
AD-A211 635 PAGE
A6. 6001 ACCLS15DA : 3 I£ J] " $ CA A.O' hJh:

S.1.1 1---- . . ts5iuiii ~ 16Or 5O PO & PLF:O: CODyLt:

Ada Co-.;iler Validation £urmary Report:TELESOFT, 18 Jan 1989 - 18 Jan 1990
TeleGen2 Ada Development System for the 1750A, Version . ,LftOlu:b b SjP0 mj=[

1.1.0, IBM 3083 JX (Host) to MIL-STD-1750A (ECSPO RAID) on

).aij1Drka) 3. CObkftA:1 O &RA%" hi~i

Wrig,t-Patterson ArE

Dayton, OH, USA

S. P|LRFOAKlh% OR$Ah;ZA710% Aha ADD $ESS IC, PRO*Abo E '. P 1A &
AREA lo WD)kk Vk:1 owEiPs

Wright-Patterson ArB
Dayton, OH, USA

Ada Joint Program Of ice
United States Department of Defense hr. Of F4.'b
Washington, DC 2D301-3081

ia. .. 1O;10 I: AG=.h:T' ,.i & ADDRi$(IOt/erenrhom Conlroliira Otiicc) i~ SL ZL' C&SSl fc'ts ' r,, i,,,

U NCLAS!F1F.D
Wright-Patterson AFB a $
Dayton, OH, LSA N/A

ie. D1SIR11.Y1IO srAI.KN (ofthisApeon)

Approved for public release; distribution unlimited.

UN:L SE:F EDD T I C2
i . %:* ILS AUG 2 1989

Ada Procra.--in language, Ada Compiler Validation Sur.ary Reprt, Ada
Conpiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/FIL-SD-
2825A, Ada Joint Program Office, AJPO

20. AESIR&:I (Comn?'ne on reverse Loe of ArwC(ldr, emO Centf) b bloci nurmber)

TELESOFT, Inc., TeleGen2 Ada Development System for the 1750A, Version 1.1.0,
Wright-Patterson AFB, IBM 3083 JX under VM/HPO 4.2 (Host) to MIL-STD-1750A (ECSPO RAID)
on a MicroVAX II under VMS, Version V5.0 (Target), ACVC 1.09

DD , 1473 ItDlIOh, Or I NO s oeSo Au
U j, 73 S/h OI[?.i-C A BbCI UNCLASSIFIED

SICUR1II" CLASS] F ICAI Ih Or ImIS PA;.I (o~hrmD.tfT,rrd,

AVF Control Number: AVF-VSR-228.0789
88-05-30-TEL

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890111W1.09163
TELESOFT, Inc.

TeleGen2 Ada Development System for the 1750A, Version 1.1.0
IBM 3083 JX under VM/HPO 4.2, host

MIL-STD-1750A (ECSPO RAID) on a MicroVAX II under VMS, Version V5.0, target

Completion of On-Site Testing:
18 January 1989

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada Development System for the 1750A, Version 1.1.0

Certificate Number: 890111W1.09163

Host: Target:
IBM 3083 JX under MIL-STD-1750A (ECSPO RAID) on a MicroVAX II
VM/HPO 4.2 under VMS, Version V5.C

Testing Completed 18 January 1989 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

kaiV~alidatior1 Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director, AJPO Accession For
Department of Defense NTIS GRA&I
Washington DC 20301 DTI TAB l

Uii:.JnoLm)ced El
Ju";t c at ,on

I D(stribution/

I Avnllabtlity Codes

Avail and/or

i Special

2

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS................1-4

1.5 ACVC TEST CLASSES1-5

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTOR 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . . 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-5
3.7.1 Prevalidation3-5
3.7.2 Test Method3-5
3.7.3 Test Site3-7

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report (+R describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results 9.te.&tJng this compiler using the Ada Compiler
Validation Capabilityr TAZ. -An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.-

'- Even though all validated Ada compilers conform to the Ada Standard, it

must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. ,The purpose of validating is to ensure conformity
of the compiler to the Ada' Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

7--

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

• To attempt to identify any language constructs nct supported by
the compiler but required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 18 January 1989 at San Diego CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint

Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1-3

INTRODUCTION

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains Fll information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

1-4 .

INTRODU7TIN

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting coilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successful'y and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

1-5

INTRODUCT: ON

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECKFILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or ty showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

-•1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: TeleGen2 Ada Development System for the1750A, version

1.1.0

ACVC Version: 1.9

Certificate Number: 890111WI.09163

Host Computer:

Machine: IBM 3083 JX

Operating System: VM/HPO 4.2

Memory Size: 32 Megabytes

larget Computer:

Machine: MIL-STD-1750A (ECSPO RAID) on

a MicroVAX II

Operating System: VMS Version V5.0

Memory Size: 10 Megabytes

Communications Network: Magnetic Tape Media

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

Universal integer calculations.

An implemertation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See tests
D4A0O2A, D4A0O2B, D4AO04A, and D4AO04B.)

Predefined types.

This implementation supports the additional predefined types
LONG INTEGER and LONGFLOAT in the package STANDARD. (See tests
B86051C and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERICERROR or CONSTRAINTERROR during execution. This
implementation raises NUMERICERROR during execution. (See test
E24101A.)

Expression evaluation.

Apparently some default initialization expressions for record
components are evaluated before any value is checked to belong to
a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2-2

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision and all
extra bits for extra range. (See test C35903A.)

Sometimes NUMERIC ERROR is raised when an integer literal operand
in a comparison or membership test is outside the range of the
base type. (See test C45232A.)

No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base
type. (See test C45252A.)

Apparently underflow is gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round away
from zero. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away from zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
C4A014A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAX INT components raises NUMERIC ERROR when the second
dimension of a two-dimensional array is the-large one. Otherwise,
nc exception is raised. (See test C36003A.)

No excertion is raised when an array type with INTEGER'LAST + 2
compo..- . ii declared. (See test C36202A.)

No e3 .ion is raised when an array type with SYSTEM.MAXINT + 2
componerts .s declared. (See test C36202B.)

A pa ked BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises no exception. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT ERROR when the length of a dimension
is calculated and exceeds INTEGER'LAST. (See test C52104Y.)

2-3

CONFIGURATION INFORMATION

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises no exception. (See
test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's sabtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, index subtype
checks appear to be made as choices are evaluated. (See tests
C43207A and C4 3207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

2-4

CONFIGURATION INFORMATION

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C35502I..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C355071..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are not
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
not supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are not supported. (See test
A3900G -)

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is supported for procedures, but not for
functions. (See tests LA3004A, LA3OO4B, EA30041t EA3004D,
CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIAL_ 10 cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT 10 cannot be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101H, EE2401D, and EE2401G.)

The director, AJPO, has determined (AI-00332) that every call to
OPEN and CREATE must raise USE ERROR or NAMEERROR if file
input/output is not supported. This implementation exhibits this
behavior for SEQUENTIALIO, DIRECTIO, and TEXT_10.

2-5

CONFIGURATION INFORMATION

Generics.

Generic unit declarations and bodies can be compiled in separate
compilations, generic unit bodies and their subunits can be
compiled in separate compilations. (See test CA1012A and
CA3011A.)

If a generic unit body or one of its subunits is compiled or
recompiled after the generic unit is instantiated, the unit
instantiating the generic is made obsolete. This obsolescense is
recognized at binding time, and the binding is stopped. (See
tests CA2009C, CA2009F, BC3204C, and BC3205D.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 tests had been withdrawn because of test errors. The AVF
determined that 505 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 285
executable tests that use floating-point precision exceeding that supported
by the implementation and 174 executable tests that use file operations not
supported by the implementation. Modifications to the code, processing, or
grading for 11 tests were required to successfully demonstrate the test
objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 105 1046 1365 17 12 45 2590

Inapplicable 5 5 488 0 6 1 505

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 46 3122

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 184 464 489 245 166 98 141 327 132 36 232 3 73 2590

Inapplicable 20 108 185 3 0 0 2 0 5 0 2 0 180 505

Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

A35902C A74106C ADIAO1A B28003A BC3105A
C34004A C35502P C35904A C35904B C35A03E
C35AO3R C37213H C37213J C37215C C37215E
C37215G C37215H C38102C C41402A C45332A
C45614C C85018B C87BO4B CC1311B CE2401H
CE3208A E28005C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 505 tests were inapplicable for the
reasons indicated:

C35508I..J (2 tests) and C35508M..N (2 tests) use enumeration
representation clauses for boolean types containing
representational values other than (FALSE .> 0, TRUE -> 1). These
clauses are not supported by this compiler.

C35702A uses SHORTFLOAT which is not supported by this
implementation.

3-2

TEST INFORMATION

A39005B uses length clauses with SIZE specifications for
enumeration types which are not supported by this compiler.

A39005G uses a record representation clause which is not supported
by this compiler.

The following 14 tests use SHORT INTEGER, which is not supported
by this compiler:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55BO9D

C45231D requires a macro substitution for any predefined numeric
types other than INTEGER, SHORT INTEGER, LONG INTEGER, FLOAT,
SHORTFLOAT, and LONGFLOAT. This compiler does not support any
such types.

C45531M..P (4 tests) and C45532M..P (4 tests) use 48-bit
fixed-point base types which are not supported by this compiler.

C4AO12B has been ruled inapplicable to this implementation by the
AVO on the grounds that a dead variable is optimized out, causing
the test to print a failed message.

B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXTIO.

CA2009C, CA2009F, BC3204C, and BC3205D instantiate generic units
in compilation units whose bodies are compiled after the
instantiation, or are recompiled after compilation of the
instantiating unit. This implementation creates an allowable
dependency on the body of the generic unit, and thus rejects the
program at bind time.

CA3004F, EA3004D, and LA3004B use the INLINE pragma for functions,
which is not supported by this compiler.

AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types
having discriminants without defaults. These instantiations are
rejected by this compiler.

AE21O1H, EE240ID, and EE2401G use instantiations of package
DIRECT 10 with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected

3-3

TEST INFORMIATION

confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 9 Class B tests and 2 Class C tests.

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B27005A B28001R B28001V BA3006A BA3006L

BA3007B BA3008A BA3008B BA3013A

Tests C45651A and C46014A were graded using a modified evaluation criteria.

C45651A requires that the result of the expression in line 227 be in the
range given in line 228, this range excludes some acceptable results. This
implementation passes all other checks of this test, and the AVO ruled the
test is passed.

C46014A contains an assignment that is intended to raise an exception.
This implementation performs an optimization--given that the assignment is
to a dead variable--and thus does not raise the exception. Because the
optimization only affected on check in the test, the AVO ruled that the
test should be graded as passed, as all other checks produced the expected
results and the test objective was met.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the TeleGen2 Ada Development System for the 1750A, version 1.1.0 was
submitted to the AVF by the applicant for review. Analysis of these
results demonstrated that the compiler successfully passed all applicable

tests, and the compiler exhibited the expected behavior on all inapplicable
tests.

3.7.2 Test Method

Testing of the TeleGen2 Ada Development System for the 1750A, version 1.1.0
using ACVC Version 1.9 was conducted on-site by a validation team from the
AVF. The configuration consisted of an IBM 3083 JX host operating under
VM/HPO 4.2, and a MIL-STD-1750A (ECSPO RAID) on a MicroVAX II target
operating under VMS, Version V5.0.

A magnetic tape containing all tests except for withdrawn tests and tests

requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of

3-5

TEST INFORMATION

implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded onto an IBM 3083 (VM/CMS).
After the test files were loaded to disk, the full set of tests was
compiled and linked on the IBM 3083 JX, and all executable tests were run
on the MIL-STD-1750A (ECSPO RAID) on a MicroVAX II. Object files were
linked on the host computer, and executable images were transferred to the
target computer via magnetic tape. Results were printed from the host
computer, with results being transferred to the host computer via magnetic
tape.

The compiler was tested using command scripts provided by TELESOFT, Inc.
and reviewed by the validation team. The compiler was tested using all
default option settings except for the following:

Option I Switch Effect

PKG1750 fname Used to compile more than one Ada source file
in a single compilation session. (The command
accepts either an Ada program file or a file
containing a list of files containing compilation
units.) If fname is not FILELIST, then it is
considered to be an Ada source file.

FILE Keeps a console listing for each main unit in
in separate files. The files are given the file
type OUT and the same file name as the Ada source
file.

NOAPPRENTICE The user is not using extended memory, and the
apprentice will not be run. The apprentice aids
user in allocating physical and logical memory
and produces a binder options file.

ERR/LIST Creates a listing file only when errors are
(non B tests) encountered. The file contains compile-time error

messages interspersed with the source code.

LIST/ERRI Produces a compilation source listing. Semantic
(B tests) errors, syntax errors, and warnings are inter-

spersed.

NOKEEP Does not spool the console output to the current

spool virtual device.

NOMAP Suppresses the production of the linkage map file.

OPT/AUTO Invokes optimizer and controls automatic inlining
of subprograms.

NOPRESERVE Specifies that the compilation units contained in

3-6

TEST INFORMATION

the source file will not subsequently be optimized
as part of a collection.

NOSUPPRESS Does not suppress run-time checks in the generated
code.

NOXCEFTION INFO Does not enable run-time display of the full
textual name of an exception defined the ada unit
if the exception is raised and not handled.

Tests were compiled, lii.ked, and executed (as appropriate) uzing a single
host computer and four target computers. Test output, compilation
listings, and job logs were captured on magnetic tape and archived at the
AVF. The listings examined on-site by the validation team were also
archived.

3.7.3 Test Site

Testing was conducted at San Diego CA and was completed on 18 January 1989.

3-7

APPENDlIX A

DECLARATION OF CONFORMANCE

TELESOFT, Inc. has submitted the following Declaration of Conformance
concerning the TeleGen2 Ada Development System for the 1750A.

A-1

DECLARATION OF CONFORMANCE

Compiler Implementor: TELESOFT
Ada Validation Facility: Ada Validation Facility. ASD SCEL,

Wright-Patterson AFB OH 45433-6503
Ada Compiler Validation Capability (ACVC). Version 1.9

Base Configuration

Base Compiler Name: TeleGen2 Ada Development System for the 1750A,
Version: 1. 1.0

Host Architecture ISA: IBM 3083 JX OS&VER *: VM/HPO, Version 4.2

Target Architecture ISA: MIL-STD-1750A (ECSPO RAID) on a MicroVAX II
OS & VER #: VMS, Version V5.0

Implemnent or's Declaration

1. the undersigned, representing TELESOFT, have implemented no deliberate extensions to the

Ada Language Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this declaration. I
declare that TELESOFT is the owner of record of the Ada language compiler(s) listed above and,

as such. is responsible for maintaining said compiler(s) in conformance to ANSI/MIL-STD-
1815A. All ,pertifictes and registrations for Ada language compiler(s) listed in this declaration
shall be deonlyi% the owner's corporate name.

I ____ Date:

Raymond A. Parra. Director, Contracts & Legal

Owner's Declaration

I. the undersigned. reprcsenting TELESOFT. take full responsibility for implementation and
maintenance of the Ada compiler(s) listed above, and agree to the public disclosure of the final

Validation Summary Report. I further agree to continue to comply with the Ada trademark

policy, as defined by the Ada Joint Program Office. I declare that all of the Ada language

compilers list .and" their host/target performance, are in compliance with the Ada Language
Standard AN. 'MIL-STD-1815A.

T~tO~~U ~Date:LI
TELSOdrF--T- --r- t
Raymond A. Parra, Director, Contracts & Legal

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristins of
the , TeleGen2 Ada Development System for the 1750A, Version 1.1.0, are
described in the following sections, which discuss topics in Appendix F of
the Ada Standard. Implementation-specific portions of the package STANDARD
are also included in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;

type LONGINTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -1.0"(2E127) .. 0.9999998"(2E127);
type LONG FLOAT is digits 9 range -1.0'(2E127) .. 0.999999"(2E127);

type DURATION is delta 2#1.0#E-14 range -86400 .. 86400;

end STANDARD;

B-i

APPENDIX F

1. Predefined Progma

pragma LIST(ONJOFF);
It may appear anywhere a pragma is allowed. The pragma
has the effect of generating the source compilation.
The listing will begin at the first pragma list(ON)

:statement if no previous pragma list(OFF) statement
was encountered. Otherwise, the listing will begin
at the top of the source.

Implementation Dependent Pragmas

pragma COMMENT(<stringjlteral>);
It may only appear within a compilation unit.
The pragma comment has the effect of embedding the given
sequence of characters in the object code of the compilation unit.

pragma LINKNAME(<subprogram-name>, <string-literal>);
It may appear in any declaration section of a unit.
This pragma must also appear directly after an interface pragma
for the same <subprogram name>. The pragma linkname has the
effect of making string-literal apparent to the linker.

pragma INTERRUPT(Function Mapping);
It may only appear immediately before a simple accept statement,
a while loop directly enclosing only a single accept statement,
or a select statement that includes an interrupt accept alternative.
The pragma interrupt has the effect that entry calls to the
associated entry, on behalf of an interrupt, are made with a
reduced call overhead.

2. Implementation Dependent Attributes

There are no implementation dependent attributes.

3. Specification of Package SYSTEM

Package system Is

Type address Is Private;
null-address : Constant address;

Subtype physicaladdress Is long-integer Range 16#0#..16#FFFFF#;

Subtype targetjlogicaladdress Is address;

Subtype target-address-state Is integer Range 0..15;

Type subprogram-value Is
Record
logicaladdress : targetlogical address;
addressstate : targetaddressstate;

B-2

parametersize : natural;
static-base : targetjlogicaladdress;

End Record;

Type name Is (telesoftada);

systemname : Constant name := telesoftada;
storage_unit : Constant 16;
memorysize : Constant : 65536;
min-int : Constant -(2147483648);
max-int : Constant : (2147483648) - i;
maxdigits : Constant 9;
max_mantissa : Constant 31;
finedelta : Constant : 1.0 / (2 ** (max_mantissa - 1));
tick : Constant : 0.0001;

Subtype priority Is integer Range 0._.15;

maxobjectsize : Constant maxint;
max_record_count : Constant : max_int;
max_text_io_count : Constant : max-int-l;
max_text_io_field : Constant 1000;

Private

Type address Is Access integer;
nulladdress : Constant address := null;

End system;

4. Restrictions on Representation Clauses

The Compiler supports the following representation clauseL

Length clauses: for enumeration and derived integer types 'SIZE
attribute for values greater than 15 (LRM 13.2(a))

Length clauses: for access types 'STORAGE_SIZE attribute (LRM13.2(b))
Length clauses: for tasks types 'STORAGE_SIZE attribute (LRM 13.2(c))
Length clauses: for fixed point types 'SMALL attribute (LRM13.2(d))
Enumeration clauses: for character and enumeration types other than

character and boolean (LRM 13.3)
Record representation clauses: for MOD 8 sized objects (LRM 13.4)
Address clauses: for objects and entries (LRM 13.5(a)(c))

This compiler does NOT support the following representation clauses:

Enumeration clauses: for boolean (LRM 13.3)
Length Clauses: for enumeration and derived integer types 'SIZE

attribute less than 16 (LRM 13.2(a))
Record representation clauses for: non-MOD 8 sized objects (LRM 13.4)
Address clauses: for subprograms, packages, and tasks (LRM 13.5(b))

Note: The IBM 1750A compiler contains a restriction that allocated
objects must have a minimum allocation size of 16 bits.

B-3

5. Implementation dependent naming conventions

There are no implementation-generated names denoting implementation
dependent components.

6. Expressions that appear In address specifications are interpreted

as the first storage unit of the object.

7. Restrictions on Unchecked Conversions

Unchecked conversions are allowed between any types unless the target
type is an unconstrained record or array type.

8. I/0 Package Characteristics

Instantiations of DIRECT_I0 and SEQUENTIALIO are supported with
the following exceptions:

* Unconstrained array types.

* Unconstrainted types with discriminants without default
values.

* In DIRECTIO the type COUNT is defined as follow:

type COUNT is range 0..2_147_483_647;

* In TEXT_10 the type COUNT is defined as follows:

type COUNT is range 0..2_1474_83_645;

* In TEX _IO the subtype FIELD is defined as follows:

subtype FIELD is INTIEGER range 0..1000;

9. Definition of STANDARD

STANDARD is not an Ada package with a specification in our implemen-
tation. Our compilation system does not compile any source corre-
sponding to the predefined package STANDARD. In fact, STANDARD cannot
generally be written fully using standard Ada because the definitions
of predefined numeric types like INTEGER and FLOAT require specifics-
tion of properties that cannot be defined by means of Ada type decla-
rations. It would probably be more appropriate for the AVO to request
implementations to provide the names of all predefined numeric types
and the values of their various attributes instead of asking for some
artificially constructed source for STANDARD, especially since the
predefined numeric types are the only declarations of allowed vari-
ation within the package. The generation of package STANDARD in our
implementation is achieved by means of a special text file that spec-
ifies the names and certain attribute values for the various numeric
types supported by the target configuration.

For this target system the numeric types and their properties are as
follows:

4 B-4

Integer types:

INTEGER

size 16
first = -32768
last +32767

LONG_INTEGER

size = 32
first = -2147483648
last = +2147483647

Floating-point types:

FLOAT

size = 32
digits = 6
'small = 2.58494E-26

'large = 1.93428E+25
'first = -1.0*2"127
'last = .9999998*2*"127
machineradix = 2
machine-mantissa = 24
machineemin = -128
machine_emax = +127

LONG_FLOAT

size = 48
digits = 9
'small = 1.89410711E-40

'large = 8.50238710E+34
'first = -1.0*2"127
'last = .999999*2**127
machineradix = 2
machinemantissa = 39
machineemin = -128
machine_emax = +127

Fixed-point types:

SHORTFIXED

size = 16
delta = 2#1.0#e-15
first = -1.00000
last = +1.0 - 2#1.0#e-15

FIXED

B-5

size = 32
delta = 2#I.0#e-31
first = -1.00000
last = +1.0 - 2#1.0#e-31

DURATI ON

size = 32
delta = 2#1.0#e-14
first = -86400
last = +86400

B-6

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIG _DI (l..199 => 'A', 200 => '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 (1..199 => 'A', 200 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (l..100 => 'A', 101 => '3',
Identifier the size of the 102..200 => 'A')
maximum i.nput line length with
varying middle character.

$BIGID4 (..100 => 'A t , 101 => '4',
Identifier the size of the 102..200 => 'A')
maximum input line length with
varying middle character.

$BIGINT LIT (1..197 => '0', 198..200 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-I

TEST PARAMETERS

Name and Meaning Value

$BIGREAL LIT (1..194 => '0', 195..200 => "69.0E1")

A universal real literal of

value 690.0 with enough leading

zeroes to be the size of the
maximum line length.

$BIGSTRINGI (1 => "', 2..101 => 'A', 102 => '"')

A string literal which when
catenated with BIG STRING2

yields the image of BIGIDI.

$BIGSTRING2 (1 => "', 2..100 => 'A', 101 > '1',

A string literal which when 102 => "')
.catenated to the end of
BIG STRING 1 yields the image of
BIG IDI.

$BLANKS (1..180 => '

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT .LAST 2147483645
A universal integer

literal whose value is

TEXT IO.COUNT'LAST.

$FIELDLAST 1000
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FILENAMEWITHBADCHARS "X %! #&[Y"
An external file name that
either contains invalid
characters or is too long.

$FILE NAME WITH WILD CARD CHAR "XYZ*"

An external file name that
either contains a wild card
character or is too long.

$GREATERTHAN DURATION 100000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

C-2

TEST PARAMETERS

Name and Meaning Value

$GREATER THAN DURATION BASE LAST 131073.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGAL EXTERNAL FILENAMEI "BAD-CHARACTER*%"
An external file name which
contains invalid characters.

$ILLEGALEXTERNALFILENAME2 (1..256 => 'A')
An external file name which
is too long.

$INTEGERFIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGER LAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLASTPLUS_1 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESSTHANDURATION -100000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THAN DURATION BASE FIRST -131073.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$MAXDIGITS 9
Maximum digits supported for
floating-point types.

$MAXINLEN 200
Maximum input line length
permitted by the implementation.

$MAXINT 2147483647
A universal integer literal
whose value is SYSTE4.MAXINT.

$MAXINT PLUS 1 2147483648
A universal integer literal
whose value is SYSTEM.MAXINT 1.

C-3

TEST PARAMETERS

Name and Meaning Value

SMAX LEN INTBASEDLITERAL (1..2 => "2:", 3..197 :> '0',

A universal integer based 198..200"11:")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAX LEN REALBASED LITERAL (1..3 => "16:", 4..196 => '0',
A universal real based literal 197..200 => "F.E:")
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAXSTRING LITERAL (1 => 1"', 2..199 => 'A', 200 => '"');
A string literal of size

MAX IN LEN, including the quote
characters.

$MININT -2147483648
A universal integer literal
whose value is SYSTEM.MIN INT.

$NAME NOSUCHTYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG FLOAT, or LONGINTEGER.

$NEGBASEDINT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 27 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) incorrectly follows a
later declaration.

" E28005C: This test requires that "PRAGMA LIST (ON);" not
appear in a listing that has been suspended by a previous
"PRAGMA LIST (OFF);"; the Ada Standard is not clear on this
point, and the matter will be reviewed by the AJPO.

" C3004A: The expression in line 168 yields a value outside
the range of the target type T, but there is no handler for
CONSTRAINTERROR.

" C35502P: The equality operators in lines 62 and 69 should be
inequality operators.

" A35902C: The assignment in line 17 of the nominal upper
bound of a fixed-point type to an object raises

CONSTRAINT ERROR, for that value lies outside of the actual
range of the type.

C35904A: The elaboration of the fixed-point subtype on line
28 wrongly raises CONSTRAINTERROR, because its upper bound
exceeds that of the type.

C35904B: The subtype declaration that is expected to raise
CONSTRAINT ERROR when its compatibility is checked against
that of various types passed as actual generic parameters,

may, in fact, raise NUMERIC ERROR or CONSTRAINTERROR for
reasons not anticipated by the test.

D-1

WITHDRAWN TESTS

" C35AO3E and C35A03R: These tests assume that attribute
'MANTISSA returns 0 when applied to a fixed-point type with a
null range, but the Ada Standard does not support this
assumption.

" C37213H: The subtype declaration of SCONS in line 100 is
incorrectly expected to raise an exception when elaborated.

" C37213J: The aggregate in line 451 incorrectly raises
CONSTRAINTERROR.

" C37215C, C37215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with
type CONS.

" C38102C: The fixed-point conversion on line 23 wrongly
raises CONSTRAINTERROR.

C41402A: The attribute 'STORAGESIZE is incorrectly applied
to an object of an access type.

C45332A: The test expects that either an expression in line
52 will raise an exception or else MACHINEOVERFLOWS is
FALSE. However, an implementation may evaluate the
expression correctly using a type with a wider range than the
base type of the operands, and MACHINEOVERFLOWS may still be
TRUE.

C45614C: The function call of IDENTINT in line 15 uses an
argument of the wrong type.

A74106C, C85018B, C87B04B, and CC1311B: A bound specified in
a fixed-point subtype declaration lies outside of that
calculated for the base type, raising CONSTRAINT ERROR.
Errors of this sort occur at lines 37 & 59, 142 & 143, 16 &
48, and 252 & 253 of the four tests, respectively.

BC3105A: Lines 159 through 168 expect error messages, but
these lines are correct Ada.

AD1AO1A: The declaration of subtype SINT3 raises
CONSTRAINTERROR for implementations which select INT'SIZE to
be 16 or greater.

" CE2401H: The record aggregates in lines 105 and 117 contain
the wrong values.

" CE3208A: This test expects that an attempt to open the
default output file (after it was closed) with mode IN FILE
raises NAME ERROR or USEERROR; by Commentary AI-0048,
MODEERROR should be raised.

D-2

