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1 Executive Summary

This is the final report of a project entitled “Multiple Knowledge Sources for Speech
Recognition™, sponsored by the Defense Advanced Research Projects Agency (DARPA)
and monitored by SPAWAR under Contract N00039-85-C-0423. The project spanned the
period 30 April 1985 to 31 July 1989.

The objective of this project has been to develop methods and techniques to coor-
dinate the many sources of knowledge in the decision process for a speech recognition
system. This effort includes finding methods for effectively combining information from
various knowledge sources, and for developing recognition search strategies that find the
most likely word sequence. given the input speech. These search strategies must consider
a very large number of word-sequence hypotheses in a computationally efficient manner.
To develop and demonrstrate these techniques, we designed and implemented a complete
word recognition system for continuous speech which is capable of incorporating knowl-
edge trom several sources, including lexical. phonetic, phonological. and grammatical
knowledge. The complete system was given the name BYBLOS, the name of an ancient
Phoenician town where the first phonetic writing was discovered. The BYBLOS system
has been used as our testbed system for evaluating variovs speech recognition algorithms
and search strategies.

In addition to developing algorithms for combining multiple knowledge sources
and efficient search strategies, this project also dealt with several other issues. including:
specification of the Resource Management Database and documentation of how to test
with it, periodic testing to meet the agreed upon test requirements, development of several
standard language models for evaluation, development of a technique for estimation of
statistical language models from limited text corpora. and testing of ideas for speaker
adaptation. These topics are discussed in more detail in the body of the report and in a
number of papers that have been attached to this report as an Appendix.
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2 Introduction

The most fundamental problem in speech recognition is to develop an accurate model of
the acoustic signal that corresponds to any sequence of words or phonemes, in order that
speech recognition can be performed. However, there are several other sources of knowl-
edge that can be used to improve speech recognition accuracy. Some of these include:
a phonetic lexicon specifying the most likely pronunciations for each word, extended by
a set of phonological rules suggesiing alternate pronunciations, a model of likely word
sequences - based either on a heuristic model derived from rules, a statistically-based
model derived by estimating probabilities from a training set, or a linguistically-based
model that uses syntactic and semantic information explicitly.

The objective of this project was to develop methods and techniques to coordinate
the many sources of knowledge in the decision process for a speech recognition system.
This effort included developing methods for effectively combining information from the
various knowledge sources. and methods for recognition search strategies that efficiently
consider the wemendous number of hypotheses in the search space. To develop and
demonstrate these techniques. we designed and implemented a word recognition system
for continuous speech input that employed several knowledge sources. The system,
which we called BYBLOS, was then used as a testbed system for evaluating various
recognition algorithms and search strategies. Much of the testing of the system used the
DARPA Resource Management Task, which was taken from the Navy battle management
(FCCBMP) domain.

The system that was developed was based on the continuous speech phonetic recog-
nition algorithm that had been developed in our program of basic research in continucus
speech recognition for DARPA. In that work. the model tor each word is derived from
a set of pronunciations from a dictionary, a set of phonological rules. and from data
taken from natural continuous speech. Each phonetic unit within a word is represented
by a combination of a context-independent model and several context-dependent models
of that phoneme. The training algorithm that was developed does not require that any
speech be labeled manually. The training data only needs to be transcribed with a list of
the words spoken, thus greatly reducing the amount ot labor required and increasing the
amount of data that can be made available for training.

[n addition to developing algorithms for combining multiple knowledge sources and
efficient search strategies, this project also dealt with several other issues. This included:
implementing a basic testbed system for evaluating different word recognition algorithms,
specification of the Resource Management Database and documentation of how to test
with 1t. periodic testing to meet the agreed upon test requirements, and testing of ideas
for speaker adaptation.

The chapters of this report are organized by topic. as follows:
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The BYBLOS System

Lexical and Phonological Knowledge
Language Models

Search Strategies

System Implementation

Database Specification and Documentation

Testing System Performance and Demonstrations

Speaker Adaptation.

In each of the chapters, we recount the major areas of research under the topic of
that chapter. Where applicable, we also review the major technical principles involved.
Further details can be found in the set of papers included in the Appendix at the end of
the report.
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3 The BYBLOS System

Figure | is a block diagram of the BBN BYBLOS continuous speech recognition system.
We show the different modules and knowledge sources (KS) that comprise the complete
system, the arrows indicating the flow of module/KS interactions. The modules are
represented by rectangular boxes. They are, starting from the top: Trainer, Word Model
Generator, and Decoder. Also shown are the knowledge sources, which are represented
by the elipses. They include: Acoustic-Phoneétic, Lexical, and Grammatic knowledge
sources. We describe briefly the various modules and how they interact with the various
KSs. Additional information is given in the body of the report and in the Appendix.

Acoustic-Phonetic Knowledge Source

The Trainer module is used tor the acquisition of the acoustic-phonetic knowledge
source. It takes as input a phonetic dictionary, speech to be used for training and the
corresponding text transcription. and produces a database of context-dependent hidden
Markov models ot phonemes.

Lexical Knowledge Source

The Word Model Generator module takes as input the phonetic models database and
compiles word phonetic models. using the dictionary as another input. The dictionary is
the lexical knowledge source. in which phonological rules of English are used to represent
each lexicai item in terms of their most likely phonetic spellings. The lexical KS imposes
phonotactic contraints by allowing only legal sequences of phonemes to be hypothesized
in the recognizer, reducing the search space and improving performance. The output of
the Word Model Generator 1s a database of word models used in the recognizer.

urammatical Knowledge Source

In much of our speech recognition work. we use a statistical language model to
represent grammatical constraints.  Such models allow all word possibilities but with
ditferent piobabilities such that the perplexity of the grammar is substantiallv lower than
the size ot the vocabulary. The recognition search process then uses the word phonetic
models and the statistical grammar to find the most likely sequence of words, given the
input speech.
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Figure 1: A block diagram of the BBN BYBLOS continuous speech recognition system.
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4 Lexical and Phonological Knowledge

One of the basic tasks in a recognition system is to develop a phonetic dictionary (the
lexicon) and to allow for the incorporation of phonological knowledge. Therefore, we
developed an interactive tool that allowed a4 user to create and edit phonetic spellings in
a dictionary. The tool could display the phonetic network corresponding to the pronunci-
ations in a word. In addition, the system allowed phonological rules to be entered, which
would then create new expanded pronunciations for a vocabulary. The system kept track
of the history of each word, so that it was possible to determine which rules created
which parts of any pronunciation. We used these tools to create phonetic dictionaries for
the different tasks — primanly the 1000-word FCCBMP task.

One consideration that must be made in a system is the number of alternate pro-
nunciations that should be used for each word. In principle, one would like to represent
all of the likely pronunciations, since they would result in different acoustic rewizations
ot the words. However. as we add pronunciations to a word. the difference between this
word and other words decreases. In particular, if we add extra pronunciations to account
for inudequacies of the phonetic recognition system, then we must constantly change this
set of rules as the system improves. Furthermore, if we allow altenate pronunciations,
we must be careful to represent the fact that some pronunciations are much more likely
than others.

We pertormed experiments to determine the effect of having different numbers
of nronunciations. We found. to our surprise, that the best recognition performance
was achieved when we limited the number of pronunciations to one for each word.
That is. even when we had a limited set of phonological rules. resuiting in about two
pronunciations per word, the performunce was worse. On reflection. it made sense that
the BYBLOS system would perform better with a single pronunciation for each werd.
Most of the phonological varnations take place based on the context of the preceding
and following phonemes. However. the system already modeled the detailed acoustic
vanation in phonemes with the use of context-dependent phonetic HMM models. Thus
this probabilistic model tor fine acoustic differences was superior to a gross phonological
model of the shift from one phoneme to another. Some systems within the DARPA
community had been using a large number of pronunciations — perhaps 10 or more per
word. In particular, the CMU Sphinx system performance improved dramatically when
all the altemnate pronunciations were removed at our suggestion.
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5 Language Models

Our first experiments with the effect of grammatical constraints on recognition perfor-
mance involved changing the vocabulary size. We did this in order not to be affected by
the particular words that could follow each other in a grammar. Rather we performed a
set of experiments that we called “Branching Factor Experiments”, in which we varied
the vocabulary size in a systematic way. Given a desired vocabulary size, the recognition
program would read in each sentence to be recognized. It then limited the vocabulary
to the words actually in the sentence, plus enough other words to make up the desired
vocabulary size. Many different random subsets of the vocabulary were chosen in order
to remove any bias. This made it possible to plot the expected word recognition error
rate as a function of the branching factor. We found that the error rate was typically pro-
portional to the square root of the branching factor. We found, when we ran recognition
experiments using a deterministic grammar, that this relation still held. That is, the word
recognition error rate was generally proportional to the grammar perplexity.

After the basic branching tfactor experiments. we implemented a recognition pro-
gram that would allow the recognition to be constrained by finite-state grammars. This
also required building some tools that made it possible to create and manipulate grammars.
We found that it was simplest to specify grammars in terms of context-free production
rules. These rules were then expanded into a finite-state network. This was possible
because we did not include any rules that caused recursion. The recognition program
allowed deterministic finite-state automata (DFA), in which all the words leaving any
state of the grammar were unique, and nondeterministic automata (NFA), in which there
could be duplicate words or “null arcs™ that allowed a transition from one state to another
without going through a word. In general the same language can be represented with a
much smaller NFA than DFA.

The first grammar that we constructed for the 1000-word FCCBMP corpus was
based on the sentence patterns used to make up the sentences in the corpus. This grammar
had a perplexity of only 10. We found that the sentence pattems that were used to generate
the 2850 sentences in the Resource Management corpus were not very robust. That is, if a
person generally familiar with the domain made up sentences using the same vocabulary,
there was a high likelihood that the sentence could not have been generated by these
patterns. One important issue in speech and language recognition is how to make a
grammar that will cover a large percentage of new sentences.

W Adsveloped a semiautomated tool for inferring grammatical structure from a
relat’v¢  small set of patterns. The tool found similarities in sentences, and then allowed
that§ - - 1 both sentences to be represented by a context free rule. In this way, the system
gencralize:. -1e sequences of words and word classes into a hierarchical set of rules
tha' woulc cover a much larger percentage of new sentences than the original sentence
patte..is. We applied this tool to the training subset of the sentence patterns to create a
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generalized context free grammar. We compared the perplexity and coverage of new data
of this new grammar to the oniginal pattem grammar. When the test pattemns were parsed
using only the training patterns, none of them parsed. However, when the generalized
context free grammar was used, 65% of the test pattems parsed. The perplexity of this
grammar also necessarily increased, from 10 to 75.

To use this new grammar we built a version of the decoder that could use context
free grammars rather than just finite state grammars. This involved first converting the
set of context free rules into a recursive transition network, in which the several right
hand sides for a rule are merged into a single network of terminals and nonterminals.
The decoder was changed so that instcad of dealing with a single finite state network
of terminals (words). it could also deal with networks of nonterminals. When the sym-
bol in a network was a terminal, it simply created a new instance of that word to be
matched. When it was a nonterminal, it “pushed” down to the network corresponding
to the right hand sides of that nonterminal. Since the grammar was now much larger
and more interconnected. the decoder had to be optimized in several ways. One of the
major optimizations was to use the forward-backward search strategy described below.
This meant that when the decoder came upon any new word or nonterminal, it would
know (from the forward pass) whether this word, or any of the words implied by this
nonterminal could possibly be in the input speech starting at this frame.

Any deterministic grammar derived from a set of rules will have a problem in
that new test data may not be able to be parsed by the grammar. For example. when
new sentences were recorded at NOSC (the TONE database). we found that most of the
sentences were not covered by the sentence pattern grammar or the word pair grammar.
Even the generalized context free grammar covered only about 75% of the sentences that
used the same vocabulary. A statistical grammar that models the probability of the next
word (or word class) given the preceding words can avoid this problem by assuming
that all words are possible, even though some are much more likely than others. The
statistical grammar also has the additional advantage that it can accurately represent the
fact that some words or classes are more likely than others. This additional information
greatly reduces perplexity and increases pertormance. Therefore we began an effort to
estimate and use a robust statistical grammar.

In the past work on statistical language models, the training set for estimating the
probabilities of word sequences needed to be quite large. For example, IBM currently
uses a text database of about 250 million words to estimate trigram probabilities in their
cffice correspondence task. In many spoken language applications there is no possibility
of collecting such large amounts of speech because the application does not yet exist.
Rather, 1t may only be possible to collect on the order of 1000 sentences from a simulation
of the system. To alleviate thus problem we have extended the statistical grammars
typically used by the use of linguistic knowledge. In particular, we group the different
words in the vocabulary into classes, under the assumption that their statistics will be

o BB Wy =m e an

| __J

l---m--«—wi—h-




- - — l‘

Report No. 7138 BBX\ Systems and Technologies Corporation.

relatively similar. For example, in the FCCBMP domain, one would initially assume
that the names of all ships would be equally likely in any particular sentence. Therefore,
when we see 4 training sentence that contains one ship name, we assume that we have
seen a <imilar sentence with every other ship name. In addition, there are sequences of
words tnat behave as a unit. For example, there are many ways of expressing a date.
We can assume that in the model for a sentence, we need not distinguish among these
different forms of the date. Therefore. the whole date, which may consist of several
words, 1s treated as a single nonterminal. This greately reduces the amount of training
script that is needed. It also increases the number of words over which the grammar has
effect. For example. we can now predict the probability of a particular word given that
it was preceded by a preposition, followed by a date.

We developed a statistical tool that allowed us to estimate a variable order Murkov
chain for the sequence of word classes and nonterminals. The variable order chain has the
advantage that in some contexts, there 1s enough training to estimate high order statistics,
while in others, only first order statistics can be reliably estimated. The perplexity of
this model as measured on the traning data was about 20. which is very low. When
measured on independent test data, the perplexity rose to about 60. However, unlike the
Word-Pair grammar, which also has perplexity 60. this model would be able to recognize
sentences that do not come from the grammar training set. We compared the recognition
performance of this grammar with that of the Word-Pair grammar. When independent
test data was used the error rates were 10% and 22%, respectively, for the two grammars.
The larger error rate for the Word-Pair grammar stems in part from the fact that several
word pairs in the test set were not allowed by the grammar.

This work on statistical language modeling from small corpora will be important in
future work on spoken language recognition because of the need to improve recognition
performance through the use of statistics. and because the training sets for new tasks will
always be small.
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6 Search Strategies

In this chapter we describe our work on developing efficient search strategies for finding
the most likely word sequence given the acoustic signal. In principle, the best algorithm
for determining the word sequence given an acoustic signal is to consider all possible
word strings exhaustively. For each word string we must compute a score (conditional
probability) of that word sequence, taking into account all the sources of knowledge
available. Then we simply choose the word sequence with the highest score as our answer.
This algorithm, which we would call a tightly coupled, top-down search, guarantees the
minimum error rate for a given set of knowledge sources. However, this exhaustive
search is clearly infeasible. Therefore, we must develop search strategies that approximate
this algonithm, with computation that is acceptable. However, throughout our work in
developing efficient search strategies. we always must keep in mind that we are trying to
approximate the effect of this exhaustive search. The remainder of this chapter enumerates
several of the different search search strategies that we have developed under this project.

Some of the general principles that were established for a desirable search strategy
were:

1. Use the computationally “inexpensive” knowledge sources to reduce the number
of choices drastically. and then use the more expensive knowledge sources on this
reduced set.

2. Any decisions made in (1) must be made in a way that almost never makes a
mistake, otherwise these “irrecoverable errors” will multiply and dominate the
erTors.

Two search strategies that are commonly used in speech recognition are the Best-First
stack search, and the Viterbi beam search. The best-first search considers only the best
theory at a particular time. It extends this best theory by all possible next words, scores
all these new theories using all available sources of knowledge, and reinserts the new
scored theories back 1nto a stack that is sorted by theory score. This algorithm has the
theoretical advantage that, if the scores are meaningful, it should do the least amount of
computation. However, in practice, it is very difficult to sort the theories appropriately.
[n particular, it is very hard to compare two theories that span different regions of the
input speech. Therefore, even with the many heuristics that are used, this strategy often
finds a suboptimal answer, or results in tremendous amounts of computation.

The Viterbi beamn search is much easier to implement than the best-first search and
has many desirable properties. First, it guarantees to find the sequence of states of a
finite-state hidden Markov model with computation that is proportional to the number
of states and the length of the input speech. The beam scarch implies that at each time
frame, all theories that have a probability that is sufficiently tar below the probability of
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the most likely theory are removed, since they are not likely to result in a better score
by the end of the utterance.

Unfortunately. there are still two problems with the Viterbi search algorithm. First,
the algonthm finds the most likely sequence of states, rather than the most likely sequence
of words. While this difference is often small. it does introduce some unnecessary errors.
Second. and more serious, most interesting models of language have a very large number
(if not infinite) number of states. For example, even a context-free language cannot be
represented using a finite number of states. Therefore the computation associated with
the straightforward beam search is often excessive.

In 1985 we devised an algorithm that has the simplicity of the Viterbi algorithm
but computes a score that more closely approximates the “true™ score of the most likely
sequence of words. Stated simply, the algorithm is just like the Viterbi algorithm, except
that at each state, where the Viterbi algorithm keeps the maximum score from all pre-
ceding states, our algorithm adds the scores from all the preceding states. We call this
algorithm a pseudo-Baum-Welch search for the most likely word sequence. In several
experiments we verified that this algorithm results in somewhat lower error rates than
the Viterbi algonithm. The interesting observation was that the difference in error rate
was relatively constant over different applications. That is, our pseudo-Baum-Welch al-
gorithm consistently resulted in 2% fewer errors than the Viterbi algorithm, whether the
original error rate was 30% or 5%. Therefore, when the error rate was low (which it
must be for a useful system), the difference was important.

There were certain remaining problems with the algorithm described above. Since
the score produced by this algorithm is not exactly the same as the true score, there is
still some chance that it will not find the word sequence that has the highest true score. In
addition. since we use a pruning algorithm to try to avoid computing most of the scores.
it is possible that the algorithm eliminates the correct word sequence from consideration
without computing its full score. Because of these two problems it is helpful to know how
the true score of the correct answer compares with the true score of any incorrect answer
that the recognition program finds. Therefore we added a feature to the decoder that
allows the system to find the true score for any particular word sequence for a sentence,
by scoring only that word sequence. We call this a forced scoring algorithm. Whenever
the decoder finds the wrong word sequence, this forced scoring algorithm can then be
used to find the true score for the correct word sequence and the true score for the word
sequence that the decoder found. If the true score for the correct word sequence is higher
than the score for the word sequence found. then we know that it was due either to the
pseudo-Baum-Welch score being different from the true score, or due to pruning out the
correct answer. When we tested our search algorithm using this new feature, we found
that whenever the decoder finds an incorrect answer, the incorrect answer always has a
higher true score than the correct answer. This confirms that the decoding algorithm is
empirically optimal.

11
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As described above, it is also possible that search errors are the result of pruning
out the correct answer because, at some point in the utterance, it was scoring much worse
than some other hypothesis. Unfortunately, unless the pruning is very conservative, there
is some small probability that the most likely sequence of words is pruned out from
consideration due to a small region where it scores poorly. While this might happen
only once in 25 sentences, it represents an unwanted noise in our estimation of error
rates. To alleviate this problem for research runs, we use the heuristic described above
to detect errors due to pruning and rerun the sentence with more conservative pruning if
necessary. The utterance is fi1st run at a very aggressive pruning level, which results in a
factor of 10 speed up. If the answer found is incorrect, the sentence is run again forcing
the correct answer, and then the answer that was found during the search. Both of these
require very little time, since only one sequence of words is possible. If the score for the
correct answer is actually higher than that for the incorrect answer, then the utterance is
rerun with a very conservative pruning threshold. We find that, including the utterances
that need to be rerun, the net effect is a factor of about 5 in the speed of research runs
of the decoder. Of course, when the decoder is running in any real application or formal
evaluation. it doesn't know the correct answer, and so it must use a more conservative
pruning or accept some increased error rate.

The more serious problem mentioned at the beginning of this chapter was that for
large language models, the number of word states that need to be scored in each frame can
often be significantly larger than the number of words in the vocabulary. For example, the
Sentence Pattern Grammar, which is a large finite state grammar, has about 100,000 arcs
initially and about 30,000 arcs in its most compressed form. Therefore, if the pruning
were not able to eliminate more than 97% of the words from consideration, the number
of active words in the beam search would be larger than the 1000-word vocabulary.
Therefore, we have developed a new class of recognition search strategies, which we
call mulriple-pass search strategies. that is useful for speeding up the search with large
grammars, such as statistical grammars and natural language grammars. These algorithms
find upperbound scores for each of the words in the vocabulary in different regions of the
input. Then, while performing a grammar-directed acoustic search, the decoder considers
only those words that are known to be likely given the input speech. The particular
version of this paradigm that we implemented has been named the forward-backward
search because of its similarity to the forward-backward training algorithm.

As the syntax-directed search is proceeding left-to-right through an utterance, it
must extend each theory in which a word has ended by all the possible following words.
The beam search reduces the number of theories by eliminating those for which the
sentence so far scores badly, compared to the other theories. The beam search would be
much more effective if, at this point in the utterance, it could know the score that the
remainder of the utterance would receive also. Then the pruning could be based on this
total score. Of course, computing this score is equivalent to performing a full decode,
which is what we are trying to avoid. However, say we knew the score for the most likely
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sequence of words from this point in the utterance to the end of the utterance (ignoring
grammatical constraints). This score would be an upper bound on the actual score that
would be found were it computed exactly. Furthermore, say we knew this upperbound
score for each possible first word in the remaining string. Now, we could consider each
of the words that can come next, according to the grammar, and for each one, look up
the upperbound score of a sequence of words beginning with that word at this point in
the utterance. This score, when added to the score of the theory to the left, can then
be used in the beam pruning, thus eliminating most of the possible continuations of this
theory. The only problem with this algorithm is that we haven’t seen the rest of the
utterance yet (assuming that the algorithm is running in close to real time), so we cannot
possibly compute the scores of word sequences in the future. However, if we tumn the
problem around, there is a solution that 1s feasible. Let us say that as the speech is given
to the decoder (in real time), it computes the scores as if it were using no grammar in the
recognition. At each frame, it remembers the score of word sequences ending with each
possible word in the vocabulary. Only a small fraction of the words in the vocabulary
will end with a good score at each frame. When the end of the utterance is detected,
the decoder then begins a grammar-directed search, but in the reverse direction. This
time, since most words have been eliminated, the decoding proceeds much faster than
real time. The most likely answer is then found with only a short delay past the end of
the utterance. With a small modification, this algorithm can also be made to run forward,
in order to eliminate even the small delay at the end of the utterance.

We have used the forward-backward search algorithm described above to speed up
the search for several very large grammars. These include the Sentence-Pattem gram-
mar. a high-order statistical grammar, and a recursive transition network grammar. Our
experiments indicate that. for these large grammars. the increase in speed is at least a
factor of ten, when we use the forward-backward search algonthm. A modification of
this algorithm would use a first-order statistical grammar in the first pass. in order to
reduce the choices further.
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7 System Implementation

Much of the work of this project was necessarily spent implementing the different training
and recognition aleorithms. The initial set of algorithms for word-based training and
recognition were implemented on the Symbolics Lisp machine using Zeta-Lisp. The
flexible environment made it relatively easy to implement several algorithms quickly.
However, the resulting programs were not very fast, since Lisp tends to result in slow
computation. The result was that many experiments were impractical to run, since the
time that they required was too great. In particular, it was frequently more than the mean
time between failure of the machines.

More recently, we have completely redesigned and reimplemented all of the algo-
rithms in C on the SUN4 workstations. The implementation takes somewhat longer, but
the resulting programs run about an order of magnitude faster. As a result, it is possible
to run several different versions of the programs and to tune different parameters. One
of the direct consequences has been a marked improvement in the recognition accuracy
of the system. In addition, since the language used is more portable, we will be able to
take advantages of newer, faster machines as they become available, without having to
redesign all the algorithms. We are currently investigating several faster machines that
would increase our computing power by at least a factor of five.
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8 Database Specification and Documentation

One of the major contributions of the current DARPA program in speech recognition
has been the specification, recording, and adoption of a standard corpus of sentences
for research and standard testing. BBN has been instrumental in the specification of the
corpus and the testing standards to be used with that corpus.

Several speech corpora were defined to serve the different research needs of the
community. We felt that it would be important to have a wide range in the amount of
training speech available for each speaker, as well as a very large number of speakers
available. Therefore the basic makeup of the corpus was designed so that there would be
different sections. The first would contain 640 speakers, each saying 10 sentences. The
second would contain 160 speakers, each saying 40 sentences. The third would be geared
for speaker-dependent research, and would contain 12 speakers with 600 training sen-
tences for each. Finally, there would be 2 to 4 speakers with 2 to 4 hours of speech each.
The 640 speaker corpus consisted of material designed for detailed phonetic research,
and was thus phonetically marked. This corpus has been called the TIMIT database.
The nther corpora consisted of sentences pertaining to the Resource Management task
domain. Each of the corpora contained designated training sets, development test sets to
be used while trying out new algorithms, and evaluation test sets for formal testing.

We specified the sentences in the FCCBMP battle management domain (later to be
called the Resource Management task domain) through'lengthy discussions with people at
NOSC. This task involved becoming familiar enough with the application and likely uses
to generate a 1000-word vocabulary and about 1000 different sentences with database
queries. display commands, and expert system questions. As such, the task combined
the domains that reside in several different systems, most notably, IDB, OSGP, and
FRESH. After the initial sentences had been composed, and checked by NOSC, they
were converted into sentence patterns by replacing the open class words by their classes.
Then, as many sentences as desired could be generated. We generated three sentences
from each pattern, resulting in approximately 2850 sentences. These sentences were then
sent to TI, where some additional changes were made before recording. (Some words
that were too hard to pronounce were replaced with other words.) The procedures that
were followed in creating this extensive corpus were documented in an ICASSP paper,
which is included as an appendix to this report.

In order to be able to compare recognition results accross different research sites
using difterent algorithms, it was necessary to assure that all sites were using the same
grammatical constraints. Since the BYBLOS system was the first one within the program
to produce reasonable recognition results, we inherited the task of specifying and trying
standard test conditions. We documented the phonetic dictionary that we had developed
and made it ava‘lable to other sites. We showed that it was not advantageous to have
a large number of phonetic pronunciations for each word, since this made the different
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words more similar. Finally, we provided documentation for three standard test grammars:

1. No grammar - perplexity 1000.
2. Sentence Pattern Grammar - perplexity 10

3. Word-Pair Grammar - perplexity 60

The first grammar used for testing was the null grammar that allowed any sequence
of words. This grammar tested the basic word recognition capabilities of the systems.
The sentence pattern grammar was a grammar derived from the patterns used to generate
the sentences in the Resource Management corpus. Since we knew that this grammar was
unrealistically constrained, we created another grammar that allowed all pairs of words
that could occur anywhere in the sentence pattern grammar. This increased the perplexity
to 60, making it a much more reasonable grammar. By using these three grammars, it
was possible to evaluate the word recognition capabilities of each of the sites at different
levels of difficulty.

One way of estimating the difficulty of a task is to measure the average number
of words that can come after each word in the language model used with the task. The
mathematical quantity that we use for this is called perplexity. While this measure doesn't
take into account the phonetic similarity between words, it has been found to correlate
well with word recogition error rate. We wrote a technical note to document the precise
techniques used to measure the perlexity of a language model on any particular test set
of sentences. That note is included as an appendix to this report.

Finally. as the word recognition capabilities of the different systems has improved,
there has been a need for a grammar that is more difficult than the Word-Pair grammar.
While the recognition performance is not that high that it would be useful, the numbcr of
errors in a reasonable-sized test set is not large enough to be measured with statistical re-
liability. Furthermore, testing with no grammar is also too unrealistic, because it requires
many distinctions that would never be needed in a system. Theretore, we developed a
new standard test grammar based on a first order statistical model of word classes. The
grammar, which is based on only 100 word classes, was designed to have a statistical
perplexity of about 100, which will result in about twice the error rate associated with the
word-pair grammar. We estimate that the difficulty of this grammar is comparable to the
difficulty of a more realistic task with about 5000 words. where the test (actual) sentences
may not be quite so similar to the training sentences. We documented and distributed a
set of programs for estimating and constructing this grammar from an annotated lexicon
and a corpus of sentences that has only orthographic transcriptions.
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9 Testing System Performance and Demonstrations

Throughout the project we have performed several formal and informal evaluations of the
recognition accuracy of the BYBLOS system. The early tests and demonstrations were
informal, since BYBLOS was the only complete system at that time. The later tests were
more formal. The formal tests have been in accordance with rules agreed upon among
the different research sites, together with NBS (now NIST).

Our early work in context-dependent phonetic hidden Markov models for phonetic
recognition was incorporated into a word recognition system during 1985. The first test
of this system was on a small (334 words) electronic mail task. The domain consisted of
commands to an electronic mail system. 300 training sentences and 100 test sentences
were recorded from each of 3 male speakers. We compared the recognition accuracy with
context-dependent phonetic models of different types with the accuracy when context-
independent models were used. The recognition experiments were run first with no
grammar, and later with a finite-state grammar made up to model all of the sentences.
Averaged over the 3 speakers, the word recognition accuracy with context-independent
models was 76%. When context-dependent models were used the accuracy was 90%.
When a grammar with perplexity 31 was used, the recognition accuracy improved from
94% to 98.2%. This represented convincing proof of the viability of the use of context-
dependent phonetic models and of the use of HMM models in general.

During the next several months of 1986 we implemented a 350-word subset of the
FCCBMP Resource Management Task Domain. This involved recording training and test
sentences for the new domain and running similar tests to those described above. The
results were quite similar. Next. we added 300 new words to the test vocabulary, to test
the effect of having test words that were not included in the training. Most of the words
added were additional names of ships and ports. We found that the recognition results
were quite similar to those reported earlier.

During the spring of 1986 we implemented a demonstration of the BYBLOS system
that would allow a user to speak a sentence and have the answer appear about one minute
later. The system, which ran on a Symbolics Lisp machine displayed its progress as it
attempted to recognize what was said. In particular, it displayed a tree of the most likely
sentence hypotheses that were under consideration. In July, 1986 we held a demonstration
of this system at BBN.

In addition to using speaker-dependent models derived from 300 sentences from
one speaker, we demonstrated the speaker adaptation capability of the system. Forty
sentences were recorded from each of the visitors. These sentences were used to transform
a speaker-dependent model from one speaker so that it could be used for the new speaker.
While the recognition accuracy with the adapted model was not as high as for the speaker-
dependent model, it was still quite reasonable.
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During the end of 1986 we tested the BYBLOS system on the full 1000-word
vocabulary. The tests were run on two speakers from BBN, since the data being recorded
at TI was not yet available. The word recognition accuracy with no grammar was 87%.

The speech data for four speakers was made available in January of 1987. This
was the first formal test of the system using data from outside BBN. In this case we had
600 sentences (approximately 30 minutes of speech) from each speaker. We ran tests
under three grammar conditions:

1. Sentence Pattem Grammar - perplexity 10
2. Word-Pair Grammar - perplexity 60

3. No grammar - perplexity 1000.

The recognition results are presented for each of the grammars and for the four
speakers from TI as well as the two speakers from BBN.

Sentence Pattern Word Pair No Grammar
TI-4spkrs 97.8% 89.9% 65%
BBN-2spkrs 99.8% 98.2% 87%

The results showed clearly that the recognition accuracy depends significantly on
the grammar used. They also indicated that the speech recorded at BBN resulted in
much higher recognition accuracy than that recorded at TI. This was presumably due -
at least partially — to the speakers at BBN speaking more carefully. It also indicates that
a significant improvement in system performance can be achieved by a certain amount of
instruction to prospective users in how to use the system. This improvement is at least
comparable to the difference in performance resulting trom algorithm improvements.

On July 27, 1987 we gave a demonstration that showed how an integrated spoken
language system could be used for the FCCBMP application. A graphics system that
enabled a user to manipulate objects on a map was connected to the natural language
system, so that typed commands and questions would be answered and would result in
appropriate displays on the map. The output of the speech recognition was then connected
to the natural language so that commands and questions could be spoken. While the
connection between the speech and the natural language was sernal, it illustrated the
power that such a spoken language system would have.

One of the requirements for the October, 1987 meeting was that some of the results
reported would be from a ““live test”, which meant that the speakers were speaking directly
to the system, which would recognize each sentence and display the answer before they
would speak the next sentence. On July 27, the three speakers who were to be in the
test came to BBN to provide training speech in order that we could compute speaker-
dependent models for the speakers. (The speakers were Alan Sears, David Pallett, and
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Tice DeYoung.) Each speaker read training sentences during a total elapsed time that was
limited to one hour. The recording took place in two half-hour sessions. Afterwards, we
listened to all of the recorded sentences and deleted those where the words spoken were
different from those in the text transcnptions. On the average. 80% of the utterances were
kept, resulting in about 330 training utterances for each speaker, or about 18 minutes of
actual speech. On September 29, the three speakers retumed to test the system. The
word models for each of the speakers were transfered to the Butterfly computer which
performed the recognition. The grammar used was the Word-Pair Grammar. Each of
the speakers read 30 test sentences, one by one, and waited for the recognition answer
to be typed out. All input data and recognition results were also saved on files for later
analysis. On average, the recogrution time was 10-40 seconds, or about 10 times real
time. In each case. the speaker was able to finish the entire session (including putting on
the microphone. comments. adjusting levels. and false starts) within 1/2 hour of elapsed
ume. The word recogition error rates for the three speakers were AS: 4.4%, DP: 5%.
TD: 12¢%. These same sentences were also processed on the Lisp Machine simulation of
the decoder to provide recognition results with no grammar.

In addition to the hive tests, there were also formal tests run using the data recorded
at TT. In this case, test data tfrom eight of the speakers was evaluated. Four of the speakers
had been used in the tests performed in March, 1987. The speaker-dependent models
were generated using 570 of the 600 traiming sentences (we reserved 30 for in-house
testing). In August we received from NBS the set of 25 test sentences to be used for
testing. Agcain. tests were run using both the Word-Pair Grammar ar.d no grammar. We
no longer used the Sentence Pattern Grammar, since it was judged to be unrealistically
easy. The results were consistent with those obtained in March. The average error rates
were 32% with no grammar, and 7.5% with the Word-Pair Grammar.

Dunng the October, 1987 meeting we demonstrated the BYBLOS svstem in the
conference room where the meeting was held. There were several technical problems
related to getting the audio signal from this room back to our A/D facility, which was sev-
eral hundred vards away in a different building. The solution that was finally chosen was
to transmit the signal over unused telephone wires that went between the buildings. The
demonstrations included a near-real ime demonstration of recognition on the Buuerfly
Parallel Processing system. In this demonstration. the system displayed the hypothesized
worG string as it processed the sentence. Frequenty, the first two or three words were
displaved before the speaker finished speaking the sentence. Several speakers were used
Jduning thus demonstration.

In April. 1988 we tested the new speaker adaptation algonthms developed under
the Basic Research effort on the Resource Management Database. and the data collected
“live” at BBN. We found that, on the average, the performance of the system when
models were adapted using two minutes of speech from the new speaker was equal to
that denved when |8 minutes of speech from the new speaker was used with the speaker-
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dependent training algorithm. This is a significant improvement over our previous speaker
adaptation algorithm. which resulted in performance equivalent to about 8 minutes of
speaker-dependent training.

During early 1988, we redesigned and implemented the BYBLOS system on the
SUN4 workstations. Previously, on the Symbolics Lisp machine, the limitations of slow
computation and limited virtual address space made it difficult to run many experiments.
In particular, we were not able to use multiple sets of spectral parameters in the training
and recognition. The primary difference in the SUN4 versicn was that we now used the
denvatives of the cepstral parameters in addition to the cepstral parameters themselves.
In addition, it was now possible to run many experiments in order to tune various system
parameters. All tuning was done on parts of the training set or on the October, 1987 test
set. We then ran the May 1988 test data for all 12 speakers through the decoder using the
word-pair grammar and the null grammar; the word error rate was now 3.4% and 16.2%
respectively. This represented a word error rate reduction by a factor of two relative 1o
the previous system.

Shortly atter running these tests, we completed our work on smoothing the prob-
ability distributions of the HMMs. When we received the test data for the February
1.89 meeting, we decided to run the experiments both with and without the smoothing
algorithm. At the meeting in February we presented the effect of smoothing on both the
May 88 and February '89 test sets. The word error rates are given below.

Word-Pair No Grammar
Control Smoothing Control Smoothing
May '88 34 2.7 16.2 15.2
Feb '89 29 3.1 (5.3 13.8

This showed that. although the smoothing algorithm helped in most cases. it did
not always improve the performance. However, the overall results were the best reported
to date by any other research site on this corpus.
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10 Speaker Adaptation

A key area of our work has been in rapid speaker adaptation. Most of the systems
reported to date are based on two training paradigms. In the speaker-dependent paradigm,
a relatively large amount of speech from the user is collected, in order to estimate a very
accurate model of how that speaker speaks. The result is very high recognition accuracy.
In the speaker-independent paradigm, speech is collected from a very large number of
speakers (at least 100 speakers). This speech is pooled as if it all came from a single
speaker. and is used with exactly the same algorithm as in the speaker-dependent 1se.
The result is that when a new speaker speaks to the system, the recognition accuracy
is not degenerately bad. but the word error rate is still about a factor of 2 to 3 times
that in the well-trained speaker-dependent paradigm. In addition, for many applications,
it would be impractical to collect speech from a large number of speakers just for that
application.

The speaker adaptation paradigm provides an alternative to these two approaches.
The algonthm. which is quite different from the basic speaker-dependent/independent
algonthm, starts with a well-trained model from a single reference speaker. This speaker
1s presumably one who has trained the system in the speaker-dependent paradigm. Then,
a small amount of speech is collected from the new (target) speaker. This speech is
used to transtorm all of the models of the reference speaker so that they are appropriate
for the target speaker. The resulting system performance is somewhat better than that
in the speaker-independent paradigm. but somewhat worse than the speaker-dependent
paradigm. at a small fraction of the cost of data collection. This paradigm has the
additional advantage that it will be natural for the user to adapt the system whenever the
acoustic environment or his voice should change for any reason.

We have investigated several new algorithms for rapid speaker adaptation. The
major contribution of this effort has been a probabilistic spectral mapping algorithm that
transforms the reference speaker model into a target speaker model. We have experi-
mented with several algorithms for estimating this mapping, and have presented recog-
nition performance results at several of the project meetings.

This area remains one of our key research areas, since we feel that ultimately the
rapid adaptation paradigm will be the most practical for new users. The system will
begin by prompting a new user to read a small number of sentences. Then, as the user
speaks to the system. it will incrementally improve the performance until it eventually
becomes a high-performing speaker-dependent system.
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Appendix

This appendix contains a number of papers that have been written under this contract.
Below is the list of papers included.

1. O.Kimball, P. Price, S. Roucos, R. Schwartz, F. Kubala, Y.-L. Chow, A. Haas, M. Kras-
ner, J. Makhoul, Recognition performance and grammatcal constraints, Proc. DARPA
Workshop on Continous Speech Recognition, Palo Alto, CA, February 1986.

2. Y.L. Chow, M.O. Dunham, O.A. Kimball, M.A. Krasner, G.F. Kubala, J. Makhoul. P.J.
Price, S. Roucos, and R.M. Schwartz, BYBLOS: The BBN continuous speech recognition
system, IEEE International Conference on Acoustics, Speech, and Signal Processing,
Dallas, Texas, pp.89-93. Aprl 1987.

3. P. Price, WM. Fisher, J. Bemstein, and D.S. Pallett, The DARPA 1000-word resource
management database for continuous speech recognition, I[EEE International Conference
on Acoustics, Speech, and Signal Processing. New York, N.Y., pp. 651-654. April 1988.

4. J.R. Rohlicek, Y.-L. Chow, and S. Roucos, Statistical language modeling using a small
corpus from an application domain. IEEE International Conference on Acoustics, Speech,
and Signal Processing, New York. N.Y., pp. 267-270, April 1988.

S. F. Kubala, Y. Chow, A. Derr, M. Feng. O. Kimball, J. Makhoul. P. Price. J. Rohlicek,
S. Roucos, R. Schwanz, and J. Vandegrift, Continuous speech recognition results of
the BYBLOS system on the DARPA 1000-word resource management database, IEEE
International Conference on Acoustics, Speech, and Signal Processing, New York. N.Y.,
pp- 291-294, April 1988.

6. S. Roucos. Measuring perplexity ot language models used in speech recognizers, Paper
sent to DARPA sites, 1983.

7. M.-W. Feng, [terative normalization for speaker-adaptive training in continuous speech
recognition. IEEE Intemnational Conterence on Acoutics, Speech. and Signal Processing.
Glascow. Scotland. pp. 612-615. May 1989,
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ABSTRACT
We describe the integration of grammatical wth
acoustic knowledge sources in the BBN continuous word
the

cembination decreases

recognition system, and effects on
This the total

number of insertions. deletions and substitutions by a

resulting
performance.

factor of more than 6 compared to the system with no
grammatical constraints, and yields a word accuracy of
better than 98%.
possible word sequences can 1mprove performance, even

We show that constrainming the set of

when the amount of training per lexical item remains
fixed. In addition. we address the 1ssues of estimating
from himited deta the degree of constraint imposed by a
grammar and the importance of incorporating acoustic

similarity 1n such measures.’

1 INTRODUCTION

In this report we describe the development and use
of various finite state grammars in the BBN continuous
speech recognition system. In particular. we investigate
the relationship between recognition performance and
the degree of constraint imposed by a grammar We feel
that crucial to
evaluating how well
modeling can be generahzed to larger and more complex

understanding such relationships 1s

specific techmiques of lngustic

tasks

recognition performance
Similarly. when

It s that
improves as vocabuiary size decreases
syntactic and semantic information are used to reduce
the number of words that can legally follow a given
sequence of words. a recognizer 1S expected to make
Two related measures of this type of

well known

{fewer errors

1‘rhin work was sponsored by the Defense Advonced Research
Projects Agency and wos monitored by the Office of Naval
Research under contract number NOO®3IS-85-C-0423
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grammatical constraint are perplexity and branching

factor. decreasing these characteristics of a grammar
should lead to improved performance We shall discuss
how these measures can be estimated when only a smail

set of representative sentences are avajlable

In the describe

recognition system.

following section we our
In section 3. we describe a set of
experiments designed to demonstrate the relationship of
performance to branching factor when the amount of
traiming per item remains constant. We then address
the 1ssue of estimating degree of grammatical constraint

from himited data (section 4). In section 5 we describe

the ncorporation of various grammars in our
recognition system and the resulting effects on
performance.

2 THE SPEECH RECOGNITION
SYSTEM

The
feature extraction stage.
The
short—time

speech recognition system consists of o

an acoustic scoring and e

scoring feature extraction stage

the
and

linguistic

computes spectral envelope everv

centisecond represents 1t by 14 Mel-warped

cepstral coefficients A vector quantizer cdiscretizes the
spectral envelope to one of 256 spectral templates using

Euclidean distance. The sequence of discrete spectra :s

used to compute the likelihoods of all possitie
hypotheses 1n the acoustic and hnguistic scoring
modules Recognizing an 1input utterance .nvcives

finding the sequence of words Wy oWy that maximizes

P(xixp .. xp fwy owp) P(wy . owy)

where Xy Xpg is the sequence of quantized spec:ra

and W, ... Wn IS a sequence of words The f{irst term
the acoustic score. 18 derived from a hidden-Markov
model (HMM) for each word The second term ‘he




linguistic score. is. 1n principle. a mode! of the expected
This term includes a mode] of
likely).

At present, due 1o himited data. the

syntax and semantics

duration (longer sequences are less and a

grammatical score
grammatical score 1s

simply set to 1 for sentences

allowed by the grammar and to 0 otherwse

The dictionary used was developed and made
available to us by the speech group at Carnegie-Mellon
University We expanded 1t (from about200 words) to 334

words 1in order to fill

out categories that were
represented i1n the original version. In particular, our
version 1ncludes all months, all days of the week,

possessives for all proper nouns and plurals for all

nouns. and cardinals ordinals to

numberfup to 999.

other and cover

The training for our system was on 300 sentences
(about 15 minutes) for each tealker. These sentences
were syntactically and lexically based on 100 example
sentences also provided by CMU. We reserved the set of
100 sentences for testing. The sentences were designed
to be representative of human-machine interaction in

an electronic mail task, referred to as the Email task.

Our word models are phonetically based and
capture the acoustic coarticulatory effects within a word
to the extent that they can be estimated relhiably from
In short. to obtain robust

estimates of the transition and output distributions of

available training data.

the HMM for a phoneme-in-context we use a weighted
the with varying
amount of context The details of these word models

average of parameters of models

are discussed in (2]

The hnguistic model. which computes the a priori
probability of a word sequence, uses one of two types of
models for the language. The first model has no grammar
this the
1s determined by its

and allows any word sequence. In case,
probability of a word sequence
length.

Plw, .. wm])=c a7k
where a 13 just an insertion penalty that 1s chosen
the the
recognizer output and ¢ 18 a normalizing constant The

second language model 1s a finite state automaton. We

empirically to control insertion rate of

describe in a later section how we generated the finmte
state grammars from a small corpus of sentences. At
present, sentences are either accepted or rejected as
grammatical depending on whether the automaton parses
data

likelihood of different word sequences. the paths of the

them or not Given sufficient to determine the
automaton could be modified to 1mpose probabilities on

sentences of the grammar
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3 RECOGNITION ACCURACY AND
BRANCHING FACTOR

It s

improves with smaller vocabulary size. with or without

well known that

recogmition performance
grammatical constraints The improved performance may
stem from two factors. (1) the smaller set of elements
that need to be distinguished. and (2) the greater
amount of training that can be devoted to each of the
items. As vocabulary size increases. comparable training
difficult.

increasing vocabulary size. we felt 1t was important to

becomes more Since our goals involve

establish that the first of the above factors alone. 1e.
smaller vocabulary size (which can be §1mulated by using
a grammar), 1s sufficient to improve performance without
increasing the amount lexical item
Further,

between performance and constraints such as vocabulary

of traiming per
we would like to investigate the relationship

size or grammaticality. A set of experiments was

designed to simulate the effect of grammaticsl

constraints over a range of branching factors. This was
done by restricting the set of lexical items to the words
appearing 1n a given test sentence plus additional words
selected randomly from the dictionary until the total
number of words

18 equal to the desired branching

factor.

3.1 Methodology

10. 20. 50
The last figure includes the entire

We 1nvestigated branching factors of
100. 200. and 334.
dictionary. Performance was assessed for the task of

recogmizing 30 of the 100 test sentences. described

earlier, as produced by three male talkers. Since we
had previously made changes in our system based on
recognition of these 30 sentences, we
the

factors on the 70 previously unused sentences

repeated the

experiment for smallest and largest branching
Since
performance at these points for the new sentences did
not differ greatly from the results based on the 30
sentences (performance was actually about 1% better cn
the new sentences) we present the results based on the

30 sentences.
achieve statistical

In order to comparable

significance across the tests at various branching
factors (BF). that 1s, to adequately sample the dictionary
for each, we increased the number of repetitions for
experiments at lower BF BF of 10 was repeated at least
10 times per talker per sentence, BF 20 (11 times) BF
50 (6 times). BF 100 (3 times), BF 200 (twice) and BF 234

(once)
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Figure 1: Performance and Branching Factor.

Plotted 1s word accuracy, {(substitutioms

+ deletions) divided by the total number
of words in the test sentences, averaged
across 3 male speakers, as a function
of branching factor.

3.2 Resuits and Discussion

Figure 1 shows the error rate averaged across the

3 talkers' productions of the 30 test sentences.
Performance 1s plotted as a function of branching factor
on a log-log scale It 18 seen that performance

increases (linearly on this scale) with smaller branching
factors.
full dictionary to about 98 5% for the branching factor
of 10 As the
remaining 70 test sentences was about 1% better for
branching The the
experiment allow us to sample the effects of various
but not the effects of
our entire set of

word accuracy improves from about 90% for the

mentioned earlier. performance on

factor of 10 repetitions of

choices of vocabulary items,
variability in articulation. In fact,
errors for the branching factor of 10 correspond to one
or two words produced by each talker Given this
distribution of errors and the difference between the
percentage of errors on the two sets of sentences, we
conclude that 30 test sentences (187 words per talker)

are not sufficient to reliably estimate performance in

this case The experiment has, however confirmed our
hypothesis that reduction of the number of allowable
words 1s sufficient to improve performance without
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increasing training. and we feel that the methodology
may prove useful for estimating the performance of a

recognition algorithm on tasks differing 1n the
complexity - required of the grammar In order to
quantify this complexity. we present several methods for
estimating the amount of constraint imposed bv a
grammar

4 ESTIMATING GRAMMATICAL
CONSTRAINT

When recognition 1s performed without a grammar.
the set of possible outcomes 1s the set of all possible
the The
grammar 1s to disallow some of those combinations

role of a
This
means that at any point the grammar has to choose not

combinations of lexical items.

from the entire set of lexical items, but from a smaller
set. By reducing the legal possibilities the grammar
imposes a constraint which makes the recognizer's task
easier. How does one measure the constraint imposed
by the grammar? One would lhike to average the number
of choices at various points and weight them according
to how likely they are to occur. Such a measure. based
on the information thecoretic concept of entropy. exists
and s called “perplexity” [1]. For a deterministic finite

state automaton we define 1ts entropy, H. by

H = Z"" n(i)

where p(i) 1s the probability of node i, and h(i) 1s
the entropy of the set of choices emanating from that

node. The perplexity, Q 1s

qQ=2H

The perplexity of a grammar is determined by the
network connectivity and the probability assignment of
the different the network
connectivity

transitions. In our case,

18 determined by the types of linguistic
The

however

phenomena captured in a particular grammar
probability assignment of the transitions 1is.
The basis for our grammar was a set of

than tc

more difficult.
100 sentences intended to represent rather

define the language In fact. many different grammoars
can be built to cover all or most of these sentences
the

covered.

while differing greatly in number and tvpe of

additional sentences and. more importantiv.

differing in their perplexaty The probiem now becomes
the

"representative” sentences

estimation of perplexity given a set of

We propose three methods




The first 1s the maximum perplexity of a finite language
{6] which 1s obtained by sclving for the positive root X9

f
° Imax
Z N K=
K:il K
where Nk 1s the number of sentences of lengtii k
in the language, l‘.‘x 1s the length of the longest
sentence 1n the language. and Xg Is the desired

maximum perplexity

A second measure, which we will call the uniform

branching estimate of perplexity. 1s obtained by
assuming all transitions from a node 1n the grammar to

be equally hikely

The test

factor. uses the set of test sentences to estimate the

third measure, called set branching
average branching factur encountered by traversing the
FS network along the p ‘*hs

We use the geometric mean of the number of

corresponding to each
sentence.
branches at each node over all the test sentences as an

estimate of task perplexity.

All the above measures ignore the acoustic
similarity of the words. an important factor  Measures
including this factor have been proposed. see. for

example. [3].

S RECOGNITION ACCURACY AND
GRAMMATICAL CONSTRAINTS

In this
performance using grammars differing in the degree to

section. we compare recognition

which they constrain the set of allowable word
sequences. We began with a grammar designed to cover
a structural subset of the Email sentences, the

commeands A goal of this grammar was (o maximize

coverage of these sentences plus logical extensions

suited to the Email task environment. Equally important
in the design of this grammar was the minimization of
"over—generation”, 1.e.. the generation or acceptance of

many ungrammatical sentences.

Our interest i1n grammars is broader than simply
improving performance on a given task In addition. we
would like to investigate the trade-off in performance
versus over —generation. and to estimate performance on
more difficult tasks. 1 e, tasks requiring a larger number
the

therefore designed a second grammar for the commands

of choices at various points 1n grammar We

a grammar with greater perplexity Similarly. we

designed two grammars differing 1n perplexity for the
entire set of sentences (commands as well as questions)
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5.1 Integration of Grammatical Constraints in the
Recognition System

We approached the implementation of a grammar 1n

our recogmition system 1n two steps
task
This description was

First we created a

description of the Email language 1n a modified

context-free notation based on
the 100 sentences mentioned earhier. and was designed
to capture generalizations of the
them.

this
recognizer that provide the corresponding grammatical
These

capturing

linguistic phenomens

found 1n Second. we created tools that

transformed description 1nto structures in our

constraint. tools provide us with a general

facility for in our recognition svstem an
approximation of any language expressible in context-
free rules. We choss to i1mplement the constraints in
the recognition system in the form of a finite automaton

(FA) similar to those described 1n {4] and [1])

At the first stage 1n generating a grammar. we use
a context-free notation augmented with variables in
order to simplify the process of descriting a language
For example, this notation would allow a rule that says
e noun phrase of any number can be replaced by an
article the

ordinary context-free notation would require two rules

and a noun of same number, whereas
that are i1deatical except that one would be for singular

number and the other for plural.

Qur system first translates the augmented notaticn
into ordinary context-free rules and then constructs a
While 1t 1s true that context-
which
finite automata cannot. finite automata can approximate

FA based on these rules.
free grammars can accept recursive languages
recursion by setting upper limits on the number of
ievels of recursion allowed
task

sentences do not ordinarily use more than a few levels

Such an approximation :s

reasonable for most languages. since spoken

of recursion

In our recognition system. the automaton 1s used
as follows Associated with each transition in the FA s
a hidden-Markov word model that is used to compute
the the

occurrence of the word at that place in the grammar

probability of a spectral sequence given

The recognition algorithm with this grammar 1s orn.v
slightly different from the version of the algorithm the:
allcws any sequence of words {2]). For each 10 ms frame
of the input speech. the scores for all the word modeis
in the FA network are updated according to & modif:ed
Baum-Welch algorithm. The score for the start sta'e cf
the FA 1s unity and the score for every other FA state
1s simply the maximum of all the word model scores thet
enter the state along FA transitions This state score

1p turn. 1s propagated to the beginning of all the wcra

;




models on transitions leaving the state, to be used as
the new 1nitial score for those models In this way the

recognizer only considers grammatical sequences of

words. Maintained throughout this scoring process are
traceback pointers that indicate for each state and each
time the word model that produced the best score to
enter the state Once an utterance is thus processed. it
1s a simple matter to follow these pointers back through
the network to find the highest scoring sequence of

words.

One potential difficulty with a FA grammar for
the that.
computation 1s proportional to the number of transitions
in the FA.

complex languages.

recognition stems from fact ordinanly.

This number can become quite large for
However. in our experience with
grammars for the Email task. a simple time-synchronous
with  pruning [5] the
computation to less than that for the aigorithm that

does not use a grammar, mithout affecting performance.

search effectively reduces

5.2 Description of the Grammars and Methodology

We compare here the effects on performance of
grammars differing in which set of sentences they are
intended to cover (the full set of test sentences or the
commands only) and along a dimension we call tight-
loose. which refers to an estimate of how much over-
generation 1s the “Tight"
grammars have very little over—generation (generation of
sentences that and,
because of these tighter constraints. tend to have fewer
choices at various points in the grammar, 1e., smaller

produced by grammar.

are considered ungrammatical)

perplexity. "Loose” grammars. on the other hand. have a
great deal of over—generation and greater perplexity
(larger sets of choices at various states). The loose
grammars developed here are loose in that, for example,
case or semantic agreement s

no number, tense.

required.

The grammars we have investigated so far include
a tight and a loose grammar for commands (COM-T and
COM-L, respectively) and a loose grammar that covers
both commands and gquestions (SENT-L). In addition, we
have used another grammar that 1s tighter than SENT-L
(and hence 13 called SENT-T). but only in aspects that
would otherwise put inte similar grammatical distribution
For example, singular

large sets of minimal pairs

versus plural nouns, the cardinals versus ordinals, or
verb tenses all involve large sets of acoustically similar
items
the grammar

member of the pair can be substituted for the other

This fact can pose a problem for recognition 1if

ellows many sequences :n which one
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On the other hand, distinguishing verbs on the basis of
which they take perplexity without

necessarily reducing the number of acoustically similar

objects reduces

competing words

Table |
grammars investigated

shows the relevant attributes of the
For comparison. the results for
no grammar (the trivial] grammar that allows any lexical
The table

the number of arcs (a rough measure of sice.

item to occur anywhere) are also inciuded
includes
and 13 related to computation time). the three estimates
of perplexity (Maximum Perplexity. Test Set Branching
Factor. and Uniform Branching) This table also shows
the number of words and number of sentences on which
each grammar was tested, and the performance for each
Word accuracy here 18 computed as the sum of all errors
(insertions + deletions + substitutions) divided bv the
sum (total words + insertions). Sentence accuracy 1s
also 1ncluded in order to show that a few percentage
points difference 1n word accuracy can result 1n much
larger differences 1n the number of correctly recogmized
sentences, a number that is no doubt very important to

potential users.

Since we had used 30 of the 100 test sentences in
previsus experiments and modified our system as a
function of those results, we used only the subset of 7C
sentences for the ' performance

remaining figures

reported here. In order to compare the tight and loose

versions of the grammars, performance was assessed
using the intersection of the sentences parsed by each
grammar. Results are based on using the phone-left—

and-right word-modei discussed in (2]

5.3 Results and Discussion

Figures 2a (commands only) and 2b (commands and
questions) show graphically the word accuracy figures of
Table [ associated with each grammar  Performance s
plotted as a function of the perplexity estimates used
As can be seen. these grammars differ in their effects
on performance. Further, when two grammars that cover
the same set of sentences are compared (COM-T versus
COM~L or SENT-T versus SENT-L), the more constrained

grammar has significantly better word accuracy than the

less constrained one tighteming of the command
grammar mproved performance from 955% to 98 4%
tightening of the sentence grammar improved

performance from 96.2% to 98.2% Word accuracy again

deletions and
that

into account acoustic similaritv

errors all insertions.
Further, 1t

constraints that take

includes as

substitutions appears grammatical




Sord Accuracy (%)

TABLE I

Properties of the Grammars

GRAMMAR COM-L  COM-T SENT-L SENT-T NONE
Number of arcs 838 7187 2547 3771

Maximum Perplexity 58 19 75 80 334
Test Set Branching 40 18 47 31 334
Uniform Branching 18 9 22 19 334
Words in test set 183 183 438 438 492
Sentences 1n test set 27 27 63 63 70
Sentence accuracy 72.9% 90.1% 80.5% 90.25 38.7%
Word Accuracy 95.5% -98.4z 96 .2% 98 .2% 86.67%

Comparison of the various grammars used for the commands (tight
coverage, COM-T: loose coverage, COM-L) and the commands plus
questions (tight coverage, SENT-T. loose coverage, SENT-L). Word
accuracy here is computed as (insertions + deletions + substitutions)
divided by (total werds + insertioms).

Word Error Rate (%)

(2) ®)
99 ———be e et 99 ——— e
1 1.5 _ b -4 1.5
= e
~— 3 a2 [ ]
98 g : E 98+ e
E]
. 25 & 3 A Iy
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Figure 2: Performance with Grammars. Plotted is performance, (insertions + deletions + substituticns)

divided by (number of words + insertions), as a function of perplexity as estimated by the
miform *~anching assumption (X), the test set branching factor (squares), and the maxizup
(a) The tightly constrained command grammar (COM-T) and its loose

perplexity (circles).
(b) The tightly constrained sentence grammar (SENT-T) and its locse

counterpart (COM-L).

counterpart (SENT-L), which considers acoustic similarity.
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improve performance more than those that do not for
comparable estimated perplexity the SENT-L grammar
improves performance more than its estimated perplexity
would predict if acoustic similarity had not been an

important factor

An analvsis of the recognition errors using these
various grammars reveals that. in general. acoustically
similar 1tems are confused It does not appear that
function words are more often involved in the errors
than content words. A large percentage of our errors
{32% for SENT-T) involve “the”’ and "a’. which happen to
be function words However. no other function words
show this pattern. We believe that “the” and “a” show
up more often in the errors NOT because they are
function words, but because they are (1) acoustically
similar, (2) have similar grammatical distributions. and
(3) are very frequent words 1n these sentences.
Assuming that we cannot change their acoustic similarity
or their lexical frequency. improving performance on
these words requires a more constrained specification of
their distribution in the linguistic model. It 1s possible
that semantic, pragmatic or discourse models couid
separate the two distributions, given a well-defined task
environment.

6 CONCLUSIONS AND FUTURE
RESEARCH

We have implemented and tested methods of
combining grammatical and acoustic knowledge sources
1n our recognition algerithm. We find that the use of
grammatical constraints can decrease the error rate by
a factor of more than six. This result corresponds to a
word accuracy (counting all insertions, substitutions and
deletions as errors) of more than 98% for the Email
task. Reducing the number of words considered by the
recognizer boosts performance. even when the amount of
traiming per word 1s fixed. We have presented various
estimates of grammatical perplexity and shown that
performance 1mproves as estimated perpiexity decreases
for a given task. Our experience with a grammar that
focuses only on syntactic constraints i1n acoustically
confusable portions of the grammar demonstrates the
importance of acoustic similarity n predicting
performance accurately and 1n 1mproving recognition
performance
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Abstract

In this paper, we describe BYBLOS, the BBN continuous
speech recognition system. The system. designed for large
vocabulary applications, integrates acoustic, phonetic, lexical,
and linguistic knowledge sources to achieve high recognition
performance. The basic approach, as described in previous
papers (1, 2]. makes extensive use of robust context-dependent
models of phonetic coarticulation using Hidden Markov
Models (HMM). We describe the components of the BYBLOS
system, including: signal processing frontend, dictionary,
phonetic mode! training system, word model generator,
grammar and decoder. In recognition experiments, we
demonstrate consistently high word recognition performance
on continuous speech across: speakers, task domains, and
grammars of varying complexity. In speaker-dependent mode,
where 15 minutes of speech is required for training to a
speaker, 98.5% word accuracy has been achieved in continuous
speech for a 350-word task, using grammars with perplexity
ranging from 30 to 60. With only |5 seconds of training
speech we demonstrate performance of 97% using a grammar.

1. Introduction

Speech is a natural and convenient form of
communication between man and machine. The speech signal,
however, is inherently variable and highly encoded. Vast
differences occur in the realizations of speech units related to
context, style of speech, dialect, talker. This makes the task of
large vocabulary continuous speech recognition (CSR) by
machine a very difficult one. Fortunately, speech is also
structured and redundant: information about the linguistic
content in the speech signal is often present at the various
linguistic levels. To achieve acceptable performance, the
recognition system must be able to exploit the redundancy
inherent in the speech signal by bringing multiple sources of
knowledge to bear. In general, these can include: acoustic-
phonetic, phonological, lexical, syntactic, semantic and
pragmatic knowledge sources (KS). In addition to designing
representations for these KSs, methodologies must be
developed for interfacing them and combining them into a
uniform structure. An effective and coherent search strategy
can then be applied based on global decision criteria. Practical
issues that need to be resolved include computation and
memory requirements, and how they could be traded off to
obtain the desired combination of speed and performance.

In BYBILOS, we have explored many issues that arise in
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designing a large and complex system for continuous speech
recognition. This paper is organized as follows. Section 2
gives an overview of the BYBLOS system. Section 3
describes our signal processing frontend. Section 4 describes
the trainer system used for phonetic model knowledge
acquisition. Section 5 describes the word model generator
module that compiles word HMMs for each lexical item.
Section 6 describes the syntactic/grammatical knowledge
source that operates on a set of context-free rules describing
the task domain to produce an equivalent finite state automaton
used in the recognizer. Section 7 describes the BYBLOS
recognition decoder using combined multiple sources of
knowledge. Finally, Section 8 presents some figures and
discussions on BYBLOS recognition performance.

2. Byblos System Overview

Figure 1 is a block diagram of the BYBLOS continuous
speech recognition system. We show the different modules
and knowledge sources that comprise the complete system, the
arrows indicating the flow of module/KS interactions. The
modules are represented by rectangular boxes. They are,
starting from the top: Trainer, Word Model Generator, and
Decoder. Also shown are the knowledge sources, which are
represented by the ellipses. They include: Acoustic-Phonetic,
Lexical, and Grammatic knowledge sources. We will describe
briefly the various modules and how they interact with the
various KSs.

Acoustic-Phonetic KS

The Trainer module is used for the acquisition of the
acoustic-phonetic knowledge source. It takes as input a
dictionary and training speech and text, and produces a
database of context-dependent HMMs of phonemes.

Lexical KS

The Word Model Generator module takes as input the
phonetic models database, and compiles word models phonetic
models. It uses the dictionary - the lexical KS, in which
phonological rules of English are used to represent each lexical
item in terms of their most likely phonetic spellings. The
lexical KS imposes phonotactic contraints by allowing only
legal sequences of phonemes to be hypothesized in the
recognizer, reducing the search space and improves
performance. The output of the Word Model Generator is a
database of word models used in the recognizer.




Grammatical KS

More recently, we have been working on rcprcscntal.ion
and integration of higher levels of knowledge sources into
BYBLOS. including both syntactic and semantic KSs. By
incorporating both of these KSs into BYBLOS in the form of a
grammar into our recognizer, we demonstrate mproved
recognition performance. In Section 6, we describe the
Grammatical KS in more detail.

Speech Text
Training
Trainer
______________ Database of .. Phonetic
Word Model phonetic Modeis Dictionary
Compilation
Word Mode!
Generator
Databass of
.................... .
Recognition Word Models I
Speech __,| Decoder | _» Word
input Sequence

Figure I: BYBLOS System Diagram.

3. Signal Processing and Analysis Component

The BYBLOS signal processing frontend performs
feature extraction for the acoustic models used in recognition.
Sentences are read directly into a close talking microphone in a
natural but deliberate style in a normal office environment.
The input speech is lowpass filtered at 10 kHz and sampled at
20 kHz. Fourteen Mel-frequency cepstral coefficients (MFCC)
are computed from short-term spectra every 10 ms using a 20
ms analysis window. This MFCC feature vector is then vector
quantized to an 8-bit (256 bins) representation. The vector
quantization (VQ) codebook is computed using the k-means
clustering algorithm with about S minutes of speech. We
perform a variable-frame-rate (VFR) compression in which
strings of up to 3 identical vector codes are compressed to a
single observation code. We found this VFR procedure speeds
up computation with no loss in performance.

4. Training/Acquisition Of Phonetic
Coarticulation Models

The training system in BYBLOS acquires and estimates
the phonetic coarticulation models used in recognition. Given

‘and corresponding text transcription.

that we modei speech parameters as probabilistic functions of a
hidden Markov chain, we make use of the Baum-Welch (also
known as the Forward-Backward) algorithm [3] to estimate the
parameters of the HMMs automatically from spoken speech
For each 1raining
utterance, the training systern takes speech and text, and builds
a network of phonemes using the dictionary. It first builds the
phonetic network for the word by using the phonetic
transcription provided by the dictionary. The phonetic network
is expanded into a triphone network so that each arc
completely defines a phonetic context up to the triphone.
These triphone networks of the word are then concatenated to
form a single network for the sentence, which’in general can
take into account within word as well as across-word
phonological effects. The training system then compiles a set
of phonetic context models for each triphone arc in the
network. [t then runs the forward-backward algorithm to
estimate the parameters of the phonetic context models. The
Trainer operates in two modes: speaker-dependent and
speaker-adapted. Associated with these two modes are two
distinct methods for training the parameters of the hidden
Markov models described below.

Speaker-Dependent

This is the algorithm used 10 find the parameters of the
HMMs that maximizes the probability of the observed data
given the model. This method produces HMMs that are finely
uned to a particular speaker, therefore in general would work
well only for this speaker. Typically about 1S minutes of
speech from a speaker is required for speaker-dependent
training.

Speaker-Adapted

This is a new method of training that transforms HMM
models of one speaker to model the speech of a second speaker
(4]. This procedure estimates a probabilistic spectral mapping
from a well-trained prototype speaker to a new speaker. Using
this method it is possible for a new speaker to uscd the system
with as little as 15 seconds of speech.

5. Word Model Generator

Prior to recognition, word HMMs are computed for each
word in the vocabulary. The word model generator takes as
input two objects: a database of phonetic HMMs as obtained
in training, and a dictionary that contains phonetic spellings for
cach word. For each phoneme in each word of the lexicon, it
first finds in the phonetic HMM database all the context
models that are relevant to this phoneme in its particular
phonetic environment. It then combines this set of phonetic
models with appropriate weights to produce a single HMM for
cach phoneme in the word. This combination process saves
computation by precompiling the many levels of phonetic
context models that can occur for a given phonetic context into
a single representation. The output of the word model
generator is a database of word HMMs serving as the input to
the decoder.




6. Grammatical Knowledge Source

To solve the CSR problem requires major advances in
two areas: acoustic modeling and language modeling. A good
acoustic model is essential in making fine phonetic distinctions
when needed. However, it is not sufficient by itself to solve
the CSR problem. In a complex task with large vocabulary
where the number of hypothesized word candidates is large,
the probability for acoustic confusability can be high, and the
recognizer could make errors. A conceptually simple yet
effective way to restrict the number of words that are allowed
to be hypothesized, and therefore decrease probability of
acoustic similarity, is to incofporate a grammar into the
recognizer. It is well known that recognition performance
improves as vocabulary size decreases. Similarly, when
syntactical information is used to reduce the number of words
that can legally follow a given sequence of words, a recognizer
is expected to make fewer errors. The purpose for using a
grammar then, is to improve recognition performance, with an
added benefit of reducedcomputation.

Grammar Design and Implementation

We approach the implementation of a grammar in
BYBLOS in two stages. First, we create a description of the
task domain language using a modified context-free notation.
Typically this description is based on a representative set of
sentences that characterizes the task domain, and is designed .
capture generalizations of the linguistic phenomena found in
them. Second, we use a tool that transforms this description
into structures in our recognizer that provide the corresponding
grammatical constraints This tool provides us with a general
facility for capturing in BYBLOS an approximation of any
language expressible in context-free grammars (CFG)
expressed as context-free rules. We elected to implement the
grammatical constraints in the form of a finite state automaton
(FA) similar to those described in [5].

At the first stage in generating a grammar, we use a
context-free notation augumented with variables in order to
simplify the process of describing a language. For example,
this notation would allow a rule that says a noun phrase of any
number can be replaced by an article and a noun of the same
number; ordinary context-free notation would require two rules
that are identical except that one would be for singular number
and the other for plural.

Our systemn first translates the augmented notation into
ordinary CFGs and then constructs a FA based on these rules.
Because context-free grammars can accept recursive languages
and a FA cannot, recursion is approximated in the FA by
limiting the number of levels of recursion. Such an
approximation is reasonable for most task languages, since
spoken sentences do not ordinarily use more than a few levels
of recursion.

7. Recognition Search Strategy

Once the FA is compiled from the context-free
description of the task domain, it is ready to be used in the
decoder. An important characteristic of a recognizer is the
search strategy that is used to find the word sequence that best

matches the input speech. We believe that an optimum search
strategy avoids making local decisions; the search decision
should be made globally, based on scores from all the KSs.
One such search paradigm is the one used in BYBLOS: the
search is made top down, linguistically driven, with tightly
coupled KSs.

The FA is convenient for deploying such a search
strategy. It is used as follows in our recognizer. We associate
with each transition in the FA a hidden Markov model for the
word. This model is used to compute the probability of the
acoustic event (sequence of VQ spectra) given the occurrence
of the word at that place in the grammar. Before the start of
recognition, the initial state of the FA where a legal sequence
of words can begin is initialized to unity, and all the other
states are initialized to zero. For each 10 ms frame of the input
speech, the scores for the states in all the words in the FA
network are updated using modified Baum-Welch algorithm
[2]. In addition to state updates within a word, a word can
have a score propagated to its initial state from its best scoring
predecessor word. This simple state update operation is
repeated every 10 ms for each FA transition until the end of the
utterance is reached. The decoder output is then computed by
tracing back through the FA network to find the highest
scoring sequence of words that end in the terminal state of the
FA.

One potential problem associated with using a FA
grammar for recognition is that computation is expected to be
proportional to the number of transitions in the FA. This
number can be quite large for complex languages. However, in
our experience with different grammars in our recognizer, we
find that a beam search effectively reduces the computation to
a very manageable level while maintaining the same
performance as that of an exhaustive search.

8. Byblos Recognition Performance

In | 4j, we presented word recognition results for a 334-
word electronic mail task. In speaker-dependent mode, we
demonstrated performance of 90% across several speakers
without the use of a grammar (i.e., branching factor of 334).
Since then, we have tested the system along many dimensions:
two task domains, FA grammars with varying perplexities,
varying amounts of adaptation speech, and different speaker

types. The results are tabulated in Figure 2. Below we
describe the different conditions in more detail.
Task Domains

The two task domains tested are: Electronic Mail

(EMAIL) and Naval Database Retrieval (FCCBMP). Both
tasks have vocabulary sizes of approximately 350 word (334
for EMAIL, 354 for FCCBMP). A description of the fask
domain language was created using CFG. The CFGs were
designed to capture generalizations of linguistic phenomena
found in example task domain sentences.

Grammars
Two finite state grammars were generated for each task

domain: Command and Sentence. The Command Grammar in
each case was designed to cover only the command subset of




EMAIL FCCBMP
Grammar/ eJ [
grplexity Command Sentence{Command|Sentence
Tralning (20) (30) (22) (30)
Time
15 minute 98.4 98.8 99.6 99.5
2 minute 97.9 94.9 96.6 96.2

Figure 2: BYBLOS Recognition Results.

Two task domains (EMAIL and FCCBMP),

two grammars for each task

(Command and Sentence), and varying

amounts of training speech

(2 minutes and 15 minutes). Also shown are
maximum perplexity measures for the grammars.

the language; the Sentence Grammar was designed to cover all
of the language, which included both command and question
type constructs. The maximum perplexity measures of the
grammars, as proposed in [6], are shown in Figure 2. In both
tasks, the sentence grammars have a higher perplexity than
their command counterparts

Adaptation Time

As described in Section 2, The BYBLOS operate in two
modes, speaker-dependent and speaker-adapted. In speaker-
dependent mode, 15 minutes of training speech is required for
a speaker. This mode in general will give word accuracy in the
98 5+ range. In the speaker-adaptive mode, anywhere from 2
minutes down to 15 seconds of speech from a new speaker is
neeled o "adapt” the HMM parameters to the new speaker.
The performance in this case 1s 97%.

Speuaker Type

We have tested BYBLOS on several speakers with
different dialects, including a female speaker, a non-native
speaker, and 3 naive (uncoached) speakers. The recognition
results for these speakers showed little deviation typical male
speakers of standard American dialects.

9. Summary

We have presented BYBLOS, a system for large
vocabulary continuous speech recognition. We showed how
we integrate multiple sources of knowledge to achieve high
recognition performance. In recognition experuments, we
demonstrated consistent performances across task domains,
grammars, adaptation time, and speaker type.

We are currently working to improve various aspects of
the system, including: a real time implementation of the
recognizer, search strategy, acoustic modeling, and language

modeling. In the future, we plan to work on integration of
speech and natural language for speech understanding
applications.
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The DARPA 1000-Word Resource Management Database
for Continuous Speech Recoguition
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ABSTRACT

A database of continuous read speech has been designed and
recorded within the DARPA Strategic Computing Speech Recog-
mtion Program  The data 1s intended for use in designing and
evaluating algorithms for speaker-independent. spraker-adaptive
speech, and speaker-dependent speech recognitiin. 'he data con-
sists of read <entences appropriate to a naval resource manage-
ment task built around existing interactive database and graphics
programs. The 1000-word task vocabuolary is intended to be log-
scally complete and habitable  The -latabase. which represents
over 210010 recorded utterances from 160 talkers with a varietv of
dialects. includes a partition of sentences and talkers for rzaiming
and for testing purposes

1 Introduction

The development of robust, celiable speech recognition
svstems depeuds on the availability of realistic. well-designed
databases; the technical and commercial community can bene-
fit greatly when different svstems are evaluated with reference to
the same benchmark material. The DARPA 1000-word resource
management datahase was designed to provide such benchmark
materials. it consists of consistent but unconfounded training
and test materials that sample a realistic and habitable task do-
main, and cover a broad range of speakers. The goal of this
database collection effort was to vield a set of data to promote
the developme.t of useful large vocabulary, continuous speech
recognition alyorithms  We hope that this description will serve
both to publicize the existence of the database and its availability
for use in benchmark tests, and to describe the methods used in
its construction

The database includes materials appropriate to a npaval re-
saurce management task  The 1000 vocabulary iters and 2800
resource management sentences are based on interviews with
naval personnel familiar with 2r existing test-bed database and
accompanying software to access and display information. 160
subjects, representing a wide variety of US dialects, read sentence
materials including 2 “dialect sentences” (i.e., sentences that con-
tained many known dialect markers). 1.} “rapid adaptation sen-
tences” (designed to cover a variety of phonetic contexts), 2800
“resoutce management” sentences and 600 “spell- mode” phrases
{words spoken and then spelled). The database 1s divided into
a speaker-independent part and a speaker dependent part; both
are divided into traiming and test portions  The test portions
are further divided into equal sub parts for initial testing during
svstem development (“develapment test™), and later evaluation
{ ‘evaluation test™)

Jared Bernstein
SR/ Internahional
Menlo Park, CA 94025

David S. Pallett
National Bureau of Standards,
Gaithersburg, MD 20899

The methods build on and extend work by Leonard (3],
Fisher et al. (2] and Bernstein, Kahn and Poza [t{. Orginal
contributions of the current work include methods for designing
the vocabulary and sentence set, speaker selection, and distribu-
tion of sentence material among the speakers

The database design and implementation included: specifi-
cation of a realistic and reasonable task domain, selection of a
habitable 1000-word vocabulary, construction of sentences to rep-
resent the syntax, semantics, and phonology of the task. selecticn
of a dialectally diverse set of subjects, assignment «.f subjects te
sentences. recording of the subjects reading the <enrences 1nd
unplementation of a syvstern for the distribution and use o the
database These tasks are deseribed 1 more detail bel

2 Task Design

2.1 Task Domain Specification

We chose a database query task because it is a natural plare
to use speech recognition technology as a human-machine in
terface. To define realistic constraints, and allow for eventnal
demonstrations of this technology, we based the task on the use
of an existing, unclassified test-bed datahase and an interactive
graphics program  The chosen task has the additional advantage
that it has been the basis of much research and development
in the natura: language understanding commumty The value of
speech recognition technology is enhanced by its integratin with
a natural language understanding component.

The current phase of the DARPA speech recognition pro
gram specifies a 1000-word vocabulary. The test-bed databace
however. has a substantially larger vocabulary size, and theref .ce
had tn be restricted. Our philosophy in selecting a 1008 word
subset was to limit the number of database fields. rather than ..
linut the wavs a user might access the informatinn  The ficlds
selected include information about varous types of ships and as
sociated properties: locations, ptopulsion types, fuel. sizes, fleet
identifications, schedules. speeds, equipment avattabdity and <ra
tus. The interactive graphics commands include various wavs f
displaving maps and ship locations.

An initial set of 1200 resource management sentences came
from: (1) preliminary interviews with naval personnel fanuliar
with the test-bed database and the software for accessing it. and
(2) systematic coverage of the database fields, subject to review
by the naval personnel in follow-up interviews These sentences
were intended to provide wide coverage of the svntactic and se
mantic attributes of expected sentences, rather than expected
relative frequencies of such sentences  Sentences were n.t fil
tered on the basis of “grammaticality™. and therefure include,
for example, instances of the deletion, lack of number agrecment




W N & ah oh G B Gl g O o G of oD o an

between subject and verb, and manv cases of etlipsis (i e, ortussion
of words required for strict grammaticality but not for compre-
hens :n. as in the deletion of the second instance of speed in [s
the ;' r&'s speed greater than the 4jar’s speed.

2.2  Vocabulary

The vocabulary was deterrmuned by collecting all words in the
1200 initial resource management sentences [f eventual users are
expected to stay within the defined vocabulary. it should be. 1n
some sense, grammatically. logicallv and semantically complete.
Therefore, words were added so that the vocabularv included. (1}
hoth singular and plural farms of nouas. (2) words required [or
all cardinal numbers less than a mullion, {3) words required for all
ordinals needed fur dates. (1) inlimtive. present and past partici-
ple verb forms. (3) all months and days of the week  {n addition.
items were added for semantic “completeness™  For example,
since high occurred. low. higher highest. lower, and lowest were
added The vocabulary was then completed by adding enough
open class items to cover 33 perts. 26 other land Licatnns, 26
bodies of water, and 00 ship names {in both nominative and
possessive forms)

Since these sentences were to be read by naive subjects
not famuliar with the task domain or the database, the vacab:
ulary was revised: some open class items were replaced with
others thought to be easier to pronounce {Sea of lapan for Sea
of Okhotsk). and spellings of snme technical terms were changed
to clanify the pronunciation { TASSEA! for the acronym TASM)

2.3 Sentence Materials

The 1200 initial resource managenient sentences had some
disadvantages' they included manv slight variations of the same
sentence (e g . only a ship name changed ot the deleted), and the
vocabulary items were not evenlv represented (the naval person-
nel interviewed tended to use only nne or two ship names, for
example. in all their examples) Further, we felt that far more
than 1200 sentences would be needed to represent the vocab-
ulary items and phonetic ~ontexts of the task Therefore, the
initial 1200 sentences were red:iced to a set of 950 unique surface
sernantic-syntactic patterns that were then used to generate 2800
sentences with excellent coverage of the vocabulary items

The replacements included the replacement of instances of
specific ship names with the variable ‘shipname | and of manv
instances of the with the variable ‘optthei (to indicate optional
the). About 300 such variables (indicated here by square brackets
to distinguish them from vocabulary items) were defined and and
used to replace specific instances.

In the two following examples, included to give an idea of the
degree of abstraction involved, the variable definitions are: "what-
190 = what 13, what's; 'shipname'sl = Kirk's, Foz's etc . ‘gross-
averagel => gross, average: {long-metrici = long. metric; {show-
hist! = show, list, show me, etc.; ships = carriers, cruisers, etc |
water-place] = Indian Ocean. Sea of Japan, etc.. date: = AMarch
{th, 2 June 1987, etc.

1. iwhat-1s, [optthe’ [shipname’s. gross-average displacement

2. Sshow-list aptthe  ships an water-placr ddats

After replacement of instances with vaniables i the 1200
sentences. duplicates were removed, vieldmg 950 seprence pat
tecns  The patterns were crdered such that those with the most
digne wotds o classes appeared lirst ne Uie st

The 950 sentence patterns generated 2800 sentences in three
passes of substitution of an instance for each variable  \ connter
associated with each variable determmuned which imstance <honld
be used for each substitution ‘The patterus thus generated a set
of sentences that svstematically covered the vacabulary items
After removal of duplicates. there were 2835 seutences The 35
longest sentences were remaved; the remaining 2800 were hand
edited to remove infelicities that could arise from the procedure
(such as one carriersgencrated from icardinal] {ships') The first
600 sentences generated were designated training sentences. the
ordering of the patterns and the generation procedure resuited
goad coverage of the vocabulary: these 600 sentences cover 97%
of the vocabulary items.

[n hetween the concept of speaker-independence (requiring
no new data from new speakers) and speaker-dependence (requir.
ing a great deal of data from each new speaker) is the concept of
speaker-adaptation (requiring a small amount of data from each
new speaker). For use in speaker-adaptation technologies we have
provided 10 “rapid adaptation” sentences, designed to provide a
broad and representative sample of the speaker’s production of
phonenies and phoneme sequences of the 2800 resource manage-
ment sentences. The goal was to provide embedded sets of one.
two. five and ten sentences that each had the best caverage (fir
its size) of the relevant phonermic material. Thus. the first is the
hest adaptation sentence. the second sentence, when added to
the first. is the best combination of two sentences according to
the same coverage criteria. and so on up to ten.

A coverage score was calculated for each phoneme and
phoneme pair in a sentence based on the observed frequency f
the phoneme or phoneme pair in the 7800 sentences, but breadth
of coverage was promoted by dividing the observed frequency ¢f
each phoneme or phoneme pair by a factor (we used 3.0) each
time it wu» used in the material currently having a score calcn
lated. In order to inhibit the tendency for the longest (and most
difficult to read) sentences from being selected. we normalized by
dividing the score by sentence length. The resulting adaptation
sentences are listed in the appendix.

For the “spell-mode” utterances, 600 words were selected
from the 1000 vocabulary items; the 400 words not selected were
inflected variants of those chosen.

3 Subject Selection and Recording
3.1 Subject Selection

On the basis of demographic and phonetic characteristics.
16) subjects were selected from a set of 630 adults who had
participated in an earlier database effort [2]. These 630 native
speakers of English (70% male, 30% fernale) with no apparent
speech problems formed a refatively batanced geographic samyle
ol the Unired States Ns a group. the subjects were voung, well
educated and Wlate: A3%7 10 their twenties. 78S with a bacin
lors degree and 1% Black. Fach speaker was identified with e
o eight gevgraphie regions of ongin New Fogland, New Yook
Noethern, North Midland, Sonth Midland, Southern, Western
o Ares Brat tpeaple who moved aroand a bt winde growinge

)




Among other material, each of these 630 subjects had
recorded two dialect shibboleth sentences (i.e , sentences contain-
ing several instances of words regarded as a criterion for distin
guishing members of dialect groups). These sentences, inchided
in the appendix, were hand-transcribed and used to dertve a pho-
netic profile of each speaker as to phonnlogy, voice quality. and
manner of speaking The 630 speakers were automatically di-
vided into 20 clusters according to therr pronunciation of sev-
eral consonants, speaking rate, F0. and phonation quality. From
these 630 speakers (now identified by phonetic cluster, geographic
origin and demographic characteristics) 160 were selected for the
speaker-independent part of the database, and 12 for the speaker-
dependent part.

The 160 speaker-independent subjects were chosen to sat.
isfy the following constraints, in order: 1) even distribution of
subjects over four geographic regions (NE-NY, Midland, South,
North-West-or- Army) and over the 20 clusters derived from ob-
served phonetic characteristics; 2) 70% male, 30% female. These
constraints are satisfied in the subject selection, and each major
division of the database (training, development test and evalu-
ation test) have similar distributions across sex and geographic
origin.

The 12 speaker-dependent subjects were chasen to satisfy the
following constraints: 1) representation of each of the 12 largest
phonetic clusters; 2} seven male, five female; and 3) geographical
representation as follows: one each from New York and New
England, and two each from Northern, North Midland, South
Midland, Southern, and Western. Of the 12 selected speakers,
11 were from the speaker-independent part of the database, and
all were relatively fluent readers with no obvious speech problems.

3.2 Subject-Sentence Assignment

Both the speaker-independent and speaker-dependent parts
of the database are divided into sets for training, development
test and evaluation test.

In the speaker-independent training part of the database, 80)
speakers each read 537 sentences {10 resonrce management sen-
tences, the 2 dialect sentences. and 15 spell-mode phrases) 1600
distinct resource management sentences were covered i this part
of the database; anv given sentence was recorded bv two subjects
The distribution of sentences to speakers was arbitrary, except
that no sentence was read twice by the same sibject Each of
the 80 speakers read 135 spell-mode phrases, vielding 1201 pro-
ductinns coverimg Aok nngae words. Lach s’p\‘“ mode phr;\se m
this part was read bv 4 speakers

In the speakerandependent development test set and cval
nation test ser. M speakers each read 30 resouree management
centences. the 2 dialect ~entences, the 10 rapri adaptatvon sen-
tenees, and 15 spell-mode phrases 606 resouree managrment
sentencrs were randomly selected for each test and assigned to
the 1200 available productions (40 speakers times 311 sentences),
vielding two productions per sentence. as in the traiming phase
Sinilarly. in each test set. 150 spell mode phrases were selected
and assigned to the 600 available spell-mode productions.

The following table illustrates the structure of the speaker-
i .iependent part of the database The numbers indicate how
mauy sentences each subject read The total number of resource

management sentences covered hy each subset of the darabase
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is indicated in parentheses These are referred to as “tyvpes™ in
the table in distinction to sentence tokens, or productions by a
particular speaker In all, for the speaker-independent database,
9120 sentences were fecorded (1560 for traming, 2220 for develop
ment test, and 2281 for evaluation test) Note that. this he:ng the
speaker independent database portion, the traiming subjects do

not overlap with those in the test parts of the database

SPEAKER-INDEPENDFENT DATABASE
1 development | evaluation |
training test test )
No. Subjects 80 | 40 40 77“‘]
No. Sentences (types) \\
Resource Management | 40 (1600) ! 30 (600) | 30 (600) |
Dinlect H ()| 2 (2) | 2 {2) |
Adaptation 0 (0) | to {10) | 10 (10) !
Spell-mode 15 (300) | 1S (150} | 15 (150} '
EOTALS 87 (1902) | 57 (162) | s7  (782) ‘(
1 J

For the speaker-dependent training portion of the database,
each of 12 subjects read the 600 resource management train-
ing sentences, the 2 dialect sentences, the 10 rapid adaptation
sentences, and a selection of 100 spell-mode phrases. The 1200
spell-mode readings covered 300 word types, with 4 productions
per word.

In the speaker-dependent test portion of the database, these
same 12 speakers each read 100 resource management sentences
for the development-test part of the database and another 100
resource management sentences {or the evaluation-test part. as
well as 50 spell-tiode phrases.  From the 2200 resource man:
agement sentences not read in the training phase. two random
selections of 600 sentences were made, one for the development
test and one for the evaluation test portinn. Distributing these
over the productiuns available in each gives 2 utterances per sen-
tence. Similarly. two random selections of 150 wo-ds each were
made from the ponl of 600 spell-mode phrases for the devilop
ment and evalnation test sets  Distributing these over the 600
readings available vields | productions per woed

‘The following tahle illustrates the structure «f the speaker
dependent part of the datahase. Agam. the total number .f
different resource management sentences {“tvpes”) covered 1n
cach subset s indicated i parentheses after the nomber indh
In alt. for
the speaker-dependent database. [2.1 11 utterances were recorded
(8541 for teaining, 1800 for development test, and (800 for evalu:
ation test). As is appropriate for a speaker-dependent database.
the speakers in the tramning set are the same as the speakers i
the test set.

cating how many sentences were read by each sih ject

SPEAKER-DEPENDENT DATABASE

| | [ develapment ~vaination
training test \ test
I No Subjects T T T T 12
T
o !
| Na Sentences {typee) | [
Resmirce Management | 800 (600) ! 100 (600) i oo (snn)
Dialect | 2 {2) 0 i o o
Adapraton oan LT n my 0 (ny
Spell.snedn L0 (am 50 f1sn) 30 oam
1
i | !
roTaLs L T2 am2i 150 (TH0) 180 1 T50)
|




3.3 Recording Procedure

The utterances were digitally recorded 1n a sound-isolated
recording booth on two tracks: one from a Sennheiser HMD4114
headset noise-cancelling microphone, and the other from a2 B&K
4165 one-half inch pressure microphone positioned 30 cm from
the subject’s lips, off-center at a 20 degree angle The matenal
was digitized at 20,000 16-bit samples per second per channel,
and then down-sampled to 16,000 kHz.

Prompts appeared in double-high letters on a screen for the
subject to read. After the recording, both the subject and the
director of the recording session listened to the utterances and
re-recorded those with detected errors. Any pronunciation con-
sidered normal by the subject was accepted.

4 Database Availability and Use

This database, which is intended for use in designing
and evaluating algorithms for speech recognttinn, is being made
available to provide (1) a carefully structured research resource,
and (2) benchmarks for performance evaluation to judge both
incremental progress and relative performance

At present only the data from the Sennheiser nucrophone
1s available. This material alone amounts to approximatelv 930
Megabytes (MB) of data for the speaker-dependent subset and
640 MB for the speaker-independent subset. with an additional
460 MB included in the spell-mode subset. The down-sampled
(16 kHz) data in Unix “tar” format (A250 hpt) can bhe made
available vn a loan. copy and return hasis

T provide benchmark test facilitiss. a st of procedures and
a umiform scoring software package have heen develnped at the
National Bureay of Standards (NBS) The scarig software im-
plements a dvnanmuc programmmg string alignment on the ortho-
graphic representations for the reference sentences and for the
system outputs. Comparable scoring necessitated agreement on
a standard orth.araphic representation for each vocabulary stem.
The scoring software and testing procedure are being used in the
DARPA program for performance evaluation, and are available
to the general public on request 4,

For those organizations wishing to determine and report per-
formance data correspending to that reported by DARPA pro-
gram participants. NBS can provide test material used in ) ARPA
benchmark tests 4! If the resuits are to he publiclv reported,
it is required that the summary statistics be obtamed using the
NBS scoring software. and that copies of system ontput for these
tests be made available to NBS.

5 Conclusion

For DARPA program participants. this database has proven
useful in the design and evaluation of speaker independent,
speaker-adaptive. and speaker-dependent speech recognition
technologies; we hope it will be useful to others as well  Sim-
ilarly, the methods devei-'ped for its design and collection should
prove useful in the development of similar datahases

We have described the characteristics of the DARPA 1000-
word resource management database the task do.main. the v
cabulary. the sentence materials. the subjects. the division into
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training and testing portions. We have also described the steps
involved in creating this database, including the recording pro-
cedure and new methods for designing the vocabulary and sen-
tence set, speaker selection, and distribution of sentence materi-
als among the speakers. [n addition, we have outlined procedures
for obtaining the database and for using it as a benchmark. Fur-
ther details on each of these areas will be made available with
the database.
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APPENDIX
Dialect-Shibboleth Sentences

1 She had your dark suit in greasv wash water all vear
2 Don't ask me to carrv an oy rag like that

Rapid Adaptation Sentences

U Show locations and C-ratings for all deploved subs that were
in their home ports April 3

2. List the crumsers in Persian Sea that have casualty reports
earlier than Jarrett's oldest one

3. Display posits for the hooked track with chart switches set to
their default valyes

4 What s England's estimated time of arrival at Townsville”

5 How many ships were in Galveston Mav 3rd?

6 Draw a chart centered around Fox using stereugraphic prejec

tion

7 How many inng tons s the average displacement of ships in
Bering Steait”?

3 What vessel wasn't downg:aded on training readiness dunng
Julv?

9 Show the same display increasing Ietter size to the maximum
value

17 Is Puffer s remaining fuel sufficient to arrive in port at the
present speed”
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ABSTRACT

Statistical language models has been successfully used to
improve performance of continuons speech recognition al-
gorithms. Application of such techniques is diflicult when
only a small training corpus is available. This paper
presents an approach for deaiing with limited training avail-
able from the DARPA resnurce management domain. An ini-
tial training corpus of sentences was abstracted by replacing
sentence {ragments ot phrases with variables. This training
corpus of phrase sequences was used to derive parameters
a Markov model. The probability of a word sequence is
then decomposed into the probability of possible phrase se-
quences and the probabilities of the word sequences within
each of the phrases.

Initial results obtained on 150 utterances {rom six speak-
ers in the DARPA database indicate that this language mod-
eling technique has potential for improved recognition per-
formance. Furthermore. this approach provides a [rame-
work for incorporating linguistic knowledge into statistical
language models.

1 INTRODUCTION

This papcr addresses the use of statistical language mod-
eling techniques in eontinnous speech recognition in the
DARPA 1000-word naval resource management application
domain (3]. This application involves the recognition of
“natural” speech queries to an interactive database system.
As will be discussed below, the “language” which will be
used is unknown and a large training corpus is not available.
Straightforward application of statistical language model-
ing techniques is therefore diflicult. [lowever, a language
model is required to obtain very good recognition perfor-
mance.

Langnage models provide a way of assigning likelihoods
Lo word sequences in a language. The combination of such a
measure with a measure ol the acoustic likelihood of a word
sequence has been shown to give good recognition perfor-

“I'hus research was supported by the Defener Advancerd Re-
search Projecta \gency under contract NOO0J9-R5-C.0423 momi-
tored by SPAWAR

38

mance in many applications. Several approaches have hren
successlully employed for languages of various complexity
and various sizes of training corpus (for example {2]).

In certain restricted domains. finite state grammars have
been used with considerable success (see {4] for example).
In this case. the likelihood of a word sequence is a binary
decision — a sequence is cither par<ed in the grammar or it
is not in the allowable language. The extent to which the
actual word sequences in the application are parsed by the
grammar is ltermed coverage. When the language is known
and not complex, the coverage is generally high and the
constraints are well modeled by the grammar.

In the case of large vocabuiaries (> 1000 words) and “nat-
ural” language input one approach taken is the specification
of formal grammars which describe the syntactic and se-
mantic constraints of the demain {6]. The important is<ue
is then the extent to which this grammar provides suffi-
cient coverage while ruling out invalid word sequences. It
has been found that it is difficult to achieve a high degree
of coverage however. Recognition performance is generally
high on sequences parsed by the grammar. lfoweve:, when
coverage of the valid word sequences is not high, then the
language model actually introduces errors by not allowing
valid word sequences.

To overcome the performance constraints imposed by
poor coverage. statistical language models can bhe used.
When a large training rorpus is available, the parameters
of a statistical langnage model can he determined. 1o the
extent that the training corpus is representative of the real
application, such techniques provide good performance 111
Furthermore, since no binary cecision as to the validity of
a word sequence is necessary, the method is less “brittle”
than the formal grammar techniques.

In the domain of interest in this paper, the language is
not sufficiently well defined to allow the use of a finite-
state grammar which both captures the constraints of the
domain and is of reasonable size. Furthermore, there is no
adequate training corpus for construction of - straightfor-
ward statistical model to characterize the word sequences.
Due to the natural language interface, a grammar describ-
ing the complete language is very complex. Also. it is difli-
cult 1o evaluate the extent to which any partic tlar gramnar
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Figure 1: Word sequence model

covers sentences of the ultimate application domain. The
complexity of the language suggests a statistical approach.
tHowever, since the application does not vet exist, a truly
representative training corpus is not available. Further-
more, we feel that due do heavy use of jargon and unusnal
sentence structure, any attempt lo use a training corpus
from another domain, such as general English text, would
be inefTective.

The approach described in this paper attempts to incor-
porate some linguistic knowledge of the structure of the lan-
guage into a probabilistic framework. Using this approach.
we will show very good performance can be obtained when
the algorithm is evaluated on sentences which are indepen-
dent of those used in construction of the statistical model.

In the next section, the basic structure of the model is
described followed y a description of the training method
employed. In Section 3. the results on six speakers {rom the
DARPA database are presented. Finally, Seclion 4 contains
a short discussion and concluding remarks.

2 APPROACH
2.1 Language Model Stracture

The principle goal in the design of the probabilistic lan-
guage model is to allow the estimatior. of robust model
parameters from the modest training corpus which is avail-
able. A Markov model used to generate word sequences
directly has too many parameters (the transition proba-
bilities) to be estimated reliably from the limited training
corpus. Dy considering a simpler model. which has fewer
parameters associated with it, robust estimates might be
obtainable. Furthermore, some linguistic structure can bhe
identified, and this structure is incorporated into the model.

The aiodel for the generation of a word sequence is com-
posed of two part (Figure 1). First, a sequence of phrase
variables ¢y, ¢, ..., is generated as a Markov chain. Then,
for each phrase ¢, a sequence of words n:!*} is generated,
independent of the phrases ¢,, j # 1. The probability of a
phrase sequence ¢y, ¢z, ... cn is

Prlcy,....cv) =

Pe(e)Priesey) - Prfes oo, v )

The probability of the phrase sequence and the word se-

quence wy, wa, ..., 1, is then
Priciv...iepowiy.ooywy) =
N
Z HPr(w"’[c.) Pr{c.leci,....eo)
Nauwlll N =t

where the sum is effectively over the possible segmentations
of the word sequence into the phrases. Note that since any
! rmight be a null ezpansion of a phrase, this represen-
tatron of the probability in fact has an infinite number of
terms.

Using this structure, we identify phrases based on syntac-
tic and sernantic components of the langnage. For exam-
ple. typical phrases include “open™ set classes such as ship
names or complex expressions such as dates. Also, to com-
plete the coverage of the language. single word phrases are
also allowed. Associated with each phrase is a small finitr
state grammar describing all possible ways that a phrase
can be expanded.

The parameters of the Markov phrase model are derived
from the training corpus. The probabilities Pr (w‘"{r,) as-
sociated with the transformation of phrases into word sub-
sequences arc assigned a priort. In this way, a small train-
ing corpus can be used to estimated the smaller number
of parameters of the Markov model without sacrificing the
robustness of the overall model.

2.2 Corpus

In the resource management application domain, the initial
training corpus consists of approximately 1200 sentences on
a vocabulary of about 1000 words which are thought to be
representative of the domain. These sentences were gener-
ated attempting to simulate the interaction of a person with
the interactive dalabase system. This database is [urtiier
described in .5} in these proceedings.

From these initial sentences. a set of approximately 1000
sentence patterns were generated. This process was car-
ried out manually. The goal was to incorporate linguistic
knowledge by replacing syntactically and semantically sirmi-
lar components of the sentences with phrase identifiers. For
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example, a typical sentence and ils corresponding paltern
is

What gas surface ships which are in Coral Sea are
SLQ-32 capable

== what {prop-typei surface lvessels| loptthat-are|
in |water-place| are |capability| capable

A phrase such as |optthat-arej can be expanded into the
finite state grammar

[opiihat-are] — (empty string)
—  which are

— that are

For each experiment, these patterns were partitioned into
a training and testing set. The testing set was not used in
the estimation of the model parameters. The test sentences
were generated from the test patterns by expanding the
phrases into word sequences.

2.3 DIarameter Estimation

For cach speaker, a set of 900 training patterns was cho-
sen which was disjoint of the patterns of the test sentences.
A first order Markov modei was constructed based on the
training patterns (the patterns included the context of the
sentence initial and sentence final boundary markers). The
transition probabilities were obtained from the relative fre-
quencies of phrases pairs in the training patterns, using
a simple interpofation rule to incorporate part of the ze-
roth order distribution. Interpolation is used to overcome
limitations of insuflicient training by assigning reasonable
nonzero probabiiities to all event. Specifically, if Fle,ic,-1)
is the relative frequency of ¢, following ¢, and F(c,) is the
relative frequency of ¢, then probability of a phrase ¢, is
assumed to be

Priclere. . eic1) = AF{cic, ) + {1 = M) F(c,)

where in these experiments A = 0.9 for all states. For
cach grammar associated with a phrase. a simple assump-
tion that all possible word sequences are equally likely was
made. Specifically, il there are m different non-null expan-
sions of a phrase c, then cach of these expansion wy, ... wg
is assigned a probability

1
Pr{uwy,...,welc) = (1 - 0,);1

where 0. is the probability ol a null expansion. For non-
optional phrases, #. = 0.

2.4 Decoding Method

The decoding algorithin used to gencrate the resuits is
based on Lhe algorithm presented in {2.3]. A hidden Markov
maodel approach is taken in which rontext-dependent tri-
phone models are trained using the “forward-backward”

algorithin.  Whole word models are constructed by con-
catenation of interpolated (by conlext) triphone models.

The statistical language model described above is com-
bined with these word models. Conceptually, cach tran-
sition in the Markov phrase model is replaced by a net-
work representation of the sub-grammar associated with
the phrase (with branching probabilitics at each of the
nodes). Each arc in the grammar is replaced by the hidden
Markov model [or the word associated with the arc. There-
fore, the entire model can be thought of a one large hidden
Markov model.

The decoding algorithm attempts to find the maximum
likelihood phrase sequences ¢,, ... ey and the word expan-
sions w!') of each phrase. The output word sequence is then
the concatenation of the wl').

3 RESULTS

Initial experiments were conducted on a speaker not in-
cluded in the DARPA database in order to determine suit-
able system parameters (which were then unchanged).

3.1 Test on Training

Before evaluation on the independent test sets. two speak-
ers were run using sentences derived from patterns in their
training sets. As expected, the perplexity Q? for the sta-
tistical model is very low in this case and recognition word
error rate’ is small. As shown in Table | this demonstrates

| test on tratning :
speaker .+ MP  (Q) | WP (Q) .

Tdib - 5.4% 425 5.1% (69.8)
'Lpgh i 4.5% 40.315.9% (53.3) |

Table i: Word error rate on training set (MP=Markov
phrase model: WP =word pair grammar)

that when evaluated on the training set such a statisti-
cal model give low perplexity and good recognition perfor-
mance. For comparison, resulls using a grammar (WD) is
shown. This grammar is constructed to allow all two-word
sequences which occur in any expansion of the training pat-
terns. Note that even though the slatistical model used
incorporates the interpolation rule described above, and
therefore allows all possible word sequences and not sim-
ply those in the the WP grammar, the perplexity is lower

perplexity @ = 2! where [ is the average information
(- log; p) of the state transitions (with probabilities p) in a set
of sentences using a particular probabilistic model

3Word error rate is the average number of substitution (S
deletion (1) and insertion (/) errors per reference word (=~ (S »
D + E)/N where N is the number of reference words).
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than the W[ grammar and the performance is somewhat
better.

3.2 Toest Results

The full cvaluation consisted of six speakers from the
DARPA database with 25 utterance each. The word er-

ror .ctes ar- preseated in Table 2. Tn order te evaluate

independent test | test on training }

speaker MDD NG wp
(@=79) (@=1000) )  (2x60).
bel 12.3% | 10.9% || 8.9% |
emr 13.8% 9.6 | 9.3% ;
dtb 11.8% 39.47% 5.4% |
did || 10.0% | 26.7% | 6.7% |
pgh | 70%!  32.0%] 6.0% |
tab | 6.3%. 21.8% 3.2%
ave. | 10.2% 33.9% | 6.6°T_}

Table 2: Recognition word error rate (MP=NMarkov phrase
model: NG=null grammar: WP=word pair grammar)

the improvement due to the statistical language model. the
word crror rate for a “null” grammmar (NG) in which all
word sequences can occur is also shown. The NG resutt
is a mecasure of the acoustic difliculty of the task. The re-
sult using the word-pair (WP) grammar, trained on the
training and testing patterns is aiso presented in order to
show that the statistical approach achieved almost equal
performance without the loss imposed by imperfect cover-
age. Also. note that the perplexity of the statistical model
(@ = T73) is comparable to the WP grammar (Q =~ 60)’
despite the fact that the WP perplexity is measured on a
subset of its training sentences. Finally, in order to evaluate
the efTect ol coverage of a grammar on overall performance.
consider the sentence error rates of 19% for the statistical
MP case and 36 for the WP grammar. In order for the
W1 grammar to achieve 19% sentence error rate including
the effect imperfect coverage, at least 80% of the sentences
would have to parse®. Currently, this level of coverage is
not available.

The resuits presented are preliminary. Several aspects of
this approach have not been investigated. For instance, the
structure of the Markov model has not been fully explored.
Though some experiments have been performed to evaiuate

‘Perplexity on the WP grammar 1s obtained assuming all
branches in a deterministic finite state network rcpresentation
are equally likely.

5Suppnsee a fraction of sentences r parse under the WP gram-
mar. Assuming the remainder have a sentence crror rate of 26%,
then the nverall error rate wonld be (1 - ) + 0367 For this to
be less than 497, 2 > 807

the use of certain higher order states which have been ob-
served in the training, it is not clear how the model shouid
be constructed to actually improve recognition performance
significantly. Also, the assumnption that all word sequences
within a grammar are equally likely is clearly a very crude
approximation and some improvement may be obtainable
through more careful assignment of these probabilities.

4 CONCLUSIONS

The results presented here demonstrate the viability of in-
corporating linguistic structure into a statistical modzl. In
the resource management domain, neither so’ely statistical
nor linguistic techniques alone are adequate at this Lime.
Straightforward statistical techniques lack sufficient train-
ing and linguistic techniques have an inadequate coverage.
[However, the combination of the modest training available
and simple linguistic absiractions of this training corpus
provides good performance.
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ABSTRACT

We present results of the BBN BYBLOS continuous speech
recognition system tesied on the DARPA 1000-word re-
source management database. The system was trained in a
speaker dependent mode on 28 minutes of speech from each
of 8 speakers. and was tested on independent test material
for each speaker. The system was tested with three artificial
grammars spanning a broad perplexity range. The average
performance of the system measured in percent word error
was: 1.4% for a pattern grammar of perplexity 9, 7.5% for
a word-pair grammar of perplexity 62. and 32.4% for a null
grammar of perplexity 1000.

1 INTRODUCTION

A meaningful comparison between the performance of
speech recognition algorithms and systems can be made
only if the systems have been tested on 2 common database.
Even with common testing material, comparative results
become difficult to interpret when grammars are used to
constrain the recognition search. The ambiguity introduced
by the use of grammars can be overcome by reporting re-
sults with the grammar disabled. which would establish a
baseline acoustic recognition performance for the svstem.
and by using standard generally available grammars. Fi-
nally. reporting a standard measure of the constraint pro-
vided by a grammar makes the results more meaningful.

In this paper we report results for the BBN BYBLOS
svstem tested on a standard database using two well de-
fined. artificial grammars and with an unconstrained null
grammar. The database has been developed by the DARPA
Strategic Computing Speech Recognition Program for the
purpose of comparative syvstem performance evaluation of
continuous speech recognition systems 6 .

In section 2. we describe the BYBLOS system. In section

3. the database and testing protocol are discussed. The
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grammars used in the experiments are described in section
4. Section 5 presents the recognition system results. The
tesults are discussed in section 6.

2 THE BYBLOS SysTEM

The BYBLOS continuous speech recognition system 2
uses discrete density hidden Markov models (HMM) of
phonemes, a phonetic dictionary, and a finite state gram-
mar to achieve high recognition performance for language
models of intermediate complexity. The parameters of the
HMMs are estimated automatically from a set of super-
vised training data. The trained phoneme models are com-
bined into models for each word in the dictionary. These
phonetic word models are then used to compute the most
likely sequence of words in an unknown utterance. A for-
mal description of a complete HMM system is presented in
1.

The BYBLOS system has been designed to accomodate
large vocabulary applications. It trains a set of phoneme
models which requires only a moderate amount of speech
to adequately observe all the phonemes. In addition. the
svstem trains a separate model for each distinct context in
vhich a phoneme is observed. A phoneme’s context can
be defined by its adjacent phonemes or the word in which
it appears. Context modeling captures coarticulation phe-
nomena explicitly and preserves phonetic detail for those
contexts which occur frequently in the training material 7.
By combining the smoothed phoneme models with the de-
tailed context models. BYBLOS makes maximal use of the
available training material. The performance improvement
gained by using context dependent phoneme modeling has
been reported in 3.

After training is completed, the dictionary is popu-
lated by compiling the trained phonetic models into word
networks. A finite state grammar. if used. is compiled

from a formal language model specification. To decode
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an unknown atterance, BYBLOS utilizes the precompiled
Knuwledge sonrces mintiv in a tine-svnckronons, top-down
search. This search strategy aliows efficient pruning and
Tummezes local decisions.

BYBLOS har heen demorstrated in a spedaner dependent
atd a speaker adaptive mode. Speaker dependent mod-
ciing achieves high performance by estnmating the model
Teots ALl 1y lage envugh

t Ters ,r.\nn a CTasidad

Tuocontain most of the contexts likeiv to appear in sub-
sequent use of the system. [he speaker dependent meode
“las been used to achieve the results reported in this pa-
per. The speaker adaptive mode mod:fies the weli trained.
speaker dependent word madels of one speaker to model a
new speaker. This technique allows the svstem to benefit
from the well trained word models of a prototype speaker
even when the training material from the new speaker is
extremelyv limited. The adaptation mode of the BYBLOS
system is discussed in 4.5 .

3 DataBase

The database. described in detail in 6. was designed
to provide a standard for research in speaker dependent.
speaker adaptive. and speaker independent continuous
speech recognition. The database was designed to cover the
vocabulary, syntax, and functionality of a naval resource
management task. The vocabulary consists of 1000 words.
The task domain covered by the database is specified by a
set of 950 sentence patterns which were used to generate
the 2800 distinct sentences in the database.

The speaker dependent database provides 600 sentences
fabout thirty minutes of speech) designated as iraining ma-
terial from each of twelve dialectaily diverse speakers. col-
iected in six different sessions. The scripts for the training
material are designed to maximize coverage of the vocab-
ulary and sentence patierns. The speakers include seven
male and five female speakers. Independent test material
was coilected {or the tuelve speakers during additional ses-
=0MNs.

The experiments reported 1n this paper have been con-
ducted for the purpuse of comparative performance evalu-
ation within the DARPA community. The evaluation was
administered by the National Bureau of Standards {NBS).
For the speaker dependent pnrtion of the evaluation. tests
v.ere conducted using erght ol the twelve available speakers.

W2 withheid 30 sentences from the training material for
each speaker to be used for adjusting global system parame-
ters. The remaining 570 sentences that we used for training
inciude 432 unigue words from the vocabulary., Approxi-
mately 57 of the words in *he dictionary are not abserved

at ail in the trainirg set. 367 accur oniv unce. and 197

accur more than once.

Twenty five sentences were ~=lected by NBS as test ma.
tenal for each speaker. The test sets are different for each
speaker. hut on average. each set contains about 200 we s
The test sentences for the eight speakers cover 46% of the
dictionary. 91% of the word tokens occurring in the eight
test sets have occurred more than once in the training set
illustrating the effectiveness of the training data coverage

over the task domain.

4 GRAMMARS
The results reported below have been run using three differ.
ent grammar conditions. These grammars are not intended
as serivus models of the task domain, but are used Lecause
they are simply defined and allow the system to be tested
over a broad range of [anguage model constraint.

A straight-forward measure of the constraint provided
by a grammar is test set perplezity 5 which is measured
on a finite state network generated by the grammar and
a given set of test sentences. For the purpose of perplex-
ity measurement. a distinguished symbol designating inter-
sentence silence is added to the dictionary and to the end
of each sentence of the test set. The augmented sentences
are then concatenated and appended to an initial inter-
sentence silence to form the word sequence, w;.uy. . ... wn.
If the word sequence is sufficientlv long, the probability of
the sequence given the grammar. P{wi.wq.... . w,). can be
used to compute an estimate of the grammar perplexity.

The perplexity of the grammar. given the test set word

sequence. is defined as:

=
Il
[
x

where

log, Plw, weoae. .. wy) (N

~

is the average per word entropy of the language model. and

Puwj=1 3

For the grammars used in these experiments. the proba-
bilities on the words allowed by the grammar at position »
in the test set word sequence are assumed to be uniform.

The three grammars. which we call the sentence pattern.
word-pair. and null grammar, allow all sentences in the
training and test databases. The sentence pattern grammar
is compiled directly from the set of 950 sentence patterns
covering all sentence types in the task domain 6. The
perplexity of the pattern grammar, averaged over the eight
speakers’ test sets. is 9. The word-pair grammar allows all

two-word sequences allowed in the sentence pattern gram-




mar. Its perplexity :s about 62 The null grammar allows
a!l sequences of words in the vucabulary and therefore of-
fers no language mudel constraint. The effective perplexity

of the null grammar is equa. to 1040 — the vocabulary size.

5 Resters

1 e svstem parameters for these expeniments were derived
Ir T two speakers data coliected at BBN and limited test-
1ng ~n two speakers from the DARPA database (CMR and
BEF: using the data that we withheld from the training
set. The svstem configuration was then fixed for the entire
set of experiments. Each speaker was tra'ned only once.

The database speech was collecred at Texas Instruments
(TI} in a sound isulating hooth.  Fur these e,\'perimcnls
we used speech sampled at 20 kHz. through a Sennheiser
HMD-114, close-talking, noise-canceling mcrophone. 14
Mel-scale-warped cepstral coefficients were computed every
10 ms. using a 20 ms data window. and vector quantized

using an 8-bit codebook.

% Word Error

L B L
oL7S [
-32.4 ®
9 62
100 T T —
1 10 100 1000

Test Set Perplexity

Figure ;. Recognition Performance as a Function of Gram-

mar Perplexity. The axes are log scale.

Figure | shows recognition performance. averaged across
the eight speakers. for the three grammar conditions. The
performance is given in percent word error:

WORD ERROR = 100 x (S~ D ~I) N

where:

5 = number of substitution errors.

D = number of deietion errors.

[ = number of inserticn errors.

NV = total number of word tokens in the test sentences.
This measure has been proposed as a standard within the
DARPA community. Note that since the number of inser-

tion errors possibie is not hounded. this error measure can
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exceed 100%.

A word hvpothesisis counted in error if it dues not iden-
tically match the correct word transcription. Specifically,
homophones (e.g., to. twau, tou: or ships, ship's. ships') are
counted as errors. Homophone errors typically occur only
in the null grammar experiments where they account for
approximately 4% of the word error rate. Furthermore. no
special significance is given to errors which are phonetically
close to the correct answer (minimal pair differences) or to
errors which leave the semantic interpretation of the sen-
tence intact (most deletions of the word ‘the’).

Individual resuits fur each speaker are shown in Tabie 1.
Two speakers, CAIR and DTD. are female. The results are
given as word error. defined above, and as word correct:
WORD CORRECT =100 x 1 -(§~-D)/ N
where. 5. D. and .V are defined as wefore.

Note that:
WORD ERROR # 100 - WORD CORRECT.

For the pattern and word-pair grammars. the sentence
error rate and test set perplexity are also given. For tle

null grammar case. the sentence error rate is near 90%.
and the perplexity = 1000.

6 DiscussioN

In our experience. average word error ( E) for a set of speak-

ers can be estimated as a function of perplexity {L} by:

E=avl

b

Figure 1 indicates that a ~ 1 for this data set over most
of the perplexity range. \We have conducted numerous ex-
periments on speech collected at BBN in normal cffice en-
vironments. The experiments have used a variety of gram-
mars including those reported here. Ve consistently find
the average word error to be reasonably predicted by using
a = ., which is haif the error rate obtained for the T1 speak-
ers. The difference in average performance between the TI
and BBN data may be explained by differences in speaking
stvle and rate. The speakers collected at BBN have some
experience with speech recognition systems and generally
speak more clearlv than the speakers collected at TL

While the average performance is generally predicted by
perplexity. an individual speaker’s performance may not be.
For example, speaker DTB performs far below average {r
the null grammar but above average for the word-pair and
pattern gramm wrs. Similarly. the performance for RKM on
the word-pair grammar is far worse than would be predicted
from his results on the pattern or null grammar.

It is clear from these resuits that performance can be




Seutence Pattern Word-Pair No Grammar
word| word |sentence| test set (word| word |[sentence| test set [[word| word
error|correct| error |perplexity{lerror|correct] error |[perplexityjerror|correct

e K4 % % Yo % % %
BEF 2.6 98.3 20 8 8.9 93.2 34 62 40.9 62.6
CMR 2.7 99.1 20 7 9.3 94.7 52 66 39.6 65.4
DTB 0.51 100.0 4 10 5.4 96.5 32 34 39.4 63.1
DTD 1.0 99.0 8 8 6.7 94.2 44 54 26.7 75.3
JWS 0.9 99.1 8 9 4.3 96.2 28 59 25.6 75.4
PGH 0.5 99.5 4 9 6.0 96.0 24 58 32.0 70.5
RKM 2.4 98.1 16 10 16.4 89.7 52 64 30.5 71.8
TADB 0.5 100.0 1 9 3.2 97.7 20 67 24.8 76.5
lavg | 1.4] 99.1] 105 9 | 7.5/ 948 370 62 | 32.4] 70a]

made arbitrarily high by lowering the grammar perplexity.
For large vocabulary, complex task domain applications.
however, low perplexity grammars are likeiy to be too re-
strictive for real use. e expect that habitable grammars
for 1000 word task duniain applications will require per-

nlexities larger than 30.
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Measuring Perplexity of Language Models
Used in Speech Recognizers

Salim Roucos
BBN Laboratories
Cambridge, MA 02238

In this note, we define one measure of perplexity of a language model and present a method for
computing it. We hope that by agreeing on a common method of measuring perplexity, it will
become easier to compare speech recognition results when different language models are used.

1. Test-set perplexity

We describe a measure for characterizing the complexity of a language model; we call the measure
test-set perplexity. This measure of perplexity is defined for any specific set of sentences and a
given language model. In general, the word accuracy of a speech recognizer using a given language
model is expected to decrease as the test-set perplexity of a set of test sentences increases. Knowing
both the recognition performance and test-set perplexity will help in comparing recognition
algorithms that use different language models.

A language model is defined by the set of probabilities Q(wy...w,) for all word sequences
w1...wn. Given a language model Q(.), the test-set perplexity of a set of sentences is defined as

L=2K (D
where K, the average per word log probability (called logprob), is given by
K=-1/n logs[ Q(wws...wp)] 2)

where wy...w, represents the sequence of words in all the sentences of the test set, Q(wy..wp)
is the language model probability of the word sequence. The word sequence wy...w,, is obtained

from a test set by concatenating all test sentences separated by sentence boundary markers. We note
that the real probability of the word sequence w...w, is denoted by P(w;...wp) and that we will

discuss later in this note the relationship of P and Q. For the special case of a language model
which assumes all the words from a vocabulary of size V are equally likely to occur at any point,
ie., Q(wy...wp) = VD, the average logprob is log V and the test-set perplexity equals the

vocabulary size V for any test set from any source P(.); hence, the interpretation that test-set
perplexity corresponds to the "average branching” of the language model along the test set.

2. Computing test-set perplexity

Equation 2 can be rewritten as
R .
K=-1/n 2_ logy[Q(w; | wi"1)]
i=1

where w} denotes the word sequence wy...w;. In this case, we have factored the joint probability
as the product of the conditional probabilities Q(w; | w;'l) which represent the probability that
word w; will appear next given all the text up to word w;_1. We include a special symbol to delimit

sentence boundaries and this symbol counts as one word. All other delimiters (such as commas,
etc.) are dropped. So, if a sentence consists of m english words, it accounts for m+1 symbols in

the above logprob computation. The vocabulary includes the sentence boundary marker as one
item.
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The factored form is convenient for the usual finite-state N-gram models and for the deterministic
grammars that have been used in speech recognizers. For the case of deterministic finite state
grammars, where a word sequence is either accepted or rejected as a legal sentence of the languagc
it 1s important to make an assumption about the value of the conditional probability Q(w; | wl ). In

th= abrence of other information, we assume that all the legal words that can follow a parucu word
string are equally likely. To determine the number of distinct legal words that can follow a partial
string of words, we need a network representation in the form of a deterministic finite state machine
which means that all arcs from a node represent a possible word to follow (no null arcs) and that no
two arcs leaving a node have the same word associated with them. There is a standard algorithm for
converting a non-deterministic representation into a deterministic representation (see Aho &
Ullman).

For more general formal languages such as context-free grammars, augmented transition network
grammars, etc., one needs to determine all partial parses up to word w;_; and count how many

distinct words can follow after word w;_1. Then, using an assumption that all choices are equally

likely, the test-set perplexity is the geometric mean of the number of word choices possible along
the test set.

The factoring of ihe joint probability can be do.ie in at least two directions: forward as Q(w; ! wi‘l )
or backward as Q(w; ! wi‘ +1)- With the deterministic finite state model and the uniform assumption

of equally likely words out of a node (forward and backward), the forward and backward
perplexitics for the same test set of legal sentences are not the same because we have two different
statistical models. Typically, we compute the perplexity of the forward (left-to-right) language
model.

The same test set should be used to compute the perplexity and to measure the recognition
performance. Note that perplexity depends not only on the language model but also on the
particular test set (in the limit of large test sets, the variance of the test-set perplexity approaches
zero).

3. Relation to Entropy

For a given language model, the test-set perplexity is a random variable that depends on the actual
test set. For a test set wy...w, obtained from a well behaved source (ergodic) with probability

P(w...w), the time average of the logprob converges to its expected value with large n:

Lim -1/n Z P(w)..wy) logs[Q(wy..wp)] =Lim -1/n logyQ(wy...wp)
Nn—o

N~ o
Wi.wp
where the summation is over all sequences W1...wp. Since P(.) is unknown, the right hand side is
particularly useful because a large test set is sufficient to compute an estimate of the expected value.
Note if Q = P, which is true when we know the correct language model, then for large n the test-set
perplexity approaches the source language perplexity given by 2H where H is the entropy of the
language. When Q # P, the expected test-set perplexity will be larger than the language perplexity
2Hfor any n. The goal in building language models is to minimize the difference between the

expected test-set perplexity and the language perplexity. Note that for small n, K may sometimes be
less than H.
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Appendix

Given a language that allows the following 9 sentences:
aa.

ab.

ac.

aba.

abb.

abc.

aca.

achb.

acc.

One can use the following non-deterministic finite state automaton to efficiently represent the
language:

To compute the test-set perplexity for the two sentences aa. and abc. we use the equivalent
deterministic finite state automaton for the language:

The test-set perplexity for the two sentences "aa.” and "abc." is given by:

1- concatenate as aa.abc. a seven word long test set.
2- perplexity is L= 1/7 logy(1x3x1x1x3x4x1)= 1.668

Therefore, on average the branching is 1.67 words.
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Abstract

In this paper we present several techniques to improve the
" algorithm preseated last year for speaker-adaptive training in
continuous speech recognition The previous method uses a
transformation matrix to modify the hidden Markov Model
(HMM) parameters of a pre-chosen prototype speaker to mode:
a target speaker. To estimate the transformation marix, it
aligns a set of target speech with the same set of speech uttered
by the prototype speaker using dynamic time warping. We
focus on improving the previous method in the modehing of the
spectral differences berween two speakers, and the accuracy of
the alignment. To improve the modeling of the spectral
differences, we implemented a phoneme-dependent mapping
procedure which transforms the prototype HMMs to the
estimated target HMMs using 2 set of phoneme-dependent
matrices. To improve the alignment, we developed a modeling
of the silence, a linear durarion normalization, and an iterative
pormalization procedure. We tested the new methods in the
stzndard DARPA darabase with a grammar of perplexity 60.
The performance shows a 30% word error reduction compared
with that of the previous algorithm.

1. Introduction

Hidden Markov Modeling techniques have enjoyed great
success in large-vocabulary continv~us speech recognition
using speaker-dependent or speaker-independent training. To
achieve state-of-the-an performance in large vocabulary tasks,
it has been necessary 1o collect a large amount of speech (~30
min) from each target speaker for speaker-dependen: training,
or from a large number of speakers (>100) for speaker-
independent training. It is not feasible to go through such a
long and tedious recording process in some applications. The
speaker-adaptive training paradigm we have been advocating is
designed to alleviate this difficulty. Our current method
requires collecting 30 minutes of speech from only one
prototype speaker. and a small amount of speech (typically two
minutes) from each target speaker. Our long-term goal for
speaker-adaptive training is to achieve recognition accuracy
with two minutes of adaptation speech equivalent to that of 30-
minute speaker-dependent training.

At ICASSP'87 (1], we presented our basic procedure for
speaker-adaptive training, which uses a speaker transformation
on the phonetic hidden Markov models of a prototype speaker.
Starting with the trained HMM parameters of a prototype
speaker and two minutes of speech from a new target speaker,
we estimate a maximum likelihood probability transformation
matrix by aligning the target speech against the prototype
models using the forward-backward algorithm The
probability transformation matrix defining a probabilistic
mapping between the prototype speaker and the target speaker
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is used to transform the prototype HMM models to the
estimated HMM models for the target speaker.

Al ICASSP'88 (2], we proposed an improved algorithm
which aligns the target speech against the same sentences
uttered by the prototype speaker using 3 dynamic time warping
(DTW) algorithm to compute the co-occurring spectral pairs.
We then estimate the transformation matrix by counting the
spectral co-occurrences for the two speakers. This algorithm
worked much better than the previous algorithm, but the
performance was significantly worse for some speakers than
for others. There are two possible reasons for the degraded
recognition performance: (1) a single transformation matrix is
not enough to model the spectral differences between the target
speaker and the prototype speaker, and (2) the DTW algorithm
had not found phonetically "correct” alignments between the
target speech and the prototype speech, thus leading to an
inferior estimate of the transformation matrices.

To improve the modeling of the spectral differences
berween two speakers, we implemented a phoneme -dependent
ransformation procedure, which uses a set of transformarion
matrices to transformp the prototype HMM parameters to mode!
the target speaker. Each transformation martrix represems a
different probabilistic spectral mapping for each phoneme
between two speakers.

We believe that the inferior alignments result from several
facts. First, frequently one speaker inserts a long pause
between two words in a sentence when the other speaker has
not. Second. the alignment accuracy degrades when the
duration of the prototype sentence is very different from that of
the aligned target sentence. Tt.rd, the spectral spaces of the
two speakers may be very different. To improve the
alignment. we propose a modeling of the silence, a linear
duration normalization before computing the alignment. and an
iterative normalization procedure to compute the alignment.

Paper Outline

In Section 2, we bricfly introduce our basic speaker-
adaptive training approach using phoneme-dependent
mappings. In Section 3, we propose several techniques to
improve the alignment: a modeling of the silence in the target
speech and a linear duration normalization before computing
the alignment, and an iterative normalization algorithm to
compute the alignment and estimate the mappings. We show
that this algorithm converges to a local minimum of the mean-
squared error for the alignment. To evaluate the proposed
algorithm, we then present in Section 4 speaker-adaptive
recognition results using two minutes of target speech on the
standard DARPA database, compared to the performance of
28-minute speaker-dependent training.



2. Phoneme-Dependent Mappings

In this section we describe our speaker adaptation
procedure using phoneme -dependent mappings. For each state
of a discrete HMM, we have a discrete probability density
function (pdf) defined over a fixed set N of spectral templates.
We can view the discrete pdf for each state s as a probability
row vector p(s)=(p(k,/5) P(ky/s),...(kpds)} where p(k/s) is the
probabiliry of spectral template &, at state s of the HMM model.

If we denote a quantized spectrum from the prototype
speaker as &, 1 S i SN, and from the target speaker as ¥
1 Sj SN, where i and j are indices denoting the quantized
spectra, then we can denote the probability thar the target
speaker will produce quantized target spectrumn k' | given the
prototype speaker produced spectrum &, as (k' /k,) for all iy.
The probabilistic mapping can be defined as follows:

N
P Jsi=3 pk/spE k). 1 S j S N )
S| _

The probabilites p(k'/k,) for all i and j form an NxN matrix, T,
which can be interpreted as a probabilistic transformation
martrix from one speaker’s spectral space to another's at each
state. We can then compute the discrete pdf p'(s) at state s for
the target speaker as the product of the row vector p(s) and the
mamnix T

p'(s)=p(s) x T, where T'U=p(k’i’k,) (2)

In equations (1) and (2). we assume that the probability
for spectrum Lk’ given k 1s independent of 5, which indicates that
a single probabilistic spectrtal mapping will tansform the
speech of one speaker to another. However in practice, some
of the differences berween speakers can not be modeled by a
single transformation. To have a more detailed modeling of
the spectral differences between two speakers, we define a
phoneme -dependent mappings:

N
p(k’/s)=% PAkJS)pCK Jk, 8(5)) (3

where #(s) specifies an equivalence class of states in models
that represent the same phoneme as s.

Since only two minutes of target speech is available. it is
not adequate to estimate reliable probabilistic mappings for all
phonemes. Therefore. i transforming the HMM models, we
interpolate  the phoneme-dependent mappings with the
phoneme-independent mappings to improve the robustness of
the adapted HMM models. The weight for the combination is
different for each prototype spectral index (each row of the
transformation matrices), and it is dependent on the number of
occurrences of the observed prototype spectum for that
phoneme in the adaptation speech. The important step in the
phoneme-dependent mapping procedure is to estimate the
p¥ /k,.4(s)) that optimizes the recognition performance. In
next section, we will describe an iterative algorithm to estimate
the phoneme-dependent mappings.

3. Improving the Alignment

We present several techniques to improve the alignment
accuracy. In Section 3.1 we introduces two processes before
performing the alignment. Then in Section 3.2 we describe a
new iterative algorithm to compute the alignment. We deal
with the convergence of the iterative algorithm in Section 3.3. .
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3.1 Before Computing the Alignment
Insertion of Silence into Prototype Speech

When two differemt speakers read the same sentence, they
may mnsert pauses (silence) in different places of the sentence.
In dus case, the DTW is forced to align silence frames to
speech frames resulting in phonetically incorrect alignments.
To achieve correct alignments for target speech with arbitrary
inter-word pauses, we insert a synthesized silence spectrum
between each word of the prototype speech. We compute the
synthesized silence spectrum for each utierance as the average

of the spectral parameters over several frames of silence from
the target speaker.

Linear Warping the Target Spectra

The warping function produced by DTW can be viewed
as a mapping from the time axis of one partern onto that of
another. To align two sets of spectra with the same text, it is
reasonable 10 use DTW with slope constraints [S], so as to
avoid unrealistic mappings. for example that one target frame
gets aligned to many prototype frames. However if the
durarions of the two aligned sentences are very different, the
slope constraim may interfere with their alignment accuracy.
Since our prototype speaker speaks slowly and carefully, large
speaking rate differences can exist in words or word sequences
which are spoken rapidly and casually by the target speakers.
To overcome this problem, we linearly warp the spectral
sequence of each target sentence to be the same length as the
corresponding prototype spectral sequence. We perform the
linear warping on the target spectral sequence by copying the
target spectral frame that is closest to a linear ime scaling. It
avoids losing detailed information in the original target spectral
sequence due to interpolation.

3.2 Computing the Alignment Iteratively

When the target spectral space is very different from the
prototype spectral space, the minimum error alignment
produced by the DTW algonthm may not correspond to the
phonetically correct alignmemt. To improve the accuracy of
the alignment, we developed an iterative alignment and
normalization procedure. In each iteration of the algorithm, we
align the target speech to the prototype speech: then using the
alignment we shift each target spectral frame in the target
speech by an amount that is dependent on the index of the
corresponding vector-quantized value of the prototype frame to
which it aligns. Using the shified values of the target frames,
we realign the target speech to the prototype speech, etc. We
will prove in Section 3.3 that this algorithm converges to a
local minimum in the mean-squared error (mse) for the
alignment. The mse of a given alignment is equal to the
average of the squared-difference of the target spectral frames
and the corresponding prototype spectral frames in the
alignment path. The formal definition of the mse given an
alignment will be defined later in equation (4). The detailed
algonthm is describe as follows:

1. Classify {quantize) each frame of the prototype
spectra into one of 2M VQ regions using a well-
trained M-bit prototype VQ codebook.

2. Align each target spectrum [x)} in the adaptation
sentences to a prototype spectrum {y} using a
slopeconstrained DTW. If the mse of the
alignment is similar to the mse of the alignment
resulting from the previous iteration, then the
algorithm converges and we stop.




3. Classify each frame of the target spectra into one
of the prototype VQ regions according to the
classification of its aligned prototype frame.

4. Compute the mean of {x} and {y) in each of the
prototype VQ regions.

5. Shift each frame of the target spectra by the

difference vector berween the mean of {s} and
{y] for that VQ region.

6. Substitute the target spectra by the shifted target
spectra, and go to step 2.

Estimation of Phoneme-Dependent Mappings

From the alignment of the last iteration, we count the co-
occurrences of the quantized spectral indices for each of the
frames in the jon sentences, and form the co-occurrence
matrix N(¢(s)) for each phoneme, where each element N,-l- is
the number of the co-occurrences of the target spectra K; and
the prototype spectra k,. Then we normalize the rows of
N(e(s)) to form the phoneme-dependent transformation
matrices T(#(s)).

Below we prove that the iterative algorithm is guaranteed
to converge to a local munimum in the mse of the alignment.

3.3 Convergence of the Iterative Algorithm
LW Minimizes the Mse

Suppose {x,1Si</) is an I-frame target spectral
sequence for a senmtence and {y.1 <SS J} is a J-frame
prototype spectral sequence for the same sentence. As a
measurement of the difference berween two feature vectors 1,
ad y, a Euclidean distance d(c)=d(ij)=llx,~yl is employed
berween them  Using a dynamuc tume warping (DTW)
algorithm [5]. we obtain a2 warping function F =
e(1),6(2).....6(k),...c(K). where c(k)}=(i(k),j(k)), by minimizing
the accurnulated mse berween {x} and {v}, which is

K K
EFRK Y (A=K Y gyt @)
k»l =]

The warping funcuon, which is also called the alignment.
realizes a mapping from the time axis of {x,, 1 € i £/} on that
of by.1sjs J}. The alignment indicates the maiched
prototype spectral frame given each target spectral frame.

Shifting Target Spectrum Reduces mse Further

Given the alignment (the paired target spectral frames and
prototype spectral frames), we can reduce the mse of the
alignment further by making the target spectral space closer to
the prototype spectral space. Suppose we shift each target
spectral frame by a single vector ). The mse of the alignment
becomes

x
EFm( ”K)El W) =2)y g

K
=(1/K) EX (X 450 +y )2+

20y =2 igeyo~ Ly | )

By taking the partial derivative of E(F) with respect to x,, we
have

K K
aE(F)/aX(FZIO—(z/K)z, I,-(k)ﬂzlx)z,l Yy (6)
1
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By setting equation (6) equal to zero, we obtain
K K
=(VKY x4~ (1KY y o)
oD s OO

Therefore shifting the target spectral frames by the difference
of the means of {x} and {y} minimizes the total mse of the
given alignment.

It is very possible that the mean difference between two
spectral spaces varies across different VQ panitions. To make
a more complex modeling of two spectral spaces, we shift the

target spectrum using a set of VQ-dependent vectors
{x(1)x(2),...(2M)}. The total mse can be represented by the
following equation

E(F)=2.(1/K L 0® @
E\ (l))gl Kxiay=x(-yia (®)

By following the same approach as described above, we
achieve

S 0 < 0
b Yy
x([):(l/K(I))z:l b (1/1((1))2"l iy 1 SISO

which minimize both the total mse and the mse for each VQ
region.

Convergence of Mse

In the first iteration, step two of the algorithm produces
the first alignment between the prototype speech and the target
speech by minimizing the mse. Shifting the target spectra at
siep five by the mean difference reduces the mse at each VQ
region independently and also gives the minimum mse for that
alignment.

After the firet iteration, we realign the shifted target
spectra with the original prototype spectra. and the obtaned
alignment may or may not be different from the previous
alignment. If the alignment is different. then the current mse
must be smaller than that of the previous iteration because
DTW provides a new alignment with the smallest mse. If the
alignment is the same as the previous one, then the mse is not
changed and the algorithm has converged In the next section,
we present some experimental results by using the iterative
algorithm with three iterations.

4. Experimental results

4.1 Experimental Conditions

In the cxperiments shown below, we use the well-trained
HMMs of a single speaker RS as the prototype. RS is a careful
male speaker with a New York dialect. RS recorded 600
sentences at BBN in nomal office environment. The 600
utterances constituted about 30 minutes of speech which was
used to estimate the HMM parameters for the prototype
models.

A 1000-word database of continuously read speech has
been designed and recorded within the DARPA Strategic
Computing Speech Recognition Program [3]. This data
consists of read semtences which are appropriate in a naval
resource management task. It was recorded in a sound-isolated
recording booth at Texas Instruments (TT). We use eight TI
speakers from this database to test different adaptation
procedures compared with the performance of the 28-minute
speaker-dependent trair.ing.




In the adaptation experiments of this section, we use
adsptation material of two minutes duration. We lowpass
filtered both the target speech and the prototype speech at 10
kHz and sampled a1 20 kHz. Every sentence in the target
speech and the prototype specch is represented by frames of
mel-frequency cepstral coefficients (MFCCs).

All the recognition experiments used a word-pair
grammar of perplexity 60. This grammar allows all two-word
sequences which occur in the task domain definition (4). The
recognized sequence of words was compared automatically to
the correct answer to determine the percentage of errors of each
type: substitutions, deletions, and insertions. We use an error
measare that reflects all three types of efrors in a single
number. The percent error is given by

(substirutions+insertions+delerions)

%word error=100x -
total—input-words
4.2 Results
Experiments % Word Error
Baseline (ICASSP 88) 13.8
Phoneme-Dependant Mappings 12.1
iterstive Normalization Algorithm 9.6
28-Min Spesker-Dependent Training 1.1

Tabie L. Percent word recognition error for
2-min speaker-adaptive training vs. 28-min
speaker-dependent training on 8 speskers

Table I contains the recognition word ervor rates using
different adaptation procedures with two minutes of target
speech, in comparison with the 28-minute speaker-dependent
performance on eight Tl speakers. Belov we discuss the
performance of each algorithm, row by row, in Table 1.

In the first row., we show the performance for our
previous algorithm (2], which uses a single wansformation
matrix (phoneme-independent transformation) to wansform the

protorype HMM models to the target HMM models. The word
error rate is 13.8% which is about two times that of the 28-
minute speaker-dependent performance.

By using a set of phoneme-dependent transformation
matrices (instead of one matrix) to perform the wransformation,
we reduce the word error rate to 12.1% (shown in the second

row of Table I). Compared to the performance of the previous
algorithm, it resulted in a 12% error reduction.

By applying the silence modeling, the linear duration
normalization, and the iterative nommalization algorithm
described in Section 3 to improve the alignment and estimate
the phoneme-dependent mappings, we obtain a significant
improvement from word error 12.1% to 9.6%, which is a 20
percent reduction in the word error rate.

The speaker-dependent performa - : with 28 minutes of
training speech shown in table I is 7.1% word error using
steady-state MFCCs only. The performance has been
improved to 3.6% word error recently by using additional
feature parameters, including differential MRFCCs and power
parameters. We believe that further improvement on speaker-
adaptive training can be achieved by using more features.

52

§. Conclusions

In this paper we presented several techniques to improve
the algorithm presented last year for speaker-adaptive training.
The previous method ases a transformation matrix to modify
the hidden Markov Mode] (HMM) parameters of a pre-chosen
prototype speaker to model a target speaker. It estimates the
mansformation matrix by aligning a set of target speech with
the same set of speech untered by the prototype speaker using
DTW. We focus on improving the previous algorithm by: (1)
modeling the spectral differences between two speakers using 3
set of phoneme-dependent transformation matrices, and (2)
impmvingd\ealig;mmntcmncybyusmgamodeungofdt
silence, a linear duration normalization, and an iwrative
alignment procedure. To evaluate the effectiveness of the new
methods, we performed experiments on the standard DARPA

"database with a grammar of perplexity 60. The recognition

performance of the new algorithm shows a 30% word efror
reduction compared with that of the previous algorithm.
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