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ABSTRACT

In this paper we present a unified framework for simulating Markovian models of highly depend-
able systems. Since the failure event is a rare event, the estimation of system dependability measures
using standard simulation requires very long simulation runs. We show that a variance reduction
technique called Importance Sampling can be used to speed up the simulation by many orders of
magnitude over standard simulation. This technique can be combined very effectively with regen-
erative simulation to estimate measures such as steady-state availability and mean time to failure.
Moreover, it can be combined with conditional Monte Carlo methods to quickly estimate transient
measures such as reliability, expected interval availability and the distribution of interval availability.
We show the effectiveness of these methods by using them to simulate large dependability models.
We also discuss how these methods can be implemented in a software package to compute both
transient and steady-state measures simultaneously from the same sample run.
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i. Introduction

hle requirements for highly dependable systems, such as air traffic control and transaction proc-

essing systems, increase the importance of dependability prediction at I design stage. lypically,

stochastic models are used to analyze such systems. A svstem is considered to be a collection of

components which can fail and possibly get repaired. T[he system is considered operational if at any

given moment the operational components satisfy some minimum system operational require-

ments. Many details of failure and repair behavior of the components have been introduced in such

models: common-mode failures in [2, 5, 30], detailed fault and error handling models in [9] and

detailed recovery hierarchies, operational and repair dependences in [ 15. 17]. Models which include

degraded modes of operation have also been introduced [17, 40]. Diflerent measures arc used to

evaluate the modeled systems depending upon whether they are mission oriented systems or con-

tinuouslv operating systems. Some of the dependability measures of interest are steady-state avail-

ability, reliability, mean time to failure, cpected interval availability and the complementary

distribution o inter-val availability (i.e., the probability that a svyten would achieve a higher interval

availability than a specified value between 0 and I.) Similar measures have also been constructed

for degradable systems, e.g., steady-state performance and distribution of performance over a time

interval [32]. Detailed surveys of these modeling techniques and the dependability measures calcu-

lated appear in [ 12, 31 ].

The most common stochastic models used in this context are continuous-time Markov chains

(C1'MCs). Typically, numerical methods are used to solve Markov chains. Although, many

modeling packages have been built, e.g., [17] and [9], which incorporate numerical methods ca-

pable of computing steady-state as well as transient state probabilities of Nfarkov chains with

thousands of states, the size of system modeled is typically small because the number of states in

the system increases exponentially with the number of components. Techniques like state lumping

and uilumping [16,35] and state aggregation and bounding [I, 14] can reduce the size of the state

space substantially. I lowever, large systems with a large number of redundant components are still

out of the range of the solution capabilities of current numerical methods, primarily due to storage /
or computational limitations.

An alternate approach for the solution of large models is Monte ('arlo simulation, which is the
a

subject of this paper. Simulation is especially useful for those models for which tile transition rate a
Q._

matrices exceed the available storage. By nature, this approach has the immediate advantage of

having relatively small storage requirements. On the other hand, since the failure events are rare --
!

events, it is apparent that the analysis by simulation of large models .'ith a high degree of redun- "
Y Codes

dancy will require many regenerative cycles or many long independent replications in order to attain %a/0r
'a']



reasonable confidence intervals [12, 29j. )ur goal is to obtain variance reduction methods that are

applicable to a broad class of models. Specifically. we are interested in models defined by the reli-

ability and availability modeling language described in [17], so that the techniques can be imple-

mented in a software package and made available to designers in an automatic and transparent

fashion. A typical system contains multiple component types with rcdundant units for each com-

ponent type. iFailure of these systems 1s usually caused by exhaustion of rcdundanc or by a

combination of component failures leading to a system failure. I:ailed components may be repaired.

If all components are repairable and component failures are exponential, then a regenerative state

for the sYstern (see, e.g.. [N]) is the state where all units of all component types are operational.

If. in addition, ;ll repair time i,' ,',p,,,'ntialy distributed. tliui thc systein Ltij ov ii mkcied b., a

continuous time Mlarkov chain. F or highly reliable and highly available systems, it is usual for tile

repair recovery rates of components to be orders of magnitude larger than the failure rates, and in

these circumstances the use of importance sampling variance reduction techniques [20, 22] can be

very effective in reducing the simulation run length significantly.

Importance sampling for rare event simulation has been used successfully in [6], [28], [42]. [44]

and [38]. Proper selection of the importance sampling distribution makes the rare events more

likely to occur: this results in a variance reduction. The key, of course, is to choose a good im-

porlance sampling distribution. The theory of large deviations was used in [6], [42] and [44, 38]

to select an effective distribution for problems arising in Nlarkov chains with "small increments",

random walks, and queueing networks, respectively. I:ffective heuristics were used in [28] to select

importance sampling distributions for reliability estimation in large models of machine repairman

type.

In this paper, we review and extend the x "ds in [4], [ 18] and [41] and present a comprehensive

and unified framework for simulating a d class of models, specifically models defined by the

reliability and availability modeling language described in [17]. The language is used to describe

failure and repair behavior of components as well as operational, repair, recovery and common-

mode failure dependencies among them. The language is also used to describe conditions (e.g.,

reliability block diagram or fault-tree) under which the system is considered operational. The model

described by the language is simulated assuming that all failure, repair and recovery distributions

are exponential. We estimate both steady-state and transient measures simultaneously from the

simulation. Importance sampling techniques are used to estimate these measures; these technices

are orders of magnitude faster than ordinary simulation. The basic idea behind importance sam-

pling is described in Section 2. We also give formal definitions of the dependability measures of

interest in this section.



In Section 3 \' prse<nt our nethods for estinating dependability nmasures, such as the steady-state

availabilit\ and the tmiean time to failure ( MI'I I+l he estimators are based on combining regcn-

erative simulation [81] with importance sampling. The concepts of dynamic imnporlance sallpling

M)IS. see [4]) and measure specific d\nanic importance sampling (\ISDIS, see [I8]) are explained

using a \er% simple three state example. Direct applicatio of these techniques does not yield a

significant varianc reduction for the MlI"IT . I [owever, when the MTII is formulated as a ratio

of two expectations (both are estimated using a regenerative simulation), then significant variance

reductions can be achieved using our importance sampling techniques (see also [41].) Therefore,

while the 1 FI' is. in fact, a transient measure, we can estimate it using a regenerative simulation:

this is the reason why we have considered its estimation with other steady-slate measures in Section

3. The equnations for optimal run-length allocation and asymptotic bias expansions are also given.

In Section 4 \e present our methods for estimating the lransientH measures, such as reliabililty, in-

terval availability and distribution of' inlerval availability. lhe estimators are obtained b\ inde-

pendentlv replicating observations based on comnbininz "conditioning" (e.g., [It0. I1]) or "forcing"

(e.g.. [2J) rnethods with importance sampling. In Section 5 we show how we implemented both

regenerative simulation and the independent replications so that steady-state and transient measures

can be computed simultaneously from the same sample run. Some implementation issues as well

as theoretical issues in using importance sampling are also described in this section.

In Section 6 we show the effectiveness of the above techniques in reducing the simulation run time

of a large example. 'lypically, we obtain orders of magnitude reduction in the run time over

standard simulation. We also perform coverage experiments on the confidence intervals and corn-

pute the bias values for the estimates of the steady-state availability. FIinall. in Section 7 we give

concluding remarks and suggest some directions for future research.
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2. Background and Notation

In thl: 'ecwim, we review the basic ideas of importance sampling. \Vc include this background

material to make the paper self contained and more accessible to the non-specialist. A

continuous-time Markov chain (CTNIC) model of sy stems is then introduced and the associated

measures that are of primary interest in evaluating highly available systems are defined.

2.1 Review of Importance Sampling

The basic notion behind importance sampling can be illustrated uising a simple example: estimating

the expected value of a function of a random variable (see, e.g., [20]). Suppose that 0 iN !, irput

parameter to the simulation, e.g., a failure rate. Associated with each 07 is a probability density

function (pdf) f0 (x) for - c < x < o,-. Suppose we wish to estimate r(O) = [:0 [h(,\)] for some

function h where the subscript 0 indicates that the random variable (rv) X is sampled from the pdf

f0 (x). 'I hen

r(O) = Eo[h(,)] = h(x)1;/(x) dr. (2.1)

Now assuming that po,(x) is another probability density function such that Pon(x) > 0 for all x.

[quation 2. I can be written as

r ..0) .h(x (x ) p0 (x) dx -- 1h( k) L(0, 00, )]. (2.2)

where L(O. 0o , x) =fo(x)/po0 (x) is called the likelihood ratio. [quation 2.2 thus provides a means

to produce an unbiased estimate of r1) by simulation using the different probability density func-

tion po(x). This switch of the probability density function is clled a change of measure; the re-

sulting simulation algorithm is called importance sampling.

For our purposes, the goal of this change of measure is to produc- an estimate with lower variance.

In fact, if h(x) > 0 for all x, then choosing p0 (x) = h(x)fo(x)/r(O) yields a iero variance estimator,

since in this case the rv h(A) I.(0, 00, A) takes on the constant value r(0) with probability one. In

practice, however, this is not a feasible change of measure since it requires knowing r(0), the un-

known measure to be estimated. Nevertheless, we will find the zero variance transformation useful,

since it can be calculated for sonic simple examples and forms the basis of a heuristic for simulating

more complex examples of highly available systems.

2 iackground and Notation S



We next specialije these results to rare event simulation, and show why importance sampling can

be particularly effective for estimating the probability of rare events (this argument is basically taken

from [44]). Suppose that hc.x) = g(x) x I ) for some function g where I(,,[) is the indicator of

a set I'. i.e.. Il(~E }  I if .er/. and I = ft if x "l'. We assume that I is a so-called rare set in the

sense that the probability that the rv \e I* is close to 0. A single sample using standard simulation,

i e.. sampling X from the pdf / (.v) and forning the estimate g(A) X I ,'A.., has variance

I ') Il[g(,A) I cll - r10) 2 (note that 1).= I i. n the other hand, the variance ob-

tained using importance sampling, i.e., sampling X from the pdf p1((x) and forming the estimate

g(\) x I{. kC x L.(0, 001 X) is I (00) = lE0n[g(.) 2 I{. -) 1.(0, 0(, k) 2] - r(0 2 . Notice that if the like-

lihood ratio L.(0, 0(), x)< I for all xe F, then

1'(00) <l [Og (,) ) I{. . 1 I.(0.0 , q - r(O) (2.3
.2 2 (2.3)

= I 0 [g(.) 2 IxeF)] - r(0)2 = 1'(()

where the first equality is true by Fquation 2.2. 'hus to achieve variance reduction, we need to

make the likelihood ratio very small on the rare set . Since " is a rare set, fo(x) is typically small

for xEl" and since L(0, 0), x) =f0(x)/po,(x), we obtain a small likelihood ratio by choosing the pa-

rameter 00 so that pon(x) is relatively large for xef, i.e., by making the rare set more likely to occur

under the new measure defined by po0 (x). This intuitively explains the basic notion behind using

importance sampling in rare event simulation.

2.2 Markov Chains and Associated Dependability Measures

We assume that the system can be represented by a CYMC Y = )', s > t) with finite state space

1: and infinitesimal generator matrix Q = f q(i,) , i, / e f . We let q(i) = - q(i,i) denote the total rate

out of state i (see, e.g., [23]). We further assume that ' can be partitioned into two subsets:

0 = U F where 0 is the set of up states, i.e., the set of states for which tile system is operational.

and ['is the set of down, or failed states. We assume that the system starts out in the state for which

all components are operational; we label this state as state 0. 1[or any set of states A, let eY,, denote

tile timc the Markov chain first enters the set A. Of particular interest are mt, which is the first re-

turn tir, , to state 0, and 'XF, which is the first entrance time into the subset I' of failed sates.

We will be interested in two types of dependability measures associated with the ("NIC Y: tran-

sient measures and so-called steady-state measures. Considering the transient measures first, the

interval availability, AUt). is defined by

2 Backg-nund and Notation 6



1 f- d( . (2.4)

IHis is the fraction of tine that the system is operational in the time interval (0I). We let

1(t) = I[A()] (2.5)

be the expected interval availability and let

F(t,x) = IA (t) x] (2.6)

denote the distribution of av'?ilabilitv. [he reliability of the system is defined to be the probability

that the system does not fail iII the interval ((.t):

R()>] = l[I i [ (2.7)

For steady-state measures we assume that Y is irreducible, in which case )',- Y as s -- o, where -

denotes convergence in distribution and Y is a rv having the steady-state distribution

= { iri . iel" } (r solves the equations irQ = 0). Notice that steady-state measures are independent

of the starting slate of the system, however, we will choose the fully operational state (i.e., state 0)

to define a regenerative state for the system. By regenerative process theory (see [43] or [Xj).

steady-state measures take the form of a ratio of two expected values:

r = F"[flI)] = lira FlY,)] = lira I- f f Yds = I ="Of (2.9)

to , t--oc I TO[)0]

where fis a real valued function on F. Iffli) = I (iEO)- then F[( P] is the long run fraction of time

the system is operational and is called the steady-state availability, which we denote by

A = liin F[(t)]. We will sometimes find it convenient to consider the expected unavailability

'(I)= I I -(t)= -FA(t)] and the steady-state unavailability, I = I - A. The problem of

steady-state estimation thus reduces to one of estimating the ratio of two expected values.

The mean time to failure (MITI), F[t], is typically thought of as a transient measure, since it

depends on the starting state of the system (state 0) which is assumed to be the fully operational

state. A ratio representation for lF[ r] is found to be particularly useful. A1o derive this ratio, we

write

2 Background and Notation 7



- m i)+ ( -m)Iq~~

applying the \Iarkov propert% at time shows that, onl thle set )"Yj <t}(,- Is Coll-

(fitionall.% independent of I(, and furthermore has the same distribution as 'X,.. Therefore,

taking expected values of iquiatmonl 2.9 and rearranging terms VyiLds the ratio formula

F[[ I min~(~,~ 21)
P <j i/

'HIhuS We Canl view estimating 1,[,Yr] as a ratio estimation problemn. where both the numerator and

the (denominator are estimated using I regenerative sirnulation. T herefore, in Section 3 we consider

the estimation of the mean time to failure (MiiiT) together with steady- state measures whieh are

also (and more commnonly) estimate(] using regenera: i1ve simulations.

2 Btackground and Nntatin



3. Etstimnating Steady-State MIeasures

[n this sction.1 \%Ce discuss the estlimation0 Of ted-tteMeasures of (1 \l(s W\e hgIri bx\ re-

Iexs, in I I p th IIils p to bleI cn , be red.Iuce d to CStmI IIIaZ ti19 asociated steca d\-statIe measures in

discrete - im N lrko%' chafins ( P I \l ( '-I and dlescrnbe the regenerative met hod of sinulat ioll (see.

c Ue. I). W e Xt deCscribe1 theC apl-),icaion of1 importance, sampling to 1) FI1( 's. Ini particular, We

riote, that thc mnportatice samphing transformation selected for aculsimulat,1ion can1 be dxn.'mi1C in)

the( Senlse thaIt It iVCd niot correspondl directly to a time hoinlveiemis 1)1\%W. We also note thiat.

siwc the problem is one of estunmating the ratio of two expected 'aue.there is no rice d to lise' the

aIneipoirtatic- samnplivw) transformnation ',Or estiiatingC both the tinwmralt and decnominator of-

this ratio. i.e., the linpoilailce Sarmplirng transformations can be tIltiurc speco.ific Anal.\ sis (if a three

state examlple emlphalsiies ftme benefit of' both d\ naini11c and meas-Ilu specific imoiporUtIce slimypling

and scr\-e- as the bask, for hecuristics For larger, more (-()tiple\x s\stenn aVaIlaIhit ' Tlloidels I hec Op-

imal allocation (if ('II ' Itne to estlimation if' the numerator and denomnimator is then discl, -kd

[hei section concludes; h\ considering asymptotic bias expanlsionil of flte esti"Iators.

3.1 Discrete ime Conversion of CTIiCs

Ili [21] it is shown how one earl estimate steadv-state measures of an irreduicible ("I N( by sminuII-

lating oil)\, the embedded D JAW (and] not generating randomn !!,,ding timnes,). I ct

X = f, 17 > O (llote the em-rbedded 111lW of the (1Al\ Y: X has transition matn x

P) = p(ij)) where p(i~t) 0 and pt i,f) =q(i,/)/q(i) foir / :; i. I et hi(i) =- I fq( i) be the mecan boldingp timne

Ii state i aind let g(it = fli)fq( i). I Ct T, he the First entrance time of the 1) I'M( "Into thec set .1 and

let -r,, he the first ret urn time oif the 1IAW\1 to state (V IThen

T, -I

1:[/( Yd] = himn IF[fl Id] 0 __________An(. IH

I(o cinphasize the (dependence of this ratio on the transition matrix 1). we write I 'qilation 3-1 ex-

plicitl\ as r = 1',[ (]!l 1 ,[//] whec G I g(A'k) and 11 Im(Nk). Ini [21], it is showkn that tisl

discrete time corler-ion is always guaranteed to produce a variance reduction over s'imulation of

the original C I NW . Fox xand C ilynn [10] have extended this resuilt to simnulat ion of seril-MNarkov

processes.



I ~ ~ 3I fornis thle bais, for tile regenerativ c methodl ol simutitoi for C I %I( *s f se.. e.g..

I L" ( )rre Iinre ( I rIsI IL tth sI trastin imat ri\ P) mr(a )IItI cidperider n dial dcIII oItvIIIIc;Ih(II stributed

lit) recjIaes Of IreI ran~doml veto CO! I.1. %idlng thle lid rndoin vectors. :t (; I I.-

I atch rej1 licit ron limrolves simirniat 1inc1 thle I ) I NJ( - X 11 It itile Illit i.'Il eondm11 t nA. to time"I r,,

ItIeI .s reliert [lors MrC known,\ 1.InI tile simnaLtion lIter-atItire., as rcgencmti c c cces. I ct

t, ~ ( .11 -IIV1.. 1 hen. bccai ise; the c~cdes aire iid . urn , 1 I) with probahilit% one and

m I' p :(P T( 11 ) /I:,,[ I Ij ). whre \10), T) denotes at normlix\ dist ribited randomn vanr-

ab INIc\\ i mean iero and va\ ac ul antLTC . d &T ( P)- Vair1 [ (; / I]

3.2 Importance Samping for DT!\ICs

'e neXt e ste-Ild the,, eirce oIf measIure transfornat ion of I (mat i 2.1 l o 1) I \1( s I et 7 INe 111

stp ine ie of the 1) 1 \I( ' andTIL let Y ix' a r\ defirred onl 1-1 tip I til'I tie7. hIf"ortmall ,TIs aI

stpIn tI if ,~ th vn r 12 n 1 i de-t rnlirIed IN X,: Vf,. I hec rv Y 'S then 'I (Inea~Slir-

alel fir net ionl of V \.X-) ( see [21] for a more dectailled and preci se treat rnenTI of St oppiTI

tnens) I he first entrance tie to a state, or aI set of 4.tts. Is aI stoppimne time. InI particnlar. both

an md are stoppiirz timeis. I ct A1, denlote tile set of all Possible samptlel, paths uip until time1 11. i..

.se [", on anl\ s, eA let

%k here ot ~, ile probailih. tha;t thle Initial state is V,, I et I?,- 1, _ h thle set of samiple paths; For

hilch = n.

Pro~xi~ition 3.1:

I et I- be a st oppin r, t irnlich under the transition imat rix 1'. is finlite wit Ii probl-Nit v0 one and1( let

/be aI f measurable t fir et ion of' X- for which 1[ 1 /A - ) I ] ~~.I e, 11" be anl\ other TIn c such ml

that, uinder P)'. T Is finlite wit I, probabi litv one and for anY s, I?,. P't %,) k\ hcc t hnvr

I Ihell

-: 1'[(X~ /( 1 ii]f 3

st here for amn\1, V, A(, I-~ 1'tNt/P't Xj

1),(hei Sinre. unrder P. r is Fmritle Ikith probabhlityI one arnd since / ))as a finie absolute First mno-

imeit. we ea. -s rite

I Ioirnratinp Sicad6 Smati Mca~urrs 10l



where thle last equalit v folio AVs since T IS finiteC With probabilit% vOne Under P'. El

\'ersionS Of' this proposition ha% e appeared elsewhecre, e.g.. Ii [44]. [39] or [ 14]. Note that there

can exist a samrple path s, such that P(s,,) > ft even though 11'(s,) = 0,. prov ided that /(s,, ) t0. Wec

cinlphasize hlov ever that thle measure 11" (toes not have to correspond to a tine homogeneous

\larkov chain, nor even that it corresponds to a \larkov chain. Indeed we will sec that it Is highly

advantage-ou; Ii many circuimstances for I" not to be Markovian. 'I hie general f'orm that we will

consider for I" I";

1"S" = U1(s) P'( P ~ I( o~2 . s1) P' , -. ,~) (3.5)

WithI this h)rinulat ion, we have the freedom to. e.g.. adjust the transition probabili1ties to depend

upon the number of visits thle chain has made to aI set of states (say the failed states) or simply to

"turn ofl thle importance sampling whenever thle likelihood ratio gets too small. thereby avoiding

numerical problemns. We term the use of such anl importance sampling distribution lDynamic Im-

portance Sampling MDIS).

Appl~ing 1)15 to estimating the ratio of Fquation 3.1 yieids the following procedure. A total of n?

iid regenerative cycles of the IYI'NC X are simulated using the 1)IS dlistribution 1"'. I et

(. It/ andl I.',/ be the smlsof G, 11 an I,, rsetiey from cy. Defin the pitestimate

rJ11") ~ = ; ' I. 'I Then, as in the case without importance sampling, we have

I'm roll") =r- with probability one and 'Jmm (P11) - r)-.\YO, r&(P')!E 1, j[lIl where

(1)= Var,,,[(G1 - r II,) LI-j]2 36
=Vari,.[G1; I.%,]l - 2 r (2ov1jjGj I.'ii , Ili U 1] ± r2 Varp.[111 Vjj~ . (6

Now from the form of e72(11"), it is seen that selecting a good 1)15 distribution P' involves takingp

three terms Into consideration. lor example, selecting a P'~ to reduce the variance of the estimate

of the ratio's numneratfir mray actually increase the variance of the estimate of the denormator, or

vice versa. Ini addition, the efct onl the covariance term will generally. be difficult to control, or

even predict. T[bus selection of a single importance sampling distribution for both thle numerator

and denominator involves a trade-oil.

This suggests that, since we are really ti-ying to estimate two difi-crent quantities, we should use

different changes of measures to estimate each quantity. I stimnating the numerator and denom-

3 1-mimating Steady-State %tcagurceI



natOr independenTtk I allows one to tailor thle importance sampling distributions to the particular

icaurc Iving estimiated. without havingy to be concerned about tile covarianwce term. We call this

Me zvsre Specific I~ai Importance Sampling (MISD1)5) Section 1.3 provides further moti-

vat ion for tihe use of 11S, as well as MiSIlS II tact for the e xample given. thle two optimal. i e.

/ero \ariance. changes of mecasure are opposites iii the sense that numerator's optimal change of

measure brings the systein very q)uickly to the faulecd state, whereas the denominator's optimal

chanee of' measure is appifoximatelv the same as thle original measure and thtus brings the system

only vecry slowly: to thle fa-ilecd state.

I hie rrocedure for \ISl)IS canl be described more completely as follow\s. I et P'' and P"' denote tilie

1)1S distributions foi thle numerator and (denonminator. respectix ely A total of m, c\ eles are siin-

ated. AsSUmeI that'1 fl?i c\yCles of' thle numerator are simulated and (I - if )m cycles of' tile deiomi -

nator are inde~pendently simutlated where f0 < fl < I (for notational simplicity. assume that flin is anI

itegvert. I )fine

IV ( I' (3.L7Ij) (f

1=1

0' -- ~y*

T he Optimal run length allocation between the numerator and the denominator wvill be considered

in Section 3.4

,.3 "k Three State Example

ni this section, we consider a simple av ailability example, namely a three state Bir-th and D)eath

- "ss (see [231). Because of its simple structure, the optimal zero variance Importance sampling

(distribution,; canl be derived in closed form. 1he optimal changes of measure f'or thle numerator and

denominator are quite different. These results would be of no significance except that the tlir-c state

example serves as a paradigmi for more complex mnodels and thus strongly suggests a basic form for

effective Imnportanlce sampling distributions in more complex availability models.
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The state spice I, F: I, I . the birth rates are ;., i =) 0,I and thle death rates are pi, i = 1. 2. In

thle reliabihit context, this models a systeml with two identical Components which canl fail and he

repaired. \e assume that births correspond to failures and deaths correspond to repairs so that

state i corresponds to hlaving i failed components,. W~e consider the s\ stemi to be operational iii

states; 0 and 1. butl failed in state 21

I hie embedded lYE\IC has the f'ollowing nlon-zero entries: MO( , I) =p( 2.1

p'( 1,2) 4 p 1) and 1)( 1.0) (1 1 ei tting hi denote thle mean lholding time in state i.

then /t,' 1  / , 1 /(; I HI) and( 1in2 =if.Weassumne tha't failure rates are much less than re-

pair rates. specificall\ weC aSsumei that It, =0~-(110r-. h, = (l ) and( h-, RMI (we follow lKnuths

[24] usage of fl~y) = O-(gx v) If there exist Constants ( and ( such that

1 X, 0 < (i'jg(X*)< ((.)) < ( '2g(xV)

Tlhe, steady -state mecasure i of Interest Is thle st a)ionar\ probability of' being, in state 2, the steady -

state una va IlabOIlity. T his can he estimated u sing regenerative siIIla t i1on wvit I funct ion values

g( )), I,( I ) andgcp2) equal to 0). 0I and h,. respectively,. and function values /it) h /I 1) and hm(2) equal

to /4,~. It, and Im2, respectively . Assume state 0 Is thle regenerative state. We first cotmpute the variance

of the estimator using standard regenerative simulation. I et it, be the number of visits to the failed

state, state 2, during a regenerative cycle aind let si denote the (unique) sample path of a regeneration

cy cle of the DTlMC for which it, = i. Then G= "1 11z2 and 11 = /4) + It, + n,10 1 + 112). F urthermnore.

n1 has a geometric dlistribution, Pfn1. = ij (I Or i~~ for i > 0. so that I 1 [n, ] = r,/( I - 0) and

Vart~n,] = r/( I - 0) 2, hus Fp[G] = /2rl( 1 c and [:1,[//] = (/z~j 4 It, ) + /~±/~r( i

Straightforward calculation, show that r = (r,( 2 and that thle asymptotic squared coeficient of

variation of ?-.(P) (obtained frotn the central limit theorem) Is

Var;,[(G - rJ] 0 39

in r 2 L11[I13J

T he dominant term in F qmiatio1 3.9 is clue to contoibut ion of the numerator. 1 lius to o~btain a

confidence interval with a relative width (width divided by tile Point estinmate) that voes to /ero

requires that the sample size in be large enough sC) that 1?1F x-). 'I his dlemonstrate,; thle potentially

large sample size required for rare event simulations (in which r t)).

I et 11ts 1) be thle probability of a regeneration samrple path si . then 11(s1) = I-r)r. i > 0.

J[le optimal zero variance importance sampling dlist ribution 11'(si), i > 0, for estimating 1I ,[ G] is

computed fro in explicit eniumneration o f all sample paths. Virst we write

- ~j~ds1 P~s, = [G(sj 1I.(S,)]P'(s1 ) = F.J[( 1I] .with L.(S) =P(Sj)/P'(Sj) . Now, the

optimal P'"(s,), for all i > 0. can be computed (similar to what is described in Section 2.1)

in, t-nimai ing StcardN Stl \1casures t



" l ( ) Q (' ) 2 i- 1
(l') [,4 ] t, ro (3.10)

since then (;(si )1.(si), for all i >_ 0, is a constant cqual to iF,[6].

Similarly, the optimal zero variance importance sampling distribution for estimating Fp[I/] is given

b\

- '(s 1)ll(si) [(h0 + I) + ("I + /12) i](I- ')2r i
P" (+sh) = = i /O. (3.112P'i,[I - h 4 h 2

Flroin 1quation 3.10, P"(,)) = o, P'(s --- (I- r=)2
, P' (s 2) = 2r.(I - ) and so on. Now let

p'( I *(n,, = i) denote the probability of going from state I to state 0 given that the chain is in state

I and that the failed state has already been visited i times. Then

p' (I .01n, =ij = P' (sj)/(V P' (s)) and thus, from Fquation 3.10, p'( IOn. 01 = 0 and

K(lIz-* (1 - )
P- (i - l)/i ' > . (3.12)

Therefore. each successive time the simulation enters state I, the probability of returning to state

0 changes (under both P' (s) and P" (s)). Thus the optimal changes of measure for both the nu-

merator and the denominator of Equation 2.1 are dynamic. In particular note that while
p'(I ,01ln- = 0) = 0, p'* (1,1nr = 1) = (I - &)2 (1 - 2c)(1 - r) = p(1,0) for r:0. Also,

lim p'(I,0linr- = i) = (I - F.) = p(1,0). This suggests that, for more complex models, the importance

sampling distribution for the numerator should be chosen to move the system very quickly to the

set of failed states F, but that once F is entered, the importance sampling should be turned off so

that the system quickly returns to state 0. This should hold true for systems in which the proba-

bility of two or more failures in a regenerative cycle is at least an order of magnitude less likely than

the probability of one failure in a cycle. This is also consistent with the argument given in Section

2.1 as well as Walrand's suggestion in [44, 3R] (which was derived using large deviation results) to

interchange ). and p for estimating the probability of buffer overflow in the M/M/ I queue.

lor the denominator, on the other hand, the largest contribution to the expected value comes from

the sample path on which nf. = 0, which is not a rare event. This suggests using standard simu-

lation, i.e., not using importance sampling, to estimate the denominator. Indeed, the optimal

change of measure of Equation 3.11 has

p,.(* *,.l l = )(I - )

P''(SO) = p''( I *1lflr 0) = - ( ) , ± ;-- (I - F') = p(I,0) (3.13)
1 - r (h 1-d h2 k) + eh a
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so that there is very little difference between P"(s) and P(s) for the most likely sample path.

3.4 Optimal R.,n Length Allocation

l:quation 3.S gave tile form of the asymptotic variance when a fixed number in of cycles are simu-

lated of which f/in are devoted to simulation of the numerator and (I - fl)m are allocated to the

denominator. Since the expected amount of (TV. time to simulate a sample of the numerator and

denominator may be different, a more practical run length allocation model can be formulated as

follows. I et the Iotal ('PV time be T and assume that fiT i- allocated to the numerator and

I - fl)T is allocated to the denominator. I et c, (Cd) denote the expected ('I( time to simulate a
sample of the numerator (denominator). Then, for large T, approximately fITc, cycles of the nu-

merater and (I - fl)'l/cd cycles of the denominator are obtained. The asymptotic variance of the

resulting point estimate is

/ 2 2
P C1n + 2 (dr d (3.14)

]2 p[Ii fl + I - fl )

where (7,2 _ Var ,,[G i V',] and ,r = Var ,,[/I U,]' This result is obtained by applying results from

renewal theory (see [43]). Minimization of 3.14 with respect to fl yields = S/(I + (5) where

(5 = crn\%C, /(r r dyC d ).

Suppose that CnCd and that annaed (we are equally effective in reducing the variance of the nu-

merator and denominator). Then, for estimating the steady-state unavailability, r is small and

P I. i.e.. the bulk of the effort should be applied to estimating the numerator, which in this case

is a rare event simulation using importance sampling. On the other hand, for estimating the MIlL

using the ratio formula given in Equation 2.(10, r is large and fl tt, i.e., the bulk of the effort is

devoted to the denominator. I lowever, for the MITT, the denominator also corresponds to a rare

event simulation using importance sampling (moreover, as vill be discussed in Section 5, the same

importance sampling distribution can be used to estimate both measures). Thus in either case, tlhe

optimal allocations are consistent in the sense that they allocate most of the efforl to rare event

simulation.

In practice, we always devote a minimum percentage, say 10 "., of the effort to stan(ard simulation

even though the optimal allocation usually suggests devoting much less time to standard simulation.

This permits stable variance estimation and the loss in asymptotic efficiency from the optimal al-

location is small.

I Fstmatung Sicady-Slate Measures is



3.5 Bias Expansions

\Xc no0W consider bias; expansions of ratio estimators oif steady-state measures. Because thle nIu-

inerator and denominator are Simulated inldependenCtly, Sonie Specific Conclusions canl be drawn

from these expansions. Referenices for this type of bias expansion may be found in Section 27 of

[7]. Chiapter 2 of' [27] or [13]. [hey are derived] using Taylor series expansions and multidimcn-

sional11 central limit theorems. I et J,= ((i'( 1). ,1(d)). n > 1 be a scquence of iid vectors of

length di and let p = tpI,. i'd) where I[jC1 = p. Suppose we arc interested in estimating g(,i) for

sonic function 1i!. In thle case of ratio estimation ft = (111 . 12) and g(p) = p 1 /112- I et

C, I m ( C, [Ihen, under appropriate technical conditions onl g and thle moments (of C,

g=p) + li 91 ,~g 1 + o( 1 /17) (.5

wlicrc e ('ov[( Ct) (~j)] and g, g(x) I In our case, C, G~. n

,I Vai [Q. J, 'T2 Varj-[Il,1L' 1j and eT12 0 1 (since the numecrator and (denominator are

simulated independently). Note that in the above we assume for simplicity that rn cycles of both

thle numerator and denominator are simulated. D~ifferentiation (of g yields g, 0,

9 2, 2 11 l 2 ,1 and 9, 2  1/1 - /i. Since (T 2  ,thle Value Of g12 does not enter into thle

NMSDIIS bias expansion. TIherefore

r Varj,1,IL" In
Ft[g(C ..] = g(lp) ± 2 ±+ (I/n (3.16)

1P2

For the measures of interest in availability modeling, r -> 0, 11, > 0 and 112 > f) so that,

asymptotically, F[g(C,)] - g(p). Furthermore, this asymptotic bias expansion is independent oif the

impoirtance sampling dlist ribution P~' chosen for simulation of the numerator.

lFor the steady-state unavailability we select 11" = 1P. By the results of Section 3.3. in the three state

exam ple r = 0-(r 2 ), Varj,[Il1] = (r) and 112 = EP[/,,] = ()(I IF). Therefore, thle leading term in thle

bias expansion is of order f, 5/)rz (relative bias is of order r 3 ln ) which is typically quite small. With

standard simulation thle bias expansion, which now includes the effect of correlation between thle

numerator and denominator, becomes

F~g(G ,01 =i) g(lp) + 2 apI~ 2o[~ +1 ± ( 0(/In) . (3.17)
Mn112  fl112
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For the three state example, ('OVp[Q.' IM = 12011 4f 1 2)Var,41n, (,)r. so the dominant term if]

thle bias expansion is ( r 1 1?) WhIich Is signlificantl\y larger than thle (-)(r5 Ini biaq obtained using

MSI)IS. Moreover, using standard simulation, the relative bias (bias F) is only 0-(r/,n). Iheise ob-

servations are consistent with the experimental results describe nScin6

[or tilc MVIE, i is large and 112 = P) xj < -,0) is small, which potentially makes the leading bias

term large. H owever, as seen from [quation 3.16, choosing an importance sampling distribution

P"' for the purpose of reducing variance also has the beneficial effect of reducing bias.

InI practice. in may have to be very large in order for these asy mplotic expansions to be valid. InI

particular, for small values of m the higher order terms may contribute in a non-negligible way so

that, e.g., s~(~) g(p). If bias turns, out to be of significant concern, then a hias reducing

technique such as, jackknifing may bc used to remnove the leading term of order I/ni in the bials ex-

pansion (see [33]).
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4. Estimating Transient Measures

Simulation (it' the ( I"Ni ' consists of two parts: simulating the sequence of states visited bv the

embedded 1)l1NIC X with transition matrix 1P, and Simulating the holding times in cach of the

States. \\e let il denote tile holding time in state Xi. Thus given that Xi = j, Ii has an exponential

distribution with mean I /q(j) and the (conditional) likelihood of' ii is simnply q(f)c qY),. We let

t= (I,.. ,) denote thle first n -+ I holding time- of thle ('lM('. Given that X,~ = (NO. A,),Xf't thle

likelihood of t, is therefore

aind thus the likelihood of the sample path (XI,. tn) is

Q(X,tll) P(X,1)Rftn) I (4.2)

%%here IP(X,t was defined in Iquation 3.2. Eqcuation 4.2 gives the likelihood at the times of the

jumps of the embedded IIMC.

We basically adapt the development in [ 14] in order to extend Proposition 3. 1. D~efine I') =(0 and

'in = In + ± In- for n > 1. Then 7n is the time at which state X'n is entered, i.e., the time of the

Oth transition. I et Yi, Y)~, 0 S ! 1). Let T be an integer valued stopping time with respect to

the sequence of pairs ((Xn,, in), n > 0}, i.e., the event [T = n}) can be determined by

(VO, to),.(An, In)- We let Q' denote another measure for generating sequences, {(Xn, in), 1? ! ())-

We will Specifically assume that Q'(X,,, tn) = P'(X,,) f '(t, I XJ) With this factorization. the form of

the contribution of the holding times to the likelihood. f'(t, I X,), is almost arbitrarv (thle restrictions

will be discussed below). but the sequence of states selected (foes not dlepenid upon the holding

times. L et fl be the subset of the sample paths of N' for Which T = 12.

Proposition 4. 1:

Le~t T be an integer valued stopping time which, under Q, is finite with probability onc. D~efine

a 7= T and let 7 be a (measurable) function of Y,, for which FEQE /(Y,) <] o ). L et Q' be another

measure of the form Q'(Xn, in) = P'(Xn) f '(In I Xn) Such that, under P', T IS finite With probability

one and for any (sn, t,) e B?,, P'(s1 ) f '(tn I SO7  whenever /(Y'r)(%) f(tn I S,) :1 0. Then

L0[71(Y11)] = 1;1 Q'[/ (NY) IJ1(XT) 1,'2(X , 1 )]1 (4.3)

where for anv n, l,' 2(X,, in) = N, I sn)/ '(t I SO).
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The proof of this Proposition is essentially the same as that of Proposition 3. I. Notice that if the

stopping time T of Proposition 4.2 is r = T1 , then the ,x of Proposition 4. I is first time to failure, i.e.,

= xr. Measures defined over a fixed time interval (0,I) (e.g., the expected interval availability) are

handled in this formulation by defining r = N(1) + I where N(t) = maxn:7/, __ t). Ihe reliability

Rt) is handled by setting r = rin (r.-, N(1) + 1) (since, with this definition, at time T"T either a

failure has occurred or simulated time has surpassed 1) and setting If 7. <t-

4.1 Estimating the Reliability

BY Proposition 4.1. there are two impoitance sampling distributions to construct, corresponding

to two likelihood ratios. T[he first distribution is for the embedded I )l(" (corresponding to

1.',(X,)) and the second is for the state holding times given the DIYI('s sample path (corre-

sponding to L'2 (X *, t-)). I ewis and 116him [29] presented a technique for estimating the reliability.

They apply "failure biasing" to the embedded DI('; this causes failures to occur with higher

probability and therefore quickly moves (biases) the T'INIC towards the set of tailed states. They'

also apply "forced transitions" to the holding time in state 0 (the state with all components opera-

tional). '[his forces the next component failure to occur hefore time t. Specifically, if X,1 = 0 and

Tn < t, then the next holding time, t,+, is forced to be between zero and I - T/, by selecting 1n+1

from the conditional density given by

l'(1n+1 I X" tn) A0 e(- <;, 1n t+1 -< t ' T (4.4)l- 

- c- )n,(t 7 n' 44

where 2- is the total failure rate in state 0. The simulation continues until time

T = min (TT, N(1) + I).

Ross and Schechner [37] propose an alternative approach in which some, or all, of the holding

times are conditioned out. If all holding times are conditioned out then no holding times are

sampled and we set Z = [' T, < 11 XTI}. Calculation of Z requires computing the convolution of

exponentially distributed random variables with different means. 1For a sequence of n states, this

2can be done in 0(n ) time using the recursions in [ 39 ]. Using failure biasing. rT.. will typically be

small so that carrying out this computation is, in principle, not an obstacle. I lowever. an effective

and much simpler approach is to only condition out the total holding times in state 0 (which typ-

ically represents the hulk of the time anyway). The embedded 1)lFMC is simutat until the set

of failed states is entered, i.e., until time r. I lolding times in the non-zero states are randomly

sampled, but no holding times are sampled for state 0. 1et fl denote the total holding time in states
"TF

other than 0: 1 = 
tk X I ,. E,). i et no denote the number of visits to state 0 aid let y be a rv

k=0
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denoting tile total holding time in state 0. Given ntl, y has an [-rlang distribution with shape pa-

rameter no and scale parameter )- and we write P{y < st t} = :n1(s, 2)(). We then set

P f-1;rt X, , f fy -flI tO = _- =fl, 4). (4.5)

I nlike Ross and Schechner, we apply the conditional Monte Carlo approach in addition to some

form of failure biasing. By the variance reducing property of conditional expectations, (i.e., since

Var[FXI )]] _ Var[A], see, e.g., page 12 of [36]), the conditional approach plus failure biasing is

always guaranteed to reduce the variance over just failure biasing. To see this, notice that

Varl,,[ l'i(X ,r) I( , < t) ] - Var,,[ [ l.',(X , ) I( ,, I X , fl ]](4.6)

=Varl,,[ /-',(X,,) ln - fl. )0) 1 •

While no such analytic result exists for comparing conditioning with forcing. the conditioning ap-

proach has several advantages over the forcing approach. First, with forcing, different holding times

must be generated for each value of I for which R(t) is to be estimated. Because of sampling errors,

the estimates of R(t) may not be monotonic in 1 1 sing the conditional approach, simultaneous,

monotonic estimates of R(1) are obtained. Second, with forcing, different conditional holding time

distributions are used and different likelihood ratios must be maintained for each value of i for

which R(t) is to be estimated. This is not necessary in the conditional approach. Thus, it has

computational time advantage when R(t) is computed for multiple values of i simultaneously.

Another approach would be to use the technique of uniformization (see [19]). A discussion nf

approaches to using uniformization in simulations, including discrete conversions, may be found

in [foxglynn 1.]. In our context, failure rates are much less than repair rates and therefore -)

where ; = max{q(i)} is the maximum state exit rate. The number of transitions in the uniformized

chain before exiting state 0 (sometimes called "pseudo transitions") is geometrically distributed with

success parameter ).O/I20. Therefore, effective estimation of these rare event measures requires us-

ing some sort of importance sampling on the number of state 0 pseudo transitions. This, in turn,

is very similar to using forced transitions.

4.2 Estimating the Expected Interval Availability

In this section we present two methods to estimate quantities, such as the expected interval avail-

ability, which take the form r(t) = F[f _ fl IJd]. We assume that ,%Ot is small so that very few
S0

failures are expected by time 1. The first method, due to lewis and B6hm [28], uses failure biasing

and forcing as described in Section 4. I. The simulation ends at time T',(1)+ I = to + ... + 8, With

this notation, t M) is the holding time that crosses the threshold t. A practical implementation of
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this method typically turns off the forcing after I. visits to state 0 at some value of I. for which

FI(t, ))) is extremely small; without this modification N(t) may grow to be quite large and, fur-

thcrniore, the simulation may generate extremely unlikely sample paths having an unusually large

number of visits to state 0 in the interval (0,t).

To apply the conditional Monte Carlo approach to r(t), we begin with an important result from

Fox and (Glvnn [I I]:

~t) - :[ Z g(,k) (4.7)
k=O

where g(i) = fl i/q(i) and the expectation is with respect to the transition matrix P. Now, as sug-

gested in [I I], we could generate holding times for the sole purpose of determining N(t), and then

ignore these holding times by using .3 g(,\k) to estimate r(t). I lowever, we would still have to
k=

use conditioning or some sort of importance sampling, such as forcing, on tile holding times in state

0 since otherwise N(t) = 0 with high probability. Similarly, uniformization implementations based

on E quation 4.7 would also require importance sampling on the number of state 0 pseudo transi-

tions in order to be effective. To combine forcing with Fquation 4.7, we write

N(t)- I N()- 1

r(t) = F[ Z g(X) Itf >t]P{ 0 > t} + E[ 7 g(- to <- t] P] t
0 <t )

k=O k=0

NV(t)- I

[ [ Z g(Xk) 1t0 :1] "{t 0 }1) (4.9)
k=0

since if to > t , then N(t) = 0 and therefore >" g(Xk) = 0 . 'quation 4.9 can also be combined
k=

with failure biasing.

We next extend Equation 4.7 in a way that allows us to condition out the state 0 holding times.

While the development below is in terms of the original embedded rITMC, the results extend di-

rectly to using importance sampling as described in Proposition 3.1. We also present the method

in terms of conditioning out only the holding times in state 0, although the method also applies
k

more generally. Analogous to the approach in Section 4.1, define nt(k) = L Ix=n) and
k j=0
";'k = I 91 (. #O)1 With these definitions, rk(k) is the number of visits to state 0 and llk is the total

j=0
holding time in the non-zero states at the k'th transition. [hen, by Equalion 4 7
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00 00

k=f k=O

Tlhe key step in the above derivation follows since iN(t) > k + 1} = {t0 + + t' k e}. The ex-

changes of expectation and summation are easily justified for finite state spaces by using the dom-

inated convergence theorem (see [3]).

lo apply Fquation 4.9 requires determining a stopping criterion. We could simulate until flk t

at which point /'Ii,(k)(t - ik. = 0. I lowever, since repairs are fast, flk grows slowly and therefore

an excessive number of transitions may have to be simulated. The summation could be truncated

at some finite value. Ilowever, this introduces bias error. While the error is easily hounded, we

prefer unbiased estimates, particularly for quantities such as the interval unavailability which itself

is quite small. A simple unbiased estimate can be constructed in a reasonable amount of time as

follows: after the L'th visit to state 0, begin sampling the state 0 holding times and adding them to

flk. Very quickly. flk will exceed t and the sample is then complete. More formally, let N0 (1) be

the (discrete) time at which state 0 is entered for the l'th time. [or k>_ No(1.) + I, let
k

flk = flN ) + Zi i,. I[hen, arguing as above,
/= '\V(l.)+

Nl(I.) 00

r(t) = l'[ Z g(X'k) 'n,(k)(t -fik,4 )1-] + I"[ , ,(Xk) Et,(t - filk, )-0) . (4.10)
k=o k= N0([,)+ 1

'Ihe estimators for the distribution of interval availability can be formulated in a similar way. We

derive these estimators in Appendix A for the sake of completeness.
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5. Implementation Issues

In tihis section we consider the inplementation of the different variance reduction techniques de-

scribed in the previous sections. Ilhese techniques have been implemented in the SAVF package

[15. 17] so that large models can be simulated. ()le salient feature of our implementation is that

wc ue one simulation run for estiinat ing all tile measures. Regenerative simulation is used with the

all components operational state as the regeneration state. 'Ihe event generator simulates onl\ the

embedded \larko% Chain (1) IM("i formulated in Section 3.1 ). IFor the steady-slate measures we

accumulat e functions of the mean holding times in the various states, and for t lie transieit measures

we accumulate functions of the sample holding times (from exponential distributions)in lhe various

states. In the following paragraphs we describe the implementation of the importance sanplig

technique for the various measures.

Recall that we formulated the likelihood ratios for tile transient measure in Proposition 4.1 as the

product of two likelihood ratios I1',(X ) and I.' (X-. t_). I he first likelihood ratio corresponds to

the embedded Markov chain and it is needed for the steadv-state as well as tile transient measumcs

as indicated in Propositions 3. I and 4. I. ( )n the other hand. I.'2(X, t" corresponds to the holding

times, given .- sample path on the embedded IClM(: this likelihood ratio is needed only for trai-

sient measures and is different for different transient estimators.

I lie importance sampling for the embedded Markov chain is based on the foliow ing heuristics.

As suggested in Section 3.3, we need to move the system very quickly to the set of failed states 1",

and once F is entered, the importance sampiing should be turned oi so that the system quickly

returns to state (t the "all components operational" state. We achieve this by increasing the prob-

abilit\ of failure transitions over repair transitions. lThis has been called "failure biasing" in [28].

We assign a combined probability iasl to the failure transitions in all the states where both failure

and repair tra,-:2.mons are feasible. Individual failure and repair transitions are selected in the ratio

of their rates given that a failure or a repair is selected, respectively. We call this the flia./'Ratio

method, or simply flia.zl method. We have found two other method- useful for selecling individual

failure transitions, given that a failure has occurred. The first is to use a uniform distribution on

the failure transitions which has very good performance for "unbalanced systems'" as sho\\n in

Section 6. \\e call this the Bias!. 1alancing method. 'lie second is to give a higher combined

probability hias2 to those failure transitions which correspond to component types which have at

least one component of their type already failed. This exhausts tile redundanc\ quickly and has

much better performance for "balanced systems" as shown it Section 6 We call tills the

lias! Bias2 method.
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I Or the stecid\-state iaalabilitN each regenerative c\ etc corresponids to aI sample. We use either thle

N) S Of the' \I SD)1S Met hod LCe Inl Section 3.2 to estimate the steady -state i\,ailabilt\- IFor the

mean tie to taure, a( samle1 ends; when eit her thle regenlerat ion occurs or thle system enters one

,,t the sv teml flailed ftte rom thle set V. in the latter case, we*( continue to simulate thle embedded

\larkox chain u nill th lircL'eitratioii occurs before- starting a nim sample. Ihits wastes only' a few

e\cusI, t\ picalls a regenerative c cehas a very few events (approxiatelY twvice the average re-

dunIdancTW\ Muhii 1,; t picallv\ 2 or 3) ()nce again, we- use either (lhe D IS or the M.SI S method to

e,1t inat thle niean tiime to ftil inre. I or thle transient meiasures, miultiple regenerative cycles may be

con t aniied InI a s;ipI.\1rovr sample typically ends either N~lhen a fa11iure occurs or when the

tin IIIIfIICte Il eIr. Chc Xj-1 IICI11s u Isual tI IT Iv ite Middle 0ot sonl I regenerati1ve \ ycIc A s Iin thei mean t ime

to tilure1 case;, weC conltinue to simulate the embedded \larkov chati until thle next regentionf(I

wet iirs beh we stairt i a ne' i sample . Separate aIccunulat ors for thle appropriate likelihood ratios

arc nitintaitd tor cacti transieiit estimator and for each timec hori/on of interest. Itus, all incas-

Ie ICan be stima'te11:I d s IIIIIInI ITIC( oU sl\ tromn a s Ingle s iml]Iation run.
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6. Examples and Discussions

In this section, we provide an example, based on a model of a computing system, to illustrate the

effectiveness of the different variance reduction techniques discussed in the previous sections. A

block diagram of the computing system considered is shown in IFigure I. We use two different pa-

rameter sets to create a "balanced" and an "unbalanced" system. A balanced system is one in

which each type of component has the samc amount of redundancy, (i.e., same number of com-

ponents of a type must fail in order that the system fail, e.g., I-out-of-2 of a type has the same re-

dundancy as 3-out-of-4 of another type); in addition, the components must have the same order

of magnitude failure rates. A system that is not balanced is unbalanced.

disk cJluer I disk c!uster 3 disk cluster 4 disk cutm 6

Figure 1. A block diagram o;f .hc computing system mdclcd

For a balanced system we select two sets of processors with 2 processors per set, two sets of con-

trollers with 2 controllers per set, and 6 clusters of disks, each consisting of 4 dik units. In a disk

cluster, data is replicated so that one disk can fail without affecting the system. The "primary" data

on a disk is replicated such that one third is on each of the other three disks in the same cluster.

Thus one disk in each cluster can be inaccessible without losing access to the data. The

connectivity of the system is shown in Figure 1. We assumc that when '1 processor of a given type
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tails, it has; a 11.0l probablhx of causing tile operatingC processor of the other type to fail. IFach

unit in the stin has two failure modes which occur witi equal probability. I he failure rates of

processors, controllers and disks are asstUned to be I 200((0, I 20(00t and I 60)0t per hour. respec-

ti cl\ lie repair rates for all tnode I and all mo '- 2 failures are I per hour and 1 '2 per hour, re-

spectively. Components are repaired by a single repairman who chooses components at random

froin the Set of failed units. A he system is defined to be operational if' all data is accessible to both

processor types, which means that at least one processor of each type. one controller in each set,

and 3 out of 4 disk units in each of the 6 disk clusters are operational. We also assi -he that oper-

ational components continue to Fail at the given rates when the system is failed.

We make minor changes to the above parameters setting in order to create an unbalanced system.

We increase the number of processors of each type to 4. and double each processor's failure rate

to I 10It per hour. We decrease the failure rates of all ot her components by a factor of ten. In this

system, although a processor failure is more likely to occur in a failure transition, it is less likel to

cause a system failure due to the high processor redundancy. A his is typical behavior for an un-

balanced system.

6.1. Steady-State measures

II this section we discuss the results of our experiments for estimating the steady-state unavailability

and the mean time to failure. Numerical (non-simulation) results for these measures were obtained

using the SANT package [ 17]. Since the balanced system has a few hundred thousand states and

the unbalanced system has close to a million states, only bounds could be computed [34]. These

bounds are ver\ tight and typically do not differ from tI-c exa t results significantly. We simulate

both the balanced and the unbalanced systems. The goai ft ..... nulation experiments is to study

the efficiency of the importance sampling methods, described in this paper, compared to standard

simulation. We also experimented with the MSI)IS technique described in Section 3. It is shown

that the Biasl method gives many orders of magnitude vaniant- reduction over the standard Monte

Carlo simulation. Moreover, further significant improvements can be obtained using the

Bias! lias2 method for the balanced systems and Bias/l lalancing method for the unbalanced sys-

tems. Further improvements are obtained when these methods are combined with MSI)IS.

[able I and [able 2 show the results obtained for the balanced and the unbalanced systems, re-

spectively. We ran the simulation long enough so that the smallest entry in the tables for the per-

centage relative half-widths of the ()0% confidence intervals was less than 5',,. i he percentage

relative half-width of a confidence interval is defined to be I0'", times the confidence interval

half-width divided by the point estimate. This corresponds to approximately I0)0,00t cvents for

6 Fxmarnpkd- and OIS L llO 2f)



each entry in Table I and 1000,000 events for each entry in 'I able2, respectively. l:or the MSI)IS

entries, we assigned 10"( of tile total events to estimate tile denominator (numerator) for unavail-

ability (MTI:) as suggested in Section 3.4. Based on impirical results obtained in [4], [i8] and

[41]. the values for biasl and bias2 were selected as follows: for DIS, .5 and .5, and for MSDIS, .9

and .9.

[here are a few important points to note in the tables. [or the balanced system, the BiaslBias2

method is most effective, which supports our intuition that it helps push the system quickly towards

a likely path to failure. F or the unbalanced system, the lisallBalancing is the most effective

method, which also supports our intuition as follows. Dy making individual failures equally likely

we are also increasing the failure probability of a more reliable but less redundant component, thus

leading to a more likely path to failure.

Also note that the percentage relative half widths for both the steady-state unavailability (I ') and

the mean time to failure (MT'I F) are approximately equal. [his is because the estimate of U is

approximately proportional to the estimate of IMrFT. To see this, using the notation of Section

2, min( 1 ,.. 7() = O with high probability when no importance sampling is used. Thus an indi-

vidual sample r.v. in the numerator of the ratio for MIl" (E"quation 2.10) is equal to the r.v. in

the denominator of U (Equation 2.8) with high probability. Now for the three state model, a

sample r.v. G in the numerator of 1I is G = h2 x nf-where nf, is the number of times the failure slate

is entered. I;sing our importance sampling schemes, G = 1h2 'itr=i) with high probability. Fur-

thermore, I1(,=I) = I with high probability so an individual sample r.v. in the denominator

of the NI"IF ratio is proportional to the r.v. in the numerator of U with high probability. Thus,

an estimate of U is approximately proportional to I /M1lIT. Finally, direct manipulation of the

asymptotic variance (Equatio 3.6) shows that the relative half width of a ratio is equal to the rel-

ative half width of its reciprocal.

We next performed the so called coverage experiments (see e.g., [25]) to determine the validity of

the confidence intervals that are formed based on the asymptotic central limit theorems described

in Section 3. Such studies are important since certain variance reduction techniques sometimes do

not produce valid confidence intervals, except for very long run-lengths (see e.g., [25]). In such

cases, the variance reduction technique cannot be relied upon to actually shorten simulation run

lengths.

We performed experiments on estimates of the steady-state unavailabilit., I , in the above described

balanced system as follows. We chose three run lengths corresponding to small, medium and large

sample sizes and we considered three ways of estimating 11: standard simulation, the Bia. Ilias2

method with lIS and the lias l'flias2 method with MSI)IS. F or each method and run length we
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ran R - I 1$) replications and lOrIicd point estimates Ul . R and ')(', confidence intervals.
R ,

We t hen calculated the IIean percent relative bias ( 1= I))'1, x (0l1R). (I -1 )/1 ') and the

standard deviation of this mean. Note that if an estimate is unbiased. then its mean percent relative

bias 's1ould converge to zero as R -- c. We also calculated tile 9)0% coverage which is the per-

centage of the (alleged) QO9"; confidence that actually contain the true value ( ' If the confidence

interval is valid, then by definition, the 9f 0 coverage should be close to 9')0%.

\We also c('nputed the mean percent relative half width of the 90"0 confidence intervals. ihe re-

suits are listed in Table 3. Note that. as anticipated from Section 3.5, the standard estimate is sig-

nificantl\ more biased than either the l)lS-Iias/ Ilia2 or the MSII)15-fIia/ I lia2 estimates and

that its confidence intervals are at least an order of magnitude wider. IFurthermore. for the small

run length, its coverage drops significantlv below '90" . In fact. there wre no system failures in the

runs corresponding to the 46%, of the confidence intervals which did not contain (. tsing our

variance reduction techniques. all the coveragec, are close to the nomrinal 940" n value except for the

longest run using MSI)IS which had a coverage of only 810.

Ihis dip in coverage concerned us since, tpicall:;, coverages improve with run length. There are

a number of possible explanations for this phenomenon: a random fluctuation, numerical errors in

I 'or 1, 1, rll, problems with the random number generator, non-monotone convergence to

normality, problems with tile importance sampling scheme, or possibly a subtle bug in the coin-

puter codes (although the code has produced valid estimates for all examples tested). We recom-

piled the numerical solver and simulator to quadruple precision (from double) and obtained

essentially identical results. We then changed random number geneiators fram the multiplicative

linear congniential generator , = (Ix16807) mod 2 - 1 to the combined generator described

in [ 26 ]. With R = 200 replications, the coverage increased to 85';, which still represents a statis-

tically significant departure from 90% (although its confidence interval overlays with that of the

Xl" coverage). 'Ilhus, at present, and despite considerable effort, we have been unable to identity'

the sourcc of this slight coverage problem. Since our importance sampling methods are designed

to move towards the most likely failure states, it may be that we are missing secondary failure

modes which would become significant at such high levels of precision. Note that the first nol-zero

digit in I is in the sixth decimal place, so the problem is occurring in the eight decimal place.

I urtlhermorc. in practice. such high precision is probably not warrantcd given inaccuracies in model

paramieters mland (listributional assumptions.
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6.2. Transient Measures

In this section wc discuss the results of our experiments for estimating reliability and expected in-

terval availability. Recall that for transient measures we not only want the system to move quickly

towards tie set of sNstem failed states F, but also reach there before the observation period expires.

Since these tw\o issues are, in some sense, orthogonal, we use the same technique as in the steady-

state case to bias the embedded Markov chain towards the system failed set. in addition to another

independent technique (e.g., forcing or conditioning as discussed in Section 5) to reduce the vari-

ance iLe to holding times in tie various states. 'he likelihood ratios corresponding to these two

aspects of simulation are independent and can be formulated as in Proposition 4. 1. "The goal of the

simulation is to study the effect of the forcing and conditioning techniques. We considered only

the balanced system. IFor each measure, we allowed each method to run for 401.00 events.

Standard simulation was not considered as it is ver\ ineffective for estimating transient measures.

The results are given in Tables 4 and 5.

F or all methods, we notice that tie confidence intervals are smaller for some range of intermediate

time periods and wider at the ends. To explain this, we recognize two key factors affecting the

variance of the estimates: namely, the number of replications in a simulation run and the value of

bias! used with importance sampling. For smaller time intervals, there are more replications in a

simulation run than for larger time intervals (since we kept the total number of events fixed). This

contributes to a larger variance for larger time intervals. Furthermore, for each time interval, there

is an optimal value for biasl which maximizes the variance reduction. While biasl= 0.5 may be

close to optimal for some intermediate range of time intervals, it deparls from the optimal value for

either smaller or larger time intervals.

'[he two tables indicate that forcing and conditioning are most effective for short time intervals.

This is intuitive because for a long interval enough transitions occur before the interval expires, and

therefore, the embedded Markov chain has a chance to reach the system failed set using only failure

biasing '[his is not true for short intervals, and therefore, either forcing transitions to occur before

the end of the period or conditioning the holding time out in state I has a significant effect. Both

forcing and conditioning give similar results for unreliability, while conditioning is consistently

better for the interval unavailability. Note that for interval unavailability we are using E:quation 4.7

with conditioning, but not with forcing. I lowever, forcing can be similarly combined with

1:.quation 4.7 to possibly yield better results. Also, note that !iasl/ifias2 method is consistently

better than both the Biaxl and the liaslI/flalancing methods. This is consiktent with a similar con-

clusion with respect to the steady-state measures in a balanced system. '[his is intuitively reasonable

because these methods correspond to importance sampling in the embedded ,Markov chain; this
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sampling Is Independent of' forcing and conditioning. F or unbalanced systetns, we expect that

fIa~iv Ilaiwwinlw will he consistentl\ better than the other two methods; hils is supporled by a pre-

liminarY empirical Investigation in progress.
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7. Summary and Directions for Future WVork

In this paper, we have developed a unified framework for simulation of %iarkovian models of highly

dependable s.stems. ('onventional numerical techniques are difficult to apply to this class of

stochastic models because of the fact that the size of' the state space of the NIarkovian model in-

creases exponentially with the number of components in the system. ()n the other hand. simulation

algorithms tend to be relatively insensitive to the size of the state space of the simulated Markovian

model, both in terms of st)rage and computathinal requirements. I lowever, standard simulation

Vs inefficient in our setting because the principle focu,; of interest: namely, system failures, occur so

infrequently in highly% dependable systems. As a consequence, Few system failures. if any, would

be obscred if standard simulation methods were to be used in our problem context-

I lie einplasis in this paper has therefore centered on applying variance reduction techniques to

improve the efficiency of the simulations associated wit l Markovian models of highly dependable

systems. We have reviewed the basic theory of importance sampling in several elementary problem

settines and then used this insight to develop sampling heuristics for the complex systems of interest

here. l)ifferent variants of these ideas were developed for both transient and steady-state

dependability measures. In addition, we have "fine-tuned" the importance sampling techniques to

take advantage of' the stnicture of highly dependable systems which are either balanced or unbal-

anced.

Our work has also shown that importance sampling may be fruitfully applied in conjunction with

a variance reduction method known as conditioning. The basic idea here was to observe that highly

dependable systems spend a significant fraction of time in the state in which all components are

fully operational- Since the stochastic behavior of the time spent in the fully operational state was
casy to calculate analytically, this permitted us to effectively integrate out the randomness in our

importance sampling estimators due to the holding limes in the fully I operational state.

)ur empirical investigation showed that the combined variance reduction obtained by using both

coditioning and importance sampling is typically substantial. In fhct, in all of our experiments, our

methods yielded estimators in which the variance was decreased by several orders of magnitude.

Our empirical work also showed that the confidence intervals associated with our estimators typi-

cally provided acceptable levels of coverage. We view this as important, since the scientific repre-

sentation of the accuracy of a simulation estimator is usually gauged through a confidence interval.

A number of possible directions for future research present themselves. One important issue relates

to time fact that the importance sampling leuristics presented in this paper were basically developed
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for s\stems in which s,,stCm dependability is achieved principally through high component reli-

ability. I lowever. another approach to obtaining high s\stem dependabiliON is through high levels

of component redundancy. Inporlance sampling methods appropriate for the analysis of highly

redundant systems differ from those presented here. Such techniques would likely have important

ramifications for the simulation of certain highly dependable systems.

A second important research area involves the generalization of the ideas developed in this paper

to stochastic models of highly dependable systems in which the underlying failure and repair dis-

trib tions are non-exponential. Since the resulting stochastic process is typically no l(nger either

Markovian or regenerative, many of the ideas presented in this paper cannot be implemented di-

rectly. Nevertheless, it is likely that the failure biasing ideas that worked successfully in the

\larkovian setting can be suitably generalized to obtain effective sampling heuristics for non-

\Markovian models. I lowever. it appears less likely that the conditioning techniques of this paper

can be applied to non-NMarkovian models; our conditioning technique depends criticall\ on the

exponential nature of the holding times in Markovian models.
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Appenld;,. A: Estimating the Distribution of liderval I'lvailaLilitvy

We %%Ii find it more convenient to estimate the (list nbut ion of' the time in the sct of failure states,

(I x= P! 1 (1 x} . where 1 (1) = f ' I ( 1"r/ & Since '1(t) = I - I '(lt we have

Itt xi = P: A1) ! A') = I - I '(t.( I - Ax)1). To derive an est ImatIor ',or I(1,x), write

I '(tx) = U(l(. ) ± U2 (t.x) (Al )

wvhere I 'I ttx) =P( I (t) c x, )',41I and 1'2(t,x') = lj) (t) N, )', G 11 I )CeI~ I I I tC~~ F1 I(,I and

'j tj I :,xv, ith y1. fli andl ,k(i) as defined previously. Note that +? = 'i" and]

= 4 C! + Fi Consider I 'itt.x):

((tA-) 1) P (t) XA, V~I* I ~ '(I) X, X'1 1' I\(t)=

-, i-~ L- - < I < I/+) (A.2)
1=O

- V t( . t < x . A '~ F }4 ± flj 1 < t < }, ± I ,
i=fl

N ow if X7 then fli- I fl1* If X74F and AV, #? 0, then %~(i - 1) = %~(i) and therefore ),i I y. In

either case, by conditioning on the sequence of states and the holding tini s in the non-zero states,

we can write

No c 'sder I 2(t-X). If Y, E F' and NO) = i, then F't T Y' F -v- -Iurther-

more. on this set %i - 1) =%lf(i), )'t- I = yt and (- = C, so that

I ' 2t~x) = (I ~ ~ct1)l( Y, I- C <ix) C, 1+1, -t- Y, + (',+[t,)

1=1)(A. 4)

'This development provides a computationally attractive way to estimate ('(tx) without sampling

from the state (t holding time distribution. It is easily combined with failure biasing. Practical

implemnentations mnay require truncation or stopping rules as described in Section 4.2.
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Numerical i)irct 1ias I Blisl 1Balancing Bias 1 ias2 MS -
Rcsulis 1lls I Bias2

(0.5) (0.5) (0.5 0.5) (0.9 0.9)

0.9. 02 x 1l0 1.0171 x 10 5  (.9779 x 10- 5  .Q547 x (( ) .93()5 x 10-  ().(317 x 10- 5

1navailabiljtv + 27.1 On 4- 7.6 '0 + 6.2 0', + 2.7 " + 1.0 " ,

().1 637 x I()+"  ( 1524 x 1)6 0.1581 x 10+ ' 0.1631 x 10+'  ().1626 x 1(0+ ().1633x ()6

N I II: + 25.7 0 + 7.0 -- 5.7 On + 2.5 On + I. "

Fable 1. 1.navailabilitv and MIlI I Stimales and Relative I IW
in a Balanced System

Numerical Direct Bias I Biasl Bal;incine llia l 1Bias2 %IS-

Results Illas I Balancing
(0.5) (0(.5) (((.5 ((.54 (0.))

(.6957 x I 0.4164 x 10-  0.6644 x 10-  (.6976 x 1(- 0.6,375 x 10-' 0.6810 x I)- ,

I'navailabilitv + I(A.5 % + 46.1 % r 2. _ ., + 2.2 ,

(.2189 x 1 
+ 8 (.4703 x 10+ ' 0.2227 x 10 (2183 x 10'9 ((.2349 x 10

+'  0 .2222 x 1(14

MII: + 164.5 ,, + 43.7 "'o 4 2.3 O + 5.1 0 + 2.0

Table 2. t [navailabilitv and MIII I:,timat(> and Relative I HW

in an I nbalanced System
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