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Resistive Fuses: Analog Hardware for Detecting
Discontinuities in Early Vision

John Harris, Christof Koch, Jir. Luo, and John Wyatt

. Abstract

The detection of discontinuities in motion, intensity, color, and depth is a well studied but
difficult problem in computer vision. We discuss our 'resistive fuse;' circuit--the first
hardware circuit that explicitly implements either analog or binary line processes in a
controlled fashion. We have successfully designed and tested an analog CMOS VLSI
circuit that contains a 1-D resistive network of fuses implementing piece-wise smooth
surface interpolation. The segmentation ability of this network is demonstrated for a noisy
step-edge input.

We derive the specific current-voltage relationship of the resistive fuse from a number of
computational considerations, closely related to the early vision algorithms of Koch,
Marroquin and Yuille (1986) and Blake and Zisserman (1987). We discuss the circuit
implementation and the performance of the chip. In the last section, we show that a model
of our resistive network--in which the resistive fuses have no internal dynamics--has an
associated Lyapunov function, the co-content. The network will thus converge, without
oscillations, to a stable solution, even in the presence of arbitrary parasitic capacitances
throughout the network.
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Abstract: The detection of discontinuities in motion, intensity, color, and
depth is a well studied but difficult problem in computer vision. We discuss our
"resistive fuse" circuit-the first hardware circuit that explicitly implements
either analog or binary line processes in a controlled fashion. We have success-
fully designed and tested an analog CMOS VLSI circuit that contains a 1-D
resistive network of fuses implementing piece-wise smooth surface interpolation. I %.
The segmentation ability of this network is demonstrated for a noisy step-edge "
input.

We derive the specific current-voltage relationship of the resistive fuse from
a number of computational considerations, closely related to the early vision
algorithms of Koch, Marroquin and Yuille (1986) and Blake and Zisserman Accesio:i for
(1987). We discuss the circuit implementation and the performance of the chip. -

In the last section, we show that a model of our resistive network-in which the NTIS CRA&I
resistive fuses have no internal dynamics-has an associated Lyapunov function, DTIC TAB CJ
the co-content. The network will thus converge, without oscillations, to a stable Unannotmcc-d [
solution, even in the presence of arbitrary parasitic capacitances throughout the Justification
network.

By
INTRODUCTION DistVbution I

Most early vision algorithms incorporate the generic constraint that vai- Availabilty Codes
ables such as surface orientation and reflectance, depth or optical flow vary A, ."d-lor
slowly in space (Marr and Poggio, 1976; Gimson, 1981; Ikeuchi and Horn, Dist Sp'cial
1981; Horn and Schunck, 1981; Terzopoulos, 1983; Hildreth. 1984; Poggio,

1 _ _



Voorhees and Yuille, 1985; Nagel, 1987). Within the standard regularization
approach, this is reflected in the use of stabilizing operators corresponding to
various measures of smoothness (Poggio, Torte and Koch, 1985). Thus, in the
problem of interpolating a 2-D surface through sparse and noisy depth measure-
ment, the final surface should be as close as possible to the initial data as well as
being as smooth as possible (Grimson, 1981); or, in the problem of computing
optical flow from the time-varying intensity, the final flow field should be com-
patible with the locally measured velocity data as well as being smooth (Horn
and Schunck, 1981; Hildreth, 1984; Nagel, 1987). However, surfaces display
discontinuities where the smoothness constraint is violated. Thus, the to-be-
reconstructed surface may have been generated by an underlying piece-wise
smooth or even piece-wise constant depth distribution. Or, the 2-D velocity
field induced by a rigid object moving/rotating in an otherwise stationary en-
vironment varies smoothly across the surface of the object but is zero beyond
the contours of the object (since the background is stationary).

In the last years, a number of researchers have introduced powerful al-
gorithms to deal with the representation of such discontinuities. Geman and

Geman (1984) first proposed binary line processes to model discontinuities in
intensity within the stochastic framework of Markov Random Fields. Disconti-
nuities are subject to various constraints, such that they should form along con-
tinuous contours, should not intersect nor form parallel lines. Their approach
was extended and modified to account for discontinuities in depth, texture and
color by Poggio and his collaborators (Marroquin, Mitter and Poggio, 1984;
Poggio, Gamble and Little, 1988) as well as to discontinuities in the optical
flow (Hutchinson, Koch, Luo and Mead, 1988). The principal drawback of the

Geman and Geman-type method is the computational expense involved in mini-
mizing the associated non-convex cost functionals using stochastic optimization
methods, in particular when numerous constraints (e.g. continuity of disconti-
nuities) are incorporated. A nu ', c 'authors have used deterministic methods
to find the (local) minimum of ., a F'-ciated convex or non-convex variational
functionals, with next-to-optimal ts (Terzopoulos, 1986; Koch, Marroquin
and Yuille, 1986). A rigorous deterministic approach has been championed
by Blake and Zisserman (1987). Their "graduated non-convexity" (GNC) al-
gorithm bears many similarities to the above methods, and leads to excellent
results in the case .of piece-wise continuous reconstruction of surfaces (Blake,
1989).

Poggio and Koch (1985) show how standard regularization algorithms can
map onto simple resistive networks. Finding the minimum of the standard
regularized and quadratic cost functional is equivalent to finding the state of
least power dissipation in an appropriate electrical network, where the data are
given by injecting current into certain nodes and the solution by the stationary
voltage distribution. Figure 1 shows the appropriate network for membrane-

type surface interpolation, where the "strength" of smoothing is given by the
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Figure 1 Resistive network for fitting the smoothest surface f through sparse
and noisy data d. The circuit minimizes the variational functional of the two-
dimensional extension of eq. (1) in the absence of line discontinuities. In the con-
tinuum limit, minimization of this functional corresponds to the Euler-Lagrange
equation AV2 f + Gf "" Gd. The battery supplies the measured depth data di,
while the vertical conductance G corresponds to 1/(2o2) and the horizontal
conductance of the grid to A. If no data are present at a particular location ,
G is set to zero. The stationary voltage distribution then corresponds to the
interpolated surface fI. The amplitude of the horizontal grid conductance, A,
controls the amount of smoothing. A 48 by 48 pixel hexagonal network has
been built and tested successfully (Luo, Koch and Mead, 1988).

value of the horizontal grid conductance. For an overview of analog circuits for
implementing early vision algorithms see Koch (1989) and Horn (1989).

The recent development of subthreshold, analog CMOS VLSI circuits for
various sensory tasks by Carver Mead (see in particular his recent textbook,
Mead, 1989) has enabled us to implement these resistive networks-together
with the photo-transduction stage--using this real-time, low power and robust
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technology. Two circuits are particularly attractive for our purposes: a photo-
transistor with a logarithmic voltage output over five orders of intensity bright-
ness (Mead, 1985, 1989) and a transistor circuit with a linear current-voltage
relationship for small voltage gradients (Sivilotti, Mahowald and Mead, 1987;
Mead, 1989). The value of the slope, i.e. the resistance, can be varied over five
orders of magnitude. Using this as our basic construction element, we built and
tested a 48 by 48 pixel resistive network for smoothing and interpolating noisy
and sparse data (Luo, Koch and Mead, 1988; see Fig. 1).

We introduce in this paper an analog, purely deterministic approach to
locating discontinuities in the case of interpolating noisy and sparsely sampled
depth data. It leads to a very simple and elegant circuit implementation in
terms of a two-terminal, nonlinear, voltage-controlled resistor termed "resistive
fuse" (Harris and Koch, 1989). We have implemented this device in analog
CMOS and demonstrate its performance here.

THEORY

Let us begin by justifying "resistive fuses" as specialized circuit elements
for implementing discontinuities. Since our methodology does not distinguish
between a 1-D and a 2-D implementation of smoothing in the presence of discon-
tinuities. we will first consider the 1-D case. The simplest possible variational
functional for interpolating noisy and sparsely sampled data di in the presence
of binary line discontinuities ti is a membrane type of surface interpolation:

J(f,-t) = A _E(fi-_f,+1)2(1-_t,) + I E2 (d _-fi)2 +ot'?i a

i i

where fi is the value of the final surface f at location i, a2 the variance of the
additive Gaussian noise process assumed to corrupt the data di and A and a are
free parameters. The first term in this functional implements the constraint that
surfaces should, in general, vary smoothly. If all variables, with the exception
of f ii,.fi1 and i, in eq. (1) were held fixed and \(f, - f+1) 2 < af, it would
be "cheaper" to pay the price A(f i - fi+1) 2 and set 4 = 0 than to pay the
larger price a. However, if the gradient becomes too steep, the line process is
switched on, i.e. ti = 1, and the "price" a is paid. The second term in eq. (1),
where the sum only includes those locations i where data exist, forces the final
solution f to be close to the measured data d. How close depends on the
estimated magnitude of the noise, in this case on a"2. Thus, the surface f, with
its associated set of discontinuities 1, minimizing eq. (1) will be the one that
best satisfies the conflicting demands of piece-wise smoothness and fidelity to
the measured data. The functional of eq. (1) is non-convex and a large number
of both stochastic and deterministic methods have been designed to find optimal
or nearly optimal solutions for this and similar functionals (Geman and Geman,
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Figure 2 Theoretical I-V curves for a linear resistor (A) and a measured
I-V curve for Mead's saturating resistor (B). Integrating numerically over these
curves gives the co-content of the linear resistor (C) and the saturating resistor
(D). Co-content is defined by eq. (2) and represents generalized power for non-
linear systems. The co-content for the linear resistor is equivalent to half the
dissipated power, and thus a quadratic function in AV, while the co-content
for the saturating resistor becomes a linear function of AV as IAVI -- oc.
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1984: Marroquin, Mitter and Poggio, 1987; Koch, Marroquin and Yuille, 1986;
Blake and Zisserman, 1987; Terzopoulos, 1983, 1986).

Figure 3C shows a plot of J(f, 1) as a function of the depth at locations f/
and f, I and as a function of the discontinuity ti. The values of the surface and
of the line discontinuities are assumed to be fixed at all other locations. As long
as A (f - f,+1)2 < a, the function T is quadratic in the gradient. However,

once Ifi- fi+II exceeds the gradient limit V/c7,Jt, " remains fiat at T = a,
independent of the magnitude of fi - fil (Blake and Zisserman, 1987).

The appropriate circuit implementation is a straightforward modification
of the network shown in Fig. 1. The surface fi represents the final reconstructed
points. The voltage on the battery is di, and the conductance G equals 1/(2u 2 ).
If no measured surface value d is present at a particular location, G = 0 at that
location. The value of the grid conductance A controls the amount of smooth-
ing. Binary switches, breaking the resistive connections among neighboring
nodes, would implement discontinuities in the surface. As long as the switch
is closed, the current is linear in the voltage drop across the device. Since the
electrical power in a linear network is proportional to the square of the voltage
gradient across all resistances, the power is quadratic in the gradient and can
thus be identified with the first term in eq. (1). Once the threshold has been ex-
ceeded. the binary switch opens and no more current flows through the device.
The digital processors controlling the switches need access to the state of the
neighboring switches as well as to the neighboring depth values. We will now
demonstrate. ho*ever, how this mixed analog-digital circuit can be replaced by
a single analog non-linear resistor, the "resistive fuse."

The circuit implementation of binary discontinuities will require nonlinear
circuit components. As pointed out by Poggio and Koch (1985), the notion
of minimizing power in linear networks implementing quadratic "regularized"
algorithms must be replaced by the more general notion of minimizing the total
resistor co-content (Millar, 1951). For a two-terminal voltage-controlled resistor
characterized by I = f(V), the co-content is defined as

J(V) = (V')dV'. (2)

For a linear resistor, I = GV, the co-content is given by !GV
2 , which is just

half the dissipated power P = GV 2 (Fig. 2). For a network consisting of a
collection of resistors, voltage sources and other elements, the total network co-
content is defined as the sum of all the (linear or nonlinear) resistor co-contents,
that is.

Jtotai(t) = Jk(Vk(t)). (3)
all resistors
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Figure 3 Theoretical INV curve for an infinite-gain fuse (A) and a measured
I-V curve for a finite-gain resistive fuse (B). Integrating numerically over these
curves gives the co-content J for the infinite-gain (C) and the finite-gain fuse
(D).



The co-content for various resistors is plotted in Figs. 2 and 3. Differentiating
eq. (2), we have:

f(VM = LJ (4)
dV

The appropriate current-voltage relationship of an infinite-gain resistive
fwe is illustrated in Fig. 3A. As long as the voltage drop across this device
is below the threshold, the current through the nonlinear resistor is linearly
related to the voltage across it. Once past the threshold, the circuit breaks
(hence the name "fuse"), and the current is zero for all values of the voltage
gradient. This two-terminal device then implements the high-level constraint
that surfaces should be smooth unless their neighboring values differ by more
than ±/ -173, at which point the surfaces will break.

The I-V relationship of the device we have built is shown in Fig. 3B. The
most salient difference from the infinite-gain fuse are the smooth flanks, where
the curre-t decreases smoothly to zero for increasing values of the voltage gra-
dient 1. in contrast with the discontinuity in the I-V relationship for the
infinite-gain fuse . In this region the slope conductance dI/dV will be negative
(Fig. 13C).Our measured I-V curve can be related directly to the concept of
analog line discontinuities of Koch et al. (1986). The key idea is that, fol-
lowing Hopfield and Tank (1985) in their neural network implementation of
the Traveling Salesman Problem. binary discontinuities are mapped onto con-
tinuous -neurons," whose output is constrained to lie between 0 and 1. The
input-output relationship of these "discontinuity neurons" is governed by the
sigmoidal function V = g(U), where g(U) is a strictly monotonic function,
usually taken to be

1
g(U) - 1 (5)

1 + e-27 7U

with the "gain" 27 > 0. The network converges to a stationary solution using a
steepest descent rule. The -olutions obtained were qualitatively very similar to
the solutions obtained with binary line processes. It is rather straightforward
to derive an "analog" version of resistive fuses (Harris, Koch, Staats, Luo and
Wyatt, 1989), with the following I-V relationship

I=f(V)= [ V 2-- ] V, (6)

where # > 0 is a parameter related to the analog line process implementation
(identical to CG of eq. (7c) of Koch et al., 1986). Our measured I-V curve
for the fuse (Fig. 3B) implements this function. A s " - 0 the function g

I The I-V characteristic of our experimental fuse relates somewhat to the

theoretical work of Perona and Malik (1988) who simulated a network of ele-
ments with similar I-V characteristics to perform image segmentation.
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becomes binary and f(V) of eq. (6) approaches the form of the infinite-gain
fuse (Fig. 3A).

So far we have only discussed the implementation of binary or analog dis-
continuities in 1-D. For 2-D image problems, horizontal as well as vertical line
processes need to be incorporated into the variational functional. Furthermore,
it has been standard practice to constrain the geometry of line processes by
adding appropriate terms to the 2-D extension of eq. (1). Some of the more
common constraints are that discontinuities should occur along continuous con-
tours, should not intersect nor form along parallel lines (Geman and Geman.
1984). Furthermore, Poggio et al. (1988) introduced the notion that disconti-
nuities in depth should in general coincide with discontinuities in intensity, that
is intensity edges.

We previously demonstrated how a piece-wise smooth optical flow field,
induced by moving objects, can be successfully recovered in the presence of
binary motion discontinuities with the above set of constraints (Koch et al.,
1986, Hutchinson et al.. 1988). We repeated these simulations using only the
finite-gain resistive fuses of eq. (6) together with the constraint that motion
discontinuities should only occur together with intensity discontinuities. in our
case zero-crossings of the V 2 G operator. The performance of both algorithms-
for 128 by 128 video image sequences of several moving and partially occluding
people-is very similar (for more details see Harris et al., 1989). Since the co-
localization of all or most motion discontinuities with intensity discontinuities
(but not necessarily the reverse) is relatively simple to implement at the circuit
level, we feel that we can now design VLSI circuits to compute intensity, mo-
tion and depth discontinuities for real, two-dimensional images. The following
section discusses the detailed circuit implementation of the resistive fuse.

CIRCUIT DETAILS

The circuit schematic for the fuse is shown in Fig. 4. The circuitry above
the dotted line in the figure is Mead's saturating resistor (Mead, 1989) with
a p-type pullup transistor that sets the nominal resistance of the fuse. In
subthreshold operation, the current through a transistor varies exponentially
with the gate-to-source voltage. Thus, the voltage VB produces a current I B
equal to:

IB = oe '  (7)

Following Mead (1989), all voltages are assumed to be normalized by kT/q.
The variable . is a process-dependent parameter that reflects the inability of
the gate to be 100% effective in reducing the barrier potential. 10 is a constant
that includes the width and length of the transistor as well as process-dependent

09



vJ -4 ;E

IB

IFI

FUSEV
2

IABS

T <A

Figure 4 Schematic of the fuse circuit. The nonlinear, voltage-controlled
resistance is seen across the V, and V 2 terminals. The circuitry above the
dotted line is a saturating resistor (Mead, 1989) with VB controlling the nominal
amount of resistance. The circuit below the dotted line is a saturating absolute-
value circuit that turns off the resistor for large IV, - V21. VA determines the
magnitude of the current pulled away by the absolute-value circuit.
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fabrication parameters. Letting IF = IB, the I-V relation of the resistor can
be derived as:

IFUSE = -- tanh (8)

where AV = V - V2 . For small AV this portion of the circuit operates as a
linear resistor with a resistance of

R 4kT/q (9)

IF

Because we ar- working in the subthreshold region, IF and thus the resistance
can be varied over five orders of magnitude. For large AV the resistor saturates
and provides a constant current of IF/2. A measured I-V curve for this circuit
is shown in Fig. 2B.

The circuit below the dotted line in the figure performs a saturating
absolute-value operation. This portion of the circuit is enabled by the volt-
age V 4 , which creates a current IA equal to:

IA = IoeKVA (10)

The positive parts of the outputs of a dual-output wide-range transconductance
amplifier are combined to create a current of:

IABS = IA tanh ( 2-V) (11)

By Kirchhoff's current law, the current IF is:

IF = ['B - 'ABSJ (12)

where the symbols [ j are defined as

LxJ=x if x>o
=0 if z<0

Substituting (11) and (12) into eq. (8), gives

'FUSE = 1 I - 'A tanh ( tanh (13)

When [AVI is small, the fuse acts as a linear resistor whose nominal resistance
i, set by IB. When JAVI is large, IA increases above the current supplied by
the p-type pull-up, and VF is pulled to ground, shutting off the resistor. In
between these extremes, the fuse exhibits a gradual transition.

11
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Figure 5 Measured I-V curves that show the effect of continuously varying
from the saturating characteristic to that of the fuse curve. VB was set to 4V
and VA was varied from 0V to 2V. When VA = 0, the resulting I-V curve is

identical to that of Mead's saturating resistor.

Figure 5 shows a family of curves measured by varying VA while keeping
VB constant. By varying VA in this way, the circuit's I-V characteristic can
be continuously and smoothly changed from that of a saturating resistor to

the fuse I-V curve. Setting V4 = 0 gives IA = 0 disabling the absolute-value
circuit, and giving the fuse a saturating I-V relationship (Fig. 2B).

Integration of the I-V curves in Fig. 5 gives the family of co-content curves
shown in Fig. 6. For small AV the co-content is quadratic and for large AV
the co-content saturates at a constant value. Instead of saturating for large

voltage differences,* the co-content of the saturating resistor increases linearly
with voltage. As will be seen in the following section, networks of resistors

with positively sloped I-V curves are guaranteed to converge to a single unique
minimum value of the co-content. By turning the voltage control, we are chang-
ing the energy landscape in a continuous fashion ("continuation method") from

containing one unique global minimum to a landscape containing many local
minima.
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Figure 6 Co-content functions: each curve wras numerically integrated from
the family of curves in Fig. 5. Continuously varying the co-content curves in
this way performs a useful computation that is explored more in Fig. 10 and
Fig. 11.

The fuse provides a mechanism for changing the threshold value. If we
assume that the circuit is operating in the linear region of the two hyperbolic
tangents, 'FUSE becomes twin parabolas of the form:

IFUSE = L - K A AVJ AV (14)

This linear analysis. indicates that the measured curve in Fig. 3B consists of a
parabola in each of the first and third quadrants. This current in eq. (14) is
cut to zero for:

IB kTzVI 2 -- (15)
A qK

IFUSE reaches extremum points at:

1.B kT (16)
'A q1

13
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Figure 7 Measured I-V curves illustrating different line process penalties. VA

was kept constant at 2V and VB was varied from 3.9V to 4.1V.

The extremum points can be set by the ratio of 'B to I A . In subthreshold oper-
ation, the width of the saturating tanh curves is about 100mV. The extremum
points can then only be be varied from 0 to about =100mV. For gate voltages
above the threshold of the bias transistors, the width of the linear region of the

hyperbolic tangent function increases by VGS - VT, where VGS is the gate-to-

source voltage and VT is the threshold voltage of the bias transistors. Thus,
by going slightly above threshold the extremum point can be varied from 0 to

about -500mV. Figure 7 shows a family of I-V curves measured by varying VB

and holding VA constant.

We are studying the use of a high-gain fuse, a circuit that does not have a
large incrementally active region in its I-V curve (Fig. 8). Circuit simulations of
the high-gain fuse show I-V curves that look like those of the infinite-gain fuse
in Fig. 3A. Instead of feeding the absolute-value current back to the resistor
bias circuits, current is fed back to a pass gate that acts as a binary switch
in the current path. When IB > IABS the voltage on the gate of the binary
switch (VF) is charged to VDD. On the other hand, when IB < IABS , VF is
pulled to ground, effectively open-circuiting the resistor. The resistance of the

resistor is controlled by VR, which sets the bias current I R . Notice that the

current that controls the line process penalty is decoupled from the current that

14I0



IB VF

R~ 51IFS

Figure 8 Modification of the fuse to obtain a high-gain characteristic. As be-
fore, a saturating resistor and an absolute-value circuit are combined to create
a fuse. However, different from the circuit of Fig. 4, the absolute-value circuit
discharges the gate of a pass transistor that has been added in the resistance
path. This pass gate acts as a binary switch that is opened or closed dependent
on whether or not the absolute-value current is greater than the threshold cur-
rent provided by VB. VR provides independent control of the resistance of the
fuse when the binary switch is closed.
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gi-I 9 i 9.i+1

+. I +. I + I

"-I ----- -

Figure 9 Layout of the 1-D fuse network. Voltage sources di provide input to
the network through wide-range transconductance amplifiers. The bias voltages
on these amplifiers gi controls their conductance. The smoothed and segmented
outputs are given as voltages at fi. This network was designed to implement
eq. (1).

sets the resistance of the fuse. Assuming high-gain elements, the I-V equation
for the high-gain fuse is given by:

if 'A tanh <2 <'B then 'FUSE = LR tanh
(17)

if IA tanh ( 2) > IB then 'FUSE =0

This implementation of the fuse shares an advantage with Mead's saturating
resistor layout, because only one biasing circuit is needed for each node. This
saves many transistors, especially in 2-D layouts. The low-gain fuse requires 33
transistors per connection, while the high-gain fuse requires only 21 transistors
per connection plus 6 transistors per node. For a hexagonal mesh, each basic cell
needs to contain one node plus half of the six neighboring connections, requiring
a total of 69 transistors per cell for the high-gain fuse and 99 transistors per
cell for the low-gain version.
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Figure 10 Measured segmentation from an experimental resistive fuse net-
work. The circles denote "noisy" step data that was used as the input to the
network. The solid-line curve indicates measured voltages from the chip. The
dotted-line curve shows the measured voltage output given by a network of
Mead's saturating resistors.

A network of eight fuses (of the type shown in Fig. 4) was fabricated and
successfully demonstrated. The schematic is shown in Fig. 9. Eight voltage
values are input as the di values. The smoothed and segmented fi voltages are
the resulting outputs. Figure 10 shows a segmentation result for a "noisy" 1-D
step edge. The network effectively smooths out small steps without degrading
large step edges. The I-V curves of the fuses in this example have been set to
the form shown in Fig. 3B. In this configuration, the network exhibits a hys-
teresis property in which two stable final states are possible. The two stable
states correspond to segmenting or smoothing the step edge. The segmented
stable state is shown as the solid line in Fig. 10. The smoothed stable state
becomes essentially a flat horizontal line. The final state depends on the tem-
poral history of the network. To ensure that the proper stable state is reached
in a deterministic fashion, VA is initially set to OV and then gradually moved
to its final value.

The hysteresis properties of the network can be better understood through
a load-line analysis of a much simplified circuit (Fig. 11). The current through
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Figure 11 Simple load-line analysis shows that there can be up to three
equilibrium points for the fuse/resistor circuit given above. The I-V curves for
the measured fuse and the simulated voltage source/resistor are shown as solid
lines. For plot A, points P1 and P3 are stable, and P2 is unstable. Voltages
in the neighborhood of P2 will be driven to either P1 or P3. By increasing
the value of the voltage source E, a single stable equilibrium point P1 remains
(plot B). The dotted-line curves show the effect of changing VA.
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the fuse is plotted as a function of the voltage across the fuse. The simulated
voltage source/resistor is also illustrated as a solid line, with the negative slope
of this line given by the conductance G and the x-intercept given by the value of
the voltage source E. A stability analysis reveals that the system possesses up
to three equilibria. In the case illustrated in Fig. 11A, the middle equilibrium
is unstable and the voltage will tend toward the two stable solutions P1 and
P2. Point P1 corresponds to segmentation, and P3 corresponds to smoothing.
By increasing the value of the voltage source E (Fig. 11B), only a single stable
equilibrium point remains, corresponding to segmentation. Of course, stability
cannot be guaranteed for negative values of G. The dotted-line curves show
the effect of changing V4 .

Figure 12 shows the computed total co-content from the I-V curves shown
in Fig. 11. For Fig. 12A. P1 is the global and P3 is only a local minimum, while
P2 corresponds to an unstable local maximum. In contrast, Fig. 12B contains
a single equilibrium point, P1, which corresponds to a discontinuity. The dot-
ted lines show the effect of increasing VA, deforming the energy surface from
one with a single equilibrium point to one with two local minima. By using
a continuation method in this fashion, discontinuities are deterministically lo-
cated. Reasonable performance may be obtained by using a single setting of the
fuse control voltages and keeping the voltages constant over time. This static
approximation of the continuation method will still smooth small step edges
while preserving large steps. However, medium steps, such as those simulated
in Fig. 11, can be either smoothed or segmented depending upon the temporal
history of the network. This load-line analysis is a simplified version of the true
dynamics of networks of fuse elements, but serves to illustrate the complexity
of even a single fuse element circuit.

STABILITY

Though the chord resistance of the fuse circuit is always positive, its in-
crementally negative resistance regions (see Fig. 13) raise doubts about the
stability of networks of resistive fuse elements. One question that has already
been alluded to above is the issue of whether the network will converge at all
and whether a unique stationary solution exists. The reasoning presented later
in this section supports the following conclusions.

1. Monotonic Resistors

Suppose all the nonlinear resistors are incrementally strictly passive, i.e.,
have I-V curves with positive slope, dI/dV > 0, everywhere. One instance of
such a device is Mead's saturating resistor (Fig. 2B). Then the stationary net-
work solution for a given input image will be unique. If we further suppose that
the nonlinear resistors are ideal memoryless elements (i.e., that we can neglect
the fast parasitic dynamics internal to each resistor circuit), then the network
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Figure 12 Computed total co-content from the I-V curves shown in Fig. 11.
In plot A, P1 and P3 correspond to stable minima while P2 is an unstable
maximum. In contrast, Plot B contains a single equilibrium point P1 that
corresponds to a discontinuity. The dotted lines show the effect of increasing
VA.
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will be globally asymptotically stable, i.e., for any voltage input and any initial
condition it will converge to the unique stationary solution mentioned above.
This conclusion holds even if positive, parasitic capacitances are distributed
arbitrarily throughout the network, provided there are no inductors. This re-
sult assures us then that implementing the ideal, linear resistances dictated by
standard regularization theory with Mead-type saturating resistances will not
cause additional stationary solutions to appear.

2. Nonmonotonic Resistors

Now suppose the nonlinear resistors are externally passive (i.e., their I-V
curves lie in the 1st and 3rd quadrants of the I-V plane) but are incrementally
active, i.e., have regions of negative slope, as the resistive fuse in Fig. 3. Then
there will in general exist a number of stationary network solutions for a given
input image. If we further suppose that we can neglect the internal dynamics
of the incrementally active resistor circuit, then for any voltage input and any
initial condition the network will not oscillate indefinitely but must eventually
settle to some stationary state. This conclusion also holds even if 15arasitic
(positive) capacitances are distributed arbitrarily throughout the network, pro-
vided there are no inductors. This is a rather surprising result in view of the
well-known instability problems with negative incremental resistance circuits.

3. Resistors with Internal Dynamics

The nonlinear resistors are of course multiple transistor circuits themselves
and will inevitably have internal transient dynamics due to charge storage in
transistors and parasitic wiring capacitance. Although each of the resistor cir-
cuits reported here is known to be stable in isolation, networks of such elements
may, in principle, be unstable. This is an active research area, and many ques-
tions remain. Recent theoretical work (Wyatt and Standley. 1989: Standley
and Wyatt. 1989; Standley, 1989) gives sufficient conditions for stability of
such networks when the complex high-frequency dynamics are confined to the
linear elements in any circuit consisting only of such linear elements, nonlinear
memoryless resistors, and positive nonlinear capacitors. These results can be
applied to yield local stability criteria for networks in which the resistor circuits
are incrementally passive (such as Mead's saturating resistor) but have com-
plex internal dynamics. But in their present form they are not applicable to
networks in which the resistors are incrementally active (such as the resistive
fuse) with internal dynamics.

The conclusions given in 1 and 2 above follow from well-established non-
linear network principles outlined below. Since the derivations follow with re-
markable ease in these two cases, complete proofs are given.

We have sometimes found that experienced circuit designers can be deeply
skeptical about the dynamic stability (non-oscillation) claim made above, and
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tunnel diode oscillator circuits are sometimes mentioned as counterexamples. It
may be helpful to clarify what the precise result, Theorem II below, actually as-
sumes. In the first place, it assumes an inductorless circuit, i.e., the only circuit
elements allowed are positive (but possibly nonlinear) capacitors, ideal constant
voltage sources, and nonlinear (possibly incrementally active) resistors. Thus
oscillators that rely on inductors, even the distributed inductance in connecting
wires, are not ruled out by the theorem. Note also that nonreciprocal building
blocks, such as amplifiers, are not allowed under the assumptions, and that
the individual resistors are assumed to have no internal dynamics of their own.
Finally. the theorem does not assert that every stationary network solution is
stable. Some will be unstable and some will be stable, but the network will
eventually always settle to one of the latter.

The "no-inductors" assumption and the "no resistor dynamics" assumption
are modelling approximations. Their appropriateness in a particular context is
always open to question, and the issue can be settled for any given circuit
only by experimentation. We note here that neglecting on-chip inductance
has proven to be an excellent approximation in the analysis of many practical
circuits, and that the nonlinear resistor circuits reported here are intended by
the designcr to operate as essentially memoryless resistors.

All the conclusions in 1 and 2 above follow easily from Tellegen's theorem,
restated below for convenience (Tellegen. 1952; Penfield, Spence and Duinker.
1970: Chua, Desoer and Kuh, 1987).

4. Tellegen's Theorem

Assume we are given a network with sign conventions for branch voltages
Vk and branch currents Ik such that the product Vk ' Ik represents the power
flowing tnto branch k. Then

S Vk Ik = 0 (18)
all network branches

Further'more, suppose xk represents either Vk or any quantity derived from Vk
such that at each instant the set of all Xk satisfies Kirchhoff's Voltage Law
(KVL), i.e., the Xk sum to zero around any loop in the network. And suppose

Yk represents either Ik or any quantity derived from Ik such that at each
instant the set of all Yk'S satisfies Kirchhoff's Current Law (KCL) i.e., the sum
of the !Yk'S entering any node is zero (examples include x, = dVk/dt, Xk(t) =

Vk(t + 3), 1/k f Ik, etc.). Then

E Xk(tI)k(t2) = 0, for all t, t2. (19)
all network branches
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Tellegen's theorem makes it very easy to show why the stationary solution to
any network with incrementally passive resistors must be unique, as claimed in
section 1.

5. Theorem I (Uniqueness)

There exists at most one solution for the resistor voltages and currents in
any network of arbitrary topology consisting of strictly incrementally passive
resistors and ideal voltage and current sources,

Proof: Suppose on the contrary there exist two such solutions, solution a and
solution b (if more exist, pick any two). Let Va and Vb denote the voltage

across branch k in the two solutions, AV k denote V b - V a , and let AIk be
defined similarly. Then the set of AVk's satisfies KVL and the Alk's satisfy
KCL. so from eq. (19)

Z AVk. = 0. (20)
all resistors and sources

Since Va =V for all voltage sources and I = Ib for all current sources, the
product AIV • AIk vanishes for all source branches and eq. (20) reduces to

a A Vk .AIk = 0. (21)
all resistors

But each resistor curve has positive slope by assumption. so AVk .Alk > 0.
Thus eq. (21) guarantees that AVk = 0 or . Ik = 0 for each resistor. Therefore
AVk and AI k both vanish since each resistor curve is assumed to be single-
valued and invertible.
Q.E.D.

This theorem first appeared in Duffin (1947); see also Birkhoff and Diaz
(1956). A more recent treatment can be found in Hasler (1986).

The non-oscillation claims in sections 1 and 2 follow with similar ease
from Tellegen's theorem. The key quantity of interest is the rsts.,tor co-content
of eq. (2) (see also Poggio and Koch, 1985). Thus, the reason nonlinear RC
networks cannot exhibit unforced sustained oscillations, even if the resistors
are incrementally active, is because JtotaI(t) is always "running down," i.e.
Jtotal acts (roughly speaking) as a Lyapunov function.
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6. Theorem II (Stability)

Consider a network of arbitrary topology consisting of nonlinear voltage-
controlled resistors, ideal time-invariant volta e sources, and nonlinear but pos-
itive capacitors described by Ik = Ck(Vk)., with Ck(Vk) > 0 everywhere.
Then Jtotal is strictly decreasing at each instant during any transient, i.e.,

dVt&ta(t) < 0, (22)

dt

and the inequality is strict except at equilibrium.

Proof: From Tellegen's theorem, eq. (19), we have
dV&(t)

Fkt) dA = 0-. (23)
all network branches dt

voltage sources -( 0, so these drop out of the sum in eq. (23).
which now reads

E Ik(t) d + Z Ik(t) dt = 0. (24)
all resistors all capacitors

For each resistor,

- M dVk(t) _ dJk(t)
-dt d (25)

which follows from eq. (2), using the chain rule for derivatives. Thus the first
sum in eq. (24) is just dJtofai(t)/dt. And for each capaci. ,

dV&(t) - c dVklt)\ 2

Ik(i) = Ck(Vk(t)) \ dt > 0. (26)

The inequality (22) follows upon substituting eqs. (25) and (26) into (24).
Q.E.D.

This theorem is a special case of results in (Brayton and Moser, 1964), but
the proof given here is much more elementary.

If Jtotal is bounded from below and slopes upward for large values of the
voltages, then Theorem II implies that the network will settle into a steady-
state. A sufficient condition for this is that the I-V curve of all resistors in the
network should lie somewhere in the interior of the 1st and 3rd quadrants for
large values of AV.
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Note that Theorem II rules out sustained oscillation because Jtotal(t)
would have to be periodic if the network state were periodic, and this is im-
possible since dJtotai/dt < 0, with equality only at equilibrium. However,
]total does not necessarily meet all the standard criteria for a Lyapunov func-
tion since its shape is essentially arbitrary. It is easy to show that J is convex
if and only if the resistors are all incrementally passive. With incrementally
active resistors such as resistive fuses, J can have many local minima, which
are then the (locally) stable equilibria of the network. In the case of positive
linear resistors. Theorem 2 has the special interpretation that the total dissi-
pated power decreases monotonically during transients in any RC circuit with
voltage sources, even if the capacitors are nonlinear. In this linear case the
co-content (and the total power) are convex functions of those voltages that
are not constrained by the sources, so the local minimum to which the network
converges is in fact the global minimum of the dissipated power, subject to the
source constraint. Stripped of all dynamics, the static version of this statement
is known as Mazwell's Minimum Heat Theorem (Maxwell, 1891).

CONCLUSION

We have successfully demonstrated in this manuscript for the first time a
simple and elegant analog circuit implementation of the line discontinuities of
Geman and Geman (1984) and of the graduated non-convexity algorithm of
Blake and Zisserman (1987). We only report on the experimental data for an 8
pixel 1-D circuit. We have sent out a 20 by 20 pixel 2-D version of this network
to MOSIS for fabrication. We previously demonstrated a 48 by 48 pixel circuit
implementing smooth surface interpolation (Luo, Koch and Mead, 1988). This
work can be extended to include 2nd order or thin-plate surface interpolation
(Harris, 1989), where the energy functional embodies the discretized square of
the V 2 operator. Computer simulations have shown that detection of discon-
tinuities in surface orientation, such as occurring along creases, is feasible in
problems such as edge detection and surface interpolation (Blake and Zisser-
man, 1987; Liu and Harris, 1989) and can be incorporated into our thin-plate
interpolation circuits (Harris, 1989).

We thus have all the elementary circuit elements in hand-phototransistors
for on-chip image acquisition (Mead, 1989), resistive networks for smoothing,
and resistive fuses for detecting discontinuities-to design analog, resistive net-
work chips to compute the 2-D optical flow field in the presence of motion
discontinuities, the depth and depth discontinuities in 2-D images as well as
intensity discontinuities.
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