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I Report No. 7138 BBN Systems and Technologies Corporation.

1 Executive Summary

This is the final report of a project entitled "Multiple Knowledge Sources for Speech
Recognition", sponsored by the Defense Advanced Research Projects Agency (DARPA)
and monitored by SPAWAR under Contract N00039-85-C-0423. The project spanned the

jperiod 30 April 1985 to 31 July 1989.

The objective of this project has been to develop methods and techniques to coor-
dinate the many sources of knowledge in the decision process for a speech recognition
system. This effort includes finding methods for effectively combining information from
various knowledge sources, and for developing recognition search strategies that find the
most likely word sequence. given the input speech. These search strategies must consider
a very large number of word-sequence hypotheses in a computationally efficient manner.
To develop and demonstrate these techniques, we designed and implemented a complete
word recognition system for continuous speech which is capable of incorporating knowl-
edge from several sources, including lexical, phonetic, phonological, and grammatical
knowledge. The complete system was given the name BYBLOS, the name of an ancient
Phoenician town where the first phonetic writing was discovered. The BYBLOS system
has been used as our testbed system for evaluating variovs speech recognition algorithms
and search strategies.

In addition to developing algorithms for combining multiple knowledge sources
and efficient search strategies, this project also dealt with several other issues, including:
specification of the Resource Management Database and documentation of how to test
with it, periodic testing to meet the agreed upon test requirements, development of several
standard language models for evaluation, development of a technique for estimation of
statistical language models from limited text corpora. and testing of ideas for speaker
adaptation. These topics are discussed in more detail in the body of the report and in a

5number of papers that have been attached to this report as an Appendix.
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2 Introduction

The most fundamental problem in speech recognition is to develop an accurate model of
the acoustic signal that corresponds to any sequence of words or phonemes, in order that
speech recognition can be performed. However, there are several other sources of knowl-
edge that can be used to improve speech recognition accuracy. Some of these include:I
a phonetic lexicon specifying the most likely pronunciations for each word, extended by
a set of phonological rules suggesting alternate pronunciations, a model of likely word
sequences - based either on a heuristic model derived from rules, a statistically-based 3
model derived by estimating probabilities from a training set, or a linguistically-based
model that uses syntactic and semantic information explicitly.

The objective of this project was to develop methods and techniques to coordinate
the many sources of knowledge in the decision process for a speech recognition system.
This effort included developing methods for effectively combining information from the i
various knowledge sources, and methods for recognition search strategies that efficiently

consider the tremendous number of hypotheses in the search space. To develop and
demonstrate these techniques, we designed and implemented a word recognition system U
for continuous speech input that employed several knowledge sources. The system,
which we called BYBLOS, was then used as a testbed system for evaluating various
recognition algorithms and search strategies. Much of the testing of the system used the I
DARPA Resource Management Task, which was taken from the Navy battle management
(FCCBMP) domain.

The system that was developed was based on the continuous speech phonetic recog-
nition algorithm that had been developed in our program of basic research in continuous
speech recognition for DARPA. In that work, the model for each word is derived from I
a set of pronunciations from a dictionary, a set of phonological rules, and from data
taken from natural continuous speech. Each phonetic unit within a word is represented
by a combination of a context-independent model and several context-dependent models I
of that phoneme. The training algorithm that was developed does not require that any
speech be labeled manually. The training data only needs to be transcribed with a list of
the words spoken, thus greatly reducing the amount of labor required and increasing the
amount of data that can be made available for training.

In addition to developing algorithms for combining multiple knowledge sources and n
efficient search strategies, this project also dealt with several other issues. This included:
implementing a basic testbed system for evaluating different word recognition algorithms,
specification of the Resource Management Database and documentation of how to test I
with it. periodic testing to meet the agreed upon test requirements, and testing of ideas
for speaker adaptation. U

The chapters of this report are organized by topic. as follows:
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£ The BYBLOS System

Lexical and Phonological Knowledge

fLanguage Models

Search Strategies

System Implementation

3 Database Specification and Documentation

Testing System Performance and Demonstrations

51 Speaker Adaptation.

In each of the chapters, we recount the major areas of research under the topic of

that chapter. Where applicable, we also review the major technical principles involved.
Further details can be found in the set of papers included in the Appendix at the end of

the report.
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3 The BYBLOS System j

Figure I is a block diagram of the BBN BYBLOS continuous speech recognition system.
We show the different modules and knowledge sources (KS) that comprise the complete
system, the arrows indicating the flow of module/KS interactions. The modules are
represented by rectangular boxes. They are, starting from the top: Trainer, Word Model
Generator, and Decoder. Also shown are the knowledge sources, which are represented
by the elipses. They include: Acoustic-Phonetic, Lexical, and Grammatic knowledge
sources. We describe briefly the various modules and how they interact with the various 1
KSs. Additional information is given in the body of the report and in the Appendix.

,\coustic-Phonetic Knowledge Source I
The Trainer module is used for the acquisition of the acoustic-phoneuc knowledge

source. It takes as input a phonetic dictionary, speech to be used for training and the
corresponding text transcription, and produces a database of context-dependent hidden i
Markov models of phonemes.

Lexical Knoledge Source I
The Word Model Generator module takes as input the phonetic models database and

compiles word phonetic models. using the dictionary as another input. The dictionary is
the lexical knowledge source, in which phonological rules of English are used to represent
each lexical item in terms of their most likely phonetic spellings. The lexical KS imposes
phonotactic contraints by allowing only legal sequences of phonemes to be hypothesized I
in the recognizer, reducing the search space and improving performance. The output of
the Word Model Generator is a database of word models used lit the recognizer.

:;rammi 0ical KnoMledge Source

In much of our speech recognition work, we use a statistical language model to 3
represent grammatical constraints. Such models allow all word possibilities but with
different piobabilities such that the urplexity of the grammar is substantially lower than
the size of the vocabulary. The recognition search process then uses the word phonetic
models and the statistical grammar to find the most likely sequence of words, given the
input speech. I

4
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R Training
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Figure 1: A block diagram of the BBN BYBLOS continuous speech recognition systrm
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4 Lexical and Phonological Knowledge j
One of the basic tasks in a recognition systern is to develop a phonetic dictionary (the
lexicon) and to allow for the incorporation of phonological knowledge. Therefore, we
developed an interactive tool that allowed a user to create and edit phonetic spellings in
a dictionary. The tool could display the phonetic network corresponding to the pronunci-
ations in a word. In addition, the system allowed phonological rules to be entered, which
would then create new expanded pronunciations for a vocabulary. The system kept track
of the history of each word, so that it was possible to determine which rules created I
which parts of any pronunciation. We used these tools to create phonetic dictionaries for
the different tasks - primarily the 1000-word FCCBMP task. I

One consideration that must be made in a system is the number of alternate pro-
nunciations that should be used for each word. In principle, one would like to represent
all of the likely pronunciations, since they would result in different acoustic reaiizations I
of the words. However, as we add pronunciations to a word, the difference between this
word and other words decreases. In particular, if we add extra pronunciations to account
for inadequacies of the phonetic recognition system, then we must constantly change this a
set of rules as the system improves. Furthermore, if we allow alternate pronunciations,
we must be careful to represent the fact that some pronunciations are much more likely
than others.

We performed experiments to determine the effect of having different numbers
of pronunciations. We found, to our surprise, that the best recognition performance U
was achieved when we limited the number of pronunciations to one for each word.

That is. even when we had a limited set of phonological rules, resulting in about two
pronunciations per word, the performance was worse. On reflection, it made sense that I
the BYBLOS system would perform better with a single pronunciation for each word.
Most of the phonological variations take place based on the context of the preceding
and following phonemes. However. the system already modeled the detailed acoustic I
variation in phoneme, with the use of context-dependent phonetic HMM models. Thus
this probabilistic model for fine acoustic differences was superior to a gross phonological
model of the shift from one phoneme to another. Some systems within the DARPA
community had been using a large number of pronunciations - perhaps 10 or more per
word. In particular, the CMU Sphinx system performance improved dramatically when
all the alternate pronunciations were removed at our suggestion.

I
I
I
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I 5 Language Models

Our first experiments with the effect of grammatical constraints on recognition perfor-
mance involved changing the vocabulary size. We did this in order not to be affected by
the particular words that could follow each other in a grammar. Rather we performed a
set of experiments that we called "Branching Factor Experiments", in which we varied
the vocabulary size in a systematic way. Given a desired vocabulary size, the recognition
program would read in each sentence to be recognized. It then limited the vocabulary
to the words actually in the sentence, plus enough other words to make up the desired
vocabulary size. Many different random subsets of the vocabulary were chosen in order
to remove any bias. This made it possible to plot the expected word recognition error
rate as a function of the branching factor. We found that the error rate was typically pro-
portional to the square root of the branching factor. We found, when we ran recognition
experiments using a deterministic grammar, that this relation still held. That is, the word
recognition error rate was generally proportional to the grammar perplexity.

After the basic branching factor experiments, we implemented a recognition pro-
gram that would allow the recognition to be constrained by finite-state grammars. This
also required building some tools that made it possible to create and manipulate grammars.

We found that it was simplest to specify grammars in terms of context-free production
rules. These rules were then expanded into a finite-state network. This was possible
because we did not include any rules that caused recursion. The recognition program
allowed deterministic finite-state automata (DFA), in which all the words leaving any
state of the grammar were unique, and nondeterministic automata (NFA), in which there
could be duplicate words or "null arcs" that allowed a transition from one state to another
without going through a word. In general the same language can be represented with a
much smaller NFA than DFA.

The first grammar that we constructed for the 1000-word FCCBMP corpus was
based on the sentence patterns used to make up the sentences in the corpus. This grammar
had a perplexity of only 10. We found that the sentence patterns that were used to generate
the 2850 sentences in the Resource Management corpus were not very robust. That is, if a
person generally familiar with the domain made up sentences using the same vocabulary,
there was a high likelihood that the sentence could not have been generated by these
patterns. One important issue in speech and language recognition is how to make a
grammar that will cover a large percentage of new sentences.

W 4-,veloped a semiautomated tool for inferring grammatical structure from a
relat,. small set of patterns. The tool found similarities in sentences, and then allowed
that I - '-f both sentences to be represented by a context free rule. In this way, the system5 generalize:. 'e sequences of words and word classes into a hierarchical set of rules
tha' wouA. :over a much larger percentage of new sentences than the original sentence
patteiis. We applied this tool to the training subset of the sentence patterns to create a

7I
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generalized context free grammar. We compared the perplexity and coverage of new data
of this new grammar to the original pattern grammar. When the test patterns were parsed
using only the training patterns, none of them parsed. However, when the generalized
context free grammar was used, 65% of the test patterns parsed. The perplexity of this U
grammar also necessarily increased, from 10 to 75.

To use this new grammar we built a version of the decoder that could use context 3
free grammars rather than just finite state grammars. This involved first converting the
set of context free rules into a recursive transition network, in which the several ight
hand sides for a rule are merged into a single network of terminals and nonterminals. I
The decoder was changed so that instead of dealing with a single finite state network
of terminals (words), it could also deal with networks of nonterminals. When the sym-
bol in a network was a terminal, it simply created a new instance of that word to be a
matched. When it was a nonterminal, it "pushed" down to the network corresponding
to the right hand sides of that nonterminal. Since the grammar was now much larger
and more interconnected, the decoder had to be optimized in several ways. One of the U
major optimizations was to use the forward-backward search strategy described below.
This meant that when the decoder came upon any new word or nonterminal, it would i
know (from the forward pass) whether this word, or any of the words implied by this
nonterminal could possibly be in the input speech starting at this frame.

Any deterministic grammar derived from a set of rules will have a problem in
that new test data may not be able to be parsed by the grammar. For example, when
new sentences were recorded at NOSC (the TONE database). we found that most of the j
sentences were not covered by the sentence pattern grammar or the word pair grammar.
Even the generalized context free grammar covered only about 75% of the sentences that
used the same vocabulary. A statistical grammar that models the probability of the next I
word (or word class) given the preceding words can avoid this problem by assuming
that all words are possible, even though some are much more likely than others. The
statistical grammar also has the additional advantage that it can accurately represent the U
fact that some words or classes are more likely than others. This additional information
greatly reduces perplexity and increases performance. Therefore we began an effort to
estimate and use a robust statistical grammar. I

In the past work on statistical language models, the training set for estimating the
probabilities of word sequences needed to be quite large. For example, IBM currently U
uses a text database of about 250 million words to estimate trigram probabilities in their
cffice correspondence task. In many spoken language applications there is no possibility
of collecting such large amounts of speech because the application does not yet exist. I
Rather, it may only be possible to collect on the order of 1000 sentences from a simulation
of the system. To alleviate this problem we have extended the statistical grammars
typically used by the use of linguistic knowledge. In particular, we group the different
words in the vocabulary into classes, under the assumption that their statistics will be

8 I
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5 relatively similar. For example, in the FCCBMP domain, one would initially assume
that the names of all ships would be equally likely in any particular sentence. Therefore,
when we see a training sentence that contains one ship name, we assume that we have3seen a ,imilar sentence with every other ship name. In addition, there are sequences of
words tnat behave as a unit. For example, there are many ways of expressing a date.
We can assume that in the model for a sentence, we need not distinguish among these

different forms of the date. Therefore, the whole date, which may consist of several
words, is treated as a single nonterminal. This greately reduces the amount of training
script that is needed. It also increases the number of words over which the grammar has'I effect. For example. we can now predict the probability of a particular word given that
it was preceded by a preposition, followed by a date.

5We developed a statistical tool that allowed us to estimate a variable order Markov
chain for the sequence of word classes and nonterminals. The variable order chain has the
advantage that in some contexts, there is enough training to estimate high order statistics,
while in others, only first order statistics can be reliably estimated. The perplexity of
this model as measured on the trmning data was about 20. which is very low. When
measured on independent test data, the perplexity rose to about 60. However, unlike the
Word-Pair grammar, which also has perplexity 60. this model would be able to recognize
sentences that do not come from the grammar training set. We compared the recognition3 performance of this grammar with that of the Word-Pair grammar. When independent
test data was used the error rates were 10% and 22%, respectively, for the two grammars.
The larger error rate for the Word-Pair grammar stems in part from the fact that several

Sword pairs in the test set were not allowed by the grammar.

This work on statistical language modeling from small corpora will be important in
future work on spoken language recognition because of the need to improve recognition
performance through the use of statistics, and because the training sets for new tasks will
always be small.

I
I
I
I
I
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6 Search Strategies i

In this chapter we describe our work on developing efficient search strategies for finding
the most likely word sequence given the acoustic signal. In principle, the best algorithm
for determining the word sequence given an acoustic signal is to consider all possible
word strings exhaustively. For each word string we must compute a score (conditional

probability) of that word sequence, taking into account all the sources of knowledge
available. Then we simply choose the word sequence with the highest score as our answer.
This algorithm, which we would call a tightly coupled, top-down search, guarantees the 3
minimum error rate for a given set of knowledge sources. However, this exhaustive
search is clearly infeasible. Therefore, we must develop search strategies that approximate

this algorithm, with computation that is acceptable. However, throughout our work in I
developing efficient search strategies, we always must keep in mind that we are trying to
approximate the effect of this exhaustive search. The remainder of this chapter enumerates
several of the different search search strategies that we have developed under this project.

Some of the general principles that were established for a desirable search strategy
were: 3

1. Use the computationally "inexpensive" knowledge sources to reduce the number
of choices drastically, and then use the more expensive knowledge sources on this I
reduced set.

2. Any decisions made in (1) must be made in a way that almost never makes a 3
mistake, otherwise these "irrecoverable errors" will multiply and dominate the
errors.

Two search strategies that are commonly used in speech recognition are the Best-First
stack search, and the Viterbi beam search. The best-first search considers only the best
theory at a particular time. It extends this best theory by all possible next words, scores
all these new theories using all available sources of knowledge, and reinserts the new
scored theories back into a stack that is sorted by theory score. This algorithm has the
theoretical advantage that, if the scores are meaningful, it should do the least amount of
computation. However, in practice, it is very difficult to sort the theories appropriately.
In particular, it is very hard to compare two theories that span different regions of the I
input speech. Therefore, even with the many heuristics that are used, this strategy often
finds a suboptimal answer, or results in tremendous amounts of computation. 3

The Viterbi beam search is much easier to implement than the best-first search and
has many desirable properties. First, it guarantees to find the sequence of states of a

finite-state hidden Markov model with computation that is proportional to the number £
of states and the length of the input speech. The beam scarch implies that at each time
frame, all theories that have a probability that is sufficiently far below the probability of 5

10 I
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5 the most likely theory are removed, since they are not likely to result in a better score
by the end of the utterance.

Unfortunately, there are still two problems with the Viterbi search algorithm. First,
the algorithm finds the most likely sequence of states, rather than the most likely sequence
of words. While this difference is often small, it does introduce some unnecessary errors.
Second, and more serious, most interesting models of language have a very large number
(if not infinite) number of states. For example, even a context-free language cannot be
represented using a finite number of states. Therefore the computation associated with
the straightforward beam search is often excessive.

In 1985 we devised an algorithm that has the simplicity of the Viterbi algorithm
but computes a score that more closely approximates the "'true" score of the most likely
sequence of words. Stated simply, the algorithm is just like the Viterbi algorithm, except

that at each state, where the Viterbi algorithm keeps the maximum score from all pre-
ceding states, our algorithm adds the scores from all the preceding states. We call this
algorithm a pseudo-Baum-Welch search for the most likely word sequence. In several
experiments we verified that this algorithm results in somewhat lower error rates than
the Viterbi algorithm. The interesting observation was that the difference in error rate
was relatively constant over different applications. That is, our pseudo-Baum-Welch al-
gorithm consistently resulted in 2% fewer errors than the Viterbi algorithm, whether the
original error rate was 30% or 5%. Therefore, when the error rate was low (which it
must be for a useful system), the difference was important.

There were certain remaining problems with the algorithm described above. Since
the score produced by this algorithm is not exactly the same as the true score, there is
still some chance that it will not find the word sequence that has the highest true score. In
addition, since we use a pruning algorithm to try to avoid computing most of the scores.
it is possible that the algorithm eliminates the correct word sequence from consideration
without computing its full score. Because of these two problems it is helpful to know how
the true score of the correct answer compares with the true score of any incorrect answer

that the recognition program finds. Therefore we added a feature to the decoder that
allows the system to find the true score for any particular word sequence for a sentence.
by scoring only that word sequence. We call this a forced scoring algorithm. Whenever
the decoder finds the wrong word sequence, this forced scoring algorithm can then be
used to find the true score for the correct word sequence and the true score for the word
sequence that the decoder found. If the true score for the correct word sequence is higher
than the score for the word sequence found, then we know that it was due either to theIpseudo-Baum-Welch score being different from the true score, or due to pruning out the
correct answer. When we tested our search algorithm using this new feature, we found
that whenever the decoder finds an incorrect answer, the incorrect answer always has a
higher true score than the correct answer. This confirms that the decoding algorithm is
empirically optimal.

II
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As described above, it is also possible that search errors are the result of pruning I

out the correct answer because, at some point in the utterance, it was scoring much worse
than some other hypothesis. Unfortunately, unless the pruning is very conservative, there
is some small probability that the most likely sequence of words is pruned out from I
consideration due to a small region where it scores poorly. While this might happen
only once in 25 sentences, it represents an unwanted noise in our estimation of error
rates. To alleviate this problem for research runs, we use the heuristic described above
to detect errors due to pruning and rerun the sentence with more conservative pruning if
necessary. The utterance is fiist run at a very aggressive pruning level, which results in a
factor of 10 speed up. If the answer found is incorrect, the sentence is run again forcing I'
the correct answer, and then the answer that was found during the search. Both of these
require very little time, since only one sequence of words is possible. If the score for the
correct answer is actually higher than that for the incorrect answer, then the utterance is
rerun with a very conservative pruning threshold. We find that, including the utterances
that need to be rerun, the net effect is a factor of about 5 in the speed of research runs
of the decoder. Of course, when the decoder is running in any real application or formal
evaluation, it doesn't know the correct answer, and so it must use a more conservative
pruning or accept some increased error rate. I

The more serious problem mentioned at the beginning of this chapter was that for
large language models, the number of word states that need to be scored in each frame can i
often be significantly larger than the number of words in the vocabulary. For example, the
Sentence Pattern Grammar, which is a large finite state grammar, has about 100,000 arcs
initially and about 30,000 arcs in its most compressed form. Therefore, if the pruning U
were not able to eliminate more than 97% of the words from consideration, the number
of active words in the beam search would be larger than the 1000-word vocabulary.
Therefore, we have developed a new class of recognition search strategies, which we I
call multiple-pass search strategies, that is useful for speeding up the search with large
grammars, such as statistical grammars and natural language grammars. These algorithms
find upperbound scores for each of the words in the vocabulary in different regions of the I
input. Then, while performing a grammar-directed acoustic search, the decoder considers
only those words that are known to be likely given the input speech. The particular
version of this paradigm that we implemented has been named the forward-back-ward
search because of its similarity to the forward-backward training algorithm.

As the syntax-directed search is proceeding left-to-right through an utterance, it I
must extend each theory in which a word has ended by all the possible following words.
The beam search reduces the number of theories by eliminating those for which the
sentence so far scores badly, compared to the other theories. The beam search would be
much more effective if, at this point in the utterance, it could know the score that the
remainder of the utterance would receive also. Then the pruning could be based on this 3
total score. Of course, computing this score is equivalent to performing a full decode,
which is what we are trying to avoid. However, say we knew the score for the most likely
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sequence of words from this point in the utterance to the end of the utterance (ignoring
grammatical constraints). This score would be an upper bound on the actual score that
would be found were it computed exactly. Furthermore, say we knew this upperbound3score for each possible first word in the remaining string. Now, we could consider each
of the words that can come next, according to the grammar, and for each one, look up
the upperbound score of a sequence of words beginning with that word at this point in
the utterance. This score, when added to the score of the theory to the left, can then
be used in the beam pruning, thus eliminating most of the possible continuations of this
theory. The only problem with this algorithm is that we haven't seen the rest of the
utterance yet (assuming that the algorithm is running in close to real time), so we cannot
possibly compute the scores of word sequences in the future. However, if we turn the
problem around, there is a solution that is feasible. Let us say that as the speech is givenSto the decoder (in real time), it computes the scores as if it were using no grammar in the
recognition. At each frame, it remembers the score of word sequences ending with each
possible word in the vocabulary. Only a small fraction of the words in the vocabularn
will end with a good score at each frame. When the end of the utterance is detected,
the decoder then begins a grammar-directed search, but in the reverse direction. This
time, since most words have been eliminated, the decoding proceeds much faster than
real time. The most likely answer is then found with only a short delay past the end of
the utterance. With a small modification, this algorithm can also be made to run forward,
in order to eliminate even the small delay at the end of the utterance.

We have used the forward-backward search algorithm described above to speed up

the search for several very large grammars. These include the Sentence-Pattern gram-
mar, a high-order statistical grammar, and a recursive transition network grammar. Our
experiments indicate that. for these large grammars. the increase in speed is at least a
factor of ten, when we use the forward-backward search algorithm. A modification of
this algorithm would use a first-order statistical grammar in the first pass. in order to3 reduce the choices further.

1
I

I
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7 System Implementation I
Much of the work of this project was necessarily spent implementing the different training
and recognition aJlqorithms. The initial set of algorithms for word-based training and
recognition were implemented on the Symbolics Lisp machine using Zeta-Lisp. The
flexible environment made it relatively easy to implement several algorithms quickly. 3
However, the resulting programs were not very fast, since Lisp tends to result in slow
computation. The result was that many experiments were impractical to run, since the
time that they required was too great. In particular, it was frequently more than the mean
time between failure of the machines.

More recently, we have completely redesigned and reimplemented all of the algo-
rithms in C on the SUN4 workstations. The implementation takes somewhat longer, but
the resulting programs run about an order of magnitude faster. As a result, it is possible
to run several different versions of the programs and to tune different parameters. One I
of the direct consequences has been a marked improvement in the recognition accuracy
of the system. In addition, since the language used is more portable, we will be able to
take advantages of newer, faster machines as they become availahbl. withot having to
redesign all the algorithms. We are currently investigating several faster machines that
would increase our computing power by at least a factor of five. 1

1
I
I
I
I
I
I
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8 Database Specification and Documentation

One of the major contributions of the current DARPA program in speech recognition
has been the specification, recording, and adoption of a standard corpus of sentences
for research and standard testing. BBN has been instrumental in the specification of the3 corpus and the testing standards to be used with that corpus.

Several speech corpora were defined to serve the different research needs of the
community. We felt that it would be important to have a wide range in the amount of
training speech available for each speaker, as well as a very large number of speakers
available. Therefore the basic makeup of the corpus was designed so that there would be
different sections. The first would contain 640 speakers, each saying 10 sentences. The
second would contain 160 speakers, each saying 40 sentences. The third would be geared
for speaker-dependent research, and would contain 12 speakers with 600 training sen-
tences for each. Finally, there would be 2 to 4 speakers with 2 to 4 hours of speech each.
The 640 speaker corpus consisted of material designed for detailed phonetic research.
and was thus phonetically marked. This corpus has been called the TIMIT database.I The other corpora consisted of sentences pertaining to the Resource Management task
domain. Each of the corpora contained designated training sets, development test sets to3 be used while trying out new algorithms, and evaluation test sets for formal testing.

We specified the sentences in the FCCBMP battle management domain (later to be
called the Resource Management task domain) through lengthy discussions with people at
NOSC. This task involved becoming familiar enough with the application and likely uses
to generate a 1000-word vocabulary and about 1000 different sentences with database
queries, display commands, and expert system questions. As such, the task combined
the domains that reside in several different systems, most notably, IDB, OSGP, and
FRESH. After the initial sentences had been composed, and checked by NOSC, they
were converted into sentence patterns by replacing the open class words by their classes.
Then, as many sentences as desired could be generated. We generated three sentences
from each pattern, resulting in approximately 2850 sentences. These sentences were then
sent to TI, where some additional changes were made before recording. (Some words
that were too hard to pronounce were replaced with other words.) The procedures that
were followed in creating this extensive corpus were documented in an ICASSP paper,

Swhich is included as an appendix to this report.

In order to be able to compare recognition results accross different research sites
using different algorithms, it was necessary to assure that all sites were using the same
grammatical constraints. Since the BYBLOS system was the first one within the program
to produce reasonable recognition results, we inherited the task of specifying and trying5 standard test conditions. We documented the phonetic dictionary that we had developed
and made it ava'lable to other sites. We showed that it was not advantageous to have
a large number of phonetic pronunciations for each word, since this made the different
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words more similar. Finally, we provided documentation for three standard test grammars: n

1. No grammar - perplexity 1000. 3
2. Sentence Pattern Grammar - perplexity 10

3. Word-Pair Grammar - perplexity 60 3
The first grammar used for testing was the null grammar that allowed any sequence

of words. This grammar tested the basic word recognition capabilities of the systems.
The sentence pattern grammar was a grammar derived from the patterns used to generate
the sentences in the Resource Management corpus. Since we knew that this grammar was
unrealistically constrained, we created another grammar that allowed all pairs of words
that could occur anywhere in the sentence pattern grammar. This increased the perplexity
to 60, making it a much more reasonable grammar. By using these three grammars, it
was possible to evaluate the word recognition capabilities of each of the sites at different
levels of difficulty.

One way of estimating the difficulty of a task is to measure the average number
of words that can come after each word in the language model used with the task. The
mathematical quantity that we use for this is called perplexity. While this measure doesn't I
take into account the phonetic similarity between words, it has been found to correlate
well with word recogition error rate. We wrote a technical note to document the precise
techniques used to measure the perlexity of a language model on any particular test set I
of sentences. That note is included as an appendix to this report.

Finally, as the word recognition capabilities of the different systems has improved.
there has been a need for a grammar that is more difficult than the Word-Pair grammar.
While the recognition performance is not that high that it would be useful, the numbcr of
errors in a reasonable-sized test set is not large enough to be measured with statistical re- I
liability. Furthermore, testing with no grammar is also too unrealistic, because it requires
many distinctions that would never be needed in a system. Therefore, we developed a
new standard test grammar based on a first order statistical model of word classes. The I
grammar, which is based on only 100 word classes, was designed to have a statistical
perplexity of about 100, which will result in about twice the error rate associated with the
word-pair grammar. We estimate that the difficulty of this grammar is comparable to the
difficulty of a more realistic task with about 5000 words, where the test (actual) sentences
may not be quite so similar to the training sentences. We documented and distributed a 3
set of programs for estimating and constructing this grammar from an annotated lexicon
and a corpus of sentences that has only orthographic transcriptions. £

I
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5 9 Testing System Performance and Demonstrations

Throughout the project we have performed several formal and informal evaluations of the
recognition accuracy of the BYBLOS system. The early tests and demonstrations were
informal, since BYBLOS was the only complete system at that time. The later tests were
more formal. The formal tests have been in accordance with rules agreed upon among
the different research sites, together with NBS (now NIST).

Our early work in context-dependent phonetic hidden Markov models for phonetic
recognition was incorporated into a word recognition system during 1985. The first test
of this system was on a small (334 words) electronic mail task. The domain consisted of
commands to an electronic mail system. 300 training sentences and 100 test sentences
were recorded from each of 3 male speakers. We compared the recognition accuracy with
context-dependent phonetic models of different types with the accuracy when context-
independent models were used. The recognition experiments were run first with no
grammar. and later with a finite-state grammar made up to model all of the sentences.
Averaged over the 3 speakers, the word recognition accuracy with context-independentImodels was 76%. When context-dependent models were used the accuracy was 90%.
When a grammar with perplexity 31 was used, the recognition accuracy improved from
94% to 98.2%. This represented convincing proof of the viability of the use of context-
dependent phonetic models and of the use of HMM models in general.

During the next several months of 1986 we implemented a 350-word subset of the
FCCBMP Resource Management Task Domain. This involved recording training and test
sentences for the new domain and running similar tests to those described above. The
results were quite similar. Next, we added 300 new words to the test vocabulary, to test
the effect of having test words that were not included in the training. Most of the words
added were additional names of ships and ports. We found that the recognition results
were quite similar to those reported earlier.

During the spring of 1986 we implemented a demonstration of the BYBLOS system
that would allow a user to speak a sentence and have the answer appear about one minute
later. The system, which ran on a Symbolics Lisp machine displayed its progress as it
attempted to recognize what was said. In particular, it displayed a tree of the most likely
sentence hypotheses that were under consideration. In July, 1986 we held a demonstration
of this system at BBN.

In addition to using speaker-dependent models derived from 300 sentences from
one speaker, we demonstrated the speaker adaptation capability of the system. Forty
sentences were recorded from each of the visitors. These sentences were used to transform
a speaker-dependent model from one speaker so that it could be used for the new speaker.
While the recognition accuracy with the adapted model was not as high as for the speaker-
dependent model, it was still quite reasonable.
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During the end of 1986 we tested the BYBLOS system on the full 1000-word

vocabulary. The tests were run on two speakers from BBN, since the data being recorded
at TI was not yet available. The word recognition accuracy with no grammar was 87%. I

The speech data for four speakers was made available in January of 1987. This
was the first formal test of the system using data from outside BBN. In this case we had
600 sentences (approximately 30 minutes of speech) from each speaker. We ran tests i
under three grammar conditions:

1. Sentence Pattern Grammar - perplexity 10 1
2. Word-Pair Grammar - perplexity 60

3. No grammar - perplexity 1000.

The recognition results are presented for each of the grammars and for the four I
speakers from TI as well as the two speakers from BBN.

Sentence Pattern Word Pair No Grammar I
TI-4spkrs 97.8% 89.9% 65%
BBN-2spkrs 99.8% 98.2% 87%

The results showed clearly that the recognition accuracy depends significantly on
the grammar used. They also indicated that the speech recorded at BBN resulted in
much higher recognition accuracy than that recorded at TI. This was presumably due - 3
at least partially - to the speakers at BBN speaking more carefully. It also indicates that
a significant improvement in system performance can be achieved by a certain amount of
instruction to prospective users in how to use the system. This improvement is at least I
comparable to the difference in performance resulting from algorithm improvements.

On July 27, 1987 we gave a demonstration that showed how an integrated spoken 3
language system could be used for the FCCBMP application. A graphics system that
enabled a user to manipulate objects on a map was connected to the natural language
system, so that typed commands and questions would he answered and would result in 1
appropriate displays on the map. The output of the speech recognition was then connected
to the natural language so that commands and questions could be spoken. While the
connection between the speech and the natural language was serial, it illustrated the I
power that such a spoken language system would have.

One of the requirements for the October, 1987 meeting was that some of the results m
reported would be from a "live test", which meant that the speakers were speaking directly
to the system, which would recognize each sentence and display the answer before they
would speak the next sentence. On July 27. the three speakers who were to be in the
test came to BBN to provide training speech in order that we could compute speaker-
dependent models for the speakers. (The speakers were Alan Sears, David Pallett. and 3
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3 Tice DeYoung.) Each speaker read training sentences during a total elapsed time that was
limited to one hour. The recording took place in two half-hour sessions. Afterwards, we
listened to all of the recorded sentences and deleted those where the words spoken were
different from those in the text transcriptions. On the average, 80% of the utterances were
kept, resulting in about 350 training utterances for each speaker, or about 18 minutes of
actual speech. On September 29, the three speakers returned to test the system. The
word models for each of the speakers were transfered to the Butterfly computer which
performed the recognition. The grammar used was the Word-Pair Grammar. Each of
the speakers read 30 test sentences, one by one, and waited for the recognition answer
to be typed out. All input data and recognition results were also saved on files for later
analysis. On average, the recognition time was 10-40 seconds, or about 10 times real
time. In each case, the speaker was able to finish the entire session (including putting on
the microphone. comments, adjusting levels, and false starts) within 1/2 hour of elapsed
nime. The word recogition error rates for the three speakers were AS, 4.4%, DP: 5%.5 TD: 12%. These same sentences were also processed on the Lisp Machine simulation of
the decoder to provide recognition results with no grammar.

In addition to the live tests, there were also formal tests run using the data recorded
at TI. In this case. test data from eight of the speakers was evaluated. Four of the speakers
had been used in the tests performed in March, 1987. The speaker-dependent models
were generated using 570 of the 000 training sentences (we reserved 30 for in-house
testing). In August we received from NBS the set of 25 test sentences to be used for
testing. Again. tests were run using both the Word-Pair Grammar ar.d no grammar. We
no longer used the Sentence Pattern Grammar, since it was judged to be unrealistically
easy. The results were consistent with those obtained in March. The average error rates
%were 32%( with no grammar, ind 7.5( with the Word-Pair Grammar.

Dunng the October. 1987 meenng we demonstrated the BYBLOS system in the
conference room where the meeting was held. There were several technical problems
related to getting the audio signal from this room back to our A/D facility, which was sev-
eral hundred yards away in a different building. The solution that was finallv chosen was
to transmit the signal over unused telephone wires that went between the buildings. The
demonstrations included a near-real time demonstration of recognition on the Butterfly
Parallel Processing system. In this demonstration. the system displayed the hypothesized
worc string as it processed the sentence. Frequently, the first two or three words were
displayed before the speaker finished speaking the sentence. Several speakers were used
during this demonstration.

3 In April, 1988 we tested the new speaker adaptation algorithms developed under
the Basic Research effort on the Resource Management Database, and the data collected
'live" at BBN. We found that, on the average, the performance of the system when

models were adapted using two minutes of speech from the new speaker was equal to
that derived when 18 minutes of speech from the new speaker was used with the speaker-
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dependent training algorithm. This is a significant improvement over our previous speaker
adaptation algorithm, which resulted in performance equivalent to about 8 minutes of
speaker-dependent training.

During early 1988, we redesigned and implemented the BYBLOS system on the
SUN4 workstations. Previously, on the Symbolics Lisp machine, the limitations of slow
computation and limited virtual address space made it difficult to run many experiments. I
In particular, we were not able to use multiple sets of spectral parameters in the training
and recognition. The primary difference in the SUN4 version was that we now used the
denvatives of the cepstral parameters in addition to the cepstral parameters themselves. I
In addition, it was now possible to run many experiments in order to tune various system
parameters. All tuning was done on parts of the training set or on the October, 1987 test
set. We then ran the May 1988 test data for all 12 speakers through the decoder using the
word-pair grammar and the null grammar; the word error rate was now 3.4% and 16.2%
respectively. This represented a word error rate reduction by a factor of two relative to
the previous system.

Shortly after running these tests, we completed our work on smoothing the prob-
ability distributions of the HMMs. When we received the test data for the February
1-,89 meeting, we decided to run the experiments both with and without the smoothing
algorithm. At the meeting in February we presented the effect of smoothing on both the
May '88 and February '89 test sets. The word error rates are given below.

Word-Pair No Grammar
Control Smoothing Control Smoothing 1

May '88 3.4 2.7 16.2 15.2
Feb '89 2.9 3.1 15.3 13.8 1

This showed that, although the rmoothing algorithm helped in most ca. es, it did
not always improve the performance. However, the overall results were the best reported
to date by any other research site on this corpus.

2I
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3 10 Speaker Adaptation

A key area of our work has been in rapid speaker adaptation. Most of the systems
reported to date are based on two training paradigms. In the speaker-dependent paradigm,
a relatively large amount of speech from the user is collected, in order to estimate a very
accurate model of how that speaker speaks. The result is very high recognition accuracy.
In the speaker-independent paradigm, speech is collected from a very large number of
speakers (at least 100 speakers). This speech is pooled as if it all came from a single

I speaker. and is used with exactly the same algorithm as in the speaker-dependent Ise.
The result is that when a new speaker speaks to the system, the recognition accuracy
is not degenerately bad, but the word error rate is still about a factor of 2 to 3 times
that in the well-trained speaker-dependent paradigm. In addition, for many applications,
.t would be impractical to collect speech from a large number of speakers just for that

I application.

The speaker adaptation paradigm provides an alternative to these two approaches.
The algorithm, which is quite different from the basic speaker-dependent/independent
algorithm, starts with a well-trained model from a single reference speaker. This speaker
is presumably one who has trained the system in the speaker-dependent paradigm. Then,
a small amount of speech is collected from the new (target) speaker. This speech is
used to transform all of the models of the reference speaker so that they are appropriate
for the target speaker. The resulting system performance is somewhat better than that
in the speaker-independent paradigm, but somewhat worse than the speaker-dependent
paradigm. at a small fraction of the cost of data collection. This paradigm has the
additional advantage that it will be natural for the user to adapt the system whenever the

I acoustic environment or his voice should change for any reason.

We have investigated several new algorithms for rapid speaker adaptation. The
major contribution of this effort has been a probabilistic spectral mapping algorithm that
transforms the reference speaker model into a target speaker model. We have experi-
mented with several algorithms for estimating this mapping, and have presented recog-3nition performance results at several of the project meetings.

This area remains one of our key research areas, since we feel that ultimately the
rapid adaptation paradigm will be the most practical for new users. The system will
begin by prompting a new user to read a small number of sentences. Then, as the user
speaks to the system, it will incrementally improve the performance until it eventually3 becomes a high-performing speaker-dependent system.

2
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3 Appendix

This appendix contains a number of papers that have been written under this contract.
Below is the list of papers included.

1. O.Kimball, P. Price, S. Roucos, R. Schwartz, F. Kubala, Y.-L. Chow, A. Haas, M. Kras-
ner, J. Makhoul, Recognition performance and grammatical constraints, Proc. DARPA
Workshop on Continous Speech Recognition, Palo Alto, CA, February 1986.

3 2. Y.L. Chow, M.O. Dunham, O.A. Kimball, M.A. Krasner, G.F. Kubala, J. Makhoul, P.J.
Price, S. Roucos, and R.M. Schwartz, BYBLOS: The BBN continuous speech recognition
system, IEEE International Conference on Acoustics, Speech, and Signal Processing,
Dallas, Texas, pp.89-93. April 1987.

3. P. Price, W.M. Fisher, J. Bernstein, and D.S. Pallett, The DARPA 1000-word resource
management database for continuous speech recognition, IEEE International Conference
on Acoustics, Speech, and Signal Processing, New York, N.Y., pp. 651-654, April 1988.

3 4. J.R. Rohlicek, Y.-L. Chow, and S. Roucos, Statistical language modeling using a small
corpus from an application domain. IEEE International Conference on Acoustics, Speech,
and Signal Processing, New York, N.Y., pp. 267-270, April 1988.

5. F. Kubala, Y. Chow, A. Derr, M. Feng, 0. Kimball, J. Makhoul. P. Price, J. Rohlicek,
S. Roucos, R. Schwartz, and J Vandegrift, Continuous speech recognition results of
the BYBLOS system on the DARPA 1000-word resource management database, IEEE
International Conference on Acoustics, Speech, and Signal Processing, New York. N.Y.,
pp. 291-294, April 1988.

6. S. Roucos. Measuring perplexit. of language models used in speech recognizers, Paper
sent to DARPA sites, 1988.

7. M.-W. Feng, Iterative normalization for speaker-adaptive training in continuous speech
recognition. IEEE International Conference on Acoutics, Speech. and Signal Processing.
Glascow. Scotland. pp. 612-615. May 1989.
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REONiTION PERFORMANCE

ANDI GRAMMATICAL CONSTAINTS

0 Kimball, P Price. S Roucos R Schwartz. F Kubala.
Y -L Chow A Haas. . Krasner. J Makhoul

BBN Laboratories. Inc
10 Moulton Street

Cambridge. MA 02238

3 ABSTRACT grammatical constraint are perplexity and branching

We describe the integration of grammatical with factor. decreasing these characteristics of a grammar

acoustic knowledge sources in the BBN continuous word should lead to improved performance We shall discuss

recognition system, and the resulting effects an how these measures can be estimated when only a small

performance. This combination decreases the total set of representative sentences are available

number of insertions, deletions and substitutions by a

factor of more than 6 compared to the system with no In the following section we describe our

grammatical constraints, and yields a word accuracy of recognition system. In section 3. we describe a set of

better than 98%.. We show that constraining the set of experiments designed to demonstrate the relationship of

l possible word sequences can improve performance, even performance to branching factor when the amount of

when the amount of training per lexical item remains training per item remains constant. We then address

fixed. In addition. we address the issues of estimating the issue of estimating degree of grammatical constraint

from limited data the degree of constraint imposed by a from limited data (section 4). In section 5 we describe

grammar and the importance of incorporating acoustic the incorporation of various grammars in our

similarity in such measures. 1  recognition system and the resulting effects on
performance.I

l31 INTRODUCTION 2 THE SPEECH RECOGNITION
In this report we describe the development and use SYS EM

of various finite state grammars in the BBN continuous The speech recognition system consists of a

3 speech recognition system In particular. we investigate feature extraction stage, an acoustic scoring and a

the relationship between recognition performance and linguistic scoring The feature extraction stage

the degree of constraint imposed by a grammar We feel computes the short-tme spectral envelope every

that understanding such relationships is crucial to centisecond and represents it by 14 Mel-warped

evaluating how well specific techniques of linguistic cepstral coefficients A vector quantizer e.iscreti:es the
modeling can be generalized to larger and more complex spectral envelope to one of 256 spectral templates uirg

tasks Euclidean distance The sequence of discrete spectra ;s

It is well known that recognition performance used to compute the likelihoods of all possiti.

improves as vocabulary size decreases Similarly. when hypotheses in the acoustic and nguistic SLor;,,

syntactic and semantic information are used to reduce modules Recognizing an input utterance :nvrives

the number of words that can legally follow a given finding the sequence of words wl ... wa that maximizes

sequence of words, a recognizer is expected to make

I fewer errors Two related measures of this type of

where x 1, ...x n is the sequence of quantized spectra

and wl ... wa is a sequence of words The first term
IThei work wos sponsored by the Defense Advanced Research the acoustic score. is derived from a hidden-Warkov

Projects Agency and wo eonitored by the Office of Naval
Research under contract nuber NM3"5-C--423 model (HMM) for each word The second term t~e
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I
linguistic score. is. in principle, a model of the expected 3 RECO ?NITION ACCURACY AND
syntax and semantics This term includes a model of BRANCHING FACTOR
duration (longer sequences are less likely), and a

grammatical score At present, due to limited data. the It is well known that recognition performance

grammatical score is simply set to 1 for sentences improves with smaller vocabulary size. with or without

allowed by the grammar and to 0 otherwise grammatical constraints The improved performance may
stem from two factors. (1) the smaller set of elements

The dictionary used was developed and made that need to be distinguished. and (2 the greater 3
available to us by the speech group at Carnegie-Mellon amount of training that can be devoted to each of the

University We expanded it (from about200 words) to 334 items. As vocabulary size increases, comparable training

words in order to fill out categories that were becomes more difficult. Since our goals involve

represented in the original version. In particular, our increasing vocabulary size. we felt it was important to

version includes all months, all days of the week, establish that the first of the above factors alone. i e

possessives for all proper nouns and plurals for all smaller vocabulary size (which can be simulated by using

other nouns, and cardinals and ordinals to cover a grammar), is sufficient to improve performance without

numberlup to 999. increasing the amount of training per lexical item

Further, we would like to investigate the relationshp
The training for our system was on 300 sentences between performance and constraints such as vocabulary I

(about 15 minutes) for each talker These sentences size or grammaticality A set of experiments was

were syntactically and lexically based on 100 example designed to simulate the effect of grammatical

sentences also provided by CMU. We reserved the set of constraints over a range of branching factors This was

100 sentences for testing. The sentences were designed done by restricting the set of lexical items to the words I
to be representative of human-machine interaction in appearing in a given test sentence plus additional words

an electronic mail task, referred to as the Email task. selected randomly from the dictionary until the total
number of words is equal to the desired branching I

Our word models are phonetically based and factor.

capture the acoustic coarticulatory effects within a word

to the extent that they can be estimated reliably from

available training data In short, to obtain robust

estimates of the transition and output distributions of

the HMM for a phoneme-in-context we use a weighted 3.1 Methodology I
average of the parameters of models with varying

amount of context The details of these word models We investigated branching factors of 10 20. 50.

are discussed in [2] 100. 200. and 334. The last figure includes the entire

dictionary. Performance was assessed for the task of

The linguistic model, which computes the a pr-or, recognizing 30 of the 100 test sentences. described

probability of a word sequence, uses one of two types of earlier, as produced by three male talkers. Since we

models for the language. The first model has no grammar had previously made changes in our system based on I
and allows any word sequence. In this case, the recognition of these 30 sentences, we repeated the

probability of a word sequence is determined by its experiment for the smallest and largest branching

length. factors on the 70 previously unused sentences Since I
P[w1 ... wkJ = c a - k performance at these points for the new sentences did

not differ greatly from the results based on the 30
where a is just an insertion penalty that is chosen sentences (performance was actually about 1% better on

empirically to control the insertion rate of the the new sentences), we present the results based on the

recognizer output and c is a normalizing constant The 30 sentences.

second language model is a finite state automaton. We Idescribe in a later section how we generated the finite In order to achieve comparable statistical

state grammars from a small corpus of sentences. At significance across the tests at various branching

present, sentences are either accepted or rejected as factors (BF). that is, to adequately sample the dictionarv

grammatical depending on whether the automaton parses for each, we increased the number of repetitions for

them or not Given sufficient data to determine the experiments at lower BF BF of 10 was repeated at least

likelihood of different word sequences. the paths of the 10 times per talker per sentence. BF 20 ll times) BF

automaton could be modified to impose probabilities on 50 (6 times). BF 100 (3 times), BF 200 (twice and BF "34

sentences of the grammar (once) I
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Word Word increasing training, and we feel that the methodology
RAcogncion ErrorAccuracy Rate may prove useful for estimating the performance of a

99%- l~t recognition algorithm on tasks differing in the

complexity required of the grammar In order to

quantify this complexity, we present several methods for
961 2t estimating the amount of constraint imposed by a

i grammar

95% 5%

1 90% l~t

lo0 20 4 ESTIMATING GRAMMATICAL
10 20 50 100 200 500

Branchinq Factor When recognition is performed without a grammar.

the set of possible outcomes is the set of all possible

combinations of the lexical items. The role of a
Figure 1: Performance and Branching Factor. grammar is to disallow some of those combinations This

Plotted is word accuracy, (substitutions
+ deletions) divided by the total number means that at any point the grammar has to choose not

of words in the test sentences, averaged from the entire set of lexical items, but from a smaller
across 3 male speakers, as a function set. By reducing the legal possibilities the grammar
of branching factor. imposes a constraint which makes the recognizer's task

easier. How does one measure the constraint imposed
by the grammar? One would like to average the number

of choices at various points and weight them according

to how likely they are to occur. Such a measure, based
on the information theoretic concept of entropy. exists

and is called "perplexity" [1) For a deterministic finite

3.2 Results and Discussion 
state automaton we define its entropy. H. by

H = '5 p() h(l)
Figure 1 shows the error rate averaged across the -:

3 talkers productions of the 30 test sentences. where p(i) is the probability of node i. and h(i) is

Performance is plotted as a function of branching factor the entropy of the set of choices emanating from that
on a log-log scale It is seen that performance node. The perplexity. Q is

increases (linearly on this scale) with smaller branching

factors. word accuracy improves from about 907. for the Q . 2H

full dictionary to about 98 5. for the branching factor

of 10 As mentioned earlier, performance on the The perplexity of a grammar is determined by the

remaining 70 test sentences was about 17. better for network connectivity and the probability assignment of

branching factor of 10 The repetitions of the the different transitions. In our case. the network

experiment allow us to sample the effects of various connectivity is determined by the types of linguistic

choices of vocabulary items, but not the effects of phenomena captured in a particular grammar The

variability in articulation. In fact, our entire set of probability assignment of the transitions is. however

errors for the branching factor of 10 correspond to one more difficult. The basis for our grammar was a set of

or two words produced by each talker Given this 100 sentences intended to represent rather than to

distribution of errors and the difference between the define the language. In fact. many different grammars

percentage of errors on the two sets of sentences, we can be built to cover all or most of these sentences

conclude that 30 test senttnces (187 words per talker) while differing greatly in the number and type of

are not sufficient to reliably estimate performance in additional sentences covered, and. more importantlv.

this case The experiment has, however confirmed our differing in their perplexity The problem now becomes

hypothesis that reduction of the number of allowable the estimation of perplexity given a set of

words is sufficient to improve performance without "representative" sentences We propose three methods
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The first is the maximum perplexity of a finite language 5.1 Integration of Grammatical Constraints in the

[6] which is obtained by solving for the positive root x0  Recognition System

of Imax We approached the implementation of a grammar in

S k our recognition system in two steps First we created a 3
k:Ndescription of the Email task language in a modified

context-free notation This description was based onin the language, max i s the length of the longest the 100 sentences mentioned earlier, and was designed U

to capture generalizations of the linguistic phenomena 5sentence in the language, and x0 is the desired
maximum perplexity found in them. Second. we created tools that

transformed this description into structures in our

A second measure, which we will call the uniform recognizer that provide the corresponding grammatical
branching estimate of perplexity. is obtained by constraint These tools provide us with a general

assuming all transitions from a node in the grammar to facility for capturing in our recognition system an

be equally likely approximation of any language expressible in context- 3
free rules We chose to implement the constraints in W

The third measure, called test set branching the recognition system in the form of a finite automaton

factor, uses the set of test sentences to estimate the (FA) similar to those described in [4] and [1]

average branching factor encountered by traversing the
FS network along the p 'hs corresponding to each At the first stage in generating a grammar. we use

sentence. We use the geometric mean of the number of a context-free notation augmented with variables in

branches at each node over all the test sentences as an order to simplify the process of describ:ng a language I
estimate of task perplexity. For example, this notation would allow a rule that says

a noun phrase of any number can be replaced by an

All the above measures ignore the acoustic article and a noun of the same number, whereas 3
similarity of the words, an important factor Measures ordinary context-free notation would require two rules

including this factor have been proposed. see. for that are identical except that one would be for singular

example. [3]. number and the other for plural.

Our system first translates the augmented notation

into ordinary context-free rules and then constructs a
5 REOGNITION ACCURACY AND FA based on these rules. While it is true that context-

GRAMD ATICAL CONSTRAIINTS free grammars can accept recursive languages which

In this section. we compare recognition finite automata cannot, finite automata can approximate
Incuthis bsection. wepe comparen trecognition

performance using grammars differing in the degree to recursion by setting upper limits on the number cf

which they constrain the set of allowable word levels of recursion allowed Such an approximation !s

sequences. We began with a grammar designed to cover reasonable for most task languages, since spoken

a structural subset of the Email sentences, the sentences do not ordinarily use more than a few levels

commands A goal of this grammar was to maximize of recursion

coverage of these sentences plus logical extensions

suited to the Email task environment. Equally important In our recognition system, the automaton is usel

in the design of this grammar was the minimization of as follows Associated with each transition in the FA :s
'over-generation". i.e., the generation or acceptance of a hidden-Markov word model that is used to compute

many ungrammatical sentences. the probability of a spectral sequence given the

occurrence of the word at that place in the grammar

Our interest in grammars is broader than simply The recognition algorithm with this grammar is or .v

improving performance on a given task In addition. we slightly different from the version of the algorithm that

would like to investigate the trade-off in performance allows any sequence of words [2]. For each 10 ms frame

versus over-generation, and to estimate performance on of the input speech. the scores for all the word models

more difficult tasks. i e . tasks requiring a larger number in the FA network are updated according to a modif:ed

of choices at various points in the grammar We Baum-Welch algorithm The score for the start stale cf

therefore designed a second grammar for the commands the FA is unity and the score for every other FA state I
a grammar with greater perplexity Similarly. we is simply the maximum of all the word model scores that

designed two grammars differing in perplexity for the enter the state along FA transitions This state sc re

entire set of sentences (commands as well as questions) in turn. is propagated to the beginning of all the wcr I
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I models on transitions leaving the state, to be used as On the other hand, distinguishing verbs on the basis of

the new initial score for those models In this way the which objects they take reduces perplexity without

recognizer only considers grammatical sequences of necessarily reducing the number of acoustically similar

* words Maintained throughout this scoring process are competing words

traceback pointers that indicate for each state and each

time the word model that produced the best score to

I enter the state Once an utterance is thus processed. it Table I shows the relevant attributes of the

is a simple matter to follow these pointers back through grammars investigated For comparison, the results for

the network to find the highest scoring sequence of no grammar (the trivial grammar that allows any lexical

words. item to occur anywhere) are also included The table

includes the number of arcs (a rough measure of size.

One potential difficulty with a FA grammar for and is related to computation time). the three estimates
recognition stems from the fact that. ordinarily, of perplexity (Maximum Perplexity. Test Set Branching

computation is proportional to the number of transitions Factor. and Uniform Branching) This table also shows

in the FA. This number can become quite large for the number of words and number of sentences on which
complex languages. However, in our experience with each grammar was tested, and the performance for each' grammars for the Email task. a simple time-synchronous Word accuracy here is computed as the sum of all errors

search with pruning [5] effectively reduces the (insertions + deletions + substitutions) divided by the

computation to less than that for the algorithm that sum (total words + insertions). Sentence accuracy is

does not use a grammar. without affecting performance. also included in order to show that a few percentage

points difference in word accuracy can result in much
larger differences in the number of correctly recognized

sentences, a number that is no doubt very important to
5.2 Description of the Grammars and Methodology potential users.

We compare here the effects on performance of

grammars differing in which set of sentences they are Since we had used 30 of the 100 test sentences in

I intended to cover (toie full set of test sentences or the prevous experiments and modified our system as a

commands only) and along a dimension we call tight- function of those results, we used only the subset of 7C

loose, which refers to an estimate of how much over- remaining sentences for the performance figures

I generation is produced by the grammar "Tight" reported here. In order to compare the tight and loose

grammars have very little over-generation (generation of versions of the grammars, performance was assessed

sentences that are considered ungrammatical) and, using the intersection of the sentences parsed by each

because of these tighter constraints, tend to have fewer grammar. Results are based on using the phone-left-

choices at various points in the grammar, i e., smaller and-right word-model discussed in [2]

perplexity "Loose" grammars. on the other hand. have a

great deal of over-generation and greater perplexity

(larger sets of choices at various states). The loose

grammars developed here are loose in that, for example. 5.3 Results and Discussion

no number, tense, case or semantic agreement is Figures 2a (commands only) and 2b (commands and

required. questions) show graphically the word accuracy figures of

Table I associated with each grammar Performance is

The grammars we have investigated so far include plotted as a function of the perplexity estimates used

a tight and a loose grammar for commands (COM-T and As can be seen, these grammars differ in their effects

COM-L. respectively) and a loose grammar that covers on performance Further, when two grammars that cover

both commands and questions (SENT-L). In addition, we the same set of sentences are compared (COM-T versus

have used another grammar that is tighter than SENT-L COM-L or SENT-T versus SENT-L). the more constrained

(and hence is called SENT-T). but only in aspects that grammar has significantly better word accuracy than the

would otherwise put into similar grammatical distribution less constrained one tightening of the command

large sets of minimal pairs For example, singular grammar improved performance from 95 5" to 98 4

versus plural nouns, the cardinals versus ordinals, or tightening of the sentence grammar improved

verb tenses all involve large sets of acoustically similar performance from 96.2% to 98.2r Word accuracy again

items This fact can pose a problem for recognition if includes as errors all insertions, deletions and

the grammar allows many sequen:es in which one substitutions Further, it appears that grammatical

member of the pair can be substituted for the other constraints that take into account acoustic similaritv
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TABLE I

Properties of the Grammars

I
GRAMMAR COM-L COM-T SENT-L SENT-T NONE

Number of arcs 836 7167 2547 3771

Maximum Perplexity 58 19 75 60 334 1
Test Set Branching 40 18 47 31 334

Uniform Branching 19 9 22 19 334

Words in test set 183 183 438 438 492

Sentences in test set 27 27 63 63 70

Sentence accuracy 72.9% 90.1% 80.5% 90.25 36.7%

Word Accuracy 95.5% 98.4% 96.2% 98.2% 86.6% 1
Comparison of the various grammars used for the commands (tight

coverage, COM-T; loose coverage. COM-L) and the commands plus
questions (tight coverage, SENT-T; loose coverage, SENT-L). Word I
accuracy here is computed as (insertions + deletions + substitutions)

divided by (total words + insertions).

I

(a)()3

99 99.

9- 98

2.5 31 -2.5
497- 0 497 01

54 4 -4

95- 951
6 .6

93- 93-

ib A 5b 100 lb 2b ' b0.o' 
ESTIIATs OF PEPLEXITY RSTIMATZ OF PUIPLIXTY

Figure 2: Performance with Grammars. Plotted is performance. (insertions + deletions + substiruricns, I
divided by (number of words + insertions), as a function of perplexity as estimated by the
=fform 1--n=ching assumption (X), the test set branching factor (squares), and the maximum
perplexity (circles). (a) The tightly constrained command grammar (COM-T) and its loose
counterpart (COM-L). (b) The tightly constrained sentence gra-ar (SENT-T) and its loose

counterpart (SENT-L), which considers acoustic similarity.
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I Improve performance more than those that do not for References
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improves performance more than its estimated perplexity 1 Y L Chow, RM Schwartz, S. Roucos, OA Kimball.
would predict if acoustic similarity had not been an P J Price. G F Kubala. M.O Dunham. M A Krasner.
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1986

I various grammars reveals that. in general. acoustically
similar items are confused It does not appear that 2. L.R. Bahl. F Jelinek. and R L. Mercer. 'A Maximum

Likelihood Approach to Continuous Speech
function words are more often involved in the errors Recognition'', IEEE Trans. Pattern Analysis and

than content words A large percentage of our errors Machine Intelligence, Vol. PAMI-5. No 2. March
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I 6 CONCLUSIONS AND FUTURE

We have implemented and tested methods of

I combining grammatical and acoustic knowledge sources

in our recognition algorithm. We find that the use of

grammatical constraints can decrease the error rate by

a factor of more than six. This result corresponds to a

word accuracy (counting all insertions, substitutions and

deletions as errors) of more than 98% for the Email

I task. Reducing the number of words considered by the

recognizer boosts performance, even when the amount of

training per word is fixed. We have presented various

estimates of grammatical perplexity and shown that

performance improves as estimated perplexity decreases

for a given task. Our experience with a grammar that

focuses only on syntactic constraints in acoustically3 confusable portions of the grammar demonstrates the

importance of acoustic similarity in predicting

performance accurately and in improving recognition£ performance

I
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BYBLOS: The BBN Continuous Speech
Recognition System I

Y.L. Chow, M.O. Dunham, O.A. Kimball, M.A. Krasner,
G.F. Kubala, J. Makhoul, P.J. Price, S. Roucos,

and R.M. Schwartz

BBN Laboratories Incorporated
10 Moulton Street

Cambridge, MA 02239 I
Abstract designing a large and complex system for continuous speech

recognition. This paper is organized as follows. Section 2

In this paper, we describe BYBLOS, the BBN continuous gives an overview of the BYBLOS system. Section 3

speech recognition system. The system, designed for large describes our signal processing frontend. Section 4 describes

vocabulary applications, integrates acoustic, phonetic, lexical, the trainer system used for phonetic model knowledge

and linguistic knowledge sources to achieve high recognition acquisition. Section 5 describes the word model generator

performance. The basic approach, as described in previous module that compiles word HMMs for each lexical item.

papers (1, 21. makes extensive use of robust context-dependent Section 6 describes the syntactic/grammatical knowledge

models of phonetic coarticulation using Hidden Markov source that operates on a set of context-free rules describing

Models (HMM). We describe the components of the B YBLOS the task domain to produce an equivalent finite state automaton

system, including: signal processing frontend, dictionary, used in the recognizer. Section 7 describes the BYBLOS

phonetic model training system, word model generator, recognition decoder using combined multiple sources of

grammar and decoder. In recognition experiments, we knowledge. Finally, Section 8 presents some figures and

demonstrate consistently high word recognition performance discussions on BYBLOS recognition performance.

on continuous speech across: speakers, task domains, and I
grammars of varying complexity. In speaker-dependent mode,

where 15 minutes of speech is required for training to a 2. Byblos System Overview

speaker, 98.5% word accuracy has been achieved in continuous
speech for a 350-word task, using grammars with perplexity Figure 1 is a block diagram of the BYBLOS continuous

ranging from 30 to 60. With only 15 seconds of training speech recognition system. We show the different modules

speech we demonstrate performance of 97% using a grammar. and knowledge sources that comprise the complete system, the
arrows indicating the flow of module/KS interactions. The
modules are represented by rectangular boxes. They are, I

1. Introduction starting from the top: Trainer, Word Model Generator, and
Decoder. Also shown are the knowledge sources, which are

Speech is a natural and convenient form of represented by the ellipses. They include: Acoustic-Phonetic,
communication between man and machine. The speech signal, Lexical, and Grammatic knowledge sources. We will describe I
however, is inherently variable and highly encoded. Vast briefly the various modules and how they interact with the

differences occur in the realizations of speech units related to various KSs.

context, style of speech, dialect, talker. This makes the task of Acoustic-Phonetic KS
large vocabulary continuous speech recognition (CSR) by
machine a very difficult one. Fortunately, speech is also The Trainer module is used for the acquisition of the
structured and redundant: information about the linguistic acoustic-phonetic knowledge source. It takes as input a
content in the speech signal is often present at the various dictionary and training speech and text, and produces a
linguistic levels. To achieve acceptable performance, the database of context-dependent HMMs of phonemes.
recognition system must be able to exploit the redundancy Lexical KS

inherent in the speech signal by bringig multiple sources of
knowledge to bear. In general, these can include: acoustic- The Word Model Generator module takes as input the
phonetic, phonological, lexical, syntactic, semantic and phonetic models database, and compiles word models phonetic I
pragmatic knowledge sources (KS). In addition to designing models. It uses the dictionary - the lexical KS, in which
representations for these KSs. methodologies must be phonological rules of English are used to represent each lexical
developed for interfacing them and combining them into a item in terms of their most likely phonetic spellings. The I
uniform structure. An effective and coherent search strategy lexical KS imposes phonotactic contraints by allowing only
can then be applied based on global decision criteria. Practical legal sequences of phonemes to be hypothesized in the
issues that need to be resolved include computation and recognizer, reducing the search space and improves
memory requirements, and how they could be traded off to performance. The output of the Word Model Generator is a I
obtain the desired combination of speed and performance. database of word models used in the recognizer.

In BYBI.OS. we have explored many issues that arise in
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II

Grammatical KS that we modei speech paidmeters as probabilistic functions of a
hidden Markov chain, we make use of the Baum-Welch (also

More recently, we have been orking on representation known as the Forward-Backward) algorithm [31 to estimate the
and integration of higher levels of knowledge sources into parameters of the HMMs automatically from spoken speechi BYBLOS. including both syntactic and semantic KSs. By and corresponding text transcription. For each training

incorporating both of these KSs into BYBLOS in the form of a ancesponing te tas spee ch t aningU grammar into our recognizer. we demonstrate improved utterance, the training system takes speech and text, and builds

recognitiona network of phonemes using the dictionary. It first builds the
phonetic network for the word by using the phonetic

Grammatical KS in more detail, transcription provided by the dictionary. The phonetic network
is expanded into a triphone network so that each arc

Speech Text completely defines a phonetic context up to the triphone.
Training These triphone networks of the word are then concatenated to

Trainer form a single network for the sentence, which'in general can_-I Itake into account within word as well as across-wordS phonological effects. The training system then compiles a set

of phonetic context models for each triphone arc in the

Database o Phonetic network. It then runs the forward-backward algorithm to
W--d-Model phonetic Models Dictionary estimate the parameters of the phonetic context models. The
Compilation Trainer operates in two modes: speaker-dependent and

speaker-adapted. Associated with these two modes are two
distinct methods for training the parameters of the hidden

Wor Model Markov models described below.
Speaker-Dependent

This is the algorithm used to find the parameters of the

Database o HMMs that maximizes the probability of the observed data

tuned to a particular speaker, therefore in general would work
Irwell only for this speaker. Typically about 15 minutes ofI speech from a speaker is required for speaker-dependent

SDeech Decoder Word training.
Input Seuence Speaker-Adapted

Figure 1: BYBLOS System Diagram. This is a new method of training that transforms HNILM

models of one speaker to model the speech of a second speaker

[41. This procedure estimates a probabilisic spectral mapping
from a well-tritmed prototype speaker to a new speaker. Using

3. Signal Processing and Analysis Component this method it is possible for a new speaker to used the system
with as little as 15 seconds of speech.

The BYBLOS signal processing frontend performs

feature extraction for the acoustic models used in recognition.
Sentences are read directly into a close talking microphone in a 5. W ord Model Generator
natural but deliberate style in a normal office environment.
The input speech is lowpass filtered at 10 kHz and sampled at Prior to recognition, word HMMs are computed for each
20 kHz. Fourteen Mel-frequency cepstral coefficients (MFCC) word in the vocabulary. The word model generator takes as
are computed from short-term spectra every 10 ms using a 20 input two objects: a database of phonetic HMMs as obtained

ms analysis window. This MFCC feature vector is then vector in training, and a dictionary that contains phonetic spellings for
quantized to an 8-bit (256 bins) representation. The vector each word. For each phoneme in each word of the lexicon, it
quantization (VQ) codebook is computed using the k-means frust finds in the phonetic HMM database all the cotext
clustering algorithm with about 5 minutes of speech. We models that are relevant to this phoneme in its particular
perform a variable-frame-rate (VFR) compression in which phonetic environment. It then combines this set of phonetic
strings of up to 3 identical vector codes are compressed to a models with appropriate weights to produce a single HMM for
single observation code. We found this VFR procedure speeds each phoneme in the word. This combination process saves
up computation with no loss in performance. computation by precompiing the many levels of phonetic

context models that can occur for a given phonetic context into
a single representation. The output of the word model4. Training/Acquisition Of Phonetic generator is a database of word HMMs serving as the input to

Coarticulation Models the decoder

The training system in BYBLOS acquires and estimates
the phonetic coarticulation models used in recognition. Given
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6. Grammatical Knowledge Source matches the input speech. We believe that an optimum search

strategy avoids making local decisions; the search decision i
To solve the CSR problem requires major advances in should be made globally, based on scores from all the KSs.

two areas: acoustic modeling and language modeling. A good One such search paradigm is the one used in BYBLOS: the
acoustic model is essential in making fine phonetic distinctions search is made top down, linguistically driven, with tightly
when needed. However, it is not sufficient by itself to solve coupled KSs.
the CSR problem. In a complex task with large vocabulary
where the number of hypothesized word candidates is large, The FA is convenient for deploying such a search
the probability for acoustic confusability can be high, and the strategy. It is used as follows in our recognizer. We associate
recognizer could make errors. A conceptually simple yet with each transition in the FA a hidden Markov model for the

effective way to restrict the number of words that are allowed word. This model is used to compute the probability of the

to be hypothesized, and therefore decrease probability of acoustic event (sequence of VQ spectra) given the ccurrence
acoustic similarity, is to incorporate a grammar into the of the word at that place in the grammar. Before the start of
recognizer. It is well known that recognition performance recognition, the initial state of the FA where a legal sequence

improves as vocabulary size decreases. Similarly, when of words can begin is initialized to unity, and all the other
syntactical information is used to reduce the number of words states are initialized to zero. For each 10 ms frame of the input
that can legally follow a given sequence of words, a recognizer speech, the scores for the states in all the words in the FA

is expected to make fewer errors. The purpose for using a network are updated using modified Baum-Welch algorithm
grammar then, is to improve recognition performance, with an [2]. In addition to state updates within a word, a word canadded benefit of reducedcomputation. have a score propagated to its initial state from its best scoring

e bpredecessor word. This simple state update operation is
Grammar Design and Implementation repeated every 10 ms for each FA transition until the erid of the

e autterance is reached. The decoder output is then computed by
We approach the implementation of a grammar in tracing back through the FA network to find the highest

BYBLOS in two stages. First, we create a description of the scoring sequence of words that end in the terminal state of the I
task domain language using a modified context-free notation. FA.

Typically this description is based on a representative set of

sentences that characterizes the task domain, and is designed , One potential problem associated with using a FA
capture generalizations of the linguistic phenomena found in grammar for recognition is that computation is expected to be I
them. Second, we use a tool that transforms this description proportional to the number of transitions in the FA. This
into structures in our recognizer that provide the corresponding number can be quite large for complex languages. However, in
grammatical constraints This tool provides us with a general our experience with different grammars in our recognizer. we
facility for capturing in BYBLOS an approximation of any find that a beam search effectively reduces the computation to U
language expressible in context-free grammars (CFG) a very manageable level while maintaining the same

expressed as context-free rules. We elected to implement the performance as that of an exhaustive search.
grammatical constraints in the form of a finite state automaton
(FA) similar to those described in [5]. 8. Byblos Recognition Performance

At the first stage in generating a grammar, we use a In lij, we presented word recognition results for a 334-
context-free notation augumented with variables in order to word electronic mail task. In speaker-dependent mode, we
simplify the process of describing a language. For example, demonstrated performance of 90% across se',eral speakers I
this notation would allow a rule that says a noun phrase of any without the use of a grammar (i.e., branching factor of 334).

number can be replaced by an article and a noun of the same Since then, we have tested the system along many dimensions:
number; ordinary context-free notation would require two rules two task domains. FA grammars with varying perplexities.
that are identical except that one would be for singular number varying amounts of adaptation speech, and different speaker I
and the other for plural. types. The results are tabulated in Figure 2. Below we

Our system first translates the augmented notation into describe the different conditions in more detail.

ordinary CFGs and then constructs a FA based on these rules, Task Domains

Because context-free grammars can accept recursive languages The two task domains tested are: Electronic Mail
and a FA cannot, recursion is approximated in the FA by (EMAIL) and Naval Database Retrieval (FCCBMP). Both
limiting the number of levels of recursion. Such an tasks have vocabulary sizes of approximately 350 word (334 [
approximation is reasonable for most task languages, since for EMAIL, 354 for FCCBMP). A description of the task
spoken sentences do not ordinarily use more than a few levels domain language was created using CFG. The CFGs were
of recursion. designed to capture generalizations of linguistic phenomena

7. Recognition Search Strategy found in example task domain sentences. I
Grammars

Once the FA is compiled from the context-free T
description of the task domain, it is ready to be used in the Two finite state grammars were generated for each task I
decoder. An important characteristic of a recognizer is the domain: Command and Sentence. The Command Grammar in
search strategy that is used to find the word sequence that best each case was designed to cover only the command subset of
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amounts of training speech and J. Makhoul, "The Role of Word-Dependent
(2 minutes and 15 minutes). Also shown are Coarticulatory Effects in a Phoneme-Based Speech
maximum perplexity measures for the grammars. Recognition System", IEEE Int. Conf Acous:, Speech,

Signal Processing, Tokyo, Japan, April 1986. pp.
the language; the Sentence Grammar was designed to cover all 1593-1596, Paper No. 30.9.1.
of the language, which included both command and question 3. L.R. Bahl, F. Jeli-;k, and R.L. Mercer, "A Maximum
type constructs. The maximum perplexity measures of the Likelihood Approach to Continuous Speech
grammars, as proposed in [6], are shown in Figure 2. in both Recognition", IEEE Trans. Pattern Analysis and
tasks, the sentence grammars have a higher perplexity than Machine Intelligence. Vol. PAMI-5, No. 2,
their command counterparts March 1983, pp. 179-190.

Adaptation Time 4. R.M. Schwartz, Y.L. Chow, G.F. Kubala, "Rapid

Speaker Adaptation using a Probabilistic Spectral
As described in Section 2, The BYBLOS operate in two Mapping", IEEE Int. Conf. Acoust., Speech, Signal

modes, speaker-dependent and speaker-adapted. In speaker- Processing, Dallas, TX, April 1987, Elsewhere in these
dependent mode, 15 minutes of training speech is required for proceedings
a speaker. This mode in general will give word accuracy in the
98 5+ range. In the speaker-adaptive mode, anywhere from 2 5. R.G. Goodman, Analysis of Languages for Man-

minutes down to 15 seconds of speech from a new speaker is Machine Communication, PhD dissertation. Carnegie-

nee !ed %) "adapt" the HMMI parameters to the new speaker. Melton University, May 1976.

The performance in this case is 97%. 6. M.M. Sondhi and S.E. Levinson, "Computing Relative

Speaker Ty Redundancy to Measure Grammatical Constraint in
Speech Recognition Tasks", IEEE Int. Conf. Acoust.,

We have tested BYBLOS on several speakers with Speech, Signal Processing, Tulsa, OK, April 1978, pp.

different dialects, including a female speaker, a non-native 409-412.

speaker, and 3 naive (uncoached) speakers The recognition
results for these speaker5 showed little deviation typical male
speakers of standard American dialects.

9. Summary

We have presented BYBLOS, a system for large
vocabulary continuous speech recognition. We showed how
we integrate multiple sources of knowledge to achieve high
recognition performance. In recognition experiments, we
demonstrated consistent performances across task domains,
grammars, adaptation time, and speaker t-pe.

We are currently working to improve various aspects of
the system, including: a real time implementation of the
recognizer, search strategy, acoustic modeling, and language
modeling In the future, we plan to work on integration of
speech and natural language for speech understanding
dppllc atioib.
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The DARPA 1000-Word Resource Maniagemrent DatabaseI
for Coiitiiuous Speech Recognition
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The methods build on and extend work by Leonard 31,
ABSTRACT Fisher ei al. [21 and Bernstein, Kahn and Poza )I1. Original

contributions oif the current work include methods fo r designing I
A database 'if continuous read speech has be'sn designed And the vocabulary and sentence set, speaker select ion, anid dist ri bi

recorded within thre DARPA Strategic ('omputig Sp)eech Recg- tioli if sentence material among the speakers
nrtiori Program The data is intended for use in dlesigninrg arid The datahase design and implementation included. specifi.
evaluating algorithms for speaker- independeint. speaker- adapt ive cation if a realistic and reasonable task domain. selection cof a I
speech, and speaker-dependenit speech recc'gnittin. liedata con- hiabitahle 1000- word vocabulary, const ruct ion ,f selttetces to rep-
sists of read senterrces appr ,priate too a nasal resin-tce mat~age- resent tile synrtax, semantics, and phiiooIgv of the task, select-tii
Ine it task built ar -uirid exist ing Iinteractlive dtat abase .aiil graphics of a dialer tallY diverse set of subject s, assignmnnt 4 . subject s to.
pc- grams. [he w -~rd task v cal'iilarv is intended ti , be I. g seericies. rec irdiig -)f thre sobject s reaing tire -w- ,; -i ml
icallv c,'.n('ete arid habitable I lie -latalia-. %s hitIth repr,-eets itrrplernetatiii -iF a s,.steril for the ilistrihiitr-ii ail iti , f th-
over 21 .i000 recirdedl ti-ratiices Fr -iii 160 talkers withl a variet v ,f dlat at,ase 1 hiest, tisks ace deoscribedl in mlore detail he-- i

dialects. iniclrides a liartiti -ir -Fsfli'O aridi talkers for -:aiiigI

1 Introduction 2.1 Task Dotnarin Specifications

The development of robust. -,eliable speech recrignitwin We chose a database query task because it is a natural pla,,e
sesteins depeiids ,it tire availability of realistic, %&ell- idesigned to rise speech revignimo n technoltigy as a himmitrarittui iii

dlatabases; the technical and commercial community can hene- terface. To definte realistic constraints, and allow- fir eciit si
fit greatly when different svsiettts are evaltiated with reference toi dlemonstrationris 4f this technology, we based the task it tire e

the saine benchmark niaterial The DARPA 1000-word resource of art existing, iunclassified test-bed database arid an interacti ic
management database was designed tmi providle such benchmark graphics program IThe chosen task has the ailditirrial adlvaniit-s

materials, it cionsi sts F citilsistett i unonf iiiunrp training that it has been the basis of much research arid devel. iptineri U
and test materials that sample a realistic aiid hahital- task dii in the natura, language understanding convnutittv The visluic ,rF
rnin, and cover a broad range of speakers The gioal of this speech recognition technology is enhanced by its iiitegrati.n%tl-i
database collection effort was to *yield a set of data ti promote a natriral language uinderstandiing component.
the developmc.,t of useful large-vocabulary, cnnmui,us speech 'Tile cuirrent phase of tire DARPA speech reciniti -ii pr
recognition al,'orithms We hoipe that this description will serve gram specifies a 1000-word vocabular ' . 'the test-bed ila ai-,

both to publicize the existence 'ifthe database aid its availabilitv hiiwever. has a substatially larger vocabuilary size, aiid ilieref- -r.'
for use in benchmark !ests, arid to describe the methods used in hiad to be restricted Our philosirphy in selecting a 10M i5.t.
its construction subset a-as to limit tire number of database Fields, rallier ti -iii ! - I

The database includes materials appropriate tii a naval re- litrut the ways a riser nsight access the informratior -Thi- li-ll
source rtlaragerrieiit task Tire 1(000 icabrilary iterris arid 2800l selected include inforrmatiiin about varius tvipes 4u shipts and I -i-
resource management sentences are based on' interviews with sociated properties- locations, propulsion types. fiel. si~es, fleet I
nasal personnel familiar with at. uxstiti test-bed database arid identificatiions, schedules, speeds, equipment availability andI sra
accompanying software to access and display infiirmatioti 160 tus. The interactive graphics commairds include various wass .F
subjects, representing a wide variety of U'S dialects, read sentence dipAyng iniapse and 12rshi ocons. mn etecscl
materials including 2 "dialect sentences" (i.e.. sentences that con-Anitalsto120roucmnge ntetnesari1tained mane' known dialect markers). I.) "rapid adaptation sen. from. (1) preliminary interviews with naval persornn'l farIritlii
tences" (designed to cover a variety of phonetic contexts), 2800 -with tire test-bed database arid the software for accessing it.- andi

1re-source mailagtrietrr" sentences and 600 "spell-mode" phrases (2) systematic coverage of the database fields, suibject to rev iew%

(words spoken and then spelled). Trhe database is divided into by the naval personnel in fol-liw-up interviews These setiterici'sa speaker- independent part and a speaker dependent part. both were intended to provide wide coverage of the syntactic ase i

are divided into, training and test portions The test Irisrtions mantic attributes of expected sentences, rather than expired
are further divided intii equal sub parts for initial testing during relative freqriencies iif such sentences Sentetnces Aere ri-t -fit
qvstem develiipmernt ("developrient test"), and later evaluation tered on the basis of 'grammaticality' ". and therefre ntirluhde.

evaluatlin test") for example,- instances if the delet in - lack of number avre-'- rnit
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between subject and verb, and manyv caws' ,fellipsis (i e, oniission A ftert replacemnent 4 irtoartes Aithr variables tit tI 1i'2W)
of words required for strict grairnatic alit v but not for cuompre- sot'lvs dulicate cv--re reiz'id-(. vividtug 117)o s~i rti pait

hens' n. as in the deletion of the second instance of speed in Is teruis F lie pat ternis were -rilered suich that Ii 'se is it, [fie fin 'St
thve i r'-5 speed greaier than the .4 ar's speed. i11itt11- w-d Ir', t i , tpprtatcid lir,t titill, li t

Ffhe 9.50 Sentence pat terns generated 2900t snti-fices Ini fire-
pa'Ses -,F silbstitti, -i a t instanice f ir cacti variable A ''ititr

2.2 Vocahulnty ass-ciacel with cacti variable determnined A fiit ilistatice 01,i-11d

he used fr eacti subst it uti 'I lie patteriis thfus Kvnerateci a St
The vocabulary was determined by collecting all words in the 4i senttences that s *ystemnaticall v covered the vicahulary miils

[200 initial resource mtnaiageent sciit ces It event ual tisers are A fter remt ival if duiplicates. t here were 25435 sett eticos Tlie 3.5
expected to stay within tlie de]nedl viocabutlary. it shtiuld he. tin hmngest senttences were renritved, the remaining 28ll1i were hand
some sense, grammnatically, logically anid semntically coniplete. etliteil to, remntve infelicities t hat could arise front thle procedure
Therefore, words were added so that the vocabulary includedL (I I (such as one carriers generated front ;'cardinali 'Ships [lHie tirst
both singular and plural Forms 'if nouns. (2) words requireid for 600) sentences generated were designated training sentences, the
all cardiinal nunmbers less thbait a nu lt,' (i 3) ivi 'nIs re(Ipi i r ' r all iorderinig ofthbe patterns arid the genteration procedure resulted tit

ordinals needeilrd ates. 11) inlinitive. present and past partyc- good co~verage of the vtocahbulary- these 600 sentetsces cover 9i ~%
ie verb fo)rms.. (0) all nionthls and( dlays , it thle iveek lIn ailiitpqi. if the vocabulary items.Iitems wvere addeid fir seinc. tic c'toltn i-r exattiptic. In buetween the concept of speaker- indlependence ( requiring

Stince hiqh iiciurrcd. liow. hiiqh'r lii,pt
ist. lit-i-c anid l,is iv- no new data from new speakers) and speaker- dependenti-e (requir.

addiedl The vocabulary was then -pc' ~ted liv atliiig ettitigh ing a great deal of data from each new speaker) is the concept oif
ipen class itens to, ci %ec 3t Ft -c s, 26' tiur landi 1 -cat 'its. 26 speaker- adapt at ion (requiring a snmall am' unlit if dat a fr''n eachi

bisesv om)poild1 rpdaatnoi enne.dsgidt rvd~oies if ivater. anid 1)1 ship tais finib, li-i,t 'niri anie andti new speaker). For vise ii speaker- adaptation techinoligies we have

Since these sentences were to be readl by naive subjects broad arid representative sample of the speaker's prodluctin -fUnvit farruliar with the task do)main ir the database. the vicab- phonenies and phoneme sequences of the 2800 resource niaitage-
ulary was revised- sonte oipent class items wcre replaced] withI ment sentences. The golal awas to provide embedded sets if one.
othters thought to be easier to pronounce (Sea of Iirpait for Sea twit, five antI ten sentenices that each had the best coverage (fi-r
of Okhotsk), anid spellings of s' 'mine teclitiicaf tennis a-crc ciativei its size) of the relciari philotiemuc material. I bus, tie first is thle
to clarify the pronunciation ( TASSEMI fir the acritni-rn T-IS. ) best adaptation sentence, the seco~nd sentence, when addled to

the first. is the best combination of two sentetnces accirditig to

2.3 entece ateralsthe sane coverage criteria, and so on up to ten.3 A coverage score was ralculated for each phoneme aid'

disad vant ages they included many- slight variatins oif the same the phoneme or phionemei pair ti the 21800 sentlenc-s, bitt breadth
sentence (e g , only a slop Tiame chariged or the deleted), and the of coverage was promoted by dividing the observed frequency (IF
vocabulary itents were not evenily represented (the naval person- each phoneme or plionene pair by a factor (we used 3.0) each
riel interviewved tended to use only ''tie ilr tao) ship ntrres, fir time it w.,~ useid in the material currently having a score calrn
example, in all their exanmples) Further, we felt that far more lated In order to inhibit the tendency for the loingest (and most
than 1200 sentences would he needed to represent the vocab- difficult to read) sentences from being selected. w-c normalized by'
irlarv itents and pihonietic 'ontexts of thre task Therefore, the dividing the score by sentence length. The resulting adaptatin11
initial 1200 sentences were rediced to a set of 950 unique Surface sentences are listed in the appendix.
semnarrtic-sYntactir patterns that wvere then used to generate 2800 For the "spell-mode" titterances, 600 words a-crc selected
Sentences with excellent coverage of the vocabulary itemts from the 1000 vocabulary items;' the 400 words not selected were

The replacements included the replacenient of instances of inflected variants of those chosen.
specific ship names with the variable '5hrpnaute , arid of marty
instances of the with the variable opfthe" (to indicate optional 3 Subject Selection and Recording
the). About 300 such variables (indicated here by square brackets
to distinguish them from vocabulary iterms) were defined and and 3.1 Subject Selection
used to replace specific instances. Orri the basis of dern' graphic arid phonetic characteris~ics.

In the two following examples, included to give an idea of the 161) subjects were selected friim a set of 630 adults who fiat
degree of abstraction involved, the variable definitio)ns are: 'what- piarticipate(] ti art earlier dlatabase effort 121. These 630 riatise
i' =:, what is, what's; !shtpnam,,'vr =:' Kirk'.s, Foz's, etc , 7qross- Speakers 4i Eniglish (70%' rale, 30% femnale) with rio appanetit

average] in~gross, average; long-mnetrici l: ong. metric, shou- steech pr" thins f' 'rnel a relatively balanced go 'grapluc Sart I.-
list' -:: show, list, show me, etc ; shrpvr -> carriers, cruisers, etc , ''r tie I tit -t ut ates. AS a gro)up. t he Subtjects wvere iitig, -ai-1
'water-place; m' Indian Ocean. Sea of Japan, etc . -date. :, M arch -i 'ial 'I andi k\ tit 63t" ti t heir tweries. 78'; wcith a tha- ii
4th, 2 June 1987, etc. l,-r do'I gre'-- anit 1'r Blac-k l-act Speaker %%as idemnif ied ivith -wi'

4 --tali a,-- vrapi' ri-gins 4' ,'rigifi Ntv Titiglaiti. N, is

I. what-isv' ;optthel ' shipname s -- gross-atcrage displacemenit \-- i -n. %-ni h NIlil iii I-i MIidlandi. S-,it Iiti, - i

2 snih--/rs ptfhi ip, in ni-'t'r-p-n.-r411- r \rrni-, Hn!im ,, ih ii'. riell acitintd a 1-t i, V'r~' -s no
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Anvaig other material, each 4I these 631) subject s had is indicated in parent heses I liese are referred to as t vPes it)

recorded two dialect shibboleth sentenices (I e qenteuces contain- tire table fi dlistinct ion I- sentence t, ,ens, -r product , ,s bs a

ing several instances of words regarded as a criterion for (listiti particular speaker [it all. fi r the speaker- undepenletit database.

guisitg itemnbers of dialect gr'utiis) Theise sentteices. ttcli.lel 121) seitetces werv u (r 1. 56;O fr I raitig, 21111 r ,rb- -

in the appendix, were hand- transcribed and used to derive a pho- inent test, andl 2281) for evahuationi test) Note that. this lwetig the

netic profile of each speaker as to phoinology, voice quality, and speaker indepeiidetit dat ahase portiolt, thre trainuing sitbjects do

manner of speaking The 630) speakers aere aiitoiniatically' di- not ovserlap with those in the test parts of tire database

vided into 20 clusters according to their pronunciation of sev-

eral consonants, speaking rate, FO1, and phonation quality. FromI
these 630 speakers (now idetified by phonetic cluster, geographic SPEAKER-INDEPENDENT DATABASE

origin and demographic characteristics) 160 were selected for the -- developmentI e,,hi .~onI
speaker- independent part of the database, and 12 for the Speaker- -~ ~triing t.,.t t., -

d e p e n d e n t p a rt. N o_ _ _ __ _ _ _ S e te ce ( t0pes)

The 160 speaker-itidependent subjects were -host-i to Sat-N 0 5nei.(yp) 161-
Resource Ntstn.eement 40 (1800) 30 (00 0 1600)

isfy the followinig conistraints, in order I) eveni iIs ribiti ii lf D',.k'et 2 (21 2 (21 2 (2)Ad~p~t,. 0 () t
subjects over four geographic regions (NE-NY, Midland, South, Apiin0 (0 tO (i0) 10 (i0)

North-West-or- Army) and over the 20 clusters derived fr,-mr ob- jSpelf-mode is (300) IS (ISO) is (ISO)

served phonetic characteristics; 2) 70% male, 30% female. These [TOTALS 57 (1902) 57 1762) S7 (752)

constraints are satisfied in the subject selection, atid each major ----

division of the database (traininsg, development test and evalu-
atio tet) ave imiar istrbutonsacros sx ad gegrahicFor the speaker- dependent training portion of the database,

atiin.ts)hv iia itiuin cossxadgorpi each of 12 subjects read the 600 resource management train-

The 12 speaker- dependent subjects were chosen to satisfy the ing sentences, the 2 dialect sentences, the 10 rapid adaptati on

foMowing constraints: 1) representation of each of the 12 largest sentences, and a selection of 100 spell-mode phrases. The 1200

phonetic clusters; 2) seven male, five female; and 3) geographical spell-mode readings covered 300 word types, with 4 productions

representation as follows: one each from New York and New per word.

England, and two each from Northern, North Midland, South In the speaker- dependent test portion of the database, these

Midlanld, Southern, arid Western. Of the 12 selected speakers, same 12 speakers each read 100 resource management sentences

I1I were from the speaker- independent part of the database, and for the development- test part of the database and another 100

all were relatively fluent readers with no obvicous speech problems. resource management setitences for t ie evaluation-test part.- as
well as 50 spell-tnt ole phrases Frot the 22110 resurce Man-

3.2 ubjet-Sntene Asign entagernent sentences not read in the training phase, two rattilni

3.2 ubjet-Setene Asignmtstselections of 60(0 sentences were made, one for the dleveloptoet

Bot th spake- idepndet ad seakr- epeden pats test atid one for (lie evaltiat ion test juortis.n Dist riutiitg [ties('

Both dthbae spaerinidepdnt ands spetaker-gdeeentt over the productitns available in each gives 2 utterances per sell

teseadt ealatin estvmaeurantteonolif60espll-enilephase 
f th h-' -o 

th dtabsearediideoitoretnfootainngedeelpmeionsc. imiary.15oranomselcttin oach w '%%ech rer

mciii atiiltevthe potl of tes se-m pisrib asu ese oer the u[,I

In ie speaker- indepptidlevut rait iting part 'of the database, 80 renadigs avaiaii yiest set iriti i ths ove tet01

speakers each read 57 setntences (10 resounrce mianagement sell 
Ietrv vial ilsIpditni e

tences, the 2 dialect sentenices. and 15 spell- mode phirases) 1600 1hle F. I imin f able ill tlrates lihe ol rue ire -fthle speakir

distintc t res )urce mtanagemen t seniteiices a cre covered fi this part lcputudetit lpar) 4 thle dat abase. .-\gain. tle t,ial titittd'r -f

ofthle dat abase. ati v eivets set ence was rec rded he two subjects I ilfer-tut re". iirce triaag-tTlett sett ties I "t vile-s ).' I d it

The dustributi ,n of sentecees to speakers was arhutrars. except '-ach sibt(i- is indtid fit paru-ti t ( aftse IIIt e(, i tt-r inii)

that no sentetice w-as readl twice liv tire sante suibject Each of eatiiig Ii,. u- iatt setit Slires wl-re m-adl lvtacht siijujct h Ill ll C--r

the 80 speaker, read 15 spel, mode ph rases. vuellinue 1201i) pro- the speaker -depenudent database. 12,1 It utter,,nceq %%cre reerd-

dilicti"iis 300vcti lt) il(Ile wurdis. Lab I pull tie pihicase fin (85 It fojr traitintg, 1900) f.,r dlevel;iitic-it lest aiiil iir -vali

tipatwas real v4sekr at ion test). As is appro;priate fur a speaker-dependeut database.

In ha pe se -inspeakersd~lilei etse n A tie speakers in thie traitninig set are tie same as t he speakurs ill

In ie ~pekerinuepeideut lev-I-'piusnt isi i-iaiil ea- thre test set.
tiat u-it test -i . III speake-rs each read :11, rms, .uu, utatagetflitIt

q,-ttenice'. I It 2 flhalt .- e teeq thfe It ( I i 0 it~ at Iii stt-_ _ _ _ _

'--".anth I spell- no- ole thesis 61)11 rvs -or' titiattag tietit SPEA KER-DtEPEN DEN-r DATA BASE

sv-itietive a u-ce ratuilII 'til eI , I 'l r e a h rest anil assignid-tl ,

lie 12010 av-ailable pr' ,duttuons ( 10 speakers inesl :14) sentences) - training test test

vir ,ding two, pro)diictuotus per sentence, as Ill the trautinung phase ' tji.12 1 2 - 12

Simnilarly. fi each test set. -I spell ritole phrase., wi-re selved (,p.

anid assigned to the 600 available spell-mo)de pr ,duct its. Re-ic .t.ne.tt~ n00 (600) iSno (600) 10 (K)(10 l

The fu)l wing table illust rat'-s the struuctutre of illt speaker- 1 ,, to i tuu (1) 0 M,

;(ependepnt part I~ the database I he numbers indicate ho-w Op.) -,,r ion Kioot SO (! .' -i

mi a t i v S e n t e t c e s a c h It s t e r e a d hi e f I I a l n u itt e r if r e s . ,l r e 
s o 0 5 1

mnatiagei-nt seuiietees rc-rcl liv each subiset ,f flt, dat abase
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I
3.3 Recording Procedure training and testing portions We have also described the steps

involved in creating this database, including the recording pro-
The utterances were digitally recorded in a sound-isolated cedure and new methods for designing the vocabulary and sen-

recording booth on two tracks, one from a Sennheiser H.MD.11 I tence set, speaker selection, and distribution of sentence materi-
headset noise-cancelling microphone, and the other from a B&K als among the speakers In addition, we have outlined procedures4165 one-half inch pressure microphone positioned 30 cm from for obtaining the database and for using it as a benchmark Fur-the subject's lips, off-center at a 20 degree angle The material ther details on each of these areas will be made available with
was digitized at 20,000 16-bit samples per second per channel, the database.
and then down-sampled to 16,000 kHz

Prompts appeared in double-high letters on a screen for the Acknowledgements. This effort has been a collaborative
subject to read. After the recording, both the subject and the effort that involved not just the authors, but the DARPA speech
director of the recording session listened to the utterances and recognition community in general lowever, chief responisihil.
re-recorded those with detected errors. Any pronunciation con- itv for the various tasks required by the project was assigned as
sidered normal by the subject was accepted follows BBN - task design, vocabulary selection and sentence

construction; SRI - subject selection and dialect sentences. Tl -
subject-sentence assignment and recording of data: N13S -distri-4 Database Availability and Use butiin and evaluation methods. We gratefully acknowledge the
naval experts who helped us and the DARPA Strategic Comput-

This database, which is intended for use in designing ing Speech Recognition Program for funding this eff,.rt (c' ntract
and evaluating algorithms for speech recognitin, is being made numbers N00039-85-C-fl123. N00039-85-C-0338 and Ni10113i 9 f5
available to provide (I) a carefully structured research resource, C11302 n,,itored by SPAWAII, and, for NBS. I).AIt IA .r,lr
and (2) benchmarks for performance evaluatin ti, judge both niuniber 6079)
incremental progress and relative perf,,rmnance References

At present only the data from the Sennheiser nucr,,phore
is available. This material alone amounts to approximately 930 C'[ Bernstein, J . I Kahn and T. Poza (1985) "Speaker samplingMegabytes (MB) of data for the speaker-dependent subset and for enhanced diversity," IEEE ICASSP-85, paper 41 2
6,10 MB for the speaker-independent subset, with an additional
460 MB included in the spell-m,,de subset. I lie d,,wr,-iainpled 2 Fisher, W., V Zue. J. Bernstein and D. Pa~lett (1987) "An(16 kllz) data in Unix "tar" format (Q250 bpi) can he made acoustic.phonetic database," J. Acoust. Soc .1m.. Vol S).available ''n a h ati. copy and retul hasis Suppl 1, abstract 001.

[, provide benchnark t st fi(i's.a . .a t,f r'-,lirt. anl '31 Leonard. R G, (1981) "A database for speaker independent
a unifrm scoring software package havi been li'vs-pel,, at the digit recognition," IEEE JCASSP-84, paper .12 I1
National Bureau f Staidards (N HS) I[ e scrri i g ,ft war' 1o-
plements a dvnamTUc programnig string alignment,,n lie,,rihi'' I For further information on availability of the database. test
graphic representations for the reference sentences aiid for the procedures and scoring software, contact D. S. Pallett. I,nt
system outputs. Comparable scoring necessitated agreenent on A216 Technl,,gv Building. National Bureau of Standards,
a standard orth,,graphic representation for each vocabularv item Gaithersburg, MD, 20899. Telephone: (301) 975-29:35
The scoring software and testing procedure are being used in the APPENDIX
DARPA program for performance evaluation, and are available Dialect-Shibboleth Sentences
to the general public on request :E,

For those organizations wishing to determine aid report per- 1 She had your dark suit in greasy wash water all year
formance data correspindi to) that re,rited by DARPA pro- 2 Dont ask me to carry an oily rag like that

gram participants. NBS can provide test material used in I)ARPA
benchmark tests i4l If the results are to be publiclv rep,,rted.
i srequired that the sumfary statistis be obtained usiig the I Show locations and C-ratings for all deployed subs that Ker-
NBS scoring soft ware, and that cpies ,,f system nitput for these in their home ports April 5

tests be made available to NBS. 2 List the cruisers in Persian Sea that have casualty reportsearlier than Jarrett's oldest one

3 Display posits for the hooked track with chart switches set to5 Conclusion their default values
4 What is England's estimated time of arrival at Towns, lie'

For DARPA program participants, this database has proven 5 How many ships were in Galveston Mav 3rd'
useful in the design and evaluation if spc-sker inlependent, 6 Draw a chart centered around Fox using stere graphic pr,,je-ion
speaker-adaptive, and speaker-dependent speech rec,,gnitiin 7 How many long t,,ns us the average displacement of %hips n
technologies; we hope it Aill be useful t others as well Sim- Bering Strait'
ilarly, the methods devei,'ped for its design and collection should 9 WiVhat vessel wasn't downgtaded on training readiness durino
prove useful in the development of similar databases July'

We have described the characteristics f the I \, P .Il Iin0o- 9 Show the same display increasing ltter size to the maxirrlim
word resource management database the taik II-,Mall. t Ie V-. Valule
wor r hescemnaecent atiaase the ts, -min. the 5', tn11O Is Puffer s remaining fuel sufficient to arrive in port at thecabulary. the sentence materials, the subjects, the do isimin t preentsped

present speed'
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STATISTICAL LANGUAGE MODELING USING A SMALL CORPUS

FROM AN APPLICATION DOMAIN 3 1
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A BSTRACT rnance in many applications. Several approaches have heein

Statistical language models has been successfully used to successfully employed for languages of various complexity

improve performance of continuous speech recognition al- and various sizes of training corpuis (for example 121). I
gorithms. Application of such techniques is difficult when In certain restricted domains. finite state grammars have
only a small training corpus is available. This paper been used with considerable success (see 141 for example).
presents an approach for dealing with limited training avail- In this case. the likelihood of a word sequence is a binary
able from the DARPA reso,trr managernent domain. An ini- decision - a sequence is either par ed in the grammar or it U
tial training corpus of sentences was abstracted by replacing is not in the allowable language. The extent to which the

sentence fragments or phrases with variables. This training actual word sequences in the application are parsed by the

corpus of phrase sequences was used to derive parameters grammar is termed covernge. When the language is known l
a Markov model. The probability of a word sequence is and not complex, the coverage is generally high and the
then decomposed into the probability of possible phrase se- constraints are well modeled by the grammar.
quences and the probabilities of the word sequences within In the case of large vocabularies (> 1000 words) and "nat- I
each of the phrases. ural" language input one approach taken is the specification

Initial results obtained on 150 utterances from six speak- of formal grammars which describe the syntactic and se-

ers in the I)ARPA database indicate that this language mod- mantic constraints of the domain i61. The important issue
eling technique has potential for improved recognition per- is then the extent to which this grammar providlrs suli- U
formance. Furthermore. this approach provides a frarne- cient coverage while ruling out invalid word sequences. It
work for incorporating linguistic knowledge into statistical has been found that it is difficult to achieve a high degree

language models, of coverage however. Recognition performance is generally I
high on sequences parsed by the grammar. Ilowevet. when

coverage of the valid word sequences is not high, then the

language model actually introduces errors by not allowing

I I NTIO)ICT('ION valid word sequences.
This paper addresses the use of statistical language mod- To overcome the performance constraints imposed by
eling techniques in rontinltous speech recognition in the poor coverage, statistical language rtiorlls can be user. 3
DARPA 1000-word naval resource management application When a large training rorpus is available, the parameters
domain !1. This application involve,; t Ir recognition of of a stat tcal language model can be determined. To ;he
"natural" speech queries to an interactive database system. extent that the training corpus is representative of the real

As will be discussed below, the "language" which will be application, such techniques provide good performance .11.
used is unknown and a large training corpus is not available. Furthermore, since no binary .ecision as to the validity of I
Straightforward application of statistical language model- a word sequence is necessary, the method is less "brittle*
ing techniques is therefore difficult. Iowever, a language than the formal grammar techniques.

model is required to obtain very good recognition perfor- I
mance. In the domain of interest in this paper, the language is

Langujage models provide a way of assigning likelihoods not sufficiently well defined to allow the use of a finite-Langagemodls rovie aav )f ssigingliklihods state gramonar which both captures the constraints of the

to word sequences in a lang age. The com bination of such a doa in g a i of ra es the ro r tri s no I
ttv-asurc with a inasure of the acoiisic likelihood of a word domain and is of reasonable size. Furthermore. there is no
sequence has been shown to give good recognition peeo r- adequate training corpus for construction of - straightfor-

ward statistical model to characterize the word ,qun(.nces.

Thi rcsearrh was supported by the )pfenc, %tivanred Re- Dine to the naiural language interface, a grammar describ-

search Projects Ngenry under contract Nf))O39-.a5-(:-423 moo,- ing the complete language is very complex. Also. it is di(li-

torre d by srAWSR cult to evaluate the extent to which any partic dlar grannmar U
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i larkov word
phrase sequence
model generator

Figure 1: Word sequence model

covers sentences of the ultimate application domain. The The probability of the phrase sequence and the word se-
complexity of the language suggests a statistical approach. quence Wj, .  ,, is then
However, since the application does not yet exist, a truly
representative training corpus is not available. Further- Pr (c1 . . CN, t...., Tv,)
more, we feel that due do heavy use of jargon and unusual
sentence structure, any attempt to use a training corpus LPr (w') c,) Pr (c.. c .,
from another domain, such as general English text, would ,, =

be ineffective. where the sum is effectively over the possible segmentations
The approach described in this paper attempts to incor- of the word sequence into the phrases. Note that since anry

porate some linguistic knowledge of the structure of the lan- ,r('l might be a null ezpansion of a phrase, this represen-
guage into a probabilistic framework. Using this approach. tatton of the probability in fact has an infinite number of
we will show very good performance can be obtained when terms.
the algorithm is evaluated on sentences which are indepen- Using this structure, we identify phrases based on syntac-
dent of those used in construction of the statistical model, tic and semantic components of the language. For exam-

In the next section, the basic structure of the model is pIe, typical phrases include "open" set classes such as ship
described followed ,y a description of the training mothod nanies or complex expressions such as dates. Also. to corn-

employed. In Section 3. the results on six speakers from the plete the coverage of the language, single word phrases are
DARPA database are presented. Finally. Section 4 contains also allowed. Associated with each phrase is a small finioe
a short discussion and concluding remarks. state grammar describing all possible ways that a phrase

can be expanded.

2 A PPROACH The parameters of the Mlarkov phrase model are derived
from the training corpus. The probabilities Pr (wI'c,) .L-
sociated with the transformation of phrases into word suh.

The principle goal in the design of the probabilistic lan- sequences are assigned a priori. In this way, a small train-
guage model is to allow the estimatiot, of robust model ing corpus can be used to estimated the smaller number
parameters fromTl the modest training corpus which is avail- of parameters of the Markov model without sacrificing the
able. A Narkov model used to generate word sequences robustness of the overall model.
directly has too many parameters (the transition proba-
bilities) to be estimated reliably from the limited training
corpus. By considering a simpler mnodel, which has fewer 2.2 Corpus

parameters associated with it, robust estimates might be In the resource management application domain, the ini ial
obtainable. Furthermore. some linguistic structure can be training corpus consists of approximately 1200 sentences ,,n
identified, and this structure is incorporated into the model. a vocabulary of about 1000 wotds which are thought to !,,

The niodel for the generation of a word sr.quence is com- representative of the domain. These sentences were gen,-r-

posed of two part (Figure 1). First, a sequence of phrase ated attempting to simulate the interaction ofa person with

variables cl, c. is generated as a \larkov chain. Then. the interactive database system. This database is furthr

for each phrase c, a sequence of words ,l( ' ) is generated, described in 51 in these proceedings.

independent of the phrases cl, j - t. The probability of a From these initial sentences, a set of approximately l0)

phrase sequence c1 , c2 , ... cv is sentence patterns were generated. This process was car-

ried out manually. The goal was to incorporate linguist t

Pr(c i. cv) knowledge by replacing syntactically and semanticallv m',-

Pr (c1 ) Pr (c- t) Pr r . cv 1) lar conponunts of the snterces with phrase identifiers f
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example, a typical senlenre and ils correspondirg pattern algoritIiin. Whole word models are coslrurlcted by Con-

is catenation of interpolated (by context) triphooc models. I
What gas surface ships which are in Coral Sea are The statistical language model described above is corn-

SLQ-32 capable bined with these word models. Conceptually, each tran-
what [prop-type! surface lesselsl optthat-are sition in the Markov phrase model is replaced hy a net-

work representation of the sub-grammar associated with
In lwater-place] are capabilityI capable the phrase (with branching probabilities at each of the

A phrase such as !optthat-arei can be expanded into the nodes). Each arc in the grammar is replaced by the hidden

finite state grammar Markov model for the word associated with the arc. There-
fore, the entire model can be thought of a one large hidden

[opiihat-arel - (empty string) Markov model.

- which are The decoding algorithm attempts to find the maximum I
that are likelihood phrase sequences cl, ... cN and the word expun-

sions w0 of each phrase. The output word sequence is then
For each experiment, these patterns were partitioned into the concatenation of the w(').

a training and testing set. The testing set was not used in U
the estimation of the model parameters. The test sentences
were generated from the test patterns by expanding the 3 RESULTS
phrases into word sequences. Initial experiments were conducted on a speaker not in- I

cluded in the DARPA database in order to determine suit-
2.3 Parameter Estimation able system parameters (which were then unchanged).

For each speaker, a set of 900 training patterns was clo- I
sen which was disjoint of the patterns of the test sentences. 3.1 Test on Training
A first order Markov model was constructed based on theAfrtordnnpaerns thmde watters cnstrued asedt on the Before evaluation on the independent test sets, two speak-
training patterns (the patterns included tre context of the ers were run using sentences derived from patterns in their 3
sentence initial and sentence final boundary markers). The training sets. As expected, the perplexity Q 2 for the sta-
transition probabilities were obtained from the relative fre-model is very low in this case andrecognition word
quencies of phrases pairs in the training patterns, using eisti e is vy low in T this cenonswrd
a simple interpolation rule to incorporate part of the ze- error rate3 is small. As shown in Table I this demonstrates 3
roth order distribution. Interpolation is used to overcome

limitations of insulficient training by assigning reasonable test on training
nonzero probabiiities to all event. Spccifically, if F(c, ic,_,)peaker Nil' (Q) I WP (Q)
is tile relative frequency of c, following c,_ aid F(c,) is the spLeake 5.4 4Q. 5.1 (.)
relative frequency of r, then probability of a phrase c, is dtb .
assumed to e pgh I4.5? 40.3 5.9% (53.3)

Pr(c,Ilcl .. c,-) = AF(c, c,_r) - ( - A)F(c,) Table 1: Word error rate on training set (MP=%tarkov

where in these experiments A = 0.9 for all states. For phrase model: WP=word pair grammar)

each grammar associated with a phrase. a simple assump- I
tion that all possible word sequences are equally likely was that when evaluated on the training set such a statisti-
made. Specifically. if there are m different non-null expanr- cal model give low perplexity and good recognition perfor-
sions of a phrase c, then each of these expansion tl, wk mnance. For comparison, results using a grammar (WP) is

is assigned a probability shown. This grammar is constructed to allow all two-word

t sequences which occur in any expansion of the training pat-

Pr (w . . wkIc) ( - 0,) - terns. Note that even though the statistical model used
m incorporates the interpolation rule described above, and

where 0, is the probability of a null expansion. For non- therefore allows all possible word sequences and not sin-

optional phrases, 0, = 0. ply those in the the WP grammar, the perplexity is lower

2.4 Decoding Method 
2Perplexity Q = 21 where I is the average infornatin 3

- Iog= p) of the state transitions (with probabilities p) in a ret
The decoding algorithm used to generate tile results is of sentences tiring a particular probabilistic model
based on the algorithm presented in 12,31. A hidden Markov 3%Vord error rate is the averaze number of substitution (. 1.

model approach is taken in which ronitext-deptinent tri- deletion (0) and insertion (I) errorq per reference word (-S .

phone models are trained using Ihe "forward-backward" D +- E)/N where N is t ie number of reference words)

I
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I
than the WI' grammar and the performance is somewhat the use of certain higher order states which have been oh-
better, served in the training, it. is not clear how the model should

be constructed to actually improve recognition performance

significantly. Also, the assumption that all word sequences
3.2 Test Results within a grammar are equally likely is clearly a very crude
The full evaluation consisted of six speakers from the approximation and some improvement may be obtainable
DARPA database with 25 utterance each. The word er- through more careful assignment of these probabilities.3 ror ,ares ar- ?ree 5e!t' ;,: Ti'.,e 2. In nrd- r to evaluate

4 CONCLUSIONS

independent test Itest ontraining The results presented here demonstrate the viability of in-

speaker Mil N _Iit corporating linguistic structure into a statistical mou.l. In

P(Q _ 75) (Q =1000) 2 (Q 60) the resource management domain, neither sofely statistical

f12.3% 10.9% 8.9% nor linguistic techniques alone are adequate at this time.3cmr 13.8% '9 . Straightforward statistical techniques lack sufficient train-
I dtb 1 .8% 39..t% 5.1% ing and linguistic techniques have an inadequate coverage.

dtd 10.0% 26.7% 6.7% Hlowever. the combination of the modest training available

pgh 7.0% 32.0% 6.0% and simple linguistic abstractions of this training corpus
tab 621.8% 3.2% provides good performance.

ave. 10.2% 33.9% 6.6%
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ABSTRACT grammars used in the experiments are described in section

We present results of the BBN BYBLOS continuous speech 4. Section 5 presents the recognition system results. The

recognition system tested on the DARPA 1000-word re- results are discussed in section 6.

source management database. The system was trained in a

speaker dependent mode on 28 minutes of speech from each 2 THE BYBLOS SYSTEM

of 8 speakers, and was tested on independent test material The BYBLOS continuous speech recognition s'stem 2

for each speaker. The system was tested with three artificial uses discrete density hidden Markov models (HNINI) of

grammars spanning a broad perplexity range. The average phonemes, a phonetic dictionary, and a finite state gram-

performance of the system measured in percent word error mar to achieve high recognition performance for language

was: 1.4/c for a pattern grammar of perplexity 9, 7.5% for models of intermediate complexity. The parameters of the
a word-pair grammar of perplexity 62. and 32.47c for a null H*IMs are estimated automatically from a set of super-

grammar of perplexity 1000. vised training data. The trained phoneme models are com-

bined into models for each word in the dictionary. These

phonetic word models are then used to compute the most

1 INTRODUCTION likely sequence of words in an unknown utterance. A for-

A meaningful comparison between the performance of mal description of a complete HMM system is presented in I
speech recognition algorithms and systems can be made *l

only if the systems have been tested on a common database. The BYBLOS system has been designed to accomodate

Even with common testing material, comparative results large vocabulary applications. It trains a set of phoneme I
become difficult to interpret when grammars are used to models which requires only a moderate amount of speech

constrain the recognition search. The ambiguity introduced to adequately observe all the phonemes. In addition, the

by the use of grammars can be overcome by reporting re- system trains a separate model for each distinct context in

suits with the grammar disabled, which would establish a which a phoneme is observed. A phoneme's context can

baseline acoustic recognition performance for the syster-i. he defined by its adjacent phonemes or the word in which

and by using standard generally available grammars. Fi- it appears. Context modeling captures coarticulation phe-

nally. reporting a standard measure of the constraint pro- nomena explicitly and preserves phonetic detail for those

vided by a grammar makes the results more meaningful. contexts which occur frequently in the training material 7.

In this paper we report results for the BBN BYBLOS By combining the smoothed phoneme models with .he de- 3
system tested on a standard database using two well de- tailed context models. BYBLOS makes maximal use of the

fined, artificial grammars and with an unconstrained null available training material. The performance improvemen

grammar. The database has been developed by the DARPA gained by using context dependent phoneme modeling has

Strategic Computing Speech Recognition Program for the been reported in 3'.

purpose of comparative system performance evaluation of After training is completed, the dictionary is popu-

continuous speech recognition systems 6". lated by compiling the trained phonetic models into word

In section 2. we describe the BYBLOS system. In section networks. A finite state grammar. if used, is compiled I
3. the database and testing protocol are discussed. The from a formal language model specification. To decode
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I
an unkn.wn JIterance. BYBL()S utilizes the precmpiled occur more than once.
kn,,wiedge ,~ce' ,,int: ui a tTe-Ysvnc r,,n,,us. tp-down Twenty five sentences %%tre °-lected by NBS as test ma-
earch. 1his -earch ta!eg al.,ws efficient pruning and terial for each speaker. The test sets are different for each

-n',:n ,'-r'zes i,,ca dec 1-T s speaker. but on average, each set contains about 200 w,, _'f
BY ItS Iha 'tf n a iwikerdependent ]'he test sentences for the eight speakers cover 467 of the

ii:U a peaker ,dapt' qpeaker ICIA-lident nT,,d- dictionary. 9171 of the word tokens occurring in the eight
,,MCin achieves hih perf,,rrr'ance by esl1natig the ,dei test sets have occurred more than once in the training set

I ~. 1 i.i I Oage enugl ilubtrating the effectiveness of the training data coverage
I,, contain moust of the c,,text 1 'Kei t,, appear in sub- over the task domain.
--eqUent use of the system. I lie speaker dependent iiide

'Ids beeni used to achieve the re-ult - rep ,ri,.d in ii. pa- 4 GRAMMARS

per. The speaker adaptive m,)de modifies !.ie "xcii traiued. The results reported below have been run using three differ-speaker depeudet wo rd ml ,,-I ,I ne M ,'aker m *,,,I a ent grammar conditions. These grammars are not intended
new speaker. This technique allows the system to benefit

as serious models of the task domain, but are used IjeLause
from the well trained word models ,4f a prot,,type speaker they are simply defined and allow the system to be testedeven when the training material from the new speaker is over a broad range of language model constraint.
extremely limited. The adaptation mode of the BYBLOS A straight-forward measure of the constraint provided

systemgt-foisr discussedhe cnsinin4proide
system is discussed in 4.-S by a grammar is test iet perplezity '5 which is measured

on a finite state network generated by the grammar and

3 DATABASE a given set of test sentences. For the purpose of perplex-
The database, described in detail in 6 . was designed ity measurement, a distinguished symbol designating inter-
to provide a standard for research in speaker dependent. sentence silence is added to the dictionary and to the end
speaker adaptive, and speaker independent continuous of each sentence of the test set. The augmented sentences
speech recognition. The database was designed to cover the are then concatenated and appended to an initial inter-
vocabulary. syntax, and functionality of a naval resource sentence silence to form the word sequence, wi. .. .. w,.
management task. The vocabulary consists of 1000 words. If the word sequence is sufficiently long, the probability of
The task domain covered by the database is specified by a the sequence gtVen the grammar. P(w-]- 2 ..... w,.). can be
set of 950 sentence patterns which were used to generate used to compute an estimate of the grammar perplexity.
the 2800 distinct sentences in the database. The perplexity of the grammar. given the test set word

The speaker dependent database provides 600 sentences sequence. is defined as:
(about thirty minutes of speech) ciesignated as training ma-
terial from each of twelve dalectaily diverse speakers. col- L = 2 K (1

lected in six different sessions. The scripts for the training where
material are designed to maxinize coverage of the vocab- -

-= . Z log2 .P(W. W- :-:: (2)ulary and sentence patterns. The speakers include seven n 7-"
male and five female speakers. Independent test material is the average per word entropy of the language model, and
%, as cj lected for the t..'.elve speakers during additional ses-

,Ms.P .

The experiments reported in this paper have been con-
ducted for the purpose of comparative performance evalu- For the grammars used in these experiments, the proba-
ation within the DARPA community. The evaluation was bilities on the words allowed by the grammar at position
administered by the National Bureau of Standards (NBS). in the test set word sequence are assumed to be uniform.
For the speaker dependent portion of the evaluation, tests The three grammars. which we call the sentence pattern.
% ere conducted in,, eight - T h tveve available speakers. word-pair. and null grammar, allow all sentences in the

\W'- withheld 30 sentences frr, the training material for training and test databases. The sentence pattern grammar
each speaker to be ued for adjusting global system parame- is compiled directly from the set of 950 sentence patterns
,era. The remaining 570 sentences that we used for training covering all sentence types in the task domain .6 . The
include 1452 unique vwords from the \Iocabularv. Appruxi- perplexity of the pattern grammar, averaged over the eight
mately 5-/( of the ,,rds in 'he dictionary are nIt ,,bserved speakers' test sets. is 9. The word-pair grammar allows all
at all ;n the :ra:n;rg set. 36 3 .occur ,niv ,nce. and if4" two-word sequences atlowed in the sentence pattern gram-
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mar. Its pe;pexi:y :s about 62 The null grammar allows exceed 1007.

adl sequences ,,f wrd: in lhe \ucabular. and therefore of- A word hypothesis is counted in error if it does not iden. I
feri re, language model const raint The effective perplexity tically match the correct word transcription. Specifically,

.-'!he null graminar is equal t,, 100 - the vocabulary size. homophones (e.g., to, two,. too: or ships, ship's. ships') are

counted as errors. Homophone errors typically occur only

] RLSkLTS in the null grammar experiments where the. account for

i :ie :v.Nteni paramt-ers for these experiments were derived approximately 4 of the word error rate. Furthermore. no

ir :r t ,o speaikers datd nvcl~ed dt l N and limited test- special significance is given to errors which are phonetically

in; -n two speakers from the [i \ PA database (CIR and close to the correct answer (minimal pair differences) or to

IiEF, using tht data that v. ,iihheld from the training errors which leave the semantic interpretation of the sen-

.et. The systeni cunfiurati,,n lva then fixed for the entire tence intact (most deletions of the word 'the').

set of experiments. Each speaker as tr.r d ,,nlv once. Individual results fur each speaker are shown in Table 1.
The database speech .%as c,,lleced at Texas Instrumpnts Two speakers, C.\IR and DTD. are female. The results are

(TI) in a sound isoiatig ,,ti. For these experiments given as word error, defined above, and as word correct:

We used speech sampled at 20 kHz. thr,,ugh a Sennheiser I
HNID-414. close-talking, noise-canceling nicr,,phione. 14 \VORD CORRECT - iuu x 1 - (S- D)/ N'

Mel-scale-warped cepstral c.,efficients were computed every where. S. D. and N are defined as ,efore.

i0 ms. using a 20 ms data indcw and vect,ir quantized Note that:

using an S-bit code},,k. \ ORD ERROR : 100 - WORD CORRECT.
For the pattern and word-pair grammars. the sentence

% Word Error er,,r rate and test set perplexity are also given. For 0%c

null grammar ca te se ntence error rate is near 90%.
101.4 and the perplexity = 1000.

6 DISCUSSION

10 - -7 .5  1 In our experience. average word error (E) for a set of speak-

ers can be estimaed as a function of perplexity ( L) by: I
-32.4

10 2E = svL (-49 62

10O0 1I 1 1 1 Figure I indicates that a 1 for this data set over most
1 10 100 1000 of the perplexity range. We have conducted numerous ex-

Test Set Perplexity periments on speech collected at BBN in normal office en-

vironments. The experiments have used a variety of gram-

mars including those reported here. We consistently find

Figure Recognition Performance as a Function of Gram- the average word error to be reasonably predicted by using
mar Perplexity. The axes are loe scale. I

a = which is half the error rate obtained for the TI speak-
ers. The difference in average performance between the TI

Figure 1 shows recognimion performance. averaged across

the eight speakers. for the three grammar conditions. The and BBN data may be explained by differences in speaking

performance is givn- in percent word error: style and rate. The speakers collected at BBN have some

experience with speech recognition systems and generally
'\ORD ERROR = 100 x (S - D - I) N speak more clearly than the speakers collected at TI.

vh ere: While the average performance is generally predicted by

5= number of substitution errors, perplexity, an individual speaker's performance may not be.

D number of deietion errors. For example. speaker DTB performs far below average f,-,r

I number of inserticn errors, the null grammar but above average for the word-pair and I
.V total number of word tokens in the test sentences, pattern gramn' .rs. Similarly. the performance for RKM on

This measure has been proposed as a standard within the the word-pair grammar is far wrse than would be predicted

DARPA communitI. Note that since the number of inser- from his results on the pattern or null grammar. I
tion errors possibie is not bounded. this error measure can It is clear from these results that performarce can be
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Sentence Pattern Word-Pair No Gratarnar

word word sentence test set word word sentence test set word word
error correct error perplexity error correct error perplexity error correct

/17 %0 VC 7o % % %

BEF 2.6 98.3 20 8 8.9 93.2 44 62 40.9 62.6

CNR 2.71 99.1 20 7 9.3 91.7 52 66 39.6 65.4

DTB 0.51 100.0 4 10 5.4 96.5 32 34 39.4 63.1

DTD 1.0 99.0 8 8 6.7 94.2 44 54 26.7 75.3

JWVS 0.9 99.1 8 9 4.3 96.2 28 59 25.6 75.4

PGH 0.5 99.5 4 9 6.0 96.0 24 56 32.0 70.5
RKM 2.4 98.1 16 10 16.4 89.7 52 64 30.5 71.8

TAB 0.5 100.0 4 9 3.2 97.7 20 67 24.8 76.5

avg 111.4[ 99.11 10.5 1 9 7.51 94.81 37.0 62 32.41 70.111

Table 1: Recognition Performance by Speaker for three grammar conditions.

made arbitrarily high by lowering the grammar perplexity. .4 Feng. M., F. Kubala, R. Schwartz (1988) "Improved

For large vocabulary, complex task domain applications. Speaker Adaptation Using Text Dependent Spectral

however, low perplexity grammars are likejY to be too re- Mappings," IEEE IC.4SSP.88, Ebewnere in these pro-

strict've for real use. We expect that habitable grammars ceedings.

for i000 wvord tasK d0,aa1 applications will require per-

plexities larger than 50. 5 Jelinek. F. (1987) "Self-Organized Language Model-

ing for Speech Recognition," Unoublished manuscript,

IBMl T. J. Watson Research Center. Yorktown Heights.
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Measuring Perplexity of Language Models
Used in Speech Recognizers

Salim Roucos
BBN Laboratories

Cambridge, MA 02238

In this note, we define one measure of perplexity of a language model and present a method for i
computing it. We hope that by agreeing on a common method of measuring perplexity, it will
become easier to compare speech recognition results when different language models are used.

1. Test-set perplexity
Wedsciea measure for characterizing the complexity of a language model; we call the measure n

rest-set perplexity. This measure of perplexity is defined for any specific set of sentences and a
given language model. In general, the word accuracy of a speech recognizer using a given language
model is expected to decrease as the test-set perplexity of a set of test sentences increases. Knowingboth the recognition perfurmance and test-set perplexity will help in comparing recognition
algorithms that use different language models.

A language model is defined by the set of probabilities Q(wl ...wn) for all word sequences
wl .. wn. Given a language model Q(.), the test-set perplexity of a set of sentences is defined as

L =2K (1) I
where K, the average per word log probability (called logprob), is given by i

K = - 1/n log2 [ Q(wlw 2 ...Wn)] (2)

where wl...wn represents the sequence of words in all the sentences of the test set, Q(wl...wn) i
is the language model probability of the word sequence. The word sequence wl...wn is obtained
from a test set by concatenating all test sentences separated by sentence boundary markers. We note
that the real probability of the word sequence wl...wn is denoted by P(wl...wn) and that we will
discuss later in this note the relationship of P and Q. For the special case of a language model
which assumes all the words from a vocabulary of size V are equally likely to occur at any point,
i.e., Q (wl...wn) = V-n, the average logprob is log V and the test-set perplexity equals the I
vocabulary size V for any test set from any source P(.); hence, the interpretation that test-set
perplexity corresponds to the "average branching" of the language model along the test set.

2. Computing test-set perplexity

Equation 2 can be rewritten as I
K= -l/n j log 2 [Q(w i I wi'l)]

where w] denotes the word sequence w 1 ...wi. In this case, we have factored the joint probability
as the product of the conditional probabilities Q(w i I wi ' ) which represent the probability that 3
word wi will appear next given all the text up to word wi. I. We include a special symbol to delimit
sentence boundaries and this symbol counts as one word. All other delimiters (such as commas,
etc.) are dropped. So, if a sentence consists of m english words, it accounts for m+l symbols in
the above logprob computation. The vocabulary includes the sentence boundary marker as one
item.

46I



The factored form is convenient for the usual finite-state N-gram models and for the deterministic
grammars that have been used in speech recognizers. For the case of deterministic finite state
grammars, where a word sequence is either accepted or rejected as a legal sentence of the language,
it is important to make an assumption about the value of the conditional probability Q(wi I wl." 1). in
tl', abtence of other information, we assume that all the legal words that can follow a partial word
string are equally likely. To determine the number of distinct legal words that can follow a partial
string of words, we need a network representation in the form of a deterministic finite state machine
which means that all arcs from a node represent a possible word to follow (no null arcs) and that no
two arcs leaving a node have the same word associated with them. There is a standard algorithm for
converting a non-deterministic representation into a deterministic representation (see Aho &
Ullman).

For more general formal languages such as context-free grammars, augmented transition network
grammars, etc., one needs to determine all partial parses up to word wi_1 and count how many
distinct words can follow after word wi_ I. Then, using an assumption that all choices are equally
likely, the test-set perplexity is the geometric mean of the number of word choices possible along
the test set.

The factoring of Lhe joint probability can be donie in at least two directions: forward as Q(wi I
or backward as Q(wi I wp+l). With the deterministic finite state model and the uniform assumption
of equally likely words out of a node (forward and backward), the forward and backward
perplexitics for the same test set of legal sentences are not the same because we have two different
statistical models. Typically, we compute the perplexity of the forward (left-to-right) language
model.

The same test set should be used to compute the perplexity and to measure the recognition
performance. Note that perplexity depends not only on the language model but also on the
particular test set (in the limit of large test sets, the variance of the test-set perplexity approaches
zero).

3. Relation to Entropy

For a given language model, the test-set perplexity is a random variable that depends on the actual
test set. For a test set wl...wn obtained from a well behaved source (ergodic) with probability
P(w l'".Wn), the time average of the logprob converges to its expected value with large n:

Lim -I/n P(wl-..wn) log2[Q(wl...wn)] = Lim -1/n log2 Q(wl...w n )

where the summation is over all sequences w 1...wn. Since P(.) is unknown, the right hand side is
particularly useful because a large test set is sufficient to compute an estimate of the expected value.
Note if Q = P, which is true when we know the correct language model, then for large n the test-set
perplexity approaches the source language perplexity given by 2 H where H is the entropy of the
language. When Q 4 P, the expected test-set perplexity will be larger than the language perplexity
2 H for any n. The goal in building language models is to minimize the difference between the
expected test-set perplexity and the language perplexity. Note that for small n, K may sometimes be
less than H.
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Appendix

Given a language that allows the following 9 sentences:
aa.
ab.
ac.aba.
abb.
abc.
aca.acb.

acc.

One can use the following non-deterministic finite state automaton to efficiently represent the

language:

a I

a

To compute the test-set perplexity for the two sentences aa. and abc. we use the equivalent
deterministic finite state automaton for the language: 3

I
a b b

The test-set perplexity for the two sentences "aa." and "abc." is given by: 3
1- concatenate as aa.abc. a seven word long test set.
2- perplexity is L= 1/7 log2 (lx3xlxlx3x4xl)= 1.668

Therefore, on average the branching is 1.67 words.

II
I
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Iterative Normalization for Speaker-Adaptive
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Abstract is used to transform the prototype HMM models to the
estimated KNMd models for the target speaker.

In this paper we present several techniques to improve the
algorithm presented last year for speaker-adaptive traing in At ICASSP'8 [2], we proposed an improved algorithm
cotinuous speech recognition "'he previous method uses a which aligns the target speech against the same sentences
umsormattion matrix to modify the hidden MIXkov Model unered by the prototype speaker using a dynamic time warping
(HMM) parameters of a pre-chosen prototype speaker to model (DTW) algorithm to compute the co-occurring spectral pairs.
a target speaker. To estimate the transformation matrx, it We then estimate the transformation matri by counting the
alips a set of target speech with the same set of speech uttered spectral co-occurrences for the two speakers. This algorithm
by the prototype speaker using dynamic time warping. We worked much better than the previous algorithm, but the
focus on improving the previous method in the modeling of the performance was significantly worse for some speakers than
spectral differences betmeen two speakers, and the accuracy of for others. There are two possible reasons for the degraded
the alignment. To improve the modeling of the spectral recognition performance: (1) a single transformation mamx is
differences, we implemented a ph'onerne-dependent mapping not enough to model the spectral differences between the target
procedure which transforms the prototype HMMs to the speaker and the prototype speaker, and (2) the DTW algorithm
estimated target HM s using a set of phoneme -dependent had not found phonetically "correct" alignments between the
mtices. To improve the alig-nent, we developed a modeling target speech and the prototype speech, thus leading to an
of the silence, a linear duration normalization, and an iterative inferior estimate of the transformation matrices.
normalization procedure. We tested the new methods in te To improve the modeling of the spectral differences
stzzdid DARPA database with a gramar of perpleity 60. between two speaker, we implerented a phoneme-dependent
The performance shows a 30% word error reduction c ared transformation procedure, which uses a set of transformation
with ti of the previous algorithm. mazrces to wansfom the protoype HMM parameters to model

the target speak . Each transformation matrix represents a

1. Introduction different probabilistic spectral mapping for each phoneme
between two speakers.

Hidden Markov Modeling techniques have enjoyed great
mccess in large-vocabular., contm,- us speech recognition fa We believe that the inferior alignments resalt from several
using speaker-dependent or speaker-independent training. To b Fist. foruently one speaker inserts a long pause
achieve state-of-the-an performance in large vocabulary tasks, between two words in a sentence when the other speaker hasit has been necessary to col~ect a large amount of speech (-30 not. Second. the alignment accuracy degrades when the
i) ha beenecesaryeto coleta lrg amount-ofpeech tr(ini3, duration of the prototype sentence is very different from that of

n) from each target speaker for speaker-dependent trainingal spaces of the
or from a large number of speakers (>100) for speaker- two speaer ay be ver d eet To aimpro the
independent training It is not feasible to go through such a two speakers may be very different. To improve the

long and tedious recording process in some applications. The alignment, we propose a modeling of the silence, a linear
duration normalization before computing the alignment, and an

speaker-adaptive training paradigm we have been advocating is
designed to alleviate this difficulty. Our current method iteratve normalization procedure to compute the alignment
requires collecting 30 minutes of speech from only one
prototype speaker, and a small amount of speech (typically two Paper Outline
minutes) from each target speaker. Our long-term goal for
speaker-adaptive trainmg is to achieve recognition accuracy
with two minutes of adaptation speech equivalent to that of 30- In Section 2, we briefly introduce our basic speaker-minue seake-deendnt tainngadaptive training approach using phoneme -dependent
minute speaker -dependent mining. mappings. In Section 3, we propose several techniques to

At ICASSP'87 [I], we presented our basic procedure for improve the alignment: a modeling of the silence in the target
speaker-adaptive training, which uses a speaker transformation speech and a line duration normalization before computing
on the phonetic hidden Markov models of a prototype speaker. the alignment, and an iterative normalization algorithm to
Starting with the trained HMM parameters of a prototype compute the alignment and estimate the mappings. We show
speaker and two minutes of speech from a new target speaker, tia this algorithm converges to a local minimum of the mean-
we estimate a maximum likelihood probability transformation squared error for the alignment. To evaluate the proposed
matrix by aligning the target speech against the prototype algorithm, we then present in Section 4 speaker-adaptive
models using the forward-backward algorithm The recognition results using two minutes of target speech on the
probability transformation matrix defining a probabilistic standard DARPA database, compared to the performance of
mapping between the prototype speaker and the target speaker 28-minute speaker-dependent training.
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1
2. Phoneme-Dependent Mappings 3.1 Before Computing the Alignment

In s section we describe ourspeaker aInsermon of Silence into Prototype Speech I
procedureusing phonme-dependen mappings. For each st ~When two different speakers read the same sentence, they
of a discrete 1{MM, we have a discrete probability density may insert pauses (silence) i different places of the sentence.
function (pdf) defined over a fixed set N of spectral templates. In this case, the DTW is forced to align silence frames to U
We can view the discrete pdf for each stae s as a probability speech framei resulting in phonetically incorrect alignments.
row vector (s)=p(k 1s),p(k21s)...,p(k/ j.)] where p(k/s) is the To achieve correct aligrments for target speech with arbitrary
probability of spectral template k, at stat s of the HMM model. inter-word pauses, we insert a synthesized silence spectrum

between each word of the prototype speech. We compute the
If we denote a quantized spectrum from the prototype synthesized silence spectrum for each utterance as the average

speaker as A, 1 S i S N, and from the target speaker as k'j. of the spectral parameters over several frames of silence from
1 S j ! N, where i and j are indices denoting the quantized the taret speaker.
spectra, then we can denote the probability that the target
speaker will produce quantized target spectrum k',,, given the Liear Warping the Target Spet
prototype speaker produced spectrum k,, as p(A'lk,) for all ij. The warping function produced by DTW can be viewed
The probabilistic mpping can be defined as follows: as a mapping from the time axis of one pattern onto that ofP v another. To align two sets of spectra with the same text, it is

I/s)=p(k/s)p('/kj), 1 :5 SN (1) reasonable to use DTW with slope constraints [5], so as to

1=1 avoid urtrealistic mappings. for example that one target frame

Tlh probabilities p(k'/k,) for all i and j form an NxN matrix, T, gets aligned to many prototype frames. However if the
which can be interpreted as a probabilistic transformation durations of the two aligned sentences are very different, the

matrix from one speaker's spectral space to another's at each slope-consurit may interfere with their aligrirnent accuracy.
state. We can then compute the discrete pdf p'(s) at state s for Since our prototype speaker speaks slowly and carefully, large

the target speaker as the product of the row vector p(s) and the speaking rate differences can ex-ist in words or word sequences
matx T which are spoken rapidly and casually by the target speakers.

To overcome this problem, we linearly warp the spectral
2 '(s)=2(s) x T, where T~jpp(k/k,) (2) sequence of each target sentence to be the same length as the 32 )() x T, her T, k *,)corresponding prooype spectral sequence. W e perform theIn equations (1) and (2). we assume that the probabilityl u arping ototpe spectral sequence perform the

for spectrum k' given k is independent of s, which indicates that l warping on the target spectral sequence by copying the
a single probabilistic spectral mapping will transform the target spectral frante that is closest to a linear rime scaling. It

avoids losing detailed information in the original target spectralspeech of one speaker to another. However in practice, som sequence due to interpolation.

of the differences between speakers can not be modeled by a

single transfomnaion. To have a more detailed modeling of
the spectral differences between two speakers, we define a 3.2 Computing the Alignment Iteratively
phonee-dependent mappings: When the target spectra space is very different from the

p(k'/s)=~ N~ /~~'k.s 3 prototype spectral space, the minirnum eirror aliment
produced by the DITW algorithm may not correspond to the
phonetically correct alignment. To improve the accuracy of

where 4(s) specifies an equivalence class of states in models the alignment, we developed an iterative alignment and
that represent the same phoneme as s. normalization procedure. In each iteration of the algorithm, we

align the target speech to the prototype speech; then using the
Since oly two minutes of target speech is available, it is alignment we shift each target spectral frame in the targetnot adequate to estimate reliable probabilistic mappings for all speech by an amount that is dependent on the index of the

phonemes. Therefore. m transforming the KMM models, we corresponding vector-quantized value of the prototype Lrame to
interpolate, he phoneme-dependent mappings with th which it aligns. Using the shifted values of the target frames,
phoneme-independent mappings to improve the robustness of we realign the target speech to the prototype speech, etc. We
the adapted HMM models. The weight for the combination is will prove in Section 3.3 that this algorithm converges to a
different for each prototype spectral index (each row of the local minimum in the mean-squared error (mse) for the
transformation matices), and it is dependent on the number of alignment. The mse of a given alignment is equal to the I
occurrences of the observed prototype spOCawn for that average of the squared-difference of the target spectral frames
phoneme in the adaptaton speech. The important step in the and the corresponding prototype spectral frames in the
phoneme-dependent mapping proe-Adure is to estimate the alignment path. The formal definition of the mse given an
p(k'/k,,(s)) that optimizes the recognition performance. In alignment will be defined later in equation (4). The detailed
next section, we will describe an iterative algorithm to estimate algorithm is describe as follows:
the phoneme -dependent mappings. 1. Classify (quantize) each frame of the prototype

spectra into one of 2M VQ regions using a well-

3. Improving the Alignment trained M-bit prototype VQ codebook.

We present several techniques to improve te 2. Align each target spectrum {x) in the adaptation
accuracy.sIn Set 3.1tehntroues to proeses n et sentences to a prototype spectrum {y) using a

accuracy. In Section 3.1 we introduces two processes before slope-constrained DTW. If the mse of theperforming the alignment. Then in Section 3.2 we describe a alignment is similar to the rse of the alignment

new iterative algorithm to compute the alignment. We deal resulting from the previous iteration, then the
with the convergence of the iterative algorithm in Section 3.3. algorithm converges and we stop.
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I
3. Cassify each frune of the target spectra into one By setting equation (6) equal to cro. we obtain

of the prototype VQ regions according to the g, ,
classificaoof itsaligned prototypeframe. X0 =llE' O- (l/) Y~) (7)

4. Compute the mean of (z) and (y) in each of the 0

prototype VQ regions. Therefore shifting the target spectral frunes by the differec

5 Shift each frame of the target spectra by the of the means of (xi and jYj minimizes the total mse of the
difference vectoir between the mean of {x} and given alignment.
{y} for that VQ region.

It is very possible thai the mean difference between two
6. Substitute the target spectra by the shifted target spectral spaces varies across different VQ partitions To make

spectm and go to step 2. a more complex modeling of two spectral spaces, we shift the

Estimation of Phoneme-Deendent Mappings target spectrum using a set of VQ-dependent vectors

1 )(lx(2 ),.,"' 2 )* The total mse can be represented by the
From the alignment of the las iteration, we count the co- following equation

occurrences of the quantized spectral indices for each of the 2 ( ) '

hrumas in the adaptation sentencs, and form the co-occurrence E(F)=j 1 Oi()Z l z Q)~y)ky (8)ff
atmrix N((s)) for each phoneme, where each element N. is

the number of the co-occurrences of the target spectra k'j and By
the prototype spectra k, Then we normalize the rows of following the same approach as descrid above, we

achieve
N(#(s)) to form the phoneme-dependent transformation
matrices T((s)). 4OV(lfK(flX )( Y ij s~'(T(0$)) x/)=I/(") m- 0(IK(/)) ()), I S I S 2M (9)

Below we prove that the iterative algorithm is guaranteed /Z) Z )

to converge to a local minimum in the mse of the alignment. which minimize both the total mse and the mse for each VQ
_region.

3.3 Convergence of the Iterative Algorithm Convergence of MseEL WMinimizes the Mse

In the first iteraion, step two of the algorithm produces

Suppose x,, 1 S i S I is an I-frame target spectral the first alignment between the prototype speech and the target

sequence for a sentence and (v , 1 5 j < J) is a J-frame speech by minimizizg the mse. Shifting the target spectra at

prototype spectral sequence for the same sentence. As a step five by the mean difference reduces the ms at each VQ

measurement of the difference between two feature vectors X, region independently and also gives the minimum me for that

and y," a Euclidean distance d(c)=d(ij')=lL,-y.I is employed alignment.

between them Using a dynamic time warppi g (DTW) After the first iteration, we realign the shifted target
algorithm [5]. we obtain a warping function F = spectra with the original prototype spectra, and the obtained
c(l),c(2),..c(k),....c(K). where c(k=(i(k)j(k)). by minimizing alignment may or may not be different from the previous
the accumulated mse between Ix) and Iy, which is alignment. If the alignment is different, then the current mae

K K
E(F)=(I/K) Y [d(c(k))2 ]=(l/K)y I'X (k)yj(k)jj 2  (4) must be smaller than that of the previous iteration because

W, k=1 DTW provides a new alignment with the smallest mse. If the
alignment is the sane as the previous one. then the mse is not

The warping function, which is also called the alignment. changed and the algorithm has converged In the next section.
realizes a mapping from the tune axis of {, I < i 5 ) on that we present some experimental results by using the iterative

of (yi" . 1j 9 I). The alignment indicates the matched algorithm with three iteratns.
prototype spectral frame given each target spectral frame.

Shifting Target Spectrum Reduces mse Further 4. Experimental results

Given the alignment (the paired target spectral frames and 4 Exjermeia Conditions
prototype spectral frames), we can reduce the mse of the
alignment further by making the target spectral space closer to In the experiments shown below, we use the well-trained
the prototype spectral space Suppose we shift each target HMMs of a single speaker RS as the prototype. RS is a careful
spectral frame by a single vector x0. The nse of the alignment male speaker with a New York dialect. RS recorded 600
becomes sentences at BBN m normal office environment. The 600

K utterances constituted about 30 minutes of speech which was
E(FI=(llK) (z-Xo)y&I)l2  used to estimate the HMM parameters for the prototype

models.

IkK) )OY k 1 A 1000-word database of continuously read speech has
xi(k)2+X2+yj(k) been designed and recorded within the DARPA Strategic

Computing Speech Recognition Program [3). This data
2 Xr0yXk)-2Xi(k)-0-2xi(k)yKk)I (5) consists of read senteces which are appropriate in a naval

resource management task. It was recorded in a sound-isolated
By taking the partial derivative of E(F) with respect to x0 , we recording booth at Texas Instruments (TI). We use eight TI

have speakers from this database to test different adaptation
K 9 procdures compared with the performance of the 28-minute

IX+<2/K)' Yk) (6) speaker-dependent trair.ing.
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I
n the adaptation experiments of t secuon, we a S. Conclusions

adaptation material of two minutes duratio We lowpesa;
filtered both the target speech and the prototype speech a 10 In this paper we presemed several techniques to improve

kHz md sampled at 20 kHz. Every sentence in the target the agorithm presented last year for speaker-adaptive aining.
speech mid the prototype speech is represented by frames of The prviou method ues a transfomnuion mrix to modify
mel-f&equency cepstml coefficients (MFCCs). the hidden Markov Model (lOHM ) parameters oa apr-dtosen

Atl the Viion0o eperiments used a wordp prototype speaker to model a target speaker. It estimates d-
Aansformnaton mat, by aligning a set of target speech with

gmmar of perplexity 60. This grammar allows all two-word the se set of speech uttered by the prototype speaker using
sequecs which occur in the task domain df'itnio [4). The DTW. We focus on improving the previous algorithm by: ()
recognized sequence of words was compared automatically to modeling the spectral differences between two speakers using a

the correct answer to determine the percentage of errors of each set of phoneme-dependent transforuaon matrices, and (2)
type. substitutions, deletions, and insertions. We use an error setrof p ho nm ent tra s ion mdind (2)meas'e hatrefectsaJ1thre tpesof eror m sigle improving the alignmet accuracy using amodeLing of dt
measire that reflects all three types of errors in a single silence, a inear duration normalization, and an iterative
number. The percent error is given by alignment procedure. To evaluate the effectiveness of the new

%word eorO methods, we performed experiments on the standard DARPA

total-input-words database with a grammar of perplexity 60. The recognition

performance of the new algorithm shows a 30% word error

4.2 Results reduction compared with that of the previous algorithm.

Experiments % Word Error

gasoline (ICASSP L) 13.6

Phoneme-Dependent Mappings 12.1 Acknowledgement
Iterative Normalization Algorithm 9.6
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