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1. Introduction

Throughout 1987, the ISI parallel and distributed computing research group designed and
implemented a prototype sequential simulator of SDI architectures. A discussion of our

design approach and a detailed description of the resulting design are provided in [1].

The system is designed to be used for high-level simulations of candidate defense system
architectures, where the user is willing to give up full fidelity of the simulation models for
the sake of doing full, "end-to-end" simulations of a candidate architecture, complete
with simulation models of all major system components, in order to assess how well the
battle management system makes these components work together. We expected, how-
ever, that users would want to increase the amount of detail and realism in the simulation
models repeatedly, as they narrowed the field of candidate architectures to a subset con-
sidered worthy of closer examination. Accordingly, we sought to structure the simulation
software design in a way that minimized the effort necessary for programmers responsible
for future system enhancements to add new simulation models to the system or to add
more detail to existing models.

This report documents our first experiment aimed at testing the hypothesis that our soft-
ware structure is indeed conducive to the addition/refinement of simulation models. This
experimer-t involved the design, implementation, and incorporation into the simulation
system of a simulation model of a "kinetic kill vehicle" (KKV) weapon -- a small rocket
designed to be launched from an orbiting defense platform at an enemy missile at such a
velocity that the combined kinetic energies of the rocket and its target would destroy the
target. We had not modeled this type of weapon in our simulator before. Our simple
debugging simulation models included only an abstract, idealized representation of a la-
ser, which projected energy toward the target at the speed of light. One of the main
reasons we chose to implement the KKV technology module was that we expected this
implementation to be a fairly strenuous test of the software structure's ability to minimize
the effort necessary to add new simulation models. It required (. J,.ges in several places
in the simulation system, including the addition of new types of si,, lation events, a new
type of physical object, a new type of trajectory, and a new platform "capability" --
which is a data structure that specifies a component that can be attached to a platform
(see [1]). Also, it required that battle management abstractions (BMAs) be designed to

take into account the significant delay between the firing of a weapon and its hitting or
missing the *arget. A BMA might not be able to wait to observe the result of a KKV
launch; the constraints may well be such that the attack launch window (assuming the
target must be attacked in boost phase) on a given target ends before the first interception
would occur. This suggests that fundamentally different BMA strategies might be required
for KKVs as compared to Epeed-of-light weapons.
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Section 2 of this report describes the software design approach we used to try to cleanly
separate the simulation models of environment and system components from the model of
the candidate architecture being simulated. Section 3 discusses the general implications of

this software modularity approach on subsequent attempts to increase the level of detail
in simulation models. Section 4 describes the design of the new KKV technology module.

Section 5 describes the results obtained from the first simulations that we ran using the
KKV technology module and the BMAs that we modified to use it. Section 6 presents our
conclusions from this experiment and our suggestions for future work on this topic. The
Appendix provides a detailed summary of the software modules that were developed or
revised in the course of implementing the KKV technology module.

2. Overview of the "Technology Module" Design Approach

We used the term "technology modules" in [1] to refer to software modules in the simula-
tion system that model components of a defense system platform. They include sensors,
weapons, communications capabilities, and propulsion capabilities of any platform. Tech-
nology modules are centrally significant to our approach to the design of the simulation
system software, in that they constitute the interface between a BMA and the simulated

cnvironment. The only way the state of a given BMA can be affected by events external to
its platform is via technology modules. For example, a BMA's state would be changed by

the arrival of a message from another platform via its communication technology module.
With the exception of the BMA initialization events at the beginning of the simulation run

and delay events (and the former are artifacts of the implementation that are not intended
to model real system behavior), a platform's BMA will be scheduled for execution in our
simulation system only if one of its technology modules posts an event in the event queue
to which that BMA is programmed to respond. Likewise, the only way that a BMA is able
to affect the "outside world" -- that is, to cause events capable of changing the state of
the system external to the BMA's platform -- is by executing calls to procedures associ-

ated with particular technology modules. For example, the BMA on a particular platform
can change the state of the external environment by launching one or its weapons or by
sending messages to one or more other platforms, either of which is accomplished by
calling a function within the appropriate technology module.

Thus, it is the representation of a defense platform's various components as individual

software modules in our simulator that enabled us to establish a clean separation between
the simulation model of the external physical environment and that of the candidate de-
fense architecture. Also, it provided us a mechanism for incorporating abstract represen-
tations of executing battle management systems within a discrete-event simulator. Fi-
nally, this approach has the additional payoff of allowing these components to be selected
by users for different candidate defense architectures to be simulated. This reduces poten-
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tial software development effort by allowing these modules to be reused. More impor-
tantly, it contributes to the evaluation of different candidate defense architectures under
the same set of underlying assumptions about the way sensors, weapons, communication
systems and other defense platform components work.

3. Design Issues in the Incremental Refinement of Simulation Models

Almost all simulation models are abstractions of the actual entity being modeled. The
technology modules that we inserted into our prototype simulation system are especially
simplified abstractions. For example, our sensor module always provides error-free data

to its BMA. That is, the data that the sensor hands to the BMA on its platform is "ground
truth" information about the position and velocity of all targets within its field of view.
There is another technology module that models a packet radio system used for interplat-

form communication. While this module does take into account a possibility of a message
failing to arrive at its destination (by using a decreasing exponential function of distance
between sender and receiver), it in no way takes into account the possibility of communi-
cation being interfered with as a result of an external phenomenon such as a nuclear
explosion or enemy jamming.

Simulations of this sort will always be abstractions to a considerable degree. Systems as
complex as the defense architectures being modeled here have a hierarchy of increasing
levels of detail that is so broad and so deep that one cannot imagine fully realistic simula-

tion models ever being completely programmed, much less being executed on any feasi-
ble computer system. This is not by any means a reason to abandon the futher develop-
ment of this type of simulation system, however. It simply implies that such a system
cannot be used for the detailed debugging of any hardware or software component. Such
use was never our intention. Our original premise was that it would both be technically
feasible and worthwhile for SDIO to develop a simulation model for defense architectures
that did not contain fully detailed models of any system component, but did contain mod-
els of all system components, so that users could conduct "end-to-end" simulation ex-
periments designed to examine at a high level how the battle management system made
all these components work together.

We certainly expect users of this type of defense architecture simulation system to require
much greater levels of detail in their technology modules than is present in our debugging
prototypes. Indeed, we expect that the level of detail in the technology modules of the
simulator will repeatedly be increased throughout its lifetime. On the other hand, we also
expect that the technology modules will always be abstract simplifications of the actual
physical components. The key implication is that whenever the level of detail in a technol-
ogy module is changed, a considerable amount of careful design effort must be applied to
the interface between the newly refined technology module and the BMAs that use it. The
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central interface design issue is that of how much the BMA is to "know" about the tech-

nology module. If the programmer of the BMA does not have adequate information about

the behavioral characteristics of the system component, as represented by its technology

module, then he or she cannot design a BMA that uses the system component as effec-

tively as possible. On the other hand, if BMA programmers are fully apprised of the

details of the technology module implementation, then they may tend to write "pathologi-

cal" BMAs that attempt to exploit idiosyncrasies in the implementation, rather than only

basing their BMA design on the subset of the system component's characteristics that the

technolegy module is designed to faithfully represent. At best, the BMA programmer may

become entangled in a mass of detail that is largely irrelevant to the task of determining

whether or not the battle management system is able to make defense system components

work together effectively.

The approach we have devised for controlling the level of abstraction in the interface

between a BMA and a technology module: is to associate every technology module with a

set of procedures called "BMA helpers." These are procedur-s that the BMA can call in

order to obtain information that helps the BMA use the system component effectively. For

example, the technology module that represents a particular type of weapon might be

augmented by a BMA helper function which, when given the current locations and
velocitites of both a weapon platform and a prospective target, returns the probability of

kill of a weapon launched from that platform at that target. Another BMA helper returns

the optimal launch time for a weapon platform against a given target -- that is, the

launching time that would give that platform the highest probablity of kill against that

target. Thus, BMA helper funclions, as well as the technology module procedures them-

selves, perform computations that would naturally be part of the battle management sys-

tem itself in either an actual system implementation or a more detailed simulation model.

In both cases, these details are hidden from the BMA programmer so that he or she may

concentrate on higher-level battle management system design issues.

4. Software Design of the KKV Technology Module

4.1 Physical Model of KKVs

The KKV technology module uses a highly simplified model of KKV behavior. KKVs are

assumed to be launched from their carrier vehicle with a constant delta velocity in any

direction (the current implementation includes no slewing time to point the launcher,

though that is one of many possible extensions to the technology module that we consid-

ered). There is a certain minimum delay between successive launches from the same

launcher. KKVs are aimed at a "target," which in this case is a data structure that allows

the technology module (simulating a computational function on the platform) to extrapo-

late the future motion of the target missile.
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The KKV follows a constant angular velocity path with constant dr/dt. While this assump-
tion is not accurate in terms of even the most basic orbital mechanics, the error (a few

percent in the track produced compared to a constant-energy track) is inconsequential in
terms of the level of fidelity of the KKV model as a whole, and the simplification makes
the simulation much less compute intensive.

The homing behavior of the KKV, including any track updates from its carrier platform, is

abstracted into the single Pk calculation. The homing behavior is subject to the constraint
that the interception must take place before the target missile stops boosting. Note that
this and similar constraints could be easily changed entirely within the KKV technology
module and its associated BMA helpers, without requiring any changes to the BMAs
which use the technology module -- although a different BMA might perform better when

the technology module constraints were changed. This is exactly the sort of question that

the simulator is intended to be useful for addressing.

The probability of a successful interception in the model is a negative exponential func-

tion of the flight time of the KKV. Higher fidelity models might take into account the
intercept angle, quality of the track data, etc.

4.2 Interfaces to BMAs and to the Simulator Kernel

A design goal of the simulator in general, and the KKV technology module in particular,

has been to keep the BMA interfaces to similar system components reasonably consistent.
In the case of the KKV, it was possible to make the main BMA interfaces to the KKV
launcher and its BMA helpers identical to their laser weapon equivalents:

Laser KKV launcher

shoot-at(target, platformid) shoot kkv-at(target,platformid)
pk(target, platformid,time) kkvpk(target,platformid,time)
optpk(target,platform_id) kkvoptpk(target,platform_id)

kkv pk0, which returns the expected pk for launching a KKV from a given platform at a

target at a given time, and kkv optpko, which returns the optimal time to launch a KKV

at a specific target from a given platform, are the two BMA helpers used by the existing

BMA. There are also some "lower level" BMA helper functions, which are invoked by

kkv optpko. These could be used by a BMA.that was more intimately tied to the KKV's

performance. Specifically, kkv flighttime( and kkv_dfdl0, which returns the instantane-

ous derivative of flight time with respect to launch time, could be used to get an idea of

the width of the KKV launch window for a near-optimal shot.

Two event-handling routines, execute_kkvlaunchO and executekkvintercepto, com-

prise the interface between the KKV technology module and the simulator kernel.
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4.3 Sequence of Operations in the Technology Module

Figure 1 sumroarizes the sequence of operations that occur when a BMA uses the KKV

technology module in the course of a simulation run. First, a RMA decides (probably

based on information provided by the KKV BMA helpers) whether and when to launch a
KKV at a target.

The BNIA then calls the BMA interface procedure launchkkv ato. If the operational

constraints of the KKV launcher are met (at least one KKV in the magazine/launcher bus,
and sufficient time elapsed since the last launching), a KKV_LAUNCH event is posted for
a short time into the future.

When the simulator evaluates the KKVLAUNCH event, calling executekkv_launch0, a
kkv (note lower case) software object is created (representing a physical KKV object in
the simulation system). Based on current target parameters, the intercept time of the KKV

with its target is calculated, and a KKVINTERCEPT event is posted for that time.

When the simulator evaluates the KKVINTERCEPT event, calling executekkvinter-

cept(, the Pk for the intercept is calculated based on the actual interception parameters
(currently, only the KKV's flight uine enters the calculation) and is compared to a random

number. If the intercept is successful, a PDESTROY event is posted for the target missile.

At this point, the sequence of events is the same as for a missile destruction event caused
by a laser weapon, as described in pp.17-18 of [1].

5. First Simulation Results

Complete source listings of the BMAs of a sensor platform and a weapon platform for a
simple, laser-based strategic defense architecture are provided in [2]. These were modi-

fied in the course of this experiment to use KKVs instead of lasers. No other changes to

the BMAs were made. Execution of the BMA gave reasonable results in terms of target

assignment behavior.

For most simulation runs, a deployment of 2000 weapons-carrier platforms in a 64-ring
Walker orbit constellation was used against a threat scenario of 1000 missiles launched

essentially simultaneously from seven bases in an 80 degrees longitude arc through the

Asiatic USSR.

In a successful effort to reduce the CPU time of the simulation, the KKV BMA helpers
were modified to first test possible shots against search pruning criteria before calculating

a trial KKV trajectory (a compute-intensive operation). The use of a conservative maxi-
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function event

launch kkv at
if launch successful- A KKVLAUNCH

execute kkv launch

/KKVINTERCEPT

execute kkv intercept

if Pk>Qk & missile active
/PESTROY

destroymissile

if missile active

& in view;
1-to-many SENSEBLOWNUP

Figure 1. Events Related to KKVs
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mum range heuristic reduced the search space by more than 97%. Better heuristics should
make it possible to reduce the detailed search space to 1% of the total search space or
less. \Vith this heuristic efficiency, it is reasonable to allow the BMA to make a straight-

forward exhaustive search. This simplifies the BMA logic without incurring a prohibitive
amount of execution time. The execution profile of the BMA further suggests that re-
quests for positions and velocities of a given object tend to sho;, a great deal of temporal
locality. Therefore, a position/velocity cacheing scheme may provide further significant
increases in performance.

These simulation runs (2000 platform deployment, 1 000 missile threat) currently consume
,iihtl\ more than one hour of CPU time on a VAX-1 1/8650 %%ith a memory image of
liehtl\- more than 2MB. Position logging at -l0-second [simulation time] intervals and at

state change times produces output files of approximately 6NlB. More than 90 percent of
the CPU time is spent in calculating platform and missile positions and velocities (posi-
tion velocity cacheing should improve this tremendously), of which more than 95 percent
are on behalf of the BMA helpers.

One interesting result obtained in testing the prototype BMA was that a deployment where
the northernmost platform footprints were slightly to the south of the missile bases per-
formed better (64 percent kill ratio compared to 54 percent, all other factors equal) than a
deployment where some footprints passed north of the bases. The cause of this counterin-
tuitive phenomenon was not determined, and may well be an artifact of the overly simpli-
fied simulation model; the significance lies in the fact that this result was obtained with-
out any user coding, requiring only a few seconds' interaction to set up. The simulator
may be a powerful tool to assist in searching for areas of unexpected SDI architecture
performance, which could then be studied in greater depth.

6. Conclusions and Recommendations for Future Work

Basically, the experiment was a success. No significant difficulties were encountered in
integrating the KKV technology module with the rest of the simulator. No "backtracking"

of existing code was required. Strict changes to existing code, rather than additions to
existing code, were limited to changing case statements, array sizes, etc. A more thor-
oughly table-driven design would remove even these small changes, and would make it

possible to add technology modules without any code changes at all.

"Porting" the prototype BMA was extremely easy. In essence, the only required changes
were replacing the laser weapon BMA helper calls with the equivalent KKV BMA helper

calls, changing the BMA's idea of the weapon's "recharge" rate (the delay between

launching a KKV and the launcher becoming ready again), and replacing the actual
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shoot_atO with launch kkvato. The code structure did not change at all (some code
changes were temporarily inserted to aid in debugging the KKV technology module).

The ease with which the prototype BMA was converted from laser weapons to KKVs
prompts us to suggest the use, whenever feasible, of "generic" (i.e., not technology-spe-
cific) B\1A interfaces in writing high-level simulations. The level of detail in the BMA
interface should be consistent with the level of detail/fidelity in the underlying simulation
model. Detailed knowledge about the expected behavior of a technology component
should be restricted to the BMA helpers associated with that technology module. A rea-
sonably simple and technology-independent BMA interface is still sufficient to support
BMAs of fair sophistication.

The major problem encountered in the implementation of the KKV technology module
occurred in kkvopt_pko, which attempts to find the launching time of a KKV from a
given platform that would maximize Pk against a given target. In our KKV simulation
model, this amounts to finding the launch time that has the shortest-duration flight to the
intercept point. The iterative computation that we used to approximate the solution some-
times failed to converge. To the extent that future simulator users and developers with the
requisite expertise in physics accept our time-of-flight criterion as a reasonable way to
estimate Pk, those with the requisite expertise in mathematical and numerical analysis
should revisit our solution to this nonlinear optimization problem.

Finally, we suggest that the appropriate next experiment to perform is the revision of an
existing technology module, rather than the addition of a new one, as was done here. This
would focus upon the issue discussed in Section 3 -- finding systematic ways of increas-
ing the amount of detail in the interface between a BMA and a technology meJule, when
that technology module is replaced with a higher-fidelity one.
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Appendix: Summary of Software Development Necessary to Imple-
ment the KKV Technology Module

Functions required in the KKV technology module:

1) Code to model the behavior of the KKV launcher

2) Code to create a KKV trajectory given a platform, a target, and a launch time

3) Code to calculate the position and velocity of an active KKV as a function of time

4) Code to write positions of all active KKVs to the display database

5) BMA helpers to predict Pk for various possible shots and to find optimal KKV launch
times

Code structure of the new technology module:

The KKV technology module is contained in the new files kkv.c and kkv.h.
The technology module contains the following C++ classes:

1) class kkv - the basic KKV object
2) class kkvlist - a list of all KKVs in the system analogous to the

classes platformlist and missile list
3) class kkvlistiterator - a class which allows a function to step

through the entire set of kkvs while hiding the representation of the
kkv list

4) class kkvlauncher - this class is the weapon capability,
conceptually included in the platform which has the capability

The technology module also contains the following interface functions whose operation
has been previoLsly described:

1) BMA interface functions shoot kkvato, kkv_pko, kkvoptpko
2) Simulator interface functions executekkv launch0 and

execute-kkv-intercept0

MODIFICATIONS TO EXISTING FILES

The following is intended as a guide to a programmer making enhancements to the simu-
lator and assumes familiarity with the general structure of the simulator and the files that
comprise it.

I) Add the new capability [KKV" LAUNCHERI

1) Modify global.h to incluc.!- ; r. new weapon type and change NUM WEAPONTYPES;

add the string to weapon_type strings[] in global.c and xweapontypestrings[] in

make_capabilities.c
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2) Add capabilitydescriptor::getkkvlaunchero and (which is actually the same func-

tion) platform::getkkv_launchero to objects.h and objects.c and modify

II) Add the new event types [KKVLAUNCH and KKV_INTERCEPT]

1) Add the new event types added to the enum event-type in global.h

2) Add the declaration of new event types' data content (kkvlaunchstruct and kkvinter-
ceptstruct) and the new event constructors to event.h and event.c. Add formatted prints
(operator<<) of the new event types and function event::get kkvjptr0 to event.c

3) Add the code to execute the events (basically calls to execute_kkvlaunchO and exe-
cutekkvinterceptO in kkv.c) to simulator.c

4) Add the new events to make flags.c

III) add the new object type [kkv] The existence of the KKV objects is essentially unknown
to the rest of the simulator, e.g., sensors do not report the presence of KKVs. The position
of active KKVs is logged to the position database for subsequent display [and/or analysis
using tools not currently developed]. This required additions to print objects0 in simula-
tor.c

IV) add the new trajectory type [TYPKKV]

Trajectories were implemented as a single class that contained a union of the various
subtypes [missile trajectory, different orbit types, etc.]. Each member function of the

trajectory class (e.g., traj::posand velo, which returns the position and velocity of an

object at a given time) contains a switch statement over the different allowed trajectory
types. All these switch statements in traj.c were expanded to call the appropriate routine
from kkv.c when called with a KKV trajectory object.

This opportunity was taken to expand the general trajectory package with some general

purpose functions, notably functions to create and apply direction cosine matrices for
inertial to earth-fixed coordinate systems.
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