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QUASI-EQUILIBRIUM PAIRS IN PURSUIT GAMES

ON A CYCLIC GRAPH: SOME MODIFIED CASES

by

A. Chames and D. Zhang

ABSTRACT

In this paper, three special pursuit games on cyclic graphs are solved.
These games are relevant to unsolved problems initiated by a game without a value
presented at the International Workshop on Game Theory held at Cornell University

in 1978.

We propose thereto the following problems:
(i) For a finite or infinite game without a saddle point, how should the

players make their decisions? Here, we suppose that the game is played once.

Thus mixed strategies are not considered.
(ii) For an infinite game without a value v, i.e., vl<v2, how should the

players make their decisions?
To answer these questions, new concepts of "quasi-equilibrium" and

"pseudo-equilibrium" are defined and it is shown that a game MDCPG has a quasi-
equilibrium pair.

KEY WORDS Aooession For

NTIS (3RA&IPursuit games DTIC TAB 0l
Geometric games Unannounced 0

Justirisatlo
Cyclic graphs

Quasi-equilibrium BY

Pseudo-equilibrium - tributton/
Availability Codes

) €Avail and/or
Dist Speoialtool



QUASI-EQUILIBRIUM PAIRS IN PURSUIT GAMES

ON A CYCLIC GRAPH: SOME MODIFIED CASES

by
A. Charnes and D. Zhang

INTRODUCTION
The value of game theory applied to problems of pursuit, search and ambush

has been recognized since the Second World War. Many of the games which arise in

such situations are of the type called "geometric games" by W.H.Ruckle [R(W)I].

A geometric game is an example of a two-person zero-sum game (see section 2.0).

Namely, it is a game having the following form: Two antagonists, known hereafter

as Red and Blue, choose subsets r and b respectively of a set S. Blue then receives

from Red a payoff which is a function of the triple r,b and rnb. In general, Red and

Blue may not choose any subset of S, but rather Red must select from a collection R

of admissible subsets (pure strategies) for Red and Blue from a collection B.

Usually, the collections R, B and the payoff are determined within a geometric

structure on S. The term "geometric" is used in a wide sense and includes finite

structures on S. A geometric game is described by specifying S, R,B and the

payoff.

Geometric games may be divided into three categories: (a) finite games, for

which the set S is finite, (b) continuous games, for which the set S is a line

segment, circle or region in Euclidean space of two or more dimensions and (c) the

case in which S is a countable set, such as the countable product of finite graphs. A

pursuit game over a discrete graph belongs to category (c).

In section 1 of this paper, games and actions will be described either in

subset terms or in terms of functions.

Suppose G is a graph, N a set of positive integers. Let B as well as R consist

of functions p from N into nodes of G such that p(i+l) is connected to p(i) by an

edge of G (i.e., is "adjacent") in the nondirected graph case and at the end of a
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directed edge leading from p(i) in the directed case. If Red chooses the pure strategy
p in R and Blue chooses the pure strategy 03 in B, the payoff to Blue is the smallest
integer rn such that p(m)=P(m), or oc if p (k) f3(k), for all k in N. The study of

these games leads to mathematical difficulties which have not yet been mastered.
[R(W)2] gave solutions to some such problems.

(i) PURSUIT ON A COMPLETE GRAPH (PCG)

A graph of n points is called complete if every pair of vertices in the graph G

are adjacent (connected by an arc). The value of the PCG to Blue for complete
graphs is n. An optimal strategy for both Red and Blue is to choose the kth point
with independent probability I/n from among all n points of G.

(ii) PURSUIT WITH COMPARTMENTS (P

Consider a pursuit game on a graph G in which Red, the pursuer, and Blue,
the pursued, have different capabilities. As far as Red is concerned, the graph is
complete. On the other hand, Blue's freedom of motion is more restricted. From
Blue's point of view, the Graph G is the union of mn disjoint complete graphs.

G --GuG2U ... uGm
such that Gi contains ki points. This means that at time 1 Blue may choose any point
of G, but if he chooses his initial position in Gi he must thereafter remain in Gi. This
game is called Pursuit with Compartments (PC).

When ki =k for each i in the PC, the value of the game is (m+l)/2+(k-1)m.
An optimal strategy for Blue is to choose at time 1 any vertex in G with probability
1/n and thereafter choose with probability 1/k one of the k vertices in the subgraph Gi
in which he finds himself. An optimal strategy for Red is the following: (a) at times
gin+l, g=0,1,2,... visit any vertex with probability l/n; (b) at times qm+r,
q=0,l,2,...,where l<r<im visit a vertex in a subgraph not visited from time qm+l
through time qm+(r- 1) with probability l/(n-(r- 1)k).

The approximate value of the general PC is

Y rq,
0

where
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q

rq=exp m q2; 1
- log(1-1/kj)

A rule of thumb strategy for Red is any pure strategy f for which
Cq(i)= number of integers j<i for which f(j)=q.

It has the value l/log(l- 1/ki)
mIZ l/log(l- I/kj)

j=1

or
1/log(1-1/ko +1

1: I/log(l- I/kj)

j=1

A rule of thumb strategy for Blue is to initially hide at any vertex with probability 1/n

and thereafter to move to any vertex in the subgraph Gi in which he finds himself
with probability l/ki.

(iii) PURSUIT ON A DIRECTED LINEAR GRAPH (PDL)

The value of the PDL (game) to Blue is n. An e-optimal strategy for Blue (see
section 1.0) is to choose the initial point xI with probability el(n-1) and remain there
or choose the final point xn with probability 1-c/(n-1) and (of necessity) remain there.

An optimal strategy for Red is to proceed directly from xI to Xn.
(iv) PURSUIT ON A CYCLIC GRAPH WHEN THE PLAYERS ARE RESTRICTED

TO SYMMETRIC AND STOCHASTIC STRATEGIES (MCPG)

Solution of the pursuit game on a cyclic graph with n vertices, CPG, was
described as an unsolved problem at the International Workshop on Game Theory
held at Cornell University in 1978. Dr. Ruckle found the solution of the CPG in the

special case when Blue and Red both are limited to symmetric Markovian strategies
(MCPG) in 1981 [R(W)I]. That is, at the beginning of the game Blue chooses a
number p and Red chooses a number q between 0 and 1/2. At each turn, Blue moves
left with probability p, right with probability p, and remains in place with probability
1-2p while Red exhibits the same behavior with q replacing p. Assume n>4,since
when n=1,2,3 the CPG coincides with the PCG which are solved.
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Let qO be the number between 0 and 1/2 for which f(0,qO)=f(1/2, qO), where
the value of the MCPG is f(0,qo). An optimal strategy for Red, the pursuer, is the
pure strategy qo. An optimal strategy for Blue, the evader, is to choose p=0 with
probability to and 1/2 with probability 1-to where

- (df(l/2,q)/dq)q=qot-(df(0,q)/dq)q=q0 . (df ( 1/ 2 ,q)/ dq)q=,qo.

If the Markovian strategies are not symmetric, the arguments in [R(W)I] no
longer hold. The situation becomes much more complicated[CZ 1]. Here,in section 1
we discuss the pursuit game on a discrete cyclic graph of n vertices [RkW)2] when
Blue and Red are restricted to stochastic strategies.

Also we present here in section 1 the solution of CPG when its payoff
function is modified, i.e., on replacing the payoff to Blue

(r,b)=( min i: r(i)=b(i), i=1,2,3,...
cc, r(i)*b(i), i=1,2,3,....

by the payoff to Blue

(rb)= - , r(i)=b(i),for some i=1,2,3,...
1 (or -c), r(i) b(i), i=1,2,3 ....

We also obtain similar results for solution of the pursuit game on a directed
cyclic graph with n vertices, DCPG [R(W)21.

As will be seen,these modifications are reasonable and interesting. The result
obtained here could help us in understanding the complexity of CPG itself.

In section 2 of the paper, the equilibrium concept is discussed and a new
concept "quasi-equilibrium" is proposed. The concept of optimal solutions to a
game, hence, is generalized.
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1. PURSUIT ON A CYCLIC GRAPH -- SOME MODIFIED CASES

1.0 TWO-PERSON ZERO-SUM GAMES [O(G) ]

A pursuit game on a cyclic graph is an example of a two-person zero-sum
games. This section describes the essentials of their theory employed in this paper.

A two-person zero-sum game is defined here as a triple (BR,f) where B and
R are sets and f is a real valued function defined on the cartesian product BxR. The
set B is called the set of admissible pure strategies for Blue and the set R is called the
set of admissible pure strategies for Red. The function f is called the payoff function.
The underlying ideas in describing a two person game in this way are: (a) if Blue
chooses b from B and Red chooses r from R then Blue receives f(b,r) from Red or
equivalently Blue pays -f(br) to Red; (b) Blue knows exactly what is in R and Red
knows exactly what is in B, but neither have any further knowledge of what element
their opponent will choose; (c) both Blue and Red know f.

If both B and R are finite then (B,R, f) is called a finite game. Otherwise, it is
called infinite.

If the following two conditions hold:
f(b0 ,r0)> f(b,r0) for all be B,
f(bo,ro)< f(bo,r) for all re R,

Then the pair (bo,ro)e BxR is called a addle point-Of the game (B,R,f). These two

inequalities are equivalent to the relation
min max max min
re R be B (f(b ,r))=f(b,r)reR

If a game (B,R,f) has a saddle point (bo,ro) the number f(bo,ro) is called the value of
the game and the pure strategies bo and ro are called optimal strategies for Blue and
Red, respectively. Not every finite game has a saddle point.

A mixed stratgy. for Blue is a real valued function defined on B with the

following two properties

P3(b) >0 for each be B,

XY 0(b)=1.
beB
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In other words, 03 is a probability distribution or probability measure on B. A mixed
strategy for Red is similarly defined as a probability measure on R. The expected
pAy.fffor the pair of strategies (D3,p) is given by the formula

f(Pp)=, Y P3(b)p(r)f(b,r).
beB reR

A triple (0,po,v) is called a solution for the game (B,R,f) if

f(b,pO)<v5f(o,r) for each (b,r)e BxR,
where v is a real number and 0,po are mixed strategies for Blue and Red,
respectively. The value v is called the value of the game and 3O and po the optimal
strategiefor Blue and Red respectively.

Minimax Theorem Every finite two-person zero-sum game has a solution in
the sense of mixed strategies.

However, the Minimax Theorem is not valid for infinite games. In that case,
we can define

sup inf f(p,p),

v2= nf sup f(13,p).

P 0
If vl=v2 and supinf and infsup can be replaced by maxmin and minmax,
respectiveiy, optimal uixed strategies will exist; If these can be found, the game is as
well determined as the finite games are. If only vl=v2, the game has a value
v(vl=v2) but may have no optimal strategies. It will have an "e-optimal strategies".
however;, if given any e>O,there exist mixed strategies, 03 and p for Blue and Red,

respectively, such that
f(pr)>v-e and f(b,p )<v+e

for any (b,r)e BxR Thus, although such games are not as well determined as the
finite games, they do seem to show a type of stability in their e-optimal solution

strategies.
The solution of a game in terms of mixed strategies was defined from an

entirely formal point of view. Besides the pure mathematical interest, the
fundamental treatise of Von Neumann and Morgenstern [VMI presents an eloquent
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case in favor of the optimal strategy concept. From a practical viewpoint, such
optimal strategies have been observed to develop (a) in animal behavior by
naturalists; (b) in contrived children's games by child psychologists and sociologists
and (c) in repeated game playing on a computer by computer scientists.

1.1. DCPG WHEN THE PLAYERS ARE RESTRICTED TO STOCHASTIC

STRATEGIES
A directed cyclic graph with n vertices is shown in Figure 1. A hider, Blue,

chooses a point on the directed cyclic graph, so does a pursuer, Red. Blue and Red
both move along the graph, i.e. they remain at their vertices or each moves to one
adjacent vertex pointed to by an arrow. The payoff to Blue equals the number of
moves required by Red to find (or catch) Blue, or is cc otherwise. The collection B
of pure strategies for Blue consists of all functions 1 from the set (1, 2 .... ) into
the nodes of the directed cyclic graph such that 0(i +1) = 13(i) or 0(i) + 1 (1 if 3(i) =
n). The collection R of pure strategies for Red is the same, i.e., R = B. This is the
pursuit game on a directed cyclic graph of n vertices, DCPG. It is unsolved
[R(W)2], i.e.,it is an open question whether or not it has a solution.

1

n 2

3

Figure 1

We discuss here the pursuit game on a directed cyclic graph of n vertices
when players Blue and Red are restricted to stochastic strategies. That is, at the
beginning of the game Blue chooses a number p and Red chooses a number q
between 0 and 1. At each turn, Blue moves ahead with probability p, and remains
in place with probability I - p while Red exhibits the same behavior with q
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replacing p. We mainly consider n > 3. When n = 1 or 2, the DCPG coincides with
the PCG which is solved [R(W)l, 2].

In the stochastic DCPG on an n vertex graph a mixed strategy for Blue is a
probability distribution defined on the set of all pairs (k, p) where k = 0, 1, .... or
n - 1 and 0:< p 51. The integer k represents the initial position taken by Blue. Let
Tk=k+ 1 for k=0, 1,...., n-2and T(n- 1)=0. While I3 is an "optimal"
strategy for Blue (for which Blue gets at least the gain floor) then T3, defined by
T(A) = 13(((Tk, p): (k, p) E A)) is also "optimal" since T is a renumbering of the

vertices which retains their order. Hence, the strategy 5o =- T is also "optimal"nk-0

for Blue. The distribution N , therefore, has the property

Po(((k,p): 0p!5 1})= 1/n
for each fixed k. So, we may assume Blue and by the same reasoning Red chooses
his initial vertex with probability 1/n from the set of all vertices.

To solve the problem, let us consider a random walk MDCPG equivalent to
the above stochastic DCPG. In the MDCPG. a single counter is placed with
probability 1/n on one of the vertices of an n-point directed cyclic graph. The
counter indicates the distance (modulo n) from Blue to Red along the clockwise
direction. If the initial vertex is zero, Blue receives one and the game ends.
Otherwise, at each stage Blue and Red, without knowing the position of the counter,
each vote on whether it is to move ahead or remain fixed. Their votes are combined
so that if both Red and Blue decide upon one clockwise or both Red and Blue remain
in place the counter remains fixed. If Red (Blue) votes one clockwise and Blue (Red)
remains the counter is increased (decreased) one. The payoff to Blue is the number
of stages until the counter reaches zero.

Suppose at the outset of MDCPG, Blue, the hider, chooses the strategy of
moving the counter (-1) with probability p and staying it with probability I - p.
Red, the pursuer, chooses a strategy of moving the counter (+ 1) with probability q
and staying it counter with probability 1 - q. Thus the counter moves in a random
walk with absorbing state at zero. Assume

aij = prob. (the counter moves to j (mod n) I the counter is at i)

where
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i,j =0, 1, 2, .. n-1,

so that A = (aij) is the transition matrix.
We have

l, i=j=0,
0, i=O;j=1,2,..., n-1
p:(1 -q). - i -1 (rood n)

aj=(1 - p)(1 - q) + pq, j~i*O

I -p), j=i+1 (modn),i O,
0, otherwise.

For n = 3,

1 0 0 1
A p(l -q) (I -p)( -q)+pq q(1-p)

q(l -p) p(l -q) (1 -p)(1 -q)+pq

and for n =4

1 0 0 0 1
A p(1 -q) (1 -p)(1 -q) + pq q (I- p) 0

0 p(l -q) (1 -p)(1 -q) +pq q(1 -p)
q(1 -p) 0 pl -q) (1 -p)(1 -q) +pq

Let ej (j = 0, 1 ... n - 1) denote the n x I matrix having a one in the jth

row and zeros elsewise, and let e = eo + el +... + en-l. The initial probability

distribution of the counter's location is (l/n)eT. At time k the distribution of the
counter's location is (1/n)eTAk -I because of the Chapman-Kolmogorov equations
[R(S)I]. The probability that the counter is at vertex j at time k is (l/n)eTAklej.
The expected payoff to Blue, f(p, q) when Blue adopts the parameter p and Red
adopts the parameter q is

f )eT k-1 T k-2
f( + kIe A -ne A eo
k. In

-. ' .lOTAkll 1 e A~(e-eo),j,i k- T Tk-I

where the sum in the equation can diverge to infinity.
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Let B = (bij) to be a (n - 1) x (n - 1) matrix, where bij =aij (i, j 1, 2,...

n - 1), i.e.,

B=

p)(1 -q) +pq q(1 -qp) 0

p(1- q) (1- p)(1- q) + pq q(1- p)

0 p(1 -Q (1 -p)(1 -Q + pq

and d is the n-i column matrix consisting entirely of one's. By considering
partitions of the matrices we conclude eTAk- I(e - eo) = dTBk- ld for each k = 1,
2. From this we get the following conclusion,

n k-0(2)

Lemma : Ineither(i) p=0andq0,(ii) p*I and q=I or (iii) p *

andq * 1,
Ix I< I

for each eigenvalue X of B.
Proof. (i) p =0 and q *0. Then B has an eigenvalue 1 - q of multiplicity

(n-i1) (which is less than 1 since 0 < q:5 1) since

1 -

p 
m p gn u p 1 s i nce

(i di) the 1 ndql 1.Tn atr conisn 1)ntire ofonve's p <consinen
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0 p

(iii) p#0 andq#1.
Suppose X I ;-:- 1, where . is an eigenvalue of B, and u is an associated

eigenvector such that maxl< i n- I ui= 1.

We have
nI-1

"bijuj=X;ui, i= 1,2,..., n -I.
j-I

Because A is a stochastic matrix and alo = p(l - q), it follows that

n-I

Since O<p and q< 1,p(1 -q)>O sothat , . Hence
j.1

n,1

If I U k-11 < l, then we have

n-1 k-2 n-1 n-1

luIjXj kIlul bkilujl bj +lu'b Ib-,+ybkj< b,, I -
j-.1 1-k j.1

So, IlUkI < 1. Byinductionwe get luil < I for each i = 1, 2,... n- I
contradicting our hypothesis that maxl sis n-1 Iui I =1. Hence I)LI <i.

Lenma 2: When Blue chooses the parameter p and Red chooses the
parameter q in the MDCPG, the payoff to Blue is

cc, p =q=Oorp=q=1,
f q) 1 I+d T(I -B) 1 d, otherwise. 

(3)
n

Proof. When p = q = 0 or p = q = 1, B =I, the unit matrix. Using (2), we

get
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f(p,) ,1 + ,**. 00.,n
k-OIn other cases, each eigenvalue X of B has absolute value less than 1 by

Lemma 1. Using the Jordan canonical form of B, we get that ,B converges
k-0

absolutely to (I - B)- 1 [G(F)I]. Then because of (2), the lemma holds.

Q.E.D.
Pposition 1: For the MDCPG, or the stochastic pursuit game on a directed

cyclic graph with n vertices, vi < v2 and

vi - Su p inf f(p, q) =f (1/2, O) = n,
Pq

2

V2-inf Sup f(pq)-f(1/2,1/2) n +2

a p 3

where P, Q are mixed strategies taken by Blue and Red, respectively. That is, Blue

can get a payoff which is not less than n if he takes p = 1/2 as his strategy. And
2

n +2
Red can pay what is not greater than 3 if he takes q = 1/2 as his strategy. This

game has no equilibrium value.
Proof. First we claim that the payoff function f(p, q), (3), has the following

properties.

(i) f(p, q) = f(q, p), f(p, q) = f(1 -q, 1 - p).
(ii) f(O, q), f(1, q), f(p, 0), f(p, 1), all are monotone strictly as being showed

by arrows in Figure 2.
(iii) f(O, 0) = f(1, 1)= **,

n+1
f(l,O)=f(O, 1)= 2

f(1/2, 0) = f(1/2, 1) = f(O, 1/2) = f(1, 1/2) = n,
2

n +2
f (1/2, 1/2)= 3

(iv) f(p, p) and f(p, 1/2) are both strictly monotone on the intervals

[0, 1/2] and [1/2, 1].
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q

n +1 00

2

2n +2

3

O n n+1 P

2

Figure 2

As examples, we calculate f(1/2, 1/2) and prove f(p, p) is monotone on both
intervals [0, 1/2] and [1/2, 1], respectively.

From (1), we get (n - 1) x (n - 1) matrix (I -B) at p = 1/2, q= 1/2 as follows.

1 1
2 4
1 1 1

1 1
4 2.

So h nes f(I -B)(1/.21/) is> -

2 4~

1 1 1

1 1
4 2

So, the inverse of(I - B)(I/2, 1/2) is
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( - '2

n-I n-2 n-3 n-4 3 2 1
n n n n n n n

n-2 2(n-2) 2(n- 3) 2(n- 4) 2.3 2.2 2.1
n n n n n n n

n-3 2(n-3) 3(n-3) 3(n-4) 3.3 3.2 3.1
n n n n n n n

n-4 2(n-4) 3(n-4) 4(n-4) 4o3 4.2 4.1
n n n n .. n n n

1.3 2.3 3.3 4.3 (n-3).3 (n-3)-2 (n-3).1
n n n n n n n

1.2 2-2 3-2 4-2 (n-3)-2 (n-2)o2 (n-2),1
n n n n n n n

1.1 2.1 3.1 4.1 (n-3),1 n-2 n-1

n n n n n n n

Hence

2 +Id T (I.B)( . 1 d

n-2 n-(j+) 1-1+ i i (n 'lQ+ 2 J"Z 1:i. j2J
nJ-1 W-

2
n +2

3

When p =q,

2p(1 -p) -p(1 -p)

-p(-p) 2p(1- p) -p(1- p)

I- B -O -p(1) 2p(1 - p) .P- p- p) ".

O -( -p) 2p(1 - p) - p(1- p)

-p(1-p) 2p(1- p)

n-I n-iIB In.I -n p (I p)
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(I-B).= -1 (a-p) n-1

i a 1' p(1 paij/n)n

where aij is a constant for given n, (i, j = 1, 2,... n - 1). So,

f(p, p)= 1 +Id (1-B)d - I + C
n p(1 -p)

where c is a constant for given n. From f (1/2, 1/2), c * 0. Hence

df(p,p) = c(2p- 1)

dp p2(1 _p) 2

is strictly increasing (decreasing) on interval [1/2, 1] ([0, 1/2]). Since

f(0, 0) = f(1, 1) = -* and f(1/2, 1/2) < a*.

Now, we calculate vi and v2. Suppose Red takes q = 1/2 as his strategy,

then
max f{(p, 1/2) = f (1 /2, 1/2).

P

For any q,
max f(p, q) 2! f(q, q) > f(1/2, 1/2)

P

So,
2

v2- rn maxf(p,)wf(1/2,1/2)= n +2_
p 3

Then suppose Blue takes p = 1/2 as his strategy. Then
min f(1/2,q)-f(1/2,0)
q

For any p,

m rf(p, q); f(p, 0) < f(1/2, 0), p>1/2iq f(p, 1) <f(12, 0), p< 1/2

So,
vi- max min f(P, q)-f(1/2, 0)-n.

p q

Finally, v1 < v2 since v2 - v1 = (n - 2)(n - 1) and n> 3.

Q.E.D.

1.2. PURSUIT ON A CYCLIC GRAPH
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Given a cyclic graph of n vertices as in Figure 3. Both a hider, Blue, and a
pursuer, Red, can at each stage remain at a vertex i, move to i + 1 (1 if i = n) or i - I
(n if i = 1). The payoff to Blue is -1 if Red catches (or finds) Blue, or 1 (or c)

otherwise. The collection B of pure strategies for Blue consists of all functions
from the set [ 1, 2, 3, ... ) into the cyclic graph such that 3(i + 1) = P(i) - 1, P(i) or
3(i) + 1 (mod n). The collection R of pure strategies for Red is the same, i.e., R =

B. This two-person zero-sum game is called a pursuit game with modified payoff on
a cyclic araph of n vertices. CMPG.

n 2

3

Figure 3

n=5=O 0 0 0 0 0 0 0 0 0

2 o 0 0 0 0o 0 o..
1 0 0 0 0 0 0 0 0 0'.

Figure 4 (n = 5 = 0 (mod 5))

To solve the problem, first let us consider a problem equivalent to SMPG.
Take an infinite set L having an underlying structure which limits the B and R as
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follows. L is a "semi-infinjte rectangular" array of lattice points having n rows and

countable columns; Thus,
L= {(i,D:i=1,2.... ;j=1,2,...,. n,} n>3.

And, let
B = R = (13: 13 satisfies some condition as follows),

e.g., 03 is a function from (1, 2,... into (1, 2 .... , n = 0 (mod n)) (or a path

on L) such that
ff3(i)-I or

0(i+1)= P(i) or (mod n)

3(i)+1

The payoff to Blue is
(0,= o1, p( @= P,forsome i= 1,2,3....

,(or ), otherwise,
where 13, p are pure strategies of Blue and Red, respectively.

LetGc=R=B. If pE Gc, then

P(i +1) = P(i) + P (i + 1) (mod n),

where p(i + 1) = 0, - 1 or + 1. Let p, a E Gc. Define
(P + 11)(1) = PM1 + Cr(1) (mod n)

(P + )(i+1) = (p + Co)(i) + (p(i + 1) +o(i + 1)) (mod n),

where (p(i + 1) +o(i + 1)) = -1, 0 or +1 (mod 3). Then we know Gc is a

commutative group isomorphic to the group

M=Zn+Z3+Z3 +Z3 +...,
where Zn, Z3 are cyclic groups of order n and 3, respectively.

On the other hand, impose the discrete topology on both Zn and Z3. Then

regard M as the product of Zn, Z3, Z3, Z3 . . . .. Using the above mapping

(isomorphism) between Gc and M, Gc is a discrete topological space, too. Since

Zn, Z3 are compact, Gc is a compact topological space.
Suppose MZn,, MZ, are Haar measure on groups Zn and Z3, respectively.

That is
1,

M zn0l) = nI J-0,1,2,....n-l,
n

Mz30)-I=I j=0,1.
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Then the product of Moe of MZn, MZ3, M,3.... is the Haar measure on Gc = M =

Zn+Z3 +Z3 + .... That is

MGC(r]k)= k1, k 1,2,3,...,
n.3

where

[r]k = (P : P(i) = r(i), 1:5 i:5 k).
Let

Gcr = (P : P(i) = r(i) for some i= 1, 2,...).

= (P :P(i) * r(i), i = 1, 2,... Gc\Gcr.

And let
(r, k) = (P :P(i) r(i), i 1,2,...,k).

Then
MGc(cc,)= m MG4l(r, k))

and

MGJ(r, k)) SkI
n.3

where Sk is the number of different heads cut down of paths in (r, k) between

column k and k + 1.
Lemma 3: Mc (G-c r = 0 for any r e Gc. Hence MGc(Gcr) = 1.

Proof. Let us look at Figure 5. In (i) of Figure 5, n = 4, r(i) =0, i = 1, 2, 3,.
... All heads cut down of paths in (r, 6) are shown in the figure. Attach a number to

a node as follows. 1 to each node in the first column, but not on r. At each node from

column 2 which is not on r, the attached number is the sum of numbers located on the
left side and connected up by a line. The iteration process looks like that of the
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r

3 r(i) 0, i=1, 2, 3,.

2

(i), Figure 5 (n =4)

n 4= 0 0- 0 -0 0 0
S1  S2  S3  S4  S5  S6 -70+90+70
11 11 11 11 11
3 7 17 41 99 =239
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K

2 0 35(ii), Figure 5 (n =4)

860310 i 56=++13+5

56+2+8+91=20

Si 0 13
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36 1, 2, 3,

r(2i + 1) = r(2i)

1 3 531 (iii), Figure 5 (n =4)

1i 1 23 10 22

ii ii I S~=12i=1,2,31

0 0 1 3 8 1 2 8

4

0 0 0 0

S, S 2  S3  S4 s
II 11 II II II S 6 -12 +38 +61 + 31 +
3 7 1 6 36 83 18 +22 + 4-186

Pascal or H. Yang Triangle. Then Sk is the sum of all numbers on the kth column.
For another example, in (ii) of Figure 5, S2 = 1 + 2 + 3 + 1 = 7.

For given k, different r corresponds to different Sk. However, Sk of (i) for
n = 4 is the greatest. For (i), figure 5, suppose si = a + b + a. Then si + i = (a + b)
+(a + b + a) + (b + a) = 2(a + b + a) + b = 2si + b: <2si + (1/2)si = (5/2)si. And
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4.3 1.. 5
32

i-1

.3

Therefore,

MGC(cr) = lirn I-i .
k-+4"@ 3

For general n, the proof is similar.
Since MGc (Gc) = 1, we get

MGc (Gcr) = I - MGc (r1 = -0= 1.
Q.E.D.

Pr~sitio 2: For a CMPG, the Haar measure MGc is an optimal strategy for
both Red and Blue. And the value to Blue is -1.

Proof. If Blue uses the Haar measure x as his strategy and Red chooses r,
then Blue can expect

J f(x, r) d MGc (x) - (-1) MGc (Gc,) +1 M c(r) =-

by lemma 3. Hence, v 1 i-1.
By symmetry, if Red uses the Haar measure he can hold Blue to the expected

payoff -1, i.e., v2 5 -1. From -1 S v1 <5 v2:5 -1, we get v = v1 = v2 = -L.

Q.E.D.
C: For CMPG, the probability that Blue escapes is zero if Red takes

Haar measure as his mixed strategy.
Similarly, we can discuss the pursuit game on a directed cyclic Uaph of n

vertices whose payoff is modified. DCMPG. The payoff to Blue is -1 if Red catches
(or finds) Blue, or I (or a*) otherwise. Gd = R = B consists of all functions 3 from
the set ( 1, 2, 3,... ) into the directed cyclic graph such that 3(i + 1) = 3(i) or 3(i) +
1 (mod n).

Replacing figure 3, 4, 5, Gc above by figure 1, 6, 7, Gd, separately, we get
proposition 3 below. Note

Gd = M = Zn+Z2+Z2+Z2+- - .
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And
1

k-i

MGd([r]k)=n.2 , k=1,2,3.

n=5= 0 0 0 0 0 0 0 0 0.

4 0 0 0 0 0 00 0 0'

: 0 0 0 0 0 0 0 "

S 0 0 0 0 0 0 0 0-.

Figure 6 (n = 5 = 0 (mod 5))

Lemm 4: MGd (Gd,) = 0 for any r e Gd. And MGd(Gdr) = .

Proposition 3: For a DCMPG, the Haar Measure MGd is an optimal strategy

for both Red and Blue. And the value to Blue is -1.
C: For DCMPG, the probability that Blue escapes is zero if Red

takes Haar Measure as his mixed strategy.
When we prove lemma 4, we note that r in (iii), Figure 7 corresponds to the

largest sk for given k. (See proof of lemma 3.)
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r

0 r(i)=constant, i=1, 2, 3,.

r (i), Figure 7
0__0___0__0 __0__ S*

Si S2 S3  S4  S5  S6
11 11 11 11 11 11

3 5 8 12 17 31
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6

11

31 r(i +1) r(i) +1,
3 7 S5=1, 2,3,...

1 2 4 S4 17(ii), Figure 7

IIf

3S
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2. QUASI-EQUILIBRIUM. PSEUDO-EQUILIBRIUM

As we know, if there exists a saddle point (b*,r*) for a game, then (b*,r*) is
an equilibrium pair of the game. In the case

f(b,r*)<f(b*,r*), f(b*,r)>f(b*,r*)
for any pure strategy b of Blue and any pure strategy r of Red. In other words, a pair
of strategies is said to be in equilibrium if no player has any positive reason for
changing his strategy, assuming that the opponent is not going to change strategies.
If in such a case, each player knows what his opponent will play, then he has reason
to play the strategy which will give such an equilibrium pair. Thus the game becomes
very stable.

If there does not exist a saddle point (b*,r*), we consider mixed strategies.
When the game is finite there exists a value v(=vl=v2) and mixed strategy 13* for
Blue and mixed strategy p* for Red, respectively,which yield this value. The pair
(P3*,p*) is said to be in equilibrium, or an equilibrium pair of the game. In this case,

f(13,p*)-f(13*,p*), f(13*,p)> f(13*,p*)
for any mixed strategy 03 for Blue and any mixed strategy p for Red. When the game
is infinite and

v,- sup inff( 3,P)inf sup f(5,p)=v2,

then either there exists (03*,p*) such that

f(p3,p*)< sup f(13,p) for any p

and
f(p,,p).a inf f(13,p) for any 13,

and the pair (P3*,p*) is said to be in equilibrium, or there exists (13*,p*) for any given
e>O such that

f(13*,r)>v-e

and
f(b,p*)<v+e

• • = | 9
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for any (br)E BxR and the strategy pair (03*,p*) is said to be in e-equilibrium, or an
e-equilibrium pair of the game. The strategies 3* and p* are called an e-optimal
strategy for Blue and an e-optimal strategy for Red, respectively.

In theory and practice, the following problems arise

1. For a finite or infinite game without a saddle point, how should the players
make their decisions? Here, we suppose that the game is played once. Thus mixed

strategies are not considered.
2. For an infinite game without a value v, i.e., vl<v2, how should the

players make their decisions?

To answer the first question, it is necessary to state the assumption clearly.
In fact, the model satisfies the following assumptions.

(a) There are two players and the playoff function is zero sum.
(b) The two players both are proficient in playing the game. Namely, they

know what decisions to make if they know what the opponent does.

(c) The players are both conservatives. Namely, they always suppose that
their opponents are so smart that they know beforehand what decisions their
opponents will make.

(d) The players have played the game one or more times.
Consider finite games,at first. In such a case, there exists a strategy pair

(b*,r*) and two strategies ro and b0 such that
f(b*,r0)= Imaxrin f(br)

b r 0la)

and

f(bo,r*)= min max f(b(r)r b GOb

for all (b, r)e BxR. If (b*,rO)=(bO,r*), i.e., b*=bo, r*=ro, then the pair
(b*,r*)(=(b*,r)=(bO,r*)) is a saddle point of the game. It is an equilibrium. If
(b*,ro) (bor*), we treat the game as follows.

First, suppose the pair (b*,r*) satisfying conditions (a and lb) is unique.

Then the game has an equilibrium "to some degree" at the pure strategy pair (b*,r*)
because

f(b*,r)> rain f(br) f(b,r*) mnax f(b,r)r , andb
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for all br. In other words, no player has a positive reason for changing his strategy
because any change could cause an appropriate change by the opponent so that the
player could get less or lo6, more. We call such a pure strategy pair a "guasi-saddle
point" of the game. If the game is played once or a few times, the saddle point or
quasi-equilibrium pair should be the optimal or quasi-optimal strategy pair for players
Blue and Red. If the game is played a large number times, the players Blue and Red
should choose the saddle point or, generally, the optimal mixed strategies.

Second, suppose the strategy b* satisfying (la) is unique, and there are
several pure strategies rl, r2, ...,rk satisfying (lb) for player Red. Select a strategy r*
from rlr2,...,rk such that

f(b*,r*)= ran f(b*,ri).

Then the strategy pair (b*,r*) is said to be a "quasi-saddle point" of the game.
Similarly, if there are several pure strategies bl,b2,...,bk satisfying(la) for

player Blue, and the strategy r* satisfying (lb) is unique, then the strategy pair
(b*,r*) is said to be a "quasi-saddle point", where b* is one of bl,b2,...,bk such that

f(b',r*)= max f(bir*).

Third, suppose there are k strategies bl,b2,...,bk satisfying (la) and I
strategies rl,r2,...,rI satisfying (lb). Then Blue should choose pure strategies from
only bl,b2,...,bk, Red from only rl,r2,...,rl. Thus, the original game is reduced to a
new one which is simpler than the original generally. Repeating the reducing
process, the original game might be reduced to one which either is the case discussed
above, i.e., there is single b (or r) satisfying (la) (or(lb)), or cannot be reduced
further.

For example, a tame with payoff matrix
1 2

cannot be reduced as above. Call it an irreducible g&m.
In the later case, Blue should choose any one of bl,b2,...,bk as an "optimal"

strategy, and Red should choose any one of rl,r2,...,ri as an "optimal" strategy,
where (bl,b2,...,bk;rl,r2,...,ri) cannot be reduced further. Such a pure strategy pair
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(b*,r*) is said to be a "pseudo-saddle point" of the original game if
bE (bl,b2,...,bk), re (rl,r2,...,r).

For infinite games, assume that there exists a strategy pair (b*,r*) such that

f(b*,r)>inff(br) and ffb,r*)< stP f(b,r)r
for all br. Then we can define concepts of "quasi-saddle point" and "pseudo-saddle

point" similarly.
Now, let us consider problem 2 proposed at the beginning of this section.

Besides the hypotheses ((a),(b),(c),(d)), we add one more as follows.
(e) vj can be reached by a mixed strategy P* for player Blue; v2 can be

reached by a mixed strategy p* for player Red in any game concerned in the
discussed process. Namely, there exist D* and p* such that

f(13*,p)>inff(13,p) for any P3 for Blue
P (2a)

and

f(13,p*)< sup f(p3,p) for any p for Red

P (2b)
Then,when the pair (13*,p*) satisfying (2a) and (2 b) is unique, the pair

(f3*,p*) is said to be in "quasi-mixed equilibrium", or a "quasi-mixed equilibrium"

pAir of the game.
When the strategy 13* satisfying (2a) is unique and there exists a set RI of p

satisfying (2b), there are two cases. First, there exists p* such that
f(O*,p*)=inff(1O*,p).

Then pair (0*,p*) is then in quasi-mixed equilibrium. Second, there is no such p*.
Then there exists p* such that

f(A*,p*)<inff(A3*,p)+e

for any given e>O. (13*,p*) is said to be in "quasi-mixed e-equilibrium".
Similarly, when there exists a set B1 of b satisfying (2a) and the strategy p*

satisfying (2b) is unique, there are two cases. First, there exists 13* such that

f(13*,p*)= sUp f(S3,p*).

I I I II I I
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The pair (D3*,p*) is then in "quasi-mixed equilibrium". Second, there is no such 13*.
Then there exists 13* such that

f(P3*,p*)> SUP f(,p*).-e

for any given e>O. (03*,p*) is said to be in "quasi-mixed E-equilibrium".
If there exists a set BI of strategies 13 satisfying (2a) and a set R1 of strategies

r satisfying (2b). Then Blue should choose a mixed strategy only from B 1, Red only
from R1. The original game is thereby reduced to a new one which is much simpler
than the original one generally. Repeating the reducing process on the reduced
games, the original game either can be reduced to one which is the case discussed as
above or can be reduced to an irreducible game in a finite number of steps, or can be
reduced without stopping i.e., the reduced game which is gotten in any finite number
of steps can be reduced further. In the latter two cases, a pair (1*,p*) is said to be in
°'seudo-wixed euilibrium" or an pseudo-mixed equilibrium pair of the game, where
(0*,p*)cB-xR1 , and BjxR1 either is irreducible or can be reduced without
stopping.

Poosition V. for the MDCPG in section 2, vl<v2. In this case, there is a
single P3* and a single p* satisfying (2a) and (2b),respectively, where 03*,p*
correspond p=l/2 and q=1/2. Thus, (p,q)=(1/2,1/2) is a quasi-mixed equilibrium
pair of the game DPCG.

Finally, it should be pointed out that when there exists a saddle point in
problem 1 ( the value v(vl=v2) in problem 2), hypothesis (c) can be replaced by the
following hypothesis.

(c') One of the players is conservative, and the other is astute, i.e., he knows
that his opponent is conservative.

However, in the case, the theory deduced above about quasi- equilibrium and
pseudo-equilibrium does not apply.
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