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ABSTRACT

In this paper we present a unified framework for simulating Markovian models of highly depend-
ablc systems. Since the failure event is a rare event, the estimation of systemn dependability measures
using standard simulation requires very long simulation runs. We show that a variance reduction
technique called Importance Sampling can be used to speed up the simulation by many orders of
magnitude over standard simulation. This technique can be combined very effectively with regen-
erative simulation to estimate measures such as steady-state availability and mean time to failure.
Moreover, it can be combined with conditional Monte Carlo methods to quickly estimate transient
measures such as reliability, expected interval availability and the distribution of interval availability.
We show the effectiveness of these methods by using them to simulate large dependability models.
We also discuss how these methods can be implemented in a software package to compute both
transient and steady-state measures simultaneously from the same sample run. .
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1. Introduction

The requirements for highly dependable systems, such as air traffic control and transaction proc-
esstng systems, inercase the importance of dependability prediction at a design stage.  Typically,
stochastic models are used to analvze such systems. A system is considered to be a collection of
components which can fail and possibly get repaired. The system is considered operational if at any
given moment the operational components satisfy some minimum system operational require-
ments. Many details of failure and repair behavior of the components have been introduced in such
models: common-mode failures in [2, 5, 30], detailed fault and error handling models in [9] and
detailed recovery hicrarchies, operational and repair dependences in [15, 17]. Models which include
degraded modes of operation have also been introduced [17.40]. Different measures are used to
evaluate the modceled systems depending upon whether they are mission oriented systems or con-
tinuously operating systems.  Some of the dependability measures of interest arc steady-state avail-
ability. rehiability, mean time to failure, cxpected interval availability and the complementary
distribution o” interval availability (i.e.. the probability that a svstem would achieve a higher interval
availability than a specified value between 0 and 1.) Similar measures have also been constructed
for degradable systems, ¢.g., steady-state performance and distribution of performance over a time
interval [32]. Detailed surveys of these modeling techniques and the dependability measures calcu-

lated appear in [ 12, 31].

The most common stochastic models used in this context are continuous-time Markov chains
(CTMCs). Typically, numerical methods are used to solve Markov chains.  Although. many
maodeling packages have been built, e.g., [17] and [9]. which incorporate numernical methods ca-
pable of computing steady-state as well as transient state probabilitics of Markov chains with
thousands of states, the size of system modeled is typically small because the number of states in

the system increases exponentially with the number of components. Techniques like state lumping

and unlumping [16.35] and statc aggregation and bounding [ 1, 34] can reduce the size of the state -~
space substantially. However, large systems with a large number of redundant components are still ‘ £ . :
out of the range of the solution capabilities of current numerical methods, primarily due to storage \ _//
or computational limitations. r -

An alternate approach for the solution of large models is Monte Carlo simulation, which is the lj@
0

subject of this paper. Simulation is especially useful for those models for which the transition rate

matrices exceed the available storage. By nature, this approach has the immediate advantage of

having relatively small storage requirements. On the other hand, sincc the failure events arc rare . -
/

events, 1t is apparent that the analysis by simulation of large models wwith a high degree of redun- -Cid —
v Cedes

dancy will require many regenerative cycles or many long independent replications in order to attain s /0r




reasonable confidence intervals [ 12, 297, Our goal is to obtain variance reduction methods that are
applicable to a broad class of models. Specifically, we are interested in models defined by the reli-
ability and availability modeling language described in [17]. so that the techniques can be imple-
mented in a software package and made available 1o designers in an automatic and transparent
fashion. A tyvpical system contains multiple component types with redundant units for cach com-
ponent type.  Failure of these systems is usually caused by exhaustion of redundancy or by a
combination of component failures leading to a system failure. Failed components may be repaired.
If all components are repairable and component failures are exponential, then a regenerative state
for the svstem (see, e.g.. [8]) is the state where all units of all component types are operational.
If. in addition, all repair timee are svpanentially distributed. theii the svstem can be modeied by a
continuous time Markov chain. For highly reliable and highly available svstems, it is usual for the
repair-recovery rates of components to be orders of magnitude larger than the failure rates, and in

these circumstances the use of importance sampling variance reduction techniques [ 20, 227 can be

very effective in reducing the simulation run length significantly.

Importance sampling for rare event simulation has been used successfully in [6], [2R]. [42]. [44]
and [38]. Proper sclection of the importance sampling distribution makes ihe rare cvents more
hikely to occur; this results in a variance reduction. The key, of course, is to choose a good im-
portance sampling distribution. ‘The theory of large deviations was used in [6], [42] and [44, 3R]
to sclect an cffective distribution for problems arising in Markov chains with “small increments™,
random walks, and queueing networks, respectively. Fffective heuristics were used in [2R] to select
importance sampling distributions for reliability estimation in large models of machine repairman

type.

In this paper, we review and extend the - **ods in [4], [18] and [41] and present a comprehensive
and unified framework for simulating a * - d class of modcls, specifically models defined by the
rchability and availability modeling language described in [17]. The language is used to describe
failure and repair behavior of components as well as operational, repair, recovery and common-
mode fallure dependencies among them. The language is also used to deseribe conditions (e.g..
reliability block diagram or fault-trec) under which the system is considered operational. The model
described by the language is simulated assuming that all failure, repair and recovery distributions
are cxponential. We estimate both steady-state and transient measures simultancously from the
simulation. Importance sampling techniques are used to estimate these measures; these technigues
are orders of magnitude faster than ordinary simulation. The basic idea behind importance sam-
pling is described in Section 2. We also give formal defimtions of the dependability measures of

interest in this section.




In Section 3 we present our methods for estimating dependability mcasures, such as the steady-state
availability and the mean time to failure (MTTF). The estimators are based on combining regen-
crative simulation [8] with importance sampling. The concepts of dynamic importance sampling
(DIS, see [4] and measure specific dynamic importance sampling (MSDIS, see [1R)]) are explained
using a very simple three state example. Direct application of these techniques does not vield a
of two expectations (both are estimated using a regenerative simulation), then significant vanance
reductions can be achieved using our importance sampling techniques (see also [417.) Therefore,
while the MTTT i, in fact. a transient measure, we can estimate it using a regenerative simulation;
this 1s the reason why we have considered its estimation with other steady-state measures in Section

X The equations for optimal run-length allocation and asymptotic bias expansions are also given.

In Section 4 we present our methods for estimating the transient measures, such as reliability, in-
terval availability and distnbution of interval availability. The estimators are obtained by inde-
pendently replicating observations based on combining “conditioning” (c.g.. [10. 11]) or "forcing”
{e.g.. [28]) methads with mportance sampling.  In Section S we show how we implemented both
regenerative simulation and the independent replications so that steady-state and transient measures
can be computed simultaneously from the same sample run. Some implementation issues as well

as theorctical 1ssues i using importance sampling are also described in this section.

In Scction 6 we show the effectiveness of the above techniques in reducing the sitnulation run time
of a large example. Typically, we obtain orders of magnitude reduction in the run time over
standard simulation. We also perform coverage experiments on the confidence intervals and com-
pute the bias values for the estimates of the steady-state availability. Finally, in Scction 7 we give

concluding remarks and suggest some directions for future rescarch.




2. Background and Notation

In thiz section, we review the basic ideas of importance sampling. We include this background
material to make the paper self contained and more accessible to the non-specialist. A
continuous-time Markov chain (CTMC) model of svstems is then introduced and the associated

measures that are of primary interest in evaluating highly available svstems are defined.

2.1 Review of Importance Sampling

The basic notion behind importance sampling can be illustrated using a simple example: estimating
the expected value of a function of a random vanable (sce, e.g., [207). Supposc that 0 1s 2 irsut
parameter to the simulation, e.g., a failure rate. Associated with each 0 is a probability density
function (pdf) f(x) for — o~ < x < on. Suppose we wish to estimate #(0) = ['5[A(V)] for some
function s where the subscript @ indicates that the random variable (rv) X is sampled from the pdf

fa(x). Then

My = Eg[h(X)] = [ h(x) fo(x) dx. 2.0
Now assuming that py (x) is another probability density function such that p, (x) >0 for all x.

I:quation 2.1 can be written as

” Jop(x) :
Hoy = [ h(x)< p;’n(x) o) dx = Tip [A(V) L(0, 0. 1], (2.2)

Y —oo

where 1.(0,0,, x) Ef,,(x)/pgo(x) is called the likelihood ratio. Fquation 2.2 thus provides a means
to produce an unbiased estimate of 1) by simulation using the different probability density func-
tion pg (x). This switch of the probability density function is called a change of measure; the re-

sulting simulation algorithm is called importance sampling.

I'or our purposes, the goal of this change of measure is to produce an estimate with lower variance.
In fact, if A(x) > 0 for all x, then choosing Po(X) = h(x)fp(x}/r() yiclds a zero variance estimator,
since in this case the rv i(X) 1.(A, 0,, X) takes on the constant value 1) with probability one. In
practice, however, this ts not a feasible change of measure since it requires knowing (1), the un-
known measurce to be estimated. Nevertheless, we will find the zero variance transformation vseful,
since it can be calculated for some simple examples and forms the basis of a heuristic for simulating

more complex examples of highly available systems.
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We next speciatize these results to rare event simulation, and show why importance sampling can
be particularly effective tor estimating the probability of rare events (this argumnent is basically taken
from [44]). Suppose that Acx) = g(v) x I(sery for some function g where I(cery 15 the indicator of
asct Forel Iy = Tifvelmand 1)y = 0if x¢/. We assume that I'is a so-called rare set in the
sense that the probability that the rv Xel'is close to 0. A single sample using standard simulation,

re.. sampling A" from the pdf f)(x) and forming the estimate g(X) x I has vanance

Xef}
i = l'ﬁ[ﬂ(,\)2 Fivery] — 10)* (note that l%_\.e,,»] = l(xery). On the other hand. the variance ob-
tained using importance sampling, 1.e., sampling X" from the pdf P (x) and forming the estimate
gV X Ly gy X 10,00, X0 is 1(00) = Fp [0 1 e gy 140,05, 7] = #0). Notice that if the like-

lihood ratio £.(0. 0, x)<1 for all xel’, then

(0 = Vo [0X) 1yapy 100, 0y, 1)) = ()

- r 2 (0)? ! (2
= Fle(V) liyepnd — n(0) = 1)

where the first equality is true by T'quation 2.2, Thus to achieve variance reduction, we need to
make the likelihood ratio very small on the rare set 7. Since Fis a rare set, fp(x) is typically small
for xel" and since L(?, 8, x) =f,,(x)/pon(x), we obtain a small likclihood ratio by choosing the pa-
rameter 0, so that Pa,(x) 1s relatively large for xe /" i.e., by making the rare st more likely to occur
under the new measure defined by Pa,(x)- This intuitively explains the basic notion behind using

importance sampling in rare event simulation,

2.2 Markov Chains and Associated Dependability Measures

We assumc that the system can be represented by a CI'MC Y ={ V., s > 0} with fintte state space
I and infinitesimal generator matrix Q = { g(i,j) ., i.j e I'}. We let g(i) = — ¢(i.i) denote the total rate
out of state i (sce, e.g., {23]). We further assume that /2 can be partitioned into two subsets:
I'=0 1" where O is the set of up states, 1.e., the sct of states for which the svstem is operational,
and /71s the set of down, or failed states. We assume that the system starts out in the state for which
all components are operational; we label this state as state (. For any set of states 4, let « 4 denote
the time the Markov chain first enters the set 4. Of particular interest are a,. which is the first re-

turn tim * to state 0, and ag, which is the first entrance time into the subset 7 of failed sates.

We will be interested in two types of dependability measures associated with the CTMC Y: tran-
sient measures and so-called steady-state measures.  Considering the transient mcasures first, the

interval availability, A(¢t). is defined by
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!
A = % [ l();e()) ds . (2.4)

g
I'his is the fraction of time that the system is operational in the time interval (0,1). We let
(0 = I'[A] (2.5
be the expected interval availability and let
Fitx) = P{A<x] (2.6)

denote the distnbution of aveilability. The reliability of the system is defined to be the probability

that the svstem does not fail in the interval (0.¢):

Ry = Plag>1] = l:[lh/ >-r]]' (2.7

F'or steady-state measures we assume that Y 1s trreducible, in which case Y=} as s — on, where =
denotes convergence in distribution and ¥ is a rv having the stcadv-state distribution
m={m;. iel’} (r solves the equations rQ = 0). Notice that steady-statc measures are independent
of the starting state of the system, however, we will choose the fully operational state (i.c., state 0)
to define a regencrative state for the system. By regenerative process theory (sce [43] or [&]).

steady-state measures take the form of a ratio of two expected values:

. v v gds)
r= FAN) = fim FAY)] = lm Ln/();)dx = —;T"[;(T-— (2.8)

where fis a real valued function on F£. If fli) = Hiey- then FLA{NT is the long run fraction of time

the systern is operational and is called the stcady-state availability, which we denote by

A=hm I:[A4()]. We will sometimes find it convenient to consider the cxpected unavailability
{~er

Uy=1-1(t)=1-FE[A()] and the steady-statc unavailability, {'=1— 4. The problem of
steady-state estimation thus reduces to one of estimating the ratio of two expected values.

The mean time to failure (MTTF), Fa.], 1s typically thought of as a transient measure, since it
depends on the starting state of the system (state 0) which is assumed to he the fully operational
state. A ratio representation for Fla ] is found to be particularly useful. To derive this ratio, we

write
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Y= "1’.|[~1/ -~ 1) + ol + () ﬂ"“)”("n" vl (2.9)
= min (o) o+ (g = o) D )

Now, applying the Markov property at time v, shows that, on the set {x < g}, (v, — %) 18 con-
ditionally independent of 1, ., 3 and furthermore has the same distribution as a,. Therefore,

taking expected values of I'quation 2.9 and rearranging terms vields the ratio formula

[ min (x,. 7y) ]

Pla, < !

(2.10)

] =

Thus we can view estimating [~ /] as a ratio estimation problem, where both the numerator and
the denominator are estimated using a regenerative simulation. Therefore, in Section 3 we consider
the estimation of the mean time to failure (MTTT) together with steady-state measures which are

also (and more commonly) estimated using regenerative simulations.
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3. Estimating Steady-State Measures

fn this section, we discuss the estimation of steady -state measures of CTVMCs We begin by re-
viewing how this problem can be reduced to estimating associated  steady-state measures in
diserete-timc Markov chamns (IYPMCs) and deseribe the regenerative method of simulation (see,
e.g. [Sho We next desenbe the application of importance sampling to DINMCs In particular, we
note that the importance sampling transformation sclected for actual simulation can be dynamic in
the sense that 1t need not correspond directly to a time homogencous IYIMC. We also note that,
since the problem is one of esimating the ratio of two cxpected values, there 1s no need to use the
same importance samphng transfonmation for estimating both the numerator and denominator of
this ratio, 1.e., the imponance samphing transformations can be maasure specific. Anaivsis of a three
state example emphasizes the benefit of both dynamic and measore speaific nmportance sampling
and serves as the basis for heurnisties for larger, more complex system availability models. The op-
timal allocation of CPU time to estimation of the numerator and denominator 1s then discuswed.

I'he section concludes by considerning asvmplotic bias expansions of the estimators,

3.1 Discrete Time Conversion of CTMCCs

In {217 1t is shown how one can estumate steady-state measures of an irreductble CTMC by simu-
laing only the embedded DTMC (and not generating random  lLwolding  times). I et
X ={Y,. n=0} denote the embedded DTMC of the CTMC Y: X has transiion matnx
P = {p(i N} where p(i.d) = 0 and ptify = q(i,)/g(D for j# i Let Aty = 1/g(d) be the mean bolding time
in state j and let g(iy = AAD]/q(d). Tet 1, be the first entrance time of the DIMC into the set 4 and

let 7 be the first return time of the DTMC to state 0. Then

Ty =1

r[( "AY)ds] FL Y, (%]
Ts=0 k=0
—— = R B
o] ) (
Hi Z R
b=0

KUM= Bim BLAY))

To emphasize the dependence of this ratio on the transition matrix P. we write T'quation 3.1 ex-
75 —1 0 —1

phaitly as r = Ep[GUER[IT] where G = 3 g(X) and 1T = 3 ALX,) In [21], it 1s shown that this
k=0 k=0

discrete time conversion is always guaranteed to produce a variance reduction over simulation of

the oniginal CTMC. Fox and Glynn [10] have extended this result to simulation of semi-Markov

Processes.
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Pgrowon 31 forms the basis for the regenerative method of <simulation for CTMCs (see. e,
[N One stimulates (using the transition matrix Py o (sav) independent and identically distributed
tud) rephicates of the random veetor (G vielding the ud random veetors (G oy j= 1. m}
Fach replication mvolves simulating the DTMC X (with the inttial condition V., — 0y to time 1y

these replications wre known. in the simulation  literature, as regenerative  eveles. I et

r;

. r; .

PPy = N GIN Then, beennse the eveles are ud, lim 7, (P) = » with probability one and
nr—x

1=t =1 >

S (P, a (P Ep[11:]). where VO, a™) denotes a normally distributed random van-

, A : R . .
able with mean zero and vanance o and o7 (P) = Varp[ G, — /1],

3.2 Importance Sampling for DTNMCs

We next extend the change of measure transformation of Pquation 2.1 1o DEPMC< Tet 1 be any
stopping tume of the DINMC X and let ¥ obe a rv defined on Xoup until time 7. Informally. risa
<topping time if the event {1 = »} is determined by X, = (Y, .0 The rv Vs then a (measur-
abley function of XU = (X0 X)) (see [23] for a more detailed and precise treatment of stopping
times)  The first entrance time to a state, or a set of statess s a stopping time. In particular, both
r.and 1, are stopping times. Fet 4, denote the set of all possible sample paths up until time 2. te.,

Ao =0s.=(n.... 505 e [} Vorany s, e A, et

»

Pis,)) = plsy) plsg. s pesy. 2y o pls,_y.os,) (32

where pis,) 1s the probabilits that the nitial state 1s 5, Tet 74, be the set of sample paths for

which = n.

Proposition 3.1:

I et r be a stopping time which, under the transition matnx P s finite with probability one and let
7 bea (measurable) function of X for which Fp[1Z7(X01] = o Fet P be any other measure such
that. under P’ s finite with probability onc and for anv s, e #,. P'(s) # 0 whenever

Z1s,)P(s,) = 0 Then

FplZ(XD] = Fp[ /70X LX) (13

where for any a L70X,)0 = PIX) (X)),
Proof Since. under P.or i fintte with probabihity one and since / has a hinite absolute first mo-

ment, we can write
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FolZiNa] = N N P s = O N Ps,) Zisy) Lis) = Ep[ZXOLX)] (34)

n—0s. €eh, n=0s e R,

where the last equality follows since ¢ 1s finite with probability one under P/.C)

Versions of this proposition have appeared clsewhere, ¢.g., in [44]. [3R] or [14]. Note that there
can cxist a sample path s, such that P(s,) > 0 even though P'(s,) = 0. provided that Z(s,) = 0. We
emphasize hovever that the measure P’ does not have to correspond to a time homogeneous
VMarkov chain, nor even that it corresponds to a Markov chain. Indeed we will see that 1t is highly
advantageous in many circumstances for P’ not to be Markovian. The general form that we will

consider for P’ 1

Pis,) = PUs)) POsy L) Prisytsges) e Ps, sy s, y). (3.9

With this formulation, we have the freedom to, c.g.. adjust the transition probabilities to depend
upon the number of visits the chain has made 1o a set of states (say the failed states) or simply to
“turn off” the importance sampling whenever the likelihood ratio gets too small. thereby avoiding
numerical problems. We term the use of such an importance sampling distribution Dynamic Im-

portance Sampling (DIS).

Apphing DIS to estimating the ratio of Equation 3.1 yieids the following procedure. A total of m
id regenerative cycles of the DFMC X are simulated using the DIS distribution P70 1t
G, I1;and 1), be the samples of G, /1 and 17, respectively, from cycle /. Define the point estimate
(P = g Gl ] g 111, Then, as in the casc without importance sampling. we have
,Ji_f‘,], ;'n,(l”=]= r \\'ithj;lrobability one and V«’E(ﬁm(l") — nN=AN(0, ﬂ?(l,')/'[:,p[llj]z) where

S(P) = Varp[(G; — ril) L]

(3.6)
= Varp[G; L") — 2r Covp[ G L'y H L] + 72 Van [ 1]

Now from the form of nz(l”), it is scen that selecting a good DIS distribution P’ involves taking
three terms into consideration. For example, selecting a P’ to reduce the vanance of the estimate
of the ratio’s numerator may actually increase the vanance of the estimate of the denominator, or
vice versa.  In addition, the effect on the covariance term will generally be difficult to control, or
even predict. Thus selection of a single importance sampling distribution for both the numerator

and denominator involves a trade-oft.

This suggests that, since we are really tiving to estimate two different quantities, we should use

different changes of measures to estimate cach quantity.  Fstimating the numerator and denomi-
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nator independently allows one to tailor the importance sampling distributions to the particular
measure bemng estimated. without having to be concerned about the covariance term. We call this
Measure Specific Dynamic Importance Sampling (MSDIS).  Section 3.3 provides further moti-
vation for the use of DIS, as well as MSDIS. In fact for the example given, the two optimal. 1.¢.,
zero variance, changes of measure are opposites in the sense that numerator's optimal change of
measure brings the system very quickly to the failed state, whereas the denominator’s optimal
change of measure is approximately the same as the original measure and thus brings the svstem

only very slowly to the fatled state.

The procedure for MSDIS can be desenbed more completely as follows, Tet P’ and P denote the
DIS distributions for the numerator and denominator, respectively. A total of m eveles are sumu-
lated. Assume that fm cveles of the numerator are simulated and (1 — ym eveles of the denomi-
nator are independently simulated where 0 -2 f < [ (for notational simplicity, assumc that 7218 an

mtegery. Define

fm

Z(r'/- LY epm)
’ . - j=| 7
’m”’-p ) = O—f)m . (l/)

ML = pIm)

J=1

Note that G, 1."; is actually independent of //; 1.7, even though they have the same subscript.
Then, as before, lim ;\,,,(P’, PYy=r with probability one and
ny—on
_ ) ,
(P PY) = )= N0, (P P E[ 1] where

Varp [G; 1] Varp. [11: 1.7 /]

, 'y P i 1/. P / \j
AP = e (28

B (r=7

The optimal run length allocation between the numerator and the denominator will be considered

in Section 1.4,

3.3 A Three State Example

n this section, we consider a simple availability example, namely a three state Birth and Death
- - ess (see [23]). Because of its simple structure, the optimal zero variance importance sampling
distributions can be derived in closed form. The optimal changes of measure for the numcrator and
denominator are quite different. These results would be of no significance except that the three state
example serves as a paradigm for more complex models and thus strongly suggests a basic form for

cffective importance sampling distributions in more complex availability models.
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The state space 1s [-= 1001, 21, the birth rates are 4.1 = 0. 1 and the death rates are . i= 1.2, In
the reliabifity context. this modets a system with two identical components which can fail and be
repaired. We assume that births correspond to failures and deaths correspond to repairs so that
state 7 corresponds to having / faited components. We consider the system to be operational in

states O and 1. but failed in state 2.

The embedded  DTMC  has  the  following  non-zero  entries: p(0.D)y = p(2.1) = 1,
P == 41t + p)) and p(1.0) = (1 — £). Tetting Ay denote the mean holding time in state 4,
then /iy = Vg by = 1A+ ) and Ay = 1y, We assume that failure rates are much less than re-
pair rates. specifically we assume that /iy = @(1/r). iy = O and A, = O (we follow Knuth s
[24] wusage of Ax) = Oglx)) if there  exist constants ¢ and 5 such  that
Vx, 0 gy < flx) < Cyglx) )

The steady-state measure # of interest 1s the stationary probability of being in state 2, the steady-
state unavalability. This can be estimated using regencrative simulation with function values
g, g(hand g(2) equal to 0. 0 and A,. respectively. and function values A, A(1) and 1(2) cqual
to K. Ay and Ay respectively. Assume state 0 is the regenerative state. We first compute the variance
of the estimator using standard regencrative simulation. 1 ¢t 27, be the number of visits to the fatled
state. state 2, during a regencrative cvele and let s; denote the (unique) sample path of a regenceration
cvele of the DTMC for which np =i Then G = nphy and 11 = g + by + np(hy + hy). Furthermore,
n; has a geometric distribution, P{n, =i} = (1 — o) for i> 0. so that Fplm]=c/(1 — ) and
Varp[np] = of(1 — 0)’. Thus FplG) =" yef(l — ) and  Dp[H] = (g + by} + (B + Iy)ef(] — =)
Straightforward calculation: show that r = (~)(r,2) and that the asvmptotic squared coeflicient of

variation of 7,.(P} (obtained from the central {imit thcorem) is

Varp[G —rl1]

5 5 = O(l/mr). (1L9)
mrS Eplll]

The dominant term in Fguation 3.9 is duc 1o contribution of the numerator. Thus to obtain a
confidence interval with a relative width (width divided by the point estimate) that goes to zero
requires that the sample size m be large cnough so that iz — on. This demonstrates the potentially

large sample size required {or rare event simulations (in which £x0).
I et P(sy) be the probability of a regencration sample path s; . then P(s) = (1 — r)e', i> 0.
The optimal zcro vanance importance sampling distribution P'(s)), i > 0, for estimating I'p[ 6] is

computed  from  explicit  enumeration  of all  sample  paths First,  we  write

FplG] = TGs)Ps) = YTGESHAsHIP(s) = Lp[G L] . with [(s) = P(s)/P'(s) . Now, the
7 vi
optimal P'(s)), for all i > 0, can be computed (similar to what is described in Section 2.1y
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. P(s)G(s; .
P os) = —I(—l)[(l]i = (1= izo, (3.10)
,!) 7

since then G(sp(s), for all i = 0. is a constant cqual to Fp[G].

Similarly. the optimal zero variance importance sampling distribution for estimating Ep[//] is given

by

Pells) [+ i) + 4+ hy)i](1— o)

l),-/' s)) = i —
(l) ‘I)[II] }7() + hl - E(llﬂ — /lz)

i=0. (3.th

From Lquation 3.10, l"'(s(,) = 0, l"‘(si) = (- n)z. l‘"(sz) = 2&(1 — r.)2 and so on. Now let
p’.(l.()ln, = i} denote the probability of going from state | to state 00 given that the chain is in state
I and that the failed state has already  been  visted i times. Then
/7"( VOl =0} = l”‘(si)/(zl”'(sj)) and thus, from Fquation 3.10, p"(l,(lln,, =0} =0 and

=i

(1 - ¢)? .
R sy izl (3.12)

PO =1 =

Therefore. each successive time the simulation enters state 1, the probability of returning to state
) changes (under both P"(s) and P”’(s)). Thus the optimal changes of mcasure for both the nu-
merator and the denominator of Equation 2.1 are dynamic. In particular note that while
p O =0 =0, p (10n=1) = (1 —e)’~x(1 = 20)x(1 —e)=p(1,0) for 0.  Also,
hm p"( 1.0[n- =10 = (1 — )= p(1,0). This suggests that, for more complex modecls, the importance
‘sar:pling distribution for the numerator should be chosen to move the system very quickly to the
set of failed states /|, but that once I" is entered, the importance sampling should be tumed off so
that the system quickly returns to state (. This should hold true for systems in which the proba-
bility of two or more failures in a regenerative cycle is at least an order of magnitude less likely than
the probability of one failure in a cycle. This is also consistent with the argument given in Section

2.1 as well as Walrand's suggestion in [44, 3R] (which was derived using large deviation results) to

interchange 2 and p for cstimating the probability of buffer overflow in the M/M/1 qucue.

For the denominator, on the other hand, the largest contribution to the expected value comes from
the sample path on which n;. =0, which is not a rarc event. This suggests using standard simu-
lation, t.e., not using importance sampling, to estimate the denominator. Indeed, the optimal

change of measure of Equation 3.11 has

(1=
Il — e{hy — hy) [ (hy + 1)

pse)=p (10 =0) = ~(1—¢) = p(l0) (3.13)
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so that there 1s very little difference between l""(s) and P(s) for the most likely sample path.

3.4 Optimal Run Length Allocation

Fquation 3.8 gave the form of the asymptotic variance when a fixed number m of cycles are simu-
lated of which fia are devoted to simulation of the numerator and (1 — fym are allocated to the
denominator. Since the expected amount of CPU time to simulate a sample of the numerator and
denominator may be different, a more practical run length allocation model can be formulated as
follows.  Tet the total CPU time be 7 and assume that 87 is allocated to the numerator and
(1 = A7 is allocated to the denominator. Tet ¢, (¢,) denote the expected CPU time to simulate a
sample of the numerator (denominator). Then, for large 7', approximately #7/¢, cvcles of the nu-
merater and (1 — B)77c; eveles of the denominator are obtained. The asymptotic vanance of the

resulting point estimate is

| a

2
o
n ’_2 d'd (3.14)

TEplI17 g - p

where n,z, = Varp.[G; 1] and n}, = Varpu[llj 1.”;]. This result is obtained by applying results from
renewal theory (see [43]). Minimization of 3.14 with respect to f viclds ﬁ' =45/(1 + &) where

Sd=a, c, [(rog/cg).

Suppose that c,xc; and that o,xa, (we are equally effective in reducing the varance of the nu-
merator and denominator). ‘Then, for estimating the stcady-state unavailability, » is small and
ﬂ'zl. i.c.. the bulk of the effort should be applied to estimating the numerator, which in this case
is a rarc event simulation using importance sampling. On the other hand, for estimating the MTTT
using the ratio formula given in Equation 2.10, 7 is large and ﬂt'z(l. i.c., the bulk of the cffort is
devoted to the denominator. However, for the MTTT, the denominator also corresponds to a rare
event simulation using importance sampling (morcover, as will be discussed in Scction §, the same
importance sampling distribution can be used to estimate both measurcs). ‘Thus in cither case, the
optimal allocations are consistent in the sense that they allocate most of the effort to rarc cvent

simulation.

In practice, we always devote a minimum percentage, say 0%, of the effort to standard simulation
even though the optimal allocation usually suggests devoting much less time to standard simulation.
This permits stable variance estimation and the loss in asymptotic efficiency from the optimal al-

location ts small.
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3.5 Bias Expausions

We now consider bias expansions of ratio estimators of steady-state measures.  Because the nu-
merator and denominator are simulated independently. some specific conclusions can be drawn
from these expansions. References for this type of bias expansion may be found in Section 27 of
[7]. Chapter 2 of [27] or [13]. They are derived using Taylor series expansions and multidimen-
sional central imit theorems. et {C,, = (C (1), ... Cy(d)). n > 1} be a sequence of iid vectors of
length  and let g = (py. ..., jiy) where I[C,]] = p. Suppose we are interested in estimating g(u) for
some  function ¢ In the case of ratio estimation g = (ny.py) and g(u) = [p,. let
”m

C,.=(1'nn Y €, Then. under appropriate technical conditions on g and the moments of €,

=t

d d
l"[‘z(?n,)] = g(p) + ?:; ZE“U’Q” +  ofl/m) (L15)
i=1 j=I

- . ~ ‘3 . h ’ ’?
where a, = Cov[C(0. C,()] and g, = ﬂ—:ﬁr—g(x) [ In our case, C,, = (G, L7, 1,07 ,).
- i -j

=ll'
ay = Varp[G,17),]. ayy = Varp.[11,1.",,] and &5 = 0 (since the numerator and denominator are
simulated independently).  Note that in the above we assume for simplicity that m cycles of both
the numerator and denominator are simulated. Differcntiation of g viclds g, =0,
g3 = 2/11//1’; = 2;‘/;1% and g, =— l/;z%. Since a,, =0, the value of gy, does not enter into the
MSDIS bias expansion. Therefore

rVarp [H,L" 4]

Elg(C,)] = gu) + > + o(l/m). (3.16)
”1[12

For the mcasures of interest in availability modcling, »>0.//,=0and ;>0 so that,
asymptotically, F'[2(C,,)] 2 g(u). Furthermore, this asymptotic bias expansion is independent of the

importance sampling distribution P’ chosen for simulation of the numecrator.

For the stecady-stale unavailability we select P’ = P. By the results of Section 3.3, in the three state
example r = @(cz), Varp{/1,] = O(c) and iy = Fp[/1,] = O(1/z). Therefore, the leading term in the
bias expansion is of order e [m (rclative bias is of order ¢*[m ) which is typically quitc small. With
standard simulation the bias expansion, which now includes the effect of correlation between the

numerator and denominator, becomes

—_ —_ rVa > I[ (.‘()V)(‘,I’
Elg(G,,. I1,)] = glp) + ——EI[Tnl - ———'[—”;—'i + o(ljm). (317
m[l2 m Hy
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FFor the three state example. Covp[G,. 11,] = hy(h + hy)Varp{n; ] = O(e) so the dominant term in
the bias expansion 1s (s /i) which is significantly larger than the A(:*/m) bias obtained using
MSDIS. Moreover, using standard simulation, the relative bias (bias:#) is only O(«r/m). Thesc ob-

servations are consistent with the experimental results described in Section 6.

For the MTTL, ris large and p; = Pap < ag} s small, which potentially makes the leading bias
term large. Towever, as seen from Fquation 3.16, choosing an importance sampling distribution

P for the purpose of reducing variance also has the beneficial effect of reducing bias.

In practice. s may have to be very large in order for these asymptotic expansions to be valid. In
particular, for small values of m the higher order terms may contribute in a non-negligible way so
that, e.g.. F[2(C,)] < g(p). If bias turns out to be of significant concern, then a bias reducing
technique such as jackknifing may be used to remove the leading term of order [/ in the bias ex-

pansion (see [33]).
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4. Estimating Transient Measures

Simulation of the CTMC Y consists of two parts: simulating the sequence of states visited by the
embedded DTMC X with transition matrix P, and simulating the holding times in cach of the
states. We let 4 denote ihe holding time in state \}. Thus given that X =/, ; has an exponential
distribution with mean 1/¢(/) and the (conditional) likelihood of ¢ is simply q(]')(‘”q(/)r'. We let
t, = (f. ... . 1,) denote the first 7+ 1 holding times of the CTMC. Given that X, = (Xj. ... X)), the

likelihood of t,, 15 therefore
f(1,1X,) = g\ e 1000 gy ) om0 (4.1)

and thus the likelthood of the sample path (X, t,) is
QX t,) = PX,)f(t,]X,) (4.2)

where P(X,) was defined in Iiquation 3.2. I'quation 4.2 gives the likelibood at the times of the

jumps of the embedded DTMC.

We basically adapt the development in [14] in order to extend Proposition 3.1. Define 7 = ) and
T,=1ty+~+1,_, for n>1 Then T, is the time at which state X, is entered, 1.c., the time of the
n'th transition. let Y, = (¥, 0<s<). Let v be an integer valued stopping time with respect to
the sequence of pairs {(X,.¢,).n>0}. iec, the event {r=n} can be dctermined by
(Xo. o) o (X, ). We et Q' denote another measure for generating sequences {(.X,. ;). n > 0},
We will specifically assume that Q'(X,,. t,,) = P’(X,) F'(t,1 X,). With this factorization. the form of
the contribution of the holding times to the likelihood. £'(t, 1 X,,). is almost arbitrary (the restrictions
will be discussed below), but the sequence of states sclected does not depend upon the holding

times. let B, be the subset of the sample paths of Y for which = n.

Proposition 4.1:

I et r be an integer valued stopping time which, under Q, is finite with probability one. Define
n= T, and let 7 be a (measurable) function of Y, for which Eo[17(Y )] < on. Let Q" be anather
measure of the form Q'(X,,. t,) = P'(X,) f'(t,1X,) such that, under P, 1 is finite with probability

one and for any (s, t,) € B, P'(s,) T'(t,[s,) # 0 whenever Z(Y 7)P(s)) f(t,!s,) # 0. Then

BolZ(Y ] = EolZ0V,) LX) 15X )] (4.3)
where for any n, L')(X,. t,,) = f(t,1s,)/f(t,15,).
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The proof of this Proposition is essentially the same as that of Proposition 3.1, Notice that if the
stopping time = of Proposition 4.2 is © = 1. then the « of Proposition 4.1 is first time to failure, ie.,
a = ap. Measures defined over a fixed time interval ((0L1) (e.g., the expected interval availability) are
handled in this formulation by defining © = N(0) + | where N(¢) = max{n:T,, < t}. The reliability
Ry 1s handled by setting v = min (zp N(O) + 1) (since, with this defimition, at time 7, cither a

failure has occurred or simulated time has surpassed ¢) and setting 7 = 1. .

4.1 Estimating the Reliability

By Proposition 4.1, there are two importance sampling distributions to construct, corresponding
to two likelihood ratios.  The first distribution is for the embedded DTMC (corresponding to
1'1(X,)) and the second is for the state holding times given the IYIMC's sample path (corre-
sponding to [/5(X . t)). I ewis and Biohm [28] presented a technique for estimating the reliability.
They apply “failure biasing” to the embedded IDDIMC; this causes failures to occur with higher
probability and therefore quickly moves (biases) the DTMC towards the set of failed states. They
also apply “forced transitions” to the holding time in state 0 (the state with all components opera-
tional). This forces the next component failure to occur hefore time ¢. Specifically, if X, = 0 and
T, < t, then the next holding time, ¢, is forced to be between zero and ( — 7', by sclecting ¢,
from the conditional density given by

'10 e~ A
Pl X ty) = ——57—— . 0<t,,, <t=T, (4.4)

| — o= A= T
where Ay 1s the total failure rate in statce (.  The simulation continues until time

= min (tp N0+ 1).

Ross and Schechner [37] propose an alternative approach in which some, or all, of the holding
times arc conditioned out. If all holding times are conditioned out then no holding times are
sampled and we sct 7 = l’{T,F <t XTF}. Calculation of 7 requires computing the convolution of
exponentially distributed random variables with different means. For a sequence of a states, this
can be done in (-)(nz) time using the recursions in { 39 J. Using failure biasing. 7, will typically be
small so that carryving out this computation is, in principle, not an obstacle. However, an ceffective
and much simpler approach is to only condition out the total holding times in state 0 (which typ-
ically represents the bulk of the time anyway). The embedded DTMC 1s simulatea until the set
of failed states is entered, i.c., until time 5. Holding times in the non-zero states are randomly
sampled. but no holding times are sampled for state (). 1ct £ denote the total holding time in states

TF
other than 0: f= 37 £, x iy 44y [t ry denote the number of visits to state 0 and et y be a rv
k=0
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denoting the total holding time in state 0. Given n,), y has an brlang distribution with shape pa-

rameter n, and scale parameter 2, and we write P{y < slny} = [y, (s. A). We then set

7= Plap<tIX Y = Ply<t—flng) = F(t—F. ). (4.5)

Unlike Ross and Schechner, we apply the conditional Moante Carlo approach in addition to some
form of failure biasing. By the variance reducing property of conditional expectations, (i.c., since
Var[F[X] 1]} € Var[ Y], see, e.g.. page 12 of [36]), the conditional approach plus failure biasing is

alwavs guaranteed to reduce the variance over just failure biasing. To see this, notice that

v

Vatp 13X 1y 291 2 Varp[ FLLA(Ke, ) 1, <91 Xeye ]

Varly'[ [.'I(x,r) I"‘Hn(l b ﬁ. /J“) ] .

(4.6)

i

While no such analvtic result exists for comparing conditioning with forcing. the conditioning ap-
proach has several advantages over the forcing approach. First, with forcing. different holding times
must be generated for cach value of ¢ for which R(?) is to be estimated. Because of sampling errors,
the estimates of R(!) may not be monotonic in 7 Using the conditional approach, simultancous,
monotonic estimates of R(1) are obtained. Second, with forcing, different conditional holding time
distributions are used and different likelihood ratios must be maintained for each value of ¢ for
which R(1) is to be estimated. This ts not necessary in the conditional approach. Thus. it has

computational time advantage when R(¢) is computed for multiple values of ¢ simultancously.

Another approach would be to use the technique of uniformization (see [19]). A discussion of
approaches to using uniformization in simulations, including discrete conversions, may be found
in [foxglvan1]. In our context, failurc rates arc much less than repair rates and therefore dg<
where 2 = max{q(i)} is the maximum state exit rate. ‘The number of transitions in the uniformized
chain before exiting state 0 (sometimes called “pseudo transitions”) is geometrically distributed with
success parameter Ao/Ax0. Therefore, effective estimation of these rarc event measures requires us-
ing some sort of importance sampling on the number of state 0 pscudo transitions. This, in tum,

is very similar to using forced transitions.

4.2 Estimating the Expected Interval Availability

In this section we present two methods to estimate quantitics, such as the cxpected interval avail-
ahility, which take the form r(¢) = l?[fstznj()’x)dx]. We assume that 241 is small so that very few
failurcs are cxpected by time (. The first method, duc to | ewis and Béhm [28], uscs failure biasing
and forcing as described in Section 4.1. The simulation ends at time Ty, =y + = + Ly, With

this notation, ty, is the holding time that crosses the threshold ¢. A practical implementation of
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this method typically turns off the forcing after /. visits to state 0 at some value of /. for which
I (e 2) is extremely small; without this modification N(¢) may grow 1o be quite large and, fur-
thermore, the simulation may generate extremely unlikely sample paths having an unusually large

number of visits to state 0 in the interval (0,0).

To apply the conditional Monte Carlo approach to r(¢). we begin with an important result from

Fox and Glynn {11}

N1

M = LY. ah)] (4.7)

k=0

where g(i) = f{)/q() and the expectation is with respect to the transition matrix P. Now, as sug-
gested in [11], we could generate holﬁing times for the sole purpose of determining N(1), and then
ignore these holding times by using (%—lg(,\’k) to estimate r(2). However, we would still have to
use conditioning or some sort of imp(nlftj:]cc sampling. such as forcing, on the holding times in state
() since otherwise N(f) =0 with high probability. Similarly, uniformization implementations based
on liquation 4.7 would also require importance sampling on the number of state 0 pscudo transi-

tions in order to be effective. To combine forcing with Fquation 4.7, we write

N()—1 N()—1
M) = B[ ) gX)ly>tIP(>0 + B[ Y aXgly<tIP(p<)
k=0 k=)
N()—1
= Bl ), gX)lo <1< (4.8)
k=0
N()—1
since if 4, >t , then N(f) = 0 and therefore Y g(X;,) =0 . Equation 4.8 can also be combined
k=0

with failure biasing.

We next extend Liquation 4.7 in a way that allows us to condition out the state 0 holding times.
While the development below is in terms of the original embedded DTMC, the results extend di-
rectly to using importance sampling as described in Proposition 3.1. We also present the method
in terms of conditioning out only the holding times in state 0, although the method also applics
more generally.  Analogous to the approach in Section 4.1, define ny(k) = 51: l(") -0) and
P = é,’f'("*} #0)- With these definitions, m(k) is the number of visits to state 0 anfzk is the total

holding time in the non-zero states at the k'th transition. Then, by Fquation 47
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o o0
"y = "'[Zg('\'k)'(/«gx(z)—l}] = ZITK(/\}()1(,V(/)z/<+n]
k=0 k=0

o oo (4.9)
— Zl[ I(g(‘\k) I(N(l)zk-{»l} !Xk. ﬁk] ] = l¢[ Zg(,\/k) ,’,‘nﬂ(k)(, - ﬂk‘ )n) ] .
k=0 k=0

The key step in the above derivation follows since {(N()=k+ 1} ={{ + -+, < t}. The ex-
changes of expectation and summation are easily justified for finite state spaces by using the dom-

inated convergence theorem (see [3]).

To apply Fquation 4.9 requires determining a stopping criterion.  We could simulate until £, > ¢
at which point £, (1 = f4. £9) = 0. However, since repairs are fast, f3, grows slowly and therefore
an excessive number of transitions may have to be simulated. The summation could be truncated
at some finite value. However, this introduces bias error.  While the error is casily bounded, we
prefer unbiased estimates, particularly for quantitics such as the interval unavailability which itself
1s quite small. A simple unbiased estimate can be constructed in a reasonable amount of time as
follows: after the /.'th visit to state (), begin sampling the state 0 holding times and adding them to
fip- Very quickly. fi, will exceed ¢ and the sample is then complete. More formally, fet Ny(/.) be
the (discrete) time at which state 0 is entered for the L'th time. lor k= Ny(l)+ 1, let

-~ k
Ri= ﬂNn(’) + s . Then, arguing as above,

J= N )41
No(l) o0
k=0 k= No(1)+1

The estimators for the distribution of tnterval availability can be formulated in a similar way. We

derive these estimators in Appendix A for the sake of completeness.
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5. Implementation Issues

In this section we consider the implementation of the different variance reduction techniques de-
scribed in the previous sections. These techniques have been implemented in the SAVE package
{15 17] so that large models can be simulated. One salient feature of our implementation is that
we use one simulation run for estimating all the measures. Regenerative simufation is used with the
all components operational” state as the regeneration state. The event generator simulates only the
embedded Markoy Chain (D IPMC formulated in Section 3.1). For the steadv-state measures we
accumulate functions of the mean holding times in the vanous states. and for the transient measures
we accumulate functions ot the sample holding times (from exponential distributions) in the vanous
states. In the following paragraphs we deseribe the implementation of the importance sampling

technique for the various measures.

Recall that we formulated the hkelthood ratios for the transient measure in Proposition 4.1 as the
product of two likelihood ratios 17(X0) and 1'y(X_ 1), The first likelihood ratio corresponds to
the embedded Markov chain and it 1s needed for the steadv-state as well as the transient measurces
as indicated in Propositions 3.1 and 4.1, On the other hand. £.75(X,. 1) corresponds to the holding
times, given @ sample path on the embedded DTMC; this likelihood ratio s needed only for tran-

sient measures and i1s different for different transient estimators.

The importance sampling for the embedded Markov chain is based on the following heunstics.
As suggested in Section 3.3, we need to move the system very quickly to the set of failed states I,
and once 7' is entered. the importance sampiing should be turned off so that the system guickly
returns to state 0, the “all components operational” state. We achieve this by increasing the prob-
ahility of failure transitions over repair transitions. This has been called “failure biasing™ in [28].
We assign a combined probability hiasl to the failure transitions in all the states where both failure
and repair travistions are feasible. Individual failure and repair transitions are selected in the ratio
of their rates given that a failure or a repair is sclected, respectively. We call this the Bias/ Ratio
method. or simply Bias/ method. We have found two other methods useful for selecting individual
failure transitions, given that a failure has occurred. The first is to use a uniform distribution on
the failure transitions which has very good performance for “unbalanced systems™ as shown in
Section 6 We call this the Bius/:Balancing method. The second is to give a higher combined
probability hias2 to those failure transitions which correspond to component types which have at
least one component of their type already failed. This exhausts the redundancy quickly and has
much better performance for “balanced systems™ as shown in Scection 6 We call this the

Rias/ Bias2 method.
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For the steady -state availabihty cach regenerative cvele corresponds to a sample. We use cither the
DIS or the MSDIS method given in Section 3.2 1o estimate the steady-state availability. For the
mean tme to fatlure, a sample ends when cither the regeneration occurs or the system enters one
of the svstem farled states from the set 7 In the latter case, we continue to simulate the embedded
AMarkov chain until the regeneration oceurs before starting a new sample. This wastes only a few
svents as typicathy a regenerative evele has a verv few events (approximately twice the average re-
dundancy which is typically 2 or 3). Onee again, we use either the DIS or the MSDIS method to
estimate the mean time to failure. Por the transient measures, multiple regenerative cyveles may be
contained 1 a sample. Maorcover, a sample typically ends either when a failure oceurs or when the
tiee interval expires, which is usually in the middle of some regenerative eyele. Asin the mean time
to tailure case, we continue to simulate the embedded Markov chain until the next regeneration
occurs before starting 4 new sample. Separate accumulators for the appropriate likelihood ratios
are nuaintamed for cach transient estimator and for cach time horizon of interest. Thus. all meas-

ures can be estimated simoltancously from a single simulation run.
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6. Examples and Discussions

In this section, we provide an example, based on a model of a computing system, to illustrate the
cffectiveness of the different variance reduction techniques discussed in the previous sections. A
block diagram of the computing system considered is shown in Figure 1. We use two different pa-
rameter scts to create a “balanced” and an “unbalanced” system. A balanced system is onc in
which each type of component has the same amount of redundancy, (i.c., same number of com-
ponents of a type must fail in order that the system fail, c.g., T-out-of-2 of a type has the same re-
dundancy as 3-out-of-4 of another type); in addition, the components must have the same order

of magnitude failure rates. A system that is not balanced is unbalanced.

5907‘ 59~7~
processors A E B ‘ D

disk
controllers

disk cluster | disk cluster 3 disk cluser ¢4 disk cluster 6

Figure 1. A block diagram of ihic computing system maodceled.

For a balanced system we sclect two scts of processors with 2 processors per sct, two scts of con-
troflers with 2 controllers per sct, and 6 clusters of disks, cach consisting of 4 disk units. In a disk
cluster, data is replicated so that one disk can fail without affecting the system. The “primary” data
on a disk is replicated such that one third is on cach of the other three disks in the same cluster.
Thus one disk in each cluster can be inaccessible without losing access to the data.  The

connectivity of the system is shown in Figure 1. We assumc that when a processor of a given type
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tails. it has o 0.01 probability of causing the operating processor of the other tvpe to fail. 'ach
umt i the system has two failure modes which occur with equal probability. The failure rates of
processors, controllers and disks are assumed to be 12000, 1 2000 and 16000 per hour, respec-
tively. “The repair rates for all mode 1 and all mo "2 2 failures are 1 per hour and 1°2 per hour, re-
spectively. Components are repaired by a single repairman who chooses components at random
from the set of failed units. "Fhe system is defined to be operational if all data is accessible to both
processor types. which means that at least one processor of each tyvpe. one controller in cach set,
and 3 out of 4 disk units in cach of the 6 disk clusters are operational. We also asst me that oper-

ational components continue to fail at the given rates when the system is failed.

We make minor changes to the above parameters setting in order to create an unbalanced system.
We inerease the number of processors of cach tvpe to 4. and double cach processor's failure rate
to [ 1000 per hour. We decrease the failure rates of all other components by a factor of ten. In this
svstem., although a processor failure 1s more likely 1o oceur in a failure transition, it s less likely to
cause a system fatlure due to the high processor redundaney. This is typical behavior for an un-

balanced system.

6.1. Steady-State measures

In this section we discuss the resuits of our experiments for estimating the steady-state unavailability
and the mean time to failure. Numerncal (non-simulation) results for these measures were obtained
using the SAVE package [17]. Since the balanced system has a few hundred thousand states and
the unbalanced system has close to a million states, only bounds could be computed [34]. These
bounds are very tight and typically do not differ from the exact results significantly.  We simulate
both the balanced and the unbalanced systems. The goai f .. sunulation experiments is to study
the cfficiency of the importance sampling methods, deseribed in this paper, compared to standard
simulation. We also experimented with the MSDIS technique described in Section 3. | is shown
that the Bias/ method gives many orders of magnitude varianes 1eduction over the standard Monte
Carlo simulation. Morcover, further significant improvements can be  obtained using  the
Bias! Bias2 method for the balanced systems and Bias// Balancing method for the unbalanced sys-

tems. Further improvements are obtained when these methods are combined with MSDIS,

Table 1 and Table 2 show the results obtained for the balanced and the unbalanced svstems, re-
spectively. We ran the simulation long enough so that the smallest entry in the tables for the per-
centage relative half-widths of the 90%% confidence intervals was less than 5o, The percentage
relative half-width of a confidence interval is defined to be 100%% times the confidence interval

half-width divided by the poimnt estimate.  This corresponds to approximately 100,000 cvents for
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each entry in Table 1 and 1.000.000 events for each entry in Table2, respectively. For the MSDIS
entries, we assigned 10%0 of the total events to estimate the denominator (numerator) for unavail-
ability (MT117) as suggested in Scetion 3.4, Based on impirical results obtained in {4]. [18] and
[41]. the values for hiasl and hias2 were sclected as follows: for DIS, .5 and .5, and for MSDIS, .9

and 9.

There are a few important points to note in the tables. Tor the balanced system, the Bias// Bias2
method is most effective, which supports our intuition that it helps push the system quickly towards
a likely path to failure. For the unbalanced system. the Bisa/iBalancing is the most effective
method, which also supports our intuition as follows. By making individual failures equally likely
we are also increasing the failure probability of a more reliable but less redundant component, thus

leading to a more likely path to failure.

Also note that the percentage relative half widths for both the steady-state unavailability ({") and
the mean time to failure (MTTT°) are approximately equal. This is because the estimate of U is
approximately proportional to the estimate of I/MTTI. To sce this, using the notation of Section
2. min(a,, 7y) = a, with high probability when no inportance sampling is used. Thus an indi-
vidual sample r.v. in the numerator of the ratio for MTTT (Fiquation 2.10) is equal 1o the r.v. in
the denominator of ' (Equation 2.8) with high probability. Now for the three state model, a
sample r.v. (7 in the numerator of 17 is G = hy x np- where ny- 1s the number of times the failure state
1s entered.  Using our importance sampling schemes, G = h, l{nr=” with high probability. T'ur-
thermore, Linp=1) = Ny < ) with high probability so an individual sample r.v. in the denominator
of the MTIT ratio is proportional to the r.v. in the numerator of {7 with high probability. Thus,
an estimate of {7 is approximately proportional to 1/MTTFE. Finally, dircct manipulation of the
asymptotic variance (Iiquation 3.6) shows that the relative half width of a ratio is equal to the rel-

ative half width of its reciprocal.

We next performed the so called coverage experiments (see c.g., [25]) to determine the validity of
the confidence intervals that are formed based on the asymptotic central limit theorems described
in Section 3. Such studies are important since certain variance reduction technigues sometimes do
not produce vahd confidence intervals, except for very long run-lengths (see e.g.. [25]). In such
cases, the variance reduction technique cannot be relied upon to actually shorten simulation run
lengths.

We performed experiments on estimates of the steady-state unavailability, U, in the above deseribed
balanced system as follows. We chose three run lengths corresponding to small, medium and large
sampic sizes and we considered three ways of estitnating {7: standard simulation, the Bias// Bias2

method with DIS and the Bias//Bias2 method with MSDIS. For cach method and run length we
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ran K = 100 repheations and formed pomnt estimates (,.4'. ... Ugp and 90%4 confidence intervals.
R

We then caleulated the mean pereent relative bias (= 10070 x (1R ¥ (0= UYU) and the
i=1

standard deviation of this mean. Note that if an estimate is unbiased. then its mean pereent relative
bias should converge to zero as R — oo, We also calculated the 9070 coverage which is the per-
centage of ihe (alleged) 90" s confidence that actually contain the true value {7 If the confidence

interval is valid. then by definition. the 90%% coverage should be close to 90%4,

We also computed the mean percent relative half width of the 90°4 confidence intervals. The re-
sults are listed in Table 3. Note that. as anticipated from Section 3.5, the standard estimate is sig-
nificantly more biased than cither the DIS-Rias/ Bias2 or the MSDIS-Rias/ Bias2 estimates and
that its confidence intervals are at least an order of magnitude wider. Furthermore, for the small
run length. its coverage drops significantly below 90%%. In fact. there were no system failures in the
runs corresponding to the 46% of the confidence intervals which did not contain {7 Using our
variance reduction techniques. all the coverages are close to the nominal 90%4 value except for the

fongest run using MSDIS which had a coverage of only X1%.

This dip in coverage concerned us sinee, typically, coverages improve with run length. There are
a number of possible explanations for this phenomenon: a random fluctuation, numerical errors in
" or !,(’A‘i, a1, problems with the random number generator, non-monotone convergence to
normality, problems with the importance sampling scheme, or possibly a subtle bug in the com-
puter codes (although the code has produced valid estimates for all examples tested). We recom-
piled the numerical solver and simulator to quadruple precision (from double) and obtained
cssentially identical results, We then changed random number genciators from the multiplicative
lincar congruential generator [, = (/,x16807) mod 2" — 1 1o the combined generator described
in [ 26 ] With R =200 replications, the coverage incrcased to 85%a which still represents a statis-
tically significant departure from 90% (although its confidence interval overlays with that of the
R1% coverage). Thus, at present, and despite considerable effort, we have been unable to identify
the source of this slight coverage problem.  Since our importance sampling methods are designed
to move towards the most likely failure states, it may be that we are missing secondary failure
modes which would become significant at such high levels of precision. Note that the first non-zero
digit in U is in the sixth decimal place, so the problem is occurring in the eight decimal place.
I'urthermore, in practice. such high precision is probably not warranted given inaccuracies in model

parameters and distributional assumptions.
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6.2. Transient NMeasures

In this section we discuss the results of our experiments for estimating reliability and expected in-
terval avatlability. Recall that for transient measures we not only want the system to move quickly
towards the set of system failed states /), but also reach there before the observation period expires.
Since these two issues are, i some sense, orthogonal, we use the same technique as in the steady-
state case to bias the embedded Markov chain towards the system failed set, in addition to another
independent technique (e.g., forcing or conditioning as discussed in Section 5) to reduce the vari-
ance due to holding times in the various states. ‘The likelihood ratios corresponding to these two
aspects of simulation are independent and can be formulated as in Proposition 4.1, 'The goal of the
simulation 1s to study the effect of the forcing and conditioning techmiques. We considered only
the balanced system.  or each measure, we allowed cach method to run for 400,000 events.
Standard stmulation was not considered as it is very inelfective for estimating transient measures.

The results are given in Tables 4 and S,

F'or all methods, we notice that the confidence intervals are smaller for some range of intermediate
time periods and wider at the ends. To explain this, we recognize two key factors affecting the
variance of the estimates: namely, the number of replications in a simulation run and the value of
hias/ used with importance sampling. For smaller time intervals, there are more replications in a
simulation run than for larger time intervals (since we kept the total number of events fixed). This
contributes to a larger variance for larger time intervals. Furthermore, for cach time interval, there
is an optimal value for bias/ which maximizes the variance reduction. While hias/ =10.5 may be
close to optimal for some intermediate range of time intervals, it departs from the optimal value for

cither smaller or larger time intervals.

The two tables indicate that forcing and conditioning are most cffective for short time intervals.
This is intuitive because for a long interval cnough transitions occur before the interval expires, and
therefore, the embedded Markov chain has a chance to reach the system failed set using ondy failure
biasing. This is not truc for short intervals, and thercfore, either forcing transitions to occur before
the end of the period or conditioning the holding time out in state  has a significant effect. Both
forcing and conditioning give similar results for unrehability, while conditioning 1s consistently
better for the interval unavailability. Note that for interval unavailability we are using I'quation 4.7
with conditioning, but not with forcing. [owever, forcing can be similarly combined with
Fquation 4.7 to possibly yield better results.  Also, note that Bias/jBias2 method is consistently
better than both the Bias/ and the Bias//Balancing methods. This is consistent with a stmilar con-
clusion with respect to the steady-state measures in a balanced svstem. This is intuitively reasonable

because these methods correspond to importance sampling in the embedded Markov chain; this
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sampling 1s independent of forcing and conditioning.

For unbalanced systems, we expect that

Bias/ Balancing will be consistently better than the other two methods; this is supported by a pre-

liminary emprrical investigation in progress.
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7. Summary and Directions for Future Work

In this paper. we have developed a unified framework for simulation of Markovian models of highly
dependable systems. Conventional numencal techniques are difficult to apply to this class of
stochastic models because of the fact that the size of the state space of the Markovian model in-
creases exponentially with the number of components in the system. On the other hand, simulation
algorithms tend to be relatively insensitive to the size of the state space of the simulated Markovian
model. both in terms of storage and computational requirements.  THowever, standard simulation
1s inefficient in our setting because the prineiple focus of interest; namely, svstem failures, occur so
mfrequently in highly dependable systems. As a consequence, few systemn failures, if any, would

be observed if standard simulation methods were to be used in our problem context.

The emphasis in this paper has therefore centered on applving vanance reduction techniques to
improve the efficiency of the simulations associated with Markovian models of highly dependable
svstems. We have reviewed the basie theory of importance sampling in several elementary problem
settings and then used this insight to develop sampling heunistics for the complex svstems of interest
here. Different variants of these ideas were developed for both transient and steadv-state
dependability measures.  In addition, we have “finc-tuned” the importance sampling techniques to
take advantage of the structure of highly dependable systerns which are cither balanced or unbal-

anced.

Our work has also shown that importance sampling may be fruitfully applied in conjunction with
a variance reduction method known as conditioning. The basic idea here was to observe that highly
dependable systems spend a significant fraction of time in the state in which all components are
fully operational. Since the stochastic behavior of the time spent in the fully operational state was
casy to calculate analytically, this permitted us to cffectively integrate out the randomness i our

importance sampling estimators due to the holding times in the fully operational state.

Our empirical investigation showed that the combined variance reduction obtained by using both
conditioning and importance sampling is typically substantial. In fact, in all of our experiments, our
mcthods vielded estimators in which the variance was decreased by several orders of magnitude.
Our empirical work also showed that the confidence intervals associated with our estimators typi-
callv provided acceptable levels of coverage. We view this as important, since the scientific repre-

sentation of the accuracy of a simulation estimator is usually gauged through a confidence interval.

A number of possible directions for future rescarch present themselves. One important issuc relates

to the fact that the importance sampling heuristics presented in this paper were basically developed
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for systems inn which svstem dependability is achteved principally through high component relt-
ability. However, another approach to obtaining high svstem dependability is through high levels
of component redundancy.  Importance sampling methods appropriate for the analysis of highly
redundant systems differ from those presented here. Such techniques would likely have important

ramifications for the simulation of certain highly dependable systems.

A second important research arca involves the generalization of the ideas developed in this paper
to stochastic models of highly dependable systems in which the underlving failure and repair dis-
tributions are non-cxponential.  Since the resulting stochastic process is tvpically no longer either
Markovian or regenerative, many of the ideas presented in this paper cannot be implemented di-
rectly. Nevertheless, it is likely that the failure biasing ideas that worked successfully in the
Markovian setting can be suitably generalized 1o obtain effective sampling heuristics for non-
Markovian models. However, it appears less likely that the conditioning techniques of this paper
can be applicd to non-Markovian models; our conditioning techmque depends critically on the

exponential nature of the holding times in Markovian models.
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Appendix A: Estimating the Distribution of literval AvailaLility

We will find it more convenient to estimate the distribution of the time in the set of failure states,
Laxy=Ditg <y, where (0= [' 0 1“. E”d.s. Since Ay =1-U(0ft we have
Yog= <

duxy=Pia<xy=1-U01 = x)0. To derive an estimator for {(¢,x), write
Uity = Uyx)y + [t x) (A.D

i

where 0 (0x) = PHU( < x. Vi@l and Uy(tx) = P{LO < x, Y, e 1Y Deline 1= 3 41y .y and

i ) :

o= Y41y 40 vepy With v B and ny(d) as defined previously.  Note that fi; = (3 + 1 and
j=0

7 yi 1 Co+ I Consider (U (1x):

1T

G = PR S x YAF) = ) PO < x Nl A0 = i)

i={)
= NPl S AR T < < Ty (A.2)
i=0)
= Z]’{[I_I <X, /‘léi‘ Yioi + ﬂi——l <<y + ﬁ[} .
i=0

Nowif Ay =0, then f,_, = B, If Xi¢F and X;# 0, then ny(i — 1) = ny(/) and therefore y,_, =y, In
either case, by conditioning on the sequence of states and the holding times in the non-zero statces,

we can wrte

Clex) = B0 Uy cengm (Engon( = Ficyo 2o) = Enolt =2 )T (A3

=0

Now consider Uy(t.x). H Y,e I"and N(t) =i, then U(y=1,_, + 1= T;=t—y,_, — C_,. Further-

more. on this set ny(i — 1) = ny(d), y,_, = y; and Ci_y = ¢ so that

o

)
o) = DTG ceren Vi, =6, 20 Vo, a6y oty ot yo+ Gl
i=0

(A.4)

= I Z’f’w ek ery (Fuga(t = Fioy = Gy o) = Fp gt = G = min(77. x). 25) )]
i=0

This development provides a computationally attractive way to estimate {'(2.x) without sampling
from the state O holding time distribution. It is easily combined with failure biasing. Practical

implementations may require truncation or stopping rules as described in Section 4.2.
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l'vents per
Replication

Direct Simulation
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2000 6.95 % 153.65 % 54 % 0.74 % 18.88 %6 85 % 0.35 % 6.70 %o 91 %
(12.88 o) (1.21 %) (0.91 %

20000 -394 % 6547 % 90 %o 0.39 % 5.99 % 90 % 0.11 % 2.56 %o 91 %
(3.43 % (0.34 %) (0.22 %)
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(1.09 %) (0.13 %) (0.073 %)
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6 3804 x 1070 13748 x 1072 | 3811 x 1077|3738 x 1072 {.3756 x 1077 | 3680 x 107° |.3649 x 1073 |.3801 x 107 | 3841 x 107 | 3833 x 107
+ 6.2 % + 4.5 % + 5.5 % +49 9, +3.5% + 4.2 % + 1.8 % + 1.1 % + 1.0 %

256 1552 % 1072 1536 % 1072 1587 x 1072 1584 x 1072 [ 1579 x 1072|1552 % 1072 1546 x 1072 |.1565 x 1072 {1578 x 1072 } 1565 x 1072
+ 5.8 % + 4.7 % + 4.6 % + 49 % + 3.8 % + 3.6 % +1.5% + 1.0 % + 0.9 %

1024 6226 x 1072 11,1968 x 10737584 x 1072 | 7017 x 1072 }.6627 x 1072 | 6667 x 1072 | 6584 x 1072 }.6275 x 1072 [ .6233 x 1072 {6206 x 1072
+733% |+ 197% |+141% |+ 11.6% |[+112% |+102% |4 49 % +4.3 % + 3.0 %

ible 4. Unreliability I'stirnates in a Balanced System
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lume (0 | Numerncal Biasl (0.5) Biasl/Balancing (0.5) Bias1/Bias2 (0.5/0.5)
Interval o R SN PO [ TP P I ST
Unavailability Standard FForcing Conditioning  Standard Forcing Conditioning | Standard Frorcing Conditioning
4 378 x 1077 3057 % 1077 [ 3110 % 107° 13224 x 107 | 2572 x 1077 | 3213 x 1077|3189 x 107° §.3204 x 107 [.3207 x 107° | 3205 x 107°
+350% |+ 6.8 % +4.7 % +275% |+ 52 % + 3.7 % + 9.6 % + 2.0 % + 1.5 %
16 7322 % 1070 6945 x 107° | 7148 x 107> {.7401 x 107> |.7677 x 107° | 7462 x 107> |.7219 x 107> | 7489 x 107° | 7511 x 107 |.7383 x 107>
+158% |+ 67 % + 3.9 % +129% |+ 55% + 3.1 % + 4.8 % + 2.0 % + 1.2 %
6 8806 x 1077 1.8621 x 1075 | 8866 x 107> |.9276 x 107> § 8651 x 107° | 9012 x 107" | .8822 x 107" | 8862 x 107° | .8966 x 107 | 8821 x 107°
+114°% |+ 83"% +5.1 % + 84 % + 6.6 % + 4.0 % + 329, 424 % + 1.5 %
236 9178 x 107 19882 x 107519442 x 107° | 9187 x 107 | 1.1150 x 1077 1.0766 x 1077 1.0010 x 10779049 x 107° | 9133 x 107" | 9063 x 107°
+197% |+ 129% |+105% [+ 149% [+ 139% |+93 % + 4.4 % +4209, + 3.3 %
1024 9277 % 1077 19679 x 1075 1 9677 x 107° | 1.3573 x 1073691 x 107° | 3707 x 107 | 6168 x 107> [ 1.0760 x 107 1.0728 x 107 7822 x 107°
+91.5% [+915% |+1035% [+363% |[+361% |+51.6% |+648% |+650°% |+ 21.3%

“stimates 1 a Balanced System

il Unavatlability |

Table 5. I'x-ected Interv
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