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I[. [INTRODUCTION

With the development of software efficiently implementing quantum
chemical techniques that employ energy gradient and Hessian data, and the
concurrent increase of access to modern supercomputers, systematic studies of
molecular structures and properties have become routine. Recently, several
groups have reported etforts to compute accurate values of molecular heats of
formation. Pople and coworkers described a study of first-row hydrides using
full fourth-order perturbation theory with a variety of basis sets. In the
same proceedings, Binkley and Frisch described results of perturbation theory
studies of bond dissociation energies for a series of first-row diatomics,
The results described in these papers indicated that fourth-order perturbation
theory calculations using extended basis sets provided generally excellent
results for sigma-bonded systems, with less accurate results obtained for
multiply bonded systems,

Subsequently, Page, et al,, nsed a similar approach to evaluate the
dimerization energy of borane. There were systematic differences among these
studies that should be noted. Rinkley and Frisch computed equilibrium
structures using third-order perturbation theory, wvhereas the other
calculations used structural parameters predicted at the Hartree-Fock level.
Page, et al,, employed an extended basis set when computing the energy, while
the other authors approximated this extended hasis set by assuming that the
effects of individual basis set extensions were additive. Related to these
efforts to predict molecular energies accurately, Handy and coworkers have
published a series of papers that attempt to evaluate the success of various
levels of theory in predicting the properties of molecules. 3950 Those
computations all employed extended hasis sets in order to isolate the effect
of theoretical! method from the effect of basis set deficiencies. This note
describes the effects on computed atomization energies of variation in the
theoretical model used to analyze extended basis set resnlts, 1In particular,
we focus on differences obtained when one uses either the isogyric analysis
employed by Pople, et al.,‘ or the direct method of computation used in our
previous reports.§’7 We also describe the application of isopzvric analyses at
several orders of perturbation theory.

[T. METHODS

We report a series of Moller—-Plesset perturbation theory calculations on
small molecules. These calenlations employ larve atomic centered bhasis sets
for the expansion of the molecular orbitals, besginning with the 6-311G basis
designed for use with correlation theory methods.®  This basis is angmented by
including diffuse functions, s-type for hydrogen and both s- and p-type for
the first row atoms. Additionally three sets of functions in the first
polarization space and one scet in the second polarization space are added for
cach atom., For the largest molecule studied, diborane, the total number of
basis functions is 18, Perturbation theory calculations were performed using
the GAITSSTANS?2 computer prosrams’ for structures optimized at the SCF level
using the well-known doable zeta plus polarization basis set. P00 Qeructures
for those compounds characterized by open—shell wavefunctions were computed
using vworesiricted lartree—Fock wavefunctions., Harmonie frequeancies were also
computed using SCF methods with the DZP bhasis,
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Results are reported for all three B, hydrides and diborane, as well as
water, ammonia, hydroxyl radical, carbon monoxide, boron oxide, B0, and
methane, The atomization energies of the compounds are evaluated in two
ways. One technique computes directly the difference hetween the sum of the
energles of the constituent atoms and the molecule's energy. That is, we
compute the energy for the process,

AHn > A+ nl .

Alternately, we evaluate the energy using the isogyric technique
described by Pople, et al., in Reference 1. In this case, energies relative
to that of the hydrogen molecule are computed using reactions for which the
nunber of unpaired spins is conserved. This is equivalent to conserving the
numher of electrnn palrs among the species involved in the comparison.

Knowing the number of unpaired electrons for a particular atomic ground state
enahles one to write isogyric comparisons with molecular hydrogen. For the BH
molecule, one has,

BH + H+ B + H2 .

Assuming that theory can predict the energy of a reaction producing an atom
plus hydrogen molecule{s), then the precisely known value of the dissociation
energy for the Hzl can be used to give the value of Do for the molecule of
interest,

Our computations differ from those of Pople, et al,, in several ways.
The theoretical energies used in their analysis were obhtained by improving the
results of energies computed using fourth-order Moller-Plesset theory with the
6—-311G** hasis set. TInitially, they estimated a correction to the correlation
energy by using an extrapclation method that estimates the contribution made
by orders of perturbation greater than four. The extrapnlation procedure
produced atomization energies that differed little from the fourth-order
results., TIn some cases, agreement with experiment was poorer, an indication
that the main source of errvor was the incompleteness of the basis set used to
desribe the molecular orbitals. Additionally, the fourth-order perturbation
theory calculations ignored the energy contribution due to excitations of the
electrons in the 1s core of the first row atoms., Most of our calculations do
not make this approximation, but neither do we employ the extrapolation
procedure to estimate the enerzy contribution obtained, perhaps, at higher
orders of perturbation theory.

The basis set improvements in Reference 1 were evaluated incrementally;
the effects of adding diffuse functions, polarization functions, and functions
in the second polarization space were assumed to be additive., 1In the present
case, all ecaleculations are done with the extended basis set. Pople, et al.,
concluded that the addition of diffuse functions and second polarization
functions had marked effects an the atomization enecrgy calculation, but the
cffects of the first polarization functions were primarily equal for the atoms
and the molecules.! TIf the effects of the hasis set extensions were truly
orthogonal, those results should closely mimic the data described here, Since
it is unlikely that there is no cooperative etfeat, our approach should lead
to slisht differences with the incremental results.
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In addition to the full fourth-order perturbation theory calculations,
the diborane calcvlations were performed using the frozen core approximation,
In order to obtain an indication of the effect of this approximation on the
computed atomization energy, we ihave computed energies for seversl species
using both a full perturbation theory calculation and the frozen core
approximation., 1In addition, we have included the third-order perturbation
theory results for each species. We anticipate the application of lower order
perturbation theory results for larger molecules using semiempirical
correction factors. Our goal here is to provide data on the application of
this more approximate level of theory using extended basis sets.

TIIT1. RESULTS

We summarize the results of the perturbation theory calculations in Table
1. Our experience with the boranes indicated that extended basis set
calculations yielded atomization energy predictions at third-order that were
nearly equal to the full fourth-order perturbation theory predictions. With
the data presented in this tabhle, w can compare the third-order and fourth-
order results over a larger class of compounds.

Table 1. FElectronic Energy Results (Hartrees)

Molecule Hartree-Fock MP3 SUTO-MP4 SDTO-MP4( FC)
H -0.49981 -N.49981 -0 .49981
B -24.53108 =24 60644 -24 .61167 -24 .59308
C =37 .69025 -37 .79163 -37.796138 ~37 .77642
N -54 .39889 ~54.,52976 -54.53302 ~54.51173
0 -74 .809134 -74.98%919 -74.991316 ~74.97094
H2 -1.13275 -1.17027 -1.17178
BH -25.129130 ~-25.23876 =25 .24484
RHZ ~-25.75976 ~-25.87763 -25.R8193
BH3 -26.39969 -26.,55272 -26 .55784 -26 .53676
CHQ -40.21259 -40 ,45285 =40 .46095 ~-40.43767
NH3 -56.21978 =56 49086 -56 .50047 -56.47654
HZO -76.059131 -76 .35067 -76.36215 -76.33811
OH -75.419132 -75 .A5542 =75 .6h215
BO -99 ,55h87 -99 ,89308 -99.,91786
02 -149.67687 -19N.14865 -150.17A12
BZHﬁ -52 83425 -53.13054 ~573.14242

Table 2?2 contains the data on all ten molecules studied. Both direct and
isogyric predictions are reported for each molecule, Tn every case, the
isogyric computation of the atomization eneragv, scaling with the kiaown
atomization energy of the hydrogen molecule, predicts a larger atomization
energy than does the direct method of computation. The difference between the
direct and isouyric comparison is equal to a multiple of the difference
hetween the calcnlated atomization energy of the hvdrogen molecule and the
known value that we cmploy in our scaling,




Data comparing the resuits of full fourth-order atomization energy
predictions with those obtained using third-order perturbation theory are
presented in Table 3. Both direct and isogyric results are considered, The
MP3 results preserve the energy difference between the direct and isogyric
methods, although the magnitudes are greater than those obtained using the
fourth-order data. For the hydrogen containing molecules, the energy
differences between the third- and fourth-order results are not dramatically
large, nor 1s the direction of the energy change constant. For the BN and 0O
molecules, on the cther hand, the energy differences are large. Since neither
molecule's atomization reaction can be described in terms of the breaking of a
series of sigma bonds, it is not surprising that the reduced treatment of
electron correlation provided at the MP3 level lcads to so different a result
than the full MP4 calculation. Triple~-excitation diagrams that occur first at
fourth-order, are required to describe the dissociation of these multiply-
bonded systems,

Table 2. MP4 Predictions of Atomization Fnergies (Units: Hartrees)

Full MP4 Frozen Core MP4

Molecule Direct Isogyric Direct Isogyric
BH N.13336 0.13566 s-====- ——emm—e
BH2 0.27064 0.27294 meemeee- emme e
Bﬁz 0.44674 0.45134 N 44s425 N L4884
CH4 0.6h2133 0.66923 ) .66201 0.66891
NH3 046822 047512 0 .46538 N 47228
HZO 0.36937 0.373497 1.36755 1.37215
OY N.,16918 nN.7148  m=m=mes e
BO 0.31303 0.31523 ————me- e
0, 0 ,18980 N.19210 —————-— —em e
BéHﬁ —————————————— 1.95740 N.96A60

Table 3. Comparison of MP3 and MP4 Atomization Energies (Units: H)
SDTO-MP4 MP3

Molecule NDirect Tsvugyric NDirect Tsopyric
KH 0.13336 0.13566 9.13251 1.136132
BH, N.270h4 0,27294 0 .27157 0.27538
BH& 0.44674 N.451134 1.,44H85 045447
CH, N.66233 N.6h93273 0.AH1YR 0.6734%1
NH3 0 .4A6822 0.47512 N.46167 0.47310
Hy0 0.369737 0.37397 0.36186 0 .3A948
0ox 0.16918 0.17148 0.1hAG2 0.17023
RO 0.,31303 0.31533 0 ,29745 1.30126
0, 0.18980 0.19210 017027 0.17408

a4
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IV. DISCUSSION

Handy and coworkers in a series of publications investigated the effect
of the level of correlation energx on the prediction of molecular structures
and spectroscopic properties.b'g Most of these studies used an extended
basis set similar to that employed in this work. 1In each case, the rationale
is that the extended basis set removes at least one variahle from the analysis
of the results; additional basis set improvements will have scant effect. We
assume that this is so in our calculations. While we have not set out to
determine the convergence of the perturbation sequence with respect to the
atomization energy predictions, we can comment on that based upon the third-
order perturbation theory results,

7

The most obvious characteristic of these calculations is the systematic
difference in predicted atomization energy that accurs at each level of theory
investigated. TIsogyric analysis always predicts a larger atomization energy
than does a direct computation, with the difference between the methods
increasing as the completeness of the theoretical treatment of correlation is
reduced. This must occur, since the magnitude of the correction factor
increases as the level of sophistication of correlation energy calculation is
reduced.

It is also true that the full fourth-order perturbation theory
atomization energies always excceed the frozen core results, The differences
are generally small, a consequence of the fact rthat all the cases for which we
can compare numbers involve a single first~row atom. Tn addition, our frozen
core predictions are always equal to or greater than the predictions given by
Pople, et al., for the same molecules. These differences are primarily due to
the difference in hydrogen atom basis sets used in the two sets of
calculations,

As discussed previonsly, the difference between the direct calculation of
the atomization energy and the isogyric prediction is a multiple of the
difference between the computed energy for the hydrogen molecule and the exant
value, Thus, the correction factor for the BH molecule is one-third that of
the methane molecule. To evaluate the results of the calculations, we compare
the atowmization energy predictions to those given in Reference 1., Those
authors evaluated zero-point energy contributions using the best vibhrational
frequency data available at that time. There are cases, especially for the
BH, molecule, the experimental numbers for both frequency and heat of
formation are clearly incorrect. These empirically derived data, along with
the results of our calculations and the frozen core data of Pople, et al., are
summarized in Tabhle 4. Note that the full MP4 calentations using the isogyric
method of analysis overestimates the cmpirical atomizatioe energy in every
case but onre, the R!l2 molecule, ,Onr value ftor HH} is higher than that derived
in a recent experimental stndy.“ That report assigns a D, value of
265.3 kcal/mole, from which we derive a D, equal to 280.6 keal/mole, using our
previously reported zero point energy. Our direct computation of the
atomizarion enerdgies tend to be close to the frozen eore results, and are
Alwavs lower than the experimental values, except for the BH molecule, Tn
this case, there is reason to question the accuracy of the theoretical
result. Both the BH molecule and the boron atom have low=Tying excited states
that are the consequence of donble execitations, The perturbation theorvy
techniques used in this study do not accurately acceount for the enerdy




contribution due to these excited states. Curtis and Pople have described a
technique for computing corrections due to higher-order perturbation theory
terms, and they have demonstrated the application of the technique in a
study of small boron compounds.l That analysis leads to a reduction by
several kcal/mole of the atomization energies originally reported in Reference
1.

Since the magnitudes of the energy differences hetween theory and
experiment are so small it is not possible to assign the "correct” value,
except in the case of BH, for which the empirical value is known to be
incorrect.

Table 4. Theoretical and Experimental Atomization Energies (kcal/mole)

SHTQ-MP4
Molecule Direct Isogyric MP3 SDT()—MPQ—FCl preriment13
BH 83.7 85.1 85.5 85.3 82 .8
BHZ 169 .8 171.2 172 .8 168 .5 196 .2 4
BH, 280 .3 283 .2 285 .2 280 .9 280 .61
CH,, 415 .6 419 .8 422 .5 419 .9 419 .8
NH3 293 .8 298 .1 296 .9 296.,2 297 .3
HZO 231 .8 234 .7 231 .8 230 .9 232.2
oY 106 .2 107 .6 106 .9 105.5 106 .6

Finally, we consider results of the isogyric analysis with the third-
order perturbation theory results. As noted above, this technique fails
utterly when applied to multiply bonded systems, 1In the case of the hydrides,
however, the large basis set predictions are in reasonahle agrcemont with the
full fourth-order results. 1In every case, the corrected third order results
exceed the atomization energy predictions of the direct calculations and the
frozen-core calculations. There is not a systematic difference between the
third-and fourth-order isogyric results, however., While admitting that the
test set is small, we must conclude that the third-order perturbation theory
calculations do provide surprisingly reasonable values for the sigma bonded
molecules. Certainly, a more thorough evaluation of the application of
extended basis set third-order results for sigma bhonded svsteins scems
wiarranted, since the compatational advantages of rhis lnwer level of theory
are substantial., The recent description of Carter and soddard of an excellent
prediction of the methylene singlet-triplet splicting obtained using an
extended basis set with the computationally efficient GVB method atso
indicates the potential bhenefits of this genre of quantum chemical technique.
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