THE FILE CORY

89-041EH0377ENA

Community Noise Assessment of a Proposed Semi-Enclosed Small Arms Range Facility at Willow Grove Air Reserve Facility, Willow Grove PA

ALI Y. ALI, 1LI, USAF, BSC JOHN F. SEIBERT, Maj, USAF, BSC STIC SELECTE JUL 3 1 1989

May 1989

Final Report

Distribution is unlimited; approved for public release

AF Occupational and Environmental Health Laboratory
Human Systems Division (AFSC)
Brooks Air Force Base, Texas 78235-5501

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated, or in any way supplied the drawing, specifications, or other data, is not to be regarded by implication, or otherwise, as in any manner licensing the holder or any other person or corporation; or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Public Affairs Office has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nations.

This report has been reviewed and is approved for publication.

ALI Y. ALI, 1Lt, USAF, BSC Consultant, Industrial Hygiene

DENNIS R. SKALKA, Lt Col, USAF, BSC Chief, Consultant Services Division

Air Force installations may direct requests for copies of this report to: Air Force Occupational and Environmental Health Laboratory (AFOEHL) Library, Brooks AFB TX 78235-5501.

Other Government agencies and their contractors registered with the DTIC should direct requests for copies of this report to: Defense Technical Information Center (DTIC), Cameron Station, Alexandria VA 22304-6145.

Non-Government agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161

JAMES C. ROCK, Colonel, USAF, BSC

ames C. Rock

Commander

			OCUMENTATIO	N PAGE			Form Approved OMB NO 0704-0188
Unclassif	ECURITY CLAS	SIFICATION		N/A	MARKINGS		
N/A SECURITY	CLASSIFICATIO	ON AUTHORITY			for public i	release.	
2b. DECLASSII N/A	FICATION / DOV	WNGRADING SCHEDU	LE	Distributi	on is unli	mited.	
	NG ORGANIZAT	TION REPORT NUMBE	R(S)	5 MONITORING	ORGANIZATION	REPORT NU	MBER(S)
		41EH0377ENA	FT				
USAF Occu		ORGANIZATION and Environ- ratory.	6b. OFFICE SYMBOL (If applicable) ECH	7a. NAME OF M	ONITORING ORG	ANIZATION	
	(City, State, an		2011	76. ADDRESS (Ci	ty, State, and Zi	P Code)	•
Brooks AF	B TX 7823	5-5501					
ORGANIZA	· - ·	ONSORING	8b. OFFICE SYMBOL (If applicable)	9 PROCUREMEN	T INSTRUMENT I	DENTIFICATI	ON NUMBER
Same as 6	City, State, and	1 719 Code)		10 SOURCE OF	ELINDING NUMBE	PS	
ar annuess (· · · · · · · · · · · · · · · · · ·		PROGRAM	PROJECT	TASK	WORK UNIT
Same as 6	С			ELEMENT NO	NO	NO	ACCESSION NO
	lude Security C			<u> </u>	<u> </u>		
Community	Noise As:	sessment of a	Proposed Semi-E	nclosed Smal	1 Arms Rang	ge Facil	ity at Willow
12. PERSONAL		Facility, Will	ow Grove PA				
1Lt Ali Y	. Ali, Ma,	j John F. Seib					
13a. TYPE OF Final	REPORT	136. TIME CO FROM 11J	OVERED u188 TO29Apr89	14. DATE OF REPO	ORT (Year, Monti 9	1, Day) 15.	PAGE COUNT 71
16. SUPPLEME	NTARY NOTA	TION					
17.	COSATI	CODES	18. SUBJECT TERMS (Continue on revers	e if necessary a	nd identify i	by block number)
FIELD	GROUP	SUB-GROUP	Small Arms Rang		Noise	•	
/			Willow Grove AF Grand Forks AFB				
10		reverse if necessary	and identify by block n	umber)			
This repo	rt predic	ts the maximum	ı (Lmax) communi	ty noise lev	els generat	ted from	weapons firing
W PI OP	VJCU JIIIU I	i griiis ranue a	II. JIND WILLIAW I-Y	AVA AIW VACA	MUA Esasilia	h., am 112	77 A
	VII I / A. GIII	u compares ine	evels for Horsha	מא מסונת ובא	dinamaaa	Ducasa	
	usuleu wi	un a stanuaru	INAM WING SCROOL	n aver the m	1 CHANBARA		A A La 9
i i cquenci	62 (T.O-7/	VV NZI ANG EXC	eenen the holca	Ardinancae	Willow C.		CC2
0011C1 CA1	361114 11013	3E 2001.CE2 EXC	PPOPO THE HAICA	AMAINANAA	3 + Funanca.		200 11
	-10. 11-00	anu m=3 01510	of the proposed	DVAIC NWARAM	inantlu in	TP - EVV	0000 11
· · · · · · · · · · · · · · · · · · ·	i uniqe.	10126 IEAGIZ I	n these treation	CIDC DVCDDAA	4 +ka Willa		
ordinance	s and exis	sting Willow G	rove noise leve	ls. This re	port also g	jives ma:	ximum noise 🔍
		ILITY OF ABSTRACT	PT DOTIC USERS	2Unchassiff	CURITY CLASSIFI	CATION	Ť
ART YAMAP	f, 4E1664, 21918	APO, BSC		2731257536-	Unclude Area Co.	de) 22c OF AF(ECE SYMBOL DEHL/ECH
OD Form 14	73, JUN 86		Previous editions are	opsolete	SECURIT	r classifica	ATION OF THIS PACE

í

(19 Cont'd)

levels expected for all angles surrounding the standard Air Force small arms range design as built at Grand Forks AFB. These data are available as a reference for siting other small arms ranges where community noise ordinances use Lmax noise levels.

ACKNOWLEDGEMENT

The dedicated efforts of the AFOEHL noise survey team, consisting of Maj John C. Ellis II, Capt Terry M. Fairman, and 1Lt Winston J. Shaffer II, during the Grand Forks AFB Small Arms Range noise survey, made this report possible. I would like also to thank Mr James Penn of HQ AFRES/DEPR for making site maps and design drawings available for us and Mr Jonathan Bach of the 913 TAC Clinic/SGPB, Willow Grove Air Reserve Facility PA for his assistance during Willow Grove noise survey. Finally, I thank MSgt McIntire of the Combat Arms and the Combat Arms personnel of the 842nd Security Police Group, Grand Forks Small Arms Range, Grand Forks AFB ND, who supported us before and during courses of weapons firing.

- N	Tesi NS NO	CA TA	 हर्दश्री B red	•	J		
	У i. tril	уг, f6 Ами	Labolety				
1	1-1		Nil 0 Sp. 1 1 1	Cod For		Sugar Port	

CONTENTS

			Page
	DD Form 14 Acknowledg		i iii
I.	INTRODUCTI	ON	1
II.	DISCUSSION		1
	A. Standar B. Methodo C. Results D. Observa	logy	1 3 3 4
III.	CONCLUSION	S	5
IV.	RECOMMENDA	TIONS	5
	References		8
	Appendix		
	A B C D E F	Noise Criteria Study Area, Measurement Locations and Range Design Survey Equipment List Willow Grove Primary Site SPL Data Grand Forks Radial SPL Data Noise Contours for Horsham Noise Ordinance	9 15 23 27 49 61
	· Distributi	on List -	67

I. INTRODUCTION

- A. Purpose: This study examined the potential community noise impact of building a standard Air Force semi-enclosed firing range at the Willow Grove Air Reserve Facility (ARF), Willow Grove PA. The study was performed at the request of HQ Air Force Reserve/DEP and SGP.
- B. Problem: A November 1987 Navy contract study assessed the noise impact of the proposed small arms range and predicted the proposed site will exceed the established surrounding community noise ordinances. However, the study made several assumptions which led to questionable results. Noise measurements from weapons firing had been measured at Fort Dix, an open firing range, although the proposed Air Force design was semi-enclosed and would provide noise reduction. The study also converted the community noise ordinance to Day-Night Average Noise Levels (DNL) by assuming weapons firing noise had a frequency spectrum identical to A-Weighted white noise. Further, the study assumed noise emissions were of equal intensity in all directions (omnidirectional). HQ Air Force Reserve/DEP and SGP requested this noise study to reevalute the noise impact of the proposed small arms firing range.
- C. Scope: This study reports the community noise levels to be expected from constructing the proposed small arms range facility at Willow Grove ARF, and compares those levels to the local community noise ordinances. Because of the opportunity to collect noise data of the standard Air Force design for a semi-enclosed firing range, additional noise data was collected to provide a reference for siting of firing ranges of this design at any Air Force base. Weapons fired at this range included the M-9 (9 mm pistol), the M-16 rifle, and the M-60 machine gun. Two sites were considered for this study, an initial and a revised site (Phase I and Phase II). Recommendations are made regarding compliance of noise emissions with Willow Grove community noise ordinances.

II. DISCUSSION

A. Standards: Willow Grove ARF is bounded by Horsham Township, and is in close proximity to Warrington Township. Each township has published its own noise ordinance (Appendix A) for community noise. While there are differences between the ordinances, both give maximum sound pressure levels (SPLs) not to be exceeded within specified frequency ranges. This approach of using maximum SPLs (Lmax) is very different from the Day-Night Average Noise Level (DNL) recommended by the Environmental Protection Agency (EPA). The DNL is used by the Office of Housing and Urban Development (HUD) and most community noise ordinances (Appendix A). Also, the frequency ranges specified in the Willow Grove ordinances are typical of frequency ranges used by sound level meters used in the 1950s and 1960s. Sound level meters currently used in the United States conform with the frequency ranges of American National Standards Institute (ANSI) Standard S1.6-1984 "American National Standard Preferred Frequencies, Frequency Levels, and Band Numbers for Acoustical Measurements," 1984, and ANSI Standard S1.11-1966 "American Standard for Octave, Half-Octave, and Third-Octave Band Filter Sets," 1966. For this survey, noise levels were measured using the frequency ranges (frequency bands) specified in ANSI S1.6 and S1.11, and were compared to the noise ordinance frequency bands where possible (Table 1).

Table 1. Comparison between Octave Bands Frequency Ranges for Horsham Township, Warrington Township Noise Ordinances and ANSI Standard S1.6-1984

ANSI S1.	ANSI S1.6 OCTAVE BAND	HORSHAM TO	HORSHAM TOWNSHIP ORDINANCE		WARRINGTON T	WARRINGTON TOWNSHIP ORDINANCE
		OCTAVE BAND	MAXIMUM PERMIT	TED	OCTAVE BAND	MAXIMUM PERMITTE
CENTER	FREQUENCY	RANGE (HZ)	LEVEL (dB)		RANGE (HZ)	LEVEL (dB)
(Hz)	HANGE (HE)		RESIDENTIAL	OTHER		
~	1.4 - 2.8					
4	2.8 - 5.7	_	_	_	_	
 ∞	5.7 - 11.3	_	_	_		
16	11.3 - 22.5	10 to 75	1 72 1	1 61		
31.5	22.5 - 44.5	_	_	_	0 to 150	67
63	44.5 - 89			_		
125	89 - 178	75 to 150		74		
250	178 - 354	150 to 300	65	99	150 to 300 (59
200	354 - 707	300 to 600	.52	29	300 to 600	52
1 0001	707 - 1414	600 to 1200	46	53	600 to 1200	48
2000	1414 - 2828	1200 to 2400	40	47	1200 to 2400	40
0001	2828 - 5656	2400 to 4800	34	41	2400 to 4800	34
8000	5656 - 11314	Above 4800	32	39	Above 4800	32
1 00091	11314 - 22627		-	_	-	

B. Methodology

- 1. Measurement Locations: Appendix B shows the Study Area, Measurement Locations and Range Design. Sound survey locations at Willow Grove were selected to determine existing "background" SPLs at political boundaries and at the most sensitive residential and recreational areas (Figures B-1, B-2 and B-3). Noise samples were collected over a five day period covering Tuesday through Saturday. Sound measurements of weapons firing were then performed at the Grand Forks AFB ND, Combat Arms Range, a recently constructed small arms range of the standard Air Force design proposed for Willow Grove ARF (Figures B-4, B-5). Measurement locations at the Grand Forks small arms range were selected as being physically equivalent to the initial proposed site locations previously measured at Willow Grove (Figure B-6. Phase I Proposed Site). SPLs from weapons firing were then compared directly to their equivalent Willow Grove background levels. In addition to the Willow Grove equivalent positions, sound was measured on a 1500 foot radius at 20 degree intervals surrounding the firing range. These radial measurements were used to characterize the noise emissions from the range, and allow predictions of SPLs at virtually any distance or angle from a firing range of the same design to include any alternate site (Phase II Proposed Site. Figure 6). Radial measurement locations at 80, 100 and 160 from the direction of firing were not used because physical obstacles between the firing range and those locations would have reduced the measured noise levels. Radial measurement locations at 180 for the M-60 and 200 for the M-16 were dominated by aircraft noise. Measurements dominated by aircraft noise were not used.
- 2. Measurement Procedures: Sound data were collected on portable tape recorders for later analysis at AFOEHL (Appendix C). A microphone with wind screen was held at a height of 1.6 meters above the ground by a hand held pole. At Willow Grove ARF, the microphone was pointed toward the proposed firing range site, and the sound levels were recorded for approximately 30 seconds. At the Grand Forks AFB firing range, the microphone was pointed toward the center of the firing range. One complete volley of weapons fire and 30 seconds of background noise were collected sequentially at each Grand Forks location by two survey teams. The background noise was used to account for any interferences such as wind or aircraft noise occurring during weapons firing.
- 3. Data Analysis: Recorded data were played back through an oscilloscope and a loudspeaker to make sure the recorded signals were free of interfering signals. Selected signals were fed to a 1/3 octave band frequency analyzer configured to measure SPLs in the same way as a sound level meter complying with ANSI Standard S1.6 set to 'SLOW' meter response (one second exponential averaging time) and 'MAX HOLD' (maximum encountered noise level, Lmax). Values for each 1/3 octave band were stored in an HP9000 microcomputer and combined mathematically into full octave band SPLs.

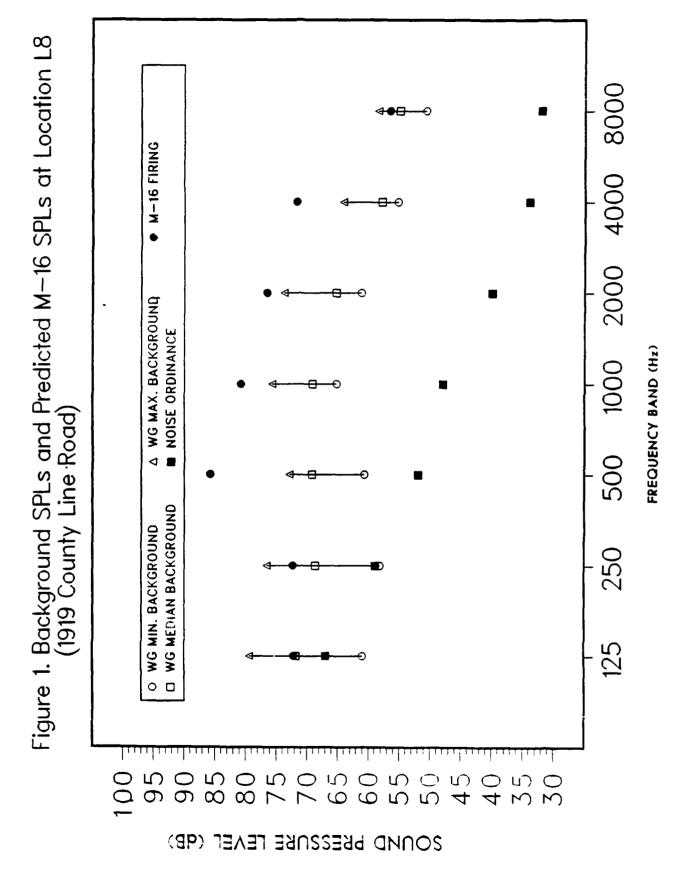
C. Results:

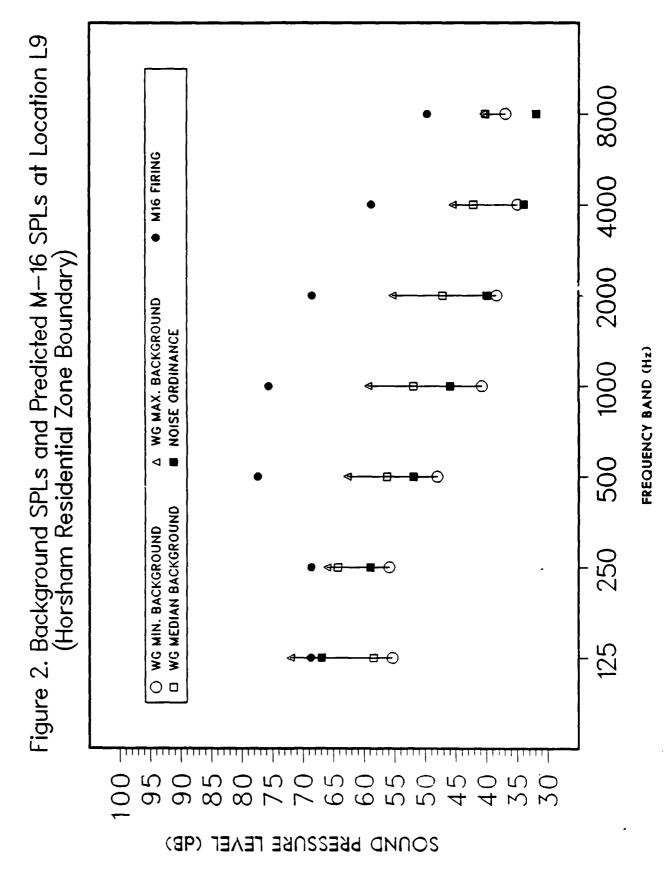
1. A total of 52 background noise measurements at Willow Grove community locations were analyzed and compared to the noise ordinances (Appendix D). Comparisons of background noise, ordinance levels and M-16

- weapons noise for two key Willow Grove locations are graphed (Figures 1 & 2). These graphs demonstrate maximum background noise levels exceeded the noise ordinance levels for all octave bands, and, median background levels exceeded the noise ordinances for frequency bands of 125 Hertz (Hz) or greater.
- 2. Grand Forks AFB weapons firing noise was masked at frequencies below 250 Hz by wind noise. For octave bands at and above 500 Hz, noise levels from M-16 and M-60 weapons firing exceeded the Warrington and Horsham noise ordinances at all locations. As examples, M-16 weapons firing noise levels were above Willow Grove background levels and noise ordinance levels for most frequency bands at Location L8 (Figure 1) and at Location L9 (Figure 2).
- 3. Radial noise measurements for the Grand Forks AFB firing range (Appendix E) were used to generate equal sound level contours that show where the Horsham township noise ordinance levels would be exceeded (Appendix F). These contours were used as an overlay for the Willow Grove base map to look at the alternate firing range site. These contours show that weapons firing at the alternate site will also generate noise in excess of the Horsham noise ordinance.

D. Observations:

- 1. Willow Grove background noise levels on the Warrington Township line and in Horsham Township exceeded the noise ordinance in the frequency range of 1.6 to 250 Hz due to noise generated by the wind blowing across the microphone (low frequency "wind noise"). This occurred in spite of using a standard foam wind screen over the microphone. This makes enforcement of the noise ordinances in this frequency range possible only if noise sources exceed wind noise during a noise survey, or if specially designed wind screens are used.
- 2. M-9, M-16 and M-60 weapons firing generated noise levels primarily in the frequency range of 500 to 10,000 Hz.
- 3. While background noise levels at locations L7 and L8 along County Line Road appear to exceed the Warrington Township noise ordinance because of road traffic, the ordinance excludes noise produced by "transportation sources." Horsham Township has no exclusion for transportation sources.
- 4. The Grand Forks small arms range could be modified in several ways to reduce noise emissions from weapons firing.
- a. Earthen berms could be placed behind the firing range buildings to form a complete circle of noise attenuating barriers. Existing berms could be built higher to provide increased attenuation.
- b. The M-60 firing "tubes" could be lined with sound absorbing spray-on foam.
- c. The M-16 and M-60 firing range buildings could be lined with sound absorbing material to reduce reverberant buildup within the buildings.


d. Overhead bullet traps on the M-16 range could be covered with sound absorbing material to reduce the reflection of sound to the rear of the shooters.


III. CONCLUSIONS

- A. Measuring noise levels for compliance with Horsham and Warrington Township noise ordinances is very difficult due to the high noise levels generated at low frequencies from wind on the microphone with a standard wind screen.
- B. Existing sound levels in the vicinity of Willow Grove exceeded allowable levels for Horsham and Warrington noise ordinances at all frequencies.
- C. Noise generated from weapons firing at the originally proposed small arms range site and the alternate site would exceed the Warrington and Horsham township noise ordinances.
- D. The standard small arms range design used at Grand Forks could be modified to reduce the noise emissions. However, the ability of the modified range to meet the Willow Grove noise ordinances is unknown.

IV. RECOMMENDATIONS

- A. Request exemptions to the Horsham and/or Warrington township noise ordinances as required for the firing range site chosen.
- B. Contact AFOEHL if assistance or coordination is needed in planning modifications to the small arms range to reduce noise emissions.

REFERENCES

- 1. ANSI S1.6-1984 [A Revision of S1.6-1967(R 1976)]. American National Standard Preferred Frequencies, Frequency Levels, and Band Numbers for Acoustical Measurements (1984)
- 2. ANSI S1.11-1966 (Revision of Z24.10-1953). American Standard for Octave, Half-Octave, and Third-Octave Band Filter Sets (1966)
- 3. Boswel Yule Jordan Engineering. Assessment of Community Noise Impacts
 Resulting from a Proposed-Small Arms Range, Air Reserve Facility, U.S. Naval
 Air Station, Willow Grove, Pennsylvania, Prepared for Department of the Navy
 Northern Division Naval Facilities Engineering Command, Philadelphia,
 Pennsylvania (Nov 1987)
- 4. McBryan, J. Predicting Noise Impact in the Vicinity of Small Arms Ranges, Construction Engineering Research Laboratory Interim Report N-61, (October 1978).
- 5. Johnson, Daniel L. <u>Highlights of the Guidelines for Environmental Impact Statements With Respect to Noise</u>. Aerospace Medical Research Laboratory Technical Report No. AMRL-TR-78-14, (Dec 1979)
- 6. National Research Council, National Academy of Sciences. Guidelines for Preparing Environmental Impact Statement on Noise, Office of Naval Research Contract No. N00014-75-c-0406, (1977)
- 7. U.S. Department of Housing and Urban Development, Washington DC, Office of Policy Development and Research. <u>Technical Background for Noise Assessment Guidelines</u>, Report No. HUD0002272 (Jan 1980)
- 8. U.S. Environmental Protection Agency. <u>Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety</u>. <u>EPA Report No. 550/9-74-004</u>, (Mar 1974)
- 9. AFM 19-10, Planning in the Noise Environment (15 June 1978)
- 10. "Assessing Noise Impact of Air Force Flying Operations." USAF/LEEVX (Mar 1984)
- 11. Carrol, Michael M. "Introduction to Noise and Acoustic Terminology." Community Noise Control: Prediction, Measurement, and Regulation, A two day conference/Dec 2-3, 1976/San Francisco CA, Continuing Education in Engineering, University Extension, and The College of Engineering, University of California, Berkeley (Dec 1976)
- 12. Johnson, Daniel L. "Highlights of the Guidelines for Environmental Impact Statements with Respect to Noise." Aerospace Medical Research Laboratory Technical Report No. AMRL-TR-78-14, (Dec 1979)
- 13. MIL-STD-1474B(MI), Noise Limits for Army Materiel (18 June 1979)

APPENDIX A NOISE CRITERIA

(This page left blank)

WARRINGTON TOWNSHIP ORDINANCE

- 3. Slopes in excess of 25% a minimum of 85% of this area shall be considered restricted.
- E. <u>Forest</u> In areas designated as forest, a minimum of 80% will be considered restricted resource protection area and shall not be cleared for development.

D. ARTICLE XXI

- 1. [ADD] "Section 2118 Environmental Performance Standards" as follows:
 - A. Erosion and Sediment Control

All construction shall protect streams and waterbodies including lakes, ponds, and wetlands from sedimentation, and shall control erosion in accordance with the Clean Streams Law (P.L. Chapter 102).

B. All construction shall limit stormwater runoff to offsite areas to an amount not greater than that which was
generated by the site in the undeveloped state. All
applicants proposing construction in the Township should
review their proposals with the Township to assess the
impacts on and potential for development of regional
stormwater controls. All Stormwater Management Plans
must comply with a Stormwater Management Act (Act 166)
and the Pennsylvania Dam Safety Act (Act 325). Procedures and requirements for stormwater management shall
be in accordance with standards set forth in the
Warrington Township Subdivision and Land Development
Regulations.

C. Noise

The sound level of any operation (other than the operation of motor vehicles or other transportation facilities, the construction or demolition of structures, emergency alarm signals or time signals) shall not exceed the decibel levels in the designated octave bands as stated below. The sound-pressure level shall be measured with a Sound Level Meter and an Octave Band Analyzer that conform to specifications published by the American Standards Association. (American National Standard Specifications for Sound Level Meters, S1.4-1971, American National Standards Institute, Inc., New York, New York, and the American Standard Specification for an Octave, Half Octave and Third Octave Band Filter Sets, S1.11-1966 (R 1971, American Standards Association, Inc., New York, New York shall be used).

Sound-pressure levels shall be measured at the property line upon which the emission occurs. The maximum permissible sound-pressure levels for smooth and continuous noise shall be as follows:

Frequency	Band	Maximum Permitted
(Cycles Per	Second)	Sound-Pressure Level(Decibels)
0-150		67
150-300		59
300-600		52
600-1200		48
1200-2400		40
2400-4800	•	· 34
Above 4800		32

If the noise is not smooth and continuous or is radiated during sleep hours, one or more of the corrections below shall be added to or subtracted from each of the decibel levels given above.

Corrections

Ţ	vpe of Operation or Character of Noise	in Decibels
1.	Noise occurs between the hours of 10 P.M. and 7 A. M.	-3
2.	Noise occurs less than five (5) percent of any one-hour period.	+5
3.	Noise is of periodic character (hum, screater.), or is of impulsive character (hamme etc.). (In the case of impulsive noise, to correction shall apply only to the average pressure during an impulse; impulse peaks shall not exceed the basic standards	ring, he
	given above.)	-5

D. Smoke

No smoke shall be emitted from any chimney, or other source of visible gray opacity greater than No. 1 on the Ringleman Smoke Chart as published by the U.S. Bureau of Mines, except smoke of a shade not darker than No. 2 on the Ringleman Chart may be emitted for not more than four (4) minutes in any thirty (30) minute period. Smoke from residential fireplaces and wood stoves shall be exempt from this limitation.

E. Dust, Fumes, Vapors, and Gases

1. The emission of dust, dirt, fly ash, fumes, vapors, or gases which can cause damage to human health, animals,

(RRL.228)

HORSHAM TOWNSHIP ORDINANCE

3. These provisions, applicable to visible gray smoke, shall also apply to visible smoke of a different color, but with an equivalent apparent capacity.

Section 509: Dust and Dirt, Fly Ash, and Fumes, Vapors & Gases

- 1. No emission shall be made which can cause any damage to health, to animals or vegetation or other forms of property or which can cause any excessive soiling at any point.
- 2. No emission of liquid or solid particles from any chimney or otherwise shall exceed 0.3 grains per cubic foot of the covering gas at any point.
- 3. For measurement of the amount of particles in gases resulting from combustion, standard correction shall be applied to a stack temperature of five hundred (500) degrees F. and fifth (50) percent excess air.

Section 510: Noise

At no point on the boundary of a Residential, Industrial or Commercial District sound pressure level of any operation exceed the decibel levels in the designated octave bands shown below for the districts indicated.

Octave F	Band in Der second	Along Residential District Boundaries Maximum permitted Sound Level in Decibels	At any other Point- on the Lot Boundary Maximum Permitted Sound in Decibels
0 to	75	72	79
75 to	150	67	74
150 to	300	59	66
300 to	600	52	59
600 to	1200	46	53
1200 to	2400	40	47
2400 to	4800	34	41
Above	4800	32	39

Average Day-night Sound Level [Ldn] Community Noise Criteria

The Department of Housing and Urban Development (HUD) uses a standard of 65 dB for a Ldn criterion around airports using a noise assessment guideline prepared for HUD by Bolt Beranek and Newman, Inc. (BBN). HUD does not typically approve HUD funding for housing in areas with noise levels exceeding 65 dB Ldn. Ldn is a 24 hour A-weighted equivalent sound level, with a 10 dB penalty applied to the nighttime sound levels occurring from 2200 to 0700. The abbreviations LDN and DNL are also used by various authors for Ldn. Ldns are calculated by the equation:

$$(Ld/10)$$
 $(Ln+10/10)$
 $Ldn = 10 log 1/24 [15X10 + 9X10]$

Ld = Daytime equivalent A-weighted sound level between the hours of 0700 and 2200.

Ln = Nighttime equivalent A-weighted sound level between the hours of 2200 and 0700.

A-Weighted Sound Level [dB(A)]: The ear does not respond equally to sounds of all frequencies. The ear is less efficient at detecting low and high frequency sounds than it is at mid-range or speech range frequencies. In order to obtain a single number representing the sound pressure level of a noise containing a wide range of frequencies in a manner approximating the response of the ear, it is necessary to reduce or weight, the effects of the low and high frequencies relative to the mid-range frequencies. Therefore, the low and high frequencies are de-emphasized with A-weighting.

Appendix B Study Area, Measurement Locations and Range Design

(This page left blank)

Figure B.1. Study Area

AMBLER QUADRANGLE PENNSYLVANIA 7.5 MINUTE SERIES (TOPOGRAPHIC)

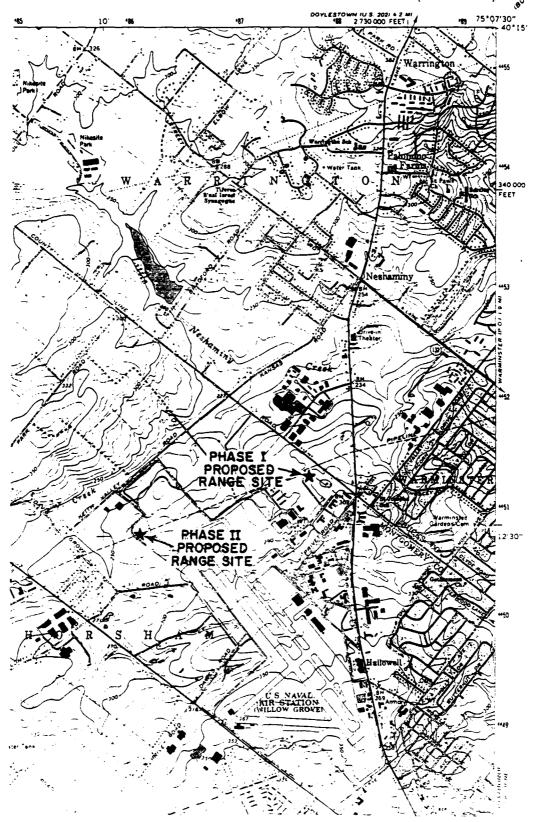
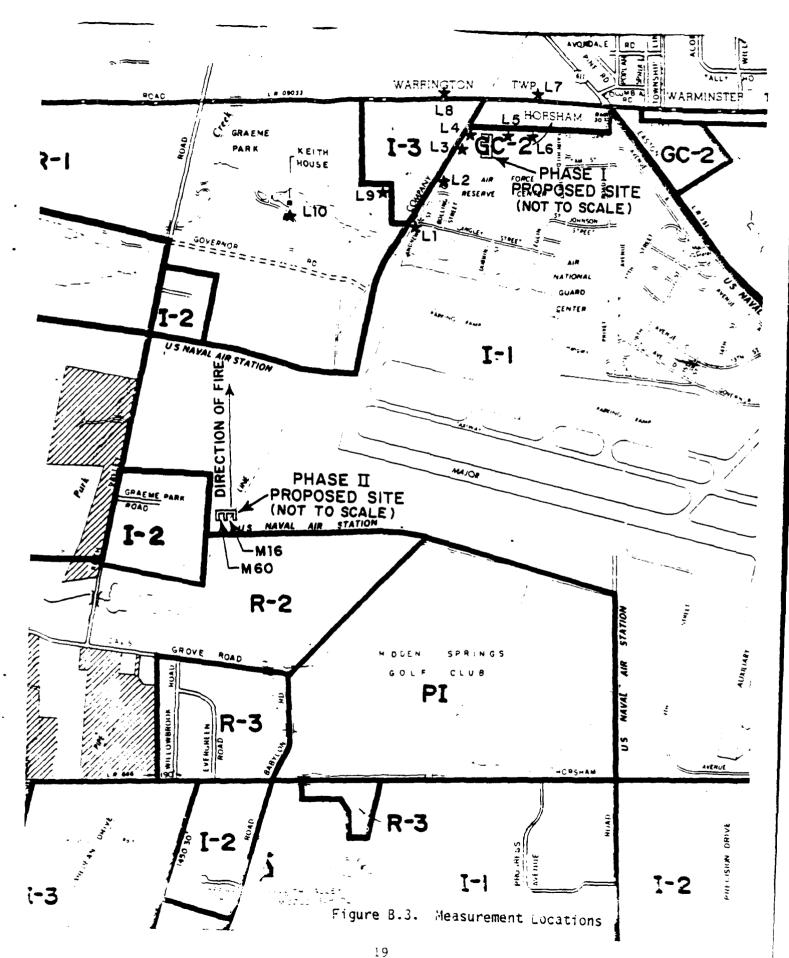
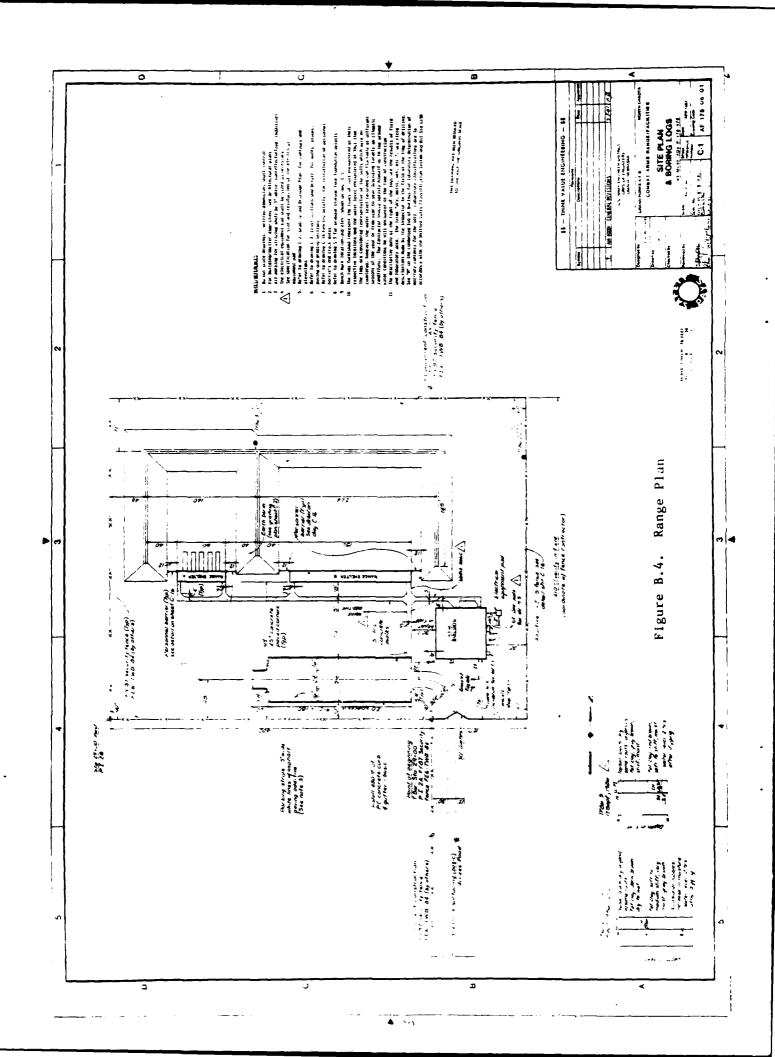




Figure B.2. Study Area

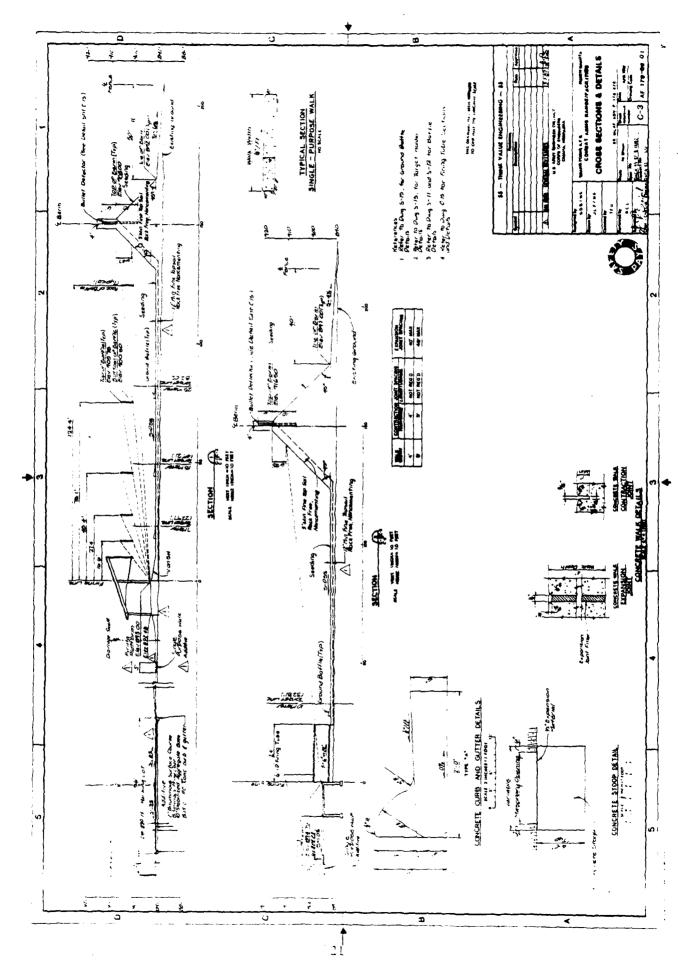


Figure B.5. Range Cross Sections

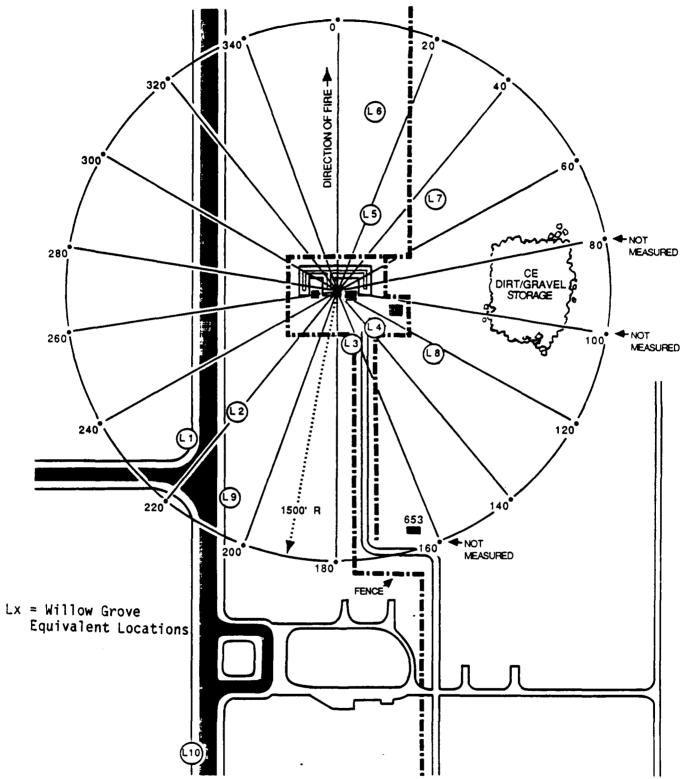


Figure B.6. Grand Forks Measurement Locations

Appendix C Survey Equipment List

(This page left blank)

B&K 7006 RECORDING SYSTEM CONFIGURATION LIST

Equipment/Instrument	Model/Type	Serial Number(s)
2 B&K Tape Recorders 2 B&K Power Supplies 3 B&K Microphone Preamplifiers 2 B&K FM Units (Channel 1) 2 B&K FM Units (Channel 2) 2 B&K FM Units (Channel 3) 2 B&K FM Units (Channel 4) 2 LARSON/DAVIS Microphone	7006 2808 2639 ZM0053 ZM0053 ZM0053 ZM0053 2541	130750 & 130751 1338121 & 1338144 1334751, 1334752 & 594027 N/A N/A N/A N/A 1069 & 1070

B&K 7006 RECORDING SYSTEM CALIBRATION INSTRUMENT LIST

Equipment/Instrument	Model/Type	Serial Number(s)
B&K Calibrator	4230	1275078
B&K Piston Phone Calibrator	4220	1048870
H.P. Distortion Analyzer	334A	1140A11082
H.P. Synthesizer/Function Generator	3325A	2512A22219

DATA ANALYSIS INSTRUMENT LIST

Instrument	Model/Type	Serial Number
B&K Digital Frequency Analyzer	2131	1123172
H.P. Desktop Computer	9000/226	2406A28155
Nicolet Digital Oscilloscope	4094B	88B02987

(This page left blank)

Appendix D Willow Grove Primary Site SPL Data

(This page left blank)

Table D.1. Comparison between Grand Forks Small Arms Range Sound Pressure Levels (SPL) and the Corresponding Willow Grove Background SPL at Location L1

		MITTOM	WILLOW GROVE BACKGROUND SPL	GROUND		GRAND FORKS	AFB	SMALL ARMS R	RANGE SPL	
- 2 z H	OBOL				16	- ENG	H16	. — -	W W	M60
	1	N I	MEDIAN	KAX	BKGRND	BKGRND FIRING	BKGRND	FIRING	BKGRND	FIRING
~	79	65.8	70.3	85.4	82.0*	83.8*	 ×	×	45.4*	81.2
-	79	58.5	1 68.4	83.0*	74.6	79.4	- ×	×	79.3*	77.9
-	79	56.1	65.5	17.71	67.9	74.3	×	×	15.2	70.2
16	19	57.3	67.0	76.8	65.5	68.7	×	×	70.2	65.8
31.5	19	63.0	65.0	79.0	6.09	65.1	×	×	- 61.8	70.1
63	19	9.95	1 71.0	65.3	55.8	6.09	×	×	61.7	71.6
125 1	74	1 54.1	66.6	75.4	49.8	50.7	×	×	63.9	70.1
250	99	52.3	66.7	72.3	44.7	60.4	×	×	55.1	63.9
200	29	48.2	62.8	74.2	42.3	65.7	×	×	53.4	63.3
1000	53	48.9	59.9	16.9	42.8	65.4	×	×	57.5	57.0
2000	4.7	39:5	53.7	76.2*	41.5	28.0.	~ ×	×	47.0	47.6
4000	Ţ	46.3*	47.6	54.3*	43.1.	1 49.34	_ ×	×	14.3	• • • • • • • • • • • • • • • • • • •
0000	9	• • • • •	1 10 00	70 7	7	1 .0 05 1	-	×	- 47.5	0.91

Hi6 data is not usable due to wind overloads. SPL above the corresponding octave band ordinance level (OBOL).

Table D.2. Comparison between Grand Forks Small Arms Range Sound pressure Levels (SPL) and the Corresponding Willow Grove Background SPL at Location L2

		MITTOM	GROVE BACKGROUND SPL	KGROUND		GRAND FORKS	AFB	SHALL ARMS	RANGE SPL	د
·	3 88 £3				6	WW.	H16			091
	1	Z I	HEDIAN	HAX	BKGRND	FIRING	BKGRND	FIRING	BKGRND	FIRING
~~	79		71.9	60.2	.9.7.6	.0.88	 ×	×	7.0	82.3
-	19	61.8	0.07	74.7	1 80.9	1 83.4*	×	×	74.3	78.1
-	19	58.7	65.1	1 70.4	1 73.2	14.9	×	×	6.69	71.7
1 91	79	56.0	6.65	66.1	67.0	69.5	×	×	63.9	71.6
31.5	19	50.0	59.8	61.3	64.7	68.8	×	×	60.2	74.3
63	79	56.4	61.6	62.3	89.9	64.7	-	-	61.3	17.4
125	74	58.1	63.4	65.7	60.8	1 67.1	×	×	58.1	7.07
250	99	52.8	54.9	68.3	1 57.0	1 63.2	×	×	53.1	67.5
200	29	53.4	53.6	66.1	1 54.0	64.31	×	×	52.0	9.89
000	23	1.51	52.0	62.54	51.4	1 .8.69 1	- ×	×	47.6	61.8
000	-	9.01	19.61	56.8	6.91	64.91	×	- ×	42.7	52.5
1 0001	7	37.4	16.8*	1 47.24	45.54	56.0*	–	×	43.64	47.2
1 0001	~	A A .	1 42 34	. 77	10.91	1 .6.07 1	*	×	1 05 97	47.6

X M16 data is not usable due to wind overloads.
• SPL above the corresponding octave band ordinance level (OBOL).

٠.,

Table D.3. Comparison between Grand Forks Small Arms Range Sound Pressure Levels (SPL) and the Corresponding Willow Grove Background SPL at Location L3

		WILLOW !	GROVE BACKGROUND SPL	KGROUND		GRAND POS	PORKS APB SP	SMALL ARMS	RANGE SPL	و
	JOBOL				6	HE O	M16	•	H	M60
	- - 	z I I	MEDIAN	HAX	BKGRRD	FIRING	BKGRND	FIRING	BKGRAD	FIRING
~	79	60.5	72.1	80.2	81.9	86.1	85.5	92.9*	77.0	1.77.1
	67	55.5	66.8	73.7	76.2	\$0.0\$	72.5	86.1.	11.0	6.89
•	19	55.3	65.8	69.2	73.9	17.7	67.7	11.10	68.3	67.1
16	79	57.2	63.1	65.0	2.99	6.17	6.59	17.1	60.5	16.9
31.5	19	58.1	62.3	70.4	61.4	67.2	6.8.3	72.8	61.1	83.1
63	19	59.4	6.99	73.0	55.9	0.69	69.2	79.4	9.09	81.9
125 1	74	58.8	1 68.3	62.6	48.4	9.17	57.9	83.9	52.5	1 79.8
250	99	47.2	65.1	83.3*	43.3	75.94	51.3	84.2	0.94	9.98
200	69	45.3	64.0*	80.7	42.0	13.04	9.91	88.1.		0.99
1 0001	53	45.0	61.1	77.4	43.3	85.0*	47.3	67.7	62.9	73.8
2000	11	45.3	52.6	10.6	42.1	18.84	0.94	80.5	57.4	0.19
4000	1	37.7	41.6	56.3*	43.3*	73.1*	13.0	73.9	15.7	58.5
0000	0	16.7	39.8	14.61	47.5	61.34	7.77	62.5	9.94	20.4

. SPL above the corresponding octave band ordinance level (OBOL).

Table D.4. Comparison between Grand Forks Small Arms Range Sound Pressure Levels (SPL) and the Corresponding Willow Grove Background SPL at Location L4

		MILLOW	GROVE SPI	BACKGROUND		GRAND FOI	FORKS AFB SH	SHALL ARMS	RANGE SPL	. 3
- H E O	Jogo				£ 6	MW 6	M16		M60	0 9
		Z I	MEDIAN	WAX	BKGRND	FIRING	BKGRMD	FIRING	BKGRWD	FIRING
~	79	60.5	72.1	0.5	*	88.5	86.7*	96.5	1.99	62.7
-	6	55.0	8.99	73.7	80.0	86.4	80.8	74.9	9.65	60.5
-	19	55.3	65.8	69.2	75.3	84.3*	10.5	11.7	1 56.1	62.5
16	19	57.2	63.1	65.0	70.8	80.2	6.8.3	64.5	93.6	0.77
31.5	19	58.1	62.3	70.4	0.89	75.6	+ 63.9	70.1	57.7	15.9
63	79	59.4	6.99	73.0	58.8	74.1	59.4	79.1	6.09	90.0
125 1	74	56.8	1 68.3	82.8	59.5	76.4	51.2	84.10	57.6	75.6
250	99	47.2	65.1	13.3*	52.1	75.4	1 46.3	1 .5.91	15.8	74.2
500	65	45.3	64.0	80.7	17.7	19.6	6.11	18.06	1 43.9	73.20
000	23	45.0	61.1	17.4	43.1	81.5	0.11	16.7	50.3	63.8
000	11	43.5	52.6*	10.6	42.7	76.2*	15.4	81.0.	45.0	26.0
0000	11	41.6	41.6	56.34	44.6	71.6		74.1	0.0	52.8
			4 4 6 6		10 07	4 9 1 9	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	.6 .9	1 47 67 1	55.20

SPL above the corresponding octave band ordinance level (OBOL).

Table D.5. Comparison between Grand Forks Small Arms Range Sound Pressure Levels (SPL) and the Corresponding Willow Grove Background SPL at Location L5

		WILLOW	WILLOW GROVE BACKGROUND SPL	KGROUND		GRAND FOR	FORKS AFB SH	SMALL ARMS	RANGE SPL	.,
1 KEQ	OBOL dB				16	¥	M16		H	M60
	!	Z	HEDIAN	HAX	BKGRRD	FIRING	BKGRND	FIRING	BKGRRD	FIRING
~	79	65.5	67.6	27.7	89.2	94.4*	89.0	90.06	71.9	71.4
-	79	61.6	62.7	71.5	85.2	88.1"	80.2	89.4	0.09	65.6
-	19	56.5	58.3	69.1	79.9	85.54	9.96	81.1	50.5	68.5
91	19	53.6	29.6	63.8	75.7	17.6	72.8	75.9	6.95	64.5
31.5	96	54.3	58.9	0.09	10.0	73.2	68.1	1 9.66	61.6	1.17
63	19	1.73	7.65	62.4	6.09	65.7	89.9	74.9	60.7	76.7
125	74	1 53.1	57.8	61.2	51.0	65.6	0.67	75.0*	59.4	70.1
250	99	47.0	52.4	57.8	46.3	61.8	43.9	.0.89	42.9	64.3
200	29	1 45.4	9.81	54.1	45.8	72.4	41.9	76.7	47.2	76.4
0001	53	47.2	7.87	90.09	45.5	13:94	1 42.1	72.0*	1.15	72.3
2000	47	41.9	43.2	46.2	14.8	67.3	1 40.7	99	1.5.1	9 .4
1000	11	36.7	38.5	40.2	45.3*	59.7	43.1.	28.8	41.14	53.4
8000	9	35.4	38.6	39.1	10.05	51.7	47.7	50.5	13.6	48.7

SPL above the corresponding octave band ordinance level (OBOL).

Table D.6. Comparison between Grand Forks Small Arms Range Sound Pressure Levels (SPL) and the Corresponding Willow Grove Background SPL at Location L6

		WILLOW	GEOVE BACKGROUND SPL	GROUND		GRAND FORKS	(S AFB SMALL	ARMS	RANGE SPL	
2 X X X X X X X X X X X X X X X X X X X	7080 48				6	HH6	M16		09W	0.
<u></u> -		Z I	MEDIAN	HAX	BKGRND	FIRING	BKGRND	FIRING	BKGRRD	FIRING
~ ~	7.9	64.2	75.7	77.1	* 6. 8	91.70	95.1*	93.4*	70.5	65.8
-	19	60.5	72.6	72.9	80.1	84.3	92.00	91.3	63.3	63.3
-	19	57.1	65.6	67.7	73.3	76.8	84.64	85.2	65.9	. 60 . 7
1 9 1	19	54.4	1 60.4	61.8	67.4	74.6	1 5.77	11.10	9.59	9.19
31.5	19	59.8	0.09	61.2	65.5	66.7	1 26.1	77.3	1 65.4	15.6
63	19	63.5	63.7	6.69	63.6	63.7	64.3	6.8.5	62.9	75.3
125 1	74	65.3	67.2	74.1	51.1	52.6	53.6	8.09	57.1	9.01
250	99	65.7	70.4	76.0*	43.5	46.7	1 9.74	52.9	49.1	63.9
200	59	63.5	66.3	75.3*	43.8	1.61	45.3	58.8	0.61	70.7
000	53	59.8	60.09	69.2	42.4	52.3	45.5	57.2	51.1	9. 69
000	47	52.4	52.7	60.1.	9.07	48.2.	- 9.11	52.4	47.7	6.95
1000	7	40.3	42.3	17.30	43.64	46.8	48.8*	47.6	42.0.	51.5
000	0.0	40 8 .	-6.07	47.31	47.9*	49.7	50.30	.6.61	43.7	L 44.7

· SPL above the corresponding octave band ordinance level (OBOL).

Table D.7. Comparison between Grand Forks Small Arms Range Sound Pressure Levels (SPL) and the Corresponding Willow Grove Background SPL at Location L7

		WILLOW	WILLOW GROVE BACKGROUND SPL	GROUND		GRAND FORKS	AFB	SHALL ARMS I	RANGE SPL	
HZ U	- 1080 P				6	WH W	#16		091	0
		2 1 E J	N. LOSH	#AX	BKGRND	FIRING	BKGRND	FIRING	BKGRND	FIRING
· 	67	75.3*	93.4*	87.54	75.6*	88.7*	1 1.11	86.6*	70.5	12.1
-	67	69.5	75.00	80.7	71.5*	82.9*	77.4	87.0*	61.7	63.7
-	67	66.1	6.99	76.1	70.8	79.3*	9.89	81.8	56.1	57.4
16 - 6	67	63.7	66.5	71.8"	67.8	71.20	65.4	74.3*	61.4	69.4
31.5	67	61.5	65.7	71.0	64.9	64.4	58.2	74.2	64.8	76.6
63 6	67	62.2	71.4.	80.5	54.8	61.1	59.7	76.6	67.6	73.3
125 (6	67	62.1	6.99	81.9*	53.8	61.3	64.1	74.3	64.7	68.7
-	59	57.3	63.24	72.9	60.2*	56.3	54.0	66.2*	50.2	58.2
500 5	25	49.5	62.2	66.99	54.9*	56.3*	44.8	73.1	48.4	.0.99
_	-	58.8*	64.31	68.24	48.84	54.7*	44.9	75.54	54.4	59.5
_	- 0+	52.5	61.5	65.1	45.7*	18.81	47.1	69.3	53.6	54.2
_	34	48.7*	85.94	0.09	48.94	16.61	1.1	63.04	48.0.	47.9
-		10 20	1 47 65 1	24 20			7 . 3	**		7 77

SPL above the corresponding octave band ordinance level (OBOL).

Table D.8. Comparison between Grand Forks Small Arms Range Sound Pressure Levels (SPL) and the Corresponding Willow Grove Background SPL at Location L8

		WILLOW	WILLOW GROVE BACKGROUND SPL	KGROUND		GRAND FORKS	778	SHALL ARMS F	RANGE SPL	
	48				16	HW6	M16		W60	0
		Z E	AEDIAN	X	BKGRND	FIRING	BKGRHD	FIRING	BKGRHD	FIRING
~	67	75.9*	82.3	91.9	75.6*	80.2*	85.5	99.96	9.89	9.69
-	67	66.5	73.2*	13.5	71.5	17.8	76.3*	89.2	64.5	65.2
-	67	6.09	65.7	79.7	70.8	11.7	72.6	86.9*	6.69	67.0
1 9 1	6.7	60.7	67.9	75.5*	67.8	64.9	67.4	• 6 · O 8	70.5	72.2
31.5	67	61.0	65.3	74.9*	6.19	58.2	63.9	72.6	72.3	79.6
63	67	61.6	69.7	82.1*	58.8	58.8	64.7	72.6*	12.9.	72.0
125	67	61.0	71.8	79.4	53.8	9.85	57.3	72.2	67.4.	67.
250	59	58.2	1 68.7	76.6	60.2	56.6	40.9	72.4	55.0	62.0
200	25	1 60.7	69.3	72.9	54.9	68.7	50.5	85.8	54.9*	60.7
000	?	65.3	69.3	75.8	48.5	•6.69	1 47.4	80.9	26.8*	56.0
0002	•	61.2	65.3	73.8	45.7	62.2	- ++.+-	76.6	53.24	53.0
10001	34	55.3*	57.9*	64.2	45.9	54.2	43.91	71.8	48:84	49.0
1 000	3	40 05 1	- 40 55 -		. 7 8 7	48 84	1 16 67	26.64	74 30	75

Background noise data for the 9MM are taken from the 9MM background noise levels at location L7. SPL above the corresponding octave band ordinance level (OBOL). :

Table D.9. Comparison between Grand Forks Small Arms Range Sound Pressure Levels (SPL) and the Corresponding Willow Grove Background SPL at Location L9

		WILLOW	GROVE BACKGROUND SPL	GROUND		GRAND FO	FORKS AFB SH	SMALL ARMS	RANGE SPL	_
	48				6	WW6	M16		9W	M60
	. !	E I	NAIDZE	AAA	BKGRND	FIRING	BKGRWD	FIRING	BKGRWD	FIRING
~	72	57.9	9.89	76.0	86.1*	83.6*	91.6	93.1	75.0*	75.5
-	7.2	54.0	62.5	70.7	82.8*	81.6*	6.08	88.6	67.3	69.1
-	12	52.0	59.1	65.5	78.6	78.8*	78.8	83.8*	64.7	64.2
91	72	53.8	61.3	9: 69	73.1*	73.2	74.8	82.24	63.9	69.3
31.5	7.5	51.9	60.5	67.2	6.89	68.2	8.69	78.0	62.6	70.2
63	11	53.1	5.83	63.7	62.8	66.7	67.0	6.69	61.3	73.5
125	67	55.4	64.3	72.1	51.4	54.0	65.2	6.89	56.3	70.1
250	29	55.9	56.34	66.1*	48.8	58.9	61.7.	68.7	55.2	63.0*
200	25	1.81	56.3*	62.8	6.11	63.9	51.0	17.5	52.1	63.9
0001	9 +	40.8	52.0	59.44	44.3*	70.2	46.11	75.7	- 6.8	56.7
1 0002	•	38.4	47.2	55.4*	42.5*	66.2	46.0.	68.64	41.5*	48.8
10001	*	35.0*	42.2	45.64	43.5*	56.2	45.84	58.94	41.3	14.2.
1000	12	17.00	.9.07	42.20	47.31	49.1.	- 6.87	- 8 - 67	-1.11	44.8

' SPL above the corresponding octave band ordinance level (080L).

Table D.10. Comparison between Grand Forks Small Arms Range Sound Pressure Levels (SPL) and the Corresponding Willow Grove Background SPL at Location L10

		MITTOM	WILLOW GROVE BACKGROUND SPL	GROUND		CHAND TORNS	2	משער קקעש	110	1
- 2 X X X X X X X X X X X X X X X X X X	080L				6	EX6	H16		ž.	N60
1	 - !	Z H H	HEDIAN	HAX	BKGRND	FIRING	BKGRND	FIRING	BKGRND	FIRING
,	2	70.	77.11	78.0*	78.7*	80	×	×	×	×
	72	62.9	72.0	72.7	74.3*	63.6	×	×	×	×
	72	56.2	68.2	68.5	67.7	76.2"	×	×	×	×
16	72	62.6	63.4	66.5	66.3	6.69	_ × _	_ ×	× -	× _
31.5	72	55.6	57.1	66.2	62.6	64.5	- ×	- ×	× _	×
63	72	52.5	55.5	86.0	1 26.1	5.95	×	×	×	×
125	67	49.1	57.8	76.3*	48.4	51.1	×	×	*	× _
250	59	47.6	29.9	80.1.	1 39.7	48.2	_ × _	×	×	×
200	25	45.6	57.3	80.8	39.5	61.3	- ×	×	×	×
10001	94	43.5	53.7*	70.0	41.9	64.2*	- × -	×	×	×
2000	•	41.7	47.3*	73.2	42.20	1 55.0	×	×	× 	×
4000	34	39.2	41.9	59.5	43.7	46.4	_ ×	×	× —	×
1 0000	2	37.5	43.20	52.5	16.0	40.64	×	×	×	×

· SPL above the corresponding octave band ordinance level (OBOL).

Table D.11. Comparison between the Neasured Octave Band Background Sound Pressure levels (OBBSPL) in Decibels and their Corresponding Ordinance (OBOL) at Location L1 (Horsham Township Non Residential Zone)

FREQ	OBOL	-		DATE/	TIME				RANGE	1
# #	89	13 JUL 0924	114 JUE 11129	15 JUL	16 JUL 0900	16 JUL 1420	17 JUE 0930	X	HEDIAN	XYX
-	6		-		·		9 22	89	70.3	5.4
	6 6	1 10	65.2	7.89	60.7	83.0*	72.2	58.50	68.4	83.0
	62	65.3	61.5	65.5	56.1	17.7	9.69	56.1	65.5	77.7
16	79	16.8	61.7	62.0	57.3	75.4	67.0	57.3	67.0	76.8
31.5	2	0.64.	64.7	63.0	61.3	73.3	65.0	63.0	0.59	79.0
63	97	17.5	74.1	1 15.31	6.19	0.17	9.86	9.86	1 71.0	65.3
125	74	1 74.2*	1 75.4	68.3	57.4	6.89	54.1	54.1	1 9.89	75.4
250	99	71.1	72.3	1 60.4	52.8	66.7	52.3	52.3	1 66.7 1	72.3
200	85	62.8	74.2*	59.4	48.2	64.4	51.0	48.2	62.00	74.2
000	23	59.9*	76.9	59.4	6.91	.6.09	16.2	48.9	1 29.9	76.9
000	47	53.7	76.2	59.1	45.7	54.4	39.5	39.5	53.7	76.2
000	7	46.3	68.7*	54.3*	47.6	+7.7*	41.3*	46.3*	1 47.6.	54.3*
000	39	42.2*	48.7	41.6	40.8	49.2	41.8.	40.8	42.20	49.5

SPL above the corresponding octave band ordinance level (OBOL).

Table D.12. Comparison between the Measured Octave Band Background Sound Pressure levels (OBBSPL) in Decibels and their Corresponding Ordinance (OBOL) at Location L2 (Horsham Township Non-Residential Zone)

FREQ	OBOL		DATE/TIME	Ţ.		RANGE	M (2	
*	8 P	16 JUL 0924	16 JUL 1415	17 JUL	N I W	MEDIAN	IAN	жүж
,	30	6	7 44		7 4 9		•	6
	6/	70.0	61.6	74.7	61.8	70.0	. 0	74.7
•	79	65.1	58.7	70.4	58.7	9	7.	70.4
16	79	59.9	28.0	66.1	58.0	29	6.	1 . 99
31.5	_	8.65	58.0	61.3	58.0	59	•	61.3
63	67	62.3	9.19	56.4	\$6.4	61	9	62.3
125	1 74	63.4	65.7	58.1	58.1	63	-	65.7
250	99	54.9	68.3*	52.8	52.8	54	6.	6.8.3
200	65	53.6	66.1	53.4	53.4	53	9.	66.1
1000	53	52.0	62.5	45.4	45.4	52	0	62.5
2000	47	49.64	56.8	9.04	40.6	6.	. 9	56.8
4000	;	47.20	46.8	37.4	37.4	7	16.8	47.20
8000	39	44.1.	38.8	42.3*	30.8	42	•	44.1

Table D.13. Comparison between the Messured Octave Band Background Sound Pressure levels Decibels and their Corresponding Ordinance (OBOL) at Location L3, Horsham Township Non Residential Zone (Background noise data is taken from L3 and L4 due to the close distance between them)

FREG	OBOL			DATE,	DATE/TIME		1		RANGE	! ! !
N T	88 P	13 JUL 0930	14 JUE 1135	15 JUL 1305	16 JUL 0921	16 JUL 1356	17 JUL 0945	MIN	HEDIAN	МАЖ
^	8	0, 63	64.4	76.2	5.09	80.2	72.1	60.5	72.1	80.2
	20	6.09	59.8	70.6	55.5	73.7	8.99	55.5	8.99	73.7
	1 62	56.0	56.8	9.99	55.3	69.2	65.6	55.3	65.8	69.2
91	2,6	60.2	57.2	65.0	61.2	63.7	63.1	57.2	63.1	65.0
31.5	79	60.7	62.3	70.4	67.2	58.7	58.1	58.1	62.3	70.4
63	67	64.8	6.99	13.0	1.17	62.4	59.4	59.4	66.9	73.0
125 1	1 14	59.8	59.2	82.8	72.4	6.83	58.8	58.8	1 68.3	82.8
250	99	47.2	48.6	83.3*	68.5	65.1	56.2	47.2	65.1	63.3
200	65	45.5	45.3	80.7	64.01	.0.99	53.9	45.3	- 64·0• I	10.7
10001	53	46.8	15.0	1 27.4	61.1"	62.8	19.3	45.0	61.14	17.4
2000	•	45.5	43.6	10.61	54.11	52.6	43.5	43.5	\$2.6	9.06
4000	1	43.70	41.6	56.3*	44.2*	39.9	37.7	37.7	41.6	56.3
1000	2	3.8.2	1 36.7	44.6*	39.8	43.9	37.8	36.7	39.8	9.11

SPL above the corresponding octave band ordinance level (OBOL).

Table D.14. Comparison between the Measured Octave Band Background Sound Pressure levels Decibels and their Corresponding Ordinance (OBOL) at Location L4 (Corner of Fence), Horsham Township Non Residential Zone (Background noise data are taken from L3 and L4 due to the short distance between them)

FREG	OBOL		•	DATE,	DATE/TIME				RANGE	
# !	8	13 JUL 0930	14 JUL 1135	15 JUL 1305	16 JUL	16 JUL 1356	17 JUL 0945	X II	HEDIAN	МАХ
_										:
~	79	63.0	1.19	76.2	5.09	80.2*	72.1	60.5	72.1	80.2
-	79	6.09	59.8	9.00	52.5	73.7	9.99	55.5	1.99	73.7
-	79	56.8	8.99	9.99	55.3	69.2	65.8	55.3	65.8	69.2
91	19	60.2	57.2	65.0	61.2	63.7	63.1	57.2	63.1	65.0
31.5	79	60.7	62.3	70.4	67.2	58.7	58.1	58.1	62.3	10.4
63	66	64.8	6.99	73.0	71.1	62.4	59.4	59.4	6.99	73.0
125	74	59.8	1 59.2	82.8	72.4	6.8.3	58.8	58.8	68.3	82.8
250	99	47.2	48.6	83.3*	68.54	65.1	56.2	47.2	65.1	83.3
500	59	45.5	45.3	80.7	64.00	1 .0.99	53.9	15.3	64.0	80.7
10001	53	46.8	15.0	17.40	61.1	62.8*	49.3	45.0	61.1	17.4
2000	47	45.5	43.8	10.64	54.1*	52.6	43.5	43.5	52.6	70.6
1000	7	43.7	41.6	56.3*	44.2*	39.9	37.7	17.7	41.61	56.3*
0008	39	38.2	1 36.7	.9.11	39.84	43.9	37.8	36.7	39.8	9.4.

SPL above the corresponding octave band ordinance level (OBOL).

Table D.15. Comparison between the Measured Octave Band Background Sound Pressure levels (OBBSPL) in Decibels and their Corresponding Ordinance (OBOL) at Location L5 (Horsham Township Non Residential Zone)

FREQ	1080 I			DATE	DATE/TIME			RANGE	
# ·	es P	13 JUL 0935	14 JUE 1138	1 15 JUL	16 JUL 0938	17 JUL 0950	r T	MEDIAN	НАХ
 			1	-	-				
~	79	66.3	77.2	65.5	67.6	73.4	65.5	67.6	17.2
•	79	62.7	71.5	61.8	61.6	67.3	9.19	62.7	71.5
•	79	58.3	69.1	56.8	56.5	66.2	56.5	58.3	69.1
16	79	59.8	63.8	53.6	56.0	63.8	53.6	59.8	63.8
31.5	79	59.8	58.9	54.3	57.7	0.09	54.3	58.9	0.09
63	66	62.8	59.7	1 57.7	59.1	59.8	1 57.7	59.7	62.8
125	74	57.8	53.1	54.1	61.2	58.9	53.1	57.8	61.2
750	99	47.2	47.0	52.4	. 5.7.0	57.8	47.0	52.4	57.8
200	65	47.5	45.4	9.81	53.6	54.1	45.4	9.84	54.1
1000	53	6.84	0.97	47.2	9.05	48.4	1 47.2	1.84	9.05
2000	17	16.2	43.2	41.9	43.5	42.2	41.9	43.2	46.2
4000	-	40.2	38.0	36.7	41.7*	36.5	1 36.7	38.5	40.2
8000	39	36.9	38.6	35.4	39.1	38.6	35.4	38.6	39.1

SPL above the corresponding octave band ordinance level (OBOL).

Table D.16. Comparison between the Measured Octave Band Background Sound Pressure levels (OBBSPL) in Decibels and their Corresponding Ordinance (OBOL) at Location L6 (Norsham Township Non Residential Zone)

HE dB 13 JUL 14 JUL 16 JUL HIN MEDIAN HAX 2 79 75.7 77.1 64.2 64.2 75.7 77.1 4 79 72.9 77.1 64.2 64.2 75.7 77.1 16 79 61.8 60.4 54.4 60.4 67.2 31.5 79 61.8 60.0 59.8 61.0 61.8 63 63.5 60.0 59.8 61.0 61.0 61.0 83 79 63.5 69.9 63.7 63.5 67.2 74.1 125 74.1 65.3 65.3 67.2 74.1 250 66 59.8 69.9 60.9 69.9 60.9 250 66 75.3 60.9 65.3 66.3 66.3 67.2 70.4 76.0 250 66 69.9 60.9 59.6 60.9 69.2 60.9 60.9	FREQ	OBOL		DATE/TIME			RANGE	
79 75.7 77.1 64.2 64.2 75.7 75.7 77.1 64.2 64.2 75.7 75.7 77.1 64.2 60.5 60.5 72.6 72.6 72.6 72.6 72.6 72.6 72.6 72.6	¥	# T	13 JUL 0940	114 302	16 JUL 1350	MIN	MEDIAN	МАХ
79 75.7 77.1 64.2 64.2 72.6 79 67.7 65.6 57.1 65.6 79 67.8 60.4 54.4 60.4 51 63.6 61.2 60.0 59.8 60.4 79 63.5 63.9 63.7 66.0 60.0 79 65.2 65.3 65.3 67.2 79 65.7 76.0 70.4 65.3 67.2 74 67.2 76.0 70.4 65.3 66.3 66.3 59 69.2 60.9 59.8 60.9 60.9 60.9 41 42.3 47.4 40.3 40.3 40.9 40.9	-				 		-	
79 72.9 72.6 60.5 60.5 72.6 79 67.7 65.6 57.1 57.1 65.6 8 79 61.2 60.0 59.8 60.0 79 63.5 69.9 63.7 63.7 63.7 74 67.2 74.1 65.3 65.3 67.2 66 65.7 76.0 70.4 65.3 66.3 59 69.2 66.9 59.8 60.9 41 42.3 47.4 40.3 40.3 42.3 39 40.9 40.8 40.8 40.9	7	79	75.7	17.1	64.2	64.2	75.7	17.1
79 67.7 65.6 57.1 57.1 65.6 79 61.8 60.4 54.4 54.4 60.4 5 79 63.5 69.9 63.7 63.5 63.7 74 67.2 74.1 65.3 65.3 67.2 6 65.7 76.0 70.4 65.3 67.2 5 63.5 75.3 66.3 66.3 66.3 47 52.7 60.1 52.4 60.9 41 42.3 47.4 40.3 40.3 42.3 40.9 47.3 40.8 40.8 40.9	-	79	72.9	72.6	5.09	5.09	1 72.6	72.9
79 61.6 60.4 54.4 54.4 60.4 5 79 63.5 69.9 63.7 63.5 63.7 74 67.2 74.1 65.3 65.3 67.2 66 65.7 76.0 70.4 65.3 67.2 59 63.5 75.3 66.3 66.3 66.3 47 52.7 60.1 52.4 52.4 52.7 41 42.3 47.4 40.3 40.3 42.3 40.9 47.3 40.8 40.8 40.9	•	79	67.7	65.6	57.1	57.1	9.59	67.7
51 79 59.8 61.2 60.0 59.8 60.0 74 67.2 74.1 65.3 63.7 63.7 66 65.7 76.0 70.4 65.3 67.2 59 63.5 75.3 66.3 66.3 51 59.8 60.9 59.8 60.9 47 52.7 60.1 52.4 52.7 41 42.3 47.4 40.3 40.3 40.9 47.3 40.8 40.8	16	92	61.8	¥.09	54.4	54.4	1 60.4	61.8
79 63.5 69.9 63.7 63.5 63.7 74 67.2 74.1* 65.3 65.3 67.2 66 65.7 76.0* 70.4* 65.7 70.4* 59 63.5 75.3* 66.3* 66.3* 47 52.7* 60.1* 52.4* 52.7* 41 42.3* 47.4 40.3* 40.3* 39 40.9* 47.3* 40.8* 40.8* 40.9* 47.3* 40.8* 40.9*			29.65	61.2	0.09	8.65	0.09	61.2
74 67.2 74.1* 65.3 65.3 67.2 59 63.5 75.3* 66.3* 65.3* 60.9* 53 59.8* 69.2* 60.9* 59.8* 60.9* 47 52.7* 60.1* 52.4* 52.7* 41 42.3* 47.4 40.3* 40.3* 42.3* 39 40.9* 47.3* 40.8* 40.9*	- 63 -	66	63.5	6.69	63.7	63.5	63.7	6.69
66 65.7 76.0* 70.4* 65.7 70.4* 59 63.5 70.4* 66.3* 63.5 66.3* 66.3* 60.9* 59.8* 60.9* 52.7* 47 52.7* 60.1* 40.3* 40.3* 40.9* 40.	125	74	67.2	1 14.11	65.3	65.3	67.2	74.1
59 63.5 75.3° 66.3° 63.5 66.3° 63.5 66.3° 75.3° 75.3° 75.4° 52.4° 52.7° 75.3	1 250	99	65.7	76.00	70.4	65.7	1 10.4	76.0
53 59.8° 69.2° 60.9° 59.8° 60.9°	200	89	63.5	75.3*	66.3*	63.5	66.31	75.3*
47 52.7° 60.1° 52.4° 52.4° 52.7° 41 42.3° 47.4 40.3 40.3 42.3° 40.9° 40.9°	10001	53	.8.65	69.2	60.09	89.65	1 .6.09	69.2.
41 42.3* 47.4 40.3 40.3 42.3* 39 40.9* '47.3* 40.8* 40.8* 40.9*	1 2000	47	52.7	60.1.	52.4	52.4	1 52.70	60.1.
39 40.9* '47.3* 40.8* 40.8* 40.9*	1 4000	41	42.3*	17.4	40.3	1 40.3	42.3*	47.3*
	0000	39	40.9	1 .67.3.	40.8	40.8	1 +6.0+	47.3*

Comparison between the Measured Octave Band Background Sound Pressure levels (OBBSPL) n Decibels and their Corresponding Ordinance (OBOL) at Location L7 (County Line Road Fence Company, Warrington Township Residential Zone) Table D.17.

OBOL	_			DATE/TIME	TIME				RANGE	
8 P	13 JUL	14 JUL 1155	15 JUL 1330	16 Jul	16 JUL	16 JUL 1433	17 JUL 1008	Z	MEDIAN	HAX
-						-			-	-
67	19.0	81.8	87.5	85.4	13.4*	85.9	75.3*	75.3*	- 13.4	87.5
	71 4	. 5 69	78.94	75.0*	79.71	80.70	70.3	69.5	15.04	1 80.7
	, yy	2 9 9	72.9	6.99	76.10	75.4*	66.1	66.1	6.99	1 76.1
	7.4	9	67.6	63.7	71.6	. +1.69	66.5	63.7	6.99	1 71.8
		64.2	71.0*	61.5	65.7	63.7	67.3	61.5	65.7	171.0
, ,	77 77	72.11	80.5	66.3	69.81	62.2	77.4	62.2	11.4	
62	12.7	6.99	73.2	62.1	64.5	62.2	81.9*	62.1	6.99	61.9
9.5	1 66 1		72.9	58.3	61.5*	57.3	67.9*	57.3	63.2	1 72.9
2	46.59		6.99	59.64	62.1.	49.5	62.24	1 49.5	62.24	, 6.99
. 4	68.24		. 9.99	64.04	64.3.	58.84	63.8	58.6	64.3	68.2
. 4	61.5		64.0	59.7	60.8	52.5	61.6*	52.54	61.5	65.1
4	0.65	55.9	60.00	53.8*	56.0.	48.7	54.7*	46.7*	- 55.9	1 60.00
; 2	2.2.5		54.2	52.6"	53.1	51.4	48.2	48.24	52.6	54.2

SPL above the corresponding octave band ordinance level (OBOL).

Table D.18. Comparison between the Measured Octave Band Background Sound Pressure levels (OBBSPL) in Decibels and their Corresponding Ordinance (OBOL) at Location L8 (1919 County Line Road, Warrington Township Residential Zone)

FREQ	OBOL	_			DATE,	DATE/TIME				_	RANGE	
3 : 2 :	8	13 JUL	14 JUL 1200	15 JUL 1345	16 JUL	16 JUL 1050	16 JUL	16 JUL 1439	17 JUL 1025	X	- MEDIAN	HAX
~	- 69	77.5	78.8	91.94	75.3*	47.60	82.3*	87.8	79.9*	75.9*	82.3	91.9
4	67	66.5	68.5	78.1	16.69	73.2*	76.8	83.5	71.5	66.5	73.20	63.5
8	67	6.09	62.0	65.7	64.1	67.1	72.8	19.7*	65.7	6.09	65.7	79.
1 9 1	67	67.4	60.7	75.3*	72.6	63.8	67.9	73.0.	62.2	60.7	67.9	75.
31.5	67	.9.99	61.0	74.9*	65.3	61.9	9.49	6.5.8	59.5	61.0	65.3	74.5
63	67	82.1	62.3	73.0	61.6	75.7*	6.89	69.7	62.4	9.19	1 69.71	82.1
571	1 69 1	13.7	63.8	77.0	71.8	65.7	62.9	79.4	61.0	61.0	71.8	79.
250		68.7	58.2	75.0	66.64	62.5	70.4	76.0*	65.8	56.2	68.7*	1 76.
200	52	69.2	60.7	72.9	65.4	63.7*	71.8.	72.01	66.4	60.7	69.2	12.
(100)	48	70.3	65.3*	75.8*	64.5*	6.99	68.7	69.7*	69.3	65.3*	69.5	1 75.1
2000	40	9.99	62.8	73.8*	61.2	65.3*	65.21	65.3	.6.19	61.2	65.3*	13.1
0001	34	61.00	\$6.9	64.2	55.3*	57.9*	29.44	57.2	57.3*	55.3*	57.9	64.2*
000	32	57.9	51.8	58.54	50.8	52.7*	\$5.0*	55.6	50.7	50.7	55.0	58.

PL above the corresponding octave band ordinance level (OBOL).

Table D.19. Comparison between the Measured Octave Band Background Sound Pressure levels (OBBSPL) in Decibels and their Corresponding Ordinance (OBBCL) at Location L9 (IRP Monitoring Well DM12 Position, Horsham Township Residential Zone).

OBCF	1 JOBO			DATE,	DATE/TIME			RANGE	
# #	8 P	13 JUL 1536	14 JUL 1207	15 JUL 1400	16 JUL 1126	16 JUL	Z I	MEDIAN	X Y Y
~	27	63.3	57.9		70.9	1 26:00	57.9	6.8	1 76.0
-	72	59.3	54.0	62.5	67.3	70.7	54.0	62.5	70.7
•	72	\$6.4	52.0	59.1	62.6	65.5	52.0	59.1	65.5
16	72	61.3	53.6	9.69	64.8	59.2	53.8	61.3	9.69
31.5	72	67.2	51.9	57.9	61.5	59.2	51.9	59.2	67.2
63	72	60.5	63.7	59.5	53.1	9.09	53.1	60.5	63.7
125	67	60.7	72.1	54.5	55.4	58.4	55.4	58.5	1 72.1
250	65	66.1	64.3*	64.8*	56.9	55.9	55.9	64.3	66.1
200	52	61.6	53.5	62.8	56.3	48.1	40.1	56.34	62.8
1000	94	59.4*	14.7	58.8	52.0*	40.8	40.6	52.0	1 59.4
2000	•	55.4	39.3	52.0	47.2	38.4	38.4	47.2	55.4
4000	34	45.6	35.0*	42.2*	42.7	39.2	35.0	1 42.2*	1 45.6*
8000	1 32	40 87	17.01	10.04	107	1 40 64 1	17 0	.9 07 1	12.3

SPL above the corresponding octave band ordinance level (OBOL).

Table D.20. Comparison between the Messured Octave Band Background Sound Pressure levels (OBBSPL) in Decibels and Their Corresponding Ordinance (OBOL) at Location Number LlO (Graeme Park parking lot, Horsham Township Residential Zone)

OBCF	OBOL		DATE/TIME	, -		RANGE		
2 I	8	15 JUL 1600	16 JUL 1515	17 JUL 1014	NIW	MEDIAN		MAX
	,		, , , , , , , , , , , , , , , , , , ,			-		•
•	7 (7.6	1.7.7	7.07			
•	7/	12.7	6.59	0.2/	6.79	0.21	_	7 /
•	72	68.2	56.3	61.5	56.2	68.2	_	9 9
16	7.2	66.5	63.4	9.29	62.6	63.4	_	99
31.5	72	66.2	55.6	57.1	55.6	57.1	_	66.
63	27	86.0*	55.5	52.5	52,5	55.5		86.0
125	67	76.30	57.0	49.1	49.1	57.8	ļ	76.3
250	29	80.1*	\$9.9	47.6	47.6	59.9		80.1
200	25	80.8	57.3*	45.6	45.6	57.3	_	80.
1000	46	19.01	53.7*	43.5	43.5	53.7	_	70.0
2000	0	73.2*	47.3*	41.7*	41.7	47.3*	_	73.2
4000	34	59.5	39.2	41.9	39.2	41.9	_	59.
8000	32	52.5*	37.5	43.2+	37.5*	43.2	_	52.

SWL above the corresponding octave band ordinance level (OBOL).

Appendix E Grand Forks Radial SPL Data

(This page left blank)

TABLE E.1. Maximum Sound Pressure Level at a Radius of 1500 Feet Grand Forks AFB Small Arms Range 23-28 Trainees Firing for the M-16 Qualification Course

REE														
40 DEGREE FIRING	93	88.6	84.3	82.4	76.8	1.89	9.09	61.7	54.8	54.4	50.4	46.9	49.7	62
40 DEGREE BACKGROUND	72.6	72.4	65.7	62.1	54.9	51.9	45.9	41.9	39.7	42.4	43.6	41.9	43.6	58.2
20 DEGREE FIRING	90.3	9.88	84.3	76.4	72.3	63.5	61.6	64	54.2	52.4	48	47.3	49.9	62
20 DEGREE BACKGROUND	88.3	85.4	76.6	69.3	80.8	55.7	49.2	4	41.2	43.6	44.8	44.7	48.2	58.6
O DEGREE FIRING	96.2	92.4	88	83.8	79.5	73.8	62.2	64.7	67.5	53.6	48	45.8	50.1	55.5
0 DEGREE BACKGROUND	94	90.2	86.7	82.8	74.1	63.8	65.7	51.1	46.5	46.7	44.8	45.8	60.8	65.8
OCTAVE BAND FREQ. (Hz)	2	4	8	91	31.5	63	125	250	200	1000	2000	1000	3000	16000

TABLE E.1. (CONT)

OCTAVE BAND FREQ. (Hz)	60 DEGREE BACKGROUND	60 DEGREE FIRING	120 DEGREE BACKGROUND	120 DEGREE FIRING	140 DEGREE BACKGROUND	140 DEGREE FIRING
2	86	90.4	86.9	90.6	76.8	88.2
4	82	98	79.6	84.1	76.2	81
8	79.4	85.2	74.3	78.7	67.9	74.4
16	76.6	80.1	70.2	76	62.1	71.3
31.5	8.99	74.8	63.6	68.5	8.83	67
63	59.3	67.7	58.8	62	54.6	64.8
125	8.03	63.5	29	62.4	49.1	61.5
250	46.7	2.99	46.5	87.8	43.9	64.1
500	45	60.3	42.6	71.5	41.5	7.77
1000	46.6	69.8	47.6	76	49.1	75.6
2000	46.5	54.5	43.6	67.8	41.8	69.4
1000	46.7	49.8	46.6	58.7	43.8	68
3000	48.8	49.8	62.8	60.8	47	49.6
00091	9.09	62	69.7	62	60.7	62.2

TABLE E.1. (CONT)

OCTAVE BAND FREQ. (Hz)	180 DEGREE BACKGROUND	180 DEGREE FIRING	220 DEGREE BACKGROUND	220 DEGREE FIRING	240 DEGREE BACKGROUND	240 DEGREE FIRING
2	82.7	86.6	85.8	87.6	90.6	93.6
4	81	83.6	83	82.3	86.6	89.1
8	77.6	79.2	81.5	80.4	80.4	83.7
91	71.3	76.4	73.3	76.4	9.67	81.1
31.5	69.3	74	67.6	68.9	71.6	74.4
63	66.2	73.9	63.5	64.4	64	86.8
125	60.3	68.2	51.3	60.3	58.6	60.6
750	48.9	65.7	46.2	68.9	63	57.2
500	48.9	78.9	40.5	65.7	46.3	63.8
0006	90	77.8	41.8	63.1	46	99
5000	46.1	67.2	41.6	65.6	44.8	61.2
000†	43.9	53.6	44.9	47.5	46.1	52.3
8000	47	49.9	48.6	50	44.8	44.8
16000	68.4	61.4	69.7	61.8	67.6	67.6

TABLE E.1 (CONT)

300 DEGREE FIRING	97.4	92.9	86.6	83.4	77.6	0	62.7	56.6	2	49.7			44.8	67.6
300 FI	6	8	80	80	7	2	6	2	62	4	40	46	4	67
300 DGEREE BACKGROUND	95	88.4	80.7	79.1	74.7	69	59.2	52.4	48.6	46.9	45.3	46.1	44.8	57.6
280 DEGREE FIRING	95.8	90.4	1.98	81.7	76.7	87.8	67.5	62.6	60.6	9	48.1	46.4	44.8	67.6
280 DEGREE BACKGROUND	92	87.9	81.8	80.9	73.6	64.2	54.3	90	48.1	46.3	44.8	46.8	44.8	67.6
260 DEGREE FIRING	89.4	85.3	79.i	73.6	66.4	69.8	53	55.6	62.3	65.4	60.3	51.2	44.8	67.6
260 DEGREE BACKGROUND	81.8	79.6	80	72.8	98	69.9	50.1	46.7	40.4	41.2	40.2	43.4	34.8	47.5
OCTAVE BAND FREQ. (Hz)	2	4	8	16	31.5	63	125	250	500	000,	2000	1000	3000	16000

TABLE E.1. (CONT)

				_						_				
O DEGREE FIRING	96.2	92.4	88	83.8	79.5	73.8	62.2	64.7	67.5	63.6	48	46.8	60.1	55.5
0 DEGREE BACKGROUND	94	2.06	86.7	82.8	74.1	83.8	55.7	51.1	46.5	46.7	44.8	45.8	8.09	65.8
340 DEGREE FIRING	94.2	88.9	82.8	78.3	78	71.8	63.2	53.8	51.8	49.9	47	46.3	44.8	67.5
340 DEGREE BACKGROUND	90.4	83.6	78.8	77	74.5	70.2	59.9	51.9	47.6	47.2	46.5	46.8	44.8	67.6
320 DEGREE FIRING	93.8	90.2	85.7	80.2	75.7	70.3	62.5	53.6	6.03	49.1	46.6	46.3	44.8	67.5
320 DEGREE BACKGROUND	93.1	87.4	81.8	77.9	76.9	6.99	58.1	51.1	60.3	50.3	46.4	46.8	44.8	67.5
OCTAVE BAND FREQ. (Hz)	2	4	8	91	31.5	63	125	250	200	000:	2000	0001	3000	00091

TABLE E.2 Maximum Sound Pressure Level at a Radius of 1500 Feet Grand Forks AFB Small Arms Range 3 Trainees Firing for the M-60 Qualification Course

iri														
40 DEGREE FIRING	73.4	71.2	72.3	69.1	70.3	69	67.4	6.83	9.99	99	50.2	42.8	44.6	56.4
40 DEGREE BACKGROUND	7.77	72.9	88	71.5	69.2	68.7	6.3	66.3	46.9	64.2	47.5	42.8	44.4	56.5
20 DEGREE FIRING	62.4	60.3	67.7	59.6	65.7	8.8	62.4	58.4	51.8	47.6	44	40.6	42.8	65.8
20 DEGREE BACKGROUND	86.6	65.2	61.8	61.5	88.4	71.8	71	62.6	62.3	45.8	43.6	41	43.3	56.6
O DEGREE FIRING	80.4	74.8	72.5	69.6	73.7	72	65	66.5	67.1	99	63.3	46.6	46	58.3
O DGEREE BACKGROUND	76.5	71.4	86.8	74.1	70.2	67.9	56.2	46.8	49.9	49.7	47	42.2	44.1	58.6
OCTAVE BAND FREQ. (Hz)	2	4	8	91	31.5	63	125	250	500	1000	2000	1000	3000	16000

TABLE E.2. (CONT)

140 DEGREE FIRING	62.2	62.2	58.7	64.3	68.3	67.9	67.9	46.9	2.09	60.6	44.9	40.1	42.9	56.4
140 DEGREE BACKGROUND	73.5	65.4	56.2	55.7	58.7	64.7	57.2	47.9	46	49.7	46.1	40.4	43.6	. 67.2
120 DEGREE FIRING	81.2	72.1	70.1	61.6	99	64.9	61.7	48.1	44.6	46.6	43.4	42.6	46.8	66.6
120 DEGREE BACKGROUND	76.8	76.4	72.1	64.5	62.8	67.7	64.9	62.2	43.2	46	44.6	42.8	49.4	29
60 DEGREE FIRING	70.8	60.2	66.5	62.9	72.4	6.9	57.2	47.8	49.4	48.3	45.1	41.1	43.2	8.99
60 DGEREE BACKGROUND	62.9	69.3	69.6	69.4	80.6	64.4	61.7	50.5	42.7	46.3	46.7	40.7	43.8	56.4
OCTAVE BAND FREQ. (Hz)	2	4	œ	16	31.5	63	125	250	200	1000	2000	000+	3000	16000

TABLE E.2. (CONT)

OCTAVE BAND FREQ. (Hz)	200 DEGREE BACKGROUND	200 DEGREE FIRING	220 DEGREE BACKGROUND	220 DEGREE FIRING	240 DEGREE BACKGROUND	240 DEGREE FIRING
2	77.1	77.2	79.1	7.77	71	71.9
4	73.8	73.8	71.9	76.2	6.69	66.7
8	70.6	71.4	68.3	70.3	61	62.9
16	82.8	67.4	61.8	66.1	80.6	66.6
31.5	60.2	68.3	63.2	70.4	62.7	71.7
63	1.09	711.7	60.3	7.1	61.3	67.6
125	59.8	63.7	49.8	61.7	54	80.8
250	53.1	62.9	42	68.6	51.6	62.9
500	. 49.8	69	43.3	65.3	47.6	63.8
1000	61.9	66	44.6	58.2	49.3	61.6
2000	47.7	49.2	43.2	49.4	47.5	49.6
1000	42.9	43.4	42.7	43.6	40.5	43.1
3000	44.6	45.2	46.5	46.6	43.3	43.9
16000	67.2	66.7	59.4	68.9	69.4	69.3

TABLE E.2. (CONT)

OCTAVE BAND FREQ. (Hz)	260 DEGREE BACKGROUND	260 DEGREE FIRING	280 DEGREE BACKGROUND	280 DEGREE FIRING	300 DEGREE BACKGROUND	300 DEGREE FIRING
2	70.4	71.2	79.7	77.7	78.2	74.4
4	63.9	63	73.1	73.6	76	68.2
8	09	61.8	71.8	70.9	70.4	65.2
16	89	72.9	67.2	71.2	64.3	67.3
31.5	8.09	72.3	62	70.8	61.5	72.4
63	62.5	8.89	63.4	71.4	69.7	75.6
125	51.6	67.3	51.8	55.4	59.4	62.9
750	43	2.09	40.6	57.7	46.8	69
200	45.3	9.99	43.6	64.6	44.3	73.9
0004	46.1	67.7	44.6	63.6	47.6	73.7
7000	42.9	62.9	34.8	64.2	43.4	62.4
1000	40.5	46.7	34.8	46.2	42	63.9
8000	43.6	43.6	36.4	46.3	46.8	46.6
16000	69.2	69	49.1	69	68.8	80.6

TABLE E.2. (CONT.)

OCTAVE BAND FREQ. (Hz)	320 DEGREE BACKGROUND	320 DEGREE FIRING	340 DEGREE BACKGROUND	340 DEGREE FIRING	O DGEREE BACKGROUND	O DEGREE FIRING
2	73.7	71.1	82.9	67.7	76.6	80.4
4	71.1	67.7	77	64.9	71.4	74.8
8	9.99	99	72	63.7	8.89	72.5
16 :	59.1	63.1	65.2	58.6	74.1	9.69
31.5	55.1	76.6	60.1	65.7	70.2	73.7
63	92	77.8	62.2	65.2	67.9	72
125	52.3	68.3	54.1	54.6	56.2	65
250	44.8	64.7	45.6	51.3	46.8	66.6
500	44.8	77.1	46	65.4	49.9	67.1
1000	51	73.9	47.6	58	49.7	99
2000	44.8	63.2	42.8	46.8	47	53.3
1000	44.8	64.3	43.2	38	42.2	46.6
8000	46.2	46.4	46	36.8	44.1	46
16000	69	60.7	59.3	49.3	58.6	58.3

Appendix F Noise Contours for Horsham Noise Ordinance

(This page left blank)

5 Noise Contours to Meet Horsham Twp Ordinance ATTACHMENT 1: EQUAL SOUND PRESSIME FOR NOISE GENERATED BY 23-28 M163 AND 3 M105 FIRING SEPARATELY Figure F.1. ž -Ŧ ž

Table F.1. Distances for Equal SPLs During 23-28 M16s Firing (to Meet Horsham Township Residential Zone Ordinance)

	340	25	2,160	2,750	3.000
	320	350	2.000	2,680	3,080
	300	1,480 1,310	2,130	2,560	3,160
	280	4,560 1,280	6.910 7.430 7.730 2.180	6,150 6,910 6,740 3,000 2,560 2,680	3.260 4,000 3,840 3,090 3,180 3,080
	260 280	4,560	7,730	6,740	3,840
	220 240	6,580 5,350	7,430	6,910	4,000
IN FEE		6,580	6.910	6, 150	
STANCE	200	X X	∀ ×	W/A	¥×
DING DI	180	16,750	14.620	9,340	4.210
ANGLE AND CORRESPONDING DISTANCE IN FEET	160	•	•	•	•
	140	16,660	13,370	9.400 10,120	4,830
	120	10,700	12,650 13,370	9,400	4.950
	001	•	•	•	•
	80	٠	•	•	•
	09	3,670	6,330	4,700	3.600
	40	1,960	3,400	3,580	3,160
	20	1,870	_	2,980	3,160
	0	1,770	2.660	2,720	3,080
	SPL (4B)	62	9	\$	34
OCTAVE	BAND FREQ. (Hz)	909	000	2,000	000 .

Not Obtained. Physical barrier between noise source and sample location.
 Not Analysed. Noise source sample spectrum dominated by aircraft background noise.

Table F.2. Distances for equal SPLs During 3 M60's Firing (to Meet Horsham Township Residential Zone Ordinace)

	340	9.480			
	320	15,030		7,620	1
FEET	300	1,810 2,430 6,910 12,250	12,420	7,300	3,960
	280	6,910	6,840	4,460	2,860
	260	2,430	4,420	4,100	2,860
	240	1,810	4,830 2,510 4,420 6,840	3,130 3,110 3,120 4,100	2,630 2,660 2,620 2,860 2,860
ICE IN	200 220	6,430	4,830	3,110	2,660
DISTAR	200	3,220	3,800	3,130	2,630
ANGLE AND CORRESPONDING DISTANCE IN FEET	180	٧×	₹ N	Y/N	N/A
	160	•	•	•	•
	140	1,310	2,360	2,660	2,440 2,220
	120	770	1,440	1,990	2,440
	100	·	•	•	•
	80	•	•	•	•
	09	1,150	1,870	2,270	2,320
	40	2,170	3,870	3,380	2,490
	20	2,770	2,910	2,400	2.800 2.380 2.480 2.3
	0	7,740	7,550	4,280	2,800
	SPL (dB)	62	9	\$	8
OCTAVE	BAND FREO. (Hz)	909	000,1	2,000	4,000

Not obtained. Physical barrier between noise source and sample location.
 Not Analysed. Noise source sample spectrum dominated by aircraft background noise.

(This page left blank)

DISTRIBUTION LIST

	Copies
913th CES/CC Willow Grove ARF PA 19090-5130	6
913th TAG/SGPB Willow Grove ARF PA 19090-5130	2
HQ AAC/SGPB Elmendorf AFB AK 99506-5001	2
HQ AAC/DEV Elmendorf AFB AK 99506-5001	1
HQ AU/SGPB Maxwell AFB AL 36112-5304	
HQ USAF Academy/SGPB USAF Academy CO 80840+5470	1
HQ AFLC/SGPE Wright-Patterson AFB OH 45433-5001	-1
HQ AFLC/DEV Wright-Patterson AFB OH 45433-5001	1
HQ AFSC/SGPB Andrews AFB DC 20334-5000	1
HQ AFSC/DEV . Andrews AFB DC 20334-5000	1
HQ USAF/SGPA Bolling AFB DC 20332-6188	1
HQ USAF/DEV Bolling AFB DC 20332-6188	1
AAMRL/BBE Wright-Patterson AFB OH 45433-6573	1
HQ AFSPACECOM/SGPB Peterson AFB CO 80914-5001	1
IQ AFSPACECOM/DEV eterson AFB CO 80914-5001	1
Q ATC/SGPB andolph AFB TX 78150-5001	1
· · · · · · · · · · · · · · · · · · ·	7

Distribution List, Continued HQ ATC/DEV Randolph AFB TX 78150-5001 1 HQ MAC/SGPB Scott AFB IL 62225-5001 1 HQ MAC/DEV Scott AFB IL 62225-5001 1 HQ TAC/SGPB Langley AFB VA 23665-5001 1 HQ TAC/DEV Langley AFB VA 23665-5001 1 HQ SAC/SGPB Offutt AFB NE 68113-5001 1 HQ SAC/DEV Offutt AFB NE 68113-5001 1 HQ PACAF/SGPB Hickam AFB HI 96853-5001 1 HQ PACAF/DEV Hickam AFB HI 96853-5001 1 HQ USAFE/SGPA APO New York 09012-5001 1 HQ USAFE/DEV APO New York 09012-5001 1 HQ AFRES/SGPB Robins AFB GA 31098-6001 2 HQ AFRES/DEPR Robins AFB GA 31098-6001 2 HQ ANGSC/SGB Andrews AFB DC 20331-6008 1 HQ ANGSC/DEV Andrews AFB DC 20331-6008 1 NORTHNAVFACENGCOM Code 09A223

1

Bldg. 77L, US Naval Base Philadelphia PA 19112

Distribution List, Continued	
USAF Regional Medical Center Wiesbaden/SGB APO New York 09220-5300	1
OL AD, AFOEHL APO San Francisco 96274-5000	1
USAFSAM/TSK Brooks AFB TX 78235-5301	1
USAFSAM/EDH Brooks AFB TX 78235-5301	1
Defense Technical Information Center (DTIC) Cameron Station Alexandria VA 22304-6145	2
HQ HSD/XAE Brooks AFB TX 78235-5000	1