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Abstract

This paper shows how n-node, e-edge graphs can be contracted in a manner similar to the
parallel tree contraction algorithm due to Miller and Reff. We give an O((n + e)lg n)-
processor deterministic algorithm that contracts a graph in O(lg2n) time in the EREW
PRAM model. We also give an O(n/Ig n)-processor randomized algorithm that with high
probability can contract a bounded-degree graph in O(lg n + lg2 -y) time, where -r is the
maximum genus of any connected component of the graph. (The algorithm can be made to
run in deterministic O(lg n lg'n + lg2-y) time using known techniques.) This algorithm does
not require a priori knowledge of the genus of the graph to be contracted. The contraction
algorithm for bounded-degree graphs can be used directly to solve the problem of region
labeling in vision systems, i.e., determining the connected components of bounded-degree
planar graphs in O(lg n) time, thus improving the best previous bound of O(lg2 n).
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Abstract is a vertex-independent sequence of contraction steps. A
parallel multi-contraction step is a sequence of contraction

This paper shows how n-node, e-edge graphs can be con. steps with respect to an acyclic set of edges. We refer to the
tracted in a manner similar to the parallel tree contrac- sequence as simply a parallel contraction step whenever the
tion algorithm due to Miller and Reif. We give an O((n + type of contraction is clear from context. A parallel paired
e)/Ig n)-processor deterministic algorithm that contracts contraction step of any bounded-degree graph can be imple-
a graph in 0(g 2 n) time in the EREW PRAM model. mented in constant parallel time. A (parallel) contraction
We also give an O(n/ Ig n)-processor randomized algorithm of a graph is the process by which a connected graph is
that with high probability can contract a bounded-degree reduced to a single node by iterated (parallel) contraction
graph in O(fg t +1g2 'y) time, where -y is the maximum genus steps.
of any connected component of the graph. (The algorithm Miller and Reif (23] show how any tree can be contracted
can be made to run in deterministic O(lg n lg" n + Ig2 "Y) in O(Ig n) time using O(n) processors in the CRCW PRAM
time using known techniques.) This algorithm does not model using randomization. (They also show how to re-
require a priori knowledge of the genus of the graph to duce the number of processors to O(n/ Ig n)) They give an
be contracted. The contraction algorithm for bounded- O(Ign)-time algorithm for tree contraction that is deter-
degree graphs can be used directly to solve the problem minestic, but the deterministic algorithm does not perform
of region labeling in vision systems, i.e., determining the contraction in the strict sense described above. Tree con-
connected components of bounded-degree planar graphs in traction can be made to run in randomized O(lg n) time. O(Ig n) time, thus improving the best previous bound of and in deterministic O(Ig n Ig a) time using 0(n) proces-
O(Ig' n). sors in the EREW anA DRAM models, as was shown in

[20]. C , ,.
In this paper' we use the technique of parallel contrac-

1 Introduction /tion in a more eneral setting. We show that a remarkably
simple contration algorithm that uses (n +e)/Ig n proces-The parallel tree contraction technique of Miller and Reif sog reduces connected n-node c-edge graph to a single

[23a has proved to be a valuable tool in many parallel graph mode in O(lg' ) steps and a second simple algorithm which
algorithms. This paper provides a similar contraction tech- sues the first as a subroutuareduces a connected bounded(a
nique that applies not only to trees, but also to general degree graph to a single nie using afl-jp?-- ( ors in
graphs. It also provides a second, potentially faster con- O(Ig n + lge y) steps, where -y is the maximum genus of any
traction technique for bounded-degree graphs (and general/ connected component of graph G. The second algorithm
graphs when an embedding in known). immediately yields an asymptotically efficient solution to

A contraction step of an undirected graph G = (V, E) the problem of region labeling in vision systems, as well as
with respect to an edge (u, v) E E is the operation that to solutions of other planar graph problems.
replaces u and v by a new vertex wo which is adjacent to all The genus of a graph is the sum of the geni of the con-
those vertices to which u and v were adjacent. If vertices a nected components. That is, if the ith connected corn-
and v have an adjacent vertex z in common, the contrac- ponent has genus -yi, then the genus of the graph is -ya =
tion step produces only one edge between to and z rather -, %p.. The running time of our second algorithm, however,
than two. Thus, the graph that results from a contraction depends only upon the maximum genus of any connected
step is not a multigraph. A parallel paired contraction step component, (i. e. -r = maxyr,). Henceforth, when we refer

to the genus of a graph G, we will use the notation -yo when
L' This research is supported in part by the Defense Advanced we mean the true genus and we will use the notation -y when

Research Projects Agency under Contract N00014-87-K-W35 we mean the maximum genus of any connected component
and in part by the Office of Naval Resrd under Contract of graph G.
N00014-86-K-0593 and in part by an IBM sradunte fellowship. Figure I illustrates the data structure we use in our algo-

rithms. We represent each vertex of degree d by a doubly- 0
linked ring of d real processors alternating with d dummy
processors. The dummy processors are needed for efficient
implementation of a parallel multi-contraction step. The
edges between real processors and dummy processors, rep-
resented by heavy lines in figure 1, are called vertex edges
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Figure 2: To contract a graph edge (u, v), we use the
neighboring dummy processors on each side to merge
the vertex rings and splice out the real processors. We
later clean up the extra dummy processors. Dummy
processors allow contraction of trees of arbitrary depth.

Figure 1: We represent graphs using a ring of proces- ously contract any acyclic set of edges, including trees of
sors for each vertex. Two (round) real processors are arbitrary depth, in constant time. We then pay an extra

separated by a (square) dummy processor in the list. O(Ign) time to remove the extra dummy vertices.
The algorithm for contracting graphs is simple. It uses aVertex edges, drawn as heavy lines, go between proces- subroutine MEloiE(u, v) which performs the edge contrac-

sors in the same vertex ring, while graph edges (thin tion described above for edge (u, v).
lines) go between processors in different vertex rings.

,4garithm CoN€raTR 0
and edges between vertex rings are called graph edges. Each 1 iole 3 a vertex with deg ee > 0 do In parallel

processor in a vertex ring knows the ID of the vertex, de- 2 Each vertex u with degree > 0, do in parallel
fined to be the maximum identifier of any processor in the 3 Let v be the neighbor of highest ID
vertex ring. 4 MEROE(u, V)

The remainder of the paper is organized as follows. 5 Remove extra dummy processors
Section 2 presents the contraction algorithm for general 6 Remove multiple edges to adjacent vertices
graphs, argues its correctness, and analyses its running 7 Propagate new ID.
time. Section 3 presents the contraction algorithm for
bounded-degree graphs and Section 4 analyzes its running
time using a "missing edge' lemma which is proved in sec- We now argue the correctness of Algorithm CoN'RAc'T.
tion 5. Section 6 shows how graph contraction can be The only subtle point is that simultaneous contraction of a
applied to various graph problems, including the region- set of edges that form a tree results in a single vertex ring.
labeling problem. Section 7 offers some concluding re- If we were to contract edges that form a cycle, then we
marks. may end up with multiple rings, thus severing a connected

component. Because each vertex chooses to merge with its
neighbor of maximum ID, the edges chosen to contract in

2 General Algorithm an iteration cannot form a cycle.
We now analyze the running time of algorithm

This section presents an O(n + e)-processor contraction al- CONTRACT. Each iteration of the loop requires O(lgn)
gorithm for general graphs, argues its correctness and an- time. The loop termination check in line I can be done
alyzes its running time. We describe how to contract an in O(Ig n) time. Each processor can determine in constant
edge and we give a strategy for determining a set of acyclic time whether the vertex ring to which it belongs has de-
edges to contract in a parallel multi-contraction step. We gree > 0. We can remove multiple edges in O(Igu) time
then discuss implementation issues such as avoiding sort- by first sorting the processors in a vertex ring with respect
ing, maintaining linear space, and reducing the processor to the ID of the neighbor acros the graph edge and then
count to O((n + e)/ Ig n). pointer jumping. Similarly, propagating the highest ID of

Figure 2 illustrates how to contract an edge (u, v) by any neighbor to all processors in a ring, removing extra
using the dummy processors to merge the two vertex rings dummy processors, and propagating the new vertex ID can
and splice out the real processors corresponding to the con- all be done in O(Ig n) time using pointer jumping. If we
tracting edge. The dummy edges allow us to simultane- are careful, all pointer jumping can be done without using



concurrent reads. The MERGE operation requires only con- genus-i graph to a graph whose largest connected com-
stant time. Thus each iteration requires O(Ig.n) time. The ponent has O(Y) vertices. By the argument in section 2,
algorithm terminates in O(Ig n) iterations because'each ver- phase 2 reduces each O(O)-sized connected component of a
tex merges on every iteration, at least halving the number graph to a single vertex in O(Ig2 -) time. Planar graphs and. of vertices, graphs of constant genus will be reduced to constant-sized

We can avoid sorting if we allow multiple edges to re- graphs during phase I of algorithm BOuNDED-CONTRACT
main after contraction and instead use pointer jumping to with high probability. If we know that a graph is of con-
remove the self edges that appear in later iterations. If we stant genus, we can simplify the algorithm to repeated ap-
choose this option, then in line 3 we must also break ties plication of lines 2-5 only, until the graph is contracted.
among all edges to vertex tv. Using the idea of "spares" The parameter 40 in line 3 must be replaced by c('v), a con-
from [20], the algorithm can be made to use only linear stant depending upon the genus -y. In particular, c(-) = 40
space. suffices for planar graphs. We then check for termina-

To reduce the processor count to (n + e)/ Ig n, each tion (all vertices degree 0) every Ig n parallel contraction
processor simulates k processors per iteration (initially steps. This simplified algorithm will contract an n-vertex
k = Ig t). After each iteration of the contraction algorithm, bounded-genus graph to a single vertex in O(Ig n) time with
we balance the work among the processors by enumerating high probabilty. Furthermore, because the degree of each
the remaining nodes in O(Ig n) time via parallel prefix and vertex remains bounded throughout the algorithm in this
compacting memory in O(k) time. Thus each iterations case, we can simply assign one processor to each vertex.
requires O(k Ig n) time. The parameter k is initially Ig n The algorithm can be made to work in 0(-g n + Ig -)
and decreases exponentially with each iteration, so over- time for any graph whose maximum degree is a constant
all the contraction algorithm runs in O(lg 2 n) time using greater than 40 by replacing the number 40 in line 3 with
(n + e)/ Ig n processors. The balancing steps can be done the maximum degree. Moreover, the algorithm can be
without concurrent memory access, so these bounds hold made to work in O(lg n + Ig2 "') time for any graph, pro-
for the EREW PRAM. vided an embedding for the graph is known, since we can

transform any general graph of genus -t into a degree-3
genus-y graph by replacing each vertex by a ring of degree-3 Bounded-Degree Algorithm 3 vertices. Again, using the idea of "spares" from [20], the
algorithm can be made to use only linear space.

In this section we present a linear-processor contraction al- The contraction algorithm can be modified to run in de.
gorithm for bounded-degree graphs. We give a randomized terministic O(Ig n Ig" n + lg2 -y) time by using the O(lg" n)-
strategy for determining a set of vertex-disjoint edges to time algorithm of Goldberg, Plotkin, and Shannon for 3-
contract on a given parallel contraction step. We discuss coloring rooted trees [11] to guarentee that a constant
simplifications for the case where the graph is known to be fraction of vertices merge on each iteration. Randomness
planar or of low genus. We discuss implementation issues is used only in the choice of vertex pairings in phase 1.
including maintaining linear space, using this algorithm for In the deterministic version of the algorithm, each vertex
arbitrary graphs provided an embedding is known, mak- % chooses the vertex v with smat}i identifier such that
ing the algorithm det,-rministic, and reducing the processor MERGE(U, v) would produce a vertex of degree at most
count. Finally we mention some of the parallel models for d,., the maximum degree of any vertex. As before, edges
which the analysis of section 4 holds. chosen by both vertices adjacent to it are automatically

The contraction algorithm for bounded-degree graphs is selected to contract. Consider the graph induced by the
as follows. We assume that no vertex has degree greater edges chosen by exactly one adjacent vertex. If the edges
than 40. The number i in line I is a constant chosen are directed such that the vertex choosing the edge is at
such that algorithm BOuNDED-CoNTRACT terminates in the tail, then this graph is a bounded-degree directed for-
O(Ig n i Ig -f) time with high probability. The constant est with edges directed from child to parent. We can then
will be discussed during the analysis of the algorithm in use the Goldberg-Plotkin-Shannon O(lg" n)-time algorithm
section 4. for coloring bounded-degree trees to color the forest using a

constant number of colors [11]. Then, we sequence through
Algorithm BOUNDED-CONTRACT the colors allowing edges chosen by vertices of the current
I Repeat j lg n times color to contract, provided the vertex on the other end of
2 for each vertex u do in parallel the edge has not already participated in a contraction dur-
3 Randomly choose an adjacent vertex v such ing this parallel contraction step. In this scheme, we always

that MERGE(V, 9) would produce a vertex have a constant fraction of the vertices merging.
of degree at most 40 We can reduce the processor requirement of phase I to

4 for all vertices u and v that choose each other, n/ Ig n by using the techniques of Guit and Reif [10] who in
do MERGE(u,v) turn use the load balancing techniques of Cole and Vishkin

5 for each vertex u do [5]. Shannon [26] gives a scheduling algorithm that converts
remove multiple edges to adjacent vertices the deterministic O(lgnIg" n)-time n-processor algorithm

6 CONTRACT() ;go to general contraction algorithm for graphs of bounded genus to an optimal O(Ignlg" n)-
time n/(Ig n lgI n)-processor algorithm.

Algorithm BouNDED-CoNTIACT is robust in that it can
The algorithm can be broken down into two phases: be implemented in several of the most restrictive parallel

phase I in lines 1-5 in which vertices resulting from con- models. By careful attention to the data structures used to
traction cannot have degree greater than 40 and phase 2 in implement adjacency lists, it is possible to guarantee that
Line 6 in which vertices resulting from contraction can have no concurrent reading or writing occurs, and thus, the per-
arbitrary degree. In section 4 we argue that phase I runs in formnce bounds apply in the EREW PRAM model. Since
O(Ign) time and with high probability reduces an n-vertex each processor is responsible for a single edge (or vertex)



of the graph, it is naturally a "data-parallel" algorithm in traction step in phase I of algorithm BOUNDED-CONTRACT,
the sense of [16]. Finally, the simplified vezion of the al- a constant fraction of the vertices are eligible to contract.
gorithm which uses only phase I is "conservative" in the
sense of (20], and thus runs in O(Ig n + I5 -y) steps in the Lemma 2 Any genus--yo graph G = (V, E) with degree at
DRAM model, most d.,. > 40 and IVI > 40"to ham at least I IVI good

vertices.

4 Analysis of the Contraction Proof. We begin the proof by defining the following sets:

Algorithm V..d is the set of good vertices,
V 1,w, is the set of bad degree-3 vertices,

In this section we analyze the contraction algorithm of sec- v6t" is the set of bad vertices of degrees 4, 5, or 6,
tion 3. We require two lemmas concerning bounded-degree Vsit is the set of vertices of degree dm. - i,
graphs. Lemma I (the Missing-Edge Lemma) provides for i = 0,1,2 or 3,
an upper bound on the number of edges in a bounded- V., = V - (Vo.. U Vbd3 U Vb.d4s. U Kisb).
degree graph based on Euler's formula and the number
of degree-three vertices that are ineligible for contraction. having cardinalities g, b3 , b4s, h, and br.,, respectively.
The missing-edge lemma is actually proved in section 5. We determine a lower bound on the number g of good
We use a pigeonholing argument to show in Lemma 2 that vertices using three constraints. The first constraint is a
at each parallel contraction step of phase 1, a constant frac- lower bound on the number e of edges in E, which is also
tion of the vertices are adjacent to at least one edge that half the sum of the degrees of all vertices in V. For each
can be contracted. -This lemma is essentially the same as of the sets defined above, we underestimate the sum of the
one proved independently by Boyr and Karloff [3 in the degrees of the vertices in the set to yield
context of coloring planar graphs, but our lemma is more I
general and our proof differs somewhat. The final result of e > -(g + 3b + 4b4 sa + (dm.. - 3)h + 7br.o)
the section proves that with high probability, the running 2
time of Algorithm BoUNDD-CoNTRACT is O(Ig n + Igs -). = 1(g + 3b3 + 4b.s + (do - 3)h +

We analyze Algorithm BOUNDED-CONTRACT using a 2
constant d.x > 40 in place of 40 in line 3 of the con- 7(n - g - b3 - b456 - h)). ()
traction algorithm. Using a symbolic value allows us to see
in the analysis why we choose degree 40 as the maximum We can use a similar technique to determine a lower bound
degree in the algorithm and to see how the contraction algo- on the number of high-degree vertices. The number of edges
rithm generalizes to bounded-degree graphs in general. In leaving the set Vh gb is at most d,,h, which must be at
fact, a choice of dr-. = 3 suffices for Algorithm BOUNDED- least the number leaving the sets Vb~d3 and Vbd4se since
CONTRACT to contract binary trees in randomized O(lg n) each of the vertices in these sets is adjacent only to vertices
time. in Vig. Hence, we obtain

We first present some definitions. Let G = (V, E) be 3b3 + 4bi
a graph with degree at most dmax > 40. We call an h > d4as (2)
edge (u,v) E E eligible if MERGE(u,v) would produce a
vertex w of degree at most d..., as in line 3 of Algo- Finally, from the Missing-Edge Lemma we have
rithm BoUNDED-CONTRA. Typically, the degree of w
is deg(w) = deg(u) + deg(v) - 2, but it is less whenever e < 3n - b3 + 10yo. (3)
the adjacency lists of v and v have vertices in common be-
cause a contraction step removes multiple edges. (In fact, We use these three constraints to obtain the desired lower
after the parallel contraction step implemented by Algo- bound on the number g of good vertices. Combining In-
rithm BOUNDED- CONTRACT, the degree of vertex wv may equalities (1) and (3) and solving for g, then substituting
be even smaller, since lines 5 and 6 remove additional mul- for h using Inequality (2) yields
tiple edges caused by other simultaneous contraction steps.)
We define a vertex uE V to be goodifit is incident on at g > I dm, -30b3+ d-.- - 40) b.s + _20-,7a]
least one eligible edge, and bad otherwise. A vertex of de- 6 K dma ) , dma'
gree 1 or 2 is automatically good. A vertex v of degree 3 > 1 -
is good unless it is incident on three degree-d.,, vertices 6
v1, v2 , and vs that are independent (no edge between any
pair). Consequently, the bad degree-3 vertex v causes the if d. > 40 as assumed. Since we also assume that n >
edges (vI, v2), (V2, v3), and (vi, s) to be missing from the 407o, we have That g > n/12 which completes the proof.
graph, even though their inclusion would not increase the 0
genus of the graph. We now analyze the behavior of phase 1. Phase 1 runs

The next lemma uses the notion of missing edges to show in O(lg n) time. Given a graph G with maximum ver-
that a graph with bad degree-3 vertices is sparser than tex degree at most 40, Algorithm BOUNDED-CONTRACT
required by Eler's formula alone. It is proved in section 5. does not allow the degree of any vertex to exceed 40 dur-

ing phase 1 (the parallel contraction steps in lines 2-5 of
Lemma 1 (Missing-Edge Lemma) A graph G = (V, E) of Algorithm BOUNDED-CoirnucT). Therefore, each such
genus -yo with b3  0 bad degree-3 vertices has at most step can be performed in constant time, since contraction
3 1V - b3 + 107o edges. and removal of multiple edges involves only communicat-

ing around constant-length vertex rings. Since we execute
The next lemma uses the Missing-Edge Lemma and pi- i Ig n parallel contraction steps for a constant j, phase 1 is

geonholing to show that during each parallel paired con- over in 0(lg n) time. i



We now use Lemma 2 to show that. for suitable choice of 491/492 after each parallel contraction step. By running
of constant j, with high probability phas l.zeduces an n- phase I of algorithm Bou cDED-CoNTRicT for 11U.2/,9, n
vertex genus-y graph to a graph with 0(-y) vertkw in its iterations, we are guaranteed that each component is of size
largest connected component. We need only show that with 0(7,) when we proceed to phase 2. In phase 1, the time
high probability, O(lg n) parallel contraction steps suffice required to perform each parallel contraction step is dom-
to contract each connected component to size 0(7). From inated by the O(lg* n) tim- required to color rooted trees
lemma 2, we have that at least 1/12 of the vertices are good [11]. Therefore phase I always terminates in e(Ig n 1g" n)
provided that there are at least 40ya vertices. The lemma time. Because the graph passed to phase 2 is always of
applies independently to each connected component. For size O(7), phase 2 always terminates in time 0(Qg 7), and
component i, contraction steps have a o(1) probability of therefore the deterministic contraction algorithm runs in
success only after the component size has been reduced to time O(Ig n lg" n + l2 f).
0(7,) where 7, is the genus of component i. There is a constant-factor tradeoff between time spent

in phase I and time spent in phase 2. The constant fac-
Theorem 3 After 0(klgn) parallel paired contraction tor 1/12 of good nodes guaranteed by lemma 2 can be re-
steps,any connected, degree.40, graph of genus 7 has con- placed by 1/c for any constant c > 6. The more general
trated to a graph with 0(7t) vertices with probability I - version of lemma 2 states that any bounded-degree genus-7
0(1/n5 ) for any constant k. graph with at least 20c7/(c-6) nodes has at least 1/c good

nodes. If we choose to base our algorithm upon a fraction
Proof. During each parallel contraction step, each vertex of 1/c > 1/12 good nodes, the constant i in line I of algo-
chooses an edge randomly out of all adjacent edges eligible rithm BOUNDWD-CoNTRACT decreases. The expected size
for contraction. Since in phase 1 no vertex degree exceeds of the graph passed on to phase 2 increases, however, and
40 throughout the contraction, on each iteration every good therefore we can expect phase 2 to require mi-re contraction
vertex u has at least a 1/40 probability of merging, since steps.
1/40 is a lower bound on the probability that the edge (u, v) We should comment that although the constants are
that vertex iv chooses is also chosen by the vertex v at the large in the asymptotic bounds in Theorem 3, the anal-
other end. Lemma 2 shows that a bounded-degree genus- ysis is highly pessimistic. Typically, a vertex has a much
7 graph of size 407 will have at least 1/12 of its vertices greater chance than I in 12 of being good, and if it is good,
be good during each iteration of phase 1. Therefore, we it typically has more than a 1 in 40 chance of merging with a
expect that at least n/480 of the vertices of an n-vertex neighbor, because the neighbor is unlikely to be incident on
bounded-degree graph will contract on each iteration of 40 eligible edges. Consequently, in practice we could reduce
phase I provided that n is sufficiently large compared to the the constant j in line I of algorithm BOUNDED-CONTRACT
genus of the graph. A Chernoff-bound argument completes without significantly harming the behavior of the contrac-
the proof. 0 tion algorithm.

We have shown that with high probability, we require
* only O(1g n) parallel contraction steps to reduce connected

component i to size 0(7y) and hence reduce the maxi- 5 M issing-Edge Lemma
mum connected component to size 0(7). Therefore phase
I runs in O(Ig n) time and with high probability reduces In this section we present the proof of the missing-edg.
the largest component of the graph to size 0(7). lemma used in the analysis of algorithm BOUNDED -

Let us now consider the graph at the start of phase 2. CONTRACT. We begin by defining cycle splitting of a con-
Assuming that we are not already done, we have with high nected genus-7 graph, a technique that will be used in the
probability at most 0(y) nodes in each component. Con- inductive proof of the missing-edge lemma. We then prove
nected subgraphs contract independently so the asymptotic that performing cycle splitting on a genus-7 graph results
contraction time during phase 2 is dominated by the time in a new connected graph of genus strictly less than 7 or re-
to contract the largest component. If the maximum coin- suIts in two disjoint graphs whose geni sum to the original
ponent has size s, then by the analysis in section 2, phase 2 genus 7. Finally, the proof of the missing-edge lemma is a
:.rminates in O(g 2 a) time. Since we have s = 0(7) with double induction on genus and number of bad degree-three
:.igh probability, then phase 2 terminates in O(Ig2 7) time vertices. Throughout this section, we assume all graphs
with high probability, are connected. A disconnected graph G whose genus 7o is

Since the time to perform the contraction is simply the the sum of the geni of its connected components can only
sum of the times to perform phase I and phase 2, we be sparser than a connected graph of genus ya and hence
have that an n-vertex genus 7 graph is contracted by al- the disconnnected graph cannot have a weaker missing-edge
gorithm BOUNDE-CONTRACT in O(Ig n + 1g2 y) time with lemma.
high probability. The probability of algorithm BOUNDED- Suppose we have a connected graph of genus 7 embedded
CONTRACT failing is the probability of failing in phase 1, on a surface of genus 7 (e.g. a sphere with 7 handles). Con-
since phase 2 is deterministic. sider any simple cycle (vo, ti,... vi-1) of the graph. As we

The deterministic version guarantees that phase I re- travel along the cycle from vertex v0 back to vertex vo, we
duces the n-vertex graph to an 0(7)-vertex graph, where have a well-defined notion of right and left, since the surface
-t is the largest genus of any conunected component. upon which the graph is embedded is orientable (7]. Thus
Lemma 2 guarantees that in each parallel contraction step, the vertices adjacent to each vertex v, on the cycle can be
each n,-vertex genus 7. component for which n, = fl( 7,) partitioned into two sets: those that connect to the vertex
has at least n,/12 good vertices. Of these good vertices, from the right (Vs,,) and those that connect to the vertex
at least 2/41 are matched by the symmetry-breaking tech- from the left (V,.L). We perform a cycle splitting opera-
niques presented in section 3. The worst case is achieved tion as follows. We remove the cycle from the graph, split
by many vertices with 40 degree-one neighbors. There- each vertex v, on the cycle into two vertices v,,R and ,,L. fore, each such component is reduced by at least a factor and form them into two cycles (vo,R, vl,R. ..- R) and
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v3  Figure 4: Given an embedding of a graph G on a sur-

face of corresponding genus, we can remove a simple
cycle of graph G from the surface and patch the re-

sulting holes with disks. The result is an embedding
Uit of the graph G' obtained by splitting the given cycle

of G. The new surface may or may not be connected.

v5 v10 v13

vs we embed any graph on the surface such that all faces are
6 V'V3 Vsimply connected, the quantity e - e + f for that graph will

vI7 vL v V v always be equal to the Euler characteristic of the surface.
v4,1 2.3q 'a Furthermore, by definition, we have that X = 2 - 27 where

Vf is the genus of the surface (and of any graph which can
v9 v 12 be embedded on that surface such that each face is simply

connected).
Consider now the surface with the embedding of graph

Lv G. We cut the surface along cycle C and patch the two
L3. resulting boundaries with disks as illustrated in figure 4.

The resulting surface is an orientable manifold that may orFigure 3: Given a embedding of a graph, a cycle can manobecnctdmay not be connected.
be split into two pieces: the right piece which is con- Let us calculate the Euler characteristic of the new sur-
nected to nodes on the right as we tranverse the cycle, face. The new graph 0' is embedded on the new surface
and the left piece which is connected to nodes on the such that all faces are simply connected since the disks used
left. to patch the cut are simply connected and no other faces of

the original graph G ae altered by the procedure. There-
fore, if v', e', and f' are the number of vertices, edges, and

(vOL, e1,L,... ,- .Finally, vertex eR is connected to faces in the cycle4plit graph G', then the Euler characters-
each vertex in V,R, and vertex 0.,L is connected to each tic of the new surface is equal to X' = w'- e'+ f = 2- 27'
vertex in V,L. Intuitively, if we view the embedded cycle where "y' is the genus of graph G' and the surface upon
as having finite thickness, we simply cut it in half. In fig- which it is embedded. We have that v' = v+l and e' = e+l
ure 3, cycle v0,... 03 is split. The left version is connected and f' = f + 2. Therefore, we have that X' = X + 2.
to edges entering the cycle from the left and vice versa. First we will consider the case where the new surface is

The following lemma will be used to allow application of disconnected. In this case the Euler characteristic is simply
the induction hypothesis in the proof of the missing-edge the sum of the Euler characteristics of the two pieces (the
lemma. formula v-c +f is additive). Let one piece have character-

istic XL = 2 - 27L and the other piece have characteristic
Lemma 4 If we split a cycle C = (o, wi .... 9e -1) of a Xt = 2 - 27,. Then we have that
graph G of genus 7 to obtain a new graph G' of genus ',
we have either X' = XX + XL

1. graph G' contains two disjoint compoqgnts: graph GL = 2 - 27L + 2 - 27,.
of genus fl and graphGit of genus -i7 such that YI + = 4 - 2(/L + 7A).
7,. = 7, or

2. graph G' is connected and 7' = -. We also have that X' = X + 2 = 4 - 27. Therefore, we have
that

Proof. Suppose we have an embedding of graph G am an
orientable manifold of genus 7 such as a sphere with y 4 - 27 = 4 - 2(7 z + 7.)
handles. By definition of the genus of a graph and of a 7 = 7L + 7i
surface, all the faces of graph G are simply connected [7].
That is, they can be continuously contracted to a point on which proves case (1).
the surface. Let v, e, and f be the number of vertices, Next we consider the case where the new surface is con-
edges, and faces respectively of graph G. Then the Euler nected. Then we have that X' = 2 - 27' and %' = X + 2 =
Characterstic of the surface is defined u X = v - e + f. If 4 - 27. Therefore, equating the right-hand sides, we have



that 2 - 27' = 4 - 27 or -Y' I "'- I which proves cue (2).

Now we proceed to the proof of the missing-eCdge lemma.. First, let us remind the reader of some terminology. Bad
vertices are defined as they were in section 4: no adjacent
edge can be contracted without potentially creating a ver-
tex with degree exceeding the bound. Bad degree-three
vertices must be adjacent to three degree-di indepen-
dent vertices (no edges between any pair). Thus degree-
three vertices force a stronger sparsity than Euler's for-
mula alone ace these three missing edges can be added to
the graph without increasing its genus. The missing-edge
lemma quantifies this increased spawsity. Figure 5: A cycle C = (ul, 1i, U2, V2) that separates G

For convenience we restate the lemma as it appeared into two subgraphs Gi. and Gout, each with at most
in section 4, assuming this time that the graph is con- b3 - I bad degree-3 vertices.
nected. The proof goes through for disconnected graphs
where genus is defined in the usual way.

Lemma 1 (Missing-Edge Lemma) A graph G = (V, E) graph G.., has at least 6.., + I missing edges.
of genus 7 with 63 > 0 bad degree-3 vertices has at most We next account for interactions between graphs G. and
3IV I - 63 + 107f edges. G.., to obtain the lower bound of b3 + 1 on the number ofProof. The proof centers on showing that the number of musing edges in the original graph G. First, observe that
missing edges is at least 63 - 47 + I for 63 > 0, which, iis =6asince hen vi is abad vertexin oneof the
together with the constraint that IEI < 3 WVI + 67 from graphs, it is a degree-2 vertex in the other, and similarly
Euler's formula, suffices to prove the lemma. The goal of for v2. Moreover, each of v, and v2 are bad in at least one
the proof is to show that sharing of missing edges is limited. of Gi. and G.., because we dummied up each of s, and v2
For the remainder of this proof, when we say "bd vertex," to have degree d.... The number of wissing edges in G is
we assume the vertex has degree 3. at lent (h. + 1) + (b.., + 1) minus the number of missing

We begin our induction by showing that the lemma holds edges shared by G1 and G.,. Ihe number of such shared
for the case 7 = 0 for any number 63 of bad vertices. That miing edges is in fact 1, namely, the edge (n, u2), since
is, we show that a planar graph G = (V, E) with 63 > 0 NJ and u2 are the only degree-di.. vertices in both Gi. and
bad degree-3 vertices has at most 3 lVi - b3 edges. G..%. Consequently, the number of missing edges in G is

The proof of the planar case is by induction on 63. If at least (bIi + 1) + (6.., + 1) - 1 = 63 + 1, which completes
63 = 0, Ealer's formula alone is sufficient. The lemma proof of the planar version of the lemma.
holds trivially for the cases 63 = I and 3 = 2 since any We have shown that the missing edge lemma lemma
graph with at least one bad degree-3 vertex has at least
three distinct missing edges. Now consider the cae 63 = 3. holds for the case 0 for any number 63 of bad ver-
If there are only three missing edges in the graph, then each tices. To complete the base cases, we see that for general
of the three bad vertices is associated with the same three graphs the lemma holds for b3 = 0 trivially using only Eu-
missing edges. Hence all three bad vertices are adjacent to ler's formula. It also holds trivially for I < b3 <47 +4- 3 for
the same three degree-d... vertices, and hence the graph all 7 since then the lemma only requires that the number
contains an instance of K 3,3, which violates the assumption of missing edges is at least 3 which is true for any graph
that the graph is planar. Consequently, the graph has at with at least one bad vertex.
least 4 = 63 + 1 missing edges. We now consider the general cue 63 > 4, + 3 and 7 2 1.

We now consider the general planar case 63 > 4. Assume We assume inductively that any geuus-7 graph with k < 63
inductively that any graph with k < 3 bad vertices has at bad vertices hat at least k - 47, + I missing edges and any
least k + I missing edges, but that there exists a planar graph with genus j < 7 and any number 3 bad degree-
graph G = (V, E) with 3 bad vertices and m < 63 missing three nodes has at least b3 - 4i + I missing edges. Assume,
edges. Since each bad vertex is associated with exactly however that there exists a graph G = (V, E) of genus 7
three missing edges, it follows that there exists a missing with 3 > 4" + 4 bad vertices and m < 3 - 4-y missing
edge (91, 92) associated with at least three bad vertices edges. Since each bad vertex is associated with exactly
v1, v, and V3. There must be at least one additional bad three mising edges, it follows that there exists a mising
vertex v4, since we have 3 1_ 4. For some embedding of G edge (as, "=) associated with at least three bad vertices
on the sphere, the Jordan Curve Theorem ensures that two v1, 92, and v3. There must be at least one additional bad
of the vertices, say vi and v2, together with *I and %2 form vertex v4 since we have 3 > 7. The situation is illustrated
a cycle C that separates v3 from v, as shown in Figure S. in figure 5.

We are now set up to apply the induction hypothesis. To allow application of the induction hypothesis, we split
Let Gi. be the subgraph of G induced by cycle C and the graph G along one of the three simple cycles shown in fig-
vertices on one side of C, and let G,., be the subgraph ure S to obtain a new graph G' of genus 7'. As we did in
induced by cycle C and the vertices on the other side of proving the planar version of this lemma, we add degree-
C. Add to u, and u2 in each of Gi. and G.., enough one neighbors to the high-degree nodes NJ and 92 so that
degree-I neighbors to maintain their degrees as do.. Let each of the four nodes resulting from the split of s, and *2
hs. be the number of bad (degree-3) vertices in G., and let has maximum degree. Each bad degree-three node on the
b.., be the number of bad vertices in G..%. Since no new cycle is split into two nodes, but exactly one of these two
bad degree-3 vertices are introduced into Gi. and ..t,, we nodes is a bad degree-three node in the new graph G'. The
have bi. < b3 and b,., < 63. By the induction hypothesis, other node split from that vertex is of degree 2. Therefore. therefore, graph Gi. has at least As. + I missing edges, and graph G', whether connected or not, has exactly 63 bad



nodes. more easily implemented exclusive-read, eaclusive-write
Suppose we can split graph G along one of the cycles (EREW) model is due to Hirschberg, Chandra, and Sar-

such that the resulting graph G' is still connected. Then wate [17], who give an O0g2 n) time algorithm for con-
by lemma 4(2) we have that -f' = -t - 1. As argued above, nected components using the adjacency-matrix representa-
graph G' hu the same number b3 of bad degree-three ver- tion of a graph. Leiserson and Maggs (20] give an O(g 2 n)
tices as the original graph did. Because graph G' has lower step, n-processor, randomized connected-components algo-
genus, we can apply the induction hypothesis. Therefore, rithm for a DRAM (distributed random-access machine),
graph G' has at least b3 - 4(7 - 1) + 1 = b3 - 4,Y + 5 an EREW-like model that includes the cost of communica-
missing edges. We overcounted exactly one missing edge, tion. Bleloch (2] gives an O(fg n) randomized algorithm for
namely (us, C2), since these are the only tv 3 degree-d.. a model that includes parallel prefix as i primitive opera-
vertices duplicated. Therefore we have at least b3 -47+4 > tion. irm [21] gives a region-labeling algorithm that runs in
b3 - 47 + 1 missing edges. Oog2 a) time on an EREW PRAM which uses the planar

Now suppose that splitting along any of the three simple and geometric properties of a mesh. Gasit and Reif have
cycles separates G' into two graphs: graph GL with genus recently developed a randomized O((n+m)/ Ig n)-processor
7L and bL bad degree-three vertices, and graph GR with EREW algorithm that runs in time O(lg n + 1g2 g) where
genus "7* and bR bad degree-three vertices. Suppose that I is the genus of the graph (what we call 7o, which can be
splitting along one of the cycles yields graphs such that much larger than - in disconnected graphs). They require
7yL < 7y and Lyn < 7. Applying the induction hypothesis to an embedding of the graph. Other algorithms for connected
each side we have that the number of missing edges in graph components are given by [6, 9, 19, 24, 30, 321.
GR is at least 6 n- 4"7* + 1 and the number of missing edges
in graph GL is at least 6L - 47L + 1. Adding the missing Our algorithm for labeling planar graphs is asymp-
edges together and subtracting one for the overcount of totically the fastest algorithm to date in the EREW
edge (u, u2), we have that the original graph G has at least PRAM model. The algorithm uses Algorithm BOUNDED-
(bL+bR)-4(tL+7)+2 -li missing edges. From lemma4(1) CONTRACT to simultaneously contract each component of
we have that 7L + yjv = y and we argued earlier that bL + the graph to a single node, and then it simply reverses
bi = bi. Substituting these back into the expression for the the contraction process and assigns the same label to all
number of missing edges in graph G, we have that graph nodes in each connected component. The algorithm uses
G has at least b3 - 4-f + I missing edges. O(n/ Ig n)processors, and with high probability (i.e., prob-

The final case we must consider is that each of the three ability at least I - O(1/n) for any constant k), the al-
cycles cuts off a planar patch. In this case we have a sit- gorithm runs in O(lgn) time on an EREW PRAM or a
nation analogous to the planar case argued earlier. As il- DRAM. Thus, our algorithm achieves the best possible
lustrated in figure 5, one of the cycles cuts the graph into asymptotic bound in the most restrictive parallel mod-
two graphs GL and GR such that b6. < b3 and bR < b3. els. The deterministic version of the algorithm runs in
Without loas of generality, let us assume that graph GR is O(lg n Ig n) time using an optimal number of processors
planar. Then by lemma 4(1), graph GL must have genus (n/IS n lg" n). Like Lim's O(Ig 2 n)-time algorithm, our al-
7-. Applying the induction hypothesis to the two graphs gorithm for region labeling takes advantage of the planar
(since each has less than b3 bad vertices), we have that nature of the image graph, but unlike his algorithm, it does
GR has at least bi + I missing edges and GL has at least not depend on the geometric nature of the image.2 Thus,
bL -47+ I missing edges. Again we have that bR + bL = b3. our algorithm works on irregular planar structures, includ-
Adding the missing edges and subtracting one for the over- ing meshes with local refinements and meshes with (static)
count of edge (el, v2), we have that graph G has at least faulty elements.
bL + hR - 47 + 2 - 1 = 63 - 47 + I missing edges which
completes the proof. The contraction algorithm can also be used for a vari-

ety of other applications including algorithms for bicon-
nected components of planar graphs and for spanning trees

6 Applications of planar graphs. The running times for these algorithms is
asymptotically the same as for the contraction algorithm,

The most direct application of the parallel contraction algo- and for theme problems the running times are asymptoti-
rithm is to the vi3ion problem of determining the connected cally the best to date in the EREW model. All the al-
regions of an image represented as a two-mmensional ar- gorithms, including the connected components algorithm,
ray of pixels. We can view the image as a planar graph can be generalized to graphs of higher genus and higher
G = (V, E), where the vertex set V is the set of pixels, and degree using algorithm BOUNDED-CONTRACr. The asymp-
(u,v) E E if i and Y are adjacent pixels with the same totic running times for these problems match the running
color. The region labeling problem is to asigi each pixel times of the contraction algorithm (i. e. O(Ig n + Ig2 -f) with
an integer such that two pixels have the same label if and high probability where - is the maximum genus of any con-
only if they are path connected in G. nected component). For classes of graphs with genus o(n)

Region labeling can be solved by a connected- this is the best bound to date. For graphsof genus f(n)
components algorithm. Shiloach and Vishkin [27] give an this matches the best previous bound of ONg n).
O(lg n)-time, n-procesor parallel algorithm for connected
components using the concurrent-read, concurrent-write
(CRCW) PRAM model. Hagerup [13] gives an O(Ign)-
time, n/Ign-processor CRCW algorithm for graphs of
bounded genus'. The best algorithm to date in the 2Subsequent to the development of the planar version of

out algorithm, Lim, Agrawal, and Nekludova [22] obtained an
Hagerup has recently independently devel- O(Ig n)-time deterministic algorithm for region labeling. Like

oped an O(gt n slg n)-time n/lg n lg" n-processor deterministic Lim's earlier work, their algorithm exploits the geometric prop-
EREW algorithm for graphs of bounded genus [14] erties of specific planar grids.



7 Conclusion [6] F. Chin, J. Lam, and I. Chen, "Efficient parallel al-
gorithms for some graph problems,' Communieations

In this section we comment upon the praicai' behavior of the ACM, Vol. 25, No. 9, September 1982, pp. 659-
of algorithm BOuDE-CoNTReAcTand present some open 665.problems.

In soction 4 we commented that the behavior of al[o- 7 H. Graham Flegg, From Geometry to Topology, Therithm Bnion -CO cIin practice is likely to be much English Universities Press Ltd., distributed in theUnited States by Crane, Russak and Company, New
better than that guarenteed by our worst-cue analysis. York, NY, 1974.
This is particularl," Lrue for the bounded-genus case where
we explicitly cl :k for termination. For example, we are (8] I. S. Filotti, F. L. Miller, and J. Reif, 4On determining
not likely to require the worst-case number of iterations the genus of a graph in O(wo (s)) steps," Proceeding,
to reduce each component of a planar graph to a single of the DwmA Anual ACM Spw. uim on Theory
node. The general algorithm, however, always performs of Computing, 1979, pp. 27-37.
tAe worst-case number of iterations for phase 1 because we [9] H. Gasit, 'An optimal randomized parallel algorithm
do not have a means of detecting when phase I is coin- for finding connected components in a graph," Pro.
pleted unless we in fact complete the entire contraction. ceedings of the f7th Annual IEEE Symposium on the
Phase 2 only performs as many contraction steps as neces- Foundation* of Computer Science, 1986, pp. 492-501.
sary. Because of this control structure, it is probably good
in practice to choose the constant j in line I of algorithm [101 H. Gasit and J. Reif OA randomized EREW parallel
CONTRACT based upon lemma 2 with a fraction of 1/c good algorithm for finding the connected components in a
nodes for constant c = 6 + and c > 0. graph,* unpublished manuscript, 1988.

To detect the termination of phase I we require an (11] A. V. Goldberg, S. A. Plotkin, and G. Shannon,
O(Ig n) time " processor algorithm which can determine "Parallel symmetry breaking in sparse graphs," SIAM
the genus of an n node graph to within a constant with- Journal of Discrete Math, to appear.
out knowing the value of in. The problem appears difficult
since determining the exact genus -y of an n-node graphis (121 M. J. Greenberg and J. R. Harper, Algebraic Topology:

NP-complete (29] and the best sequential algorithm for this A First Course, Addison-Wesley, New York, NY, 1981.

problem runs in QO(nO(1)) time [8]. There seems to be no [13] T. Hagerup, "Optimal parallel algorithms for planar
work on parallel algorithms which approximate the genus graphs," Proceedings of AWOC, 1988.
of a graph. [14] T. Hagernp, "Optimal parallel algorithms for planar

graphs," Information and Computation, to appear.

Acknowledgements [15] F. Harary, Graph Theory, Addison-Wesley, Reading,
MA, 1962.

Thanks to Charles Leiserson of MIT who helped exten- [16] W. D. Hillis and G. L. Steele, Jr., 'Data parallel alga-. sively with the development of the contraction algorithm rithms," Communications of the ACM, Vol. 29, No. 12,
for bounded-degree graphs and provided expert commen- December 1986, pp. 1170-1183.
tary on early drafts of this paper. Thanks also to Gary [17] D. S. Hirshberg, A. K. Chandra, and D. V. Sarwate,
Miller of USC and Miller Maley of Princeton for general as-
sistance on topology issues, to Washington Taylor of Think- "Computing connected components on parallel com-
ing Machines Corporation who provided the key topological puters," Communications ofthe A CM, Vol. 22, No. 8,
ideas in the proof of lemma 4, and to James Park and Tom August 1979, pp. 461-464.
Cormen of MIT for their help with the figures and text [18] B. K. P. Horn, Robot Vision, MIT Press, Cambridge,
formatting. MA, 1986.

[19] V. Koubek and J. KrifitkovL, "Parallel algorithms
References for connected components in a graph," Proceedings of

the 5th International Conference on Fundamental* of

[1] T. 0. Binford, "Survey of model-based image anal- Computation Theory, Springer Lecture Notes in Corn-

ysis systems,' The International Jour- V of Robotics puter Science, Vol. 199, pp. 208-217.

Research,, Vol. 1, No. 1, 1982, pp. 18-64. [20] C. E. Leiserson and B. M. Maggs, 'Communication-
[2)Prallel prefix vs. concurrent memory efficient parallel algorithms for distributed random-[2] G. Blelloch, acPess mceineseAigorihmuca Vo. 3, No 1,m198

access,' Technical Report, Thinking Machines Corpo- access machipes,p Al.orithmic• Vol. 3, No. 1, 1988

ration, 1986. pp. 53-78.

[3] J. Boyar and H. Kalol, wColoring planar graphs in (21] W. Lim, 'Fast algorithms for labeling connected com-
parallel," Journal of Algorithms, Vol. 8, 1987, pp. 470- ponents in 2-D arrays," unpublished manuscript, MIT,
479. July 1986.

[4] H. Chernoff, "A measure of asymptotic efficiency for [22] W. Lim, A. Agrawal, and L. Nekludova, 'A parallel
tests of a hypothesis based on the sum of observa- O(lg %) algorithm for finding connected components in
tions,' Annals of Mathematic Statiaiics, Vol. 23, 1952, planar images,* Proceedings of the 1987 International
pp. 493-507. Conference on Parallel Processing, August 1987, pp.

[5] R. Cole and U. Vishkin, 'Approximate and exact 783-786.
parallel scheduling with applications to list, tree, (23] G. Miller and J. Reif, "Parallel tree contraction and
and graph problems," Proceedings of the *7th Annual its application," Proceedings of the f6th Annual IEEE
IEEE Symposium on Foundation of Computer Sci- Symposium on the Foundation* of Computer Science,
ence, Oct. 1986, pp. 478-491. 1985, pp. 478-489.



[24] D. Nath and S. N. Maheshwari, 'Parallel algorithms
for the connected components and minitnal spanning
tree problems,* Information Processing Letters, Vol.
14, pp. 7-11.

[25] C. Savage and J. JLJ, "Fast, efficient parallel algo-
rithms for some graph problems," SIAM Journal of
Computing. Vol. 10, No. 4, November 1981, pp. 682-
691.

[26] G. E. Shannon, "Reassigning tasks to processors less
frequeatly: a technique for designing parallel algo-
ithms," unpublished manuscript, Purdue Universty,

October 1987.

[27] Y. Shiloach and U. Vishkin, "An O(lg n) parallel con-
nectivity algorithm," Journal of Algorithms, Vol. 3,
1982, pp. 57-67.

!28] R. E. Tarjan and U. Vishkin, "Finding biconnected
components and computing tree functions in logarith-
mic parallel time,* Proceedings of the 24th Annual
IEEE Symposium on the Foundations of Computer
Science, 1984, pp. 12-20.

(29] C. Thomassen, "The graph genus problem is NP-
complete", J. Algorithms, to appear.

[30] U. Vishkin, "An optimal parallel connectivity algo-
rithm," RCS49, IBM T. J. Watson Research Center,
Yorktown Heights, NY, 1981.

(31] U. Vishkin, "Synchronous parallel computation-a
survey," unpublished manuscript, Courant Institute,
New York University, April 1983.

[32] J. C. Wyllie, "The complexity of parallel computa-
tion, TR 79-387, Dept. of Computer Science, Cornell
University, Ithaca, NY, 1979.


