AD-A211 932

M o5 e @

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSi PUBLICATIONS

P TR ety
i

VLSI Memo No. 89-553 CLECTE SR
August 1989 SEPO S '

{\J

Test Generation for Highly Sequential Circuits

Abhijit Ghosh, Srinivas Devadas, and A. Richard Newton

Abstract

" We address the problem of generating test sequences for stuck-at faults in non-scan

synchronous sequential circuits. We present a novel test procedure that exploits both the
structure of the combinational logic in the circuit as well as the sequential behavior of the
circuit. In contrast to previous approaches, we decompose the problem of sequential test
generation into three subproblems of combinational test generation, fault-free state
justification and fault-free state differentiation. We describe fast algorithms for state
justification and state differentiation using the ON-sets and OFF-sets of flip-flop inputs and
primary outputs. The decomposition of the testing problem into three subproblems rather
than the traditional two, performing the justification and differentiation steps on the fault-
free rather than the faulty machine and the use of efficient techniques for cube intersection
results in significant performance improvements over previous approaches.

N

A

89 9 01029

Microsystems Massachusetts Cambridge Tetephone
Research Center Institute Massachusetts (617) 253-8138
Room 39-321 of Technology 02139

Acknowledgements

To be presented at the International Conference of Computer Aided Design (ICCAD ’89) in
November 1989. This work was supported in part by the Defense Advanced Research
Projects Agency under contract number N00014-87-K-0825.

Author Information

Ghosh and Newton: Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA 94720.

Devadas: Department of Electrical Engineering and Computer Science, Room 36-848,
MIT, Cambridge, MA 02139. (617) 253-0454.

Copyright® 1989 MIT. Memos in this series are for use inside MIT and are not considered
to be published merely by virtue of appearing in this series. This copy is for private
circulation only and may not be further copied or distributed, except for government
purposes, if the paper acknowledges U. S. Government sponsorship. References to this
work should be either to the published version, if any, or in the form “private
communication.” For information about the ideas expressed herein, contact the author
directly. For information about this series, contact Microsystems Research Center, Room
39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

Test Generation for Highly Sequential Circuits

Ablijit Ghosh

Sninivas Devadas®

A. Richard Newton

Departiuent of Electrical Engineering and Cowputer Sciences
University of California, Berkeley

Abstract

We address the problem of generating test sequences for stuck-at faults
in nou-scan synchronous sequential circuits. We present a novel lest
procedure that exploits both the structure of the combinational logic
i1 the circuit as well as the sequential beliavior of the circuit. In con-
trast to previous approaches. we decompose the problem of sequential
test generation into three subproblems of combinational test generntion.
Jaull-free state justification and faull-free stale differentiation. We de-
scribe fast algorithms for stale justification and state diffcrentiation us-
ing the ON-sefs and OFF-seis of flip-flop inputs and primary outputs.
The decomposition of the testing problem into three subproblems rather
than the traditional two. performing the justification and differentiation
steps on the fault-free rather than the faulty machine and the use of efli-
cient techniques for cube intersection resulls in significant performance
improvements over previous approaches.

1 Introduction

Test generation for sequential circuits llas been recognized as a difficult
problem [8] {5} [12]. Initial work in tackling this problem involved the
use of both random [4] [15} and deterministic techniques (11] [10] {13]
[16]. Due to the relative ineflectiveness oi Liese approaches, a popular
approach to enhancing the testability of sequential circuits has been the
Scan Design methodology [6] {1].

Recently. there has been considerable progress made in this area. A
PODEM-based [7] deterministic approach to sequential test generation
was described in ES . This approach uses the iterative array model for
test generation and mnakes intelligent use of a partial Stale Transition
Graph (STG) of the circuit while generating justification sequences for
the faults under test. A heuristic. simulation-based test pattern gener-
ation algorithin was described in [2]. Both these approaciies have been
snccessful in generating tests for circuits with 1000-2000 gates and 50-75
flip-flops.

In contrast to previous approaches, the approach we present in this
paper, involves decomposiug the problem of sequential test generation
nto three subproblems of combinational test generation. faull-free state
justification and fault-free state differentintion. Initially, prior to test
generation, each of the flip-flop inputs (next. state lines) and primary
outputs are represented as separate cone circuits and complete or par-
tial sum-of-product representations of the ON/OFF-sets of these cone
circuits are extracted. The extraction is carried out via the use of the
PODENM algorithm. Cover extraction is significantly faster than STG
enumeration. which is used in {9].

Given a fault for which a test sequence has Lo be generated, we first
generate a combinational test vector that propagates the effect of the
fault to the next state lines or the primary outputs. We then perform a
justification step. which involves finding a justification sequence for the
state corresponding to the generated test vector. This step is carried
out efficiently via a sequence of cube infcrsections ou the complete or
partial ON/OFF-set representations of the next state lines. Thus. a
fault-free justification sequence is found. If the effect of the fault has
been propagated to the next state lines alone. then we obtain the fanlty
Jault-frec state pair produced by the test vector. We obtain a fault-
free differentiation or distinguishing sequence for this faulty fauli-free
state pair via another sequence of cube intersections, this time on the
ON/OFF-set representations of the primary outputs.

Justification or differentiation sequences that are valid in a fault-free
machine are not necessarily valid in the faulty machine. However, exper-
imentation indicates that these sequences are either valid or themselves
test sequences. more than 95% of the time. Fault-free justification and
differentiation can be performed much more efficiently than the same
under faulty conditions since information can be remsed. Further, the
intersection of sum-of-product forms, which forms the basis for justifica-
tion and differentiation. can be performed efficiently, via sophisticated
data structures. Splitting the sequential test generation problem into

*Department of Elerirical Engineering and Computer Sd M b Ine
stitute of Teduwlogy, Cambridge

three subproblems rather than the traditional two. also improves efli-
ciency. Uplo a factor of (5N improvement in performance has heen
achieved for large sequential machines. over previons approaches.

We present basic definitions in Section 2. In Section 3. (he three-
step global strategy for test generation is described. The algorithins
used tn the cover emnneration and combinational test generation. state
justification. and diflerentiation steps are described in Sections 1. 5. and
6 respectively. Detection of redundant fanlis is the subject of Section 7.
In Section &, we present preliminary experimental recults, that indicate
that this approacli is more efficient than previous approaches and viable
for larger circuits than previous approaches,

2 Preliminaries
2.1 The Problem

A general sequential circnit consists of a combinational logic block and
feedback registers that hold the state information. ‘[he problem of se-
quential Lest generation involves finding primary input sequences which
can excite the fault and propagate its effect to the primary outputs.
It is assumed thal the present state and the next state lines are nei-
ther controllablc nor obscrrablc. The following assumptions are miade
regarding the sequential circuil to he tested.

1. The machine is assumed to liave a reset state. R. All test vectors
are applied with this state as the starting state.

2. The fault model is assuined to be single stuck-at.

3. The memory clements are considered as distinet logie prinitives
and fauits inside the mewory elements are not considered. towever.
all faults on present state and next state lines are consitlered.

To detect a fault in a sequential machine. the machine has to be first
placed in a state which can excite the fault aud propagate its effect 1o
the primary output or the next state lines. II the fault is not propa-
gated to the primary outputs. then another sequence of input vectors
1s necessary to propagate the fault to the primary outputs. Thus un-
like combinational test generation, sequential test generaiion requires
multiple vector test sequences.

It has been shown [5] that a fault in a general sequential circuit may
require a test sequence of up to 4" input test vectors. where n is the
number of memory elements in the machine. This shows that the search
space for sequential test generation is very large. To add to the con-
plexity, some faults in the circuit may be redundant: i.e.. they cannot
be detected by any test sequence. Since such faults are very difficull to
';_denll.il'y. large amounts of effort can be spent in trving to generate tests
or them.

2.2 Deflnitions

A state is a hit vector of length equal to the number of memory elements
(latches or flip-flop=) in the sequential circuit. A state with only 0s and
Is as bit values is called a minterm state. In general, a slate is a cube:
i.e., the values in the different bit positions may be 0. | or r (don’t care).

A state is said to cover another state if the value of each bit po-
sition in the first state is either an r or is equal to the value of the
corresponding bit position in the second state.

For the combinational logic in the sequential circuit. there are p pri-
mary inputs, n present stale and nex(stale lines. and g primary ontputs.
The combinational logic impletients a multiple-output Boolean function
J: Br*® — B+ Each of the primary ontpiits or next state lines are
single output functious of p+ n variables. The ON-set. Xox C Br+",
of a primary output or next state line is the set of input valies such
thal primary output or next state line is 1. Similarly the OFF.set.
Xorr C Br*", is the set of input valites for which the corresponding
line is 0. The =et of cubes C. is said to be a cover for a ON.set. if
Xon € C and C does not intersect Xopp.

A space can be enumerated by exhaustively searching a set of
cubes which add up to the universal cube corresponding to that space.

Minterm enumeration nnplies that eacit cube searched iz a mintern.
Minternt enutneration of an n-dimensional space implies that 2" combi-
nations have been searched. Implicit enumeration involves exhaus-
tively <earching an n-dimensional space via cubes such that the number
of cubes searched is significantly less than 2".

An edge in the State Transition Graph is =aid to be corrupted by a
stuck-at {ault il the effect of the fault can be propagated (o the prunary
outpuis or next state lines by the input vecior corresponding to the
ecige with the present state lines sel to the fan-in state of the edge. An
input vector to the combinational logic part of the machine that excites
and propagates the eilect of the fault to the primary output or the next
state lines is called the excitation vector for the fault. The present
state part of the input vector is the state whose fanout edge is corrupted
by the fault. and is called the excitation state.

The process of finding an input sequence which takes the machine
from the reset state to the fault excitation state is called state justi-
fication. The corresponding input sequence is called the justification
sequence and set of stales traversed during justification constitute the
justification path. State justification may be forward state justilica-
tion or backward state justification, depending on whether the search
is conducted from the reset state to the excitation state or vice versa.

In a sequential circuit. a fault may be redundant. i.e.. untestable.
There are two kinds of redundancies 9] in a sequential circuit — combi-
national redundancies and sequential redundancies. For a com-
binationally redundant fault, the eflect of the fault cannot be prop-
agated to the primary outputs or the next state lines, begiuuiu}; iroun
any s*al., with any input vector. A sequentially redundant ault is
a fault that cannot be propagated to the primary outputs in 4" time
frames beginning from the reset state of the machine.

3 Global Strategy for Test Generation

Information about state transitions in sequential machines are tradi-
tionally represented using graphs. It is also possible to represent this
inforuration by the ON-sets aud QF F-sets of all the next state lines and
the primary outpuls. Connectivity can be represented by the ON and
OF F-sets of the next state liues alone.

The first step in test generation is the enumeration of the partial or
compilete (memory and CPU time permitting) ON and OFF-sets of each
of the next state (NS) lines and primary outputs (POs) in the sequential
ciccuit to be tested. Cover enumeration is done via a PODEM-based
or DALG-based [14] enumeration algorithm. A limit on the number
of cubes in each ON or OFF-set can be placed. This limit is used to
restrict the amount of memory and CPU tiine used for enumeration.
Cover enumeration is generally very fast and full covers of moderately
large circuits can be extracted easily.

Given the complete {or partial) covers. test generation is a three-step
process. These three steps consist of (1) combinational test generation
for a fault treating the present state (PS) lines also as primary inputs
(Pls) and the NS lines also as POs, (2) fault-free state justification and
(3) fault-[ree state differentiation.

After combinational test generation, the excitation vector is examined
to see if the present state part of the excitation vector covers the reset
state. For this discussion. assume that the excitation state is a minterm
state. Il the excitation state is the reset state. then the fault can be
excited from the reset state of the machine. 1f not, then the excitation
state is justified using a backward justification algorithm. Backward
justification is done by first finding all the fan-in states of the excitation
state. via repeated cube intersection. If the reset state is a member of
the set of fan-in states. then a one vector justification sequence is found.
Else. the process is repeated {or some state in the fan-in of the state
being currently justified. Once a justification sequence is found, it is
fault simulated to see if the required state is justified. If the required
state is justified. then the justification sequence is a proper justification
sequence in the faulty machine too. If the required state is not justi-
fied. then some edge in the justification poth must have been corrupied.
A part of the justification sequence can then be used as a justification
sequence for the state whose fanout edge was corrupted by the fanlt.
State differentiation can then be done between the corresponding true
and faulty states. Ve thus have to perform only one fault-free justifica-
tion to obtain a true faulty state pair.

If the effect of the fault under test has been propagated to the primary
outputs by the combinational test vector, and if the excitation state can
be justified in the faulty machine, then a successful test for the fault
has been generated. If. however. the effect of the fault is propagated
only to the next state lines. then the fault has to be propagated to
some pritary output by state differentiation. This is done by first
finding an input vector that produces a different output on at least
one primary output line for the true and the faulty states. Such a
vector constitutes a single-vector diflerentiation sequence between the
true and faulty states. If a single-vector differentiation sequence cannot

be found, all the fanout states of the true and fanity siates are fornd via
repeated cube intersections. Theu. for each pair of fanout states a single-
vector dilferentiation sequence is sought (we are searching for an overall
two-vector differentiation). If no such pair exists. then a pair of states
fanning out {rom soine fanout state pair is picked and differentiation
between this pair is attempted. The differentiation sequence obtained
is validd under fault free coudition. After the differentiation sequence is
obtained. the entire test sequence is faull simwlated to see if the fanlt
under test is detected. Experimental evidence indicates that more than
95% of the titne, a test vector sequence generated is actually a test for
the fault.)

As in some combinational test generators [} and in some sequential
test generators {15]. we have added a random lest veclor generation
procedure as a front end to the deterministic test generation algorithm,
Random vector lest gencration enables us (o detect some of the casy (o
detect faults without much effort and therefore reduces test generation
time.

By checking Lo see il the justification sequence is valid. prior to state
differeutiation. we obviate the need for generating more than one justi-
fication sequence in each pass of the algoritlun.

All justification sequences and differentiation sequences generated are
stored for use laler. Thus parts of the State Transition Graph (STQ)
tha! are required for lest generation are explicitly enumerated. Enu-
meration of only the required parts of the STG gives rise to significant
memory and CPU time savings.

4 Cover Extraction and Combinational
Test Generation

The input to the program is the combinational logic specification of
the finite state machine. with the iatcl inputs and ountputs properiy
identified. For each primary output and next state line. the ON-set
and OFTF-set are derived by setting the corresponding line toa | or
and using PODENM {7] to implicitly enumerate the input combinalions
that can set the line to a 1 or 0. Since on every backtrack PODEM
sets an input line to a value different from what it had previously. the
cover of the ON and OFF-sets are guaranteed to be single cube con-
tainment minimal. For almost all examples. covers are of tractabie size
and enumeration takes a very small fraction of the tolal test generation
time.

Given a fault for which a test sequence is to be generated, the first
step in sequential test generation is to generate a combinational test
veclor for the fauit - the circuil is considered to he cotbinational with
inputs being the Pls and the PS lines and the outputs being the POs
and NS lines. A cube test vector is generated using as many don’t care
entries in the present state part as possible. This is done because state
justification is easier for stales representcd by large cubes. Combina-
tional test generation is hased on the decision tree concept of the test
pallern generation algorithm PODEM. It uses the 9-valued simulation.
as in STALLION. The fault is first excited by setting the faulty wire to
a value different. from the faully value. At first, this value is justified
by setting sote of the inputs to the combinational logic block. The
algorithm then tries to propagale thie effect of the fault to the primary
outputs. failing which it. iries to propagate the eflect of the fault to the
next state lines. If the fault is combinationally redundant. then the
effect of the fault canuot be propagated to either the NS or PO lines.
Since the goal is to generate a maximal cube for the PS lines. all NS
and PO lines may not he set to a | or 0 at the end of test generation

ome lines may still be left unknown.

*T & new test has to he generated because the previous excitation slate

~ ', not be justified, then the new excitation state should be disjoint

the previous excitation state. Thus for a particular fauit. each

tese generated has an excitation state which is disjoint from all previous
excitation states for the fault.

5 Justification

Combinational test generation produces a test vector with as many don’t
care entries in the present state part as possible. Any state in the group
of states Sy corresponding to the excitation states for the fault has to
be justified. If the reset state R is already covered by Sy. then the fault
can be excited from the reset state and a justification sequence is not
needed.

The state justification algorithim first altempls to find a single vector
justification sequence from the reset state R of Lhe machine to any of
the states (minterms) in S;. If complete covers of the next state lines
are available, the entire fanin of Sy can be found via cube intersections.
S, is represented as a bit-vector with 0. 1 and r entries, If the position
corresponding to a PS line has a 1 (0). the ON-set (OFF-set) of the
corresponding NS line is picked. Bit positions with r's are ignored.

The intersection of the ON and OF¥F.sets of the NS lines with 0s and
Is gives the fanin edges (hoth Pl and PS vectors) to the states in S;.
The intersection can be computed dyunamically, checking each cube. ¢,
produced 10 see if the PS part of the cube covers the resel state R. 1If
such a cube(s) is found, a single vector justification sequence {rom K to
S, is obtained. corresponding to the Pl part of the cube c.

If wo such cube is found. then it means that a siugle vector justi-
fication sequence does not exist for any ol the states in §y. Thus an
N-vecior sequence with .V > | has to be found. This is done by heuris-
tically selecting a group of states S; which exist in the fanin of S and
altempting to justily some state in Sz. via a single vector justification
sequence. While inspecting each cube ¢ formed from the intersection
of the ON and OFF-sels. the largest cube (cube with most don't care
entries) that is disjornt from §; and which is not already in the poten-
tial justification path is picked to be S3. Disjointness is required, since
if 3 € S)y. then we kunow that a single vector justification seinence
does not exist for S;. Also. the new state selected should not be in the
potential justification path built so far, inorder to prevent cycles during
Justification.

The justification sequence that is constructed is valid under {ault.free
conditions. and may be invalid under fanity conditions. If a justification
sequence is invalid under faulty conditions. it means that the effect
of the fault lias already been propagaled Lo the NS lines or the POs.
Empirical evidence has shown that over 99% of the time. in real circuits,
a justification sequence. valid in a fault-free machine, is also valid in the
faulty machine or is in itsell a fest sequence for the fault. In the unlikely
event that a justification sequence is neither valid in the faulty machine
nor a test sequence in itsell. we obtain a valid justification sequence
from the invalid one as described earlier.

All cubes are represented as bit vectors whicl makes storage and
operations ou cubes very efficient. Cube and cover data structures used
are similar to those used in ESPRESSG k.'}]. Using proper bit notations
for 0s. 1s and £’s. cube intersection can be performed by bitwise AND
operations. which can be done very efficiently. A cube is therefore a
collection of unsigned integers whose bits represent the value of the
corresponding variable. The cubes in each cover are ordered so that the
cubes that cover the reset state are before those that do not. Amougst
cubes that cover the reset state. the larger ones are placed before the
simaller ones. This helps in finding a fanin state that covers the reset
state as early as possible.

6 State Differentiation

This step is only required il the initial combinational test vector gener-
aled for the fault under test propagates the effect of the fault to the NS
lines alone.

Typicallv, in sequential test pattern generators. a propagation se-
quence that propagates the effect of the fault to the POs. is found using
a test generation algorithm like PODEM. on multiple time-{rames (or
clock cycles) using the iterative-array model [5]. The first vector in this
sequence propagates the effect of the fault to the POs or the NS lines.
Since the fault is present in each time-frame. propagation from the PS
lines of the secoud time-frame to the POs of the second time-frame is at-
tempted under faulty conditions (to take into account the multiple-fault
effect).

We believe, from our experience with fault-free justification, that gen-
erating a propagation sequence (in an iterative array model of the se-
quential circuit) where only the logic in the first time-frame contains the
fault would result in a propagation sequence that is alinost always valid
under (aulty couditions (1.e. the fault is present in all time-frames).
Arising {rom this observation, we propose a method of faull-free stafe
differentiation, given the test vector that propagates the effect of the
fault to the NS ’l"ines.

After justification. the faulty fault-free stats pair (8,7, 5.7) given by
the test vector have Lo be differentiated. 517 and 5;F are guaranteed to
differ in at least one bit. Some entries in 5,7 and 5,7 may be unknown
values. This means that in the geueral case, groups of states may have
to he differentiated. rather than a minterm state pair.

State differentiation can be performed using the partial or complete
covers of the POs and the NS lines. The procedure for single-vector
differentiation is as follows:

1. Pick a (new) output.

2. Inspect the covers of the ON-set and OFF-set of the output and
search for an Pl combination. i1. which appears concatenated with
3T (or ¢ D 5;T) in the ON-set and concatenated with s, (or
(3] 51F) in the OFF-set (or vice versa). If such an input combina-
tion is found for some output, then a fault-free state differentiation
sequence can be constructed. Exit with the input combination. {f

[0 N# #mp T Four T Fgale | Flat | Fogv.
faults

sse] ' 130 [RIS

planet i 19 600 [y TIRT

muft] 9 9 Ton 5 336

<he 10 S0 T TOTT I8 | A

slage TIT -] T 6] V3T,

key 63 4N T2 B

pewd I Tot TRV 172

dsipp 228 19, JoLh 1 [2T LY

Table §: Statistics for Example Circuils

uot, a single-vector state dilferentiation sequence caniot be found
for (5,7, 5, F).

Multiple-vector differentiation sequences can be cearched for in the fol-
lowing fashion. N is the number of vectors in the current sequence.

3N= 1.

4. Pick a NS line and attempt to find an Pt vector. ix. that praduces
a 1 {0) when concatenated with s and a 0 (1) when concatenated
with sF. Try another NS line if a vector cannol be found for the
picked one. If an input combination cannat he found for any such
NS line. then a state differentiation sequence cannot he found for
(saT. saF).

5. Find the state pair (spy17. Sxa(F) given by the fanout states of
the PI vector ix for the state pair (sy7. saF). V= N+ 1.
Attempt to find a single vector propagation sequence for the state
pair {sx17y sx)

The algorithm thus attempis to find a single vector sequence. (hen a
two-vector sequence and co on. The NS lines are selected in a heuristic
order that uses topological mforination as to the Jocation of the fault
with respect to the different NS lines and POs.

7 Identification of Redundant Faults

The difficulty in sequential test generation lies not only in the generation
of diflicult to delect but testable {aulls. but also in the identification of
redundant faults. Low fault coverage on certain examples does not nec-
essarily mean thal the test generator is inadequate. if it can be shown
that the faull. coverage is close to the maximum possible value. lu gen-
eral. identification of redundant faults require astronomical amounts of
CPU time, as the total search space has to be enuwmerated before a
faull can be pronounced redundant. As defined in Section 2. there are
two classes of redundant fault - combinationally redundant and sequen-
tially redundant. Combinationally redundant fauils are detected during
combinational lesl generation. and are easier Lo find than sequentiaily
redundant faulit.)

It is possible to detect a subset of the sequentially redundant faults
using Theorem 1 of {9]. We use the same theorem {or the detection of
sequentially redundant faults. ilowever. since we do not use the State
Transition Greaph of the machine. the conditions of Theorem 1 are ver-
ified differently. A state (or group of states) cannot be justified if the
total number of fan-in cubes determined during the justification proce-
dure is zero. An unjustifiable state is a state that cannot be reached in
the true machine (invalid state). \We generate all possible tesis for the
fault, with disjoint initial states. Il all of the initial states have no fan-in
cubes after intersection. then the fault under test is redundant. In the
next section, we show that this new method can establish redundaney
for a larger fraction of faults than the method of (9}.)

8 Test Generation Results Using STEED

The test generation algorithm described in the previous section have
been implemented in the program STEED. It consists of about 10,000
lines of C code and runs in a VAX-UNIX euvironment.

Results and time profiles using STEED for eleven finite state machines
which are described in Table 1 are given in Tables 2 and 3, respectively.
In Table 4, comparisons are drawn against STALLION [9] and the test

enerator, CONTEST, described in ?.’] In the tables m and s stands
or minules ad seconds, respectively. For each example in Table |, the
number of inputs (#inp). number of outputs (Fout). number of gates
(#gate). number of laiches (#lat), and number of equivalent laults
(##eyv. faults) are indicated.

.
faul d i [N ‘
N Flext wax, [suce aull red. < 2L Tanlt-Tree state differentiation. The eflicacy of our 1nethod siems
CKT seq. | #rvec | seq. coy. I’a(ull (%) tie § the efficient nse of covers of (he ON and OFF sets of the pnm'a"r\ r«:(n’xl:-I
len. (%) (7)) (%) put aud next state lines instead of the ST, for state justitication and
=YY hR] RRIT TO T TO0.0 | 008 [10.02 1 100.0 T5.1=]) dillerentiation. Experimental results indicate that fanlis (hat requnire
planet ¥ 1010 J0 1 100.0 | 9630 KEER BRI 5.85m || @ long inpul sequences are handled elficiently. We have sycceas(nlly
] D] 8} SO T00.0 1 OR51 .10 [9970 TT.0= || generated tests Tor finite state machines with a large munmber of latehirs
e 107 | T6d U1 050 1 9547 | 307 | 9853 T |} Within reasonable amoums of CP'V e and have obtained close 1o
<lagr R 55 IO .0 | 02,36 70T | T00.0 [308w]| maxitum amount of faull coverage. We have also demonstrated that
o =TT 1560 O TT000 | 01T 595 1 10001 d10m]| our algorithuis require signiflicantly smaller time than the test generalor
! T 0T 1000 T T00.0 U1 T00.0 T 5.5 | described in (9] and [2] while maintaining or improsing fault coserage.
i T T J0 T T00.0 19000 00T TT00.0 T 5] [t was also demonst rated I<I|a_| a larger clam'of sequentially redundam
faults can be determined during test generation.
Table 2: Test Generation Resulls for Circuits
CRT Cover ustily Difler Test Fanll Total 10 A?kHOWledgements
Enum. Gen. Sim._{ Time The interesting discussions with ‘Tony Ma and Tim Cheng on sequential
sse 0.3= 0.3 0.7= A 13.9s 5.0s test generalion are acknowledged. This researcli was supported in part
planet T~ 3J.0s J.0s 1 36.9s | JT1.0s [5.8m by the Deflense Advanced Research Projects Ageney under contracts
TNIE] T1= Ths D.01s T 50~ ERRY TT.0s NODD14-R7-1N-0825 and NOOO3IO-RT-(-0 |82, Digital Equipment Corpora-
<he =T ITm T6m 01 REI THn tion. A_T&:T Bell Lahoratories and Semiconductor Research Corpora-
<tage J3m [15.0m 0.0s 1 233 72007 [50.8&m tion. Their support is gratelully acknowledged.
key T3 1 21 07s T e ios 159.0m | I5dom | dT9m
ewd 31.0s 0.23s 3.0s | 9.49s T 5.I8m [6.58m
!I<|p 03« | 034 | 12.8« | 1995 [2336w | 258m References

Table 3: Time Profiles for Example Circuit

I Table 2. the number of test sequences (F#test seq.), the total num-
ber of test vectors (#vect), the maximum test sequence length (max.
sey. len). the percentage when a potential test sequence generated for
a (ault actually detected the fantt (%succ). the fault coverage, the per-
centage of provably redundant faulls (using the redundancy procedure)
. the total fault coverage including detected and provably redundant
faults (tfc). and the CPU time on a VAX 11/8R00 are indicated for each
example.

CPU times for enumeration of covers. justification. differentiation. to-
tal test generation. fault simmlation and miscellaneous setup operations
and for the entire test geueration process are given in Table 3.

In Table 4. total test generation time and fault coverage ol STALLION
[9]. CONTEST {2} and STEED are compared. As can be seen, our
test generation technigue oblains close to the maxiunun possible fault
coverage in all the examples. 1t takes significantly smaller time than
STALLION [9] and CONTEST [2] to acliteve the same fault coverage.
For the large examples. very significant speed-ups were obtained.

The fraction of time spent in cover enumeration is very small. much
smaller than the corresponding time reguired for even partial STG enu-
meration in STALLION. Test generation times are in most cases small,
and fault simulation dominates the total test generation time in st
cases. |t is worthiwhile to note that the success rate, i.e. the percentage
of limes that a potential test sequence is valid, is 100% for the largest
examples. For the examples sbe and key. which have huge STGs.
STALLION is unable to establish sequential redundancy for faults, but
STEED can.

The results for STALLION shown in this paper have heen derived
using a newer and iniproved version of the program that uses better
fault collapsing and hierarchical enumeration. Thus, the resuits quoted
in this paper do not agree with those in [9].

9 Conclusions

A novel approach to test generation for sequential circuits have been
presented in this paper. We have developed an efficient delerministic
algorithm for test generation that uses fault-free state justification and

Tl CONTEST S1TALLION STLED
F.OOT Tune F.C. Tune .U Time

sse 36] 29Is | 093 26.6s | 100.0 [27.3s
planet 10802 | 5%in | 99.95 [6.53m | 100.0 | 5.85m
multd | 9 T [838 | 99.71 42.1s § 99.40 11.0s

she_ — =) R0.0m | 98.04 750
Stage. = =) T50in | T00.0 | 50.8m
ey - = [3505 | > 900m | T00.0 | 419m
pewd — — [TO00 [ITvm .0 [6.5%m
dsip = — 1 99.99 350m | 100.0 | 25.8m

Table 4: Comparisons With STALLION and CONTEST

—~__“

1] V. D. Agarwal. S. K. Jain. and 1. M. Singer. Automation in Design
?;rs;l'cstnbilil_\'. In Proc. of Custom Integratcd Circunt Conferenee. May

[2] V. D. Agrawal. K-T. Cheng. and P. Agrawal. CONTEST: A Concur-
rent Test Generator for Sequential Circuits. In Proc. of 25th Design
Aulomation (‘onference. pages 84-89, June 1988,

13) {l K. B:;\yu’)n. GI.UD. Hachtel. Curt McMullen. and A. Sangioranui-
incentelhi. e Minsmizat Algorithms for VLSI Synthesrs K
Al Pu’t‘y’ﬁshem, P won Algorithms for ynthess Kluwer

[4] M. A. Breuer. A Random and an Algorithmic Technique for fanit
detection and lest generation. In JIEEE ITvansactions on Computers,
pages 1366-1370. November 1971.

{5} M. A. Brener and A. D. Friedman. Dingnous and Relioble Design of
Drgrtal Systems. Compnter Science Press. 1976,

[6] E. 3. Eichelberger and T. W. Williams. A Logic Design Structure for
LSI Testability. In Proc. £4th Dcsign Automation (Conference. pages 462
468, June 1977,

(7] P. Goel. An Implicit Ennmeration Algorithm (o generate tests for com bi-
uational logic circuits. In JEEE Transactions on Computers. pages 215-
222. March 1981,

[8] F. C. llennie. Fault Detecting Experiments for Sequential Circuits. [n
Proc. of 5th Ansual Symposunm and Swirtching Theory and Logreal De-
sign, pages 95-110. November 1974.

{9] H-K. T. Ma. S. Devadas, A. R. Newton, and A. Sangiovanni-Vincentelli.
Test Generation for Seqnential Circuits. In JEEE Transaction« on CAD.
pages 1081-1093. October 1988,

[10] S. Mallela and S. Wu. A Seyuential Test Generation Svatent. In Proc.
of International Test Conference. pages 57-61, October 1985,

[11] R. Marletr. EBT: A Comprehensive Text Generation Sysiem for Highly
Sequential Circuits. In Proc. of 15th Desgn Automation Conference.
pages 332-338, June 1078,

[12) A. Miczo. The sequential ATPG: A Theoretical Limit. lu Proc. of Int1
Test Conference. pages 143-147. Oclober 1983.

{13] S. Nitta, M. Kawamnra, and K. Hicabayashi. Test CGeneration by Activa-
tion and Defect-Drive (TEGAD). In INTEGRATION Journal, pages 2-
12, 1985,

[14] J. P. Roth. Diagnosis of Antomata Failures: a calcubns and a methodl
In IBM journal of Research and Development. pages 27R-291. July 1966

{15) U D. Schnnrmann. £. Lindbloon:. and R (i, Carpenter. The Weighter
Random Test-Pattern Generator. In [FEE Transactions on Computere,
pages 6U5-700. July 1975,

[16] S. Shicingart. A. W. Nagle. and J. Girason. RTG. Automatic Register

Level Test Generator. v Proc. of 22nd Design Automation Conforence.
pages 803-807, June 985,

Accesion fFor

NTIS CF;A&l d

DTIiC TAB 0
Unannouriced a
Justiticatiun

S

- [P U -

By
Dist-ibution |

Avatlability Codes

: ' Avail andlor
Dist i Sticd gl

Cereentann e e e ecee e e e o e

- ——

——— Y

