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POLYNOMIAL APPROXIMATION OF FUNCTIONS OF MATRICES
AND ITS APPLICATION TO THE SOLUTION OF
A GENERAL SYSTEM OF LINEAR EQUATIONS

Hillel Tal-Ezer*

Raymond and Beverly Sackler Faculty of Exact Sciences
Tel-Aviv University

Israel

and
Institute for Computer Applications in Science and Engineering

Abstract
Frequently, during the process of solving a mathematical model numerically, we end

up with a need to operate on a vector v by an op.grator which can be expressed as f(A)
while A is N x N matrix (ex: exp(A), sin(A), A- ) . Except for very simple matrices, it is
impractical to construct the matrix f(A) explicitly. Usually an approximation to it is used.
In the present research, we develop an algorithm which uses a polynomial approximation
to f(A). It is reduced to a problem of approximating f(z) by a polynomial in z while
z belongs to the domain D in the complex plane which includes all the eigenvalues of
A. This problem of approximation is approached by interpolating the function f(z) in a
certain set of points which is known to have some maximal properties. The approximation
thus achieved is "'almost best.' Implementing the algorithm to some practical problems is
described. {

Since a solution to a linear system Az = b is z = A-Ib, an iterative solution to it can
be regarded as a polynomial approximation to f(A) = A- 1 . Implementing our algorithm
in this case is described too.

* Research was supported under the National Aeronautics and Space Administration
under NASA Contract No. NAS1-18107 while the author was in residence at the Institute
for Computer Applications in Science and Engineering (ICASE), NASA Langley Research
Center, Hampton, VA. 23665.Additional support was provided by the Air force Office of
Scientific Research grant No. AF850303 and APOSR 85-0189.

£ -



I. Introduction.

Let A be a N x N matrix whose elements belong to C, and f(z) is a function such

that
f(z) : C -C. 1

The matrix f1(A) can be defined in the following way: If

00

f(Z) =Z ,(z - zo)' Iz - zol < r (1.2)
i=o

then

1(A) = a (A- zol)' IAk - ZoI <r (1.3)

where Ak is an eigenvalue of A. In (1.3), f(A) is expressed as an infinite polynomial. It can

be shown [Gant 591 that f(A) as defined above can be written also as a finite polynomial

of degree < N - 1 as follows:

f(A) = t [f(Ak)H'kl(A) + - + .J.)(Ak)Hk.(A) (1.4)

where
Ak - an eigenvalue of A

k - multiplicity of A (1.5)
Hkj(A) - polynomial in A of degree < N - 1

In many practical applications, we would like to compute a vector w which results

from operating with the matrix f(A) on a vector v

w = [f(A)]v . (1.6)

Using expression (1.4) for this purpose has two rwaior disadvantages:

(a) The exact knowledge of the eigenvalues is req-: A4.

(b) f(A) is expressed as a polynomial of degree < N- 1 which can be large; thus it results

in an highly time consuming operator.

In this paper, we would like to present an algorithm which approximates the matrix 1(A)

by a polynomial Pm.(A), where m << N. Since (1.4), we have 0

Em(A) f -(A) - P,(A) = 2 [E(Ak)Hki(A) +" + E(-1) (Ak)Hkj, (A)] (1.7)
k= 1

Codes
1 f v11 and/orDl SpoI MjI
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while

E(z) -f(z) - Pm(z). (1.8)

Hence, our problem is reduced to a problem of approximating the function f(z) by a

polynomial P,,(z) while z belongs to a domain in C which includes all the eigenvalues of

A. It is obvious from (1.7) that in the case where j1" > 1, P,-t) has to approximate

f-(i- 1) at the point A,.

In Section 2, we describe briefly how to approach this problem of approximation. Using

the results of this section we can construct a computational algorithm, once a suitable

conformal mapping function is known. In very few cases, it is possible to get this function

analytically. Usually we have to resort to a numerical method. A lot has been done in this

area of conformal mapping and there are suitable routines. In our work, we have used a

set of routines written by N. Trefethen based on his paper [Tref8O], which are very efficient

and reliable. The interested user can get the routines from the author upon request. The

algorithm which results from making use of the approximating polynomial is presented in

Section 3. In Section 4, we deal with the rate of convergence of the suggested method. Few

examples of mathematical models for which the new algorithm can be implemented. are

given in Section 5. The numerical solution of a system of linear equations Ax = b where

A is a general nonsymmetric matrix can be regarded as a particular case of our problem

where the function which has to be approximated is f(z) = 11z. Section 6 is devoted to this

subject. Using tools from the theory of approximation in the complex plane for inverting

nonsymmetric matrices has been studied already by other researchers. A few of them

are: T. Manteuffel [Mant77], [Mant78I, D. Smolarski and P. Saylor [SmSa85J, Cutknecht

[Gutk86], Y. Saad [Saad87],and others. The algorithm discussed in our paper gains its

simplicity from the fact that it is based on the powerful tool of interpolation. Thus, it can

be implemented in a straightforward way, once the conformal mapping function is known.

An important conclusion of the analysis is that for the general nonsymmetric case, the

significant factor which governs the rate of convergence of most of the iterative algorithms

is not the well known condition number hAil. IiA-111. It is shown that the relevant factor

is p/R where p is a parameter which measures the size of the domain and R is related to

the orientation of the domain with regard to the singular point of the function . (z = 0).
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Based on this conclusion it is shown that some iterative algorithms, like standard SOR,

are based on an incomplete optimization process. We conclude this paper in Section 7 by

giving some numerical examples.

2. Polynomial Approximation in the Complax Plane

Let D be a bounded closed continuum in C such that the complement of D is simply

connected in the extended plane and contains the point at oo. Define now

A(D) - the space of functions which are analytic at every point of D.

7r, - space of complex polynomials of degree _ m.

Then it is well known [SmLe68] that for every f E A(D) there exists P,, E ?r"* such

that

]If- P, Iloo <_ I;If- P"]oo VPm E Irm. (2.1)

From algorithmic point of view, it is relatively complicated to find P,,. In many cases, it

is quite simple to find a polynomial approximation which is "almost" as good as P, . It is

found by projecting A(D) on irm. If S.m is a projection operator

S,: A(D) -- ir, (2.2)

then

f - SM(f) = f- P + S(PAn -f); (2.3)

thus

Ilf - Sn(f)1 1 (1 + IISII)IIf - P .11 (2.4)

If 1ISmhI is reasonably small, regarding Sm(.f) as "almost" as good as P,, is justified. For

example, if D is the unit disc and

Sm(f) f)(0) Zj (2.5)

then (GeMa75]

IISmhI _ 4 -log(m) + 1 + 0(1) . (2.6)



4

If D =a[-, and

Sm (f) E kT k(z) (2.7)
Ak=O

while

Tk(z) = cos(k(cos - z)) (Chebyshev polynomials) , (2.8)

then the bound on I I Sn is exactly the same as in the previous case (2.6). A generalization
to an arbitrary domain D (as defined in the beginning of this section) is given by a Faber

polymomials expansion. Let O(z) be a conformal mapping from z to w which maps the

complement of D to the complement of a disc of radius p such that

lim O() = 1. (2.9)
8-00 Z

p is the logarithmic capacity or the transfinite diameter of D [SmLe68].

If the Laurent expansion at oo of [O(z)]" is

[O(#] = Z" + CM-M-Z + .. .Cz + co + -z +... (2.10)

then Faber polynomial of degree m, Fm(z), which corresponds to the domain D is the

polynomial part of (2.10):

F.(z) = zm + c,_Iz " -l +... + co (2.11)

We have (1 f. [ ,(z)lm
ej = JI R  (2.12)

while R is chosen sufficiently large so that D is contained in the interior of the region

bounded by the circle Iz = R [SmLe68]. Given f E A(D) then

00

f() = akFk(Z). (2.13)
k=O

The coefficients ah are

al, --wk+l
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where O(w) is the inverse of O(z) and r > p is sufficiently small that f can be extended

analytically to . (I, is the closed Jordan region with boundary r, where r, is the image

under P of the circle Iwi = r.) In [Ella83] it was shown how the ci's and ah's can be

computed efficiently using F.F.T. Based on (2.13), the matrix f(A) can be approximated

by Pm(A) where

P.m(A) = aAFk(A) . (2.14)
k=O

When D is an ellipse with axes parallel to the real and imaginary axes,then FA: is the

translated and scaled Chebyshev polynomial T (Mark771; thus it satisfies a simple three

term recurrecnce relation. This recurrence relation enables us to compute

W [- akFk(A) v (2.15)

efficiently. A detailed description of these cases, approximating the operator eA, can

be found in (Tale85], [Tale86], [KoTa86], [TaKo84]. For more complicated domains, Fk

satisfies a k terms rccurrence relation [Ella831; thus from memory point of view it is

impractical to use an algorithm based on (2.15).

This major drawback can be overcome by using a different approach to the approxi-

mating problem. It uses interpolation as the projection operator Smn. Using this tactic we

are confronted with the following question: Which are the interpolating points in D, such

that the interpolating polynomial will be "almost" as good as PA? It is known [SmLe681

that if D is the unit disc, then two possible sets of points are:

(a) zy = 0 j= 1,...,m (zeroes of zm)

(b) The m roots of unity.

In a similar way, for a general domain D, a two possible sets of points are [SmLe681:

(a) the m zeroes of F(z) (2.14a)

(b) z i = =Oy)" = 1, ... , m, while wi are the m roots (2.14b)

of the equation wr = p.

In the first case, it can be shown (GeMa75 that

S. 4 log(m) + 1 + 0(1) (2.15)
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while in the second case

IISIlJ < _log(mn) + 1 + 0(1) . (2.16)
ir

Since, interpolating at z= = ik(w,) j = 0,... ,m does not involve computing Faber poly-

nomials, it is the simplest and most efficient approach to this problem of approximation.

The interpolating polynomial in Newton form is:

P,m(z) =ao+ l(s-zo)+a2(z-zo)(z-zi)+ .+a,(z -zo) ... (z-z,--) (2.17)

where ak is the divided difference of order k

ak = f[zo,...,zkl k =0,...,m. (2.18)

When p ( the logorithmic capacity of D) is large, ai will be very small; thus it is preferable

to make the following change of variables

= z/p. (2.19)

Hence

(=t) = f(z) = f(p. i) (2.20)

and

Pm(=) l(s) (2.21)

where
P,.(it) = bo + bi(it - ito) +.. + bm(i - Zzo)""". (i - =--)(2.22a)

bi -- Ai[o,..., 141 k = 0,...' ,M. (2.22b)

The only difficulty in finding P,.(i) is to get the function O(w). For simple domains,

it is possible to find this function analytically. For more complicated domains one has to

resort to a numerical approach.

When the domain D is a polygon, the mapping function is Schwartz-Cristoffel trans-

formation. In [TrefSO], a very reliable and efficient algorithm for mapping the interior of

the unit disc to the interior of the polygon is described. Since, in our case, the mapping

of the exteriors is needed, the routines should be modified accordingly.
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Separated donaru: In some very important physical phenomenon, we have a situation

where the eignevalues of the matrix A are clustered in two or more separated domains which

can be far apart (for example: stiff O.D.E.'s problems of parazitic waves in meteorological

sciences, spectral methods for nonperiodic boundary values problems, etc.). Hence, the

domain D is a union of k subdomains:

D - uk=D.

In this case, the complement of D is not simply connected any more but just connected.

The basic theory regarding the simply connected case extends to the more general one. A

detailed analysis of this problem is carried out in our next paper. It is shown there that

the interpolating points can be taken as a union of sets of points achieved by considering

each domain separately. In Section 7, we bring some numerical examples of this case.

3. The Algorithms

Based on (2.22), we will approximate the operator f (A) by P.,(A) while

P,(A) =bo1 + b,(A - ioi) + b2(A - ioi)(A -ii)+
•.. + b (& - ,i) -(A _) (

A= (1/p) A

Operating with Pm(A) on a vector v is carried out by the following algorithm

Algorithm 1:
U -V

wJ bo V

Fori=1,...,m do (3.2)

U= (A - iI-_)u

w = w + biu

The output of Algorithm 1 is the vector w which satisfies

W = P'(A)V • (3.3)

Roundoff errors of Algorithm 1 depend strongly on the arrangement of the interpolating

points.
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In Appendix A we describe how to arrange the points, taking into account this phe-

nomenon of ro,~ rdoff errors.

In many practical problems, we have the following situation:

1) A is a real matrix (3.4a)

2) f(Y) = 7-) . (3.4b)

In this case, it is possible to design an algorithm similar to (3.2) which will be carried

out in real arithmetic even so i and bi are complex numbers. This result is based on the

following two theorems:

Theorem 1: Let zo, z1 , z 2 ,72,... , zk be 2k interpolating points where zo and z, are

real numbers. If P2k -I (z),

P2k-t(z) = a0 + az + " ,2 -1z 2k -  (3.5)

is the interpolating polynomial of a function f(z) which satisfies (5.4b) then

aoai,.. .,42k- are real numbers.

Proof. The Lagrange formula of P2k-1(z) is

k k
P2Ak- I.(Z) = 4 (Z)f(z,) + F ,;(Z).f(.,.) (3.6)

where

(Z) = Qk(Z) 0 j=O,...,k (3.7)
t()=Q2k(Z) Z Z

( Qk() (Z)=Q-2%(Z) j=2,...,k (3.8)

k -

Q2h(z) = H(Z - z,) J(Z- TO. (3.9)

Since (3.9) we have

k hQ ' = 1- (z; - z,) 11 (z, - T,) j 0 , .,k (3.10)
0 Zo) i=2
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k
Q'211(TY) = Hj(Tj - zO) IT (7j -YOi j =2,..., k ( 3.11)

Hence
k k

Q'2,1(z) =  (1I -(T i) ; -z1 ) =
O( i3.12)

k k

= I-[ (z- ,) -[(; - z,) = Q2k(7;)
i=0

k k

Q2 ,(Z) = ll (1 11H(JZi) = ]j(Ji)fl(-Zi) (313
i=O i=2 i=2 i=O

=Q2(l)•

Therefore,

-= Q2k(T) 1 =f 1(7) j = 0,k (3.14a)

(Z) = ) 7- = (z), 2 < i < k. (3.14b)

Using (3.4b) and (3.14) in (3.6) we get

k k

P=k-I(z) - !i)f(Jy) + F, ()f(z,) = P2A:l1(z) (3.15)
j=2 j=O

and the proof is concluded.

Theoretically, it is possible to write an algorithm based on (3.5). It means to approx-

imate f(A) by Pm(A) where

Pm(A) = aoI + aA - ... + a,,A m . (3.16)

This algorithm cannot be used for practical problem since huge roundoff errors result. We

would like to stick to the Newton-form which is much more robust from the roundoff errors

point of view. For this purpose, we state and prove the following theorem:

Theorem 2: Let P2k-I (.z) be the interpolating polynomial as defined in Theorem 1, written

in Newton-form

k-I

P2-I,(z) = bo + bi(z - zo) + (z - zo)(z - z1) Hj S,(z)R,(z) (3.17)
i=i
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S1(z) = b2i + b2 +,I (Z -Zi+ ,) (3.18a)

i

R(z) =J (z -z)(z - ,) i=2,...,k-1 (3.18b)
j=2

RI(z) = 1 . (3.18c)

then
k-I

Pk-,(z) = bo + bl(z - zo) + (z - zo)(z - z1) " S (z)Ri-(z) (3.19)
i=1

where
SP (z) b + b ,+, (z - z,+ (3.20a)

b2i- Real (b2i) (3.20b)

bR  = Real (b2 i) - (3.20c)
2i+1 iI ~+

4 = Real (zi+i). (3.20d)

Proof. We have

P2k+=(z) = P2k-l(Z) + (z - Zo)(Z - zl)Sk(z)Rk(z). (3.21)

Define

7r - The set of all polynomials with real coefficients.

Then, by theorem 1

P2k+l(z), P2&-I(z) E 7r

Rk(z) E ir by definition.

Since

S.(z) = [P2k+I(z) - P.- I (z)]I(z - zo)(z - zl)Rk(z) (3.22)

then
S& E w.

Thus

b - b2k+ (3.23)

a I i i/I l il illimili l II I



b2h - b2k+tzk+l bk b +z + (3.24)

and the proof in concluded.

Based on (3.19), the vector w

W [P2k.I(A)]V (3.25)

is computed by the following algorithm:

Algorithm 2.

w= [boI + b1(A - zoI)]v (3.26a)

r = (A - oI)(A - £-1i). (3.26b)

Fori = 1,,...,k- I do:

F = (A -R I I) r (3.26c)

w=w+b~r+bRi F (3.26d)

r - (A - 4+ 11)- (++ -" I)(i+)). (3.26e)

This algorithm requires three vectors. It is possible to save one vector by using an

algorithm based on (3.16). As mentioned previously, this algorithm has the disadvantage

of sensitivity to roundoff errors. Thus,it can be used only with low degree polynomials.

Another possible way of saving one vector and which is much more robust from the roundoff

errors point of view is to apply (3.19) through calculating the roots of P2k-(z). Since

P2k- 1 (z) is a polynomial with real coefficients, we have the following set of roots

A*i As,..., A ,/l, , • •, (3.27)

where

r + 2,= 2k - 1; A, are real . (3.28)

Hence

P2k- I (A) = a (A - Xj) l(A2 - 2ReM~iA + IU, 121) (3.29)
s=1 =1

a- =( - 1  ' rIA,1I(.0

i=I '=I
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Operating with (3.29) requires only two vectors. This approach is limited mainly by the

sensitivity of the algorithm which finds the roots of P2k- 1 (z).

4. Rate of Convergence.

We have the following definitions:

Definition (4.1): Let rR be the image under 0 of the circle jIw = R(R > p) and IR is

the closed Jordan region whose boundary is rR. If f(z) is single valued and analytic on

IR, then the sequence of polynomials Pmn(z) is said to converge to f(z) on Il maximally if

If(z) - P,,(z)l 1 C(plR)m  z E IR (4.1)

where C depends on p/R but not on m or z.

Definition (4.2): The set of interpolating points zi = 0b(wj) is said to be uniformly

distributed on rD (the boundary of D) if wi are equally distributed on the circle IwI = p.

Using these two definitions, we can quote the following [Wals56]:

Theorem: Let D be a closed Jordan region. Let the points #( n ) lie on the boundary

rD of D. A necessary and sufficient condition that the sequence of polynomials Pm(z)

of degree m found by interpolation to a function f(z) analytic on D in the points 6(m)

converges uniformly to f(z) on D is that the points 0( m) be uniformly distributed on rD.

If this condition is satisfied, the sequence Pn(z) converges maximally to f(z) on D.

Given a domain D and a function f(z), p and R are defined explicitly and we have

PIR = the asymptotic rate of convergence.

If f(z) is an entire function, (4.1) is satisfied for arbitrary R. Using Theorem (1),

we can expect that the algorithm described in Section 3 will converge very rapidly for

the approximation of the operator exp(A). On the other end, for the operator A- 1 , the

rate of convergence will depend strongly on the size of D (the parameter p) and on its

orientation with regard to the singular point z= 0 (the parameter R = 10(0)1). Since the

set of interpolating points zi - , (Pei' ) j - 0,..., m - I depend on m, given a
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desired accuracy e, one has to decide a priory on the degree of the polynomial. Deciding

on m can be done in the following ways:

1. Getting the parameters p and R (analytically or numerically) and choosing m such

that

(p/R)' m -. (4.2)

2. Computing the error numerically on a set of check points on the boundary for different

m's, and choosing m which will satisfy the desired accuracy.

Using 1 or 2 gives us information on if(z) - Pm(z)Ioo. Substituting it for Ilf(A) -

Pm (A) 1o is relatively accurate when A is a normal matrix, since in this case we have

Il }i(A) - Pm(A)Ijo. If (z) - P,,n(z)IoIITII-'IITII

= If(Z) - P(z)Ioo

where T and T - ' are the unitary matrices which diagnolize A. When A is "far" from

normality, m should be increased by an amount which depends on fITI"J IT-'II•

5. Applications.

Frequently, while solving a system of O.D.E.'s or P.D.E.'s, we end up with the following

set of differential equations

d
JUN - GNUN = SN(Z,t) (5.1)

UN(O) = trO

where UN and SN are vectors of dimension N and GN is a N x N matrix. Expanding

SN(X, t) as
k

SN (XIt 0 Z:aj M S (X)
'=1

enables us to write the formal solution of (5.1) as

k

UN(t) = exp(CNt)U, + E fi(GNt)S (Z) (5.2)
j=1
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where

i(GNt) = exp(GNr)Ca(t - r)d .r 1 <j < k (5.3)

UN (t) can be approximated by the algorithm discussed in Section 3 where the functions

which have to be interpolated are

fo(z) = exp(tz) (5.4a)

f,(z) = jo exp(zr)a;(t - r)dr 1 _< j: 5 k (5.4b)

In the case where (5.1) is originated from a system of hyperbolic P.D.E.'s, the domain D

is on the imaginary axis (in the constant coefficients case) or close to it (in the variable

coefficients case). When (5.1) is originated from a set of parabolic equations the domain

D is on the negative real axis or close to it. In these two cases, the Faber polynomials are

scaled and translated Chebyshev polynomials. Thus, an efficient algorithm, which makes

use of the three terms recurrence relations, can be implemented. These two cases are

described and treated in details in (Tale86l, [KoTa86], [TaKo84], [Tale85].

In the more general situation, when we have both parabolic and hyperbolic terms in

the equation, the domain D is more complicated. Let us look at the following simple 1 - D

equation

u, = au + bu, + Cuz2  (a < O,c > 0) (5.5)

If the solution is periodic in space, then a good approximation can be achieved by pseu-

dospectral Fourier descretization. We get the following semidiscrete representation of (5.5)

(UN)t = a UN + b(UN)z + c(UN).z (5.6)

where
N

UN= E ah.eik (5.7)
k=-N

is the projected solution. (5.6) can be written as

(UN)t = GNUN (5.8)
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while GN is the finite domain operator

GNv = aI + b ± - +-  a2
GM= a b+ c-. (5.9)

ax 8zX2

The function ei kz is an eigenfunction of GN. Thus, if Ak is an eigenvalue of GN, then

Ah = a - ck2 + ibk IkI N. (5.10)

Since a < 0 and c > 0, we get that the domain D is the following parabola in the complex

plane:

D = {z = z+iylz = a- ck 2; y = bk IkIcIN}. (5.11)

In real applications a, b, and c are not constant, but have space dependence. There-

fore, the domain D will vary accordingly. In section 7 we report on some numerical

experiments treating this problem.

In a joint work with Dr. Dan Kosloff and his colleagues, we investigate the implemen-

tation of the present algorithm to some real geophysical problems which can be represented

as (5.1). The eigenvalues are scattered close to a T shape domain D

D = {zjz EDI U D 2 ; DI = [-a,0J ; D2 = [-ib,ib]}

In this case, we have an analytic expression for O(w). (Thanks to Nick Trefethen.) The

conformal mapping (w) which maps the complement of the unit disc on the complement

of D is:

( w W 1 (5.12)

E =V-+ b2/b

Hence

(w) = (w/p) (5.13)

where
b(1 + E) (5.14)

4

is the logarithmic capacity of D. Numerical results for this domain are presented in section

7.
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A very important area where our method can be implemented is the one of solving general

nonsymmetric systems of equations. This is topic of the next section.

6. Linear System.

The iterative solution to a set of linear equations which can be written in matrix form

Az = b (6.1)

is a well treated problem in the numerical analysis literature. While very efficient algo-

rithms have been developed for the case when A is a symmetric positive definite matrix,

the general nonsymmetric case is still a challenging problem.

In this section, we would describe an iterative algorithm for the solution of (6.1) based

on the new approach. Since

z = A-'b (6.2)

we can write the numerical approximation Xk as

X" = Pk(A)b (6.3)

where Pk(z) is "almost best" approximation to the function 1. z belongs to the domain
X

D which includes all the eigenvalues of A.

In [Mant77], [Mant781, T.A. Manteuffel has described an iterative algorithm based on

enclosing the eigenvalues in ellipses in the complex plane, thus getting an approximation

based on scaled and translated Chebyshev polynomials expansion. The algorithm described

in our paper is more general since it can be implemented to any domain in the complex

plane. Its advantage will be significant when the discrepancy between the best ellipse as

defined in [Mant77] and the domain is relatively large.

A standard approach for solving (6.1) is known as Richardson algorithm. It takes the

following form:

z +1 - - cAk(Ark - I) . (6.4)

If

E k = z - (6.)
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we get

E k -[P;(A)IE °  (6.6)

where
k-I

PZ(A) = 1 (I - aiA) (6.7)
j=0

and a i are optimal in the sense that

max P;(z)I< maxIPk(z)( V Pk E rh (6.8)
xED -zED Ph(O)=I

(Irh is the space of all polynomials of degree k). We would like to show that an algorithm

which results from implementating our approach is equivalent to algorithm based on (6.4)-

(6.8). For this purpose we have

Theorem 3. Let Th(z) be a polynomial of degree k defined on C such that Tk(0) = 1 and

let Qk- (z) be the interpolant of the function I at the roots of Tk then.

1 - z Qk-i(z) = Tk(z) . (6.9)

Proof. We have
1

Qk-l(Zi) = - i= 1,...,k (6.10)
zi

where z is a root of Th. Therefore, the polynomial Rk(z)

Rk(z) = Tk(z) - (1 - z Ql-k z)) (6.11)

vanishes at k + 1 points: 0,z 1,... , z and thus it is identical zero. Hence,

Th(z) = 1 - z Qk-j(z) (6.12)

and the proof is concluded.

If z 0 is the initial guess, we have

Ax0 = b0  (6.13)

A(z - zo) = b- b° (6.14)
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Thus

z= A-'(b - b°) + z° .(6.15)

Approximating A-1 by the interpolant Qk-l(A) results in

zk = Q,-,(A)(b - b) + z°  (6.16)

using (6.5) and (6.14) we get

E" = [I - AQk_-(A)JE ° . (6.17)

Since (6.9), the equivalence is established.

We have shown that using the algorithm based on interpolating the function . at

zl,..., zk will reproduce identical results to Richardson iterations

Zi+l = zJ - aj(AzJ - b) (6.18)

with
1

j = - i = o,...,k - 1. (6.19)
zi

Writing (6.18), (6.19) as an algorithm with real arithmetic takes the following form:

Algorithm 3 (Richardson).

(The parameters are aj = l./z, and zi are defined in Appendix A.)

zi = zo - ao(Az ° - b) (6.20a)

= -- - a1 (Ax1 - b) (6.206)

for i= 1,...,k,

R' = Az 2'- - b (6.21a)

z -i+l = =iI- [2a t - Iai 2AjR' (aR = Re(a,)) (6.21b)

Preconditloning.

Usually, solving a linear system of equations (6.1) is composed of two stages:
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1. Modifying the original system to an equivalent one

Az =b (6.22)

such that (6.22) will converge faster than (6.1).

2. Solving (6.22).

In many cases, we have a family of matrices A which depend on a parameter w such

that

Az = (6.23)

and we would like to choose the optimal w. Based on Section 4, it is obvious that the

significant factor which determines the convergence is

A=- P/R . (6.24)

Optimization is achieved when

PA(woP)I <  1(w)l VW . (6.25)

Therefore, we conclude that for matrices whose eigenvalues are scattered in the complex

plane, one should consider the factor pIR rather than the standard condition number

cond(A) = hJAil 1A- 111. It is possible to have two matrices A and B such that

cond (A) < cond (B) (6.26)

and on the other hand

[p/RI(A) > [p/RI(B) . (6.27)

For example: Let A be a normal matrice whose spectrum r(A) is

r(A) = {zl 1 < ljI < 2; Re z > 0.

Let B be a normal matrice whose spectrum is

r(B) = {zj 1z - 31 < 2}.
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We have
cond(A) = 2

(6.28)

cond(B) = 5.

On the other hand
[plRI(A) = 0.8547

(p/RI(B) = 0.6W (6.29)

Since (6.29), Richardson algorithm for B will converge much faster than for A, even so

cond(B) > cond(A). Based on this discussion, we would like to show also that the standard

S.O.R. procedure can be considered as an incomplete optimization process. Solving (6.1)

by S.O.R., we use the following iterative procedure

-
k+ 1 = Tzk + b, (6.30)

where

k= M 1'b

M= D+wL

X= (1 -w)D - wU .

U, D, L are the lower, diagonal, and upper parts of the matrice A respectively. The

optimal W.or is chosen such that

Ir(T .o,)I = minimal. (6.32)

(r(A) is the spectral radius).

If z is a solution of (6.30), then

Az = b,, (6.33)

where

Aw = I - T, .(6.34)

Thus, it is evident that rather than using an optimization procedure based on (6.32)

one should use the more general one, based on (6.25). A well-known example treated in

the literature for demonstrating the features of S.O.R. is the problem of solving Laplace
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equation in a rectangle. In [Youn7l, p. 2051, it is shown that for a certain discretization

of the rectangle, the optimal w is

Woor = 1.25

In this case, all the eigenvalues Ai of T,, satisfy

j,1A = 0.25.

Hence, the rate of convergence is 0.25. Optimizing with respect to (6.25) can result with

a different solution. We do not intend to carry out this optimization process, but to point

out a different possible parameter w. For this problem, we can choose U

U = 1 + C 0 < e < 0.25

such that the domain D which includes all the eigenvalues of Au- will be

D = Bt u B 2

where
B, = (Ao}

B2 = (ZI Iz - 11 < 6}

and

0 < A0 <1 -C.

Since the complement of D is not a simply connected domain, it is not included in the

theory discussed in this paper. Implementing our approach to these types of domains will

be carried out in a future paper. For the time being, let us mention that the basic results

extend. Thus, since B, is composed of only one point and B 2 is a circle of radius r around

1, it can be shown that the rate of convergence p/R is

p/R(Az7) = c < 0.25

and A0 will enter into the constant C (4.1). The set of interpolating points is the union of

sets of both domains. Since in B1 we have only one point, we will get the following points

AOp 1 ,". ',ft
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while 14 can be chosen as equally distributed on the circle Iz - 11

Aji = e exp(2rii/n ) j = 1, ... ,n

or as the n zeros of Faber polynomial of degree m which is (z - 1)1; thus

J j = 1 j = 1,...,n .

The efficiency of using an algorithm based on U rather then Wor depends on the accuracy

needed, since the constant C has been increased by a factor of 1/Ao.

7. Numericad Results.

I. Time dependent problem-Parabolic type.

In this subsection we present numerical results for the following problem

ut - Cu = S(z,t) (7.1a)

U(z, 0) = 0.

Where a2  a
G = a(x) -L. + b~) + c(z) (7.1b)

S(z,t) = sin(kz) - t {[-k 2a(z) + c(x)lsinkx + kb(x) cosk} . (7.1c)

The exact solution of (7.1) is

u(z,t) = t sin kz. (7.2)

In order to solve (7.1) numerically, we first approximate the space operator G, by the finite

difference operator GN. Assuming periodicity we have

(G-u)j = -u + 1-2u + u-I +b() u'+' - j- + c(xz)uj j-0,...,N- 1(G,= ( )J A=2  2Ax

(7.3)

where N is the number of grid points and

Ax = 2rI/N (7.4)
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zj =j-*A i = o,...,N. (7.5)

Hence GN is a N x N matrix. The semidescrete representation of (7.1) is

(UN)t - GPJUN =SINj + tSN' (7.6a)

)j = 0 j= 0,..., N (7.6b)

(s -) = sin (kz,) i = 0,... , N (7.6c)

(S')i - [ka(x) - c(zj)] sin kzj - kb(zj) coskzj = ,.. .,N. (7.6d)

The formal solution of (7.6) is

uN(t) = fj(GNt)Sk' + f2(GNt)Sk (7.7)

where

fl(GNt) = j exp(GNr)dr -[exp(GNt) - IJ/IN (7.8a)

f 2 (GNt) = exp(GNr)(t - r)dr = [exp(GNt) - GNt - IJ/G. (7.8b)

In order to implement our algorithm we have to get an approximation of the domain D

which includes the eigenvalues of GN. One way to get it is by doing a Fourier analysis of

the constant coefficients operator.

(ONu)j a U j + - 2uj + Ui- 1 + bUJ+t - uji, - CU3  (7.9a)
Az 2  2Az

where

a = max ja(z)I; b= max Ib(z)1; c = max Ic(x)1; or c min lc(z)I.
0<z21r O<z:_2r <z2r<z<2r

(7.9b)

Let vA, be an eigenvector of GN; then

= (7.10)

and

Aks = 2 -~~z 1) -i-Lsi(kA) (7.11A-21 cos(kAz) - Az
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is an eigenvalue of GN.

The tables in this subsection present numerical results for the fully descrete solution

of (7.1) where

k=3

a(x) = 1./(2 + coosx) (7.12)

b(z) =1./(2 + sin(x)) (7.1?'

c(x) = -20./(2 + cos). (7.14)

From (7.11) we get

A <Re Ak<-5B (7.15)
II,,.AkI < C (7.16)

while 4 1 (.7
A= 4 20; B=-20/3; C (7.17)

AX2  Ax

Since

tB-A >C (7.18)

taking ]D as

b {zIA < z < B} (7.19)

will be a relatively good approximation to the domain D. We have

p(D) = (B - A)/4. (7.20)

Hence, in order to implement the new algorithm we have to interpolate the functions

fi(pkt) = [exp(pit) - 11/pi

f2(pOi) = [exp(pit) - pit _]/(p-) 2

at points on 1b.
P

In this case we can take the M interpolating points as the extreme of the scaled and

translated Chebychev polynomial of degree M [Riv1741. Thus

ij [(B - A)i i + B + A] -I,.,
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where

In order to avoid roundoff errors one should arrange the interpolating points as described

in Appendix A. Hence

zi =- [(B - A)zi + B + AI j = 1,...,M (7.21)

where X, = 1 ; 2 -1 (7.22a)

zi = Re(w2 - 3 ) j = 3,... ,M (7.22b)

and W2j-3 are as in Figure (A.1) for the case M = 7.

Since zi are real we can use algorithm 1 (3.2). The next two tables present the

numerical results using algorithm 1 with zy defined by (7.21)-(7.22).

Table 1.

Mesh refinement chart - problem (7.1)

Using algorithm 1. t = 1

N M L2I,,

32 24 .1108-01

64 52 .2592-02

128 112 .7033-03

N - Number of grid points.

M - Number of matrix-vector multiplications (Each evolution operator is approximated

by a polynomial of degree M/2)

L 2 I. - L 2 Error at t = 1.

For sake of comparison we present in Table 2 a similar chart while using a standard

second order in time scheme

U tst2 + AtGNUn + At (t n At). (7.23)



26

Table 2.

Mesh refinement chart - problem (7.1)

Using (7.23) t = 1

N M L 2T4

32 102 .1108-01

64 408 .2729-02

128 1632 .6828-03

(In this case M/2 is the number of time steps.)

Comparing Tables I and 2 we observe that while in the standard second order scheme

(7.23) M is proportional to N2 (which results from the fact that at = O(Az 2 )) for the new

algorithm, M is "almost" proportional to N. This phenomenon is explained and proved

in [Tale 851. For t = 20 we have the following results;

Table 3.

Mesh refinement chart - problem (7.1)

Using algorithm 1 t = 20

N M L21.
32 24 .1322-01

64 52 .3407-02

128 112 .1180-02

Observing Tables 1 and 3 we notice that M does not depend on t. It can be explained

as follows: For large t, j1 exp(GNt)It is much smaller than the error which results from the

space descretization. Thus, since (7.8) we have

fl(GNt) L-11G

f2(GNt) - -(Gp;,t + I.)/G

which means that for large t, approximating fl(Gpjt) is equivalent to inverting GNand

approximating f(GNt) is equivalent to inverting G2,.

N,!
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We did not implement the second order algorithm (7.27) for t = 20, but it is straightforward

(by stability considerations) that for N = 32,64, 128 we have M = 2040,8160,32640

respectively. Hence for t = 20 and N = 128 the new algorithm is more efficient than the

second order scheme by the impressive factor of 32640/112 S 290.

II. Viscoelastic Wave Propogation.

We have worked on this model with the Geophysical group in Tel- Aviv University

headed by Dr. Dan Kosloff. A detailed report on the results for a general 2-D problems

will be published elsewhere. In this subsection we describe the implementation of the

algorithm for the simple 1-D model

Ut = GU 0 < X < L (7.24)

where

G= (mV 0 K U=(u 2  (7.25)

a 0 -1/r U3

aX2 2 (7.26a)

2 [i-(-2.](7.266)

c = 2000 (the speed of sound) (7.26c)

a = c2 (1 - r/j)/n (7.26d)

ul is the pressure,u2 is the pressure time derivative,u3 is a memory variable and r, 17 are

parameters of the problem. The initial data are

u1 (x,0) = exp [1 (x - L)2] (7.27a)

u2(z,0) = u3 (z,0) = 0. (7.27b)



28

The space descretization is done by Fourier method (GoOr8l). Thus the semidescrete

representation in

(UN)t = GNUN (7.28a)

U (X,o) = U'(Z,o) = 0.

PN is the pseudospectral projection operator:

N

PNf= E ah exp[i(22rk/L)xl (7.29)
k=-N

2N-1 Ck -1 for ikl 6 N
a = 2NC-- E Zf(z )exp[-i(27rk/L)zJ (7.30)

i=o CNv CN =2

zx = jAz

j = 0,...,2N- 1 (7.31)

Ax = L/2N

and

GN = PNGPN. (7.32)

(GN is a 6N x 6N matrix.)

In our experiments we took

N =64. (7.33)

Az 20. (7.34)

Thus

L = 2N x A z= 2560. (7.35)

Since N = 64, GN iv a 384 x 384 matrix.

Approximating the domain Dwhich includes the eigenvalues of GN,is done by making

use of the following idea. Let us assume that the number of points K which are needed to

resolve the coefficients of the operator G are relatively small. In this case, decreasing the

space domain by a factor of K/N and using the same Az gives us the matrix GK. Since
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K is small, one can use a library routine to compute the eigenvalues of GK. The domain

DK,which includes this set of eigenvaluesis relatively a good approximation of D. In the

present case GN is a constant coefficient matrix,and the domain D 4 achieved by computing

the eigenvalues of G4 (a 12 x 12 matrix) is exactly the same as D 129. The domain D4 is

D4 = (zz E -a,,01 or z E [-ib,ib} (7.36)

where a and b depend on r, 17. For this domain we have an analytic expression of the

conformal mapping which maps the complement of the unit disc on the complement of D 4

(5.12). The logarithmic capacity is given by (5.14).

We ran two sets of numerical experiments. In the first one we took

r = 0.1600890 x 10 - 3

r7= 0.1582262 x 10 - 3

and we have gotten

a = 6320 b = 317.

Using algorithm 2 (3.26) for computing the solution at time level t = 0.1 results in

N M L21,

128 130 .1588-02

128 150 .2904-05

(Since we do not have an analytic expression for the exact solution, we computed

L21I, by comparing the numerical solution to another numerical solution achieved by using

algorithm 2 with M 300.) Similarly, using the second order in time algorithm (7.23)

results in

[N M L2 T,

128 632 .1902-1

(For M < 632 the scheme is unstable.)
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In the next experiment we took

r = 0.1600890 X 10- '

= 0.1582262 x 10 - 4

and we have gotten

a = 63201 b =317.

The results at t = .1 were

N M L21,1
WN

128 400 .2200-02

128 450 .1096-04

While using (7.23) results in

N M L2Ta

128 6320 .1892-3

(For M < 6320 the scheme in unstable.)

ITM. Linear Systems.

For the numerical experiments reported in this subsection, we have used a test matrix

AmXM which is block diagonal. Each block is of the following shape

a-c b,)
-C; (7 37)

Hence, the eigenvalues are

Ai = a ilbici. j -1,..., N/2. (7.38)

• • i! ! ! I
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Two kinds of experiments have been carried out:

by= ci =o the matrix is normal.

b, # ci =o the matrix is not normal.

We solve

Av = w (A is a 1000 x 1000 matrix) (T.39)

where

V = [v1,..., vioo] T

and

(-W 0,...,0 (7.40)

and the initial guess v° is such that

V9 = 0 =0,...,ooo. (7.41)

Three methods have been tested:

(1) 1,, - the method described in this paper

(2) Cb - Chebyshev approach (Mant78)

(3) M, - Minimum residual.

The minimum residual algorithm is defined as follows:

Given initial guess z ° for k = 0,1,..., until satisfied do

rk = Azk - b

Ck = (rk, Ark) / (Ark, Ark)

zk+1 zk _ 0krk
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1. First case - Cross shaped domain.

In [SmSaS5j, the authors treat an example given by Hageman [HaYo811 which orig-

inates from the solution of the neutron diffusion equation, where the eigenvalues of the

Jacobi iteration matrix may be shown to lie on a the following Cross-shaped domain D:

(b, 1)

(b-1, 0) (b,0) (b+l, 0) Re z

(b ,-1)

The conformal mapping from the exterior of the unit disc to the exterior of D is

(7.42)

Since (7.42) we get that
P= / . (7.43)

Thus the mapping function from the exterior of disc of radius p to the exterior of D is

2(w) (4b + 4W2  ) (T--4

Since
R = €"01(7.45)

we have

R [b+(b2 .']l (7.46)

Using (7.43) and (7.46) we get that the asymptotic rate of convergence is

I = [b + (b- C)/ / 7.47)

According to the theory (4.1)

I(z) - PM(z)l < C(plR) M ; (7.48)
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thus we can predict that after M iterations, the accuracy (in the normal case) will be

L 2Error(I) 5 (p/R)M . (7.49)

An improved prediction, which includes the constant C is:

M
L2 Error(I) = C(p/R)M " 11(1 - ±) (7.50)

t=1

where z is any point at the domain D and zi are the interpolating points.

(In the next two tables we have chosen z = (b, 0).)

The numerical results are

Table 7.

Solution of (7.39) with b = 1.004

M (p/R)M' C(p/R)" L2Error (I,) L 2Error (C,) L 2Error (Mr)

Normal N. Normal Normal N. Normal Normal N. Normal

102 1.575-3 3.16-3 3.87-3 1.02+0 1.85-1 9.32+0 9.67-2 6.55+0

201 2.8-6 5.63-6 6.9-6 4.41-3 1.04-1 10.31+0 5.37-2 7.34+0

402 9.0-12 1.8-11 2.2-11 2.29-8 3.9-2 7.65+0 1.9-2 7.13+0
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Table 8.

Solution of (7.39) with b = 1.1

M (p/R)M C(p/R)M  L2 Error (I,,) L 2 Error (Cb) L 2 Error (M,)

Normal N. Normal Normal N. Normal Normal N. Normal

10 4.13-2 8.99-2 1.10-1 9.69-1 1.9-1 9.9-1 1.57-1 8.0-1

22 9.03-4 1.8-3 2.22-3 6.37-2 5.01-2 5.56-1 4.07-2 4.29-1

42 1.5-6 3.1-6 3.8-6 2.82-4 6.34-3 1.33-1 5.1-3 9.98-2

82 4.5-12 9.0-12 1.1-11 2.15-9 1.2-4 4.81-3 9.4-5 .3.27-3

2. Second Case - Boomerang shape domain.

Another example reported in [SmSa85] is Van der Vorst's example. Let M be the

matrix arising from the descretization of the P.D.E. operator utz + u., + /I u. + 32u, and

letK be the incomplete Choleshey factorization; then the eigenvalues of the preconditioned

matrix K-M, are sometimes observed to form the following boomerang-shaped profile

(1,4) (3,4)

(5,0) (7,0) Re z

(1,-4) (3,-4)

Since, in this case we do not have an explicit expression for the conformal mapping,

we have used numerical algorithm [Tref8Sl for computing the interpolating points zi. The

predicted accuracy is
M

C(plR) M H"(1 - -) (7.51)
i=&P
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while

z= (6,0) . (7.52)

Table 9 summarizes the results of this case.

Table 9.

M C(p/R) L 2Error (I,,) L2 Error (Cb) L 2Error (M,)

Normal N. Normal Normal N. Normal Normal N. Normal

20 1.23-4 5.4-4 8.8-4 1.18-1 1.33-1 2.42-1 2.35+0

40 7.58-8 2.36-7 5.14-7 4.3-2 5.8-2 1.13-1 2.35+0

60 3.78-11 1.03-10 3.05-10 1.71-2 4.24-2 5.59-2 2.35+0

In the next experiment we have shifted the domain to the left.
f(0, 4) (2,4)

(4,0) (6,0) Re z

(0,-4) (2,-4)

According to the theory, the two methods: C6b and M, would not converge in this case.

Table 10 verified this fact.
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Table I0.

M C(p/R) L 2Error (I.) L 2Error (Cb) L 2Error (M,)

Normal N. Normal Normal N. Normal Normal N. Normal

20 1.58-3 6.65-3 1.08-2 1.15+0 1.31+0 7.09-1 3.62+0

40 1.22-5 3.8-5 8.25-5 4.93+0 6.67+0 6.76-1 3.62+0

60 7.91-8 2.16-7 6.38-7 23.0+0 56.9+0 6.58-1 3.62+0

3. Third Case - disjoint intervals.

As mentioned previously (Section 2), since the complement of D is not simply con-

nected anymore one should use a slightly different theory. In a future paper we will carry

out a detailed analysis.

In this subsection we report on a few experiments where D is

D = I, u 12 (7.53)

It = [atazl ; 12 = [as,a 4] (7.54)

at < a2 < as < a 4 . (7.55)

The interpolating points are

1, ,2,.. . ' Z I, Z2 ... I(7.56)

where

g = [(a 2 -at)cO. 1) + a+a t  i=l,...,N 1  (7.57)

[ - ,)-s(i-1) +(

,2 (a4,- as)co COB T + as + a4 i 1,.... N2 • (7.58)

i~ ~ (N - 1)! l
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The error polynomial PN (z) is

PN (z) = PN, (z) - PN, (z) (N =N, + N2 ) (7.59)

while
N1

PN. (Z) = -Z/Zj) (7.60)

N2

PN,(Z) = li-Z/Zi) .(7.61)

We have

IPN,(z)i (pu/R )NL z EA (7.82)

Since the conformal mapping from the exterior of a unit disc to the exterior of an interval

[a, b] is
'['(-a)(+ ')b~a(7.63)

we get

p = (b - a)/4 (7.64)

R =(a + b+ v'a)/4 . (7.65)

Thus

lPN (z)I-(plIRl)NI =~ - - %fa-+ ) N z El 1  (7.66)

PN2 (Z) Batisfie@

PH (Z)j < 1 z E It (7.67)

Therefore if

then

IPN(Z)I < C z EII (7.69)
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Now, for z E 12 we have

max IPN, (z) I k' (k= 1/ z) (7.70)

IPN.(Z)l- (p2 /R2) N  (7.71)

where

P2/R2 = V/54- N (7.72)

Therefore, if

kaNi(P 2/R 2)N2 < (7.73)

then
IPN(z)l < c z E 12 (7.74)

Using (7.66), (7.68),and (7.73),we get that N2 has to satisfy

N 2 > Iog(pi/Ra 4 ) N, + log(l/k) (7.75)
Iog(p 2/R 2) +og(p 2 /R 2 )

In Table (11) we report on experiments where a,, a2 are fixed, and we increase a3, a 4

such that a 4 - a3 is constant. According to (7.75), it is easily verified that in this case

N2 - NI. The predicted error is

N, N 2

E, Max IPN(z)I = PN(a4) = J'[(1 - ,. 4/z,) ]7J(1 - a 4 /Z) • (7.76)
i= l i----
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Table 11.

al =1 a2 =3 a4 =a 3 +2

as NI N2  E, L 2 Error (4.) L 2 Error (Cb) L 2 Error (M,)

Normal N. Normal Normal N. Normal Normal N. Normal

20 12 12 1.9-7 1.1-7 1.7-5 6.6-5 3.5-3 28-3 1.0-2

40 12 12 3.2-7 1.9-7 5.4-4 9.7-4 8.7-2 2.2-3 4.1-2

80 12 12 4.4-7 2.5-7 1.4-4 75-3 1.0+0 5.4-2 1.3-1

60 12 12 5.1-7 2.9-7 3.2-4 4.3-2 5.9+0 2.8-2 1.6-1

320 12 12 5.5-7 3.2-7 6.9-4 7.4-2 28.8+0 1.2-1 1.6-1

In the next set of experiments,we also increase the distance between a3 and a 4. The

results are reported in Table 12.

Table 12.

aj=I a 1 =3 a 4 =3a 3

a 3 NI N 2  E, L 2 Error (I) L 2 Error (Cb) L2 Error (M,)

Normal N. Normal Normal N. Normal Normal N. Normal

10 10 32 1.6-7 1.3-7 1.3-5 7.7-7 3.6-5 3.8-4 2.5-4

20 10 38 8.4-7 2.9-7 9.7-6 2.0-5 1.1-3 4.2-4 1.5-3

40 10 44 2.2-6 6.0-7 9.8-6 3.8-4 2.2-2 4.9-3 1.3-2

80 10 ,50 3.9- 9.6-7 1.5-5 4.2-3 2.8-1 1.9-2 2.5-2

In the last set of experiments, we have negatives eigenvalues as well. In this case, one

cannot use the two methods: Cb, Mr.
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Table 13.

a = 2a2  a = - 2  C4 = -at

a, Nt N2  E, L2 Error (I.)

Normal N. Normal

2 16 16 9.7-7 3.5-7 2.5-5

4 16 16 9.7-7 3.5-7 2.5-5

8 16 16 9.7-7 3.5-7 2.5-5

8. Conclusions

It has been shown that having an a priori knowledge on the distribution of the eigen-

values of a matrix A, it is possible to constrqct an efficient algorithm for approximating

f(A). The more accurate we locate the domain of the e.v., the more efficient is the al-

gorithm. Two methods addressing this problem were described in Section 7. It seems

to us that once this problem of finding the domain of the e.v. is solved satisfactorily,

the algorithms described in the paper can be used as a numerical tool for many practical

problems.
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Appendix A.

The set of interpolating points satisfy

zi = ,(,,,) j =1,...,N (A.1)

while wu are roots of the equation

w = . (A.2)

The problem is: how to arrange wj such that the roundoff errors will be minimum.

In a future paper we will carry out a detailed analysis addressing this problem. Ac-

cording to the solution described there, we have

W lW 21 ,.W N (A .3)

equally distributed on the unit circle, where

W =1; w 2 -

and each "new" point wi is chosen such that the partial set

WlW2,. .,wj (A.4)

will be as equally distributed as possible. For example, when N = 12 we have

V6  V 1 2

Figure (A.1).

In the case of algorithm (3.27), (A.3) has to be modified as follows

W I , , W , ,tW 3 4 , ...oW ._i- , , • • , , N ( A .5 )
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while

w 1 1; W21 (A.6)
N

and each "rew" pair of points is chosen such that the partial set

W 1 ,W2,... ,W2 y-I,,W2, (A.8)

will be as equally distributed as possible. Thus, for the case N = 12 we have

28 V1Jw2  I

7ww

Fiue(A.2).
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