synthetic Data

As mentioned in Section 3.3.2.1, an experiment was run on "clean” synthetic data in
order to determine the effects of median filtering range maps using different sized process-
ing windows. Figure 3.3.12 shows the original PADL synthetic LADAR image and differ-
ence images for 3 by 3, 5 by 5, and 7 by 7 median filter processing windows. The darkness
of a difference image pixel is directly related to the difference between the gray level of
that pixel in the original image and in the median filtered image, thereby illustrating which
pixels were affected and by how much. Figure 3.3.13 shows the surfaces extracted for
each of the four images. Each surface is assigned a random color so that it is easy to dif-
ferentiate from its neighbors. The white blotches are made up of surfaces which were dis-
carded because they were too small. The processing parameters and results are summar-
ized in Table 3.3.1. Note that the larger 5 by 5 and 7 by 7 median filters destroyed some of
the edge information by smoothing out discontinuities, causing adjacent surfaces to
become merged together. The 3 by 3 median filter produced results comparable to those
obtained with no preprocessing, and so appears acceptable for noise removal.

Figures 3.3.14 through 3.3.17 show the processing results for synthetic imagery with
various amounts of noise. In each of these four figures (a) is the original range image, (b)
is the result obtained using the old edge detection/component labeling method of surface
extraction and no preprocessing, and (c)-(f) are the results obtained with the new region
growing scheme and various amounts of preprocessing. No preprocessing was done for
(c), B-splines alone were used for (d), median filter only for (e¢), and (f) illustrates median
filtering followed by fitting of B-splines. The results and processing parameters are sum-
marized in Table 3.3.2. Compare (b) & (c), the results for the old and new low level
schemes with no noise removal. The only case where they are significantly different is
Figure 3.3.16, the additive noise with the highest Gaussian standard deviation. Here the
region growing approach proved to be superior to the edge detection/component labeling
schemc. Also notc that preprocessing always helped extract surfaces ((d) and (e) are
always better than (b) and (c)), but it is also possible to over-preprocess, as indicated by
the merged surfaces when both median filtering and B-spline interpolation are applied to
images with low noise. It is interesting to note that for the Figure 3.3.17, the one with the
highest dropout rate, the application of both median filtering and B-splines produced the
best segmentation of any of those attempted on the noisy synthetic data.

3.3.2.4. Results on 1987 A.P. Hill LADAR Data

We also tried our surface extraction algorithms on actual LADAR data. Combined
AM/FM resolved range images, 3 by 3 MBRBC AM/FM images, and mod 1875 AM com-
ponent images were processed. The results for subimages containing single targets are
presented in Figures 3.3.18 through 3.3.26. Part (a) of each of these figures is the original
range image, part (b) is the result with no preprocessing, (c) used B-splines alone, (d) only

(a) m60 (b) diff.3

(c) diff.5 (d) dift.7

Figur. 3.3.12 Effects of median filtering range images: (a) original PADL range image (b)
difference between original and 3 by 3 median (¢) 5§ by 5 median (d) 7 by 7
median,

—_—]

(a) m60.7x7 nomed (b) m60.7x7.med3

RELs WIERS S

(¢) m60.7x7.med5 (d) m60.7x7.med7

Figure 3.3.13 Effects of median filtering range images: surfaces extracted for (a) original
PADL range image (b) 3 by 3 median (c¢) S by 5 median (d) 7 by 7 median.

Table 3.3.1

Table 3.3.2

Summary of processing results for median filtered PADL images.
Processing Results for Median Filtered Synthetic Range Images
Preprocessing Thresholds
Filename Median Fit 2-D distance angle curvature | Number of

Filier? B-splines? | (meters) | (degrees) | (1/meters) surfaces
m60.7x7.nomed no no 0.5 20 5 17
m60.7x7.med3 3x3 no 0.5 20 5 15
m60.7x7.med5 5x5 no 0.5 20 5 13
m60.7x7.med7 7x7 no 0.5 20 5 9

Summary of processing results for noisy PADL images.
Processing Results for Noisy Synthetic Range Images B
Preprocessing Thresholds
Filename Median Fit 2-D distance angle curvature | Number of

Filter? B-splines? | (meters) | (degrees) | (1/meters) surfaces
sm_mo60.n1.1 no no 0.5 20 5 9
sm_mo60.n1.1b no yes 0.5 20 5 10
sm_m60.nl.Im yes no 0.5 20 5 35
sm_m60.n1.Imb yes yes 0.5 20 5 71
sm_m60.n2.1 no no 0.5 20 5 8
sm_mo60.n2.1b no yes 0.5 20 5 10
sr _m60.n2.Im yes no 0.5 20 5 35
sm_m60.n2.lmb yes yes 0.5 20 5 72
sm_mo60.n3.1 no no 0.5 20 5 9
sm_m60.n3.1b no yes 0.5 20 5 15
sm_m60.n3.Im yes no 0.5 20 5 35
sm_m60.n3.Imb yes yes 0.5 20 5 73
sm_mo60.n4.1 no no 0.5 20 hJ 10
sm_m60.n4.1b no yes 0.5 20 5 11
sm_m60.n4.Im yes no 0.5 20 5 35
sm_m60.n4.Imb yes yes 0.5 20 5 68

H L. oy . .
v 4 * . ., o H
., : R4 ' : ® . - H
- g
4
. '
[
: p
[e
]
;-' 4 ') .‘ 1
: T . I L .
(a) sm_m60.n1 (b) sm_mb60.n1.1bl
&

(c) sm_mé0.nl.1

(d) sm_m60.n1.1b

(e) sm_m60.nl.Im

(f) sm_m60.n1.Imb
Figure 3.3.14 Results of processing noisy PADL image with Gaussian standard deviation = 1

and dropout probability = 0.005 usiug a S by 5 processing window and various
preprocessing.

(a) sm_m60.n2 (b) sm_m©60.n2.1bl

(c) sm_m60.n2.] (d) sm_m60.n2.1b

(f) sm_m60.n2.Imb

(e) sm_m60.n2.Im
Figure 3.3.15 Results of processing noisy PADL imagc with Gaussian standard deviation = 3
and dropout probability = (.005 using a S by 5 processing window and various

preprocessing.

I P e alee 2 e - d

(a) sm_m60.n3 (b) sm_m60.n3.1bl

(c) sm_m60.n3.] (d) sm_m60.n3.1b

f\gé

(e) sm_m60.n3.1m (f) sm_m60.n3.Imb

Figure 3.3.16 Results of processing noisy PADL image with Gaussian standard deviation =7
and dropout probability = 0.005 wsing a 5 by 5 processing window and various
preprocessing.

L
' e 2 e -
. * .- . s
.
- l.)
.]
L4]
. 4 "
) - , -
1)
: N I
by . !
4 - <.]
. r
:) y i 3 o e “la . et e
(a) sm_m60.n4 (b) sm_mé60.n4.1bl
a
(c) sm_m60.n4.1 (d) sm_mé60.n4.1b

8

(e) sm_m60.n4.Im (f) sm_m60.n4.Imb

Figure 3.3.17 Results of processing noisy PADL image with Gaussian standard deviation = 3
and dropout probability = 0.05 using a 5 by S processing window and various

preprocessing.

3-132 kak/yoder

applied a median filter, and (e) is median filtering followed by fitting B-splines. Files
c10_apc and c10_tank were extracted from image c10ml, while c17_apc was extracted
from c17m1. Both of the larger images were processed in their entirety, and the results are
presented in Figures 3.3.27 through 3.3.36. Part (a) of these figures leal with the com-
bined AM/FM resolved range image, while part (b) shows results obtained by processing
the AM component alone. The c10 targets are at a range of 1020m, while c17 targets are
1700m away. Both sets of images were processed using 7 by 7 processing windows for
surface normal computation. Table 3.3.3 summarizes the results for the resolved range
LADAR images, Table 3.3.4 shows MBRBC corrected AM/FM image results, and Table
3.3.5 contains AM component image statistics.

The resolved range images tended to be too noisy and produced poor results. The
MBRBC images did better, producing good results for broad side views of the APCs after
additional preprocessing, but poor results for the more complex tank at a 45 degree aspect
angle. However, the mod 1875 images containing only the AM component produced good
results after a little preprocessing. For example, Figure 3.3.21 shows how the turret and
front and side surfaces of a tank were extracted. Median filtering by itself and followed by
fitting B-splines proved most effective, while B-splines alone did a poor job because of the
problem with dropouts. While mod 1875 images produced good results, the fact that there
is periodic wrap around from black to white can cause problems. For instance, the front of
cl0_apc.AM is barely touching a wrap around point and so has lots of white spot "noise"
due to the normal variance of the data. While the median filter cleared most of this up,
there is still a hole in the final result caused by what remained.

3.3.2.5. Surface Feature Set & Algorithm Evaluation Measures

In this section we define a preliminary surface feature set in order to bridge the gap
between the low and high level processing in our geometric approach, as well as to provide
a rigorous means of evaluating our surface extraction algorithms. Our set includes:

(1) pixel count, |S |, the number of pixels on surface S.

(2) surface area, Ay, in square meters.

(3) bounding box, B; = [E’mm,gmu] , defining the 3-D extent of the surface via its

s
minimum and maximum x, y, and z coordinate values.
(4) centroid vector r, for the surface, which may be considered to be its "location." It is

computed by averaging the (x,y,z) locations ?;, over the pixels p comprising the sur-
face S.

(5) unit normal vector to the surface, n,, computed by averaging the normals of all pixels
belonging to the surface. It may be considered as the surface "orientation."

(a) c10_apc AMFM.i

be

(b) c10_apc. AMFM.] (c) c10_apc. AMFM.1b

(d) c10_apc. AMFM.Im (e) ¢10_apc. AMFM.Imb

Figure 3.3.18 Results of processing resolved range image of an apc at 1020m.

(a) c10_apc.RBC.i

(b) c10_apc.RBC.1 (c) c10_apc.RBC.Ib

(d) c10_apc.RBC.lm (e) c10 apc.RBC.lmb

Figure 3.3.19 Results of processing MBRBC range image of an apc at 1020m.

(a) c10_apc.AM.i

(b) c10_apc. AM.1

(c) c10_apc.AM.Ib

(d) c10_apc.AM.Im

(e) ¢10_apc.AM.Imb

Figure 3.3.20 Results of processing AM component range image of an apc at 1020m.

(a) c10_tank. AMFM.i

(b) ¢10_tank. AMFM.1 (c) c10_tank. AMFM.1b

(d) c10_tank. AMFM.Im () ¢10_tank. AMFM.Imb

Figure 3.3.21 Results of processing resolved range imiage of a tank at 1020m.

(a) ¢10_tank.RBC.i

(b) c10_tank RBC.1 (c) c10_tank.RBC.1b

(d) ¢10_tank.RBC.Im (e) ¢10_tank.RBC.Imb

Figure 3.3.22 Results of processing MBRBC range image of a tank at 1020m.

(b) c10_tank.AM.1 (c) c10_tank.AM.1b

(d) c10_tank. AM.Im (e) c10_tank. AM.Imb

Figure 3.3.23 Results of processing AM component range image of a tank at 1020m.

(b) c17_apc. AMFM.1 (c) ¢17_apc. AMFM.Ib

(d) c17_apc. AMFM.Im (e) c17_apc. AMFM.Imb

Figure 3.3.24 Results of processing resolved range image of an apc at 1700m.

(a) c17_apc.RBC.i

(b) c17_apc.RBC.1 (c) c¢17_apc.RBC.Ib

(d)¢17_apc.RBC.Im () ¢17_apc.RBC.Imb

Figure 3.3.25 Results of processing MBRBC range image of an apc at 1700m.

(a) c17__apc.AM.i

(b) c17_apc.AM.I (c)c17_apc.AM.Ib

(d) ¢17_apc. AM.Im (e) c17_apc.AM Imb

Fig .re 3.3.26 Results of processing AM component range image of an apc at 1700m.

M

Table 3.3.3 Summary of processing results for AM/FM resolved range LADAR images.
Processing Results for Actual LADAR Range Images
Preprocessing Thresholds
Filename Median Fit2-D distance angle curvature | Number of
Filter? B-splines? | (meters) | (degrees) | (1/meters) surfaces
c10.AMFM.1 no no 0.3 60 20 2
c10.AMFM.Ib no yes 0.3 60 20 8
c10.AMFM.Im yes no 0.3 60 20 82
c10.AMFM.Imb yes yes 0.3 60 20 98
c17.AMFM.I no no 0.3 60 20 4
c17.AMFM.Ib no yes 0.3 60 20 1
c17.AMFM.Im yes no 0.3 60 20 39
c17.AMFM.Imb yes yes 0.3 60 20 43
c10_apc. AMFM.1 no no 0.3 60 20 10
¢10_apc. AMFM.1b nu yes 0.3 60 20 5
c10_apc. AMFM.Im yes no 0.3 60 20 8
c10_apc. AMFM.Imb yes yes 0.3 60 20 6
c10_tank. AMFM.] no no 0.3 60 20 1
c10_tank. AMFM.Ib no yes 0.3 60 20 0
c10_tank. AMFM.Im yes no 0.3 60 20 31
c10_tank.AMFM.Imb yes yes 0.3 60 20 22
c17_apc. AMFM.] no no 0.3 60 20 1
cl7_apc. AMFM.1b no yes 0.3 60 20 1
c17_apc. AMFM.Im yes no 0.3 60 20 5
c17_ape. AMFM.Imb yes yes 0.3 60 20 4

Table 3.3.4

Summary of processing results for 3x3 MBRBC of combined AM/FM LADAR

images.
Processing Results for MBRBC LADAR Range Images
Preprocessing Thresholds
Filename Mediar. Fit 2-D distance angle curvature | Number of
Filter” B-splines? | (meters) | (degrees) | (1/meters) surfaces
c10_apc.RBC.1 110 no 0.3 60 20 3
c10_apc.RBC.1b no yes 0.3 60 20 6
c10_apc.RBC.Im yes no 0.3 60 20 4
¢10_apc.RBC.Imb yes yes 0.3 60 20 8
c10_tank.RBC.] no no 0.3 60 20 7
c10_tank.RBC.lb no yes 0.3 60 20 5
c10_tank.RBC.Im yes no 0.3 60 20 13
c10_tank.RBC.Imb yes yes 0.3 60 20 15
c17_apc.RBC.] no no 0.3 60 20 7
cl7_apc.RBC.Ib no ves 0.3 60 20 8
c17_apc.RBC.Im yes no 0.3 60 20 5
c17_apc.RBC.Imb yes yes 0.3 60 20 4

4

Table 3.3.5

Summary of processing results for AM component of LADAR range images.
Processing Results for Mod 1875 LADAR Range Images
Preprocessing Thresholds
Filename Median Fit 2-D distance angle curvature | Number of
Filter? B-splines? | (meters) | (degress) | (1/meters) surfaces
c10.AM.1 no no 0.3 60 20 57
c10.AM.1b no yes 0.3 60 20 110
c10.AM.Im yes no 0.3 60 20 241
c10.AM.Imb yes yes 0.3 60 20 249
cl17.AM.] no no 0.3 60 20 22
cl7.AM.Ib no yes 0.3 60 20 30
c17.AM.Im yes no 0.3 60 20 145
c17.AM.Imb yes yes 0.3 60 20 164
c10_apc.AM.] no no 0.3 60 20 10
c10_apc.AM.Ib no yes 0.3 60 20 15
c10_apc.AM.Im yes no 0.3 60 20 27
c10_apc.AM.Imb yes yes 0.3 60 20 25
c10_tank. AM.1 no no 0.3 60 20 25
c10_tank.AM.Ib no yes 0.3 60 20 23
c10_tank.AM.Im yes no 0.3 60 20 44
¢10_tank.AM.Imb yes yes 0.3 60 20 32
c17_apc.AM.1 no no 0.3 60 20 10
c17_apc.AM.Ib no yes 0.3 60 20 7
c17_apc.AM.Im yes no 0.3 60 20 9
c17_apc.AM.Imb yes yes 0.3 60 20 13

(b) c10.AM

Figure 3.3.27 1020m L.ADAR images (a) AM/FM resolved range (b) mod 1875 AM com-
ponent.

(a) c10.,AMFM.1

pe

(b) c10.AM.1

Figure 3.3.28 Processing results for 1020m LADAR imnages, no preprocessing (a) AM/FM
resolved range (b) mod 1875 AM component.

e A

(a) c10.,AMFM.Ib

(b) c10.AM.Ib

Figure 3.3.29 Processing results for 102(h: LADAR images, B-splines only {a) AM/FM
resolved range (b) mod 1875 AM component.

(b) c10.AM.Im

Figure 3.3.30 Processing results for 1020m LADAR images, median filter only (a) AM/FM
resolved range (b) mod 1875 AM component.

(b) c10.AM.Imb

Figure 3.3.31 Processing results for 1020m LADAR images, median filter & B-splines (a)
+.M/FM resolved range (b) med 1875 AM component.

(b) c17.AM

M resolved range (b) mod 1875 Abi com-

Figure 3.3.32 1700m LADAR images (a) AM
ponent.

(a) c17.AMFM.]

Evig

(b) c17.AM.]

Figure 3.3.33 Processing results for 170%™ TLADAR images, no preprocessing (a) AM/FM
resolved range (b) mod 1875 AM component.

(a) c17.AMFM.Ib

(b) c17.AM.Ib

Figure 3.3.34 Processing results for 1700m LADAR images, B-splines only (a) AM/FM
resolved range (b) mod 1875 AM component.

RN

‘& - |

(a) c17.AMFM.Im

(b) c17.AM.Im

Figure 3.3.35 Processing results for 1700m LALAR images, median filter only (a) AM/FM
resolved range (b) mod 1875 AM component.

My
" a -
i B
it -
o -=m
ﬁ = “& ﬂ-ﬁ

(a) c17.AMFM.Imb

(b) c17.AM.Imb

Figure 3.3.36 Processing results for 1700m 1.ADAR images, median filter & B-splines (a)
AM/FM resolved range (b) mod 137 5 AM component.

L -

3-1S8

(6) local planar fit mean square error, E;. When surface normals are computed for each
pixel by fitting a planar patch to the data points within the processing window, the
mean square fit error of the patch is also computed and associated with the pixel. The
average of this fit error taken over the pixels comprising a surface is called its local
planar fit error. It is a measure of how well the surface was represented by its compo-
site patches.

(7) global planar fit mean square error, E;, measured between the pixels of a surface S
and the plane specified by its location (centroid 7,) and orientation (unit normal #,).
This feature is indicative of the overall planarity of the surface.

(8) noise of location, L,, is computed by averaging over pixels pe S whose 4-neighbors
are all also in surface S, the distance in meters between each pixel location 7;, and the
centroid of its 4-neighbors 7.

(9) noise of orientation, O,, is the average taken over pixels pe S of the angle in degrees

between the individual pixel’s surface normal 7, and the average normal n, of sur-
face S.

Features 1-5 yield basic geometric properties of the surfaces, while 6-9 indicate
image quality by measuring noise. Features 6 and 7 also provide a limited idea of surface
shape by measuring local and global planarity. Surface relations (e.g. region adjacency)
and additional features (e.g. perimeter) will be implemented in the future.

We now define several measures which will prove useful in evaluating our processing
algorithms. In order to determine how successfully we have extracted a surface from an
image, we must measure how it differs from the ground truth. This ground truth informa-
tion is obtained from the target model after it has been transformed to coincide with the
position and orientation of the target in the image. Each extracted target surface is com-
pared with its corresponding model surface, checking both its position and orientation.
We may therefore define locational disparity

75 =7 |
Ly= —
z
as the distance between the extracted surface location, specified by its centroid 7., and the
model surface location, specified by its centroid 7,,, normalized by the range of the surface
Z. We take range 7 to be the z- comoonent of 7,,. Orientation disparity may also be
defined as
1 - ngn,

Od'_‘ 2

where n, is the extracted surface’s unit normal, specifying its orientation, n,, specifies the
model surface’s orientation, and O4 € [0,1] indicates the disparity between them. We also

3-156

define model fit error

Z (F;’;m —F:n'ﬁm)z
Ef= peS

1S 1

as the mean square fit error between the (x,y,z) locations 7; of the pixels p in the extracted
surface S and the plane specified by the corresponding model surface’s location 7, and
orientation n,,. E, not only determines how well our extracted surface corresponds to the
model surface, but also may be used as a measure of the noise present in the image.

3.3.2.6. Algorithm Evaluation Experiment

In order to evaluate the performance of our algorithms, we use as test images the set
of range images corresponding to the shaded images in Figure 3.3.37. These high resolu-
tion range images were generated using the new ETBM built upon the TWIN Solid Model-
ing Package, and contained no additive noise. The images are shown in increasing order
of complexity. Figure 3.3.37(a) is an M113 APC placed on a flat ground plane and viewed
from broadside. Figure 3.3.37(b) is an M113 on a flat ground plane viewed from head on.
Figure 3.3.37(c) is the more complex M60A1 tank placed on a gently rolling ground plane
and viewed obliquely. Figure 3.3.37(d) contains a handful of relatively complex targets at
random aspects placed on rugged terrain.

At the same time TWIN generates a range image, it also generates two ground truth
data files. The first of these two files contains a ground truth surface label image, where the
value of each pixel in the image is the label of the model surface to which it belongs. This
information is illustrated in Figures 3.3.38 through 3.3.41. The second file contains the
ground truth values of geometric features |M |, A,,, B, Ty, and 7, for each model surface
M.

Our surface extraction routines were run on this test set. Table 3.3.6a and 3.3.6b
summarize the surface features computed for the M113 APC of Figure 3.3.37(b), and serve
as an example of feature computation. Note that only surfaces comprising the target are
listed (8 surfaces were found in the entire image), and that the surface labels listed in the
table are extracted surface labels (S;’s), and do not correspond to the model surface
numbers (M;’s) in Figure 3.3.39. Once surface features are computed, we are ready to
evaluate the processing results by first computing Ly, O4, and Ef for each target surface
extracted, and then determining which model surfaces went undetected. In order to com-
pute the three performance measures for extracted surface S, we must first match it to the
appropriate model surface M. This is accomplished by using the x and y components of 7,
to index into the model surface label image. This approach is valid as long as the projec-
tions of our object surfaces onto the image plane have convex borders, and no projected
surface completely surrounds another projected surface. This is true for our test data set.

(a) m113-90.shade (b) m113.shade

{c) m60al .shade (d) complex.shade

Figure 3.3.37 Test images for surface extraction algorithm evaluation experiment.

IS

22

/
\

m113-90.edges

Figure 3.3.38 Model surface labels for M113 apc broadside view test image.

m113.edges

Figure 3.3.39 Model surface labels for M113 apc head -on view test image.

m60al.edges

Figure 3.3.40 Model surface labels for M60A 1 tank test image.

(a) complex.edges

(b) complex.subl

Figure 3.3.41 Model surface labels for complex, multiple target test image.

(d) Complex.syp3

—]

Figure 3.3 4; continued,

Table 3.3.6a Summary of "Geometric" Surface Features for Figure 3.3.37(b).

Extracted Target Surface Features - Part 1

-

a

S IS | A B, T, i
6.05 64 | | [62251 | [~9.63622¢—06]
S3 | 64 | 0312819 435 47 4.525 0.920119
[1007.35 1008.17) | | 1007.76] -0.39164
[3.65 4 1 [3825 | [~9.63622¢-06]
s5 | 64 | 0312819 435 47 4.525 0920119
| 1007.35 1008.17) | | 1007.76] —0.39164
365 64 | | [5025 | [4.86298¢—05]
S6 | 448 | 0962511 395 43 4.125 ~0.000134476
1007.35 1007.35) | {1007.35) | | -1]
365 64 [5.025 | 2.78105¢ 05
S7 | 1344 | 372941 275 39 3.325 —0.529884
1007.38 1008.1 | 1007.74] —0.84807

Table 3.3.6b Summary of "Image Quality" Surface Features for Figure 3.3.37(b).

Extracted Target Surface Features - Part 2
\ E E, L, 0,
S3 | 1.37836e-08 | 5.34058e-05 | 5.72205e-06 | 0.0252654
S5 | 1.37836e-08 | 4.81606e-05 | 5.72205¢-06 | 0.0252654
S6 | 3.35276e-08 | 0.00399944 | 3.02451e-05 0
S7 | 3.40066e-08 | 0.00217102 | 3.84194e-05 | 0.0219154

3-164

Once all extracted surfaces have been matched, the remaining unmatched model surfaces
are flagged as being undetected. Tables 3.3.7a-d contain the evaluation measures com-
puted for our test set and a list of undetected surfaces. Overall, the results are very good.
All processing errors were caused by one of the following cases:

1) surfaces whose height or width or both were on the order of the processing window
dimensions. This condition results in higher £ due to merged surfaces or moved pix-
els in the modified range map. The modified range map becomes a factor because the
number of border pixels (where most of the moving takes place in clean imagery) is
close to the total number of pixels on the surface for small surfaces. Although E;
increases for problems caused by small surfaces, O and L, remain small and good
estimates of n,, and 7,, are obtained.

ii) small surfaces generated where objects meet ground plane. This problem occurred
infrequently and depended on the slope of the ground patch, the processing window
size, and ang_thr. It is easily recognized since multiple extracted surfaces are
matched to the same model surface.

ii1) overdetailed object models. In several cases, the target models indicate separate sur-
faces where no true edge in the rendered image exists, either because of a lack of
sufficient jump discontinuity or surface normal disparity. For instance, the distinction
between surfaces 15 and 22 in the broadside view of the M113 is overdetailed since
no sensible edge exists between them. High Ly and low O, and Ej help identify an
object model problem.

3.3.2.7. Conclusions and Future Work

In conclusion, we see that region growing is an appropriate approach for surface
extraction for actual LADAR data. As far as preprocessing is concerned, it is apparent that
median filtering is a mandatory step. We now have in place the tools needed to evaluate
whether or not the fitting of B-splines after median filtering improves the quality of our
results, and whether the modified range map helps. We have seen that median-based range
bin correction provided only marginal improvement. An examination of the noise in the
1987 A.P. Hill data will allow us to improve our sensor noise model and aid in the selec-
tion of better preprocessing methods.

While our 2-pass implementation of region growing is more efficient, it may be more
beneficial to use a standard recursive region growing procedure that can keep track of the
aggregate surface normal for the surface it is currently working on. A neighboring pixel
would be annexed only if it satisfied an additional fourth constraint specifying that its sur-
face normal point in the same relative direction as the aggregate surface normal. This
would allow the routine to eventually stop growing a surface past an edge blurred by
preprocessing or obscured by noise.

Table 3.3.7a Summary of Evaluation Measures for Figure 3.3.37(a).

’ _.valuation Measures for M113 APC Broadside View

S

M

Oy

L,

E,

S3

M1s

0

0.000200208

0

Undetected Model Surfaces:

22

Table 3.3.7b Summary of E aluation Measures for Figure 3.3.37(b).

Evaluation Measures for M113 APC Head-on View

s | m 0, Ly E
$3 | M5 | 0.00037545 | 0.00156411 | 2.16653
S5 | M6 | 0.00037545 | 0.00156411 | 2.16653
$6 | M4 0 0.000797031 0

§7 | M3 0 0.000819187 | 0.179751

Undetected Model Surfaces:

none¢

Table 3.3.7c Summary of Evaluation Measures for Figure 3.3.37(c).

Evaluation Measures for M60A 1 Tank Oblique View
S M 0, Ly, E,
S43 | M29 | 0.00325307 | 0.00273358 | 0.00235579
S44 | M29 0.371073 0.00112623 | 0.0238056
S45 | M26 0.10029 0.00112859 | 0.0559099
S62 | M12 | 0.00124243 | 0.00060535 0.200608
S65 M3 0 0.0019762 2.5064
S67 M4 0 0.00217118 3.03086
S68 M7 0.00130308 | 0.00190204 2.93268
S77 | M34 | 0.00249407 | 0.00330262 0.086582
S§78 | M26 0 0.00135086 | 0.0022219
S83 | M35 | 0.00226185 | 0.00323787 0.102651
S99 | M34 | 0.00244948 | 0.00386266 | 0.0882066
S100 | M36 0 0.00358067 | 0.0131025
S101 | M37 | 0.000524372 | 0.00414599 0.213152
S102 | M39 0 0.00465199 13.1433
S103 | M43 | 0.00219193 0.0058059 0.27924
S104 | M40 | 0.00175837 | 0.00586515 0.687514
Undetected Model Surfaces:
26891011222338444546

Table 3.3.7d Summary of Evaluation Measures for Figure 3.3.37(d).

| 592

Fvaluation Measures for Multiple Target Image
S M 0y Ly, E,

S30 | M:22 0.402822 0.00452281 13.1401
S31 | M57 0 0.00540025 12.5729
S38 | M50 | 0.00154132 0.00367961 0.391368
S43 | M52 0.00128183 0.00396174 13.3717
S47 | M80 | 8.86619¢-05 | 0.00280539 0.0336571
S52 | Meé68 0.00182018 0.00218754 4.50247
S53 | M167 0.0209292 0.00265962 1.40193
S54 | MI12 0 0.00283225 4.67118
S56 | M79 0 0.00273736 0.0378982
S58 M4 0.00313321 0.00127112 1.08883
S61 | M178 | 0.00272781 0.00247508 0.00905435
S62 M2 0.0273056 0.00254277 0.0597504
S63 M2 0.00180414 0.00204464 0.0552833
S64 | M70 | 0.00508827 0.00504109 0.880138
S65 M2 0.0287021 0.00178398 0.0628618
S66 | M84 0 0.00137135 1.28281
S67 | M166 | 0.00180656 | 0.000942693 0.860649
S68 | M8S8 0 0.000457099 | 0.00132486
S69 | M89 0.0018284 0.000171174 0.0309367
S70 | M35 0.00247163 | 0.000110612 0.003139
§71 M26 0.0839526 0.00166672 0.223233
S73 M7 0.00395471 0.00166675 2.6894
S78 | M102 0.85333% 0.00145082 1.62057
S80 | M103 (0.857945 0.00167102 2.25506
S84 | M117 0 0.00135749 0.0119419
S85 | M121 0 0.00166185 0.0214856
S86 | M102 0.492381 0.00178154 2.49839
S88 | M103 0.526422 0.00199583 3.20104
S90 | M36 | 0.00309047 | 0.000338387 | 0.000281739
S91 M34 0.00208801 | 0.000562763 | 0.00423172

M100 0.598341 0.00223298 4.27224

Table 3.3.7d continued.

Evaluation Measures for Multiple Target Image (cont.)

S M 0, L, E;
S96 M98 0.853361 0.00289243 7.45927
S97 M39 0.00050348 | 0.00143146 | 0.997297
S98 M37 0.00150022 | 0.00128127 | 0.0117693
S103 | M43 0.00158155 | 0.00270667 | 0.216993
S104 | M38 0.00181633 | 0.00274001 7.43183
S105 | M40 0.0025796 0.00285629 | 0.0941295
S106 | M44 0.00193286 | 0.00314221 9.66038
S$107 | M98 0.496242 0.00324824 9.35153
S108 | M123 0 0.00268549 | 0.0393614
S109 | M95 0.00153363 0.0028051 0.231066
S111 | M140 0.49757 0.00344057 10.1276
S112 | M157 0.0167855 0.00405866 | 0.602413
S114 | M138 0.48768 0.00361747 11.2488
S115 | Mi153 0 0.00469583 | 0.119958
S116 | M93 0 0.00305897 | 0.0580622
S119 | M92 0.00180712 | 0.00453183 20.8193
S122 | M98 0.695915 0.00505758 14.1323
S$124 | M104 | 0.000269055 | 0.00396092 | 0.0613279
S127 | M99 0.0400915 0.00520749 19.4405
S132 | M111 | 0.00310796 | 0.00565898 | 0.947669
S133 | M132 0 0.00567215 | 0.174822
S134 | M140 0.96009 0.00679415 37.2564
S135 | M129 | 0.00180465 | 0.00692986 48.5121
S§136 | M131 | 0.00159964 | 0.00558704 1.18194
S138 | M13s 0.303765 0.00622982 26.0463
S§139 | M136 0.959486 0.0058219 22.9939
S141 | M147 | 0.00285903 | 0.00828083 1.92179
Undetected Model Surfaces:

3681011222329454647484953556978
83879091 101 107 109 116 119 125 139 142 144
148 155 159 161 163 165 185

e

¢ 1de 198re1 103 siowawsdas jo mdinQ TY'E'E andig

R34

. i .” ..- . o L. ~ ‘. -
| " Poa \‘.ﬂlvxf . }
. | 5
sAqs gchqe gchag ZIS MOPUIM
10413 Bund abew|
asueuep 9OUBLIBA yoled 1aue|d jeuibuO
1 4 € 2 }

ill\.

3-169

Our evaluation experiment has validated the use of our surface extraction approach.
Except for a few incidences which were explainable by three special cases, very low
values for our evaluation measures were obtained on clean, truthed data. This indicates
that our algorithms are able to accurately extract surfaces present in LADAR imagery and
do not introduce errors which may corrupt later processing. As has been seen, the meas-
ures provide a means to evaluate our models and the quality of our data as well as our sur-
face extraction algorithms. We are encouraged by the results obtained thus far, and feel
that the pursuit of our current approach holds much promise.

3.3.3. A Study of Five Laser Radar Range Data Segmenters

After the targets are detected in an image, the images need to be segmented to
separate the targets from each other and from the background. In this section we examine
five different range data segmenters to identify their strong and weak points in segmenting
laser radar range data. Although detection might be possible using single scan lines, the
segmenters used here assume the sensor recorded the targets in imaging mode giving the
same vertical resolution as horizontal.

Each of the segmenters was tested in the following way. First, the six range images
selected from the A. P. Hill data set described in Section 3.1.1 were used. The images,
shown in Figures 3.1.1-3.1.6, were chosen to include a variety of targets, ranges, field of
view, clutter, and occlusion. Each segmenter was run on each image without any prepro-
cessing (no filtering, etc) or postprocessing (like region merging or finding largest
regions). All the segmenters tested required setting a threshold, so instead of trying to pick
a threshold (which might influence the performance of the algorithm), we show the results
using various thresholds. Figures 3.3.42-3.3.47 show the outputs of each of the segmenters
for various thresholds, and each of the given input images. Since the thresholds are based
on different features for each of the different segmenters it is meaningless to try to com-
pare images on the same rows in these figures. Instead these figures are to show the sensi-
tivity of each segmenter to threshold selection, and the effects of a misplaced threshold for
each segmenter individually. The image in column 1 is the original unprocessed LADAR
image. The images in columns 2-4 and 8 are the output of the given segmenter with white
representing background and black being the target. The images in columns 5-7 have
white as the background and the inverted image (black is white and white is black , and
light gray is dark gray, etc) is the target. The following section discusses each of the seg-
menters.

3.3.3.1. Planar Patch Fitting Error Segmenter

The motivation behind planar patch fitting is that objects to be segmented are planar
(or can be approximated by planes) and the background and clutter are not planar. Planar
patch fitting segmentation was presented in [KaYo87], however there were a couple of

(Ponunuod) 7p'g'¢ AN3Lg

. BT L I & aike

3 3 -0 - o s

. o gge— g . . l-l......t, T A—y »
i . o =

3 ., LR IR
m".ﬂ._ .M.Q,ﬁe...a..&
chag 9fao
ckge cskag
au0-6sa| uolaIeN :wmm_.:owm_ ftamxo0y
aouelIep 2% ne s
g L °

II[

8
Variance
less-one

5 .
Rockwell

Nettleton

Nettleton

3by3

5by5

3by3d

6by6

ALd

P

L 4 4

7
¢

(A
-y
<

.

Figure 3.3.43 (continued)

w

sAa s

aouelep
v

LI e c /..\
L :
...—.. ° ' e . o0t .
aaAilps~ eveg o { T M
- .l . R ’u.m - u.. iy N P ..
P*.\ R - o
. K T et RO 2 o B
A R A R A0
X N ..“. B

chag

chae
10413 Bundi4 abewy
JduelIBA yojed 1aueid * jewmbuQ
€ Z 3

III'I|IIIIII[

TEEE - msea

L AR g b
. - =
..

TS

chqe
dUO0-SS3|
ooueIBA
8

e ey

[V RN RN LR .x..."..:v...l\

chae
uojanIaN

Ghkqg
uo}ajliaN

2 9

(Ponunuoo) g g amdrg

- . ~ uﬁ . . . - -
.) =Y &
<

94q9

[EL Y Foled?]
. S

CE e e

g4q§

asueieA
¥

TR Py

“$0STE 1de 193re1 J0) siouawgas Jo ndinQ yy'e

L8 O e e g
) - e \ -, L

' . .
PO 1 o n v . .
. .- . ‘ ‘
R |
. - ¢
gha € chge
1003 Bunid
SOUBMIBA yoled iaueid
€ 4

¢ amndig

abew|
rewbno
}

(panunuod) ¢y g amngyy

.u...(Tr.

C ke G Aq s chae okqg

auo-ssa| . uoleiIeN UOIBMEN

aoueniep e
L 9 i

]

ey

-
o
_ _ ot

-c£9z¢" 1de 199101 10 s191u0w33s Jo ndinO Gp'g’g N3]

Ty v o e

- - . Y.
S RN
s Al =
.o e
9215 MOPUIM
A
gAas gfAqE chAq e]
: 10113 Bunitd \ wc_mﬂ.w
yoied 18ueid 161
aoueleA oo:M_E>] X

v

. . . K9 W TG
iw b& — Sugid s Wedh
ﬁw g “..‘f - -

.

ckae shqg
8U0-553| prjaroN
aouBLIeA

8 L

(panunuood) 9y¢ ¢ aindtyg

ST e R
- n...\ruc.uor,

chae
uo}a AN

@

g
At zwuu .

9kag

amxyo0y
.5

naaki . wan

e o

ghasg

aosueuep
4

Ry
R o

e

chag

aoueiepn
€

e

At ¥
21S MOPUIM

.chae
10413 Bunyy abew)
yoied s1dueid 1ewbuQ
Z 8

4
Variance

3

Variance

1
Original

Pianer Patch

Fitting Error

Image

5by5

3by3

3by3

Window Size

- ’ ‘e L ST ¢
. . . |
. .
.
. . . ’ . 1
. . . - .] . Kl - -
- .
" .t . : R " S
» . T,
d
. r .
.. Fl ~ - e
S] . R
A |
N . . N -~ N . . .
. . '.' t . . [4
. : . . \
. v - ' LI
. M " . -
. W . . .
. ’ ~ . N M

-3 - : ¢ - : ' . . .S -
o 5’ H : s - (P20

’ . NS TR . Ve keg?

i . ' : . : . 2 - X ‘I‘-.‘

“ ..

Figure 3.3.47 Output of segmenters for target ap1.32839.

]’

-’ -
- . '
S - r. >~ . . s -
b ' | [y T -
b N ' .
. e ' TN T BN
> N .
>t T g e .
)) 1 . . *
- 4 N .
] - a - ‘e
' ’)
. .- . 'L '
- ' L4 - ' —
: " .,
. AP . -
3 O ¢ -
N e T
- - R
ar L. S

=<

e o w

chag

auo-sS)
asueueA
8

‘4 _..d .
H ..'4r .
o e
Y w.-:-r
H-“” ’ m.u.
4
T I
DI |
- .

.

Dl

SAag
uojalIeN

L

(penunuod) ['¢’¢ AINF1g

v

Dl

chgg
uo}9IeN

9

e - e

-

-

94q9

nam3o0y
S

3-182

typographical errors in the equations that set the partial derivative to zero, so the derivation
is repeated here. In addition some simplifications are shown that can be used when the
window is symmetric.

3.3.3.1.1. Derivation of Planar Patch Fitting

Planar patches are fitted as follows: First denote an M by N range image by z (x,y)
where (x,y) belongs to a finite region D = { (x,y) :0<x €M ~1,0<y <N — 1} in the xy
plane. Next partition the plane into overlapping m by n windows by defining a region of
vertices consisting of V ={(4,v) :0Su <M -m+1,0Sv <N —n+1} as shown is Fig-
ure 3.3.48. For each vertex (&,v) in V associate a window of size m by n whose upper left
corner starts at (4,v). The exhaustive enumeration of the vertex set covers the entire image
and provides a convenient structure for labeling all the windows as illustrated in Figure
3.3.49.

Since the planar fit over each window is similar, we will discuss fitting a plane over a
single window. A plane is described by the set of all points {(x,y,z) :z=ax + by + ¢ }.
The fitting plane is determined by minimizing the error square criterion, that is determine
(a,b,c) to minimize € where,

~1n-1i
e='Y % (z0y)) —ax; - by; - c)?
i=0 j=0

Taking partial derivatives of € with respect to a, b, and c,

dJe m-~1ln-"
g—-Z 2 X X (z(x;,y;)—ax;—by;—c)
i=0j=0
Ot m-1n-1
ab =-2 Z Z yj (z(x‘,y,) ax; — by,—C)
i=0j=0
Ot m~-1n-1
5% =2 XL X (@&y)-ax—byj-c)
i=0 j=0
and setting the partial derivatives to zero, we obtain
m-1n-1 m-1n-1
a nZ ?+b Y Y xyijtcn E xi= Y, ¥ xz(x,y)) 2.1
i=0 j=0 i=0 j=0
~1n-1 m-1n-1
a Z Y Xy +bm2 y, +c mz yi= Y, ¥ yjiz(xyj) (2.2)
i=0 j=0 j=0 j =0 i=0 j=0
m-—1 n-1 m-1ln-1
any x;+bmy yi+tcmn = 3 ¥ z2(x,y;) (2.3)
i=0 j=0 i=0 j=0

a linear system of equations to be solved for (a,b,c) in terms of the range data within the
window. This process is repeated for each window in the image.

Vs vertex set

) | 2 N-ngt N-t

o [- - - . - . . .
(9,0)
‘ L . L) L] L] . L]
2
. O . O . . 3 .
. s . . . -
. . 3 . * . [- .
.
'-. — e - —_— ey wm e wm ol -1
M-m§' . . Y . . [4) ° . . []] !
[i
1
' !
. . [. e i
I : mxn
. : 1 Windew
|
: |
M-' . » . [} . » i . [[) [Y [:
[} !

Figure 3.3.48 Region of vertices identifying all overlapping windows.

w{0,1)
W(O;D) 2 | .
W (1,0)
2y . .
v o

Figure 3.3.49 The correspondence between vertices and windows.

- W e e e e o= e om e

. . .
. . P
[} N »
L4 [} »
. . .
) . s
L} L] L]
[[[)
L[] . [)
. L .
. . S

- me wm em e Em e o wm W s .

{
!
|
|
|
I
!
\
{
{
'

3-185

3.3.3.1.2. Symmetric Patches

If the window is symmetric (i.e. x;=(...,-2,-1,0,1,2,...) and y;=(...,-2,-1,0,1,2,...))
the following simplifications can be used:

m-1
Zx,- =0
i=0
n-1
2y=0
j=0
m-1n-1
Y Yxy=0
i=0 j=0

Applying these to equation 2.1 gives:

m-1n-1

m-1 2
any xi =3 ¥ X z(x;y;)
i=0 i=0 j=0

m-1n-1

Z X %i z(xi,¥))
P (2.4)

m-1
nY x?
i=0

Applying these to equation 2.2 gives:

m-1n-1

n-1
bmYyti=3 Yy z(x.y;)
j=0 i=0 j=0
m-1n-1

z Z)’/Z(In)’;)
i=0 j=0
n-1

mZyjz-
j=0

b= (2.5)

And finally applying these to equation 2.3 gives:

m-1n-1

2 Xz0ay))
c= 200 (2.6)
mn

Therefore a, b, and ¢ can be solved for directly without any matrix inversion.

3.3.3.1.3. Fitting Error Segmentation

The targets in column 2 of Figures 3.3.42-3.3.47 were segmented by finding the
planar patches for an image and eliminating those pixels that are in the center of each
patch with large fitting error. This method is clearly able to locate all the targets over a
wide range of thresholds. This is not so much a result of the method being a good one than
it is that the data was non-planar except where the targets are located. Table 3.3.8 gives

comments on each of the images. Although the images show that this method works well
on the range data, it does require a number of computations for each pixel. Assuming a
symmetric m by n window, each window (and therefore each pixel since we are using
overlaying windows) requires 2mn multiplications, 3mn additions, and 3 divisions to com-
pute a, b, and c, plus 3mn subtractions and 3mn multiplications to compute the error.

3-186

Finally an additional subtraction is needed to compare the error to the threshold.

Table 3.3.8 Comments on planar patch fitting error segmentation results.

Target

Comments

ap1.32403

At a range of 1km the curves of the helicopter look like
planes therefore planes fit well to the target.

ap1.32411

The square building (clutter) to the left of the M60A2 was
nicely segmented since the planes fit to it too. The
classifier will have to be used to eliminate this clutter from
being considered a target. The trees in the background will
fit planes if too large of a threshold is used.

ap1.32504
ap1.32633

Both the different apparent sizes of the M60A2 were easily
found. Dropouts caused many holes in the target if the fit
error threshold is too small. Some of the ground shows up
in these images. We expect to see more ground showing
up in the new data. If this is the case, the orientation of the
plane may have to be used to help in segmenting planar
targets from planar ground.

apl.32837
ap1.32839

The 3 by 3 window size causes at least a 3 pixel gap
between the front target and the occluded targets. This
could be a problem if there are only a few pixels on target.
The Rockwell segmenter uses a novel approach to get
around this problem.

The variance method, presented in the next section, is able to fit patches to planes, but

it uses fewer computations.

3.3.3.2. Variance Window Method

Suppose we still want to find planar surfaces, but we know they are always parallel to
the viewing plane. If this is the case, a and b in Equations 2.4 and 2.5 would always be
zero and ¢ in Equation 2.6 would be the distance to the middle of the plane. This distance

is simply the average over the window which we will denote as:

* These operation counts do not take into account the additions and multiplications that might
be needed to index into a two dimensional array.

3-187
2= — z (x;,y})
mn —o j=o !
The error equation then becomes:
m-1n-1 2
€= Y Y (z2(x;,y)-2)

i=0 j=0
which is simply the variance of the pixels in the window.

The variance method is the planar patch fitting error method except the planar patch
is always parallel to the viewing plane. Column 3 of Figures 3.3.42-3.3.47 show the out-
put using this method with a 3 by 3 window and column 4 is the output using a 5 by 5 win-
dow.

The 3 by 3 window results appear to be as good as those of the planar patch fitting
error method with the same sized window. Using a larger window makes the variance
method less sensitive to noise, therefore the 5 by 5 window is able to segment out the tar-
gets and have fewer false segmentations on the background. As expected, the larger win-
dow also results in more pixels on the edges of the targets being missed. If the threshold is
too low, large (5 by 5) holes are left in the target.

The advantage of this method is that it requires fewer computations than the planar
patch fitting error method. *A total of 2mn+1 addition/subtractions, 2 multiplications, 2
divisions, and 1 square root are required for each pixel.

3.3.3.3. Rockwell Segmenter

When working with window operators, one likes to use as large a window as possible
to decrease the sensitivity to noise. We saw this effect in the previous section where both
3x3 and 5x5 windows were used. The larger window picked up fewer false segmentations
on the background. The tradeoff with large windows is that pixels near the edge of the tar-
get are lost and very small targets may be completely missed, or large window-sized holes
are left in the target when there is a noise spike. The 3 by 3 window in the variance
method left a 3 pixel wide gap between the overlapping targets in apl.32837 and
apl.32839. while the 5 by 5 window left a 5 pixel gap.

The Algorithm Development group of Rockwell International has come up with a
novel solution to this problem. They use a large 6 by 6 window, but compute the variance
in eight 3 by 6 windows 1round a given pixel. If any of the windows has a variance below
a given threshold, the pixel is classified as the target. Figure 3.3.50 shows the eight win-
dows. The idea is that the pixel might be on an edge whose orientation is unknown. If this
edge passes through the pixel, one of the eight windows will lie completely on the target

* The square root is not needed if the threshold is squared

X X X X X X X X X X
window
1 X X X X X X X X XX X X
X X X)X X X X X XX X X
window window
XX X X X X 3 X X XX X X 4
X X X X X X X X X X
window
2 X X X X X X X X XX X X
X X X X X X X X X X X X
window window
X\ X X X X 6 7 X
X X X X X
X X X \X X X
window
5 X X X X X X
window
X X X X X X X X 8

Figure 3.3.50 The eight windows around a given pixel used in the Rockwell Segmenter.

(e

3-189

even if the other half of the window is background. If any one of the windows falls on a
planar surface, the pixel is classified as planar (i.e. a target).

Column 5 of Figures 3.3.42-3.3.47 show the output of the Rockwell segmenter. Tar-
gets apl.32837 and apl.32839 show that it is able to extract overlapping targets without
leaving a gap between them.

The price that is paid of such good segmentation is the number of computations. For
an m by n window, the variance must be computed over each of the eight orientations.
Each of the subwindow has an area of Yamn. A brute force method requires 8(22mn+1)
addition/subtractions, 1 multiplication, 16 divisions, and 8 square roots. The Rockwell
implementation takes note of the overlapping windows and is able to reduce the computa-
tions to 4mn +40 addition/subtractions, 1 multiplication, 16 divisions, and 1 square root.

3.3.3.4. Nettleton Method

If speed is important, the following algorithm by John Nettleton of the Center for
Night Vision and Electro-Optics performs well with very few computations. His approach
is to examine the value of the pixel in the center of the window and compare it to the
values of all the pixels around it. If enough pixels are close enough in value to the center
pixel, the center pixel is classified as target. Typically for a 3 by 3 window, 6 neighbors in
the window must be within the threshold. For a 5 by 5 window 15 neighbors must be close
enough.

Columns 6 and 7 of Figures 3.3.42-3.3.47 show the results for a 3 by 3 window and a
5 by 5 window. This method does better than any of the other methods in separating the
overlapping targets in apl.32837 and apl.32839. It leaves just single pixels between the
targets.

Unfortunately, since the center pixel is the basis for comparison, it is very sensitive to
dropouts and noise spikes. Notice that even with the largest threshold, ap!.32633 (Figure
3.3.45) still has many holes in it. A simple improvement would be to use the average
value of the window instead of the center value.

The method is very fast since it requires only an addition and a subtraction to find the
upper and lower ranges and mn subtractions to compute the differences between the center
pixel and all the other pixels in the window. If the mean value were used instead of the
center values, the cost would be an additional mn additions, and a division. Both methods
require an additional mn subtractions to compare the pixel differences to a threshold.

3.3.3.5. Variance-Less-One Method

One of the deficiencies of the planar patch fitting methods is that it is sensitive to
noise spikes. For example, Figure 3.3.51 shows the six sample images we have been
working with, the variance of the image for a 3 by 3 window, and the histograms for the

Original Variance Histogram of
Variance

apl.32403%

apl.3241] &8

ap1.325043

ap1.32633

apl 32839 1

Figure 3.3.51 The six test images from Figures 3.1.1-3.1.6 and their variance images using a 3
by 3 window. The histograms are of the variance images.

S

3-191

variance. There is a dropout near the front of the leftmost tank in ap/.32837. This dro-
pout caused the variances in the nine windows which contain it to be larger than the vari-
ances of the surrounding windows. This shows up on the variance image as a 3 by 3
square which is brighter than the surrounding pixels. This effect can be seen on the other
targets as well. In particular, ap/.32633 has a large number of dropouts near the lower left
part of the target.

The variance-less-one method overcomes this problem by examining all the pixels in
a given window and ignoring the pixel whose value is farthest from the mean of the win-
dow when computing the variance for that window. Figure 3.3.52 shows the variance-
less-one images for the same images as in Figure 3.3.51. There are fewer ‘‘bright
squares’’ caused by the noise spikes. The histograms show that, as expected, the variance
is lower when the most extreme point in each window is omitted. In general the histo-
grams appear to be more bimodal, and the segmented images in column 8 of Figures
3.3.42-3.3.47 show the targets have fewer holes in them and that a lower threshold can be
used and still segment the entire target.

The computational complexity is the same as the variance method, except two addi-
tional subtractions are needed to remove the given pixel from the variance calculation.

3.3.3.6. Conclusions

Five different laser radar range image segmenters were tested and all five performed
well on the images they were tested on. The image test set ¢ “tained a variety of targets,
ranges, clutter, and occlusion.

The Nettleton segmenter was very sensitive to noise spikes and dropouts because it
compares all the pixels in a given window to the center pixel. If the center pixel is a noise
spike on a target, for example, none of the pixels around will be close enough so it will be
classified as a background pixel. An advantage of this technique is that the effects of a
noise spike are confined to a single pixel.

The planar fit, variance, and Rockwell methods are not as sensitive to noise spikes as
the Nettleton method, however the effect of a spike will show up in all the windows which
contain the spike.

Our variance-less-one method overcomes this problem by finding the pixel which is
farthest from the mean of a given window and computing the variance without that pixel.
The new method works well with the ladar images we currently have since most windows
will contain one or no noise spikes. If an image has many spikes in a small area (like
apl.32633) a given window may contain more than one spike. This method will only
remove the largest spike, leaving any others to affect the variance calculation. An
improvement to this method would be to ignore all spikes that deviate significantly from
the mean. This is a common technique used in SAR image processing.

Original Variance-less-one Histogram ot
Variance-less-one

"

apl.32403 $

apl.32411 8

apl.32504

apl.32633 &

apl 32839 SRS AT

Figure 3.3.52 The six test images from Figures 3.1.1-3.1.6 and their variance-less-one images
using a 3 by 3 window. The histograms are of the variance-less-one images.

3-193

Table 3.3.9 summarizes the computational complexities of the various methods. The
Nettleton method is certainly the fastest method, with the variance, variance-less-one,
Rockwell, and fitting error, methods following in order. Since the dwell time for the sen-
sor is 80 ps [Rayt] and current signal processor chips can perform 16 bit multiplies [TI85]
in 200 ns or faster, any of these methods should be able to keep up with the sensor if
implemented on such a chip.

Table 3.3.9 Summary of computational complexities of the LADAR segmenters.

Method Additions/ Multipli- | Divisions | Square
Subtractions cations Roots
Fit Error 6mn+3 Smn 3
Variance 2mn+1 2 p) 1
Rockwell
(brute force) 8mn+8 1 16 8
Rockwell
(fast) 4mn+40 1 16 1
Nettleton 1
2mn+2
(center value)
Nettleton Amn4? 1
(average)
Variance-less-one | 2mn+3 2 2 1

3.3.4. Results of Classifying the 1986 A.P. Hill Laser Range Data

The final step in the ATR process, after detection and segmentation, is to classify the
targets. For this experiment a set of 26 - M60A2 targets and 26 - 5 ton trucks were
selected as show in Figure 3.3.53 and 3.3.54. The following sections discuss how the
classification was performed and what the results were.

3.3.4.1. Target Segmentation

The 52 targets were segmented using the planar fitting error segmenter presented in
Section 3.3.3.1. The fitting error threshold was set by using the automatic threshold selec-
tor which simply found the the fitting error histogram and set the threshold at the point
where second derivative was zero. Figures 3.3.55 and 3.3.56 show the targets after seg-
mentation.

3.3.4.2. Feature Extraction

Although many features have been proposed for characterizing FLIR data (over
twenty features were used in the experiments in [KaYo87]), much less work has been done
for range data [BeJa85]. Since the segmenter was extracting well defined silhouettes, we

Figure 3.3.53 M60A2 targets used in Laser Radar classification experiment.

Figure 3.3.53 (continued)

Figure 3.3.54 Five ton truck targets used in Laser Radar classification experiment.

Figure 3.3.54 (continued)

m60a2.1.seg

Figure 3.3.55 Segmented M60A2 targets used in the Laser Radar classification experiment.

m60a2.2.seg

Figure 3.3.55 (continued)

Stt.1.seg

Figure 3.3.56 Segmented five ton truck targets used in the Laser Radar classification experi-
ment.

Stt.2.seg

Figure 3.3.56 (continued)

decided to use the same silhouette based features that were used with the FLIR data.

3-202

Tables 3.3.10 and 3.3.11 show the two features sets that were used.

Table 3.3.10 Shape features used in Laser Radar classification experiment.

Feature number Feature
in Section 2.1.1.2 Name
7 Area
10 Height to width ratio
12 Rectangularity
13 Width to height ratio
18 Height squared over area

Table 3.3.11 Moment features used in Laser Radar classification experiment.

Moment Numbgrq il;a?lc()gYom]
o1 A.10
0, Al
03 A12
04 A3
0s A4

Note that no range information used in the features set, just the outline data.t

3.3.4.3. Classification Results

The classification experiments like those used on the FLIR data in [KaYo087], were
run on the segmented data. Table 3.3.12 shows the upper and lower bound estimates on

the classification of the ladar data.

Table 3.3.12 Classification results on Laser Radar range data.

Feature Set

Lower Bound Upper Bound

Shape
Moments

1.9% 5.7%
1.9% 1.9%

1 i.c. the moment functions were computed using the value onc where the target was and the value

0 where the background was.

|15

3-203

These results show an improvement over the FLIR data. Remember that the targets
ranged from 1 to 3 km which is the same range as the FLIR data. However, note that there
were only two target classes and all the targets were viewed from the same view (side
view), and from the same aspect angle (0 degrees).

3.3.4.4. Conclusions

With such a limited set of data we feel that no definite conclusions can be drawn from
this experiment. The results do show that when more LADAR data arrives we will be
ready to conduct experiments with a more relistic selection of targets, ranges, clutter, etc.

3.4. HIGH LEVEL LADAR PROCESSING

3.4.1. Production Systems for Target Recognition

This section presents two different high level solutions to the problem of object
recognition from LADAR images. Our long term goal is to have an autonomous software
system which will be able to recognize a given set of targets whenever these targets are
present in LADAR range images in any orientation, combination, and number. The sys-
tem should also be able to recognize partially obscured targets, and to generate multiple
hypotheses with confidence values where appropriate.

During this first series of experiments, the production systems will have to recognize
four classes of targets: BMP, BRDM2, M113 (all three of which are armored personnel
carriers), and the M60AI tank. As an initial constraint we will only be considering the sin-
gle target aspect illustrated in Figure 3.4.1. These targets may appear in any number and
any combination in a given range image, and may have missing or noisy surfaces. It is
assumed that low level processing has already segmented out the surfaces in the scene and
computed their various attributes and relationships. Surface attributes may include loca-
tion, orientation, dimensions, surface area, mean curvature, and planar patch fitting error.
Among the relationships found between surfaces might be adjacency, the kind of edges
separating them, and whether they have a convex or concave relationship. All of this
information is output to a file in a format that may be understood by the expert systems.
The data provided as input to the production systems in this section was hand extracted
from model information and has had some error added to it in order to illustrate uncer-
tainty reasoning and recovery from low level errors. Of course, future versions of our
software will have to handle targets extracted from actual LADAR data at all possible
aspects.

(a) BMP apc

(b) BRDMZ2 apc

(c) M113 apc

(d) M60AT tank

Figure 3.4.1 Target aspect to be recognized by high level processing.
N —

3-205

3.4.1.1. A Top-Down Goal-Driven Approach

The first target recognition expert system we developed is written in PROLOG. The
source for the expert system shell may be found in Appendix E.1. Instead of merely
expressing our rules in the usual conclusion-if-condition form PROLOG uses, the expert
system shell is used to provide a more flexible system. A shell allows a user-friendly inter-
face, makes it possible to use any format for expressing rules, keeps track of why the
current line of reasoning is being pursued, provides for propagation of belief, and enables
the system to show how a conclusion was reached, all of which are not done automatically
by PROLOG alone.

3.4.1.1.1. Facts and Rules for Solving Goals

Our system design is strongly influenced by the language it is implemented in,
reflecting the top-down, goal-driven nature of PROLOG. First, surface attributes and rela-
tionships found by the low level processing routines are read in by the expert system and
are considered to be facts. Figure 3.4.2 is an example of such low level input to the sys-
tem. Next, the user specifies a goal like

target isa mll3

and the system uses facts and rules to determine its confidence in the goal. Rules have the
format:

rulename : if
condition
then
conclusion
with
strength (N, 3S).

Condition is a possibly compound new goal to solve to determine the belief in the current
goal conclusion. A goal is said to be compound if it is a disjunction or conjunction of
subgoals. The strength clause contains factors used by the uncertainty reasoning scheme.

The predicate explore (see Appendix E.1) solves a goal by first checking if it has
been asserted as fact, then seeing if there are any directly applicable rules which may be
used to solve it. A rule is applicable if an instantiation of its conclusion matches the
current goal, and the rule is used by exploring the condition goal and propagating the evi-
dence from this exploration using the Prospector model as described below. If explore
cannot find a matching fact or rule and the current goal is compound, the subgoals are
explored and their results are combined to determine the confidence in the entire original
goal. Finally, if the answer still cannot be determined, the a priori probability of the goal
is used.

33
%% Low-level output for range image containing BMP apc.
%%

Surface Attributes
attr_location(<surface id>, <x location>, <y location>)

attr_hwa(<surface id>, <height>, <width>, <area>)
attr fit(<surface id>, <fit error>)

o P N o0 P K P

attr_location(l, 2.3, 1.75).
attr_hwa(l, 0.5, 0.4, 0.2).

attr fit(l, 250).

attr_location(2, 3.0, 1.75).
attr_hwa(2, 0.5, 0.4, 0.2).
attr_f£fit (2, 342).

attr_location(3, 3.7, 1.75).

attr hwa(3, 0.5, 0.4, 0.2).

attr_ fit (3, 501).

attr_location(4, 4.6, 1.75).

attr hwa(4, 0.07, 1.224, 0.08568).
attr_fit (4, 186).

attr_location{5, 1.35, 1.35).

attr hwa(5, 0.4, 2.9, 0.58).

acttr fit(5, 603).
attr location(6, 4.
attr hwa(6, 0.5, 6.
attr fit(6, 23).
attr_location(7, 3.
attr hwa(7, 1.0, 6.
attr fit (7, 438).

0, 1.25).
5, 2.67).

, 0.5)
, 5.5

oo

Surface =elations

rel adjacent(<surface id>, <surface id>, <edge type>)

P o° 0P P oo

snd) .
snd) .
jmp) .
snd) .
jmp) .
jmp) .
snd) .
snd) .

rel adjacent (1,
rel_adjacent (2,
rel adjacent (3,
rel_adjacent (5,
rel_adjacent (1,
rel_adjacent (3,
rel adjacent (5,
rel adjacent (6,

N ooy W
L T N

- =~

Figure 3.4.2 Example BMP surface attributes and relationships found by low level processing
and input to our first expert system as facts.

3-207

3.4.1.1.2. The Prospector Model of Uncertainty Reasoning

The Prospector model [Bratko, Dudal is used to propagate the evidence from the next
generation goal condition to the confidence in the parent goal conclusion, and makes use
of the strength factors N and S. N ranges between 0 and 1 and tells how necessary the
condition is for the conclusion; if the condition is false then the lower N is the less likely
the conclusion is. S tells how sufficient the condition is for the conclusion and takes values
greater than 1; if the condition is true then the higher S is the more likely the conclusion is.
Figure 3.4.3 illustrates how probability is propagated using these strength factors, and how
evidence is combined for compound goals. Note that posterior probability of the next gen-
eration goal condition, which is found using a fact or another rule, is used to determine the
multiplier M via the graph. This multiplier is then used to change the odds of the parent
goal conclusion in light of the current evidence. The following discussion describes how
the a priori probabilities are derived and how the system rules work.

3.4.1.1.3. Recognition via Decomposition and Evidence Accumulation

Figure 3.3.4 illustrates the names given to the surfaces composing each target. The
system tries to find evidence for a target by looking for its constituent parts. At the first
level these are turrets, decks, and tracks. These are decomposed further until the surface
level is reached. Figure 3.4.5 shows the breakdown of our four targets. Let us call a node
at any level of the tree, including the leaves, a construct. The rules reflect the structure of
the objects, and the system will generate object goals and break them down the same way
the object is decomposed into component constructs. The system uses the rules to discover
the object structure as it moves down the decomposition tree. On the way down the tree,
the surface identities in this structure remain uninstantiated. Once the leaves of the tree
are reached, the system uses the facts asserted by the low level processing to find surfaces
meeting stated attribute requirements. A surface is acceptable if its attribute is within 2
percent of the required value. The system now "unwinds", moving back up the tree with
these instantiations for surfaces. Consistency and adjacency checking is performed by the
rules during this "unwinding" process, and the Prospector model is used to combine the
acquired evidence.

The a priori probabilities are assigned using the decomposition tree. Since there are
four possible targets at the top level, each is assigned an equal a priori probability of 0.25.
The remaining construct probabilities are determined by breaking down the top level pro-
babilities. Each sibling construct gets an equal share of its parent’s probability, as also
illustrated in Figure 3.4.5. These a priori probabilities are asserted into the database along
with the rules. See Appendix E.2 for a complete list of the rules and probabilities for our
targets.

E = Evidence (Condition) H = Hypothcsis (Conclusion)

E H
(N.S)
pOCE) pO(H) p0 = prior probability
p(E) p(HIE) p = posterior probability

odds = prob/(1-prob)
odds(HIE) = M * oddsO(H)
prob = odds/(1+odds)

M
S
Interpolation rule
for multplier M
1
N
> p(E)
0
E notE
—CoD——
P 1-p
Logical relations and
pl El ~a Eland E2
@————) combining evidence for
pE2 min(p1,p2)
compound goals
plEl ~« ElorE2
>
p2 E2 7 max(p1,p2)

Figure 3.4.3 How evidence is propagated using the Prospector model.

e

I A WO N

R OWw--JaW b WN K

medium_dome_panel
medium_dome_panel
medium dome_ panel
small gunbarrel
med rear deck
med_fore_ deck

: med?um_track

BRDM2 apc

small dome panel
small dome panel
small dome_panel
lg rear deck

1lg mid deck

lg fore_deck
top_front
bottom front
med_side

wheel

wheel

Figure 3.4.4 Identities of surfaces composing the targets.

—1----------I--IIlIlIIIIIlIIllIllllllllllllllllli

MI113 apc

1 : large_side
2 : small_track

M60A1 tank

: hatch

! turret_body
turret front

: large_gunbarrel
: small deck

: large_track

1
2
3 :
4
5
6

Figure 3.4.4 continued.

med_rear_deck : 1/24

medium_deck : 1/12 <::::
med_fore_deck : 1/24
bmp : 1/4 medium track : 1/12
small gunbarrel : 1/24
medium turret : 1/12
1/

medium_dome_panel
medium_dome : 1/24 <5EEEmedium_dome_panel
medium_dome_panel

small_dome_panel
small_turret : 1/16 w—ewnsmall dome : 1/16 qEEEEEsmall_dome_panel
small_dome panel

med side : 1/48

car_side : 1/16 <whegl 1 1/48
wheel : 1/48

brdm2
top_front : 1/32

car_front : 1/16 <::::::
bottom front : 1/32

lg_rear_deck : 1/48

4 <§§;
\ large_deck : 1/16 <EEEE;lq_mid_dehk : 1748
lg_fore_deck : 1/48
| E

large_side : 1/8
mll3 : 1/4
small_track : 1/8

large_track : 1/12
hatch : 1/48

turret_body : 1/48
m60al : 1/ large_turret : 1/12

turret front : 1/48

large_gunbarrel : 1/48
small_deck : 1/12

Figure 3.4.5 Tree showing object decompositions and a priori probabilities.

1/72
1/72

1/72

1/48
1/48
1/48

3-212

3.4.1.1.4. Default Reasoning

If the system cannot find a surface with the required attributes, we do not want PRO-
LOG to fail. Instead, we want to build up a lower confidence in our hypothesized target
class. For this reason, attribute value facts are assigned an a priori probability of 0.00001.
This allows the system to continue the reasoning process even though a required surface is
not present or was corrupted due to noise or some low level processing error. Later, we
can tell that a given surface was not found because it remained uninstantiated.

The relative importance of an object component or surface is captured in the strength
factors of the rule responsible for finding it. If a construct is relatively unimportant or
often hard to find (e.g. a gun barrel), N should be set close to 1 so that the confidence in the
entire object will not be severely penalized if it is not present. If a construct is important
(e.g. a turret), a high S value will ensure that if it is found the confidence in the target class
will increase greatly, and a low N value will greatly decrease the confidence if it is not
found.

3.4.1.1.5. An Example and Some Conclusions

Figure 3.4.6 is an example session with the expert system. Once inside PROLOG,
the first step is to read in the expert system shell, its utility routines, and the file containing
the rules and a priori probabilities. Next, the file containing the surface attributes and rela-
tionships found by the low level processing is loaded. In this case, the input file is simu-
lated information for a range image containing an M//3 apc. The expert system shell is
asked whether an M113 is present, and it responds with a confidence value (probability) of
0.998499. It is also able to show how it arrived at this conclusion. When asked if an
MG60AI tank is present, the program responds with a confidence value of 0.004831.

We discovered some serious problems with the high level approach, which made
implementing it very educational. The primary source of trouble is that it is top-down.
Since the user obviously doesn’t know v-nat is in the range image (if he did, he probably
wouldn’t be wasting his time talking to our software), he is not in a position to ask the best
questions and probably shouldn’t even be consulted. On the other hand, the computer
doesn’t know what is in the range image either, and so must try all possibilities. This gives
us an unreasonably large search space and, unfortunately, there is no way to prune it using
our approach. Once we have found a tank we cannot exclude the possibility of there being
an apc in the image as well, and we don’t even know if we have found all of the tanks that
are there. The system also is not smart enough to find the solution with the highest
confidence value, but rather returns the first solution it finds. Finding the most probable
solution would require searching the entire space, which would take an unacceptable
amount of time.

There are also complications arising from the fact that we allow a surface to remain
uninstantiated in order to handle low level processing errors, that we never really force

% prolog

C-Prolog version 1.5

I ?- [expert, utilities, target rules}.

expert consulted 5144 bytes 1.5 sec.

utilities consulted 1100 bytes 0.400001 sec.
target_rules consulted 12588 bytes 3.46667 sec.

yes
I ?2- [‘ml13. surfaces’]).
mll3.surfaces consulted 280 bytes 0.133334 sec.

yes
I ?- expert.

Question, please:
l: target isa mll3,

target isa m113 : 0.99849%
Would you like to see how? yes.

target isa mil3 : 0.998499 was derived by rule3 from
large_side(1) and small_track(2) and mll3_adjacencies(l,2) : 0.998602 was derived from
large_side(l) : 0.998602 was derived by rulel6é from
elevation(1l,1.35) and height(1,1.3) and width(1,5.3) and area(l,6.2) and planar(l) : 1 was derived from
elevation(l,1.3%) : 1 was found as a fact
and
height (1,1.3) and width(l,5.3) and area(l,6.2) and planar(l) : 1 was derived from
height{1,1.3) : 1 was found as a fact

and

width(1l,5.3) and area(l,6.2) and planar(l) : 1 was derived from
width(1,5.3) : 1 was found as a fact
and

area(l,6.2) and planar(l} : 1 was derived from
area(l,6.2) : 1 was found as a fact
and
planar{1) : 1 was found as a fact
and
small track(2} and mll3_adjacencies(l,2) : 0.9993 was derived from
small_track(2) : 0.9993 was derived by rulell from
elevation(2,0.35) and height(2,0.7) and width(2,5.3) and area(2,3.08) and planar(2) : 1 was derived from
elevation(2,0.3%5) : 1 was found as a fact
and
height (2,0.7) and width(2,5.3) and area(2,3.08) and planar{2) : 1 was derived from
height (2,0.7) : 1 was found as a fact

and
width(2,5.3) and area(2,3.08) and planar(2) : 1 was derived from
width(2,5.3) : 1 was found as a fact
and
area(2,3.08) and planar(2] : 1 was derived from
area(2,3.08; : 1 was found as a fact
and
planar(2) : 1 was found as a fact
and
mil3 _adjacencies(l,2) : 0,9993 was derived by rulel9 from
adjacent(1,2,3jmp) : 1 was found as a fact

Mcre solations? no.

ves
| ?2- expert,

Questinn, please:
1: target isa mAal.

target isa mhdal : 0.00483114
Would you like to gsee how? no.

More solutinns? no.
yes
I 2-

I Proloa execution halteq
k]

Figure 3.4.6 Example session with first expert system.

“}

3-214

things to fail since we are using uncertainty reasoning, and that PROLOG backtracks to the
most recent choice it made in order to explore other possibilities. When we look for other
solutions via backtracking, the system will return all of the possible permutations of the
current set of surfaces with subsets of them uninstantiated before proceeding to a new set
of surfaces making up the next target. In the same way, it is also difficult to make the sys-
tem recover from errors in early choices. The system tends to propagate a low confidence
value and continue working if an adjacency constraint is not met, instead of backtracking
and making a proper choice for a surface.

Besides gross inefficiencies arising from its top-down approach, the system also
suffers from parameters that are difficult to set. Strength faciors are determined heuristi-
cally through experience in using the system. The effect of the factors is not local; tweak-
ing the factors in one rule affects the interaction with sibling rules, and side effects pro-
pagate up and across the tree. This makes the system hard to adjust, and slight structural
reconfigurations of the system require an extensive amount of work. Keeping all of these
problems in mind, we had far more success developing the expert system described in the
next section.

3.4.1.2. A Data-Driven Bottom-Up Approach

The second target recognition expert system we developed is written in OPSS5
[BroFar]. Like the first one, it reflects the character of the programming language it is
implemented in. OPSS is a data-driven language, and is amenable to the bottom-up
approach we wish to experiment with. We found the natural structure of OPSS5 rules and
its flow of control to be sufficient for our purposes, and so we did not build a shell on top
of it. At this point we wish to note that the OPS5 production system programming
language is implemented in LISP and runs in the LISP environment.

3.4.1.2.1. Data Objects, Rules, and the Inference Engine

Before we delve into the details of the expert system, a few words about OPS produc-
tion system architecture. A data store, called working memory, serves as a global database
of symbols representing facts and assertions about the problem. The data are instances of
objects, which may represent either physical objects (or facts) related to the domain of
application or conceptual objects (such as goals) related to the problem solving strategy.
An instantiated data object is called a working memory element. Figure 3.4.7 contains the
declarations of the data object classes used by the expert system. The capitalized word is
the name of the object class, and is followed by attribute names associated with the class.
The classes Start and Phase represent conceptual objects used in flow of control, while
World, Surface, Adjacent, and Construct represent physical objects or facts.

A set of rules constitutes an OPS program, and resides in the production memory.
Rule definitions have the format:

(literalize Start)

(literalize Phase
description

status

(literalize World
classes
threshold

(lireralize Surface
id
x_loc
y_loc
height
width
depth
area
h_to_w
fit_error

(literalize Adjacent
edge_type

first
second

v

Element class for initialization.

expand, hypothesize, build, or clean
expand
hypothesize
build
clean

active,

propose surface identities
construct higher level objects
perform garbage collection
finished

number of object classes
confidence threshold

unique number > 0 identifying surface
x-coordinate of surface location
y-coordinate of surface location
surface "height" (x-coordinate span)
surface "width" (y-coordinate span)
surface "depth" (z-coordinate span)
surface area

height to width ratio

mean planar patch fitting error

type of boundary between two surfaces

jmp jump edge due to range discontinuity
crv curvature edge
snd surface normal disparity edge

first surface
second surface

(vector-attribute surfaces)

{literalize Construct
type

confidence
surfaces

‘

the name of the construct (e.g. bmp,
qun_barrel} or flag value "output"

amount of belief in existence of construct

ordered list of surfaces in construct

Figure 3.4.7 Declarations of working memory element classes.

fill in missing attributes & relations

small turret,

3-216

(p rulename
{ condition element 1)

(condition element n)
{ action 1)
(action m))

The condition part of the rule is a list of element templates which are matched against the
contents of working memory. The action part of a rule is a list of instructions which may
modify the working and production memories. The complete set of rules for our system is
listed in Appendix F.

The third component of the OPS production system architecture is the inference
engine. It must determine which rules are relevant to a given working memory
configuration and chioose one to execute. This selection or control strategy is sometimes
called conflict resolution. Figure 3.4.8 illustrates the production system architecture used
by OPS. The inference engine iterates through a cycle of three action states. In the first
state, MATCH, the machine finds all of the rules that are satisfied by the current contents of
the working memory. The rule matchings that are found are all candidates for execution,
and are known collectively as the conflict set. The same rule may appear in the conflict set
several times if it is satisfied by different sets of working memory elements. The SELECT
state applies some predetermined selection strategy to determine which rules in the conflict
set will actually be executed. These rules are then fired in the EXECUTE state, which usu-
ally produces some change in production and/or working memory. Control then cycles
back to the MATCH state. The program terminates normally when the conflict set is
empty.

In this system, control is based on frequent re-evaluation of the data states, not on any
static control structure of the program. It therefore uses a data-driven philosophy. This
works well with the bottom-up approach. The program has been designed to operated in
phases. Each phase has its own particular goals and uses a disjoint subset of the system
rules to accomplish them. Figure 3.4.9 contains the flow of control production rules which
perform the phase transitions. The currently active phase is kept track of using the Phase
working memory element. We will now describe the individual phases in detail.

3.4.1.2.2. Phase 1: Fill in Missing Attributes and Relations

The purpose of Phase 1 is to overcome several deficiency of OPS, including the ina-
bility of OPS to compute items on the left hand (condition) side of rules and the lack of an
easy way to deal with reflexive relations. During this "expand" phase surface attributes

' Y

DATA RULES

{working memory) (production memory)

/

Fo-m--- > MATCH

'

(conflict set)

1

[}

]

|

|

E CONTROL
; ! or
SELECT INFERENCE ENGINE
1

; |

A EXECUTE

— (changes) ==

flow of data

________ flow of control

Figure 3.4.8 OPSS production system architecture.

;; Flow of Control Production Rules

(p Phase-Finished
{ (Phase ~status active) <phase> }
-—>

(modify <phase> “status finished)

(p Expand~to-Hypothesize
{ (Phase "~description expand “status finished) <phase>)}
-=>

(modify <phase> “description hypothesize “status active)

(p Hypothesize-to-Build

{ (Phase "~description hypothesize “status finisl.ed) <phase> }
-—>

(modify <phase> “description build “status active)

(p Build-to-Clean_Up
{ (Phase "“description build “status finished) <phase> }
-—>

(modify <phase> "“description clean “status active)

(p Qutput_Results

{ (Phase "description clean “status finished) <phase> }
-->

(remove <phase>)

Figure 3.4.9 Flow of control production rules performing phase transitions.

001

001

002

002

003

003

004

004

005

005

[y

3-219

and relationships not explicitly represented are calculated and filled in. Height-to-width
ratio, an attribute which could be easily computed from the height and width attributes and
checked on the fly if another programming language were used, here must be explicitly
stored if it is to be checked in the precondition part of a rule. In order to handle the rela-
tion Adjacent without resorting to an excessive number of rules, it was decided that
adjacent(B,A) would be asserted into working memory for every occurrence of
adjacent(A,B).

While building up higher level constructs from surfaces, as will be described later,
this system uses a default surface, with id number 0, in place of any surface which may not
have been found by the low level processing. Since it is not known at this stage of the pro-
cessing which surface or surfaces the default surface will have to substitute for, Phase 1
also asserts the adjacency of surface 0 with every known surface. Once again we have
tried to keep the rules simple and few in number at the expense of working memory use.
This should allow the production system to remain lucid while taking full advantage of the
efficient Rete pattern matcher used by OPS. Figure 3.4.10 contains example Phase 1 rules.

3.4.1.2.3. Phase 2: Hypothesize Surface Identities

In Phase 2 the expert system attempts to make hypotheses about the identities of sur-
faces based on their attributes. The surface names used are the same as those used by our
first expert system, and are given in Figure 3.4.4. If the attributes of a surface are within
the ranges specified by the preconditions of a hypothesis-generating rule, that surface is
asserted as a Construct consisting of the single surface. Say there are n classes in the par-
ticular domain in which we are working and that the a priori probability of the single-
surface construct which we are hypothesizing is ¢, then the confidence in our construct
using the given surface is n*c. The reason for this will be given in the description of the
next phase. The a priori probability for a given construct was asserted by the initialization
rule (/nitialize, rule number 999, see Figure 3.4.11), and it can be easily recognized
because it consists of the default surface (id number 0).

A “clean up" rule that is active at the end of this phase deserves special mention.
This rule (H-Clean-Up, rule number 222) removes the default constructs for which
hypothetically valid surfaces have been found. This is to avoid the use of the default sur-
face when valid surfaces exist, and thereby prevent the building up of a large number of
false hypothetical constructs, each representing a different permutation of where the
default surface could have been used. The only problem with this temporary fix is that if
two instances of a target class occur in one image, one complete and the other with a miss-
ing surface, the default is no longer around to contribute to the construction of the incom-
plete target. The robust and necessary solution to this nontrivial problem is to allow the
system to build up the constructs using the default surface, and then have rules that recog-
nize and discard these "more general” instantiations of the construct when "more specific”

;: Phase 1 Production Rules : Fill in missing surface attributes & relations

(p Expand-H_to_W ; 101
(Phase ~description expand “status active)
{ (Surface ~h_to_w nil “height <h> “width <w>) <s> }
-—>
{modify <s> “h_to_w (compute <h> // <w>))
) ;101

(p Expand-Adjacent_1 ; 102
(Phase “description expand “status active)
- (Adjacent "~first 0 “second 0)
-=>
(make Adjacent ~edge type jmp “first 0 ~second 0)
{make Adjacent "“edge type snd “first 0 ~gecond 0)
(make Adjacent “edge type crv “first 0 ~second 0)
) ;102

(p Expand-Adjacent_2 ; 103
(Phase ~description expand “status active)
(Surface ~id { <s> <> ni1 <> @ |}
- {Adjacent ~first <s> “second 0)
-=>
(make Adjacent "~edge_type jmp “first <s> ~second 0)
(make Adjacent “edge_type snd "“first <s> ~second 0)
(make Adjacent “edge_type crv “first <s> ~second 0)
) : 103

(p Expand-Adjacent_3 ; 104
(Phase ~description expand "“status active)
{Adjacent “edge type <type> ~first <sl> “second <32>)
- (Adjacent "“edge_type <type> "first <s2> ~second <s1>)
-=>
(make Adjacent "~edge_ type <type> “first <32> ~gecond <sl>)
) : 104

Figure 3.4.10 Example Phase 1 production rules.

;: Rule to Initialize Working Memory
i when an element of class Start enters working memory,
HH this rule initializes the database of a priori probabilities.

(p Initialize

{ <initialize>
-->

{remove <initialize>)

(Start) |}

(make Phase “description expand "status active)

(make World ~“classes 4 “threshold 0.95)

(make Construct “type bmp ~confidence 0.25)

(make Construct “type medium_track ~confidence 0.08333 “surfaces
(make Construct “type medium deck ~confidence 0.08333)

(make Construct “type med rear deck ~confidence 0.04166 "“surfaces
(make Construct “type med fore_deck ~confidence 0.04166 "surfaces
(make Construct “type medium _turret ~confidence 0.08333)

{make Construct “type small gunbarrel ~confidence 0.04166 “surfaces
(make Construct “type medium_dome ~confidence 0.04166)

(make Construct “type medium_dome panel ~“confidence 0.01389 “surfaces
(makn~ Construct “type brdm2 ~confidence 0.25)

(make Construct “type small turret ~confidence 0.0625)

(make Construct “type small dome ~confidence 0.0625)

(make Construct “type small dome panel “confidence 0.02083 ~“surfaces
(make Construct "“type large deck ~“confidence 0.0625)

(make Construct "“type lg rear deck ~confidence 0.02083 "~surfaces
{(make Construct “type lg mid deck ~confidence 0.02083 “surfaces
(make Construct “type lg fore deck ~“confidence 0.02083 ~surfaces
(make Construct “type car_side ~confidence 0.0625)

(make Construct “type med side ~confidence 0.02083 “surfaces
(make Construct “type wheel ~confidence 0.02083 ~“surfaces
{make Construct “type car front ~confidence 0.0625)

(make Construct “type top_ front “confidence 0.03125 “surfaces
(make Construct "“type bottom front ~confids ce 0.03125 “~surfaces
{make Construct “type mll3 ~confidence 0.25)

{(make Construct “type large_side ~confidence 0.125 ~surfaces
(make Construct “type small_track ~“confidence 0.125 “surfaces
(make Construct “type m60al ~confidence 0.25)

(make Construct “type large turret “confidence 0.08333)

(make Construct “type hatch ~“confidence 0.02083 ~surfaces
(make Construct “type turret body ~“confidence 0.02083 ~surfaces
(make Construct “type turret front ~“confidence 0.02083 ~surfaces
(make Construct “type large gunbarrel “confidence 0.02083 ~surfaces
(make Construct "“type small deck ~confidence 0.08333 ~“surfaces
(make Construct “type large track ~“confidence 0.08333 "“surfaces

i

(make Start)

Figure 3.4.11 Production rule that initializes working memory by asserting the a priori proba-

Make initialization class element

bilities of surfaces and higher level constructs.

)

0)

0)
0)

0)

0)

0)

)
0)
0)

0)
0)

0)
0)

0)
0)

0)

0)
0)
0)
0)

’

999

999

3-222

ones exist. Example Phase 2 production rules appear in Figure 3.4.12.

3.4.1.2.4. Phase 3: Build Higher Level Constructs

This is a very important phase, the one in which we will address the assignment of a
priori probabilities and uncertainty propagation. Phase 3 uses the surface constructs
hypothesized in Phase 2 to build higher level constructs such as turrets and decks and,
eventually, complete targets. Adjacencies are checked as these constructs are put together,
and the default surface may be used in place on one that the low level processing may have
missed. Figure 3.4.13 contains example Phase 3 production rules.

Since there are four possible targets, the a priori probability of each object class is
0.25, and would in general be the reciprocal of the number of classes (1/n). Figure 3.4.5 is
a diagram showing how each of the four targets is broken down into smaller constructs.
The fraction following each construct node in the tree is the a priori probability of thai
construct, and is equal to the sum of the a priori probabilities of its immediate children.
This is also how evidence is propagated up the tree. The confidence value for a higher
level construct is the sum of the confidence values for its constituent parts. In this particu-
lar probability assignment, all constituent constructs (those which are not complete targets
by themselves) were given "equal” weight in that all sibling constructs contribute an equal
amount of confidence to their parent construct. The weights of these siblings could be
shifted to emphasize the relative importance or unimportance of a given part, so long as
the sum of their confidence values remained the same and the effect is propagated down
the tree (each sibling construct’s confidence must still equal the sum of its immediate
children’s confidences). Figure 3.4.14 is an example of such a weighted tree.

At the lowest level of the tree, surfaces may provide positive evidence for the
existence of a construct, but the lack of a surface cannot disprove the existence of a con-
struct, since the surface mav have been missed because of noise or some other error in low
level processing. If a surface is missing, the default surface is automatically used in its
place with the correct a priori probability. Notice that if a target is built up entirely of
default surfaces, the highest confidence we can have in that target is its a priori value,
which is precisely what will be computed. However, if all the constituent surfaces were
found in the image, their respec ive a priori probabilities would have been multiplied by
the number of classes n to obtain new confidence values (see Phase 2 description), which
would result in a confidence value of 1.0 for the whole target. The more surfaces we find
(or, in the unequally weighted construct case, the higher the number of "important" sur-
faces found), the higher our confidence in the composite target.

B ®gF e

;; Phase 2 Production Rules : Hypothesize Surface Identities

(p H-turret body ;217
(Phase “description hypothesize “status active)
(World “classes <numbe ->)
(Construct “type turre. body “confidence <conf> “surfaces 0)

(Surface ~id { <s> <> nil <> 0 }
“y_loc { > 2.254 < 2.346 |} ; elevation 2.3 +- 2%
“height { > 1.372 < 1.428 } ; height 1.4 +- 2%
~“width { >1.96 < 2.04 } ; width 2.0 +- 2%
~area { > 2.744 < 2.856 } ; area 2.8 +- 2%
~fit_error { < 1000 } ; planar

)
-=>
(make Construct “type turret body

~“confidence (compute <number> * <conf>)
~surfaces <s>)

)y 217
(p H-large_gunbarrel ; 219
(Phase “description hypothesize ~status active)
(World "~classes <number>)
{(Construct “type large_gunbarrel “confidence <conf> “surfaces 0)
(Surface ~id { <> <> nil <> 0 }
~y_loc { > 2.107 < 2.193 } ; elevation 2.15 +- 2%
~area { > 0.4175 < 0.4345 } ; area 0.426 +- 2%
“h_to_w { > 0.02303 < 0.02397 }; h_to_w 0.0235 +- 2%
)
-=>
(make Construct “type large_gunbarrel
~“confidence (compute <number> * <conf>)
~surfaces <s> i
) ;219
(p H-Clean_ Up ;222
(Phase “description hypothesize “status finished)
{ <prior> (Construct “type <t> “surfaces 0)
(Construct "“type <t> "“surfaces { <> 0 })
-=>
(remove <prior>)
)+ 222

Figure 3.4.12 Example Phase 2 production rules.

;; Phase 3 Production Rules : Build Higher Level Constructs

(p Build-m60al
(Phase “~description build “status active)

(Construct “type large_turret ~confidence <cl>
~surfaces (<sl1> <> nil} <s82> <33> <36>)

(Construct ~“type small_ deck “confidence <c2>
~“surfaces <s4>)

(Construct “type large_track ~“confidence <c3>

“surfaces <s5>)
(Adjacent ~first <s2> “second <s4> "edge_type jmp)
(Adjacent ~first <s2> “second <s5> “edge_type jmp)
(Adjacent ~first <s3> "“second <s5> "edge_type jmp)
(Adjacent “first <s4> “second <s5> "“edge_type jmp)
-—>
(make Construct “type m60al
~confidence (compute <cl> + <c2> + <c3>)
~“surfaces <sl> <82> <383> <384> <35> <s56>)

(p B-large_turret
(Phase “description build "“status active)

(Const zuct ~“type hatch ~confidence <cl>
~surfaces <sl>)

(Construct “type turret_body ~confidence <c2>
“surfaces <3s2>)

(Construct “type turret_front ~“confidence <c3>

“surfaces <33>)
(Construct “type large_gunbarrel ~“confidence <c4>
~surfaces <s4>)
(Adjacent ~“fi-.st <sl> “second <s2> “edge_type jmp)
(Adjacent ‘first <s2> "“second <s3> "“edge_type snd)
(Adjacent ~first <s3> “second <s4> “edge_type jmp)
~—>
(make Construct “type large_ turret
~“confidence (compute <cl> + <c2> + <c3> + <c4é>)
~“surfaces <sl> <s52> <s3> <84>)

Figure 3.4.13 Example Phase 3 production rules.

312

312

313

313

bmp : 1/4

mll3 : 1/4

m60al : 1

Figure 3.4.14

<

A priori probabilities with constructs weighted according to their relative impor-

tance.

small turret : 1/2¢

small deck : 1/20

med rear_deck : 4/100

medium_deck : 1/12 <<:::
med_fore_deck : 13/300

medium track : 1/12

small gunbarrel : 1/60

medium_turret : 1/12

medium_dome panel : 1/45
medium_dome : 1/15 <EEEEnedium_dome_panel : 1/45
medium_come_panel : 1/45

.small dome_panel : 1/60
small dome : 1/20 small dome_panel : 1/60
small dome_panel : 1/60

med_side : 9/200

car_side : 3/40<wheel : 3/200
wheel : 3/200

top_front : 1/40

car_front : 1/20.::::::
bottom front : 1/40

lg_rear_deck : 3/200

large_deck : 3/40<lg__mid_deck : 21/400
l1g_fore_deck : 3/400
large_side : 3/20

small track : 1/10

large track : 1/10

hatch : 3/200

turret_body : 1/25

large_turret : 1/10

turret front : 3/100

large_gunbarrel : 3/200

R —

3-226 kak/yoder

3.4.1.2.5. Phases 4 & 5: Garbage Collection and Output of Results

At this point we have done the hard part of our processing. In Phase 4 we throw
away those constructs whose confidence is less than our likelihood threshold, and then
clean up working memory. We are done with surface attribute and relationship informa-
tion at this point, so all of that excess baggage may be discarded. All that should remain in
working memory are constructs we are confident in and the World element describing our
problem domain. Figure 3.4.15 contains example Phase 4 production rules. Phase 5
presents our results by writing out each construct, our confidence in it, and the list of sur-
faces making it up. The output rules are listed in Figure 3.4.16.

3.4.1.2.6. An Example

Figure 3.4.17 shows a script session of the program in action. Once inside LISP, the
first step is to load OPSS5, our data object declarations, the system rules, and the initializa-
tion rule. We then load in surface data found by our low level processing. The file used in
this example contains simulated data for three targets, and is much like that in Figure
3.4.17. The first target is a BRDM2 apc with a missing surface, the second is a complete
MG60A] tank, and the third is another M60A I whose gun barrel has been broken up into two
parallel parts by low level processing. The program successfully finds the apc, substituting
default surface O for the missing surface. The complete tank is easily found with high
confidence, and two possibilities are given for the second tank, each using one of the possi-
ble gunbarrels (surfaces 23 & 24). All other objects and constructs had confidences that
were too low to consider. The command (wm) examines the contents of working memory,
and shows that only the element defining the number of object classes and the confidence
threshold remains.

3.4.1.2.7. Conclusions

We are very pleased with our results using this approach, and it is the one we will
build on in the future. The data-driven philosophy has proven itself superior to any kind of
top-down approach. Our second expert system is much a cleaner program because the
architecture and t. chniques used arise naturally when one looks at the problem from the
proper perspective. Aside from suffering from a few problems with OPS, the system per-
forms very efficiently. It deals with missing surfaces and low level processing errors in a
simple, noncontrived fashion, and it easily finds all targets present in the image. The
method of target decomposition into constructs is a beautifully simple idea, and it reflects
how humans perceive complex objects. The definition of constructs and assignment of
weighted a priori probabilities can be done quickly through a user interface for an object
modeller, and from there rules can be generated automatically.

;: Phase 4 Production Rules : Perform Garbage Collection

(p Clean_Up-Adjacencies
(Phase “description clean “status active)
{ <adj> (Adjacent) }

-—>
(remove <adj>)

(p Clean_Up-Surfaces
(Phase "“description clean "“status active)
{ <surf> (Surface) }

-=>
(remove <surf>)

(p Clean_Up-Prior
(Phase “description clean "“status active)
{ <prior> (Construct “surfaces nil) |}

-->
(remove <prior>)

(p Clean_Up-Unlikely

(Phase “description clean "status active)

(World “threshold <thresh>)

{ <unlikely> (Construct "“confidence {<= <thresh>}) }
-

(remove <unlikely>)

Figure 3.4.15 Example Phase 4 production rules.

401

401

402

402

403

403

404

404

;; Output Results

(p Output-Type_and_Confidence ; 501
{ <object> (Construct “type { <t> <> output)} “confidence <c>) }
- (Phase)
-—>
(write (crlf) | Object class : | <t> (crlf))
(write |Confidence : | <c¢> (crlf))
(write |Surfaces : |)
{modify <object> ~type output “confidence nil)
)y ; 501
(p Output-Surfaces ; 502
{ <object> (Construct “type output ~surfaces [<s> <> nil }) }
- (Phase)
-->
(write (rjust 4) <s>)
(bind <first-surface> (litval surfaces))
(bind <second-surface> (compute <first-surface> + 1))
(modify <object> “surfaces (substr <object> <second-surface> inf) nil)
) : 502
(p Output-Complete ; 503
{ <object> (Construct “type output ~surfaces nil) }
- (Phase)
-->
(write (crlf))
(remove <object>)
) ; 503

Figure 3.4.16 Ouytput Results production rules.

% lisp

Franz Lisp, Opus 43.1 (vax dec/bsd.l)

(C) Copyright 1985,1986,1987 Franz Inc., Alameda Ca.

=> (load ’‘startup)

;; Loading file "startup"

;i Fast loading file "/usr/lib/lisp/opsS.o"

;; Loading file "“declarations"™

;7 Loading file "rules"
*t*t**x**k***ktk******k***********k******kx********;; Loading file “make"
L

=> (load 'test.all)

;; Loading file "test.all"
t

> (run)
Object class : brdm2

Confidence : 0.93739

Surfaces : 3 2 1 4 S 0 7 8 9 10 11
Object class : m60al

Confidence : 0.99992

Surfaces : 12 13 14 15 16 17
Object class : mé0al

Confidence : 0.99992

Surfaces : 18 19 20 21 22 23
Object class : mé0al

Confiderce : 0.99992

Surfaces : 18 19 20 21 22 24
end -- no production true

52 productions (614 // 1137 nodes)

520 firings (721 rhs actions)

156 mean working memory size (284 maximum)
93 mean conflict set size (292 maximum)
476 mean token memory size (933 maximum)

nil

=> (wm)

S7: (World “classes 4 “threshold 0.5)nil
=> (exit)

o

Figure 3.4.17 Example session with OPSS expert system.

Low-level output for range image containing BMP apc.

Surface Attributes

(make Surface ~id 1 "x loc 2.3 "y loc 1.75

“height 0.5 “width 0.4
~fit error 250)

~area 0.2

(make Surface ~id 2 “x loc 3.0 “y loc 1.75

“height 0.5 “~width 0.4
~fit error 342)

~area 0.2

(make Surface ~id 3 “x loc 3.7 “y loc 1.75

~height 0.5 ~width 0.4
~fit_error 501)

~area 0.2

(make Surface "“id 4 ~x_loc 4.6 "y loc 1.75
“height 0.07 ~width 1.224 “~area 0.08568

~fit_error 186)

(make Surface "id 5 “x_loc 1.35 "y loc 1.35

“height 0.4 ~width 2.9
~fit_error 603)

~area 0.58

(make Surface "“id 6 "“x loc 4.0 "y loc 1.25

~“height 0.5 ~width 6.5
~fit error 23)

~area 2.67

(make Surface ~id 7 “x loc 3.0 “y loc 0.5

“height 1.0 “~width 6.0
~fit error 438)

Surface Relations

(make Adjacent "“first 1 “second
(make Adjacent ~first 2 “second
(make Adjacent ~first 3 “second
(make Adjacent “first 5 “second
(make Adjacent ~first 1 “second
(make Adjacent “~first 3 “second
(make Adjacent ~first 5 “second
(make Adjacent "“first 6 ”“second

Figure 3.4.18 Example low level input to our expert system.

NN d W

~area 5.5

~“edge_type
~edge type
“edge_ type
~edge type
~edge_type
~edge_type
~edge_type
~edge type

snd)
snd)
jmp)
snd)
jmp)
jmp)
snd)
snd)

3-231

3.4.1.3. Future Work

Encouraged by our results, we have many new ideas to investigate. The first path we
wish to explore is the automatic generation of all possible target aspects from model infor-
mation. Once we can generate aspects automatically, the next task will be generation of
rules to recognize each of these aspects. We will also be trying to determine which attri-
butes are important for the recognition of specific object component surfaces. The attri-
butes and relations used may depend on the particular target aspect to be recognized, and
once they are known we will be able to extend our low level processing routines and
bridge the gap to our expert system. We will also need to examine the unique properties of
LADAR data, including a study of its noise characteristics, and keep these in mind as we
explore the above ideas. The problem of determining the range at which the geometric
approach breaks down, forcing the use of the 2-D silhouette approach, also needs to be
addressed.

3.4.2. A Multi-Resolution Data Structure for Model-Based Geometric Reasoning

The availability of LADAR sensor data brings wi . - . e promise of using geometric
techniques to improve target recognition. Much of the wurk that has been preformed in
geometric reasoning has been in the area of robot vision [Besl88]. In many ways robot
vision is an easier domain to work in because the environment is much more controlled
than the domain of LADAR sensing. In a robot cell, the perceived size of an object can be
controlled to be almost constant. However, the perceived size of a target in a LADAR
image can vary by more than a magnitude of ten. (i.e. the target can be closer than 500
meters, or further than 5000 meters.) Such a wide range of possible distances to the target
indicates that there is also a wide range in the on-target resolution that can be used to clas-
sify the target.

This section presents a novel multi-resolution data structure (called a multi-resolution
aspect graph) for model based geometric classification of targets. Given a 3D solid model
of a target it can automatically produce a hierarchical representation of the target ranging
from very low resolution to high resolution. The low resolution representation excludes all
structural information about a target except its silhouette. Such information is useful in
classifying targets that arc farthcst from the senser. The high resolution information can
give details about the relative location, size, orientation, etc, of the all the surfaces and
edges on the target. Such information is useful in generating hypotheses to verify the iden-
tity of the target.

Section 3.4.2.1 surveys a few geometric methods which have been used on LADAR
data and shows how the multi-resolution aspect graph can enhance their performances.
Section 3.4.2.2 describes aspect graphs which are a data representation that provide a
method of selecting viewpoints of a target which see the same features of a given target.
Section 3.4.2.3 presents the multi-resolution aspect graph (MRAG) which is a new data

—

3-232

structure that considers the resolution of the LADAR sensor when selecting which views
see the same features.

3.4.2.1. Geometric Based Target Recognition

There are numerous methods for using the geometric information for object recogni-
tion [Besl88]. Some approaches were presented earlier in this section and [VeWi87]
presents another approach, all are designed specifically for LADAR data. The following
paragraphs give a brief summary of each method.

3.4.2.1.1. Surface Segmentation Approach

The Surface Segmentation method presented in Section 6.1.1 of [KaYo088] classifies a
target based on the type, shape, relative location, orientation, area, etc of the surfaces
which comprise the target. Surfaces types include planer, cylindrical, spherical, and
unknown. The surface shapes include irregular, trapezoid, rectangle , and square. A
bottom-up rule based system groups surfaces which are nonconcavely adjacent and nearly
coplanar into objects, then higher level rules attempt to match these objects to known
objects.

The main disadvantage to this system is that very detailed surface information is
needed. It may not be possible to measure the curvature of a surface that is more than one
kilometer away. Many surfaces must be found on a given target before it can be accu-
rately classified. The current LADAR sensors may be able to deliver such information for
targets at less than a kilometer away, but for targets at four to five kilometers, two or three
planer surfaces, at best, will be able to be identified.

3.4.2.1.2. Goal-Driven Approach

The Goal-Driven Top-Down approach presented in Section 3.4.1.1 assumes the area
and location of all the surfaces of a target can be located. With this information it uses a
goal driven approach to match the surfaces to a given target using the Prospector Model of
Uncertainty Reasoning [Bratko, Duda]. The result of the match is a confidence value
showing how well the surfaces matched the moudel. This process is repcated for each pos-
sible target in the image and the target is classified as the model with the highest
confidence.

Although this system can handle missing surfaces, it still depends on the bulk of the
surfaces being found before it has significant confidence in its match. In addition, there
currently is no automatic method for building the probability tree (See Figure 3.4.5). This
tree must be rebuilt if the list of candidate targets changes. It also needs a hypothesis gen-
erating system to select which target models to attempt to match to the unknown surfaces,
otherwise it must compare the unknown surfaces to every known model.

3-233

3.4.2.1.3. Data-Driven Approach

The Data-Driven Bottom-Up approach presented in Section 3.4.1.2 also assumes that
most of the surfaces of an unknown target can be located and certain features of these tar-
gets can be measured. Instead of trying to prove the surfaces are from a certain target as
the Goal-Driven method did, the data-driven method has a library of all possible surfaces
which can can be seen based on the knowledge of all the possible targets which can be
seen. It then attempts to match each unknown surface to the surfaces in the library and
build up to the target.

This system like the others relies on being able to identify most of the visible surfaces
on the target. Although it can use default reasoning if a couple of the surfaces are missing,
if the bulk of the surfaces cannot be found, this method may fail.

3.4.2.1.4. Appearance Models

The Appearance Model approach [VeWi87] is like the Surface Segmentation method
from Section 6.1.1 of [KaYo087] in that it must identify various parts (and their relative
locations) of an unknown target in order to identify the entire target. Figure 3.4.19 shows
the appearance model of a vehicle which can be a tank, a Howitzer, or an APC. Each of
the possible targets are then broken down into smaller objects. The tank, for example, is
classified by finding the tank gun beside the tank turret which has the tank body below it
and the tank antenna above it.

The major drawback of this system is it must be able to identify fine features such as
the tank gun and antenna in order to identify the tank. In much of the current LADAR
data only the tank body (and maybe the turret) can be found . The inability to find the
other features would hinder the Appearance Model approach. The other drawback is that
there is no automatic method to create the appearance model.

3.4.2.1.5. Summary of Geometric Approaches

Each of these systems relies heavily on the ability to accurately identify several
features (edges, surfaces, or entire parts of the target such as the turret or main gun) of the
target. The advantage of such an approach is that if the desired features can be measured,
the system can make good use of the information to classify the target. However, current
technology sensors can report such information about targets at ranges of a kilometer or
less. However, LADAR systems need to be able to classify targets that are at least four to
five kilometers away. Although future sensors will most likely be able to deliver detailed
data at such distances, such data is not available today. The systems discussed above
could fail to classify the target if the bulk of the features cannot be identified. The mulu-
resolution aspect graph could be used to enhance the above systems by: 1) providing an
automatic means of generating the probability trees needed by both the Top-Down and
Bottom-Up approaches, and 2) automatically generating hypothesis (goals) for the Top-

NODES LINKS CONSTRAINTS

V = VEHICLE X-A : ANTENNA S = SPECIALIZATION A = ABOVE

T = TANK X-G = _tiiN P = PART B - BESIDE

H = HOWITZER X-T = TURRET N = NEXT-TO
A = APC X-8 = BODY

Figure 3.4.19 Region-Based appearance model of a vehicle which can be a Tank, Howitzer, or
an APC. (From [VeWi87)).

3-235

Down system. Section 3.4.2.2 gives some background information and Section 3.4.2.3
presents the actual structure.

3.4.2.2. Aspect Graphs

The appearance of a target varies greatly with the point from which it is viewed.
Although the overall appearance of a target will change as the target is simply rotated
about its axis through 90° of rotation, the visibility of geometric features (such as surfaces
and edges) does not change greatly from one view to another. (The characteristics of
features may change as the target turns, but the features usually will not completely appear
or disappear). Such an observation has lead to the creation of aspect graphs.

An aspect graph [KoDo76] characterizes the possible viewpoints from which a target
can be viewed by grouping viewpoints that see the same features into equivalence classes.
A node in the aspect graph corresponds to all the viewpoints that can observe the same
features. Aspect graphs can be generated analytically or by exhaustively examining the
object. When generating aspect graphs exhaustively the object is centered within a tessel-
lated viewing sphere (with between 60 and 80 tessels [HuKa88, HaHe87]) and the
geometric model is viewed from each of the tessels. The visible features in each tessel are
recorded and the tessels which view the same features are grouped together. Since the
LADAR sensor is currently ground based, our aspect graphs are generated from TWIN
models by using a viewing cylinder. (i.e. only the tessels corresponding to ground level
views are used.) Figure 3.4.20 shows an M113 as viewed from 22 tessels one meter above
ground level at a range of one kilometer and a resolution of 0.05 mrads between pixels.
Since surfaces are the most visible feature in the LADAR data, they are used as the
geometric feature for generating the aspect graph (other features can be used). Figure
3.4.21 is a list of all the surfaces that are visible from each viewpoint. Each of (he tessels
which see the same surfaces are grouped together in Figure 3.4.22. Each group represents
a node in the aspect graph of the M113. Figure 3.4.23 shows the views corresponding to
each node in the aspect graph. The M113 is a ‘‘boxy’’ object and the model is not
detailed, so the nodes on the aspect graph happen to represent eight equally spaced views.

As the number of visible surfaces in the model increases, the number of nodes in the
aspect graph increases. Figures 3.4.24 - 3.4.28, illustrate this for the M60A1 model. Fig-
ure 3.4.24 shows the 32 views of an M60A1: Figure 3.4.25 shows each of the surface
numbers on the M60A1 model; Figure 3.4.26 lists the surfaces visible from each tessel;
Figure 3.4.27 groups the tessels which view the same surfaces; and finally, Figure 3.4.28
shows the corresponding views of the M60A target. Note that the M60AT1 is a less boxy
target and therefore has more surfaces which results in it having twice as many nodes in its
aspect graph than the M113 does. The aspect graphs of both targets will have even more
nodes once the BRL-CAD models are converted to TWIN models.

e ——

i
L
t
¢

e = =

{
[

R A N T N i A N S D
L T & @
Ly, Ayt

=

Figure 3.4.20 MI113 as viewed from the 32 tessels on the viewing cylinder. Range = lh.n,
resolution := 0.05mrad.

Tessel Number | Visible Surfaces
1 2345
2 2345142124
3 2345142124
4 2345142124
5 2345142124
6 2345142124
7 2345142124
8 2345142124
9 23142124
10 67891011121417192124
11 67891011121417192124
12 67891011121417 192124
13 67891011121417192124
14 67891011121417192124
15 67891011121417192124
16 67891011121417192124
17 678910111214172124
18 67891011121317182022
19 67891011121317182022
20 67891011121317182022
21 67891011121317182022
22 67891011121317182022
23 67891011121317182022
24 67891011121317182022
25 61317182022
26 2345132022
27 2345132022
28 2345132022
29 2345132022
30 2345132022
31 2345132022
32 2345132022

Figure 3.4.21 Surfaces of M113 which are visible from each viewpoint.

Tessel Numbers Visible Surfaces
1 2345
2345678 2345142124
9 23142124
10111213141516 | 67891011121417 192124
17 678910111214172124
18192021222324 | 67891011121317 182022
25 61317182022
26272829303132 | 2345132022

Figure 3.4.22 Figure 3.4.21 with viewpoints grouped together which view the same surfaces.

0 L]

L]
/T

® (b)

'L
__-LI“B._

.

(©) (d)

—8

© ®

e o

N

(g) (h)

Figure 3.4.23 Views of M113 that correspond to each node in the aspect graph.

& e

Figure 3.4.24 MO6AL1 as viewed from the 32 tessels on the viewir_ cylinder. Range = 1km,
resolution = 0.05mrad.

Tessel Number

Visible Surfaces

2367891011333435384245
23567891011212528333435363839424445
23567891011212528333435363839424445
23567891011212528333435363839424445
235678910112125283435363839424445
235678910112125283435363839424445
2356789161121252834352638394244
2356789101121252834352638394244
7212535363944

121314151617 182021252829 313536394044
121314151617 182021252829 313536394044
121314151617 1820 21 25 28 29 31 35 36 39 40 44
121314151617 182021252829 313536394044
121314151617 182021252829 3136394044
121314151617 1820 21 25 28 29 31 36 39 40 44
121314151617 182021 2528 29 31 36 3940
121314151617 182931 3236 39 40 41
121314151617 18 19 23 24 29 30 31 3240 41
121314151617 18 1923242930 31324041 44
121314151617 18 192324293031 324041 44
121314151617 18 1923242930 313233404144
121314151617 18 192324293031 3233404144
121314151617 18 192324 29303132334041 44
121314151617 18 192324293031 3233404144
9232432334144
2346789101123243032333438414244
2346789101123243032333438414244
234678910112324303233343841424445
234678910112324303233343841424445
23467891011232430323334353841424445
23467891011232430323334353841424445
23467891011232430323334353841424445

Figure 3.4.26 Surfaces of MO6A1 which are visible from each viewpoint.

Tessel Numbers

Visible Surfaces

1
234
56
78
9
10111213
14 15
16
17
18
19 20
21222324
25
2627
2829
30 31 32

2367891011333435384245
23567891011212528333435363839424445
235678910112125283435363839424445
2356789101121252834353638394244
7212535363944

121314151617 1820 21 25 28 29 31 35 36 39 40 44
121314151617 182021 2528 29 31 36 39 40 44
121314151617 18 20 21 2528 29 31 36 39 40
121314151617 1829 31 3236 3940 41
121314151617 18 19 2324 29 30 31 32 40 41
121314151617 1819232429303132404144
121314151617 18 19 232429 30 31 3233 4041 44
9232432334144
2346789101123243032333438414244
234678910112324303233343841424445
23467891011232430323334353841424445

Figure 3.4.27 Figure 3.4.26 with viewpoints grouped together which view the same surfaces.

(a)

©

(g)

T
L=l

(b)

(0

(h)

Figure 3.4.28 Views of M60AI that correspond to each node in the aspect graph.

CHp 55
h
R

N\ =

(M (p)

Figure 3.4.28 (ccntinued)

3-246

Aspect graphs themselves can provide a suitable data structure for a model based
geometric reasoning system. For example, a classifier could be trained on the silhouettes
of the images corresponding to the nodes in the aspect graph. (See Figures 3.4.23 and
3.4.28.) The classifier would match an unknown target to one or more of the silhouettes.
Each silhouette corresponds to a given viewpoint of the 3D model and therefore has
geometric information about that view of the target. This information can be used to gen-
erate hypotheses about the geometric features present in the target. For example, if the
unknown target matched Figure 3.4.28 (c), the modeler could hypothesize that if the target
is an M60A1, then there must be a 90° edge in the lower half of the target and a jump edge
beiween the bottom half of the target and the top half.

Such an approach is a workable soiution if the target models are very simple like the
ones from ERIM. If more detailed targets are used, like those from BRL, the number of
nodes in the aspect graph would increase greatly. Most of the added details would not be
visible in distant LADAR images. The following section presents a method which will
systematically reduce the number of nodes in the aspect graph (if needed) to match the
detectable features of the target.

3.4.2.3. Muliti-Resolution Aspect Graphs

The previous section has shown how aspect graphs can take a 3D model of a target
and break it down into a number of candidate views, each seeing a different set of features.
If a detailed model is used, the aspect graph will have many nodes (viewpoints). This sec-
tion presents a new method for reducing the number of nodes in an aspect graph so that
detailed models can still be used to classify distant targets that have few pixels on target.

It is possible for a small feature in an object (a feature so small the LADAR sensor
can not see it), to cause additional (possibly unneeded) nodes to appear in the aspect graph.
The multi-resolution aspect graph is an extension of the aspect graph which systemati-
cally removes features from consideration when building the aspect graph so that the graph
is not influenced by features the sensor will never be able to see. The following two sec-
tions discuss how to build a multi-resolution aspect graph based on visible surface area and
the angles between two surfaces.

3.4.2.3.1. Surface Area Based Multi-Resolution Aspect Graph

Figure 3.4.29 is a list of all the surfaces in the M60A1 model. The numbers in the
Real Area column represent the actual wea of the surface as measured on the 3D model.
The number in the Viewed Area column are the number of pixels covered by the surface
when it is projected onto a 2D plane assuming a 0.05 mrad resolution and a distance of one
kilometer. Since this area changes with viewpoint, the maximum area seen from all of the
tessels is the one recorded. Notice that surface 29 has the largest real area, but it has one
of the smaller viewed areas. This is because it is the surface on the bottom of the tank.

‘“

Surface | Real Area | Viewed Area

Number | (meters?) (pixels)
2 0.26793 60.00
3 0.26793 56.00
4 0.34750 129.00
5 0.34750 129.00
6 3.16716 440.00
7 0.88122 315.00
8 0.62581 105.00
9 0.88122 295.00
10 0.62581 98.00
11 2.03758 660.00
12 0.21110 56.00
13 0.21110 60.00
14 0.69235 266.00
15 0.61492 126.00
16 0.69235 285.00
17 0.61492 135.00
18 3.08000 1232.00
19 0.12650 46.00
20 0.12650 46.00
21 0.70000 280.00
23 0.70000 280.00
24 9.92135 3992.00
25 9.92135 3991.00
28 2.61005 373.00
29 13.27565 220.00
30 2.61005 373.00
31 2.34000 935.00
32 2.83907 1120.00
33 1.48808 576.00
34 0.61393 244.00
35 1.48808 576.00
36 2.839¢" 1120.00
38 247 564.00
39 037112 135.00
40 0.63643 110.00
41 037112 132.00
42 0.36450 135.00
44 0.16302 142.00
45 0.00707 2.00

Figure 3.4.29 Actual and maximum viewed sizes of the surfaces in the M60A 1 model.

3-248

Although it is the largest surface, only a small part of it is ever visible at a given time.
Surface number 45 is the end of the main gun of the M60A 1. Although its viewed area is
only two pixels, its presence in tessels 5 and 6 (Figure 3.4.27) and absence in tessels 7 and
8 is enough to cause those tessels to be in different nodes on the aspect graph. This surface
would most likely never be seen by a LADAR sensor, and should therefore not cause the
aspect graph to have two nodes differing by only it.

In the example above, the features are the surfaces of the target. The surfaces can be
ordered by their largest viewed area and those surfaces whose area is too small to be
detected at the given resolution will not be considered when building the aspect graph.
Suppose at the given resolution the smallest reliably detectable surface is 575 pixels (i.e.
the number of pixels that can be viewed) , from Figure 3.4.29 it is seen that only surfaces
11, 18, 24, 25, 31, 32, 33, 35, and 36 would be considered in building the aspect graph.
Figure 3.4.30 is a list of the nodes in the reduced resolution aspect graph, and Figure
3.4.31 shows the corresponding views. The aspect graph has been simplified to match the
resolution of the sensor.

3.4.2.3.2. Edge Angle Based Multi-Resolution Aspect Graph

Edges are unother distinctive feature of LADAR imagery that can be used for target
classification. There are two types of edges which can appear in a range image, viewpoint
dependent edges ard viewpoint independent edges. Viewpoint dependent edges are gen-
erally those edzes which appear between the target and the background. For example the
edges between the tunct and the terrain in the background. The model itself gives all the
viewpoint independent edges, and these are the edges which will be used here. Figure
3.4.32 lists all the viewpoint independent edges aiong with their lengths and the angle
between the normals of the two surfaces which meet at the edges in the M60A1 model.
Figure 3.4.33 (a) plots the count of the number of edges with the same ungle and Figure
3.4.33 (b) plots the count of the number of edges with the same length. It is easy to see
that most of the edges are 90°. This is expected to change when more detailed models are
available since most targets are not so ‘‘boxy’’. Figure 3.4.34 shows a plot of length vs
angle for each of the models used. These again show that in these models, most of the
edges are 90°.

The edge information can be used to adjust the model to the sensor resolution by
observing that edges with small angles between surfaces are more difficult to detect than
edges with large angles. Also short edges are more difficult to detect than long edges. Our
approach is to remove all edges whose length is less than a given threshold and whose
angle is less than a given threshold. The thresholds used must be determined by the reso-
lution of the sensor. Since such information is not currently available, Figure 3.4.35 -
3.4.38 were generated to show how the M60A 1 model changes as edges are removed.

—»

Tessel Numbers

Visible Surfaces

1
234
5678
9
10111213
141516
17
18 19 20
21222324
25
262728 29
303132

113335
1125333536
11253536
253536

18 25313536
18253136
18312236
18 24 31 32
1824313233
243233
11243233
1124323335

Figure 3.4.30 Nodes of the aspect graph for the M60al using only those surfaces larger than

575 meters *.

(a) (b)

© (d)

(e (9]

Figure 3.4.31 Views of M60A1 corresponding to the tessels in Figure 4.12.

'——

(g) (h)

Q) @

(k) M

Figure 3.4.31 (continued)

Facel FaceZ Angle Tength FaceT ~ FaceZ ~ Angle length
(degrees) (meters (degrees melers
7. " 95“ 0.4 i 15 s&)_)_'S‘O'BTL
44 34 90 0.04 28 17 90 0.87
44 34 90 0.04 30 15 90 0.87
44 34 90 0.04 24 10 90 0.88
44 34 90 0.04 25 8 90 0.88
44 34 90 0.04 28 10 90 0.88
4 M 90 0.04 30 8 90 0.88
44 34 90 0.04 11 7 497 0.93
45 44 90 0.04 11 9 497 0.93
45 44 90 0.04 19 14 90 0.98
45 44 90 0.04 20 16 90 0.98
45 44 90 0.04 24 16 90 0.98
45 44 90 0.04 25 14 90 0.98
45 44 90 0.04 19 18 90 1
45 44 90 0.04 20 18 90 1
45 44 9C 0.04 38 37 33.69 1.06
28 20 0 0.15 34 1 90 1.1
30 19 0 0.15 43 39 803 1.1
31 1 90 0.15 43 41 803 1.1
31 1 90 0.15 40 37 28.37 1.12
42 39 94.8 0.27 43 40 28.37 1.12
42 4} 94.8 0.27 4 1 90 1.15
19 12 90 0.3 5 1 90 1.15
20 13 90 0.3 24 9 87.29 1.24
24 13 90 0.3 25 7 87.29 1.24
25 12 90 0.3 43 42 90 1.3
7 4 92.71 0.32 42 38 56.31 1.4
9 5 92.71 032 32 31 84.91 1.41
24 3 90 0.38 33 32 40.66 1.41
25 2 90 0.38 36 31 8491 1.41
4 2 90 0.38 36 35 40.66 1.41
5 3 90 0.38 6 4 90 1.44
21 18 90 0.4 6 5 90 1.44
23 18 90 04 33 1 83.87 1.49
31 21 90 0.4 35 1 83.87 1.49
31 23 90 0.4 39 37 803 1.61
37 32 81.98 0.4 41 32 1.7 1.61
34 38 56.31 0.49 38 33 65.7 1.62
38 4 56.31 0.49 38 35 65.7 1.62
40 39 79.17 0.57 21 1 90 1.75
41 40 79.17 0.57 22 21 90 1.75
34 33 54.44 0.6 23 1 90 1.75
35 34 54.44 0.6 23 2 90 1.75
10 9 31.47 0.71 32 1 81.98 2.01
12 1 4227 0.71 36 1 81.9 2.01
13 1 4227 0.71 37 36 819 2.01
14 12 60.76 0.71 37 31 90 2.1
15 14 45.66 0.71 11 6 107.66 22
16 13 60.76 0.7 22 18 90 22
17 16 45.66 0.71 29 11 542 22
2 1 32.01 0N 29 18 87.82 22
26 15 31.3 0.71 31 2 %0 22
26 8 24.82 0.71 6 1 20.32 2.2
27 10 24.82 0.71 26 25 90 4.49
27 17 31.3 0.7 27 24 % 4.49
3 1 32.01 0.71 28 27 90 4.49
7 2 91.81 0.71 30 26 90 4.49
8 7 31.47 0.71 29 28 90 6.03
9 3 91.81 0.71 30 29 90 6.03
p 17 90 0.87 24 1 90 6.4
25 1 90 6.4

Figure 3.4.32 Angles and lengths of all the edges in the M60A1 model. Ordered by length

Data from "M60A1 edge angles”

Count

L1
L6V
Z€°02
z8°%2
LE 82
£° 1€
Ly 1€
10°2Z¢
69°€€
99°0¥
L2°Ty
99°G¥
Z°vs
by bS
1€°96
9L°09
L°S9
LT6L
€°08
6°18
86" 18
L8°€8
16°48
62°L8
Z8°L8
06
18°16
1L°26
8°v6
99°L0T

Angle between Surfaces

"

Data from "M60A1 edge angles

Count

80

20 T

length
Figure 3.4.33 Count of edges with given angle and given length in M60A1 model.

Data from "M60A1 edge angles” , Data from "M35 edge angles”
8
- | }
6 a 6
s " £
> 4 > 4 -
s ©
3] 3
1 .
2 L] - !. » 2 = e
r . 2" % '
ag] o -
4° "w us _u 1 [
L Y LS r I
0 Y B SaE S S e S e s sum 0 T T
o 30 60 90 120 150 180 0 30 60 90 120 150 18
Angle Angle
Data from "M151 edge angles” Data from "M113 edge angles”
8 8
6 6
] .
. £ . .
:
- 2 *
[] a]
2) 2
» . i []
1 - i L []
" .l 1 . -] T i
0 T T T T o] ————r—r——r—r——r—r—— -
0 30 60 60 120 150 180 0 30 60 90 120 150 180
Angle Angle

Figure 3.4.34 Plots of edges length vs. edge angle for each of the models used.

(a) (b)

(c) (6]

(e) ®

Figure 3.4.35 MG60A1 with edges less than a given length removed. a) original M60A1 b) less
than 0.0 meters c) less than 0.1 meters d) less than 0.2 meters e) less than 0.3
meters f) less than 0.4 meters g) less than 0.5 meters h) less than 0.6 meters i)
less than 0.7 meters j) less than 0.8 meters k) less than 1.0 meters 1) less than 1.1
meters m) less than 1.2 meters n) less than 1.4 meters o) less than 1.5 meters p)
less than 1.8 meters q) less than 2.2 meters.

(m) (n)

(0) ()

@

Figure 3.4.35 Continued.

Figure 3.4.36 Back side of Figure 3.4.35.

h

(

(g)

Nav

M

(k)

Figure 3.4.36 Continued.

D\/
¢

o 200by150

&

(o) ®

(/

Q)

Figure 3.4.36 Continued.

(aj ®)

© (d)
(e) (H

Figure 3.4.37 M60A1 with edges less 70° and less than a given length removed. a) original
M60A1. b) less than 0.0 meters ¢) less than 0.1 meters d) less than 0.2 meters e)
less than 0.3 meters f) less than 1.1 meters g) less than 2.2 meters.

e]

()
(g)

Figure 3.4.37 Continued.

ﬁ_

(d)

(f

(e)

Figure 3.4.38 The back side of Figure 3.4.37.

3] (h)

Figure 3.4.38 Continued.

s e

3-265

Edges are removed from the model by assigning the two surfaces which meet at the
edge the same surface number. This is done by assigning both surfaces the minimum sur-
face number of the two. Figure 3.4.32 is a list of all the edges in the M60A1 model,
ordered from shorted edge to longest. In Figures 3.4.35 and 3.4.36, the edges were
removed in the order show in Figure 3.4.32 (i.e. based on length only) starting with the
shortest up to the longest. Remember that in an actual system, the sensor would determine
the longest detectable edge, therefore it would not have to compute all the views shown
here. Theses views are presented to show the appearance of the target at varying resolu-
tions.

Figure 3.4.39 is a list of all edges in the M60A1 model ordered from smallest to larg-
est angle up to 70°. After 70° they are ordered from shortest to longest. Such an ordering
might be used if is was know that a sensor could not reliably detect angles less than 70°.
In Figures 3.4.37 and 3.4.38, the edges are removed in the order show in Figure 3.4.39.
The model simplifies differently than when only length is used (as in Figures 3.4.35 and
3.4.36).

Adjusting both the edge angle threshold and the edge length threshold gives great
flexibility in reducing the complexity of a target. Since no information is available con-
cemning the angle and edge lengths that can be detected, and angle of 70° and 0.1 meters is
length was chosen (Figure 3.4.37c). The aspect graph is shown in Figure 3.4.40 and the
corresponding views are in Figure 3.4.41.

3.4.2.4. Conclusions

Targets appearing in real LADAR data can vary in size from a few pixels to several
thousand pixels. Such a wide dynamic range in perceived target size introduces some
additional complications in modeling the targets for recognition. The multi-resolution
aspect graph is a data structure which can be used to model such targets. It can be used to
retrieve data about a given target based on the range to the target.

Adjusting thresholds based on the surface area, edge length, and edge angle gives
great control over how a model is simplified. Future work must determine how to select
these thresholds based on the sensor being used.

Facel FKacel ‘Angle length
FacelI Facel Angle Tength idcﬁ;_eesg (meters)
(degrees) (meters) A 3 .
78 p. (] 015 25 2 90 0.38
30 19 0 0.15 4 2 90 0.38
41 32 1.7 1.61 5 3 90 0.38
11 7 497 093 21 18 90 0.4
11 9 497 093 23 18 90 04
6 1 20.32 22 31 21 90 0.4
26 8 24.82 0.71 31 3 90 0.4
27 10 24.82 0.71 37 32 81.98 0.4
40 37 28.37 1.12 40 39 79.17 0.57
43 40 28.37 1.12 41 40 7917 0.57
26 15 31.3 0.71 7 2 91.81 0.71
27 17 31.3 071 9 3 91.81 0.71
10 9 3147 0.7 24 17 90 0.87
8 7 31.47 0.71 25 15 90 0.87
2 1 32.01 0.7 28 17 90 0.87
3 1 32.01 0.7) 30 15 90 0.87
38 37 33.69 1.06 24 10 90 0.88
33 32 40.66 1.41 25 8 90 0.88
36 35 40.66 141 28 10 90 0.88
12 1 42.27 0.71 30 8 90 0.88
13 1 4227 0.71 19 14 90 0.98
15 14 45.66 0.71 20 16 90 0.98
17 16 45.66 0.71 24 16 90 0.98
29 11 54.2 22 25 14 90 0.98
34 33 54.44 0.6 19 18 90 1
35 34 54.44 0.6 20 18 90 1
34 38 56.31 0.49 34 1 90 11
38 34 56.31 0.49 43 39 803 1.1
42 38 56.31 14 43 4] 803 1.1
14 12 60.76 0.71 4 1 90 1.15
16 13 60.76 0.71 5 1 90 1.15
38 33 65.7 1.62 24 9 87.29 1.24
38 35 65.7 1.62 25 7 87.29 1.24
.. K. 90 U.04 43 42 90 1.3
44 34 90 0.04 32 31 8491 1.41
44 34 90 0.04 36 31 8491 1.41
44 34 90 0.04 6 4 90 1.44
44 34 90 0.04 6 5 90 1.44
44 34 90 0.04 33 1 83.87 1.49
44 34 90 0.04 35 1 83.87 1.49
44 34 90 0.04 39 37 803 1.61
45 44 90 0.04 21 1 90 1.75
45 44 90 0.04 22 21 90 1.75
45 44 90 0.04 23 1 90 1.75
45 44 90 0.04 23 22 90 1.75
45 44 90 0.04 32 1 81.98 2.01
45 44 90 0.04 36 1 819 2.01
45 44 90 0.04 37 36 819 2.01
45 44 90 0.04 37 3 90 2.1
31 i 90 0.15 11 6 107.66 22
31 1 90 0.15 22 18 90 2.2
42 39 94.8 0.27 29 18 87.82 2.2
42 4] 94.8 0.27 31 2 90 22
19 12 90 0.3 26 25 90 449
20 13 90 03 27 4 90 4.49
24 13 90 03 28 27 90 4.49
25 12 90 0.3 30 26 90 4.49
7 4 92.71 0.32 29 28 90 6.03
9 S 92.71 0.32 30 29 90 6.03
24 1 90 64
25 1 90 6.4

Figure 3.4.39 les and length 11 the ed th
at\;gveen ges §p tso 0§ thcg orgesccllnby ?erllvg)OAl model. Sorted first by angle

Tessel Numbers

Visible Surfaces

1
2345678
9
10111213141516
17
18192021222324
25
2627 28 29 30 31 32

1
15202125
12125
118202125
118
118192324
12324
14192324

Figure 3.4.40 Figure 3.4.26 with viewpoints grouped together which view the same surfaces of
an M60A1 with edges longer than 0.1 meters and angles greater than 70°.

L

50
200by150 200631

200by150
200by150 15

&‘ ;J}QD

20089150 200by150

Figure 3.4.41 Nodes of the aspect graph for the M60al using only those edges larger than 0.1
meters with an angle of greater than 70°.

200by150

Figure 3.4.41 Continued.

4. ELECTRONIC TERRAIN BOARD MODELING

4.1. ETBM via PADL

When developing ATR algorithms, the actual data from the sensor (or sensors) should be
used to test the algorithm. Unfortunately this data is not always readily available; field tests are
expensive and often postponed, and after a successful field test new scenarios are thought of
with an arrangement of targets, background and clutter not collected in the field test. To relieve
this problem, the construction of an Electronic Terrain Board Model is being pursued. Any-
one with such a system will be able to run *‘electronic’’ field tests and generate realistic data
without the time and cost of a conventional field test. To be successful, an electronic terrain
board must contain the following components:

1. geometric models of the targets of interest,

2. models of background and foreground clutter,

3. amodel of environmental conditions, and

4. wvalidation routines for testing the integrity of the simulated data.

The following sections address each of the above components.

4.1.1. Geometric Models of Targets

A first-order approximation to modeling targets can be as simple as collecting the wire
frame information about each target to be modeled. The paragraphs which follow describe the
conversion of the wire frame data from ERIM to geometric models.

4.1.1.1. Converting Wire Frame data to Geometric Models

ERIM has collected wire frame data which describes seventeen different vehicles. Each
description contains a list of points in three space, a list of edges which are ordered pairs of
points, and a list of surfaces; each surface is a list of edges ordered so that using the right hand
rule, if the fingers follow the edges, the thumb is the outward normal of the surface. Table 4.1.1
shows a portion of each list for the M60A1 (All units are in meters). Some of the surface
descriptions list edges with negative values; these negative values indicate that the order of the
points in the edge is reversed.

PADL [Padl], a solid modeling system originally designed for describing industrial parts,
is the geometric modeler being used. Although PADL was not designed for target simulation, it
does have facilities for computing range images of objects which is what is needed. PADL does
not understand points, edges, or bounded surfaces as input, instead it uses solid objects that are
bounded by planes; therefore a program was written to convert points, edges and bounded sur-
faces to solid objects. This program required human input since the wire frame data did not

Point File Edge File Surface File
Point X y z | Edge Pointl Point2 | Surface Edges
123456789
1. 3.15 1.81 1.6 1. 1 3 1. 1011121314 1516 17 18
2. 3.15 -1.81 1.6 2. 3 9 2. 19 -18 20 21
3. -3.25 1.81 1.6 3. 9 15 3. 22-142324
4. -3.25 -1.81 1.6 4. 15 17 4. 2526-20-17
5. -3.47 1.81 1.4 5. 17 21 5. 27 -15-2228
6. -3.47 -1.81 1.4 6. 21 25 6. 29-25-16-27
7. -3.47 1.10 1.4 7. 25 26 7. 30 -21-26 31 32
8. -3.47 -1.10 1.4 8. 26 22 8. 33-323435
9. -3.25 1.10 1.6 9. 22 18 9. -24 36 37 38 -28
10. -3.25 -1.10 1.6 10. 18 16 10. -37 39 40 41
11. -3.25 1.10 20 11. 16 10 1. 42 -31-29-38
12. -3.25 -1.10 2.0 12. 10 4 12. -24344 45
13. -1.5 1.10 2.0 13. 4 2 13. -12 46 47 48
14, -1.5 -1.10 20 14. 2 32 14. -44 49 50 51
15. -1.5 1.10 1.6 15. 32 30 15. -50 52 53 54
16. -1.5 -1.10 1.6 16. 30 29 16. -47 55 56 57
17. -1.5 1.25 1.6 17. 29 31 17. -56 58 59 6
18. -1.5 -1.25 1.6 18. 31 1 18. 161 62 65 63 66 64
19. -1.5 1.05 3.0 19. 33 1 19. -45 -51 -230 -65
20. -1.5 -1.05 3.0 20. 31 35 20. -55-46 -66 -231
21. 0.5 1.43 1.6 21. 35 33 21 -62 67 68 -3
22. 0.5 -1.43 1.6 22. 36 32 22. -67 -61 69 78
23. 0.5 1.23 3.0 23. 2 34 23. -69-64 -1171
24, 0.5 -1.23 3.0 24. 34 36 24. 7273 -4-68 -70 -71 -10 74
25. 1.7 0.55 1.6 25. 29 37 25. 749757677
26. 1.7 -0.55 1.6 26. 37 35 26. -75-87879
27. 1.7 0485 2.2 27. 38 30 27. -78 -7 80 81
28. 1.7 -0485 22 28. 36 38 28. -80 -6 82 83
29. 2.0 1.10 1.6 29. 38 37 29. -82-5-73 84
30. 20 -1.10 1.6 30. 39 33 30. -72-77 -76 85 86 -84
Tabie 4.1.1 Partial listing of points, edges, and surfaces for the wireframe model on an

M60A1. (All dimensions are in meters.)

4-3 kak/yoder

group the surfaces into objects bounded by planes as was needed for PADL. Figure 4.1.1 is a
sample PADL input for the M60A 1. Surtace 1 in Table 4.1.1 is the surface between the turret
and the main hull. It is a collection of edges 1 through 18. Edge 1 consists of points 1 and 3.
Point 1 is at x=3.15, y=1.81, z=1.6. The next section gives a detailed description of the PADL
code in Figure 4.1.1.

4.1.1.1.1. PADL Details

Table 4.1.2 gives a list a short description of the PADL commands used in Figure 4.1.1.
The text which follows gives a description of how these commands are used.

Table 4.1.2 PADL commands used in Figure 4.1.1

Command Description

blo Block primitive object
wed Wedge primitive object

un Union operator

diff Difference operator

at Location operator
meta Defines new primitives
plane Defines a plane

PADL has many primitive objects which can be assembled together to make complex 3-D
objects. The code in Figure 4.1.1 uses the primitive objects blo (a block) and wed (a wedge).
(PADL keywords are shown in boldface.) These primitives are combined using various opera-
tors. The two operators used in this code are un which unions two objects together and dif
which takes the difference between to objects. Objects can be placed at a specified locations by
using the at command. For these targets, the positive Z-axis is up, the positive Y -axis is the
front of the target, and the X -axis is the right of the target as viewed from the target. PADL
also allows new primitive objects to be defined by using meta. The meta command is given a
list of planes which bound the object in three space, and a block which which contains the new
object. Most of the targets were defined by using meta objects since surfaces were given in the
wire frame data.

The first line in Figure 4.1.1 defines an m60al to be the union of the m60al_hull,
m60al _turret, m60al _sm_turret, and m60al _gun. (The m60al_sm_turret is the small turret
on top of the main turret.) The next line defines m60al box which is a box that contains the
M60A1. The lines that follow define the turret, small turret, gun, and hull. The line

m60al_turret = meta(m60al_turretQ, m6Q0al_turretl, m6Q0al_turret2,
mo60al _turret3, m6Q0al turret4, m6Q0al turretS, m60al_turret6,
m60al _turret7, m60al_turret8, box=m60al _turret_box)

m60al = m60al_hull un m60al_turret un m60al_sm_turret un m60al_gun
m60al_box = m60al_hull_box un m60al_turret_box un m60al_sm_turret_box

un m60al_gun_box
m60al_turret = meta(m60al_turretQ, m60al _turretl, m60al _turret2,

m60al_turret3, m60al_turret4, m60al _turretS, m60al_turret6,

mo60al_turret7, m60al_turret8, box=m60al _turret_box)
mo60al_turretO=plane=(rm=(degy=90.0, degz=180.0, movx=-1.5, movy=-1.05, movz= 3.0));
m60al_turretl=plane=(rm=(degy=81.9022, degz=-95.1428, movx=-1.5, movy=-1.05, movz= 3.0));
mo60al_turret2=plane=(rm=(degy=83.4285, degz=-53.7462, movx=0.5, movy=-1.23, movz= 3.0));
mo60al_turret3=plane=(rm=(degy=90.0, degz= 0.0, movx=1.7, movy=-0.485, movz=2.2));
m60al _turret4=plane=(rm=(degy=85.0073, degz=53.7462, movx=1.7, movy=0.485, movz=2.2));
m60al_turretS=plane=(rm=(degy=81.9022, degz=95.1428, movx=0.5, movy=1.23, movz= 3.0));
m60al _turret6=plane=(rm=(degy= 0.0, degz= 0.0, movx=-1.5, movy=1.05, movz= 3.0));
mo60al_turret7=plane=(rm=(degy=33.6901, degz= 0.0, movx=0.5, movy=-1.23, movz= 3.0));
mo60al_turret8=plane=(rm=(degy=180.0, degz= 0.0, movx=-1.5, movy=-1.25, movz=1.6));
mo60al_turret_box = blo(x=3.2, y=2.86, z=1.4) at (movx=-1.5, movy=-1.43, movz=1.6)
m60al_sm_turret = meta(m60al_sm_turret), m60al_sm_turretl,

m60al_sm_turret2, m60al_sm_turret3, m60al_sm_turretd,

m60al_sm_turretS, box=m60al_sm_turret_box)
mo60al_sm_turretO=plane=(rm=(degy=80.8304, degz=95.0006, movx=0.5, movy=0.17, movz= 3.0));
m60al_sm_turret] =plane=(rm=(degy=28.369, degz=180.0, movx=-1.1, movy=0.03, movz= 3.0));
m60al_sm_turret2=plane=(rm=(degy=81.4126, degz=-94.6774, movx=0.5, movy=-1.18, movz=3.27));
m60al_sm_turret3=plane=(rm=(degy=90.0, degz= 0.0, movx=0.5, movy=-1.23, movz= 3.0));
m60al_sm_turretd=plane=(rm=(degy= 0.0, degz= 0.0, movx=0.5, movy=-1.18, movz=3.27));
m60al_sm_turretS=plane=(rm=(degy=180.0, degz= 0.0, movx=-1.1, movy=0.03, movz= 3.0));
m60al_sm_turret_box = blo(x=1.6, y=1.4, z=0.27) at (movx=-1.1, movy=-1.23, movz= 3.0)
m60al_gun = meta(m60al_gun0, m60al_gunl, m60al_gun2, m60al_gun3,

m60al_gund, box=m60al_gun_box)
m60al_gunO=plane=(rm=(degy= 0.0, degz= 0.0, movx=5.96, movy=0.05, movz=2.2));
m60al_gunl=plane=(rm=(degy=90.0, degz=90.0, movx=1.7, movy=0.05, movz=2.2));
m60al_gun2=plane=(rm=(degy=90.0, degz=-90.0, movx=5.96, movy=-0.05, movz=2.2));
m60al_gun3=plaue=_rm=(degy=90.0, degz= 0.0, movx=5.96, movy=0.05, movz=2.2));
m60al_gund=plane=(rm=(degy=180.0, degz= 0.0, movx=1.7, movy=0.05. movz=2.1));
m60al_gun_box = blo(x=4.26, y=0.1, 2=0.1) at (movx=1.7, movy=-0.05, movz=2.1)

Figure 4.1.1 PADL input for M60AT.

kak/yoder

m60al_hull_con = meta(m60al_hull_con0, m60al_huli_conl,

m60al_hull_con2, m60al_hull_con3, m60al_hull_cond, m60al_hull_con5,

m60al_hull_con6, m60al_hull_con7, m60al_hull_con8, m60al_hull_con9,

m60al_hull_conlQ, m60al_hull_conll, m60al_hull_conl2,

m60al_hull_con13, m60al_hull_conl4, m60al_hull_conl$,

m60al_hull_conl16, box=m60al_hull_con_box)
m60al_hull_conO=plane=(rm=(degy= 0.0, degz= 0.0, movx=3.15, movy=1.81, movz=1.6));
m60al_hull_conl=plane=(rm=(degy=32.0054, degz= 0.0, movx=3.47, movy=1.81, movz=1.4));
mé60al_hull_con2=plane=(rm=(degy=32.0054, degz= 0.0, movx=3.47, movy=-1.1, movz=1.4));
m60al_hull_con3=plane=(rm=(degy=123.818, degz= 0.0, movx=2.78, movy=1.81, movz=0.37));
m60al_hull_cond=plane=(rm=(degy=155.179, degz= 0.0, movx=1.98, movy=1.81, movz= 0.0));
m60al_hull_con5=plane=(rm=(degy=123.818, degz= 0.0, movx=3.47, movy=-1.1, movz=1.4));
m60al_hull_con6=plane=(rm=(degy=155.179, degz= 0.0, movx=2.78, movy=-1.1, movz=0.37)),
m60al_hull_con7=plane=(rm=(degy=42.2737, degz=180.0, movx=-3.25, movy=1.1, movz=1.6));
m60al_hull_con8=plane=(rm=(degy=42.2737, degz=180.0, movx=-3.25, movy=-1.81, movz=1.6));
m60al_hull_con9=plane=(rm=(degy=103.039, degz=-180.0, movx=-3.47, movy=1.1, movz=1.4));
m60al_hull_con10=plane=(rm=(degy=148.696, degz=-180.0, movx=-3.25, movy=1.1, movz=0.45));
m60al_hull_conl1=plane=(rm=(degy=103.039, degz=-180.0, movx=-3.47, movy=-1.81, movz=1.4));
m60al_hull_conl2=plane=(rm=(degy=148.696, degz=-180.0, movx=-3.25, movy=-1.81, movz=0.45));
m60al_hull_conl3=plane=(rm=(degy=90.0, degz=-90.0, movx=-2.51, movy=-1.81, movz= 0.0));
m60al_hull_conl4=plane=(rm=(degy=90.0, degz=90.0, movx=1.98, movy=1.81, movz= 0.0));
m60al_hull_conl5=plane=(rm=(degy=180.0, degz= 0.0, novx=-2.51, movy=1.81, movz= 0.0));
m60al_hull_con16=plane=(rm=(degy=180.0, degz= 0.0, movx=1.98, movy=-1.81, movz= 0.0));
m60al_hull_con_box = blo(x=6.94, y=3.62, z=1.6) at (movx=-3.47, movy=-1.81, movz= 0.0)
m60al_hull_bottom = blo(x=6.03, y=2.2, z=0.37) at movx=-3.25, movy=-1.1, movz= 0.0
m60al_engine = blo(x=1.75, y=2.2, z=1.4) at movx=-3.25, movy=-1.1, movz=0.6
m60al_hood = wed(x=2.2, y=0.3, z=1.47) at degz=90, degy=-90,

movx=3.47, movy=-1.1, movz=1.6
m60al_hull = (m60al_hull_con dif m60al_hood dif m60al_hull_bottom) un m60al_engine

Figure 4.1.1 Continued.

4-6 kak/yoder

defines the turret which is a meta object consisting of the nine planes:

m60al_turretO=plane=(rm=(degy=90.0, degz=180.0, movx=-1.5, movy=-1.05, movz= 3.0));
mo60al_turretl=plane=(rm=(degy=81.9022, degz=-95.1428, movx=-1.5, movy=-1.05, movz= 3.0));
m60al_turret2=plane=(rm=(degy=83.4285, degz=-53.7462, movx=(0.5, movy=-1.23, movz= 3.0));
mo60al_turret3=plane=(rm=(degy=90.0, degz= 0.0, movx=1.7, movy=-0.485, movz=2.2));
m60al_turret4=plane=(rm=(degy=85.0073, degz=53.7462, movx=1.7, movy=0.485, movz=2.2));
m60al_turretS=plane=(rm=(degy=81.9022, degz=95.1428, movx=0.5, movy=1.23, movz= 3.0));
m60al_turret6=plane=(rm=(degy= 0.0, degz= 0.0, movx=-1.5. movy=1.05, movz= 3.0));

m60al _turret7=plane=(rm=(degy=33.6901, degz= 0.0, movx=0.5, movy=-1.23, movz= 3.u));
m60al_turret8=plane=(rm=(degy=180.0, degz= 0.0, movx=-1.5, movy=-1.25, movz=1.6));
mo60al_turret_box = blo(x=3.2, y=2.86, z=1.4) at (movx=-1.5, movy=-1.43, movz=1.6)

which are displayed in Figure 4.1.2. The orientation of th;:, planes came from the surface infor- -
mation in the wire frame data for the M60A 1. The definition of the small turret, sm_turret, is

m60al_sm_turret = meta(m60al_sm_turretQ, m60al_sm_turretl,

m60al_sm_turret2, m60al_sm_turret3, m60al_sm_turret4,

m60al_sm_turretS, box=m60al_sm_turret_box)
m60al_sm_turretO=plane=(rm=(degy=80.8304, degz=95.0006, movx=0.5, movy=0.17, movz= 3.0));
m60al_sm_turretl =plane=(rm=(degy=28.369, degz=180.0, movx=-1.1, movy=0.03, movz= 3.0));
m60al_sm_turret2=plane=(rm=(degy=81.4126, degz=-94.6774, movx=0.5, movy=-1.18, movz=3.27
mo60al_sm_turret3=plane=(rm=(degy=90.0, degz= 0.0, movx=0.5, movy=-1.23, movz= 3.0));
m60al_sm, turretd=plane=(rm=(degy= 0.0, degz= 0.0, movx=0.5, movy=-1.18, movz=3.27));
mo60al_sm_turretS=plane=(rm=(degy=180.0, degz= 0.0, movx=-1.1, movy=0.03, movz= 3.0));
mo60al_sm_turret_box = blo(x=1.6, y=1.4, z=0.27) at (movx=-1.1, movy=-1.23, movz= 3.0)

and the gun is

m60al_gun = meta(m60al_gun0, m60al_gunl, m60al_gun2, m60al_gun3,
m60al_gund, box=m60al_gun_box)
m60al_gunO=plane=(rm=(degy= 0.0, degz= 0.0, movx=5.96, movy=0.05, movz=2.2));
m60al_gunl=plane=(rm=(degy=90.0, degz=90.0, movx=1.7, movy=0.05, movz=2.2));
m60al_gun2=plane=(rm=(degy=90.0, degz=-90.0, movx=5.96, movy=-0.05, movz=2.2));
m60al_gun3=plane=(rm=(degy=90.0, degz= 0.0, movx=5.96, movy=0.05, movz=2.2));
m60al_gund=plane=(rm=(degy=180.0, degz= 0.0, movx=1.7, movy=0.05, movz=2.1));
m60al_gun_box = blo(x=4.26, y=0.1, z=0 1) at {movx=1.7, movy=-0.05, movz=2.1)

These two are also both meta objects which are bounded by planes as displayed in Figure 4.1.2.
The following line

Figure 4.1.2 the PADL objects m60al turret, m60al sm_turret, and m60al_gun from Fig-
ure 4.1.1.

4-8 kak/yoder

mo60al_hull_con = meta(mé60al_hull_con0, m60al_hull_conl,
m60al_hull_con2, m60al_hull_con3, m60al_hull_cond4, m60al_hull_conS,
m60al_hull_con6, m60al_hull_con7, m60al_hull_con8, m60al_hull_con9,
m60al_hull_con10, m60al_hull_conll, m60al_hull_conl2,
m60al_hull_conl13, m60al_hull_coni4, m60al_hull_coni$},
m60al_hull_con16, box=m60al_hull_con_box)

which is the first line of the second page of Figure 4.1.1 defines the convex part of the hull of
the M60A1. PADL meta objects must be convex. The hull of the M60A1 has some concavi-
ties, therefore it is defined by the convex part m60al hull_con and subtracting off (using dif)
the concave parts. Figure 4.1.3 shows the convex part, m60al _hull_con, and the engine box
m60al_engine, the wedge above the hood, m60al hood, and the space between the treads,
m60al _hul_bottom. Figure 4.1.4 shows the M60A1 hull, m60al_hull after subtracting the
concave parts off.

The other vehicles are defined in a similar way. After converting, the vehicles were read
into PADL and the wire frame, shaded, and range images in Figure 4.1.5-4.1.8 were created.
Although the shaded image have the light source to the left of the viewer, they are displayed
here as negatives, so the bright surfaces appear dark. Only the range images in the figures are
used in our simulations. All the vehicles in Figure 4.1.5 - 4.1.8 were scaled so that they were
the size that would be seen by a sensor at 500 meters using a 0.05 mrad instantaneous field of
view (IFOV)t in both directions.

4.1.1.2. The Electronic Field Test

With these models in hand an electronic field test was performed which generated noise-
less LADAR images of cach target as viewed from 500 meters. Each test consisted of 60 views
of each target, one view every 6 degrees. With this data we were able to generate images from
any multiple of 500 meters and any multiple of 0.05 mrad IFOV, by down sampling the targets.
Figure 4.1.9 shows an M60A 1 as viewed from 500m to 5km.

4.1.1.3. Conclusions

We are now able to model targets ‘‘as they come from the factory’’. For many of our
experiments this data will be sufficient. Future work in the modeling area will look into model-
ing targets ‘‘after user modifications’’. That is, it is a common practice for an operator of a
vehicle to attach clutter to the target once a vehicle is in the field. Such clutter should be easily
modeled by the fractal trees discussed in the sections that follow.

t The IFOV is the angular measurement between adjacent pixels.

—

Figure 4.1.3 The PADL objects m60al_hull_con, m60al_hull_bottom , m60al_engine , and
m60al _hood from Figure 4.1.1.

Figure 4.1.4 The PADL object m60al _hull from Figure 4.1.1.

dmp.disp

bmp.shade

bmp.lase

Figure 4.1.5 Wireframe, shaded, and range image of BMP.

brdm?2.disp

A 1N T

o

brdm?2.shade

brdm?2.lase

Figure 4.1.6 Wireframe, shaded, and range image of BRDM2.

m113.disp

m1l13.shade

m1l13.lase

Figure 4.1.7 Wireframe, shaded, and range image of M113,

disp

mo60al

NN AN

.shade

m60al

mo60al.lase

Figure 4.1.8 Wireframe, shaded, and range image of M60A.

Figure 4.1.9 An M60A1 as viewed from 500m, 1km, 2km, 3km, 4km, and Skm.

4-16 kak/yoder

4.1.2. Modeling Clutter

Modeling targets alone is not enough to generate realistic scenes. With only models of tar-
gets we can simulate a target sitting in the middle of a plane with no clutter around it. Unfor-
tunately real targets are both surrounded by clutter and have clutter attached to them. Fractals
have been shown to accurately model natural objects [Mand]. The following sections give a
brief introduction to fractals and show how we used them to model the terrain of the earth and
trees.

4.1.2.1. Fractals

Fractals, as defined by Mandelbrot [Mand], are a family of shapes which describe many of
the fragmented and irregular shapes around us. The most useful fractals involve chance and
both their regularities and their irregularities are statistical. The most useful feature of fractals
for generating clutter is that the irregularity is similar at all scales. That is, a mountain can be
viewed at 10km and many irregularities can be see. Moving to 1km will reveil many finer irre-
gularities. These fragmented patterns described by fractals are needed to model clutter, whether
it is at 10km or 10 meters.

4.1.2.2. Fractal-Based Terrain Generation

The generation of mountains is one of the areas fractals have been successful in generating
realistic looking objects using only a few parameters. Kornfeld [Korn1] used fractals to gen-
erate the crest line structures used in the background of her simulated FLIR images. Figure
4.1.10 shows how she approximates mountain ranges using flat layers at different distances
from the viewer. The top edges of the crests were created using fractals. Such an approach is a
nice simplification which allows the simulation program to synthesize thc FLIR image very
quickly, however it cannot be used for simulating range images for the obvious reason that the
sensor would pick out the flat layers.

Fournier et al. [FFC] use fractals to generate 3-D mountains by computing the elevation of
points above a grid. The grid, as described here, is merely a collection of numbers which can be
interpreted as elevations above a plane. The spacing between grid points is not of interest here
and is later set according to the dimensions of other objects in the synthetic range image. Each
grid point has a certain neighborhood associated with it. The elevation of the point is just the
average of the neighborhood perturbed by a random amount. Also, the orientation of the neigh-
borhood relative to the point of interest depends on its position. Figure 4.1.11 shows the order
in which elevations are computed.

The grid is filled in as follows: After setting the four corner elevations, filling the rest of
the grid is merely an exercise in recursion. First the corner points (the ones labeled 0) are
selected. The values chosen for these points depend on the type of terrain the designer is simu-
lating. If a rolling plane is being simulated, all four points will be given about the same value.
If the side of a mountain is being simulated, the bottom points labeled 0 may be given one

-

ga—

| CLUTTER

— DRIVING TANKS

—

Figure 4.1.10 Schematic of crest lines structure.

I
o
*
@i
™,
&

i }
A~
22 2a 2h (22) 2h*
—’
! l l
0 20 Ths_ 2h« 0O

Figure 4.1.11 Order of grid point computation. The four corner points are set before computa-
tion begins. Order of computation is: la, 1b, 2a, 2b. An (*) indicates a point
interpolated from boundary values only.

4-19 kak/yoder

value, and the top points labeled 0 will be given a greater value. After the comer points are
labeled the routine will pick a value for the point labeled /a by finding the average for all the
points labeled 0 and then adding a random value to it. (The neighbors of /a are the 0 points.)
Next the values for the /b points are found by averaging the 0 points to the left and right (or
above and below if the 1b is on the left or right) with the value of ihe /a point. Next the values
of the 2a points are found by averaging the neighbors that are shown with arrows in Figure
4.1.11. Likewise with point 2b. Notice that the neighbors of /a and /b are above, below, left,
and right of of them while the neighbors of 2a and 2b are oriented differently in that they are
on the diagonals from them.

Figure 4.1.12 shows the different phases of a terrain patch at different times in the process
of adding more detail. Figure 4.1.13 shows a patch of terrain with some targets on it.

4.1.2.3. Fractal-Based Tree Generation

Background clutter such as mountains is not the only form of clutter in a range image.
Another more difficult form of clutter is foreground clutter, which is more difficult because it
can obscure the targets of interest. Our first approach to simulating this type of clutter is to
simulate trees. The next sections review a couple of techniques used to simulate trees in FLIR
simulations and the final section shows the approach being taken here.

4.1.2.3.1. Tree Simulation at CNVEQ

Gertrude Kornfeld [Korn2] simulates trees by cutting a tree out of actual FLIR imagery
and pasting it into the simulated imagery. One problem with this approach is that all the trees
will look the same. To overcome this problem she distorts the tree image through non-linear
scaling before pasting it into the synthetic image. Using this approach she can have several
trees (46 in one example) in a scene which are distortions of just a few trees (three trees in the
same example).

The main problem with this approach is that like the mountains, the trees are flat. The
same tree cannot be viewed from different angles. For her work this is fine, but for an Elec-
tronic Terrain Board Model, one must be able to describe the terrain board in three space and
then view the objects from any angle.

4.1.2.3.2. The GTRI Model of Trees

The Georgia Tech Research Institute has a FLIR simulator called GTVISIT which contains
a three dimensional tree model. This model (shown in Figure 4.1.14) contains over 32,000
facets which describe the tree’s reflectivity in three dimensions. The simulator allows the tree
to be copied, scaled, rotated, and placed anywhere in the scene. This approach overcomes the
problem of having a 2-D tree, but due to the large size of the tree, it is the only hardwood tree in
the model, and scaling and rotation are used to give the appearance of different trees.

Figure 4.1.12 Different phases of a terrain patch being formed.

Figure 4.1.12 (Continued)

I\
X :'-;3":'6‘

005t owe

Q"fou,.:;’lﬂ:fh 7
P SO
L

‘4

Figure 4.1.13 Shaded and range images of a simulated M60al and a M1 13 on a terrain patch.

Figure 4.1.14 Simulated hardwood tree in GTVISIT model. The same tree appears three times,
each time it is scaled and rotated differently.

424 kak/yoder

4.1.2.3.3. The Fractal Approach to Trees

A three dimensional model of a tree must be used for simulating LADAR images. This
model should be detailed enough to look like a tree to the sensor being modeled, but be simple
enough for several different trees to be used in the same image. One approach is to grow the
trees as they are needed by using a formal grammar. This approach, presented in [Smit], uses a
formal grammar (an example is shown in Figure 4.1.15) which describes how the tree is grown
from one generation to the next. Each generation is grown by taking the symbols on the left
side of the production rules and replacing them with the symbols on the right of the production
rules. If we define the Z-axis as being up, the angle of the branches around the Z-axis and down
from the Z-axis can be randomly chosen. The range of the random numbers determines the type
of tree being grown.

This approach has the advantage that every tree used can be a different tree. This reduces
the possibility of an algorithm becoming accidentally tuned to a given tree. Once a tree is
grown, it can be placed on the Electronic Terrain Board Model and viewed from any angle.
Figure 4.1.16 is a fourth generation tree using the grammar in Figure 4.1.15. The branches of
the tree are cylinders, all of the same diameter, and there are no leaves on the tree. Future work
should make the tree look more like a tree as viewed by a LADAR sensor.

4.1.2.4. Real Terrain Board Data

Although fractals can be used to generate real looking terrain, real terrair data looks even
more real. Figure 4.1.17 is an image created using the elevation data from the Night Vision
Laboratory Terrain Model. This data could have been used in generating the scenes in this
report, however it was not available at the time time work was being done.

4.1.3. Noise Degradation of Synthetic Range Imagery

The next two components of the Electronics Terrain Board Model which need to be
addressed are the modeling of the sensor and the current environmental conditions. The pur-
pose of these models is to add the correct type and amount of noise to the synthesized image to
simulate the sensor and how it interacts with the environment. We lacked specific information
on the LADAR sensor, so we chose to examine the noise present in the LADAR image taken
during the 1986 A.P. Hill test. The next sections describe our analysis of the noise, and the
creation of noisy synthetic images.

Both the general nature of the noise (e.g. Gaussian, uniform, etc.), and how the noise
varies with range are studied here.

4.1.3.1. Analysis of LADAR Noise

The analysis which follows is based on experiments performed with the old laser range
data, i.e. background pixels are merely noise. Depending on the changes made to the sensor,

Figure 4.1.15 Grammar for growing a tree. (a) Production rules. (b) Generation n=2.

Figure 4.1.16 Fourth generation tree using the grammar in Figure 4.1.15.

Figure 4.1.17a Mountains generated from NVL terrain board data. Facet image.

Figure 4.1.17b Mountains generated from NVL terrain board data. Shaded image.

Figure 4.1.17c Mountains generated from NVL terrain board data. Shaded image with smooth-
ing.

4-30 kak/yoder

the results presented may change drastically. Recall, however, that the main objective here is to
determine whether realistic images can be generated, and the actual data used is the only data
available for comparison.

4.1.3.1.1. General Characteristics

The five ton truck target is used for the analysis in this section and the next. This target
provides a large flat surface from which to extract a window of data at ranges of 1.54, 2.91, and
4.24 km.

Figure 4.1.18 is a sample image from the 1.54 km set showing the hand selected rectangu-
lar window used to extract noise data from only the target. In many simulation type problems it
may be possible to assume Gaussian noise characteristics. However the histogram of Figure
4.1.19 shows the data of the above window clearly indicates that a more complex model is
necessary here. Notice that the extremities of the histogram are flat and exhibit a uniform den-
sity characteristic while the central region looks somewhat Gaussian.

As is apparent from the background of Figure 4.1.18, if an unreasonable return or no return
is received by the sensor, an arbitrary gray level between 0 and 255 is assigned. It seems rea-
sonable to expect that some on-target pixels may be assigned similarly. The histogram of I'.g-
ure 4.1.19 supports this since most pixels contain a gray level corresponding to a range meas-
urement corrupted by noise (the central region of the histogram) while the rest represent a gray
level chosen at random.

Once the random pixels are separated from the data the remaining noise is approximated as
Gaussian since many factors act together to perturb a given range measurement. Assuming
ergodicity (as is done throughout this analysis and the sections to follow), the relative frequency
of randomly chosen gray levels within a given window is a good approximation of the probabil-
ity that a given pixel has a random gray level. The value of this is in determining which pixels
of a synthetic range image should be corrupted with uniform noise.

As was pointed out earlier, the far ends of the histogram have the uniform type of charac-
teristic which would be evident in samples chosen completely at random. Thresholds are
chosen, therefore, beyond which the histogram is considered to be uniform. Next it is necessary
to determine how many of the gray levels of the central region are due to random assignment.
This is simple since a basic property of the uniform distribution is an even spread throughout
the possible range of values. The following is an example of the necessary interpolation:

Figure 4.1.18 5 Ton Truck, Image 45, Date 3/28/86, Range 1.54 km. Hand selected window of
1416 pixels from 160 x 96 pixel laser range image.

88 0000 -

|
l
77 0000 ”
|
66 0000 -
S5 6000 -

44 0000 A

=]

Pixel Count

33 0000 A

22 0000 o

11 0000 4

| q
0 00000 LLLLT_&LJ@%MJ‘! : r!nr'[EIHJL ,’Ur!n “ ‘ . R
0 4 A

32 6 96 128 160 192 c2eH 256

Gray Levels., apl 3228-3
Mean = 122 46%, St [eu = 17 222. Range = 1 S“ knm

Figure 4.1.19 Aggregate gray level histo

gram of 1416 pixel wi =
dard Deviation = 17.22 prxel window. Mean = 122.464, Stan.

4-33 kak/yoder

HIGH = gray level greater than mean, above which the histogram is
considered uniform.
LOW = gray level less than mean, below which the histogram is considered
uniform.
N=(255-HIGH + 1) + (LOW + 1)

= number of gray levels in the uniform regions.
P = number of pixels in uniform regions.

PIN = average number of pixels per gray level in uniform region
X = (PIN) * (HIGH - LOW + 1)
= approximate number of random pixels between HIGH and LOW.

The analysis above completes one important siep in the noise synthesis problem. Given a
synthetic range image of a target, it is now known what fraction of on-target pixels should be
corrupted by random noise. The next task is to determine the variance of the Gaussian portion.

In order to estimate the Gaussian characteristic it is merely necessary to subtract the ran-
dom pixels from the aggregate noise histogram. The problem is determining which pixels
between HIGH and LOW are random, and which are true measurements perturbed by Gaussian
noise. These random pixels are approximated by randomly choosing X gray levels between
HIGH and LOW. If the random pixel value chosen did not appear in the original image, the
value will be discarded and a new random value sclected. After subtracting these from the
aggregate noise, an approximation of the Gaussian noise remains. See Figures 4.1.20 and
4.1.21. Again, the histogram of Figure 4.1.20 does not convey much useful information by
itself, but it is used to extract the Gaussian data contained in the aggregate noise histogram.

This concludes the examination of the general noise characteristics. The following section
addresses the question of how these characteristics depend on range.

4.1.3.1.2. Noise Variation With Range

Only two parameters of the previous section will be examined here to determine their vari-
ation with range. They are:

(1) The drop-out probability.
(2) The variance of the Gaussian data.

Item (1) is essentially the relative frequency of pixels within a given data window that have ran-
dom gray levels. Item (2) follows from a straightforward calculation following the subtraction
of random pixels from the aggregate noise data.

The five ton truck target is again used in the following study, but at ranges of 1.54, 2.91,
and 4.24 km. Figures 4.1.18, 4.1.22, and 4.1.23 show sample data at these ranges along with the
windows used for data extraction. Figures 4.1.19, 4.1.24, and 4.1.25 are histograms of this data.

1se

e=_r==vest B == === EEemEms (§)}
-

160
<

as

:.

z |

(
\ S ok
0 SIS IET T T I O oy

O
")

6

T

1,
l

0

pixel window.

MRUVIVR
! 75000
1 50000 =
! 23000 -
1 00000 A
750000 A
cogoo
0

S
220
3 00000 -~

1UNOY [aX 1y

!
i
|
|
|
|
(
|
Figure 4.1.20 Histogram of uniform gray levels extracted from aggregate histogram of 1416

(17
"

64 <Sguo

S3 7320

Count

43 0009

Pi1xel

32 2500

1%
I

ui
Vh}
i%

|
2l S0C0 A] ﬂ
’k 1
J
10 7500 A : :
! .
i '
It > 1 o
Tapme f 5 P P A
0 20000 BT LYl bablitens “1ngﬁ“‘g]n
J 32 i S6 122 153 192 22« 22¢<
Cray Lsuels., ezl Zzc=C
. —_ - - — - ~n o [— 1 [Sy TN
Mean = 122 533, Su Ze. = 12 0ZS. Rerge = L Sk

Figure 4.1.21

Histogram of Gaussian gray levels extracted from aggregate histogram of 1416
pixel window. Mean = 122.603, Standard Deviation = 12.039.

Figure 4.1.22 5 Ton Truck, Image 02, Date 3/27/86, Range 2.91 km. Hand selected window of
1325 pixels from 160 x 96 pixel laser range image.

Range = 4.24 km, ap1.32801

=,
; e
ok 3 Sl L%

Figure 4.1.23 5 Ton Truck, Image 01, Date 3/28/86, Range 4.24 km. Hand selected window of
375 pixels from 160 x 96 pixel laser range image.

I
)
Np]

~

[£3)
4

19}

P

m

-

(@]

n

D

2

1l

w

n

Ui

tNu -

109 000 1
|
|
|
4

91 0300 A

78 0000 4

65 0000 A

Count

S2 6000 +

Pixel

39 0000 A

26 0000 ~

|
13 0000 - m’ﬁ
L

7
. iy
i oM ad T s :

G 03000

Mean = 125 001,

Figure 4.1.24 Aggregate gray level histogram of 1325 pixel window. Mean = 129.001, Stan-
dard Deviation = 14.862.

23 9000 - ARgcrecats Vc‘zse W o= 37%
.
)
20 1250 - “fuf
il
17 2500 4 { (
|
|
14 3750 A H
-
c
5
3 |
© 5000
o
X |
g 62500 4 m
UJL
5 25000 - i
J} !
f
2 87500 4 ’UJL“ "
1
J
o et mﬂ L0 vl
0 32 64 96 128 160 192 22u 26
Cray Levels, apl 232801
Mean = 122 4S!. St De. = 22 S&., Ramce = - 2u .+

Figure 4.1.25 Aggre :
gate gray level histogram of 375 pixel wind -
Deviation = 23.961. P indow. Mean = 122.491, Standard

4-40 kak/yoder

First the separation proccss discussed above is applied to the images of each range meas-
urement set. Next, the parameters of interest are calculated. Plots of this information for all
three range sets are superimposed in Figures 4.1.26 and 4.1.27. Table 4.1.3 summarizes the
results.

Table 4.1.3 Summary of drop-out probabilities and Gaussian standard deviation statistics for
1.54, 2.91, and 4.24 km. data sets.

Drop-out Gaussian

R o
ange Probability Standard Deviation

(km) | Max. | Min. | Avg. | Max. | Min. | Avg.

1.54 0.102 | 0.031 | 0.073 | 12.237 | 9.388 | 11.199
291 0.032 | 0.028 | 0.030 | 10.816 | 8.777 9.797
421 0.099 | 0.005 | 0.027 | 17.199 | 7.001 | 10.353

There are some surprises in these results. For example, the only apparent variation with
range is actually counterintuitive. The drop-out probability is consistently higher for the 1.54
km data set then for the other two data sets. The reason for this is unclear at present. Another
interesting note is the wide variation in the data quality of the 4.24 km data set. The images
corresponding to the highest and lowest points of the standard deviation plot for this data set are
given in Figures 4.1.28 and 4.1.29.

4.1.3.1.3. Summary

There are many factors that could effect range data that have not been addressed here. The
tuning of the sensor for the different range sets, or a difference in prevailing weather conditions
might have a dramatic effect on the characteristics of the data. But, from the data presented, it
appears that the parameters discussed do not vary with range by any appreciable amount.

Even with the unknown factors mentioned here, the results are still very useful in noise
synthesis. The separation of noise into two types of distributions along with the averages and
bounds of Table 4.1.3 will make it possible to realistically degrade synthetic range imagery.

4.1.3.2. Noise Degradation of Synthetic Imagery

As with the rest of the noise study presented so far, the primary parameters of interest are:
the ‘“Drop-Out Probability’’ (DOP), and the Gaussian Standard Deviation (GSD). A range of
values for these parameters exists from the results presented in the previous section.

Again, by the ergodicity assumption, these parameters which have been determined
through spatial averaging will be applied to synthetic imagery on a pixel by pixel basis to pro-
vide realistic noise degradation. For example, each on target pixel should represent either a

150000 4

123000 -
1.54 km

100000 +

Probability
[
T

075000 - \ 424 km
1
\/ o
053000 \ \
_—291km
gascon < | \ "
) |
| :
agn |
v oecee s N 9 13 '8 22 2s 31 35

Figure 4.1.26 Composite graph of 1.54, 2.91, and 4.24 km. data. Shows image to image varia-
tion of drop-off probability.

!
o
hY
in
ot
[
N
i
J
1
A
Y
)
N
0

Causs.aer C-

2t 3cao

17 Sg00

15 0000

4241m

12 S06¢0

10 0000

7 S0000

Standard Deviation

S 00000 A

2 536400 .

(]
<>
<)
[$]
[&]
(&}

(=]
£
\
(%]

—
[e0]
n
ny
v
[VA)
(8}
(o8}
(@]

A
(7]
)
01
D
3
n
)
m
U

Figure 4.1.27 Composite graph of 1.54, 2.91, and 4.24 km. data. Shows image to image varia-
tion of Gaussian characteristics.

Range = 2.91 km, ap1.32828

Figure 4.1.28 5 Ton Truck, Image 28, Date 3/28/86, Range 2.91 km. Image with the largest
Gaussian standard deviation. Gaussian Standard Deviation = 17.199.

Range = 2.91 km, ap1.32813

Figure 4.1.29 5 Ton Truck, Image 13, Date 3/28/86, Range 2.91 km. Image with the smallest
Gaussian standard deviation. Gaussian Standard Deviation = 7.001.

4-45 kak/yoder

drop-out measurement or a valid measurement perturbed by Gaussian noise. Thus, after the
DOP, and GSD noise parameters are chosen, the synthetic degradation of a synthetic image
proceeds as follows.

As each on target pixel is considered a random number between O and 1 is generated. If
this number is less than or equal to the DOP parameter selected, the pixel of interest is replaced
with a random gray level between 0 and 255. Otherwise, the pixel is additively corrupted with a
Gaussian number of the proper variance. Figures 4.1.30-4.1.32 show examples of original and
noise corrupted synthetic images at ranges of 0.5, 3, and 5 km.

Next, it is important to determine how well the synthetic and actual images compare. To
perform this comparison the noise analysis developed above is applied to actual tank images,
and the noise parameters extracted are used to degrade synthetic PADL imagery. An obvious
problem here is the lack of large planar tank surfaces from which to extract a window of data.
The windows used cover most of the tank base, and because of this, some of the noise is actu-
ally range variation of the tank surface. These variations are not readily discernible, however,
and should not affect this visual comparison (see Figures 4.1.33 - 4.1.35).

This last comparison provides some other useful information as well. It provides an excel-
lent test of the noise analysis technique which has been a major portion of this entire section on
noise characteristics and their simulation. The noise parameters of the actual imagery are calcu-
lated for the indicated window and shown in part (a) of the figure captions. These parameters
are then specified as the desired characteristics for the synthetic image. The resultant noisy syn-
thetic image is then analyzed in the same way and its noise parameters appear in part (b) of the
figure captions. Note how well the parameters agree.

4.1.3.3. Future Work

The first attempts at synthesizing LADAR images is very encouraging. The synthetic
image look very much like the real images. One visual difference is that the edges of the syn-
thetic target are sharper than the real target. Future work will attempt to measure the blurred
edges in the real images and mimic it in the synthetic images. Another problem to be addressed
is to verify that the synthetic images look the same to the image processing algorithms as the
real images.

4.2. ETBM via TWIN

Section 4.1 presented our approach for bLuilding an Electronic Terrain Board Model
(ETBM) using the PADL solid modeler. This section presents the additional capabilities we
have gained by moving the modeler to the TWIN Solid modeling package and show some
examples of the detailed images that can be produced by it. In addition, the efforts to convert
the BRL models to TWIN are discussed.

Figure 4.1.30 Clean and noisy images of synthetic PADL m60al tank. Range = 0.5 km., Pro-
bability of No Return = 0.05, Gaussian Standard Deviation = 12.0.

Figure 4.1.31 Clean and noisy images of synthetic PADL m60al tank. Range = 3.0 km., Pro-
bability of No Return = 0.05, Gaussian Standa.d Deviation = 12.0.

Figure 4.1.32 Clean and noisy images of synthetic PADL m60a1 tank. Range = 5.0 km., Pro-
bability of No Return = 0.05, Gaussian Standard Deviation = 12.0.

Figure 4.1.33 Actual vs. synihetic laser range imagery. (a) Actual: range = 1.19 km, Proba-
bility of No Return = 0.041, Gaussian Standard Deviation = 14.509. (b) Syn-
thetic: range = 1.0 krn “robability of No Return = 0.037, Gaussian Standard

Deviation = 14.471.

e

Figure 4.1.34

Actual vs. synthetic laser range imagery. (a) Actual: range
bility of No Return = 0.027, Gaussian Standard Deviation

thetic: range = 2.0 km, Probability of No Return
Deviation = 8.719.

1.935 kn. Proba-
8.765. (b) Syn-
0.019, Gaussian Standard

Figure 4.1.35

(b)

Actual vs. synthetic laser range imagery. (a) Actual: range = 2.91 km, Proba-
bility ot No Return = 0.018, Gaussian Standard Deviation = 6.576. (b) Syn-
thetic: range = 3.0 km, Probability of No Return = 0.0i8, Gaussian Standard

Deviation = 6.426.

4-52 kak/yoder

4.2.1. The TWIN Solid Modeling Package

The Electronic Terrain Board Model, presented in Section 4.1, was built upon ihc PADL
[Padl] solid modeling system. Synthetic range images of targets, terrain, and clutter were all
produced using PADL. However, PADL was designed to model industrial parts and not terrain
boards, and therefore is unable to handle the large number of objects needed to synthesize a
complicated scene. We have switched to the TWIN Solid Modeling Package to overcome the
size limitation problems and gain more flexibility in the modeler. By doing so we have gained a
package that can serve both as a terrain board modeler and a data structure for model based tar-
get recognition. TWIN is a boundary representation solid modeler which supports planer sur-
faces and is available from the Purdue CADLAB [CAD] as a library of C routines. Appendix D
is a partial listing of the routines in the package. By interfacing these TWIN routines to our
Lisp image processing environment, planer boundary representation (BRep) objects can be
created from the same types of primitives as used by PADL, that is, the CSG (constructive solid
geometry) primitives. Therefore most models used in PADL can be easily converted to TWIN
models. The next paragraph describes how an M6CA1 TWIN model is built.

Figure 4.2.1 is a partial list of the points, edges, and surfaces (from ERIM) which describe
the M60A1 tank. (Figure 4.2.1 is the same as Table 4.1.1.) The Lisp data for Figure 4.2.1 is
shown in Figure 4.2.2. Each symbol, p#, is a point which is a list of X, Y, Z coordinates (in
meters). Due to large number of points (and edges and surfaces) in the M60A1 model, only the
first few points (or edges or surfaces) are show in the figure. Each symbol, e#, is an edge which
is an ordered list of two points. Each symbol s# is a surface which is bounded by the edges in
the list. Normal edges are traversed from the first point to the second. Negative edges are
traversed from the second point to the first. Finally, m60al-all a list of all the surfaces which
bound the M60A1 model. Figure 4.2.3 is program for creating an M60A1 TWIN object given
the m60al-all data. The first setq calls the function object-to-twin which converts the object
described by m60al-all to a TWIN object. The second setq defines the main gun of the tank as
a cylinder which is a primitive TWIN object. The Cylinder routine is given the X, Y, Z loca-
tion of the base of the cylinder, the X, Y, Z direction of the axis of the cylinder, the radius of the
cylinder, and finally the number of facets to use to approximate the cylinder. The size and loca-
tion of the cylinder are described symbolically in terms of the points defined in the ERIM
wireframe modei. (i.e. pl191,pl86, and pl189 are ail points from the M60A1 model.) Once the
body and the main gun are defined, they are unioned together into one object using the Com-
bine function. Therefore the object returned by make-m60al is the union of the body and the
gun. This code is much simpler than the code needed to describe the same tank in PADL. (See
Figure 4.1.2). Once the TWIN object is defined, a synthetic image can be defined from Lisp by
entering:

(render m60al :ifov 0.05 :range 1.0 :size ‘(200 100))

which will generate a 200 by 100 pixel range image of an M60A1 at one kilometer with a reso-
lution 0.05 mrad. Figure 4.2.4 is the output of the render program.

Point File Edge File Surface File
Point X y z Edge Pointl Point2 | Surface Edges
123456789
1. 3.15 1.81 1.6 1. 1 3 1. 10111213 14 15 16 17 18
2. 315 -1.81 1.6 2. 3 9 2. 19 -18 20 21
3. -3.25 1.81 1.6 3. 9 15 3. 22-142324
4. -3.25 -1.81 1.6 4. 15 17 4. 2526-20-17
5. -3.47 1.81 1.4 5. 17 21 5. 27 -15-2228
6. -347 -1.81 1.4 6. 21 25 6. 29 -25-16-27
7. -3.47 1.10 1.4 7. 25 26 7. 30-21-2631 32
8. -3.47 -1.10 1.4 8. 26 22 8. 33-323435
9. -3.25 1.10 1.6 9. 22 18 9. -24 36 37 38 -28
10. -3.25 -1.10 1.6 10. 18 16 10. -37 39 40 41
11. -3.25 1.10 2.0 1. 16 10 11. 42 -31-29 -38
12. -3.25 -1.10 2.0 12. 10 4 12. -243 44 45
13. -1.5 1.10 2.0 13. 4 2 13. -1246 47 48
14. -1.5 -1.10 2.0 14. 2 32 14. -44 49 50 51
15. -1.5 1.10 1.6 15. 32 30 15. -50 52 53 54
16. -1.5 -1.10 1.6 16. 30 29 16. -47 55 56 57
17. -1.5 1.25 1.6 17. 29 31 17. -56 58 59 6
18. -1.5 -1.25 1.6 18. 31 1 18. 161 62 65 63 66 64
15. -1.5 1.05 3.0 19. 33 1 19. -45 -51 -230 -65
20. -1.5 -1.05 3.0 20. 31 35 20. -55-46 -66 -231
21. 0.5 1.43 1.6 21. 35 33 21. -62 67 68 -3
22. 0.5 -1.43 1.6 22. 36 32 22. -67 -61 69 78
23. 0.5 1.23 3.0 | 23. 2 34 23. -69-64 -11 71
24. 0.5 -1.23 3.0) 24 34 36 2 7273-4-68-70-71-1074
25. 1.7 0.55 1.6 25. 29 37 25. -714-97576 77
26. 1.7 -0.55 1.6 26. 37 35 26. -15-8 78 79
217. 1.7 0485 2.2 27. 38 30 27. -78 -7 80 81
28. 1.7 -0.485 2.2 28. 36 38 28. -80 -6 82 83
29. 2.0 1.10 1.6 29. 38 37 29. -82-5-73 84
30. 2.0 -1.10 1.6 30. 39 33 30. -72-77 -76 85 86 -84
Figure 4.2.1 Partial listing of points, edges, and surfaces for the wireframe model on an

M60A 1. (All dimensions are in meters.)

M60 POINT FILE

iii X Y VA (in meters)
(setg pl f(3.15 1.81 1.6))
(setq p2 f(3.15 -1.81 1.6))
(setqg p3 r(-3.25 1.81 1.6))
(setq p4 r(-3.25 -1.81 1.6}))
(setq p5 r(-3.47 1.81 1.4))

;;; M60 EDGE FILE

LR pointl point2
(setq el " (pl p3))
(setg e2 " (p3 <)
(setq e3 " (p9 pl5))
(setqg ed " (pl5 pl7))
(setqg e5 " (pl7 p2l))

M60 SURFACE FILE

. »
14 [4
.
14

~e e

-
’

P Edge numbers
(setqg sl (el e2 e3 ed e5 e6 e7 e8 el

el0 ell el2 el3 eld el5 el6 el7 el8)) ; HULL TOP
(setgq s2 "(el9 e-18 20 e21)) ; LEFT FENDER TOP
(setg s3 "(e22 e-14 €23 e24)) ; RICHT FENDER TOP
(setg s4 "(e25 e26 e-20 e-17)) ; LEFT INSIDE FENDER
(setq s5 ' e27 e-15 e-22 e28)) ; RIGHT INSIDE FENDER

;:: The following describes the surfaces that bound an mé0al.

;;; These are the same surfaces described in the m60al wireframe data

;;: from ERIM.

(setq m60al-all ’ (sl s2 s3 s4 s5 s6 s7 s8 s9 s10 sil s12 s13 sl4
s15 s16 s17 s18 s19 s20 s21 s22 s23 s37 s38 s39 s40
S65 566 567 824 s25 526 s27 s28 s29 s30 s31 s32 s33
s34 s35 s36))

Figure 4.2.2 LISP data for the M60A 1 maodel described in Figure 4.2.1.

;;; This will create an m60al as a TWIN object.
(defun make-m60al ()
(setq body (object-to-twin ‘mé60al-all))
(setq gun (Cylinder
{(x pl91) ; x location of base
(/ (+ (y pl91) (y pl86)) 2.0) ; y location of base
(/ (+ (z pl91) (z pl86)) 2.0) ; z location of base

(- (x p189) (x pl9%1)) ; X Direction of cylinder
0.0 ; Yy Direction of cylinder
0.0 ; z Direction of cylinder
(/ (- (z pl87) (z pl91)) 2d90) ; Radius

8))) ; Number of facets to use.

(Combine body #+ gun)))

Figure 4.2.3 LISP program to generate an MG0A1 TWIN tank model.

200 by 100

Figuie 4.2 Rundered M60al.

4-57 kak/yoder

The TWIN Solid Modeling Package has proven to be much easier to work with and much
faster than the PADL modeler. It is easier to work with because all the routines are written in
C, unlike PADL which is written in a non-standard dialect of FORTRAN. This makes the TWIN
code easier to read and understand than PADL code. TWIN is faster for a number of reasons.
One, we are able to control the size of the images being rendered. i.e. if a 511 by 256 image is
needed, that is the size we render. PADL on the other hand was designed to render an image
the size of the display device it is using, therefore if a 511 by 256 image is wanted, a 512 by 480
image must be rendered, and then trimmed to the desired size. Reason two is that TWIN
approximates non-planar objects such a spheres and ellipses as being planar. This allows a sim-
ple scan line rendering algorithm to be used. PADL does not approximate non-planar object
and uses a more time consuming ray tracing algorithm to render. Although there may be cases
where approximations cannot be used, our application can use them. Finally, TWIN can "com-
pile" CSG primitives into a complex object once and save that object. Subsequent uses of the
object do not require recompiling. PADL, one the other hand, has no method for saving the
resulting compilation of CSG primitives. Instead, it must rebuild the object each time PADL is
restarted. Some of the BRL objects have as many as 5,000 primitives. Substantial times sav-
ings will be realized if such an object can be compiled only once and the resulting boundary
representation used over and over again.

Section 3.4.2 of this report has shown how geometric features are readilv extracted from
the TWIN modeler. The following section describes he: » & LADAR sensor is simulated.

4.2.2. The Electronic Field Test

The four basic elements needed to run an electronic field test are the terrain, the targets,
clutter, and sensor noise. This section describes how, using our TWIN based modeler, these
four elements are combined. The actual steps are:

Start with a 2D elevation array
Create a terrain patch

Select the targets for the image
Place the targets on the patch
Render the image

Generate ground truth data
Convert to 32 bit integer
Create range ambiguities

Blur the image

Add noise

Each of the following sections discusses each step.

4-58 kak/yoder

4.2.2.1. Create a 2D Elevation Array

The first step in an electronic field test is to design the terrain for the test. This is done by
creating a two dimensional array of elevations over an evenly spaced grid. If "real” terrain data
is available, it can be used, otherwise fractal based methods can be used to generate the data.
Here is the LISP code to make such an array:

(setqg elevation (make-array ' (17 17))

This creates the storage needed for the elevation array. The following data was generated using
the fractal techniques presented in Section 4.1,2.2.

((48 10 48 50 55 53 54 48 46 10 48 57 54 50 54 52 46)
(46 48 10 52 53 53 56 52 52 45 57 54 48 46 10 55 56)
(48 46 49 10 55 48 48 49 49 48 48 51 53 52 49 51 51)
(48 54 46 51 10 53 57 57 50 46 10 56 57 57 49 54 50)
(48 56 54 46 53 10 . 49 57 51 10 50 50 46 10 54)
(48 50 55 49 46 54 10 53 54 51 46 56 10 50 51 49 48)
(48 49 51 51 49 46 55 10 51 51 57 46 49 54 54 51 48)
(48 53 48 54 51 48 46 56 10 53 49 49 48 54 48 46 10)
(10 51 48 55 48 51 53 46 49 57 56 50 46 10 49 52 49)
(48 10 54 56 49 55 53 53 48 57 54 55 52 49 54 49 52)
(46 49 10 49 51 54 48 57 46 10 48 52 49 49 48 54 46)
(51 46 50 10 56 57 54 53 48 45 49 53 56 46 10 57 51)
(52 50 46 52 10 56 57 54 48 48 10 51 56 54 49 53 56)
(57 56 52 46 53 10 49 52 48 46 52 10 48 49 49 56 48)
(50 51 53 48 46 54 10 54 48 56 46 57 57 53 46 10 50)
(52 52 50 54 52 46 56 10 48 53 55 46 10 56 51 49 49)
(53 53 55 56 56 55 46 57 48 54 53 53 49 53 51 52 53))

4.2.2.2. Create Terrain Patch

The next step is to create the terrain patch from the elevation data. This is done with the
following LISP command:

(setg patch (create-patch elevation
rextent ' {(-25 -25 -1)
(25 25 0))))

The :extent keyword is used to give the size of terrain patch. The above command sets the
minimum x and y values to —25 meters and the maximum x and y values to 25 meters, thus
creating a 50 by 50 meter patch. The minimum z value is —1 meter and the maximum is 0
meters. Changing the relative extent of the z value affects the "ruggedness” of the patch. Fig-
ure 4.2.5 is a rendering of the above patch.

Figure 4.2.5 Sample terrain patch created with fractals.

4-60 kak/yoder

4.2.2.3. Select Targets

The next step is to select the targets to be used in the field test. Figure 4.2.6 shows the four
targets currently available. A target can appear any number of times in a scene and any orienta-
tion. Section 4.2.3 discusses our efforts to convert the BRL targets to TWIN which will
increase the selection.

4.2.2.4. Place targets on patch

The next step is to describe the location and orientation of each of the targets on the patch.
The following code places five targets on the patch:

(setqg tanks (place-objects-on~patch patch
" ((m60al 0.0 (0 0))
(m60al 90.0 (10 10))
(m35 180 (-6 6))
(m35 270 (-10 -10))
(ml113 35 (6 -6)))))

The targets are places in the following locations:

Target | Rotation about Z Location
(in degrees) (in meters)
M60A1 0.0 0 0
M60A1 90.0 10 10
M35 180.0 -6 -6
M3s 270.0 -10 -10
M113 35.0) -6

Knowledge about the elevations of the given locations on the patch are used to automatically
select the correct Z elevation.

4.2.2.5. Render

Rendering the above scene with the following command will create four images: range,
shading, edges, and faces.

(setqg images (render tanks
:shading "all"
ccamfrom 7 (10 4 12)
:camto "(-10 -4 8)
:range 1.0
:size f (512 480)))

200by150 200by150

m—

/-"__-—a

Figure 4.2.6 Target models available in TWIN modeling system.

4-62 kak/yodsr

The rendering routine can render the scene from any viewpoint (:camfrom) to and viewpoint
(:camto) for any given range and sensor resolution (: range :resolution). Figures 4.2.7 -
4.2.10 show the resulting images.

4.2.2.6. Display Ground Truth

The next step is the display the ground truth table. The ground truth table lists every sur-
face in the scene and its location and orientation relative the the viewing plane. The following
command prints the table:

(print-ground-truth tanks)

Figure 4.2.11 is a partial listing of the ground truth of the sample scene.

4.2.2.7. Convert to 32 bit integer

Up to this point, the pixels in the range images are floating point values which are the dis-
tance from the Z axis in the model space. The following routine converts these values to 32 bit
integers at the requested distance. Since the units in the model space are meters and a scale of
100 is used, the result units for the range image is centimeters.

(setqg range (range-to-int (first images)
:offset 1000
:scale 100))

4.2.2.8. Create range ambiguities

As presented in previous reports, taking the mod of each pixel 1875 will create range
ambiguities in the image which simulate the ambiguities of the fine range channel of the sensor.

(setq range (mod-image range 1875))

This is shown in Figure 4.2.12.

4.2.2.9. Blur the image

The following code will blur the image by replacing each pixel with the average of the
pixels around it. Although this does blur the image, it most likely does not simulate the blurring
of a real LADAR sensor. More information is needed about the sensor before its blurring can
be mimiced.

(setq range (blur-image range))

This is shown in Figure 4.2.13.

Figure 4.2.7 Range image of scene creaied in Seci'on 4.2.2.5.

Figure 4.2.8 Shaded image of scene created in Section 4,2.2.5.

B

E@@Q"z

Figurc 4.2.9 Edge image of scene created in Section 4.2.2.5.

Figure 4.2.10 Faces image of scene created in Section 4.2.2.5. The grey values in the faces
image index into the ground truth table.

min-ext

max-ext

centroid

normal

(198.25,228.54,-14.60)

(313.01,255.14,-1.44)

(256.8253 242.3849 -10.871665)

(-0.00,-0.98, 0.18)

(245.79,254.18,-7.70)

(261.35,260.16,-1.18)

(253.5674 257.1697 -7.43846)

(0.20,-0.74, 0.64)

(299.82,250.23,-8.76)

(315.39,256.21,-8.24)

(307.60474 253.22339 -8.501042)

(0.20,-0.74, 0.64)

(250.43,250.28,-8.75)

(261.35.264.69,-1.44)

(257.80124 257.08667 -7.871617)

(0.93,-0.07,-037)

(291.28,247.30,.9.55)

(302.20,261.71,-8.24)

(298.6542 254.10316 -8.674944)

(.93, 0.07,0.37)

(2506.43,247.3G,-9.55)

(301.31,264.69,-7.60)

(275.86942 255.99329 -8.57681)

(0.13,-0.86, 0.49)

(243.04,259.20,-8.26)

(261.35,278.07,-7.18)

(253.84595 267.84653 -7.69662)

(0.26,0.69, 0.67)

(237.10.277.11,-9 96)

(256.22.282.64,8.00)

(246.65952 279.87466 -8.527515)

(0.15,0.96, 0.22)

(297.08,255.25,-9.32)

(315.39,274.13,-8.24)

(305.24637 264.09274 -8.707351)

(0.35,0.68,0.64)

(291.13,273.17,-10.12)

(310.26,275.69,-9.06)

(300.69684 275.92838 -9.590096)

(0.16,0.96, 0.22)

(256.22,261.71,-9.06)

(301.31,277.11,-7.60)

(278.76627 269.40875 -8.333074)

(0.29,0.74, 0.61)

(196.61,232.48,-13.78)

(211.43,236.63,-13.28)

(204.02386 234.5563 -13.527309)

(-0.25,-0.84,-0.48)

(250.65,228.54,-14.84)

(265.47,232.68,-14 34)

(258.06122 230.60999 -14.589891)

(-0.25,-0.84,-0.48)

(196.61,235.67.-13.78)

(211.43,256.06,-13 49)

(204.02386 245.86302 -13.632289)

(-0.36, 0.06,-0.93)

(198.25,255.09.-13.75)

(216.93,267.42,-12.90)

(207.58922 261.25507 -13.321914)

(-0.19, 0.75,-0.63)

(250.65,231.72,-14.84)

(265.47,252.11,-14.55)

(258.06122 2419167 -14.694872)

(-0.36, 0.06,-0.93)

(252.29,251.15,-14.81)

(270.97,263.47,-13.96)

(261.6266 257.30872 -14.384494)

(-0.19, 0.75,-0.63)

(211.43,221.63,-14.52)

(252.29,252.15,-13.47)

(231.85962 234.92247 -13.97644)

(037,0.17.091)

(209.80,232.48,-13.78)

(211.43,255.09,-13.54)

(211.02458 243.84747 -13.695734)

(093.-0.07,-037)

(250.65,229.50,-14.58)

(252.29,252.11,-14.34)

(251.87758 240.86398 -14.499061)

(-0.93, 0.07,0.37)

(211.43,224.62,-13.54)

(224.43.238 41,-11 87)

(217.93243 231.51517 -12.702987)

(093, 0.07,0.37)

(211.43,221.63,.14.27)

(265.28,230.55,-11.87)

(238.35895 226.09067 -13.068134)

(0.00,-0.98, 0.18)

(252.29,221.63,-14.34)

(265.28,235.43,-12.67)

(258.78543 228.53171 -13.506313)

(0.93,-0.07,-0.37)

(263.84,228.54,-14.84)

(315.39,277.73,-8.50)

(288.58954 253.78618 -11.896009)

(0.93,-0.07,037)

(196.61,233.44,.13.52)

(248.16,282.64,-7.18)

(221.36783 258.69534 -10.574172)

(-0.93, 0.07, 0.37)

(203.75,266.45,-13.15)

(250.28,282.64,-8.80)

(227.01295 2745451 -10.975836)

(-0.00, 0.98,-0.18)

(257.78,262.51,-14.22)

(304.32,278.69,-9.86)

(281.0503 270.5988 -12.038416)

(:0.00, 0.98,0.18)

(252.29,249.16,-14.55)

(297.08,278.69,-9.06)

(270.11285 263.51236 -12.390967)

(-0.93,0.07, 0.37)

(211.43,249.16,-14.52)

(297.08,277.11,-8.26)

(254.25447 263.1367 -11.3911915)

(-0.01, 0.98,-0.22)

(211.43,252.15,-13.75)

(256.22,281.67.-8.26)

(229.25986 266.4958 -11.587641)

(0.93,-0.07,-0.37)

(221.65,207.97,-12.80)

(268.07,238.62,-11.70)

(244.85826 228.07399 -12.260244)

(-0.37,-0.17,-0.91)

(264.36,207.97,-12.80)

(286.27,241.76,-10.71)

(273.8639 221.74771 -11.827543)

(0.88.,-0.22,-0.42)

(277.63,214.51,-11.04)

(286.27.247.03,-9.49)

(281.32422 234 65791 -1(1 214957

(096,-006, 0.26)

(258.41,235.32,-9.62)

(278.84,248.52.9.13)

(268.6273 238.39363 -9.334141)

(0.37,0.17,091)

(233.16,217.84,-9.99)

(259.62,248.52,-9.13)

(247.017 237.15837 -9.540345)

(-0.53, 0.05, 0.84)

(221.65,210.82,-11.89)

(236.87,245.64,-9.81)

(229.25987 228.22997 -10.848946)

(-0.95.-0.09, 0.30)

(22536.20797.12.47)

(268.007.217.84,9.81)

(249.74825 212.18248 -11.335811)

{ 0.00,-0.98, 0.18)

(236.87,214.51,-10.71)

(282.55,236.63,-9.13)

(263.64447 226.11214 -9.776019)

(0.21,-0.72, 0.66)

group Area

2 295.70

3 46.88

4 46.88

5 24.56

6 24.56

7 350.26

8 169.45

9 23.77
10 154.27
11 23.77
12 326.18
13 22.62
14 22.62
15 241.65
16 105.13
17 241.65
18 105.13
19 1036.93
20 8.94
21 8.94
22 49.47
23 125.77
24 49.47
25 701.11
26 701.11
27 104.14
28 104.14
29 184.44
30 503.58
31 184.44
32 787.80
33 243.20
34 66.82
35 206.69
36 433.44
37 157.01
38 83.23
39 456.76
40 21.24

(247.27,207.18,-11.71)

(257.49,216.40,-10.17)

(253.07529 211.34956 -10.820647)

.0.94,-0.11,031)

Figure 4.2.11 Partial list of surfaces in Figure 4.2.10.

Figure 4.2.12 Synthetic range image with range ambiguities added.

mage.

1

Figure 4.2.13 Blurred synthetic range

4-70 kak/yoder

4.2.2.10. Add noise

Finally noise is added to the image which matches the noise measured in real LADAR
images. The noise added here is the same as that described in Section 4.3.2 of [KaYo088].

(setg range (add-noise range :sky 275))

Since the noise characteristics of a no-return signal differ from the characteristics of background
clutter, the value of the sky is passed to the add-noise routine so it knows when to add the no-
return type noise. This is shown is Figure 4.2.14.

4.2.2.11. Future Work

Use better blurring, based on real data. Study the new LADAR data to know what kind of
noise to add. Add clutter.

4.2.3. Conversion of BRL Objects to TWIN Objects

In order to convert solid objects from the representation used by the BRL modeler to one
compatible with the TWIN library, one must first understand how complex objects are
represented in BRL modeler. The BRL modeler represents solid objects via CSG trees, much as
PADL does. Figure 4.2.15 shows a simple CSG tree that could be used to define a solid object.
In this figure, the oval nodes in the tree represent primitive objects; these objects, such as
spheres, cubes, etc., are the elemental objects used by the BRL. modeler. The rectangular nodes
in the tree represent solids created by the boolean combination of lower-level objects. As in
most CSG systems, BRL objects can be combined using three regularized boolean operations:
union (u), intersection (i), and difference (-). A rigid body transformation (rotation, translation)
is applied to each of the low-level objects before they are combined to form the parent object.
These transformations are represented as homogeneous transformation matrices (indicated in
the figure with the symbols T; and .

There are two sub-tasks that must be performed to convert solid objects from the represen-
tation used in the BRL modeler to that used by the TWIN library. First, TWIN objects that
represent BRL primitive objects must be generated. These objects are generated while the BRL
model is being read inio the system. When a BRL primitive is encountered in the definition for
a solid, the appropriate library subroutine is called immediately and the TWIN structure
representing the primitive is generated. After TWIN structures for all the BRL primitive
objects have been generated, they are combined into increasingly complex objects. The follow-
ing is a list of the primitive solids generated by the BRL modeler.

ARBS An ARBS is a solid with 8 arbitrarily placed vertices. This primitive solid is
used to represent such objects as cubes, parallelpipeds and wedges. The BRL
modeler also uses the ARBS structure to represent primitive objects with less
than 8 vertices by setting the coordinates of some of the 8 vertices to the same
point in 3-space. For example in a 7 vertex solid, the coordinates of 2 vertices

—

Figure 4.2.14 Synthetic range image with noise added.

Top-level

Object

T~

Component Component

[
-

Ta 4

Prim1 prim5

Figure 4.2.15 BRL CSG tree.

4-73 kak/yoder

would be set to the same point.

TGC The TGC (truncated generalized cylinder) primitive is used to represent
cylinders, cones, and elliptical cones.

ELLG The ELLG (generalized ellipsoid) primitive is used to represent spheres, ellip-
soids and ellipsoids of revolution.

TOR The TOR primitive is used to represent toroidal solids.

Most of the primitive solids listed here have equivalent TWIN counterparts and thus can
be generated directly by TWIN subroutine calls; however, a number of difficulties were encoun-
tered when implemerting some of the BRL primitives in TWIN. For example, there was no
subroutine in the TWIN library to generate solids with § arbitrary vertices. We have been able
to overcome this difficulty by writing our own routines to create TWIN objects with § arbi-
trarily specified vertices. Also, the definition for a truncated generalized cylinder used in the
BRL package is clightly more general than that used in the TWIN library. We have imple-
mented the TGC using the slightly less general TWIN definition; if a TGC requiring the more
general BRL definition is encountercd, a waming message is printed. So far, we have never
encountered a TGC object that required the more general definition. At this time, we have not
implemented the codc to generate TWIN solids from ARBS8’s with less then 8 distinct vertices,
but this should not present any major difficulties.

After the primitive TWIN solids are generated, they must be combined into more complex
solids as defined by the structure of the object’s CSG tree. During the conversion process, a
post-order traversal of the CSG tree is performed, and a TWIN solid is created for each node as
it is visited. Because each node is visited after all of its children are visited in a post-order tree
traversal, the TWIN solids corresponding with a node’s children are creat. & before they are
needed to be combined into the parent node.

We have encountered problems when combining TWIN objects into more complex enti-
ties; specifically, the TWIN combination routines sometimes produce invalid objects when two
valid objects are combined. We have determined that the tolerance problem is the cause of this
behavior. Tolerancing is a fundamental problem of solid modeling that must be overcome, te
some extent, in all solid modeling sysicms. Two of the most obvious manifestations of the
tolerance problem are the following: When is a point inside the object and when is it outside?
When should two points be considered to be equivalent? The tolerance problem also arises in
many more subtle ways when combining solid models. Obviously, if the modeler cannot solve
these problems, then it cannot produce correct results. At the current time, the TWIN library 1s
not able to overcome many of these tolerance problems; however, the TWIN library is evolving
rapidly and thus may encorporate more sophisticate tolerancing schemes in the future.

4-74 kak/yoder

4.2.4. Conclusions

The conversion to the TWIN solid modeler has been successful. We are now able to
model more complex scenes than possible with PADL. Many problems have been overcome in
converting the BRL targets into TWIN targets. Unfortunately the tolerance problem is one that
hasn’t been solved at this time. Improvements in TWIN could overcome this problem.

[And73]

[AndKak87]

[BaHa65]

[BeJa§5]

[BeJag6]

[Besl88]

(BFKMS86]

[BoinMur76)

| Bratko]

[BreFarl

|CAD]

[Ch62]

[ChKa88]

[CroKa87]

5. REFERENCES

Anderberg, M. R. (1973). Cluster Analysis for applications, Academic Press,
New York and London, pp. 190.

K.M. Andress and A.C. Kak, ‘‘PSEIKI: A Production System Environment for
Integrating Knowledge with Images,”” Technical Report, School of Electrical
Engineering, Purdue University.

call, G. H,, and Hall, D.]J. (1965). ISODATA, A Novel Method of Data Analysis

and Pattern Classification, AD 699616. Stanford Res. Inst., Menlo Park, Califor-
nia.

P.J. Besl and R.C. Jain, ‘‘Three-Dimensional Object Recognition,”” Computing
Surveys , Volume 17, Number 1, March 1985.

P.J. Besl and R.C. Jain, ‘‘Invariant Surface Characteristics for 3D Object Recog-
nition in Range Images,”” Computer Vision, Graphics, and Image Processing,
33, 1986, pp. 33-80.

Paul J. Besl, ‘‘Geometric Modeling and Computer Vision,”” To be published in
the Proceedings of the IEEE (Special Issue on Computer Vision), April 21, 1988.

Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin, ‘‘Programming
I xpert Systems in OPS5: An Introduction to Rule-Based Programming,””
Addison-Wesley Publishing Company, Inc, Reading, Massachusetts, 1986.

J.A. Bondy and U.S.R. Murty, *“‘Graph Theory with Applications,”” North-
Holland, New York, 1976.

I. Bratko, PROI.OG Programming for Artificial Intelligence, Addison-Wesley
Publishing Company, Inc., Reading, MA, 1986, pp. 314-358.

L. Brownston, R. Farrell, E. Kant, and N. Martin, Programming Expert Systems
in OPS5, Addison-Wesley Publishing Company, Inc., Reading, MA, 1985.
“TWIN Solid Modeling Package User’s Manual,”” School of Mechanical
Engineering, Engineering Research Center, Purdue University, April 13, 1987.

H. Chernoff, ‘A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations,”” Ann. Math. Stat. 23, pp 493-507 (Chapters 3, 9).

C-H Chen and A.C. Kak, "Classification of Primitive Surfaces in Range Data
Using Surface Normals", in preparation.

R. L. Cromwell and A. C. Kak, ‘‘Low and Intermediate Level Processing of
Range Maps. *’ Technical Report TR-EE-87-41, School of Electrical Engineer-
ing, Purdue University.

{Dudal

[Date86]

{Eber76}

[FaPr79]

[FFC]

[Fo65]

[Fu72]

[Fu86

[FuHa]

{FuHu87]

[Ha84]

[HaHe&7]

(HaSh85]

|HoPa76]

5-2 kak/yoder

R. Duda, J. Gaschnig, and P. Hart, ‘‘Model design in the Prospector consultant
system for mineral exploration,”” in Expert Systems in the Microelectronic Age,
D. Michie ed., Edinburgh University Press, 1979.

C.1. Date, ‘‘An Introduction to Database Systems, Volume 1,”” Addison-Wesley,
Reading, Massachusetts, 1986.

Robert B. Eberlein, ‘‘An itcrative gradient edge detection Algorithm,”” Com-
puter Graphics and Image Processing , Vol. 5, 1976, pp. 245-253

I.D. Faux and M.J. Pratt, Computational Geomerry for Design and Manufacture,
Ellis Horwood Limited, Chichester, England, 1979.

A. Fournier, D. Fu,sell, and L. Carpenter, ‘‘Computer Rendering of Stochastic
Models,”” Communications of the ACM , Vol. 25, No. 6, June 1982.

Forgy, E. W. (1965). Cluster Analysis of Multivariate Data: Efficiency Versus
Interpretability of Classifications. Biometric Soc. Meetings, Riverside, Califor-
nia (Abstract in Biometrics 21, No. 3, 768).

K. Fukunaga, ‘‘Introduction to Statistical Pattern Recognition,’’ Academic Press,
Inc., Orlando, Florida, 1972.

K. Fukunaga, ‘‘Statistical Pattern Classification,”” from Handbook of Pattern
Recognition and Image Processing edited by T. Young, K.S. Fu., Academic
Press, Inc., New York, New York., 1986.

Raymond R. Hayes, ‘“Chap. 4 - The Reduced Parzen Classifier,”’ Staristical
Classifier Design and Evaluation, pp. 68-82, PhD. Thesis, Purdue University,
May 1988.

Keinosuke Fukunaga and Donald M. Hummels, ‘*Bayes Error Estimation Using
Parzen and k-NN Procedures,”” submitted for publication in /EEE Trans. Pattern
Anal. Machine Intell. .

R. M. Haralick, *‘Digital Step Edges from Zero Crossing of Second Directional
Derivatives,”” IEEE Transactions on Pattern Analysis and Machine Intelligence ,
Vol. 6, No. 1, January 1984, pp 58-68.

C. Hansen and T. Henderson, “*CAGD-Based Computer Vision.”" Proceedings
of the Workshcn on Computer Vision, Nov. 30 - Dec. 2, 1987, Miami. FL.

Robent M. Haralick and Linda G. Shaprio, ““SURVEY: Image Segmentation
Techniques’® Compier Vision, Graphics, and Image Processing, Vol. 29, pp
100-132.

S. L. Horowitz and T. Pavlidis, ‘‘Picture Segmentation by a Tree Traversal Algo-
rithm,”” Journal of the ACM, Vol .23, No.2, April 1976.

(Hu62]

[Hughes84]

[HuKag88]

[KaCh87]

[Kala83]

[KaYo87]

[KaYo88]

[KoDo76]

[Kom1]

[Korn2]

[Ma67]

[Ma79]

5-3 kak/yoder

Ming-Kuei Hu, ‘‘Visual Pattern Recognition by Moment Invarniants,”” IRE Tran-
sactions on Information Theory , February 1962, pp 179-187.

Hughes Aircraft Company, ‘‘Bandwidth Reduction and Intelligent Target Track-
ing (BRITT) Final Report,”” Contract No. DAAK70-82-C-0210,CDRLA0O2,
June 1984, pp 2-50 - 2-62.

S. A. Hutchinson, R. L. Cromwell, and A. C. Kak, ‘‘Planning Sensing Strategies
in a Robot Work Cell with Multi-Sensor Capabilites,”” Proceedings of the 1988
IEEE International Conference on Robotics and Automation", April 24-29,
1988, Franklin Plaza Hotel, Philadelphia, Pennsylvania.

A.C. Kak, A. Vayda, R. Cromwell, Y. Kim, and C-H Chen, "Knowledge-based
Robotics," Proceedings of the 1987 IEEE Conference on Robotics and Automa-
tion, 1987, pp. 637-646.

H.M. Kalayeh and D.A. Landgrebe, ‘‘Predicting the Required Number of Train-
ing Samples,”’ IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-S, No. 6,
Nov. 1983, pp. 664-667.

A.C. Kak, M.A. Yoder, K.M. Andress, S.G. Blask, and B. Shamee, ‘‘First
Annual Progress Report on Research in Computer Vision for Autonomous Sys-
tems,”” Contract Number DAAK20-85-C-0293, Submitted to Tim Williams,
Night Vision and Electro-Optics Laboratory, Fort Belvoir, VA 22060-5677.

A.C. Kak, M.A. Yoder, K.M. Andress, S.G. Blask, and T.A. Underwood,
“‘Second Annual Progress Report on Research in Computer Vision for Auto-
nomous Systems,”” Contract Number DAAK20-85-C-0293, Submitted te Tim
Williams, Night Vision and Electro-Optics Laboratory, Fort Belvoir, VA 22060-
5677.

J. J. Koenderink, A. J. Van Doorn, ‘“The Singularities of the Visual Mapping,”’
Biological Cybernetics , 24:51-59, 1976.

G.H. Kornfeld, ‘‘Tactical Vehicles and Background Clutter,”’ Proceedings of the
Seventh Annual KRC Symposium on Ground Vehicle Infrared Signature,
Keweenaw Research Center, August 27,28 1985.

G.H. Kornfeld, ‘*Computer Generation of Infrared Imagery,”” Applied Optics,
Vol. 24, No. 24, 15 December 1985.

MacQueen, J. B. (1967). Some Methods for Classification and Analysis of Mul-
tivariate Observations. Proc. Symp. Math. Statist. and Probability, 5th, Berke-
ley, 1, 281-297, AD 669871, Univ. of California Press, Berkeley.

S. Maitra, ‘‘Moment Invariants,”” Proceedings of the IEEE , Vol. 67, No. 4, April
1979, pp 697-698.

[Mand]

[MMB84]

[NeBa80]

[NeSm87]

[Padl]

{Phil87]

[Rayt]

[RosKak84]

[ScSy71]

[Shaf76]

[Smit]

[SQL]
[Te80)

[TeCh86]

[TI8S5]
[Trees68]

[Trees71]

5-4 kak/yoder

B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freemand and Com-
pany, San Francisco, 1983.

Martin Marietta Corporation, ‘‘Context Cueing Techniques,”’ Technical Report
DAAK70-82-C-0215, June 1984, pp 90-93.

R. Nevatia, K. R. Babu, ‘‘Linear feature extraction and description,”” Computer
Graphics and Image Processing , Vol. 13, 1980, pp 257-269.

J.E. Nettleton and A.W. Smiley, ‘‘Multi-Sensor Field Test’’, Center for Night
Vision & Electro-Optics Laser Division, Ladar Radar Team, Fort A. P. Hill, June
1987.

E.E. Hartquist, H.A. Marisa, ‘‘PADL-2 User’s Manual,”’” The Production Auto-
mation Project, The University of Rochester, Rochester, New York 14627.

Personal correspondence with Jonathan Phillips, 10-Dec-1987.

G. R. Osche, D. S. Young, and W. J. Wilson, *‘IR Startle Technology Demons-
trator System: Final Report’’ Raythcon Company, Elecio-Optics Systems
Laboratory, 528 Boston Post Road, Sudbury, MA 01776, page 19.

A. Rosenfeld and A. C. Kak, ‘‘Digital Picture Processing,”” Vol. 1, Academic
Press, 1982, pp 97, 167, 317.

Scott, A. J., and Symons, M. J. (1971). Clustering Methods Based on Likelihood
Ratio Criteria. Biometrics 27, No. 2, 387-398.

G. Shafer, ‘‘A Mathematical Theory of Evidence,”’ Princeton University Press,
1976.

AR. Smith, *‘Plants, Fractals, and Formal Languages,”” Computer Graphics,
Vol. 18, No. 3, July 1984,

SQL is a trademark of International Business Machines Corporation.

M. R. Teague, *‘Image Analysis via The General Theory of Moments,”’ Journal
of the Optical Society of America, Vol. 70, No. 8, August 1980, pp 920-930.

Teh and R. Chin, ‘*On Digital Approximaticn of Moment Invariants,”” Computer
Vision, Graphics, and Image Processing , Vol. 33, 1986, pp 318-326.

TMS32030 User’s Guide, SPRUQO4A, Texas Instruments Incorporated, 1985.

H. L. Van Trees, ‘‘Detection, Estimation and Modulation Theory, Part 1: Detec-
tion, Estimation and Linear Modulation Theory,”’ John Wiley, New York, 1968.

H. L. Van Trees, ‘“‘Detection, Estimation and Modulation Theory, Part 3:
Radar/Sonar Signal Processing and Gaussian Signals in Noise,”” John Wiley,
New York, 1971.

[VeWi87]

[UNIFY]
[Wa63]

[Wo70]

[YaKa86a]

{YaKa86b]

5-5 kak/yoder

J. G. Verly, B. D. Williams, and D. E. Dudgeon, ‘‘Automatic Object Recognition
from Range Imagery Using Appearance Models,’’ Proceeding of the IEEE Com-
puter Society Workshop on Computer Vision, Fontainebleau Hilton, Miami
Beach, Florida, November 30 - December 2, 1987.

UNIFY is a registered trademark of Unify Corporation in Lake Oswego, Oregon.

Ward, Jr., J. H. (1963). Hierarchical Grouping to Optimise an Objective Func-
tion. J. Amer. Statist. Assoc. 58, No. 301, 236-244.

Wolfe, J. H. (1970), Pattern Clustering by Multivariate Mixture Analysis. Mul-
tivariate Behavioral Res. 5, No. 3, 329-350.

H.S. Yang and A.C. Kak, "Determination of the Identity, Position, and Orienta-
tion of the Topmost Object in a Pile," Computer Vision, Graphics, and Image
Processing, 36, 1986, pp. 229-255.

H.S. Yang and A.C. Kak, "Determination of the Identity, Position, and Orienta-
tion of the Topmost Object in a Pile: Some Further Experiments," Proceedings of
the 1986 IEEE Conference on Robotics and Automation, 1986.

APPENDIX A: UTILITIES

A.1. ADATABASE FOR MANAGING TARGET IMAGES

After acquiring the Terrain Board, Eglin Turntable, and BRITT target images from NVL,
we found that we had a rich variety of images. These images contained a wide selection of tar-
gets viewed from many ranges and angles. Most images had a header which centained informa-
tion on the targets in the image (information such as ranges, orientation, etc), and the prevailing
environmental conditions. However, selecting a set of targets for a given experiment was
difficult because the header formats were not the same for all the images. In addition, most
headers were hundreds of bytes long and contained extra information which was not needed.
The experiments (classification in particular) required the selection of several targets with simi-
lar characteristics For example, an M35 truck as viewed from 2.5 km and 100 feet altitude.
Finding such a set of targets is difficult and time consuming since hundreds of headers, each
consisting of hundreds of bytes of information, must be scanned.

To resolve this problem we extracted the pertinent infonnation from each of the headers
and then used a relational database manager to help select the different sets of targets needed
for the experiments.

A generic relational database is described in the following section. Section 1.2 gives
details on what information was extracted from the headers and stored in the database. Finally,
Section 1.3 gives examples of how to use the UNIFY Relational Database Management System
[UNIFY], to locate target of a given description in the database.

A.l1.1. RELATIONAL DATABASES

Briefly, a relational system is one in which:

1

1. the data is perceived by the user as tables (and nothing but tables); and

2. the operators at the user’s disposal (e.g., for data retrieval) are operators that generate new
tables from old. [Date86]

For example, there will be one operator to extract a subset of the rows of a _ ¢n table, and
another to extract a subset of the columns - and of course a row subset and a column subset of a
table may both in turn be regarded as tables themselves. New tables may be permanently saved
as part of the database or merely displayed on a terminal.

Each permaucnt table (or relation, as it is called) is given a unique name. The BRITT tar-
get data has been stored in a table named britt; Terrain Board and Eglin Tumtable data will
similarly be stored in their own tables. Each of the n columns of a table has a unique name
called an artribute . Each row of a table is called a tuple , short for n-tuple, which is made up of

A-2 kak/yoder

n fields containing the attribute values. A tuple is not allowed to have a null or blank value for
one of its attributes. Each table must have a key attribute or set of attributes whose value or
values uniquely identify a tuple in the relation. For example, if there is a single key attribute,
then no two tuples in the table may have the same value for that attribute.

A.1.2. DATABASE DESIGN
Table A.1 gives a description of the attributes stored in each tuple of the britt database.

Each tuple in the britt relation represents a target and its associated information. Figure
A.1 is a listing of a portion of the britt database which shows the values of the various attri-
butes. Similar table definitions will be made for the rest of our target data.

A.1.3. QUERYING THE DATABASE

After a database is built, most any database manager can be used. We choose to use the
UNIFY Relational Database Management System [UNIFY] since it is readily available and sup-
ported on the location computer system. UNIFY uses the SQL [SQL] (pronounced SEQUEL)
query language developed by IBM in conjunction with DML, the Data Manipulation Language.

A SQL query consists of clauses, each of which begins with a keyword. The following is a
list of SQL/DML keywords:

and help separator
asc in set
avg inseit start
between into sum
by is unique
count lines unlock
delete max update
desc min where
edit not write
end or

fields order

from records

group restart

having select

Since these commands are described in the UNIFY manuals we will only briefly discuss those
commands needed to extract the targets for the BRITT classitfication experiments.

There are required and optional SQL clauses. The required clauses are as follows:

Table A.1

Attributes of britt database.

id:

type:

range:

angle:
size:
target:

model:

parent:

The key attribute of the relation. Every target is
assigned a unique three digit i.d. number.

The type of vehicle. In this case, one of APC,
JEEP, TANK, or TRUCK.

The specific kind of vehicle. For example, there
were two kinds of TANKSs, M48 and M551.

The distance to the center of field of view of the
parent image from which the target image was
extracted.

Aspect angle from which the target is seen.

The extracted target image is size by size square.
Name of file containing the target image with the
target of interest in its center. This image is
extracted from the provided image with multiple
targets in it. The britt target files have been named
britt###, where ### is the target id.

Name of the file from which the target was
extracted.

x-coordinate in the parent file of the center of the
target file.

y-coordinate in the parent file of the center of the
target file.

iditype Imodell

rangel anglel sizeltarget

Iparent |

HTANK IMS511
2TANK IM5511(
3IAPC 1M113)
4APC IMI1141
SITRUCK IM35 |
GJEEP IM1511
TTANK IMSS511
8ITANK IM551 |
HAPC IMI131
10APC MLi41
1UTRUCK IM35 |
12UEEP IM1511
13ITANK IM5511
14ITANK IM5511
15IAPC IM1131
16IAPC IM1141
17ITRUCK IM35 |
18UEEP IM1511
19ITANK IM551 1
20ITANK IMS511
21IAPC IM1131
22IAPC IMi141
23ITRUCK IM35 |
24JEEP M1511
25ITANK IMS551 1
26ITANK IMS511
27IAPC IM113
28IAPC M1141
29ITRUCK IM35 |
30UEEP IM151 |
31ITANK IM5511
32ITANK IM5511
33IAPC IM113
34IAPC IM1141
3SITRUCK IM35 |
36UEEP IM1511
37ITANK IM551 |
38ITANK IM5511
39IAPC IM1131
40IAPC IM1141
41ITRUCK IM35 |
421JEEP IM1511
43ITANK IMS511
44ITANK IM5511
45IAPC IM1131
46IAPC IM1141
47ITRUCK IM35 |
48UFEP IM1S1I
49ITANK IM5511
SOITANK IMS5511

Figure A.1

5.000001 1801 128Ibrin001

5.000001 1801 128Ibrniu002
5.000001 180! 128ibritt003
5.000000 1801 128lbntt004
5.00000f 1801 128Ibrin005
5.000000 O 128!bntd06
5.000001 1801 128Ibnt007
5.000000 180f 128brin008
5.000001 1801 128/bnu009
5.000001 1801 128bnud10
5.00000f 1801 128brn011
5.000000 O 128bnu0i2
3.500001 1801 128lbnu013
3.500001 180+ 128bn1014
3.500001 1801 128briutOLS
3.500(a) 1801 i28lbrindis
3.500001 180t 128brit017
3.500000 O 128lbnt018
3.500001 1801 1281brnu019
3.500000 1801 128Ibritt(20
3.500001 1801 128ibnu021
3.50000f 180 128lbritic22
3.500001 180t 128bnu(23
3.500001 O 128lbritt024
2.500001 1801 128lbrit(25
2.500001 180 128ibnu026
2500001 1801 128bnit027
2.500001 180 128ibntt028
2.500001 1801 128ibnte(29
2.500000 O 128/bru030
2.500001 1801 128brin(31
250000 180t 1281bnun032
2.50000i 1801 128Ibritt033
2.50000! 1801 128bn034
2.500001 1801 128bnt03s
2500000 OF 128brnud36
5.000001 45 128lbrit037
5.000000 45 128ibritt038
5.000000 451 128bru(39
5.000000 451 128bnu040
5.000000 451 128bnud41
5.000000 O 128ibrin042
5.000000 451 128lbrin043
5.000001 451 128lbnitt044
5.000001 451 128britt045
5.000001 45! 128lbrin046
5.000000 451 128brin047
5.000000 O 128/bnu048
3.500001 45 1281bnu049
3.500000 45 128!britt0S0

Ifile001
1file001
Ifile001
Ifile0Ot
151001
Ifile001
1file002
I1h1c002
1filc002
1file(02
Ifile002
f11e002
ifile003
1le003
1file003
141003
1ile003
1file003
1filc004
Ifile004
1file004
Ifilc004
Ifilc(04
ifite004
file005
Ifile005
1i1e00S
Ifile005
1filc005
1flc005
Ifile006
Iile006
1fle006
1file006
Iilc006
Ifile(06
Ifite007
tfile0O7
1ite007
111007
tile007
Ifilc007
i1e008
161008
1file008
1file008
Ifilc008
1H1e008
ile009
161009

I 415 264
1 4100 290
I 1801 236
| 3031 225
1 2891 308
1 3391 154
| 468 299
I 4611 328
I 2391 262
t 3571 251
| 3381 355
I 3%8 172
I 5641 261
I 5551 303
| 255t 209
1 416/ 193
| 3731 358
| 476 87
| 5561 274
I 5441 316
[249t 222
1 4101 209
1 355t 3¢4
1 476 109
| 56. 265
I 5531 320
11210 211
I 3451 194
I 2971 363
14081 95
1 5361 257
| 5221 309
I 971 193
I 3200 182
| 2621 348
I 3871 86
| 4691 249
I 453t 288
12351 222
I 339 214
| 3681 343
I 3981 115
| 4700 269
I 455! 308
| 2401 240
| 3421 234
I 3681 353
I 4041 146
| 5041 234
I 483t 282

A sample section of the britt database.

A-5 kak/yoder

select (attribute list)
from (table names)

Some of the optional clauses are:

where (expression is true or false)
into (an ASCII file)

The required select and from clauses go hand in hand. The select clause specifies which
attributes (or columns) to print out for the relations (tables) specified by the from clause. For
example:

sgql> select id, type
sql> from britt /

causes the id and type columns of the britt table to be displayed. The ’/’ character tells the
SQL parser that we are done entering a query and no additional optional clauses follow. One
may print out the entire britt table with the following command:

sql> select *
sql> from britt /

Here the “*’ will match all attribute names, and so all columns of the britt table will be printed.

We have seen how to select specific columns of our tables, but not specific rows. For this
we need to make use of the where clause. The where clause will select a tuple only if its
expression is true for that tuple. For example:

sql> select *
sql> from britt
sql> where range = 5.0 /

will select all the tuples with values of 5.0 for their range field. We can now begin to make
more complex queries. The query:

sgl> select target
sgl> from britt
sql> where angle = 0.0 and type = /TANK*’ /

will print out all of the target filenames containing front views (corresponding to aspect angle=0
degrees) of TANKs. The type attribute is stored as a string, and so must be quoted. The ’*’
character matches all trailing blanks in the field. We can also make nested queries:

A-6 kak/voder

sql> select target
sql> from britt
sql> where angle = 0 and type = select type

sql> from britt
sql> where model = 'M48*’ or
sql> model = 'M551*' /

Starting from the innermost query, the tuples with model values of M48 or M551 (the two kinds
of tanks) are selected, then the type column of this temporary table is selected, then all tuples in
britt with types in this set and angle values of 0 are selected, and finally the target column of
this temporary table is selected and displayed. The final result is the same as the previous
query, a list of target filenames containing front views of tanks.

The operators >, <, and "= (not equal) may all appear in the where expression. Arithmetic
expressions using the operators +,-,/, and * and attribute names used like variables are allowed
anywhere a simple attribute name is allowed in select, and where clauses. The following is a
way to request an attribute within a range of values:

sql> select id
sql> from britt
sql> where type = 'JEEP*’ and angle between 0.0 and 180.0 /

which will give the obvious result.

The order of the query output can be specified by using the order by clause. The data can
be sorted by multiple fields in both ascending and descending order:

sql> select id, angle, target

sgql> from britt

sql> where range between 2.5 and 5.0
sql> order by angle asc, id desc /

which will get the id number, angle of view, and filename of all targets between 2.5 and 5.0
kilometers away and output them in ascending order by angle and descending order by id
number for targets with the same angle.

The last important part of the query language is the ability to send results of queries to
ASCII files for use as input to other programs. The "lines 0" command for suppressing the table
header comes in handy here. An example of such a query:

A-7 kak/yoder

sqgl> lines 0

sql> select target

sql> from britt

sql> where type = ’/TRUCK*’ and
sqgl> angle 180 and
sql> range 3.0

sgl> into savefile /

i

Names of the files containing rear views of trucks at a range of 3.0 kilometers are saved in file
savefile. The file savefile may then be used as input to a program performing classification
experiments. As another example, the following query could be used as input to a program to
extract targets from their parent files for a newly generated database:

sql> select parent, x, y, size, target
sql> from britt
sql> into extract.infile /

A.1.4. SELECTING THE BRITT CLASSES

With the above tutorial in mind, extracting the targets needed for the three classes used in
the BRITT classification experiments is easy. The tanks class consisted of 50 M551 tanks at a
range of 2.5km. The following request would extract all M551 tanks at 2.5 km:

sgl> select target
sqgl> from britt
sql> where range = 2.5 and model = 'M551*' /

The apcs class consisted of 25 M113 apcs and 25 M114 apcs at a range of 2.5km. They
were selected by using the following query:

sgl> select target
sql> from britt
sql> where range = 2.5 and [model = 'M113*’ or model = ‘M114*'] /

The final class consisted of M35 trucks. There were not enough trucks at the range of
2.5km, so trucks at all ranges were used:

sql> select target
sqgl> from britt
sql> where model = ’M35*' /

All of the above queries returned more targets than needed, so then each of the targets was
viewed and the most suitable targets were used.

A-8 kak/yoder

A.1.5. CONCLUSIONS

The use of a database manager has greatly simplified the selection of target images. All
the targets from the Eglin turntable, the NVL terrain board, and the TI data set that we have
received will be placed in the database so that they can be easily located when needed. Addi-
tional attributes such as background clutter and image quality may be added to the database if
they will help in the target selection.

A9 kak/yoder

A.2. RANGE DATA FROM STRUCTURED LIGHT

This section reports on the acquisition of structured light range data.

A.2.1. LIGHT STRIPE IMAGES: WHAT ARE THEY?

In our Robot Vision Lab we use a single-slit projection system for the acquisition of 3-D
range data. Our sensor consists of a projector and a camera. The projector illuminates the
scene with a single stripe of light, and the camera records the interaction of the stripe with scene
objects. To collect range data from the scene, a robot arm moves the sensor in a straight line
and records the illuminated stripes at equal intervals along the direction of motion (see Figure
A.2). The robot arm moves in the direction of the arrow in the figure, stopping at equal inter-
vals along the way to collect the image of a single stripe.

The stripe images as recorded on the camera can be translated easily into what is called the
pixel offset data. In Figure A.3 we have shown what is meant by pixel offset data. In that
figure, with pixel P in the source-viewpoint frame, we associate the offset d(ij) as obtained
from the location of the corresponding illuminated pixel in the camera image. This pixel offset
data can be translated irto a range map of the scene. The offset values are multiplied by a cali-
bration matrix to obtain the (x,y,z) coordinates of points on the detected stripe.

A program has been written to convert the raw (x,y,z) data of the range map into an image
in which pixel brightness corresponds to distance from the sensor path. The resulting range
image is basically an orthogonal projection of the scene, and so is very much like the laser
range images we receive from NVL. There are slight differences, however. Due to occlusion
problems, the range images we generate have some areas with no valid range information. This
is due to the geometry of the sensor. Because the camera is next to the projector, there will be
cases in which the projected stripe wili lie on some part of the object that is hidden from the
camera by some other part of the object. The result is a shadow-like void of missing informz-
tion in the range image. Also, points more than a few feet from the scanner are not detected
well due to the spreading of the stripe. We therefore have an abrupt falloff in valid data as we
move far enough from the scanner. The distance at which this phenomenon occurs is obvious
when one observes the composite stripe or range images.

A.2.2. OUR SIMULATED TARGET RANGE IMAGES

We have constructed scale models of several tanks and generated range maps from light
stripe images taken of them. Figure A.4 shows composite light stripe images of an M48 tank
model taken from eight different aspect angles. Figure A.5 shows the corresponding range
images, where lighter pixels correspond to nearby pixels, darker pixels are farther away, and
white pixels are areas of no information due to occlusion and spreading of the stripe, as dis-
cussed above. Note the artificial contours in the range images, which is especially noticeable in
the ground plane on which the tank sits. The false edges between bands are due to the gray

&

@fer :
the 3-D

vision scanner

Figure A.2 Light stripe image collection using a linear scan with the sensor by a robot.

jth slit

camera
viewpoint
frame

source
viewpoint
frame

light

camers
source

lens center

Figure A.3 Shown are the source viewpoint frame (light source plane) and the camera
viewpoint frame (camera image plane). Pixel offset d(i,j) is the horizontal dis-
tance in the camera image corresponding to point P on the j-th stripe projected
by the source. The quantity d(i,j) is measured from the left hand edge of the i-th
scan line of the camera image.

BINL

mdN

mds 2 e

oy

rdn

mds 6

Figure A4 Composite light stripe images of a model of an M48 tank.

m4x 11
[HEE]

nidn 2
inds 3

mdN 4
N m4X S

mdR 6
maK 7

Fi .
igure A.5 Range images of a model of an M48 tank computed from offset data.

A-14 kak/yoder

value quantification of the image hardcopy device, and are not really present in the image itself.

A.2.3. CONCLUSIONS

The figures show that we are able to generate range images of targets in our lab. Future
work in this area will include down sampling the images so that the number of pixels on target
will be approximately the same as real LADAR images.

APPENDIX B: DETAILED DESCRIPTION OF LADAR DETECTION PROGRAMS

The purpose of this appendix is to describe the LADAR target detector developed by the
Robot Vision Lab at Purdue, and how to use the programs that it is composed of. The detector
that this document describes is the first attempt at detecting tactical targets using a single line of
LADAR data. The theory of our detector was describe in Section 3.2.4. In that section, we pro-
posed a pixel based detector that uses the range value of a pixel and the ranges values of the
neighboring pixels to classify the pixel as belonging to the background or the object. We also
discussed some aspects of detection theory and explained the need for estimating the density
functions of the target and the background for robust detection.

The detection process is non-trivial in that it requires the use of a number of programs, all
of which interact with each other, its use . Because of this, there are a number of sections to this
appendix. These sections include a description of what the detection programs do and how they
are used. A description of the data files that the programs expect to see and examples demon-
strating program usage are also included. It should also be noted that the programs as supplied
can work with up to 50 dimensional data vectors and this can be increased by merely changing a
single parameter and recompiling the programs.

B.1. PROGRAM DESCRIPTIONS

The target detector consists of four programs. These programs are: 12V and V2I convern
data from an image to a data vector and back again. MAKECLASS estimates the density func-
tion of the target and background and stores relevant parameters for the detector, and QCLASS
is the actual detector. All these programs will be described in greater detail in the following
sections.

B.1.1. Operation of 12V

The purpose of 12V (image to vector) is to extract data vectors from an image so the fact
that the data vectors are coming from an image and their composition is hidden from the detec-
tor. 12V actually works in two modes depending on whether it is being used for training the
detector or if it is generating vectors for detection. These two modes of operation will be called
training and detection modes respectively. Since 12V is easiest to understand in detection
mode, we will discuss that first.

In detection mode, 12V was designed to generate a data vector for every pixel in the input
image and pass these vectors to the detector. To be precise, the data vector will be built as fol-
lows: If the target is at the farthest range, choose N range values from the scan line centered
around the pixel being considered; N is the minimum number of pixels needed to guarantee that
an entire target (plus some background) is covered. These range values are then used to build
an N dimensional vector. If the target is closer then the maximum range, down-sample the scan
line around the pixel so that N range values still cover the entire target (plus some background).

E——

B-2 kak/yoder

In this mode, 12V reads the itnage from standard input and writes a vector file to standard out-
put.

In training mode, operation of 12V is similar to operation in detection mode. In this mode,
the data vector is computed identically as in the detection mode; the only difference in the two
modes is how the program reads the image files and where it writes the data vector files. In
training mode, 12V reads two image files, one containing the actual image and a second one
containing the segmented version of the image (a pixel in the segmented image is defined to be
zero if the pixel is in the background nonzero otherwise). It also writes to two data vector files,
one for target pixels and another for background pixels. After the data vector has been com-
puted, the pixel in the segmented image is checked; if the pixel is zero, the data vector is written
to the background vector file otherwise it is written to the object vector file (The format of the
types of data files will be described later).

B.1.2. Operation of MAKECLASS

MAKECLASS is the program used to train the detector. To do this, it creates an estimate
of the density function and writes the density function’s statistics (mean and covariance matrix)
1o a file for use by the detector. Because the density function was assumed to be Gaussian (oth-
erwise the process would be intractable) it is completely described by these statistics. The input
to MAKECLASS is a data vector file created by 12V in training mode and the output is a param-
eter file containing the necessary statistics.

B.1.3. Operation of QCLASS

QCLASS is the actual detector. In fact, it is a very general purpose detector and can work
with any type of data. It reads the data vectors generated by 12V in detection mode, does the
classification as object/background and outputs its result to the standard output. To accomplish
the classification, it reads in a data vector for a pixel and then computes the value of the target
and background density estimates at that point. If these values are called f(target) and f(noise)
respectively, then a decision that the pixel is part of a target is made if f{rarget) > C * f(noise)
otherwise the pixel is said to be noise. QCLASS then outputs the decision to the standard out-
put (it outputs a ‘1"’ if it thinks the pixel is from an object, ‘0’ otherwise). Note: C
corresponds to a threshold and depends on the a-priori class probabilities and the costs of false
detections and detection misses. At the current time, C is set equal to 1.

B.1.4. Operation of V2I

V2I (vector to image) is the program that reassembles the classified pixels back into an
image. It merely reads in the *‘0’s’’ and *‘1’s”’ produced by qclass and outputs unsigned chars
(bytes) in the form of an image.

B.2. PROGRAM OPERATION

B.2.1. 12V Operation

B-3 kak/yoder

The following are the command line parameters that I2V uses.

size=<image size>

rows=<# rows>
cols=<# cols>
x_in=<x target size>
x_out=<x dim>
y_in=<y target size>
y_out=<y target size>
-mean

skip=<sampling density>

-- size of image (for square images)
--or

-- # of rows in image

-- # of cols in image

-- x size of target (in pixels)

-- x size of target (after down-sampling)
-- should be 1 for ladar detection

-- should be 1 for ladar detection

-- include if want to normalize by mean
-- of row being scanned

-- used when training detector

-- skip to every nth pixel

-- used to reduce amount of data processed

-- Command line parameters to use only when training classifier

grey=<file name>
seg=<file name>
back=«file name>
obj=<file name>

-- file name of grey scale file (input)

-- file name of segmentation file (input)

-- file name of background vector file (output)
-- file name of object vector file (output)

-- Note: the output files append

-- the new data vectors to the

-- end of the corresponding

-- files so samples can be

-- gathered from multiple files.

-- Command line parameters to use only when detecting targets

STDIN
STDOUT

-- input image file
-- output data vector file

-- Note that if x_in = x_out and y_in = y_out then no resampling is done.

B-4 kak/yoder

B.2.2. MAKECLASS Operation
The following are the command line parameters that MAKECLASS uses.

dim=<dimension> -- data vector dimension
-- should be equal to x_out * y_out
--assentto I2V

STDIN -- input data vector file
STDOUT -- output parameter file
-- Note: the name of the output file should have the form:
<core name>.0 -- for background data vector file
<core name>.1 -- for object data vector file

B.2.3. QCLASS Operation
The following are the command line parameters that QCLASS uses.

dim=<dimension> -- data vector dimension
-- should be equal to x_out * y_out
-- as sent to [2V
file=<file name core> -- parameter file name core. Parameter
-- file names should be <file name core>.#
-- see the example commands for further

-~ clarification.
<file name core>.0 -- background parameter file name
<file name core>.1 -- object parameter file name
STDIN -- input data vector file

-- should have one vector per pixel
STDOUT -- output data vector file

-- 1 => object

-- 0 => background
-- should have one vector per pixel

B-5 kak/yoder

B.2.4. V2I Operation

The following are the command line parameters that V2I uses.

size=<image size> -- size of image (for square images)
--or

rows=<# rows> -- # of rows in image

cols=<# cols> -- # of cols in image

STDIN -- input data vector file
-- 1 => object

-- 0 => background
-- should have one vector per pixel
STDOUT -- output image

B-6 kak/yoder

B.3. SAMPLE COMMANDS

The following are samples provided to make the explanations a little more concrete.

-- This example shows how to train the detector
-- The first two (i2v) commands pull training samples from two images

i2v x_in=49 x_out=25 y_in=1 y_out=1 rows=96 cols=160 -mean skip=11 #
grey=images.324.im03 #
seg=segment.324.im03 #
back=background obj=object

i2v x_in=49 x_out=25 y_in=1 y_out=1 rows=96 cols=160 -mean skip=11 #
grey=images.324.im03 #
seg=segment.324.im03 #
back=background obj=object

-- Note that the character "#" means continue the command on the next line.

-- The next two commands compute the density function statistics

makeclass dim=25 file=background > class.0
makeclass dim=25 file=background > class.1

-- This example shows how to run an actual detection experiment

i2v x_in=49 x_out=25 y_in=1 y_cut=1 rows=96 cols=160 -mean #
< image.324.im03 #
I gclass dim=25 -v file=class class.1 class.0 #

| v2i rows=96 cols=160 > detect.32403

B.4. DATA FILE TYPES

There are three types of files used in the detection process, they are image files, sample
vector files and parameter files.

B.4.1. Image Files

The image files consist of unsigned character (byte) data stored in the usual raster scan
fashion. Therefore, a 160 x 96 range image would consist of 15360 bytes of range information.

B.4.2. Data Vector files

The data vector files are created to interface with the detection programs QCLASS and
MAKECLASS. These are ascii files with one data vector per line. The lines consist of N float-
ing point numbers separated by spaces or tabs. So the files end up looking like:

sample!1[0] samplel[1] ... sample1[N]

sample2[0] sample2[1] ... sample2[N]

sampleM[0] sampleM([1]... sampleM([N]

Where N is the dimensionality of the data. The following is an example of a (very short) 5
dimensional data vector file:

2.124582 (.466372 1.442297 0.129548 0.475008 ; Ist pixel
0.449099 1.355932 1.053654 1.675483 2.020944 ; 2nd pixel
0.120965 2.307648 1.265484 0.027915 1.823786
1.262410 0.635385 1.329293 1.103564 1.981398
0.344403 0.041000 1.279213 1.254613 1.303813
1.256044 0.249545 1.380816 1.106317 0.133091
2.087861 1.588770 1.264362 1.006499 0.673772
0.507408 1.330907 1.222771 1.505589 0.091500
1.247726 1.214453 1.430725 1.347544 1.763452

Notice that anything after a comma in a line is defined as a comment and is ignored.

B-8 kak/yoder

B.4.3. Parameter Files

The parameter files contain the covariance matrix and mean vector of the object and back-
ground density functions. Because the densities are assumed to be Gaussian, these are the only
values needed to determine density function. Thus, the detector trainer needs only to store these
two parameters for the detector to use. The format of these files is similar to the format of the
data vector files; they too are ascii files. The first N valid vector lines are assumed to be the
covariance matrix of the class, and the next valid vector line is assumed to be the density
function’s mean vector. The format of the files looks like this:

covar[0,0] covar[0,1] ... covar[Q,N]
o~
covar[1,0] covar[l,1] ... covar{ 1,N]
covar[N,0] covar{N,1] .. covar[N,N]
mean([0] mean|1] mean[N]

Where once again N is the dimensionality of the data. A sample 5 dimensional parameter file is
shown next:

0.373155 0.0659588 -0.0151386 -0.0715956 -0.0860195 ; covanance
0.0659588 0.300289 0.0780137 -0.0323843 -0.0698119
-0.0151386 0.0780137 (0.248101 0.0794427 -0.0335361
-0.0715956 -0.0323843 0.0794427 0.268688 0.0508662
-0.0860195 -0.0698119 -0.0335361 0.0508662 0.304258

0.989099 1.01034 1.03651 (0.957537 0.922343 ; mean vector

Once again note the ability to use comments in the data lines.

APPENDIX C: DERIVATION OF MAITRA’S INVARIANT MOMENTS

This appendix is not intended for a reader well conversant with the theory of image
moments. In fact, even a reader who is not familiar with this theory might wonder about why
we have taken the trouble of rederiving the results that are amply documented in the archival
literature.

Our motivation for rederiving the expressions snown here was the discovery of an error in
the moment-invariants used in the Martin Marietta report. This apparently was caused by a
typographical error in the original 1962 paper by Hu [Hu62]; this error being subsequently
reported upon by Maitra in 1979 [Ma79]. This and the other errors that Maitra found in the
literature that preceded him prompted us to rederive for ourselves all the major results.

In what follows, we will rederive expressions for the region level features used in [MM84].
The main features are Moment Invariants based on Hu's paper {Hu62]. Moment invariants,
while invariant under rotation, translation and scale change, are not invariant under illumination
change. Maitra’s invariants [Ma79| are invariant under illumination change, rotation, transla-
tion and scale change; and thus are sufficient to characterize an image under these transforma-
tions. However, note that not all the features listed in Table 9 of [MM84] are necessary for tar-
get characterization. Specifically, the moment invariants and Maitra’s invariants are not
independent.

C.1. Moments

Since Hu’s paper [Hu62], moments have been applied to pattern recognition problems.
Features that are invariant under translation, rotation, and scaling can be derived from the two
dimensional moments. The two dimensional moments represent a countable collection of
weighted averages of an image as can be seen from the following definition:

Definition 1: The two dimensional moment of (p+q)th order is defined by the following Riem-
man integral,

Mpq =Hx”y"p(x,y)dxdy

for p,q =0,1.2,..., where n is a piecewise continuous function defined over a finite region in the
plane.

Moments are a faithful representation of an image. If we consider the image in the xy
plane to be a piecewise continuous function whose values are the intensity over the pixels of an
image, then the following theorem [Hu62] asserts that the moment sequence can reconstruct the
image, and furthermore the moments are unique.

E——

C-2 kak/yoder

Theorem 2. The double moment sequence {m,,} as defined above, is uniquely determined by
p(x,y) provided that the integration is carried over finite region. Conversely, p(x,y) is uniquely
determined by the set {m,,}. See [Hu62] for the proof.

C.1.1. Central Moments

It is more convenient to work with central moments which correspond to moments com-
puted about the centroid. In this section we define and relate the central moments to the
moments.

Definition 3: The Central moment of (p +q)th order is defined by

Hpg = U(x -0 v = 7 px,y)dxdy p.g=0,1,2,... (C.1)
m m
where X = 9 and y = —i.
muo m o0

It is clear from (C.1) that central moments L, do not change under the following transfor-
mation,

x' e« x+o
y e y+P

. . . . i , .
that is, W'pe = Wpq under translation of coordinates by a, B, where p’,, are the moments in the
translated coordinate system.

Central moments can be obtained from the moments {mpq}. To do so, consider (C.1) and
use the binomial expansion, i.e.,

(x _f)P - i [Z] (_l)kx.kx,,—k
k=0

where

p|___»r!
k (p—k)k!’

One can obtain a similar expression for (y—y). Substituting the binomial expansions in (C.1) we
obtain

P 49 . J _
Hoe = [[Z 2 [d {7} (~DMIE T ety p(ey)y
k=0{=0

by arranging the terms and interchanging the order of summation and integration we get

P 4 + k|
Mo = 3 T (-1 ’{d {‘,’}x F My ke (C.2)

k=0 1=0

C-3 kak/yoder

Equation (C.2) yields the following relationships between central moments and moments
of order less than or equal to three:

Hoo = moo
Ho1 =Hi10 =0
Moo =mag —Xmyg
Hip =my —yXmeg
Ho2 =mo2 —ymo
_ 2
U30 =m3p — 3Xmoyp +2X myp
_ _ 2
Hop =mo) = 2Xmyy —ymy + 2X moy
—- - 2
Hig =mq2 —2ymyy —Xmoy +2y myg
_ 2
Hos =mo3 — 3ymoy +2y mo

Since central moments are translation invariant, and are uniquely related to moments by
(C.2), they can also represent images. Thus, from now on, we consider only central moments.

C.2. Moment Invariants

We now define the notion of invariance. The main idea is to obtain ‘‘invariants’” under
various transformations. Specifically, if an image undergoes a change in size, rotation or trans-
lation, the ‘‘invariants’’ do not change. Thus the image may be characterized independently of
these changes.

Given an image over a regior in the xy plane, moment invariants characterize the image
independent of linear transformations. If we let U be a particular set of moments and / be an
invariance function over the set W, that is, /: Y < u — R,then the necessary condition for invari-
ance can be stated as

HW)=1 (W)
where L’ is the resulting moment set under transformations.

In order to maintain theoretical consistency with [MM84], the approach followed in this
report is that of Hu [Hu62], rather than Teague’s [Te80], although the latter possess the advan-
tage of simplicity.

Before we proceed with moment invariant derivation, the following definitions are neces-
sary.

Definition 4: A homogeneous polynomial of the form

_ S i
f=a, ou” + ’1) Ay v+ -1 aypwf= +ag,v?P

C-4 kak/yoder

is called a binary algebraic form and is denoted by

f=(ap,0:05-1,15.300,p) (4,V)

Definition 5: Let (@, 0:8p-1,1;..:@0,p) (4,v) be a binary algebraic form. A homogeneous poly-

nomial /(a, o, d,-11,.-.., @g,) is called an algebraic invariant of weight w if
p.0> Gp-1,1 0,p g
I(a’p'o, a'p—l,O’ ey a’o'p y=A"I(@p,00 Gp-1,15- - - » ao'p)
where @’ 0, @'p_1,1, ..., @, are the resulting coefficients of the binary algebraic form when

(u,v) is transformed into (¥’,v’) by
u o u
EREE

A = det [g gJ 0.

and

Remark: If w =0 then / is called an absolute invariant, otherwise [is called a relative invari-
ant.

The key element in relating moments to the algebraic theory of invariants is the moment
generating function. As shown below, the moment generating function can be expressed as an
infinite sum of binary algebraic forms. Once this relation is expressed, the invariants are
deduced from the theory of algebraic invariants,

With definition (4) we can express the moment generating function as an infinite sum of
binary algebraic forms. Recall the moment generating function is given by,

M (u,v) = [[e “HVp(x,y)dxdy

where p is a piecewise continuous function having finite support. Expanding e“**?) in power
series, we obtain

Muv)=[[¥ 5——:121 p(x.y)dxdy
p=0 P-
and interchanging the order of summation and integration, we get

M@uv)= ¥ # [Jaac+vy Y pix,y)dxdy
p=0¥"

M(u,v) = Z L' J'Ii [i} up—kvkxp-kykp(x,y)dxdy
p=0P" k=0

C-5 kak/yoder

> 1 E -
Muvy=Y— ¥ ['E] ML TR
p=0P " k=0

and noting that the inner summation term is (W, 0; Mp-1,15 - Ho,p) (4,V) to obtain
o1
M@uv)= 3 — (Hp, 05 Bp-1,15 -3 Hop) (V) (C3)
p=0P"

When applied to moments [Hu62], the theory of invariants tells us how to extract features
from an image such that the features remain unchanged if the image undergoes linear transfor-
mations. The following is a derivation of the invariants under the following transformations:

s)-15Y 1)

[’;} = [g g] [::} ;o we+vy=ux +vy. (C.5)

Let’s consider the change in the moment generating function under (C.4) and (C.5). Recall
equation (C.3)

oo

1
M (u,v)= 3 — (Hp, 05 - Hop) (V) (C.6)
p:()p M

and the definition of the moment generating function

M (u,v) = [[e Y p(x,y)dxdy (C.7)

by applying the transformations (C.4) and (C.5) to (C.7), we obtain

’ ’ 4 - 1 7 r_ 7 ’ ’ Vs 1 ’ ’
M(u,v)=ﬂ§)H Wx +VyY PPy dx'dy
p.—

with

1=

8 ‘B ’r_
det[_y a] l p'=p

Similarly we can obtain for equation (C.6)

’ ’ ’ 1 hnd
M =37 =

1 ’ ’ ’ r
— (W, 053K g,p) (W,V) (C.8)
p:Op ‘

provided that the transformed moments are defined by

u’pq = IIx'pqupl(xl’yl)dxldyl p.q = O, 1’2’“.

e —————————————————————————

C-6 kak/yoder

From the theory of algebraic invariants, the transformation law for the binary algebraic form

(Mp, 05 Hp—1,15 - Hop) (4,V)

1s the same as that for

(ux +vyY = (xP; xP7V y; yP) (V).

Thus if we let a,,¢,..., @gp be the moments in (C.3), and combining with (C.6) and (C.8) we

have the following theorem [Hu62].

Theorem 6: If the algebraic form of order p has an algebraic invariant of weight w, then the

moments of order p have the same algebraic invariant with the additional factor |J |, that is,

l(u’p'o, ’“’O,p) =1|JI| A%/ (},Lp'o, e ’“O,p)

C.2.1. Invariants under scale change

Consider the following similitude transformation

30 -

Each coefficient of any algebraic form is an algebraic invariant of weight p +g, that is

’

— P
Apg =& 7" Qpq-

By applying Theorem 3 we obtain,
Wpg = 11077 g
Under Similitude transformation we have |/ | = o2, which yields

2

' — ol Pt
Hpg =0~ 0" 7 Hpg

combined with the zero-th order moment relation

to yield,

Hpg _ MHpg ‘ C9)

C-7 kak/yoder

Equation (C.9) defines absolute moment invariants under similitude transformation.
Remark : Since 19 = Hg; =0 equation (C.9) is nontrivial for p+q = 2,3,....

C.2.2. Moment Invariants under Orthogonal Transformations

Now we consider invariants under orthogonal transformations. Rotation of coordinate sys-
tems is an element of such transformations. Define the proper orthogonal transformation

x| _ | cos® sin@ X J=1
y'I = | —sin® cos@ y -

then the moment invariants are [Hu62]:

Ip,o=upo—i[ll)] Hp-11— [3] up-2.2+i[§] Mp33+ - +iPug,

Ip—l.l = (upO + “-p—2,2) _i(p_z)(up—l,l + p-p—3.3) + 0+ ("‘i)p+2(p-2,p—2 + UOp)
Iy 22 =Mpo+2Up 22 +Hy 44) = i@—DMp-1.1 + 21533+ Hp_55)+
-+ (__i)P'4 (“4,p—4 + 2”2.p—2 + qu)

Iy r = [(MpoiHp-2.25-3Hp-27, 2. 1,)5 (Wpo1,13Mp-3,35-5Hp -2, —1,2-+1)(1, 1)

et (W2 p-2r Moy +2,p—2r 235 Hop J(L, DL =i P~ p—2r>0

2 2
12,2 =ppo + [1’1] Hp2a+ [pz } Wpas+ - +Ho, forevenp

*
[r,p—r =1 p-r.r
where * is complex conjugation.

The invariants obtained from the second-order moments are given by /4y and [gy/ .
From the third order moments, we get [I3g/¢p3, I /112, (U39 1?2 +H I%l), and

— U313, -lg3 l%,), a skew invariant. Another invariant may be derived from a combination
i

of second and third order invariants: (19 125 + 193 1%21).

C-8 kak/yoder

In general for p>4 there are [-ﬁ-] invariants given by .5 /¢,

In vy p-tseelp—rr I, ,_,, and also, when p is even, /2. P_, where | x| is the smallest integer
p-1,111,p-1 p-r.orfrp—r p 55

greater than or equal to x. Also combined with (p —2) moments we have [% —1] invariants,

Up-111op-2+11p1 Ip2,0)
(lp—2.2 11.p-3 +12.p—2 1p—3,1)

(lp-r,r lr—l,p-r+l + Ir.p-—r 1p—r+1.r—l) p- 2r>0

combined with second order moments,

12[%].[%]“ I+ 12[—;-]+1.[%1 Ipy ifpisodd
1P P g Iyg+1P (P 4] if p is even
715+l a1 To Y

which give us a total of (p +1) independent invariants.

C.2.3. Summary of moment invariants

The central moments { Hpq) are invariant to translation of coordinate system. The invari-
ants under similitude transformation (scale) are defined by equation (C.9). In Section C.2.2 we
listed the invariants under orthogonal transformation. These can be combined to produce scale,
rotation and translation invariants as follows:

Let ¢1,...,0; be the invariance functions for second and third order moments, (obtained
by evaluating the second and third order invariants from section C.2.2) then
®1 = (M20 + Ho2) (C.10)
2 = (Moo — Ho2)* + 4, (C.11)
03 = (30 — 3112)> + Gy - Ho3)? (C.12)
s = (30 + 112)? + (Hp) + o3) (C.13)
95 = (30 = 3112) (k30 + p2)[(H3p + 112)? = 3(ay + bi3)?] (C.14)
+ (321 — 1o3)(ka1 + Ho3)[3(K3o + K12) = (a1 + Ho3)?)
96 = (a0 ~ Ho2)[(30 + 112)* — (a1 + o)’ (C.15)

C-9 kak/yoder

+ 41111 (M3p + H12)(M21 + Ho3)
07 = (321 — Hos)(H3o + H12)[(H3o + M12)* — 3(Ha1 + He)?] (C.16)
~ (30 = 3M12)(ta1 + Ho3)[3(M3g + 112)? — (M2 + Hoa)?]

Equations (C.10) through (C.16) are the invariants under translation and rotation. To make
them invariant to scale change, normalize according to (C.9), that is, define Mpg by,

_ Hpq
Npq = T prd L, (C.17)

oo 2
and replace Ly, by Ny, in (C.10) through (C.16).

Note: The normalization given by (C.17) disagrees with the normalization given in Table 9 of
[MMB84]. We also note typographical error in the normalization equation (30) of [Hu62].

C.3. Maitra invariants

Moment that are invariants under scale, rotation and translation may be sufficient to
characterize the image. However, if it is desired to have invariants under illumination changes,
the new invariants must incorporate the illumination conditions.

Maitra [Ma79], has considered this problem and obtained illumination invariants denoted
by Maitra invariants. These invariants incorporate scale, rotation, translation and illumination
changes and are based on moment invariants.

Let g,(x,y) and g,(x,y) be two grey value images related by the following transformations,

g1(xy) =k g2(x",y") k#0 (C.18)

3\
x| _ cosO sin@ x a
[y’J —a[—sin® cosG] [y] + [b] (€19

where 0 is an angle of rotation, (a,b) is translation, o is a scale factor and k is the change in
illumination.

To obtain Maitra invariants, compute the moment invariants for g, (x,y) and g,(x’,y") to obtain

®y,....¢7 and ¢y, . . . , ¢’y respectively. The relations among the invariants are,
k .,
(b] = —4— ¢ 1 (CZO)
o
k2
b=~ 02 (€21
a

O = 325 ¢’
04 = :120 o'
0s = &% ¢’s
b6 = -(]57 o’
¢ = 5210- o’

with the zero-th order moments Lgg , Koo

kK,
Hoo = —3 K 00-
o

kak/yoder

(C.22)

(C.23)

(C.29)

(C.25)

(C.26)

By eliminating the constants from (C.20) through (C.26) the following become invariants under

(C.18) and (C.19) called Maitra invariants.

Vo,

Bi =

&
=y
Ps = ¢f:>1
=

(C.27)

(C.28)

(C.29)

(C.30)

(C.31)

(C.32)

Equation (C.27) through (C.32) are invariant under (C.18) and (C.19). However B, is undefined
when ¢s is negative. To eliminate the ambiguity caused by the square-root, we will use

95

B:
Y

in addition to B¢, B,. B3, Bs, Bs, as defined in (C.27)-(C.29), (C.31), (C.32).

C-11 kak/yoder

We note another disagreement in B, of Table 10 in [MM84].

C.4. Conclusions

Maitra’s invariants are invariant under the transformations given in equation (C.18) and
(C.19), and thus the moment invariants are redundant as features but are necessary to obtain
Maitra invariants.

The moment invariants are truly invariant only in the continuous domain. For the case of
digital imagery, some of the invariance is lost due to undersampling and quantization errors.
Both these errors decrease as the image size increases [TeCh86]. Maitra’s invariants tend to be
less sensitive to the size of an image. It is of course possible to investigate the various effects
that influence the invariance property of different types of moments.

e

APPENDIX D: A PARTIAL LIST OF TWIN ROUTINES

A partial list of TWIN routines for creating and manipulating TWIN objects:

Function Name

Description

Cone

Create a boundary representation of a cone approximation.

Cylinder

Create a boundary represcntation of a cylinder approximation.

EllCone

Create a boundary representation of an elliptical cone approximation.

Ellipse

Create a boundary representation of an ellipsoid approximation.

Fillet

Create a boundary represcntation of a fillet shape.

Ppiped

Creatc a boundary representation of parallelpiped (box).

SolidTorus

Create a boundary representation of a solid torus approximation (torus
with no hole).

Sphere

Create a boundary represcntation of a sphere approximation.

Torus

Create a boundary representation of a torus approximation.

Wedge

Create a boundary representation of a wedge.

Combine

Perform a boolean operation on two TWIN objects. The operation can

cither be union, subtraction, or intersection.

ReadObj

Read a TWIN object from a file and return a pointer to it.

WriteObj

Writc a TWIN object to a file.

render

Create a rendering of a TWIN object.

1

*(pd ‘d)i1aaug s (qo1d ‘pqoad ‘yabusils ‘3 ‘og)sajidug
‘{d ’'D)1ojad *(d ‘'ismsuy) L17]11gegoid
-t {0d ‘D u}i1ojad {pd ‘uoyijpuo)) 1oiid
‘{1amsuy ‘[2opil | a(ny Aq [eon] ‘uojilpuol}aio(dxe
*{0d ‘Zd ‘14) xeuw 1eon jo °qoid 1071g % ‘{pqoad ‘1eo9) 1oyad
*(zd 'ZO)1o1ad ‘yabusils YITM [POD UBY]L UOTITPUCD JT : B(nY
‘(1d ‘1dtiogad -t (1amsuy wo1j] 310y ,Aq paajlisp, sem (Qoiy : Yeon) ‘8aesy ‘jeon)aiojdwd
-: (04 ‘Zd> 10 (D)zojad {ain1 e Agq palamsue agq [e0D UED
*Zd + 1d ST 0d MLLLIREREL
{zd ‘zD)ioyad -: (,30®j ® se punoj, sem (| : (eo9) ‘ede1] ‘yeon)adioldxa
‘t1d *1d)1o011d 210e)] © Aq paiamsue a9 [€OH UED §
-t {0d ‘Z> pue 1)) 1071d
suoj1ipuos xa1dwos 1.} sajirjrigeqord [euojijpuod Jojid g *{,w01) paatiep, ‘x) ‘opptjdo -:
. *(,Aq paataap, ‘x; ‘00g)do -:
*{sppo + 1} / SPPO St qo1g “{pue ‘Ajx ‘opgido -t
‘OSPPO « W S1 SPPO *(10 ‘AJx ‘pgg)do -
L+ (10d = d) » (lod - 1) 7/ (L =-9))) ST K *thq ‘xjx ‘gogldo -t
N+ (3w (0d /7 IN-T)) STH *{woij ‘xjx ‘pgg9ldo -:
i '0d >) *{uayy ‘xyx ‘pgg)do -:
‘{09014 - 1) /7 09oid S{ 0SPPO T(uItm ‘xjx ‘grgldo -t
‘(s ‘N)yibuarls = yibuaiils *{31 ‘%3 ‘oprg)do -:
~: (qo1g ‘paord ‘yibuaiis ‘g ‘04) sI71duy *{sems ‘xjx ‘gpg)do -:
a{niy Luorienjidwi 1jos, e aindwod § “{: ‘xjx ‘gpeldo -:
0d - 1 ST 1d - {1a ‘0d)rr2auy L 1]
Aiy11qeqord e 119aul oxie1g jo 9"yl @ainbyy uo paseq weirboisd drordxl wy
L3}
A ¥ | .ECSOrm sem (g4 ¢ Codumﬂjovv>u«-dﬂmﬂnu-&
“aamsue ue Jo A3j1iqeqord ayl aujwiaiag
*{uopisand)peax
1e0D U] sa(qefiea d1P[lueISUT g *{" ‘0 ‘1eon)siealaqumu ‘tu iasea(d ‘uoiisand,)aifim ‘{u
Al11ygeqoid jiojid e asn gy ‘{d 't1eon)ioyad -: {uojisandluoyisanbiab
P
i .
-t {,eqep j1o011d e buisn paunsse, sem (4 : [PoD) ‘ ‘[eon)diordxd ‘ou « Kiday
Alj1tgeqold j1073d B asn 0§ ‘punoj aq 10UUED 13IMSUY § * {A1day)A1daraab
f{, ¢SUOTIN(OS BIOW,)B1]IM
“{qoxd ‘4d) 113auy ‘1u ' {3emsuy)uasaid
‘(g ‘13msuy) A1yt jaeqoid A1dwa s1 @oe11 1asal doy 1y § ‘tliamsuy '[] ‘uojisanpd)aiordxa
‘{19msuy ‘ade1] ‘jeo9)asordxs uaiiysanb s ,1asn Indul ‘{uojisand)uojisanbiab
‘i -: 3j18dx3
-: ((3amSuy 10U} ,wWolj} paAjiap, sem (qoigd @ [eoH j0u) ‘doerl ‘Teon jou)dioidxa 2UTINOI UTEW ©1 (€D %
ipaiebau (eobh 3yl s
"
“(d ‘zd ‘1d) xeuw {112ys) oinpacsoid bujajip waisAs 11adxa [2aaaij-dol
‘{z4 ‘ziamsuy) Lavi1geqoad (1]
‘{14 ‘t1Iamsuy)Alrjtiqeqoad
‘(z19msuy ‘ade1l ‘21e09)aroidxa
‘(139msuy ‘@0e1]l ‘[[€0D)3I01dxd ALEAALLLLREEAAAALAETEALARRALALILIEAIELILALATIARAEALARARAIRERAIARARERIIINNRNANY
‘i 111} 133}
~: ((Zix9msuy 10 [1amSuy) ,wolj paajlrap, sem {4 : ZleoD JO [(e09) (1Y) *syolezado (11
‘ager] ‘zieo9 10 [[eo9)dro[dxa (111 pue ‘sarni ‘sjoe] aseq abparmouy ayl bujujeiuoo : dr<ias atni> (113
cuoridun(sip e (eob ayy ST § (11 1s81}) paliinbal [eUCTITPPY ¥%%
(32 (3]
“(d ‘2d ‘1) ugw %% "gSE-vif "dd ‘9gel ‘"oul ‘Auedwo) buiysilang A3(sam-uoSippy (11
'(zd ‘zaemsuy)Aajrigeqoxd $Ay «30udbJi1a3u] [e7101J 111y J0j bujwwerbold DOTOYd. 'OXIFIG UBA] 18OUBIB;OY W%
‘(14 ‘t39msuy) La111qeqoad (31 AL
‘(ziomsuy ‘adexl ‘zieo9)aiojdxa (11 ASe(Hy "D UBABIS 1IOUINY YW
f{11amsuy ‘soel] ‘IyPO0D)8iordxa (1Y (31
i 1" borolg uj pajuvawalduy waisAs 3adx3 uy : 118dxIT ans
~! {lziomsuy pue [Iamsuy} ,woi] paajrap, sem (4 : Z1eoH pue [1eo9o) [$1Y (11
'aoe1]l ‘ZiP09 pue [[eoo)drordxd ATAAALALATALEAEHAAEIAAAAEIEALATAAALALAATIERNRARLRIANNTARERIRAALIARARREIRNNNNAS

{u0131DUn{uod e [eob 3yl S| %

g x1puaddy

TIRO'A IX) wew

IWepaldajue moyus § "IN ;wxu:<v)o;w:o:n
I SR ¢ ‘S + H 67 1H “lu
(X ‘&2 ‘x}xeuw dueu a[NI moys § ‘(,woly ,)a11im ‘(paaji2q)a1llm

i - (H ‘JamsSuy Wolj PaAj1a() aduIpiAd mMoUS

A % X U3damidg HNn(PA wryiiXew ayl o3 (enba jwswars ndinoc [
PAUINIA] aq 01 S| WnuXew ISOYM sIuawala ndujp ayl Ik 'y Y aduapiAR MOUS § *{H ‘pPunoj)s3auapias moys
2 St {A ‘Xl Jo anlea wnuixew dy3 {2 ‘X ‘X)xPw § ‘(, sem ,1331]1m
‘{al@atam ‘[, : ,)3313m ‘(19mMsuy)alfim ‘(H)Qe3
H Aq 1udpul % -: (H ‘punoi sem (4 : Jamsuy))moy moys
AR A "X)utu
aduapjaa moys y *{H ‘Punoj)asuapias moys
iR e X ‘t, sem ,)3111m
-t (X ‘R 'Xluw ‘ldye8agam ‘f, 1 ,)2111m ‘(12msuy)aliim ‘(, 10U,}311Im ‘{H)Qe]
H AQ uspul & -1 (H ‘Punoj sem (4 ! Jamsuy 10U})Moy mous

A Y X uU33dmiaq on[eA wnwiujw Iyl 03 renba judwals ndino 5z [y

pauInNIadl 8q 01 S| WOWjUIW SSOYM SIUdWI[3 Induy Yy R ‘X Y “(H 'Z3amsuy}moy moys

T sy {A ‘%X) Jo anpeA umwiupw dy1 (Z ‘R ‘xIuiu g ‘TU ‘{10)d311m ‘(H)qed

‘(H ‘{1amSuy)moy mous

‘U ‘(dharram f(,[,)8111m ‘{H}qe)
g1’ 1) du0 H AQ uapul § ‘i ~1 (K ‘Z1amsuy 10 l1amsSuy)moy moys
-t e box) e {UT b xlyouod
“(H 'ziamsuy)moy moys
1117 (1) 5u00 ‘1 T(pur)a11im ‘{Hiqe)
‘{K 'tiamsuy)moy moys
21 % Ul Jo uojleua)yeduod s} 3ieyl 3Isy{ indino g1 [y H AQq 21uapul § ‘I =i (H ‘Zi9mMSuy pue [12MSUY)MOU mOuS
{1 o1 pspuadde a9 03 3sJ1 1Indu) puoaas :Z1 [

1s11 anduy 1s21) 11 [} 0 Aq uapurl “i ‘(0 ‘uolin{os)imoy mous ‘{u
£7 4IPII0 01 17 O1UOC 2T 21PUDIPOUOD :{fT 'ZT ‘17)ouU0D % -1 (UOTINTOS)MOY mOUS
PAATIAP Sem uoilIN{OS moy mOys

(11 1 'X) e Tlqoag)eagas ‘(, I ,)}311IM ‘(UOISNTILOD} BI[ImM
AR & B S R b B P S RS O3 £:14] -t (puUnoj SPMm (QOJId ! UCISN{OUO3))UCYSN{DUOIMOYS
aN{eA 2DUAPTFUOD PuUe UOTSNIIUCD MOUS §
11 17) X) 'X)iep
c(Auym ‘s suesw

1511 andino buyainsal 121 [y *(Aym ‘Aym) sueduw

wol1l 1] @21219p o1 ISl 11 1Y T (ou ‘uj Sueaw

pa1eep 3G O Wowsld 1Y [y ‘{ou ‘ou)sueduw

27 1Sl 1INSax donpoid 031 [] 3IST] WOJX) X IUBWAID 231312p :(z1 ‘11 ’‘X)iap y “(sak ‘A)sueau
" {sak ’sal)cyeow

{iiel ‘wail}raquaw ‘ tAyday) Ardaiyab
1S11 JO 1581 Ayl XI0uyd 9symIAaYI0 y ! ([1tel | peay] ‘waip)isquay ‘Tu (, uiebe A1l aseald ‘umouxun JIamsuy,)81(Im ‘yu
ujebe Ax:1 :oN
WAy ISI[J AYL ST IV IT ST 3 “{{trel | wail] ‘waly)1aquwawy ‘buyuesan = Alday
Ardai pyrea :sax

peYo3yd aq 01 1sy| 511 \ (bUTYIBWOS SuUeBW 1IMSUY § ‘i ‘{butuean ‘lamsuy]sueau

pauiw1aldp aq 01 s] diysisquaw dsoym IUdwIla w3 Y ‘(1amsuy)peaz

“1S]7 JO 13Quwsw ® ST wall J[sSpasdans (3517 ‘wsil)iaquaw y -t (A1dan)A1daiiab

19sn 3y wol) 1smsur [njbujuraw P Jan

Aty - { ania
sauinolqns bojoid [njasn SnofIea : SATATITIN SNy 3313 UolINTOS MOUs § ! (1BmSUY) MOY MOUS '; ‘S9k = Ayday)
b ‘(K1day} Ardariab

‘{, ¢moy @3as 01 Y11 NOA prnom,jeltIm ‘lu
‘{1amsUY} UOISNTDUODIMOUS ‘U

.dcl..u::o.tm:h) B -1 (1dmsuy)iudsaid

,1%e] Se punoj, 10 ,plol, = punod § -t {7 ‘punoj)aduspiald mous uojipuPidxa ,mOu, pue UO]IPIINSUOD ® JO uOTSNTouod BYI Aejdsip
AUEPIDIBIUR MOYS § *(1H ‘12msuy)moy moys "

‘c + H ST TH ‘lu oxielg Jo zY'p1 8inb13 uo paseq weiboid Was3Iig yy

awey aini moys ‘{, w03} paAt3ap,)e1jim "

‘; -: {y '13msuy ,wOIJ P3A[Iap,}3DUdPIAD mOUs

'3 xipuaddy

e

{pus ‘g5 ‘gs)uaoe(pe
pue

(zs) xoep plu by

pue

{pus ‘zs ‘1s)iuave(pe
pue

(1s) 02ap 1e03 b

* 10002 ‘10°0)y3buaias
(zS ‘1S) x0op wr paw
(zs) x08p 910] pauw

pue

(pus ‘zs ‘is)iuade(pe
B pue

{1s) x0ap 1e21 pauw

* (00001 ‘Z°0)uibuaias

(s)%08p yieus

(syieueld pue (;°0Q ’‘sieaae

pue

1471 ‘S)UIpIM pue (p o ‘S)Iybisy pue (g'1 ‘S)ucjiesats

(vs

(ps

“{000F ‘Z-0)u3lbuaills
'€s ‘zS '(S)i21any abiey

(vS) {211eQUND Db1E]
pue

(dw{ ‘ps ‘gs)auase(pe
pue

f£s)uo13 1211N

pue

{pus ‘gs 'zs)iuaoe(pe
pue

(zs) Apoq 1@11n3

pue

(duf “zs ‘1s})aIuvade(pe
pue

{15} udaey

' {0007 ‘g 0)ulbUBIIS

‘€s ‘ZS ‘1s)israni wnjpauw

(dwf ‘ps ‘gs)3usoe(pe
pue

(vS) 1331eQUNE [RWS
pue

(€S 'ZS '1S)owop wnjpaw

*{0001 ‘100°0)y3buazls
(€S ’ZS '1S)181an3y [leus

(€s ‘TS ‘1s)auwop {ivus

31 olslnz

ylia

uay

J1 ¢ e2(n2

yaim

uayl

J1 ¢ ga(n2

wam

uay1

3V ¢ p¥nx

Yyaym

vay?

31 ¢ 93(nm2

LR

uayl

7 xipuaddy

{tis

‘ots

J1 ¢ gena

* {000t ‘100°0}uibuails
Yigm
1eo9uw sy 12bre
(95 ‘¢S ‘ps ‘gs 'ZS '1S)sajouade(pe [epguw e
pue
(SS) X211 obiet
pue
(ysya2ap 1ieus
pue
(95 ‘€5 'ZS ‘'1S)1@3in3 ebaey
3% ¢ pIn2

*{000Z ‘1000°0)}uibudias
Uitm
€11 esy 12biea
uayi
lz5 ‘1Stsajouadefpe giluw
pue
(z5) %oe13” {[ews
pue
(1s)apys ebiey
J1 @ gain2

“(000Y ‘10°0JulbuaIyS
Yigm

Zupiq esy| 12baen
uaya
‘Zs ’1s)saiouade(pe zupiq
pue
{11S ‘OIS ‘65)9pis 1ed
pue
(8S ‘({S) w01} 16D
pue
(95 ‘GS ‘pS)yoap abreq
pue
(€S 'zs ‘is)ia1any yieus

‘6s ‘85 ‘LS ‘95 ‘SS 'bS ‘g£S

J1 1 gagnz

T (000 ‘100 0)u3lbuaias
yigm
dwg es] 1abiey
uayj
(LS ‘95 ‘¢S5 ‘ps ‘€S ‘Zs ‘ls)sajousse{pe duq
pue
{rs)xoe11 wnipauw
pue
(9§ ‘Gs)¥dap umipaw
pue
tys '€S ‘ZS ‘1s)1833n3i unipaw
3y ¢ otena

52103 voyionpoid §
“lesy ‘x3x ‘poildo -t

SUOT3Ifutjap 1oiriado

11}
sabew}] abuel wo1j s,dde pue sxuel BujkJriusp| JoJ eseq abpaimoux y 3§
"

{

'3 xipuaddy

sjuaunbre Ui SI[{QeP{IEA 1aQUNN §
Jjwole IO BINIINILG §

Zarqeiiea §

(W ‘IN ‘1) Sbielaqunu
‘LIN ‘N ‘X)Ssaenz3quny
-1 (R 'N ‘17 | X)}sbieiaqunu

i =i (N ‘N ‘l})sbiezaqunu

‘(R ‘N ‘sbay)sbiersqumu
*[sbiy | J03dung} ‘= wial
-1 (W ‘N ‘wrajjsieaiaqunu

‘T ¢+ N sy 1sntdN
‘R/ZEA = WXL
Y5 f(uial)iea

-t ([sn1dN ‘N ‘wa3]l) sieaJaqunu

{Indino) erqQejiea 1se] JO 1sqUNU IR [Y
{induy) a(gejiea 1S17) jO Foqunu :iN Y
Ul sajqejiea By IdquMu O3 Widl] 1Y
W 01 N Wol) I WId) uUf S3[{QefIPA eyl raqumu {W ‘N ‘l}Siealoqunu §

pue
(1s)zeuerd pue (y1°Q ‘IS)®aie pue (g(°Z ‘[S)uojieaai?
* (00001 ‘100°0)uibuaias

(95 ’SS ‘s 'es ‘Zs ‘1s)sajousde{pe [epguw

(duf ‘s ‘ys)usoe(pe
pue

(duf ‘gs ’gs)iusoe(pe
pue

(dwf ‘gs ’'zs)uade(pe
pue

(duf ‘ps ‘zs)iusdefpe

" (00001 ‘100°0)ulbuaias

(Zs ‘1s)satousde(pe griuw

(dw(‘zs ‘1s)auese(pe

* (00001 ‘100°0}uidbuails
(1S ‘0TS ‘65 ‘8BS ‘L5 ‘9S ‘6S ‘ps ‘€S ‘Zs ‘1s)sajouase(pe zupiq
(pus ‘gs ‘gs) luase(pe
pue

(pus ‘eS ‘(S)iusde(pe
pue

(pus ‘ts ‘gs)auaoe(pe
pue

{pus ‘S ‘GS)iuaode(pe
pue

(bus ‘6s ‘ps)vaoe{pe
pue

(dul 'gs ‘gs)auace(pe
pue

(duw{ ‘gs ‘zs)iusoe(pe
pue

(duf ‘gs ’1s)uade(pe

* (00001 ‘100°0}y3buails

(LS ‘95 ‘6s ‘pS ‘gs ‘ZS ‘1S) sayjouadefpe duq

{(pus ‘is ‘gs)iusse(pe
pue

{pus ‘(s ’gs)auade(pe
pue

(duw{ ‘gs ‘gs)uase(pe
pue

(dw{ ‘gs ‘1s)uaoe(pe
* {0005 ‘106°0)YIbusIs

(s)apis abrey

(s)1eue(d pue (z'g ‘S)inze

pue

s

PR AR ¥4 A U]

Yitm

usy3

PR

Qzaini

yim
uayl

JT ¢ e1alns

Yyaims

uays

{¥6°9 ’'S)ulp(m pue

J1 & gloina

Yign (0°9 ’s)yipm pue

uayl

{£°6 ’‘s)yipim pue

PARRINA LI LR

ags

usuyl

¢ xipuaddy

{€°6¢ ‘S)yipim pue (Qg- |

‘s)aybiey pue (¢E 1 ‘S)uojieaata

“(000€ ‘s0"0jyibuaris

(€S ‘2s ‘1S)epys 1ed

‘TS)331PX
pue

(£S) 199um
pue
‘1s)uasefpe
pue

{25) 193y~
pue

‘15) 3uane(pe
pue

{1s)apis pau

ottt ’‘es

(AXd ‘gs

(A1d 25

“(000Z ‘t10°0)uibuaiis
(Zs ‘1S)vo1j 1ed

(2s) U031} woa10q

pue
{pus ‘zs ‘1s)uade{pe
pue

(1s) w013 doa

© {00001 ‘S0'0)uibuails

(s)xoe13 abiep

(s)ieuerd pue ("0l ‘s)eaie

pue

{9°1 ‘s)3ubyay pue (g 0 ‘S)uojipaala
" (00001 ‘s0°0)yibuaiis

(s)xoe13 wnipauw

{s)1eue(d pue (g-¢ ‘S)eaie

. pue

{0°1 ’'S)Iubiay pue {(g°g ‘S)uojieaaia
*{00001 ‘50°0)uabuaiis

{s)aoe13 [ews

{s) 1eueld pue (go°¢ ‘s)eadie
pue

(L0 ‘S)aybiay pue (¢€°0 ‘S)uoyienefs

" {0005 ‘1°0)Yibueaas
(€5 ‘ZS ‘1s) xo3p edreg

{es) xoep 21037 by
pue

31 9191

Yigm

uaygl

J1 : gieIna

yigm

uay)

v

plainz

Qiim

uaya

AR S LA UP]

yigm

uayl

PANEEN LA L]

yagm

uaya

3T ¢ 11eIna

Yigm

uaua

(s) quox3 doa

(s)2euerd pue (gy 0 ‘s)eere

pue

(S6°0 ‘SIUIPTA PU® (Gz*0 ‘S)Iubjay pue (gzp 1 ‘g)uojieaala
*{000€ ‘S p)yibuails

(s)yoep 2103 b1

(s)ieuerd pue {({*p ‘S)edre

pue

(8€°0 ‘Siuipim pue (Gp-0 ‘s)iubjay pue (gr "1 ‘s)uoyieaaie
“ (0001 ‘l00°0)u3buaIls

{s) yoap pjw B]

(s)ieueld pue (ggg* o ‘s)ease

pue

1671 ‘S)UIpim PUE (Sp°0 'S)IUbTAY Pue (5rL"1 ‘sjuofieaste
“loo0Z ‘1-0)uibuaiys

(S)yoep 1eal O]

{s)aeueid pue (g2¢*p ‘s)eaxe

pue

{GL°1 ’s)yapim pue (g 0 ‘s)aybjay pue (L°1 ‘sjuojieadra
“(0001 ‘100°0ly3dbuaaas

(s} xzap 2103 pau

(s)xeueyd pue (r9°'z ‘s)eexe

pue

(6°9 ‘ShulpIm pue (g°Q ‘S)Iubray pue (¢Z°1 ‘s)uojieaaja
* 10002 ‘U°0luibuails

(s} y2ap 1e21 pouw

{s)1eue(d pue (gg g ‘S)eaie

pue

(6°Z ‘S)uipim ple (p°0 ‘s)aubysy pue (¢g°1 ‘s)uociieaara
* {0006 ‘S 0)yibusias

(s) 1@21equUnb obley

(92y°0 ‘s)eaze

pue

(S€20°0 ‘Shyapim 01 WbBTay

pue
(S1°7 ’'s)uojieadia

ar

L e

Yaigm

uayl

v

yIpm

uayy

v ¢

yipm

uayy

PRI

uagm

uayy

Jr

Yyimm

vay3

PA B

yiim

vey3

PA B

e

uayy

3T :

g xipuaddy

fga[na

Zgana

1€3(na

oearna

62a1n1

gZ=2In

LzaIna

“(000Z ‘10°0)yibusias
(S)1u01) je1an3y

{s)ieue(d pue (9z°1 ‘s)esaie
(z't si v ts
YIpim Pue {p-1 ‘s)aublay pue (g°Z ‘s)uociieaaia

“{0001 ‘100°0}u3buails
(s) Apoq~ 3311n3

(s)ieueld pue (g°7z ‘s)eaae
, pue
(02 ‘Shyapim pue (-1 ‘s)aubiay pue (£°Z ‘S)uoyieaars

* (0002 ‘z-0)yibuails
(s)uysaey

(§)1eue(d pue (gy9g°0 ‘s)eaxe
. . pue
(SE"T ‘S)uIpym pue {1z 0 ‘s)Iubiay pue (SEl'€ ‘S)uojienaras

*(000S ‘S 0)uabuaias
(s) 1211equnb 1|ews

(LS80 0 ‘s)eaze

pue

12,600 ’‘siuspgm o1 ubray
pue

{6L"1 ‘slucjireaars

“ (0005 ‘1°0)y3busils

(€S ‘ZS ’ls)8swop wnipow

(gs)aeuerd pue (z-0 ’gS)eaie pue (GL°1 ‘gSsluojaeaaja
pue

(pPus '€s ‘zs)iuese(pe

pue

(zs) zeueyd pue (z7p ‘zs)esie pup (g - ‘zs)uojienara
pue

{(pus ‘zs ‘(s)iuaze{pe

pue

(1s)1eueid pue {z-p ‘Is)eale pue {g¢ '] ‘[S)uojieasya

“1000S “1°0)u3bueiis
(€S ‘2S5 ‘1S)swop (1eus

{€s)aruerd pue (pr°g ‘cS)PPIP pue (g1°Z ‘fS)uocjiens(s

pue

{pus ‘gs ‘zs)iuede(pe

pue

(2s)aeuerd pue (p['p ‘zs)eale pue {¢['Z ‘zS)uojieaais
- pue

(Pus ‘Zs ‘1s)uade{pe

ulia

uaya

PABRER YA AL

LRAE]

usyl

J1T ¢ gzeIn2

YIrs

uayl

J1 : pZeina

CRAL]

usuyl

J1 - gZeind

ulis

uay?l

Jr : giayna

ulim

uayl

“{sZ90°0

4

T(eeEs0’ 0

T

tlgeggoto ‘!

“{€e€8070 ‘(77 *T)ie1aniTabre() J011d
*lE€£Q0T0 ‘L 7' 'T)y233n3 wnypaw) soyad

s (eary

TeT T Ty sagousne(pe” 1eggu) 1073d
szt *4

1IlIIIlIIIIlIIllIIlIIIIIIII-I-IIIIlIII-II-IIIIlIIl---IIIIIIIIIlIIIIllllIIIIIII---IlIlIIlIIl-lIIIIIIIIIIIIIIII-I-IIIIIIIII

*(10000°0 ‘(¢ *")iusoe(pe)ioyid
‘(€670 ‘()reuerd)zojad

10000°0 ‘{ *T)uIpim 03 3ubjay) 3071d
(1000070 ‘{ ‘")esie) 1072d
*(10000°0 ‘{ ‘TYuapym) 1071d

© (1000070 ‘(‘") ybyay) 1071d
*410000°0 ‘4_°_‘"1331pA) 1072d

“ 11000070 ‘U733 1Py 3073d
*{10000°0 ‘(" ‘")yuoyieaaye) zoyad
*{€8020°0_‘ {7} 123ym) 3072d

*1£8020°0 ‘(7)epis paw) 10jid
“{ezi£0°0 ‘(T)auorj woirloq) 1013d
*(sz1g00_“("J o1y doajroyad
*{g8020°0 ‘(") %29p 2107 by)1071d
*{€00z0°0 ‘(7)xdep piw By)ioy1d
*1€8020°0 ‘(")xoep 18217 D7) 1071d
“(L9150°0 ‘() xoep a1oj paw) z07id
*{(291%0°0 ‘() xv9p 1vei pow)iojid
*(€8020°0 ‘() 1011equnb abiey)soyad
*{g8020°0 ‘{)auoizT3e11n3) 1071d
*(£8020°0 ‘(JApoq 1231n1) J071d
*{ERO20°0 ‘{)yoaey)iojid

“(L9tp070 ‘(7) 1®11QUND {[ews) 10711d

“{L9150°0 ‘(' *7)swop wnipaw) 1073d

1152900 _* (™ 'T)ewop {Tews) 1071d

T T)ysajouadefpe griw)1071d
*TeTeT T Ty satousoe(pe” zwpiq) a0jad
TeTeTeTeT Ty e5ouaoef pe dug) Jojad
*lgz1°0 ‘(")epys obiey) 1oyad
“4629070 ‘1 ‘" ‘"Yapys 1eo) zoyad
*(5290°0 ‘¢ *T1woiry 1esj1071d
“{ge€80°0 ‘() woeiy abieq) 1071d
“{€g€80°0 ‘(7)xoe11 wnipaw) soyid
“{6Z1°0 ‘{")aveil [lews)1ojid
*16290°0 ‘{7 ‘T)waep ebiey) 1oy1d
“(E€€80°0 ‘(‘7)%29p unypaw) jo7ad
*{EEE80°0 ‘() %d2p T1lews)iojad

*16z90°0 ‘{ *"*T)isianay [lews)1of1d
*(gz°0 ‘Teo9w es] 18b61e1)lojad
“(6Z70 ‘€llw esy 33bzre3) z072d
"(62°0 ‘wpiq esy 39brel)sojad
“{6z°0 ‘duq esj 319b1e3)10t2d

sajijriqeqoad Jio7id e §

(adA13 ‘15 ‘gzs)auade(pe a1
(2d&13 ‘zs ‘1s)iusde(pe {3z
-: (83433 ‘zS '1s)juesde{pe : 30e)

‘0 < Joiiy

‘00001 > JOIX3

‘{10113 ‘s)at13 1i3e
-t (§)ieuerd : 30ej

"MH « 86°0 < O113®Y

‘MM o Z0°T > Of3ey

‘yiptM / wbyay sy oyaey

‘yIpTM ‘IybreH ‘s)emy 11e
-t (MH ’S)4ipim 03 3ybiay : 1oej

Td xpuaddy

‘Y e 96°0 < FRIY

‘Y s 201 > _®aIY

‘({eRaY ‘YIPTM ‘IuDTAH ‘S)emy 121e
-: (v ‘S)eaze : 00)

‘M s B6°0 < YIPIM

‘M os 2071 > YIPIM

‘{ea1V 'UIDIM ‘IubIaH ‘s)eayI33e
-1 (M 'SIYIPTA : 10%)

“H e 86°0 < IuDIAH

‘H e 2071 > 3IYBIOH

‘(ealy ‘yipiM ‘IubjaH ‘Slemy 113e
- (K ‘s)ubyau : 30e)

‘G v 8670 < JIIPR

‘A e 20°T > JIIPR

‘1A -~ IR ST 3IiPA

flTza ‘zx ‘zsiuotaedol 111e

{1X ‘1% ‘is)uojiedoy 133e
~1 4@ *Ts '15)711pA : aoeg

‘0 - 8670 < JIIPX

‘. 201 > JITPX

‘IX ~ IX ST JIiex

*{ZX 'IX ‘zS)uojiedol 113e

‘{IX ‘IX ‘1S)uojiedol 1lle
-1 (g 'ZS ‘1Sl : 10

"3 .« 8670 < X
‘3. 2071 > A
‘{x ‘X ’'sluojaiedol 113€
- (3 ‘'sluoripAaaia @ oPf)
side] %
"(0001 ‘to°0)u3dbuaias
Ulim
(s) 1aaum
uayl
{s) 1euerd pue (g°[‘S)eese
(1"t ’s)yapym pue (1°1 ' P pue
§) ubjey pue (G50 ‘s)uojieawie
31t 9goIn1

*{000Z ‘100°0)yibuaias
Qim
(s)apys paw
uayl
{s)ieuerd pue {p-p ’S)eaie
pue
{2°6 ’‘S)yapim pue (p°[‘s)iybjay pue (G0°1 ‘S)uojireand|?d
PABRERSS A L]

~{oo0e ‘so)yibuaias
URRL
(s) o1} woiioq
uayl
{s)ieueid pue (zg-Q ‘S)eaie
pue
(0F°0 ‘S)UIPIH pue (08°0 ‘S)iubysy pue (G6°0 ’S)uojieaara

31 ¢ pgana

*(000€ ‘G p)u3ibueiis

1

L1424

£0¢

E0Z

(4024

A 14

102

vot

[42¢

€01

{<iequnus s3sse(I, PlIOM)
{aaj10e snieis, azysayiodAy uvoridiiasap, aseyqd)
xo8p 2103 paw-y d)

<S> Sa3dejans,

{cjuou> , <12qunu> aiIndwod) BDUIPTJUOD, £o1 ¢
Aoep 1eal paw odia, I5n135U0) ayeu)
<-- zor ! ¢
t
Jeue(d ! { 6001 > } JO113 31J.
8 -+ §5°0 €32 ! | 9(65°0 > 89670 < } eaze,
82 -+ 677 WIPIM ! | 86672 > z¥8°? < } yipia,
N2 -+ b0 ybiay ! { BOb'0 > 26£°0 < } Wybray,
-+ GE°1 uoyleaars ! {Lee 1 > gze't < |} so1 A,
{ 0 <> I1U < <S> | Pl. a2eJINng) oy ¢
(0 S9@0®JINS, <JUOI> aduapjjuod, ¥>op 1ea1 paw adAi, 15n115u03)
(c1aqunu> sasse[d, PIIOM) 101 ¢ ¢
(aajio® snaielis, azjsaylodAy uoyidiiosap, aseyyq)
i yoap 1eai paw-y d)
L
{ <$> Ssaoejins, tor 2

(cJuods> o <iaqunu> 23ndwol) IDULBPTIUOD,
1ai1xeqund (1ews adha, 19n1315U0) axew)
P
(
87 -+ 215070 MmO Y ‘[$ERSOTD > 9096070 < !} nTo17y, s00 ¢
A -+ LSBO°0 ®aI® ! | B{BO'O0 > OFBO'O0 < } eaze,
-+ QL1 uclieaats ! { §8L°1 > QU1 <} Jo1 A,
[D <> 11U ¢> «<5> } PI. BOPJING)
(0 sadejins, <juod> doU3PJFUGD, [3Izequnb [iews adhki, Idni1ISUO)) go0 !¢
(¢12qUNnU> SISSPID, PlIOM)
(aa[10e sniels, azysayiodAy uoyid{issap, aseyd} v00 & ¢
H 12a1equnb [rews-y d)
¢
{ <S> sS3odelans, Q0 H
{<JUwlI> o J1aqumu> andwod} adULPTJuODd,
1aued swop wnjpaw adAi. 12n31SU0) axew) €00 ¢ |
o
{
1euerd ! { oool >) 101137313,
N -+ 270 e2JR ! | ¥02°0 > 961°0 <) eaie, €00 ¢
-+ §¢°1 uojieAlia ! {8807t > sl <} oo A,
{0 <> [1U <> <S> _t Pl aoejins) Z00 ¢ ¢
(0 s20eJiIns, <JUOD> BOUIPTIUCD, aN:mQ UEOUlEJuUWE UQ)H(PVNIASUQD)
(<I9qunuU> SISSE[I, plIom]
{anjide sniels, 9zysaylrodAy uoyidiissap, sseyq)
. 1aued swop umipsu-y d) 200 ¢
$3j1]1Uap] 9dejiIng az(saylodAy : sainy uoTiIdnpolgd z aseyd ! 100 ¢
L
{<1s> puodes, <zs> 15113, <2dh1> adky obpa, juese{py oxew) 100 ¢

<=
{<1s> puoneas, <zs> 1511J, <adAi> adAk31 ebpa, 1uaoe(py) -
{<2s> puodas, <1s> 3I5171J, <adA3> adA31 abpa, uase(py)
(aayioe sniels, puedxs uojidjiosap, aseyq)
¢ juadcefpy-puedx3 d)

[0 puosas, <s> 3I5IJJ, AId 2dh) abpe, Ijuaoefpy ayew)

J xrpuaddy

sSuojielal ¥ s21NQJI31e adejins DUISSTW uy (114 ©

(0 puodes, <S> 1817]. pus 3dA1 abps, usoe{py Iyew)
{o puodes, <s> 1811}, dw(adA31 abpa, 1usde(py ®xew)
<=
(0 puodas, <%> 1517J, uadre(py) -
t{ 0 ¢ 11U ¢ «<§> } py, aoejang
{23a170® snayels, puedxs uojidiiosap, aseyg
2 uaoe{py-puedxy d)

{0 pPuosas, 0 31511J, A1> adki abpa,
(0 puodas, 0 3I%11}, pus adk31 abpa,
{0 puooes, 0 1s17], dw{ adA1 abpa,

uase[py axew)
wase(py ayew)
usse{py axew)
P
(0 PuUodas, p 1S171j. 1uade{py} -
(3a730® sniels, puedxa uoyidiidosap, 2aseyqd)
1 iusse{py-puedxy d)

((<m> /7 <y> @a3ndwod) m 031 Yy, <s> AJjpouw)

-~
{ <S> (<M> UIPTM, <U> 4BTaY, 11U m 01 y, adejins) |
{(8a730® sniels, puedxs uoyidizosap, aseyyq

M 01 H-puedx3 d}

sa[ny voj1anpoid | aseyd !

(caseyd> anowel}
<=~

| c@seyd> (paysjulj] sSniels, uPd[> uoy1diIdsap, aseud) }
si1(nsay indang d}

(3A11DF sniels, uea(d uolidiiosap, <aseyd> Ajjpow)
.ok--

{ <@seyd> ,nuysjutj snieis, piing voyidirosap, aseud) |
dn uesin-ol-piing d)

(3A1310¢ snieils, piing uojidiiosap, <aseyd> Ajipow)
N <=~
{ <aseyd> (paysjuyj snieis, azisaylodAy uoyidjiosap, aseud) |
PlIng-03-az1sayiodAy d}

(anyide sniels, az27s8ylodAy uoyldiiosep, <aseyd> Ajjpow)
P
{ <aseuyd> (paysiuj} snieis, puedxa uojidiiosep, aseyd) |

azysayiodiy-o3-puedxy d)

{pPaysyuij snaeis, caseud> Aj|pouw)
<

{ <aseyd> (aa710® sniels, aseyqd) |
pPaysjutj-aseyyq d)

$3tny UOJIONPOIg [0IIUO) JO moty ¢

sabewy abues wo1j s,ode pue syue) bujyhjyIuap] 1oj saini jo 188 ¥

{<juod>

Jeueld
AT -+ €70 eale
N2 -+ ¥°0 UIPIA
82 -+ 8°0 ybray

+ <laqunu> 8indwod) @duspyjuod,

Juoaj wolloq edAal, 10N 138UOD eyew)

{ geot >} 1031387373,

{ ¥92Z€°0 > 9€t€°0 < } vale,

{ gov 0 > z6€°0 < |} UIpim,

{ 918°0 > ¥8L°0 < | wbiay,

{ 696°0 > 1€6°0 < | 2017 A,
{0 < 15U <> <53} [popyIns)

{0 sao®P}ins, ¢juod> ddUBPJJUOI, JUcI] wolroq adA3, IONIIsUOD)

Al -+ G6°(Q UOTIRAR(D
e ¢
ote ! ¢
{
{<Juoa>
(
zeuveid !

V2 -+ 89°0 ®ale
$Z -+ $6°0 UIPIA
7 -+ 37°0 ybyay
-+ GZF°1 uOjlIEAI[®

{0 $@dejiINns, cJuod> aoudplju

{

{cjuod>

leueld

A2 -+ L1°0 ®azE

$Z -+ BE°0 UlIpIm

82 -+ SHT0 WBYIY

Z -+ §(L°1 uorIeABlR

(¢1aqumu> sasse(d, PlIOM)
{(aatioe sniyels, azrysaylodAy uoyidyiiosep, eseyd)

==

u01j wol3y0q-H d)

<S> Sajelins,

» <laqumu> 33indwod) aduapyjuod,

quoxj doa ad4a, I5NI1ISUOD) axew)

t oootl >} 101337313,
| 96970 > ¥999°0 < | eaie,
1 696°0 > 1€6°0 <) upim,
| §62°0 > 6¥Z°0 < } ybtay,
{ Sggr 1 > 696€°1 < |} ooy A,
(0« e <o <5} oI, a3e31nS)
O:

o, o013 doi adhl, 319N135UOD)
(claqunuy Sasse1d, priom)
{an11oe sniels, BzissylodAy uoyidyiosep, @seyd)

P

quorj doa-H d)

<S> savejins,

« <Iaqumu> a3indwod) aduapyjuod,

{
{

f
l

Xx28p @i10) by adAa, IDNIISUOD BRew)

{ ooot > | 101397313,

PELLTO > 999170 <) eaie,

9{8£°0 > b2(€"0 <} uip M,

{ 6620 > 1vb"0 < | wbray.,

SOIB"T > S6EL"T <) sor A,
0 < IIV <> <85>} PI. aoejans)

(0 S90®BJINS, ¢juod> @dUspjjuod, xoep e8ioj by adki, 1dnI135U0OD)

(<juod>

zeued
Z -+ 659°0 eaie
A2 -+ 67T WIPIAM
Z -+ §v°0 3ybIay
8 -4 §LL°1 UOTIeADTD

(<1aqumu> s3sserd, plioMm)
{2A1130® Snie3s, azysaylodAy uvoyirdiiosap. aseyd)

P

Xo9p 8103 b1-H d)

<S$> saoejins,

« <Xaqunu> 2Indwod) adtapyjuod,

{

{
[

yoep Piw by adAa, 39n31315U0) axyew)

{ ooot >) 101187313,

12L8°0 > 6LEB°0 < } vaae,

{ BE6 T > 2981 < } qapim,

{ 65570 > T6H°0 < } WbyaY.

018" 1 > G6EL"T < } so1 A,
0 <> 11U <o <5>) Pl eoejang)

(0 $3deJInNs, cjuod> 3duapjjuod, x0op piw Oy adhi, 10nIIsvo)d)

{¢iaqumnu> sasse[d, p1IOM)
{aAa110® sniels, azysaylodAy uoyadiiosep, aseyd)

A xipuaddy

P

eoz ! ¥oep prw 87-¢ d}
oL ¢ |
{ <s> sBoeliIns,
{¢juod> , <1dqumuy @3ndwod) sduapyjucs,
150p 1e01 b1 adAa, 10n115Un) INew)
<=
A -
aeueyd ! { 000y > } J0138 11J.
$Z -+ G2G°0 ®31® ! | CGES'O > SKISTO < } eaje,
N2 -+ SLTT UIPIA ! { g8L 1 > SIL'T <} yIpima,
82 -+ £°0 Iybray ¢ {1 90€°0 > #6270 < } ybiay.,
-+ ("1 uotieadie ! (¥EL°T > 999°T < } oot A,
{0 11U < <$>) A aseyins)

{p Sa0e}INnS, <JUOD> BIUBPTJuod, X23p 1ea1 B[8dhi, 13nIisuc))
{c19qunu> $3sse(d, pliom)
(aa130¢ snieds, az]sayrodAy uojidyiosap, aseyg)

wor ! Xxo28p 1832 B1-p &)
g0z Y {
(<S> saoejins,
{<juod> , <Iaqunu> aindwos) aouap}juod,
(aued awop trews adk3, 19n1isuo) ayewj
Com
{
jeuetd ! { oootr > } 10139 213,
82 -+ y1°p ed3e I { 8ZV1'0 > TLEL'Q < |} eale,
Z -+ §1°z uojieada ! {6172 > (0U°Z <} 201”4,
{0 <> 11U < <>) [3 9% asejans)

(0 s8o®Jins, <juod> 3JUaP(Juod, (aued awop [[ews 2dAI, I5N3IISUOD)
{¢12QuWnuU> S3asSSEId, plioM)
(aa11doe sniels, @zys58yiodAiy uvotadyiossp, aseyd)

90z ¢ 1oued ewop {1euws-H d)
g0z ¢
(<S> sadejins,
(<Juod> , <Jagunu> aandwos) aduapijuod,
yoeia wnjpaw adki, 19031s5u0) ayeuw)
P
{
aeveyd ! t ovotr > } sox18 11).
tZ -+ G'¢ eaye ! f 19°¢ > 6€£°6 < | e3ie,
N2 -4+ 0°9 UIpPIm ! { Z1°'9 > 88°¢ < } uipis,
$Z -+ 0°1 3ybyay ! I zo"1 > 9670 < | woday,
AZ -+ §70 uotalEAdld ! {150 > 6%¥0 <} EL e
{0 <> 11V < «s> |} PI. 3cejing)

{0 saoejIns, <cJuod> 8dUsPT uod, %OeIY wnipaw adi3y, IdNIsuod)
(c123qQumu> s3sse(d, piIom)
{aa110® sniels, azysayiodAy uojidjrnsap, aseyd)

c02 ¢ x3e13 emipaw-f d)
yoZ ¢ (
{ <S> sBOeJINnS,
(<Juod> , <laqunu> 23indwod) aosuapyjuod,
xo8p 2107 pouw @dA3, 19n11su0) Byew)
P
Jeueld { 0001 > } 10119 113,
3 -+ 197 es1e { vEZe"2 > 9919°2 < |} eaie,
82 -+ 579 yIpIM { £9'9 > (9 <) yipja,
Z =+ §°0 ubIay {1570 > 6¥°0 < wobiey,
AZ -+ GZ°1 uoyiEA2(R fgez"t > szzot < | s01 AL
{0 <> 11U <> s> | Pl asejing)
]

{0 S@o>eJInS, <JuOd> BOUBPJJUOCD, ¥28p @103 pauw adAl, 120115U0)H)

-+ QU uojieaaye ! teetrz > (ot <} so1 A, aeuerd ! { 0001 > | F01197 317,
0o (1Uuo <>} _ P ed>ejiang) A7 -+ B0°C €I ! { 9IRT"C > $Q10°C < | eeae,
{0 8deJINS, (JUOI> JDUIP[JUOD, (3rreqund abiey adA3, 3Io0RIISUOD) 82 -+ £°6 papim 2 1 908°6 > SIS <) YIpim,
{<13qunu, sasse(d, prioM) T -+ L°0 Wybiay ! { »TIL°0 > 98970 < | ybiey,
(2a7110® sniels, az271saylodAy uojidirasap, aseyd) 82 -4 G£°0 uojaEADI® ! { LSE'0 > €pE€°0 <) 20174,
612 ! {aizeqund abie(-H d) {0 < 11V < <8> } PY. aoe}ins)
(0 SOoEJINS, <juUOD> 3DUIPTIUOD, woex3 (lews adhi, 1OnI131sUOI)
glz ! ((cIequmu> sasse(o. pi{lom}
{ <S> saoejins, (3A110® snieas, azysayjodAy uojidjiosap, aseya)
{<Juod> . <iaqunu> 31ndwod) duapijuod, stz ! ¥oe13 [jeus-y d)
juoi1j 31211n3 adka, 19N 11SU0D ayew)
<=- vtz 2t
{ - { <$> sadejins,
1euerd ! { ooot > | Iox12 11}, (<Juod> , «<idqunus aindwod) aduapijuod,
N -+ 9Z°1 edxe ! | ZgRZ'T > QBET T < } eale, apys ebael adka, 100115U0) dxew)
[TAET IR AR S R 1-) £ {p2Z7t > 9e1°1 <} vapin. <-=
A7 -+ b1 ubyay ! L8y 1 > ZLe"1 <) wubiey. (
¢ -+ "2 uojzeadie ! { 9¥E°Z2 > psZ°2 <} Q01 AL ieueid ! t o000t > |} Jo113” 11).,
[0 < 11U <« <55} _ Pi. adejans) NZ -+ 29 eare ! { $2€°3 > 9¢0°9 < |} eaie,
(0 Ssaejlns, ¢juod> aduapijucs, 3uoij 3311n3 adhki, IonI3suo)) %2 -+ £°6 yipim ! | 90F°GS > b61°G < } ywpim,
(c1squnu> sasse(d, plIoM) VZ -+ €71 bjay ! {9261 > pLZ°1 <) weyay.
(aa720® sniels, azysaylodAy vojidiiosap, aseyd) -+ g1 uojaieaaia ! | LLE€°1 > €2€°1 < } so(&,
gtz ¢ juoi3” 3311n1-4 d) {0 <> {JU < <S> | Pl. aoejins)
(0 s8dejINS, <JUOD> BdUIP|Juod, epys abiel adhi, 1onIisu0)H)
e !t {<Iaqumu> s3assei{d, pliom)
{ <S> s@deyins, (aajior sniels, azysayrodAy uoridirssap, aseyy)
{<Juod> , ciaqunu> u;:QEOuw aouapyjuod, v1ez ! apis obley-y d)
Apoq 3191an1 adka, IdN13I5U0) Iyew)
<= g1z ¢t
{ t <S> sS3¥DEJINS,
seue(d ¢ { 0001 > } 10119 171J, {<Juod> . <Iaqunu> a33indwod) aduspjjuod,
3 -+ B'Z e83E ! 1 9682 > #vL°T < | eaze, . 12aym ad&k3, 12n1135u0) 3xew)
A2 -+ 077 uIpIA ! L v0°Z > 96°1 <) uipie, <--
AZ -+ b1 2ubtay ! { 8zv U > zee't <} wbyay, (
T ~+ €77 uoriEADd(D ! {ove-z > ¥62°T < | L seuerd ! { 000t > | Jorre 1§},
1 0 <> TIU <> <S> | _ Pi. adejIns) \Z -+ 0" eate ! [Z20°1 > 86"0 < } eaje,
(0 saoejins, <juod> aouapijuoo, Apog 1211n3 8dA3l, 1OnI3suod) ¥ -+ I°1 yipim ! {221°1T > BLO'1 < } yIpm,
(c12qunu> sasseyd, piIoM) A2 -+ U°T 3ybiay ! I z2i"1 > 8LO°1 < } wybiay,
{eat110e sniyeas, azisaylodAy uoydirosap, aseyd) -+ §G°D uolieAldl0 ! { 196°0 > 6£6°0 < } s01 AL
e ! Apoq 1911n3-4 d) {0 < 11U <> <S> } Py, asejins)
(0 s@drjans, <juod> 3duadpyjuod, (aauym adAi1, 1an3isuod}
91z ¢ ¢ . (<idqumu> sasse(d, plioM)
¢ <S> sa3dejins, {3a110f snieys, dzysaylrodAy uojadiansap, aseygq)
(<Juod> , <iaqunu> 3indwos} JoaulpyjIuUOD, £1e ¢ 123ym-4 d)j
yoaey adAa, 19N11sU0) ayew)
<= Ztz 2 !
{ | { <S> saoejins,
zeuerd ¢ { o001l > | I01X9® 1713, {(<Juod> , <Jaqunu> 21ndwWOd} B3dUIP| uUOI,
82 -+ Gy9€"0 ®31€ ! | QULET0 > TUSE°0 <} eale, 2p1s pow adAi, 12n135u0) 3xyeuw)
$Z -+ GE°T1 UIpIM ¢ {eet > €2¢°1 < } Yapin, <--
8Z -+ (270 WOTBY ¢ { pGLZT0 > 9V9T°0 < | by, (
AZ -+ GEIT€ UOTIBABI® ! | LL61°€ > EZLD°E <} oot A, sevetd ! { ooot > | Jo119 31},
{0 < TiUu <> <>) [ajejans) s -+ 0°p ®3zEe ! { 80°p > 26°C <} vaje,
{0 sooeJans, <juod> aduapjjuoed, ysiey adAl, IDNI3IsUOD) 82 -+ T°6 U3pIm ! { v0E°G > 960°C < } yipym,
(<zaqunu> sosse(d, plIOoM) z -+ 0°1 ybjey ¢ f 2ot > 86°0 < | aybyey.
(8ayioe sniels, sziseyiodAy uoyidiidsap, aseyqd) -+ 60°1 uoyaeaala ! { 1L0°1 > 620°1 <} so1 A,
91z ¢ yoiey~y d) {1 0<> 11U <s> 1} Pl. acejing)
(0 s8387InS, <JUOI> BOUEBPTJUOD, BPIS psw 8dh3, 15NV}
s1z !t {<iaqunu> sesse(a, Pliom)
(<S> sadejins, (aA110® snaieas, azfysaylodAy uotidirosap, aseyqd)
{cJuoa> 5 cIaqunu> w“:aseuvluucmwﬁ:ou.\ 21z !¢ 8pys paw-H d)
¥oex3 [rews adAa, I0NIIsU0) INew)
<= e ¢t
{ { <$> sadejins,

A'x1puaddy

-

o oy,

{pus adAy abpa, <65> puooas, <¥S> IS3IVI. Juade(pv}
{dw(adA1 abpa, <S$%> puooas, <ES5> Asx13y juase(py)
tduf adA1 abpa, <GS> puooas, <i5> IsIt3e quase{py)
{dw(adAy abpa, <GS> puosas, <1§> 1St} quane(pv}

{¢118> <01S>
<po> BIUBPTJUOD.
{<8S>

({iu <> <§5>) sgaejins,
opys aro adiay
(1Y <> <y s>} sdOeJINS,

uu:uun:cu.

<g2> @2UIPTJUOI, quo1] aed adAl, 45n115U0)D)
(¢gs> <G5> (11U <> ¢ys>| sa3drejJInsy
<z3> 32uap]Juod. woep obiel adia. 15n118U0D)
legs> «Z8> (1Y <> cis>} savejias.
<19> @0uUap}JuUCd, 191107 T1EWS adki. 19n338U0D)
(aA730€ SNBSS, plina uoy1d112§2ep, aseud)
zwpaa-pting 9
(<czs> <1§> $30€)INS, ’
{c22> + <19> 23ndwod) 22UIPTJUOI.

xoap wnypau adh3. Jonaisuo) axew)

<=

(pus adA1 abpa, <Zs> puodas, <1s> 18itiv
(<zs> $30€JINS,
yoep aioj paw edk1.
(<18> so0¥P}INS,

<1d> @20UaPfJUOd, yoap 1eal paul adkl, 13n135U0D}

(aay1D® SNILAS, ptring uotjidyrosap, aseud)

woap umipaw-8§ dy

quase(py)

<z3> 80UaPIIUOI, 19n115uU0d)

(cEs> «Z8> <1s> §200JINS,
<12 andwod) 22uapiJuod.
awop wnjpau adAa,

(cgo> + <I2> ¢+
1an13SU0) axew)
=

{pus adk1 vbpa., <£5> puoddsS, <TS> 1s11). juase(py)
(pus adk1 abpa, <IS> puodas, <S> 15113 quade(pv}

({c2s> <> <158> <> <es>) sapejIns,

<go> BOUBPTJUOI.L ducmnpquuxe:aowe adAi.
(lecis> <> <zs>] $5oP]INS,
Av:naiweovnsz_vwe adka.,
(<S> sape}ans,
dozmaloeovtE:«uaE adk1. 450115U00
(aanj10e SNIES, pring uoyad(i12sap., aseud)
swop wnipaw-8 d)

1on1 umCOUw

<zd> @DUVAPYJUOI. 1on115u03)

<10> ¥dUIPY juod.

(¢hpS> <ES> <S> <18> sa0e}INS,
(¢zo> + <12> a3ndwod) 30UaPTIUOIy
121101 Wnypaw adAa. 1on135U0) @%ew)

<--

{dwl adky abpa., <bsE> puooas, <S> 15313 quaoce(py)
(<bS> $aoe}INS,

¢z9> @2UIPYJUOI. Aouumn=50|-~Em adAd.
{<ES> <S> {118y <> <tis>} saoejins,

10> OUAP[JUOI awop” Wnypaul adAl, 45033SU0D
{aA110® snieas, plina yoy1di12s9pP. aseyd)

je1any wnjpau-g d)

15N31135U0D)

{<Ls> €95> <55> <ps> <E5> <25> <1s> FERLP RIS
(cgo> + <I9> ¢ <13> @3ndwod) asuapliucd,
duq adAl, Jon135U0D AEW)
<=
18113, 1uadefpy)
1s1y3, 1wadelpy)

Arxipuaddy

(pus adA1 2bpa. <S> puonas, <9S>
{pus 2dA31 ebpd, <S> puodas, <gs>

(dw(adki ebp2.
(duf 8dk1 ebpa.

<gs> puodes, <gs> 1811J. jquese(py)
<g§> puodes, c1S> is11j. wade(ey)
(<t8> s30e}]INS,

%oe1l WNILaw edAi.
(118 <> <58>) saoejins.,
xoop wnjpau edhl.

{Tv < <18>) §20e3108.
jo11n3 wnypauw adAa.
prina uo1:di1089P.

<> FDUAPTJUOI. 39N11§UOD)
(c9S>

<Z3> 20U3PTJUCD.
(<S> <E85> <I%>
¢19> aduUeBpPIJuUO.
(any10e $N1EIAS,

450135U0D)

jonl1 3s5u03D)
aseyg)

we ! duq-piing d)
§350315U0D 1oAd1 jeybty PLINE : sa(ny yojionpoid € asey.! !¢
e ot
{¢ioyad> anowal)
-
{ { 0 <> | s3d®JINnS, 1> @dki, 190335U0D)
{ (g sadejins, <1> 8dhi. 15n115u0D) c3033d> |
{pausiuyl sn1e1S., wuuuonuoa>c uoj1dj1252Py aseyd)
12120 dn uea(d-H 9
we f ¢

{ ¢s> Saoejins,
(¢Juod> o+ <I3qumu> andwps) 2du2pljuod.

yoeza abiel adhi. 1o0115U00 dxRu)

P
{
yeueid ¢ { opol >} 10138 313
N -+ £°01 eaie !t | 905'01 > v60-01 <} eae,
Az ~+ ¥6°9 wIPIm { { @sco't > 2108’9 < \ yapims.
vz -+ 9°1 2ubtau ! | zgo 1 > 89571 <) aybiay.
sz -+ 870 uojaeAlald : { 198°'0 > b0 <) 01 A,
{ 0 ¢ 11U < s> } Piv aosejing
(0 sa>e}Ins. <3u0d> aduUapljued. xumuuleum~ adki, 3on135u0D}
(¢1mqunu> sasse1d. D1IoM}

(aaj10® SNIEIS, wﬂdwacuoa>: yo}3d1310S3Py aseyad)
we ! woe1l sbiei-H d)

ozz ' ¢
{ <S> S80€jINS,
. (qjuod> =« ¢1aqumu> @ 3Indwod) asuapyjuod.

x2sap Tieus adha. 4on135U0) axew)

-
{
1euyeid ¢ { poot > ! 70133 31).
s -+ L70 ea1e ! { p1e°0 > 98970 <! eaze,
a2 -+ sot uapIm { gLt > Sl <) ulIpiA.
2 -+ §°0 JuBI3U ! { gob'0 > 6870 < } ubiau.
42 -+ 91 uotaeasle ! { oger1 > vertt <} so1 AL
(g < 17U ¢ <S>) PIv asejins)
2

. ®o@p 11eus adAy. 3002115U0D)
{¢33qumu> sasseIO, prIOM)

(aA]10® SNIeIS, atysayiodiy uojd1128°P, aseyd)

xoop treus-H 4

(o s@dejins, <Juod> souBspiIue

ozz ¢

stz ! 1
{ ¢E> S8OeJINS,
{<Juod> = ¢ IoqUNU> ajndwod) 22UapJuod.
{o2x1eqUNb abiey adha.

qon31SUCD axeuw)
<=

(
4 €0£20°0 < |
cLiro <}

{ L6€20°0 >
{ spev'0 >

z -+ §E20°0 N 0 U
sy -+ 9ZVTOQ €91E !

(pus adAk1 abpa, <S> puodses, <«Zs> 181]J, 1usoelpy)
(duf adA3 abpa, <Z$> puos9s, <[8> 3I511j, ueoe(py)
(<pS> ssoejins,
<HO> AdUIP|FUCD, t211equnb abie] adki, 1901 18U0D)
{<gs> seoejins,
<E2> aduap|juod, w01} 3211n1 adha, I2Nn113su0d)
(«7S> saoejyans,
<Z9> ajuapijued, Apoq 391an1 adAa, 19NI1315U0D)
{<1S> s3o0eJINS,
<[> adudpIjuod, ysiey adKk3, 19n135U0D}
{aay10® sniels, piing uojidjiosap, aseygy)
(383 191103 abie(-g d)
I481
(<9S> <GS> <pS> <S> <Z%> <IF> sadjejins,
{<£O> + <Z2> + <(3> 2aindwod} 3duaPijuod,
1eo9w adha, AONIIEUODY BYPW)
<=
(duf odX1 abpa, <¢S> PUODIS, <HS> 1817j, IUIE[pPY)
(dw{ adA1 abpa, <§s> puoodds, <gS> ISIT3. 1uase{py)
{duf adA3 ebpa, <§S> PUoOdIS, <ZS> 1SITj. Udde(py)
(dwf{ adA3y abpa, <S> puodss, <S> 1SI7J. usde(py)
(<$S> sadejans,
<Ed> 2DUIP[FUOD, xumuulwoum~ adiy, IONIISUOD
{<yS> sooejins,
<Z2> BdUBPIJUOD,, ¥dap (1ews adka, 30N1138U0D)
(9S> <£5> <S> {[JU <> <IS>| saoejins,
<10> asuspyjuod, 1211n3 abiep adha, I0N3735U0D)
{eAnyioe snjeas, pring uoyadilnsap., aseyg
[433 1eo9u-piing d)
e
{<Zs> <1s> sasejlans_
(<Z29> + <13> 9indwos) 3JJuapfjuos,
€11w adha, 1on11SU0D INPW)
P,
{dwf adA1 abpa, <¢zs> puodas, <S> 1si]j), uade(py)
(<S> sadsejins,
<Z2> aduspijuod, woe1l (rews adAi, 22n13s5U0D)
(c[S> sadejins,
<10> @duapjjuod, ap1s abiey adka, 39n115U0D)
{aaj10e sniels, pling uvofidizosap, aseyd
e €lw-pring d)
[114%
(<ES> <ZS> <S> sddejins,
(<€I> + <Z2> + «<19> 8indwod) 3dUIpPfjuUos,
opis 1e> adAl, 19n13s5U0) BNew)
<--
(o1-€ ‘€s ‘zshiziex 102
suotjieinuiad juaaAaxd ! (<ZS> <£S> <1§> Sadejins, apys 1es adAi, WniIsuod) -
(n10 adA3 abpa, <gS> puvcods, <IS> 1113, uade(py)
(a15 adAy abpa, <2S> puooas, <1§»> 153}j, 1Uaoefpy)
({<ZS> « <g£s>} saoejins,
<£d> JDUIPTIUCD, 13aya adA3, 3203 35U0D)
f<zs> saoejins,
<Z2> 8duapijuod, 1aoym odh1, 003135U0))
(<1S> sasejins,
<19> ¥UapjJuod, opjs paw adA3, 1on13suo)d)
{8a7302 snie3s, pIing uojidiiosap, aseyd)
ote opis 1es-g d)
60¢€
{<Zs> <1(5> s8oejins,

A xipuaddy

s e

{<Z2> + <1o> @31ndwod) wduUapyjuoa,
Juoij 1ed adha, I0N135U0) Byew)
P
(pus adA3 abpa, <ZS> puosas, <1s> 153]), 1U3dE[py)
{¢Zs> s8dejins
Juolrj wolioq adA3, 1120215403}
{c1$> sadejins,
<19> 3duapijuod, juory doi adAi, 1On135u0))
laa130p sniels, pling uojidjisdsap, @seyq)

60€ ¢ Juoi1) ien-g &)

<Z2> @8duapijuoo,

goe ! |
{<€S> <ZS> <S> sadejins,
(<£D> + <Z9> + <13> 21ndwod) 3duapjjuod,
xoap ebiey adAa, 10N115U0) ayew)
P
(pus adAy abpa. <gs> puodas, <zs> 1SI11j., 1uade(py)
(pus adk3 abpa, <zs> puodas, <S> 1SI171J, 1usde(py)
(<£s> saodejins,
¥oap 810} by adAi, 12N13ISU0D)
{¢Zs> sadejins,
¥oep piw 6y adha, 12N3115U0)
{<15> sad2e}ins,
<19> @dusapijuod, ¥oap Jeas by adAi, 12N11sU0))
{2a732% snleis, pIring uoridriosap, aseud)
8ot ! ¥oop abiey-g d)

<gd> @duapyjuod,

<Z9> dduapijuod,

toe ¢
(<£S> <S> <S> saoejins,
{<g2> ¢+ <Z3> + <«19> @a1ndwod) ajduapijuod,
2wop 1rews adha, I0NIISU0) ayew)
P
suojaeinuiad juaasid ! (<IS> <ZS> <S> Saopjins, awop Jiews adAl., 1dn2Isuocd) -
fpus adA1" abpa. <£S> PUOIIS, <S> 1S31]. 1uade(py)
(pus adA1 abpa, <Zzs> puodas, <S> 1S1{J. 1Wade(py}
({cZs> <> <1S> <> «<gs>} ssaejins,
<f3> 3duapjjuos, [sued swop [lews adAi, 19n135U0)
({<1S>» ¢> «Zs>} saode)ins,
<z2> 9duapijuod, Toued swop Tirus adAhi, 19Nn31suo0d}
(c{S> sadejins,

<13> @dugpjjuod, (oued swop |[ews adka, 1o013s5U09}
. {aaj10® snieas, pling uojidjidsap, aseyqd)
L€ ! awop {jews-g d}
90€ 7
{<£S> «ZS> <S> saoejine,
<d> ®duapTjuoDd,
191103 [rews adhia, I93NI3SUOD Iyew)
<--
{<£5> <Z5> {T1U <> <Is>} sadejans,
<2> duapijuos, awop” [lews adAi, 13n131suU0)
(8A1210® sniels, pring uojidjidosep, aseyq
90t 7 1811n) {leus-g d})
goe ¢

(<T18> <Q1S> <6S> <BS> <S>
<98> <£8> <P5> <fS> <ZS> «IS> sadvejins,
{<hD> 4 <£I> + <Z9> + 19> 9231ndwod) sduapyijuocd,

Zwpaq adAa, I0N13ISU0) BYew)

<=

(pus adAy abpa. <6S5> puodIdS, <BS> ISITI. Wade[py)
(pus adAy obpa, <S> PUODAS, <LS> ISITJ, Wwade[py)
(pus adA1 abpa. <S> pUOIaS, <9S> 1I61(]., 3IuddE(pY]
(pus adAy 8bpa, <65> PUOIAS, <G> 15177, WISE[pY)

666

666

£0S

(0
{0
to
(o
0
[§4]

(o
(0

(1]
(o

to
{0

{0

(o
(0

0

{

{11e3s ayew)

JUBWA[3 SSe[d UOjiIeZ][e[2AjU}] Bnew !
sasejins, LEE£Q0°0 VIUBPTFUOD, yoe1y abiey adkiy, 15n11sU0D axew)
gacejins, €€€90°0 9oUIP|JuUOI, yoap [{ews adA1, 15n115U0D IxEW)
sascejins, €80Z0°0 ddOU3IPjuca, 1813equnb abiey adAi, 3Idn13suod axew)
Sasejins, £80Z0°0 IOUBPIjuod, quo1j 3ja1any adAl, Joniislion axew)
sacejins, £8020°0 ddUIPTjuod, Apoq 131107y adA3, 10nI3ISUO) axew)
saoe]ins, £ROZO 0 BUIP[JuUOD, yoiey adhi, 3120135U0D) ayeuw)

(£€€980°Q 32713pTjuod, 181101 abiey adAl, 10n115UCD axew)

{ GZ 0 ®duapfjuod, teg9w adfi, 1ona3suo) ayew)
sase}ins, SZ1°0 @duapjjuod, xoe3) [reuws adAl, 1ON13ISU0D ayew)
sasejins, §Z1°0 8duapjjuod, apys abiey adAl, 10n13ISUOD B EW)

{ GZ°0 BouUdp[ju0l, g11w adA3, 10nz3Isuol axyeuw)
sanejans, ¢Zlg0° 0 ddU3PijuUOD, juox) woijoq adki, IdNIISLO) BNEW)
sazejins, GZ1£0"Q 8duapijuod, 1uo1j doy ad&y, 19n1315u0) Ixew)

{ $290°0 ®dU3pjuOd, 013 185 2dA3, IDNIISUOD BRew)
sadejins, £80Z0°0 22uUdpPTFuUOI, 13aym adA3, 10n11SUOD axew)
sasejins, £80Z0°0 2OUdPIjUOCI, apis paw 2dAl, IONI11SVOD ayew}

(6290°0 d2uU3apfjuod, apys Jen adk3y, 31onI11SUOD axew)
sadejIns, €000 IJUIPTIUOD, yoap @103 H1 adAy, 1dniisuo)y axew)
s92eJINS, £8020°0 dOUdPljuUCI, ¥08p plu b7 adk3, 1on1isuo) ayew)
$33e7INS, £80Z0°0 2JUIPIJuod, Noep aeal B adkil, 15N115UOD axew)

(629070 2oUapjjuCD, yoap abiey adAk3, 150115U0D Iyew)
$»2PJINS, £8020°0 2oUdpJjuod, (aued awop yleuws adA3, ION1ISUCD) Iyew)

[§290°0 @2uapijuoo, awop {iews adk3y, 1oni1isuol axew)

{ 6290°0 @2duapijuod, 1831an3y jyews adAj, 15N13ISU0) INPW)

{ 6Z2°0 asuapijuoo, zwpaq adA3, 3ION11ISUDD ayew)
sd0eJINS, §BLI0'0 22Uapljuod, tauved awop unipaw adAl, Id2011SUCH axew)

{ 991p0°0Q @duUapijuod, swop umipaw adk), 19013S5U0) dxew)
saosejrns, 99(pQ°Qg dIUIPTIuOI, ta21eqund (rews adAki, 15n11SUO) axEW)

{ ££€80°0 @2uspljuos, 181an3 wnipaw adA1, 19n13sU0) ayew)
s¥d0eJINS, 991400 DUIPTJuoD, 3yo8p a1oj pow adAi, 10n13ISUOY Bxew)
sS8oe3INS, 991p0°0 8duULdpjjuoo, xoap 1eax paw adA1, 3IIn1ISUC) Ixew)

{ £€£80°0 ¥duapijuoo, ¥22p unjpau adk3, IONIISUO) axyew)
SaseJIns, EELH0°0 SIUBPJUOD, yoe11 unjpaw 2dki, 19n115U0) Bxew)

(§Z°Q @duapijuos, duq adAi, 10n11SU0) IyFw}

{6°0 proysaiyi, b Sasse(d, PlioM axeu)
{(aayi0e sniels, puedx2 uojidiiosap, aseuq axew)
(<@2]1€117U]> dAOWIL)
{ {1I°e15) <3ZT(EIITUT> |}
azyyerajur d)
*sajajijqeqoid j1071d ' Jo aseqejep 3yl S3zy(eEJIJUT A[nI STy]
‘Aiowawt BUTXIOM $133uUd@ JJIE1S SSE[D O IUBWS[d u®P UIYM A
Ajowsy BuyxIom dzT[ePlIJUl O3 BINY
(<302{gqo> aAouRl)
({3132) a1jam)
<--
(aseya) -

A x1puaddy

]\

€0s

(44

z20¢

106

106

Yoy

toy

€op

Z0b

Qe

1oy

10v

{ (1yu saoejins, Indino adAki, 3Id011sU0)} <Ide{qo> |
! 830 (dwos-3ndang d)

(
(1fu (Jul <@dejIns-puocdas> <1>a(qo> 115Qns) sadejins, <3i23(qo> Kjypouw)
((1 + <@2e]Ins-18113> 8indwod) <edejrns-puosas> pulq)
({sadeJins [EAIJ[) <2DeJINS-15171J> pUIQ)

{<s> (y 1s5n(1) 3111m)
<-n
(eseyq) -
{ (1 13u <> <S> } saosejans, indino adk3, 1on1isvol) <iIdafao> |}
! saosejinsg-inding d)

(11u 8duepijuod, jndino adhy, cidefgqo> Ajjpow)

{1l ¢ sadejing| 3311Im)

({J112) <d> | t @0UdPT1JUOD| @111m)

({7122} <31> | : ssel> 123f{qgo | (J13d) @31]am)
<--

{aseyua) -
{ {<2> asuappjuod, { Indino <> <I> | addi, uu:~uucou~ <3123{ge> |}
H aduapijuo) pue adAp-andang d)

sainsay indiag !

(cATaXTTIUN> 3nowal
<--
{ ({<ys5ai1yl> =>} @dUIP{JuUOd, 3dOnI3suod) <ATayjiuns |
(<ysaIyi> PIOYSaILI, PlIoM)
(2a7132€ sniels, ueal(d uojidyiosap, mecmv
’ A1axtiun-dn ueais d)

(cy071d> aaowal)
PR
{ {11y sadejins, 12011SuU0d) <101Jd> |}
(aa110e sniels, ueald uojadyiosap, aseyqd)
H 10113-dn ueajp d)

(¢JIns> aaowdl)
<--
{ (@d2ejins) <JiIns> |}
(3a10e sniels, uead vojidyiosap, aseyd)
H epopjIng-dn uea() d)

(<{pe> aaowai}
<-=
{ (avade(py) <(pe> }
(aA710® sniels, uea[d uoyidiIosap, aseud
: sajousde{pv-dn ueays d)

uo73I0B[10D sbeqieng wIoJIagd : s[NY UOTIDNPOIZ ¥ oseyqd ‘!

{<bS> <ES> <ZS> <S> sadejins,

(<hO> ¢ <€I> + <Z9> + <I9> @3Indwod) @duapijuod.
193103 8biey adia. 0NIISUO) BXPW)

C-=

(dwf adky abpa, <S> puodss, <fS>

quasef py)

Is113.

