i A ARo 23736.1-€

o 58 S AN S HE S AYAYSOE
R ()
i ¢ .
(] ANALYSIS OF A SYSTEM TO PREVENT HELICOPTER
' w ROTOR BLADE-AIRFRAME STRIKES
L g Final Report
: 3 N % - _
oL) T! { B. W. McCormick
) _; é ;LECTE o R. G. Melton
' IN2119 | ”
= < 1388 " May 1, 1989
1, ¢ _;: C&
e N .
“ ' " U.'S. ARMY RESEARCH OFFICE -
Contract/Grant Number DAALO3-87-K.-0002
. Department of Aerospace Engineering
' The Pennsylvania State University
University Park, PA 16802
Approved for Public Release; 1

Distribution Unlimited

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE
OF THE AUTHORS AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT
OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER
DOCUMENTATION.

UNCLASSIFIED MASTER COPY - FOR REPRODUCTION PURPOSES

URITY CLA | HI A
REPORT DOCUMENTATION PAGE
S ————— e ———— o ——————
Ta. REPORT SECURITY CLASSIFICATION o RESTRICTIVE MARKINGS
o
TR A Y SN T W e T 3 DISTRIBUTION / AVAILABILITY OF REPORT
25, DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited.
3. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
. (If applicable)
Pennsylvania State University

U. S. Army Research Office
6¢. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Department of Aerospace Engineering P. 0. Box 12211

233 Hammond Bldg :
University Park, PA 16802 Research Triangle Park, NC 27709-2211

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (f applicable)
U. S. Army Research Office
8¢. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
P. O. PROGRAM PROJECT TASK WORK UNIT
0. Box 12211 ELEMENT NO. | NO. NO. ACCESSION NO.

Research Triangle Park, NC 27709-2211

11. TITLE (Include Security Classification)

Analysis of a System to Prevent Helicopter Rotor Blade-Airframe Strikes - (Unclassified)

12. PERSONAL AUTHOR(S)

B. W. McCormick, R. G. Melton

13a. TYPE OF REPORT 13b. TIME COVERED 14, DATE OF REPORT (Year, Month, Day) [i5. PAGE COUNT
Final FROM _86-11-1 7o 88~12~3F 89-04-03 111

16. SUPPLEMENTARY NOTATION .
The view, opinions and/or findings contained in this report are those

of the authar(s) and shguld not be ,constaugd as._an afficial Department of the Army position,
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

Helicopter rotor stability, rotor flapping, rotor dynamics,

rotor control systems
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

’

-~~~ Rotor blade-airframe strikes are rare but they do occur.
Three areas of the airframe are particularly vulnerable: the
tail boom, canopy and, in the case of the underslung, teetoring
rotor, the rotor shaft. This latter case is known as mast
bumping. This report studies a system to prevent a helicopter
rotor blade from striking any part of the airframe. Essentially,
the system continuously predicts ahead the rotor blade flapping
in response to an input such as pilot control or an atmospheric
disturbance. If a blade strike is predicted to occur then an .
&

(cont’d. on reverse)

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OuncLassiFieounumred O saMe As RPT. [DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE |

All other editions are obsolete.

UNCLASSIFIED

UNCLASSIFIED
SECURITY CLASSIFICATION OF TNIS PAGE

(19., cont’d.)

“appropriate feedback control is applied to alter the future
flapping. The prediction is then begun again with the altered
control. In the actual system, an enunciator might warn the
pilot at the time that he is attempting a control input which

design of the controller are taken. One of the programs is
entirely numerical in its approach. The other &#iliges ;modern
control theory and considers the preliminary aspects of
implementing the controller in digital hardware. Both methods
indicate the feasibility of preventing excessive flapping,
although the question of implementation in a dedicated
microprocessor is not fully resolved. .-, | =4 /71

e ———

could be hazardous. Two somewhat independent approaches to the
L0 A8]

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

ﬂ

Table of Contents

AbStract. L e e e e e e e e e e e e e e e e e e 1
Introduction e e e e e e e e e e 1
Description of Program to Predict Rotor Blade Flapping 2
Numerical Controller 0u.... 5
Results from the Numerical Program 7
Comparisons with Predictions from Classical Theory 7
RotorResponse e e e e e e e e e e e e e e e 7
Effectof Feedback 0. 8
References (Numerical Controller) v v v 10
Nomenclature for the Numerical Controller Studies 11
Design of a Digital Controller ¢ v v v v v uuow.. 18
Construction of a Closed-Loop Control System 18
Designof Control Elements ¢ v v v v vt v v o v o o o s o o 18
Digital Simulation Results i i i e e e e e e e e e 23
Implementation Requirements ¢ ¢ 4 vt v 4t e e e e 23
Conclusions and Recommendations« o v o v v v oo 25
References (Digital Controller). ¢ ¢ ¢ ¢ i i vt v 0 vt o s o 26
Nomenclature for Digital Control Program (DCFLAP). 27
Tables &t i e 31
FIQUIES v v i it i vt e et e e e e e e e e e e e e e e e e e 35
FORTRAN listing of PROGRAM FLAP (numerical controller) 76
FORTRAN listing of PROGRAM DCFLAP (digital controller) 87

Input data files for FORTRAN programs (AH-1Jcase) 104

Analysis of a System to Prevent Helicopter
Rotor Blade-Airframe Strikes

B. W. McCormick! and R G. Melton®

Abstract

Rotor blade-airframe strikes are rare but they do occur. Three areas of the
airframe are particularly vulnerable: the tail boom, canopy and, in the case of the
underslung, teetoring rotor, the rotor shaft. This latter case is known as mast bumping.
This report studies a system to prevent a helicopter rotor blade from striking any part
of the airframe. Essentially, the system continuously predicts ahead the rotor blade
flapping in response to an input such as pilot control or an atmospheric disturbance. If
a blade strike is predicted to occur then an appropriate feedback control is applied to
alter the future flapping. The prediction is then begun again with the altered control.
In the actual system, an enunciator might warn the pilot at the time that he is
attempting a control input which could be hazardous. Two somewhat independent
approaches to the design of the controller are taken. One of the programs is entirely
numerical in its approach. The other utilizes modern control theory and considers the
preliminary aspects of implementing the controller in digital hardware. Both methods
indicate the feasibility of preventing excessive flapping, although the question of
implementation in a dedicated microprocessor is not fully resolved.

Nomenclature

The nomenclature is to be found following the text. It includes both symbols used
in the text as well as those used in the computer codes.

Introduction

The purpose of this study is to determine the feasibility of a control system which
will prevent a helicopter rotor blade from striking any part of the airframe. Essentially,
the idea of the system is to continually predict ahead how the rotor blade will flap in
response to an input to the rotor such as pilot control or an atmospheric disturbance. If
a blade strike is predicted to occur then an appropriate feedback control is applied to
alter the future flapping. The prediction is then begun again with the altered control.
In the actual system, an enunciator might warn the pilot at the time that he is
attempting a control input which could be hazardous.

1Boeing Professor of Aerospace Engineering
2 Associate Professor of Aerospace Engineering

Rotor blade-airframe strikes have occurred on several helicopter configurations.

Three areas of the airframe are particular vulnerable, the tail boom, canopy and, in the
case of the underslung, teetoring rotor, the rotor shaft. This latter case, known as
"mast bumping®, was the primary motivation for this study but the results should be
generally applicable to other helicopter configurations.

Two somewhat independent approaches to the design of the controller have been
taken. One of the programs is entirely numerical in its approach. The other utilizes

modern control theory. Both approaches require that the following questions be
answered.

1. How many revolutions of the rotor must the flapping be predicted ahead?

2. What type of feedback control is required?

3 How quickly, in terms of a rotor revolution, must the microprocessor predict
the future flapping?

The answers to these questions must depend, in part, upon the operating state of
the rotor, the point around the azimuth where the strike is predicted to occur, and the
severity of the predicted strike.

The material to be developed here attempts to answer the above questions but with
certain limitations. It proved to be a more difficult task than had been anticipated so
that, with the allotted funding, it has not been possible to include, as yet, the dynamics
of the airframe, nor to determine, with any certainty, whether or not a microprocessor
can provide the speed which is necessary. Based on informal discussions with persons
knowledgeable in the design of microprocessors, it is felt at this time that the necessary
speed can be achieved. Also, it may be possible, within the accuracy required, to replace
some of the numerical integrations with approximate closed-form expressions, thus
increasing the speed of the calculations.

This report begins by presenting the development of a non-linear, numerical program
to predict the flapping of a rotor including retreating blade stall and reversed flow.
This program is utilized in both the numerical study and in the one utilizing modern
control theory. Next, the logic for the numerical controller is presented together with
some results which were obtained using the AH-1J helicopter as an example. This is
followed by the analytical developments based on modern control theory and some results
of that analysis, again using the AH-1J as an example. Finally, some conclusions and
recommendations are made, the principal one being that the scheme for preventing blade
strikes appears to be feasible and should be pursued further.

Description of Program to Predict Rotor Blade Flapping

A program to predict blade flapping was written specifically for this effort for two
reasons. First, it was uncertain that a classical approach which, at any azimuth position,
obtains the integrated blade lift and hub moment in closed form, would be adequate. The
classical approach is limited to first harmonic flapping and contains certain small angle
assumptions which may be significant. The classical approach also neglects reverse flow
and retreating blade stall. Secondly, at the other extreme, it was felt that the
computational time required by existing elaborate codes which predict rotor flapping, such
as C-81, would be prohibitive for the proposed control system. Thus a compromise
between these two extremes was taken.

The subroutine which was written begins with the rotor state at a particular instant

and azimuth angle, ¥, and integrates the thrust and torque over the radius. A uniform
downwash is assumed together with a rotor blade which is rigid but semi-articulated with
only a flapping degree of freedom. A better model of the downwash, like a triangular
variation or a prescribed wake, could be incorporated into this model but consideration
of a flexible blade would require extensive modification. At every azimuth position, the
blade loading is numerically integrated along the span to obtain the instantaneous lift

and hub moment. No small angle assumptions are made with regard to the angle of

attack of the blade sections. Reverse flow and stall are accounted for by the use of a
table lookup to obtain the airfoil lift and drag coefficients for angles of attack from
zero to 360 degrees.

For completeness, the analytical basis for the flapping program will be presented in
detail. Consider figure 1 which is a left side view of a rotor with the disc plane at an
angle of attack. The disc plane is sometimes referred to as the shaft plane and is the
plane normal to the shaft. From this figure, it is seen that the freestream velocity, V,

can be split into two components, one normal to the disc plane and the other lying in
the plane.

Now consider figure 2. This figure is a top view of the disc with the blade at an
azimuth angle, ¥, measured clockwise from the downstream position. It is seen that the
in-plane velocity can be further divided into two components, one parallel and the other
normal to the blade. Also shown in this figure is the linear velocity component directed
normal to the blade at a radius of r which results from the angular velocity of the rotor.

Figure 3 is a view in the plane defined by the blade and the shaft axis. The blade
is shown with a flapping angle, B a flapping velocity, df/dt and an angular
acceleration about the flapping axis. At a radius of r, if the blade is flapping up, as
shown relative to the blade, a downward velocity results from the upward flapping.
Further, the previous component of the velocity parallel to the rotor has, itself, a
component directed up normal to the blade.

Figure 4 shows the blade section at the radius, r, at a pitch angle © relative to
the disc plane. The net velocity up, normal to the disc plane, is given by,

V,=Vsineg - w- (r-98 - BV cos o cos ¢)

Where:

w = rotor downwash velocity

r = radial distance of blade section from shaft axis

¢ = radial distance of flapping hinge from shaft axis

¥ = azimuth angle

V = velocity at which rotor is advancing

B = flapping angle between rotor blade and disc plane

o, = disc plane angle of attack relative to V

The net velocity in the disc plane can be obtained from,

V, = ur + Vcos & sin ¢ (2)
Where:
w = angular velocity of rotor

Thus, from figure 4 and equations (1) and (2), the angle of attack of the blade

section is given by,

x=0+ ¢ (3)
Where:

¢ = tan "YV,/V,)

One must be careful in programming the above to remember that the angle ¢ can
lie in any quadrant and can be of a magnitude such that the angle of attack, o of
the section can vary from O to 360 degrees. In order to obtain the correct section
Cl and C,, and to correctly resolve the lift and drag forces into the thrust and
torque directions, one should check the sign of both V, and V,. Figure S illustrates
the possible flow directions and the corresponding lift and drag vectors. In the
subroutine SUBFLAP, which is appended to this report and which will be discussed in
more detail later, in lieu of using equation (3) to calculate the angle of attack, the angle
¢ is first calculated simply as:

[V,
- BLAL
¢ = tan VT A 4

The angle of attack is then found by the four possible combinations shown in figure 5.
Specifically,

V. >0 and V, > 0 x=04+¢ (3a)
V, >0 and V, < 0 x=0- ¢ (5b)
V. <0 and V, > 0 x=%+0©-¢ (5¢)
Vi <0 and V, > 0 =% -6-¢ (5d)

In the normal case, the lift coefficient, Cl, adds to the rotor thrust and to

the torque while the drag coefficient, C;, adds to the torque and subtracts from the
thrust. However, in the reverse flow region, or anywhere along the blade where the
angle of attack is greater than 90 degrees, this is no longer the case. Thus factors
multiplying CI and C, are set equal to 1 or -1 depending upon whether or not

the resultant flow is impinging on the leading edge or trailing edge and from above or
below.

Data for airfoils over an alpha range from 0 to 360 degrees is difficult to find so
that, for this study, the data for the NACA 0012 airfoil from O to 180 degrees was used.
This is the same data used in C-81. The logic for determining Cl’ C; and the

factors for resolving the lift is found, and identified, in the appended subroutine.

Knowing C ! and C; from a table lookup and the angles above, the
derivatives of the rotor lift and drag can be found from,

d_lrvicc (6a)
D _1,vécc (6)

where V_ is the resultant velocity shown in figure 4 and given by,

2
V,=(VE+Vi) ¥ 7
The radial derivative of the blade thrust is then found from,

o,
<
i

dT _dL Vil
dr=dr V. tadar Vv (8)

The derivative of the moment about the flapping hinge is found by multiplying the above
by the distance, r-¢ from the flapping hinge to the blade element. Thus,

M- -99& 9)

Using a simple trapezoidal rule, equations (8) and (9) are integrated along the blade
from ¢ to R to obtain the total instantaneous thrust and hinge moment. Knowing the
blade moment of inertia and the moment of the blade weight about the flapping hinge,
the angular acceleration about the flapping hinge is then calculated from,

2
IF(;—tfsM-IFﬁwz-Mw (10)

The angular velocity and the flapping angle, B, at the end of the time increment, A t,
are then obtained from,

dg d8 da’p
d—t(t+At)=a(t)+?At (11)

2
ﬁ(t+At)=Rt)+g—fAt+%gézt—z (12)

This is essentially the end of the flapping subroutine. @ The new state of the rotor

defined by (11) and (12) and the instantaneous thrust from (8) is returned to the main
program to be integrated with respect to the azimuth angle, ¥, and to be wused in the

logic of the controller.

Numerical Controller

The action of the controller is shown schematically in figure 6. Here, the flapping
angle, B, is shown as a function of time. Suppose, for example, that the controller is
activated at the time corresponding to point A. At that time it begins to predict the
flapping of the rotor ahead for a specified number of revolutions based on the state of
the rotor at the time and on a linear extrapolation of the control input. If the rotor
flapping is predicted to be within limits, the controller returns to the rotor after a time,
r, which is the time required to perform the calculations. During this time the rotor
blade has moved from A to point B. The process is then repeated. As illustrated, the
flapping at point A was predicted to be within prescribed limits for three revolutions
ahead. Thus the controller simply returns after the time 7 to sense a new rotor state
in order to perform another prediction.

Suppose, at some later time, point C, the controller begins a prediction during
which, because of a control input, the rotor flapping is predicted to exceed a limiting
value. Upon reaching this limit the prediction immediately stops and the controller
returns to the rotor at some fraction of r, point D. At this instant it commands an
incremental step input of corrective control to prevent the excessive flapping which was
predicted. It then begins a new prediction with the incremental control. If excessive
flapping is not predicted then an incremental step of corrective control is removed.
Thus, the control actuators commanded by the controller are generally inactive except
for those rare occasions when excessive control is applied by the pilot or when external
disturbances are sufficient to cause excessive flapping.

The logic for the above is shown in figure 7. This logic serves several purposes.

First, it calls for the subroutine FLAP in order to model the operating rotor. Secondly
it calls for this same subroutine to model the action of predicting the future flapping of
the rotor and finally, it checks the future flapping against prescribed limits and provides
the necessary feedback control to alter the predicted future flapping. The subroutine
DNWSH provides the downwash velocity as a function of blade azimuth position and rotor
thrust. To date, as stated previously, only a simple uniform downwash model has been
used. The subroutine CNTRL provides the corrective control which is a function of how
excessive the flapping is predicted to be and the azimuth position at which it is
predicted to occur,

Figure 7 will now be explained in some detail. The algorithm begins by inputting
the rotor state, operating conditions and parameters defining the controller. The state
of the rotor; ie, the advance velocity, trim angle of attack and control angles are read
from data files with the angles being determined from the static trim program described
in reference (1). Parameters governing the rotor flapping, namely the rotor geometry
and inertia properties, are also read in from data files. The variables specific to a
particular numerical calculation are read in from the keyboard by the operator.
Specifically, in order, these are:

1. Identifying case number

2. Maximum flapping angle to be allowed, BETLIM

3. Increments to cyclic pitches if allowable flapping is predicted to be
exceeded, DELFB1 and DELFB2

4, Maximum feedback on cyclic controls, FBILIM and FB2LIM
5. Number of rotations before control input (to disturb static trim)
is applied, N
6. Number of rotations that flapping is to be predicted ahead at a given

instant, NPRED
Fraction of a revolution required to accomplish the above prediction, FPRED
Rate of linear increase of cyclic control input to disturb system, CRATEI!
and CRATE2
9, Maximum incremental values for the cyclic control inputs, THEILM
and THE2LM
. Length of time for cyclic control inputs to be applied, TOFF
. Number of numerical integrations between printouts, PRT
. Maximum number of revolutions for run, NMAX

%0

(S I =]

|
1
1

Following the input, the time, azimuth angle and quantities to be integrated are
initialized to either zero or to their initial values. The switch KNTRL is set to 1 and
the calculations begin. The circled nodes in Figure 7 numbered 1 through 21 refer to
corresponding statement numbers in the program FLAP. The value of KNTRL remains at
1 until the time is reached for the control input to begin. At any instant of time and
azimuth angle, ¥, the subroutine SUBFLAP integrates the blade thrust with respect to
radius in order to obtain the derivative of the total rotor thrust with respect to ¥.

Following statement 5, ¥ is checked to see if it exceeds the value of 2% or the
value at which control input begins. If so, KNTRL is set to 2 and, after saving the
current state variables as initial values for later use, the prediction of the future rotor
flapping begins.

The prediction continues over NPRED revolutions or until the predicted flapping

exceeds BETLIM. During all of the calculations, after every revolution, the thrust is
averaged and the subroutine DWNWSH called to update the average downwash velocity.
The time, TC, required for the predictions is calculated following statement 14,
correspondent to the time at which BETLIM was exceeded, or simply equated to the time
required for NPRED revolutions if BETLIM was not exceeded. The program then sets
KNTRL equal to 3 and returns to the initial conditions saved when the prediction started.
Calculations of the flapping are then repeated until the time, TC, is reached. At this
point, the parameter FB is increased by 1 which adds an increment of feedback control.

If it is predicted that BETLIM will not be exceeded, then FB is reduced by 1. However,
the subroutine SUBCNTRL does not allow FB to be less than zero. At this time, and
with the feedback, KNTRL is set again to zero and the prediction begins again. This
alternating process of predicting the future flapping and calculating the actual flapping

with feedback continues until NMAX revolution are reached.

Results from the Numerical Program

The AH-1J helicopter was used as an example to demonstrate the programs
developed here with numerical values of the parameters for this helicopter and its rotor
system being obtained from reference (2).

Comparison with Predictions from Classical Theory

To begin, a comparison was made between predictions of steady flapping based on
the numerical code with those based on classical theory. (see reference 3) The typical
results shown in Figures 8 and 9 appear to confirm the code and offer the promise of
being able to use the linearized approximations contained in the classical formulation to
speed up the numerical controller. For these particular operating states, the amplitude
of the flapping, as predicted by the classical theory, agrees almost exactly with the
predictions from the numerical model. These particular graphs are for an AH-1J
operating at 61 knots at 3075 feet at a gross weight of 9500 Ibs. In figure 8, the
controls are held constant. In Figure 9, the lateral cyclic is increased rapidly by 10
degrees after two revolutions and then held constant.

Rotor Response

The response of the rotor to a lateral control input is presented in Figure 10.
Here, the helicopter is trimmed at 80 kts at standard sea level conditions using the static
trim program in reference 1. The rotor revolutions are measured starting with the blade
at an azimuth angle of zero. Since this latter program, based on classical, linearized
theory differs slightly from the numerical predictions of flapping, it takes approximately
two revolutions for the numerical results to become steady. At 3.0 and at 3.5
revolutions, a step increment in the lateral cyclic control input of 5 degrees is applied.
It can be seen that the flapping responds rapidly to the control input and reaches a
steady state in approximately one and one-half revolutions or less. When the lateral
cyclic control is applied at an azimuth angle of zero degrees (3 revolutions), the lateral
flapping is seen to increase by approximately two degrees only a quarter of a revolution
later at a psi value of 90 degrees, and by three and one-half degrees another half of a
revolution later at a psi of 270 degrees.

The effect of delaying a correction to a disturbance is illustrated by Figures 11 and
12. In both figures, a lateral cyclic control of 5 degrees is applied at the end of 3

revolutions (1080 degrees). Then, in Figure 11 a correction of -S degrees is applied 0.4
of a revolution later whereas, in Figure 12, the correction is not applied until one
revolution later. This same case was run for correction delays of 0.1, 0.2, and 0.3 of a
revolution with results which were nearly identical to figure 11. It can be seen that the
quicker response in figure 11 does not appreciably reduce the peak flapping immediately
after the input but the next peak is reduced by approximately 2 degrees in comparison to
the slower response of Figure 12.

Effect of Feedback

Figures 8 through 12 typify the kinds of evaluations which were done prior to
constructing the numerical controller previously discussed. After gaining confidence in
the numerical flapping program and getting a feel for the feedback capability which
would be needed, the final program was developed and parametric studies performed. To
date, these have only been done for the AH-1J at 61 knots, 3075 ft. and 9500 1bs. ft.
Some typical results illustrating the effects of the various parameters are shown in
Figures 13 through 17. Table 1 lists the parameters used for each case noted on the
figures. The parameters which are varied in these figures include:

a. The rate at which the controls can be moved.

b. The feedback increment to the controls each time excessive flapping is
predicted.

¢. The time required to predict the future flapping as a fraction of a rotor
revolution.

d. The limit on the authority of the feedback controls.

e. The number of revolutions ahead through which the future flapping is
predicted.

Figure 13 illustrates the effect of the rate of control movement. To put all rates
and times in perspective, it is noted for the AH-1J that it takes 0.19 seconds per
revolution or 5.2 revolutions per second. Thus, for example, at the rate shown in Figure
13 of 100 degs/sec, the controls will move 19.2 degrees in one revolution. From this
figure, it would appear that the application rate of the controls is not a predominant
effect. It is emphasized that this is the rate at which the controls are being moved to
disturb the flapping and is not related to the rate of control feedback. The latter effect
is accomplished in steps and is discussed later. It should be noted that the flapping
limit for these calculations and for all of the results to follow was set at 8 degrees.

Also, the disturbance for all of the cases was produced by applying 10 degrees of lateral
cyclic at the end of two revolutions. In the case of Figure 13 it appears that the
combination of looking ahead only two revolutions, feedback increments of 2 degrees, and
an FPRED value of 0.2 results in a flapping which will exceed the flapping limit slightly.
The ef” it of these parameters are discussed in the following paragraphs.

¥, feedback controls are applied as an accumulation of step inputs. A step is
appiiea each time the controller predicts excessive flapping and is removed each time the
controller ~-edicts that the flapping will remain within limits. The effect of the
fee 'back riep size is illustrated in Figure 14. Here again, the influence of the step size
is not a dominant parameter, at least for this particular operating state. However, it
does appear as if a feedback increment of at least 4 degrees is needed to stay within the
flapping limit.

The parameter, FPRED, is the fraction of a revolution required to predict the future
flapping of the rotor over a given number of revolutions. Figure 15 illustrates the effect
of varying this parameter over a range from 0.1 to 0.4 where the flapping is being
predicted three revolutions ahead. The feedback step size for this figure is 4 degrees.
The results shown here are somewhat puzzling and tend to contradict intuition. One
would think that the Ilower FPRED the better. However, the graph shows a higher
flapping for lower values of FPRED at around six revolutions. (although initially
following the disturbance at around three revolutions the results are opposite) It may be

that, what amounts to a high gain in the feedback, may be causing some type of an
instability in the flapping.

Figure 16 shows the effect of limiting the total feedback control angle. From this
figure it appears as if the authority of the feedback cannot be limited very much. For
this particular case, as a result of the 10 degrees of lateral cyclic input, a total feedback
of approximately 7 degrees must be allowed in order to stay within the prescribed
flapping limit.

The effect of looking ahead 1, 2, and 3 revolutions in predicting the future flapping
is shown in Figure 17. As one might expect, the differences in the results show up only
in the first couple of peaks following the control input. Looking ahead only one
revolution results in a flapping peak at about 2.8 revolutions which is approximately one
degree higher than for the other two cases. It appears, from these and other cases, as
if a value of NPRED of 2 or higher might be satisfactory.

References (Numerical Controller)

Hennis, R.P. and McCormick, B.W., A Computer Model for Determining Weapon

Release Parameters for a Helicopter in Non-Accelerated Flight, U. S. Naval
Surface Weapons Center, NSWC/DL TR-3823, October 1978.

Hennis, R.P. and McCormick, B.W., Computer Model for Predicting Dynamic
Behavior of a Helicopter for Application to Weapons Delivery and Subsequent
Safe Escape, U. S. Naval Surface Weapons Center, NSWC TR 85-285,
September 1986.

McCormick, B.W., Aerodynamics of V/STOL Flight, Academic Press, New
York, N. Y., 1967.

10

11

Nomenclature for the Numerical Controller Studies

The symbols given here are specific to the foregoing material since the study of the
application of modern control theory was essentially independent of that for the
numerical controller. A separate table of nomenclature giving the additional symbols for
the analysis using modern control theory can be found at the end of that material.

Nomenclature for Text

SYMBOL DEFINITION

« Blade section angle of attack

o Rotor disc plane angle of attack

B Blade flapping angle measured from disc plane
At Increment in time

€ Distance from shaft axis to flapping hinge
¢ Angle of resultant velocity

6 Blade section pitch angle

¥ Blade azimuth angle

w Angular velocity of rotor

c Blade section chord

Ca Blade section drag coefficient

¢ Blade section lift coefficient

D Blade section drag

Ip Blade moment of inertia about flapping axis
L Blade section lift

M Aerodynamic moment about flapping axis
My Blade weight moment about flapping axis

radial distance from shaft axis

)

time

-

Blade thrust

Advance velocity

Resultant velocity at blade section
Tangential velocity at blade section

Upward velocity at blade section

12

Variable Name

13

Nomenclature for Programs

Definition

Al
Al

ALPHA
ALPHAB
ALPHAD (1)
ALPHAL (1)
AREA

B

BI

BETA
BETA0
BETAD
BETADG
BETADI
BETAI
BETLIM

BI

C

Co
CALPHA
CASE
CBAR

CD

CDFAC

CDI (I)

longitudinal flapping

temporary dummy variable in interpolation of airfoil table
disc plane angle of attack

blade section angle of attack

section drag coefficient tabulated vs. this angle

section lift coefficient tabulated vs. this angle

disc area of rotor

number of blades

lateral flapping

blade flapping angle relative to disc (shaft axis) plane
coning angle

first derivative with respect to time

beta in degrees for printout

initial value of BETAD when starting calculation

initial value of BETA when starting prediction of flapping
limiting value which BETA is not to exceed

temporary dummy variable in interpolation of airfoil table
blade section chord

blade section root chord (X + 0)

cosine of alpha

identifying number

mean chord of linearly tapered blade

section drag coefficient

factor resolving drag in proper direction for extreme alpha

tabulated section drag coefficient as function of ALPHAD (I)

CI

CL
CLFAC
CLI
CPSI
CRATE!I
CRATE2
CcT

D
DDDR
DELBTI
DELBT2
DELFBI
DELFB2
DELPSI
DELR
DELT
DELTI
DELT2
DELTHI
DELTH2
DELTPR
DELX
DI
DLDR
DMDR
DTDR

14

temporary dummy variable in interpolation of airfoil table
section lift coefficient

factor resolving lift in proper direction for extreme alpha
tabulated section lift coefficient as function of ALPHAD (I)
cosine of PSI

rate of increase of lateral cyclic, degs/sec

rate of increase of longitudinal cyclic, degs/sec

rotor blade tip chord

rotor diameter

derivative of section drag with respect to radius

amount by which BETA exceeds BETLIM

temporary vale of delbtl in order to determine max value
increment to THETA1 when BETA is predicted to exceed limit
increment to THETA2 when beta is predicted to exceed limit
increment in azimuth angle for numerical integration
increment in radius for numerical integration

increment in time for numerical integration

differential thrust as a function of radius for a given PSI
same as, and averaged with, DELTI to integrate for thrust
derivative of total blade thrust with azimuth angle, PSI

same as, and averaged with, DELTHI to integrate for TAVG
increment in time for printout

increment in dimensionless radius for numerical integration
temporary dummy variable in interpolation of airfoil table
derivative of blade lift with radius

radial derivative of blade aerodynamic moment at flap hinge

radial derivative of blade thrust

DTR
DWNWSH
EPS
EPSR
FB
FPRED
KBETA
KNTRL
LAMDA
Ml

M2
MAERO
MIF
MU

MW

N
NMAX
NPRED
OMEGA
PERIOD
Pl

PRT

PSI
PSIDG
PSII
PSINI
PSILIM

15

factor to convert from degrees to radians

subroutine to calculate average downwash

dimensionless distance of flapping hinge from rotor axis
distance of flapping hinge from rotor axis

switch to add or subtract feedback correction to theta
fraction of revolution required to predict NPRED ahead
rotor pitch-flap coupling (delta-3)

logic switch, see Figure 7

inflow ratio equals net flow up divided by tip speed
radial derivative of aerodynamic moment about flapping hinge
same as, and averaged with, M1 to integrate for moment
moment about flapping axis produced by aerodynamic forces
blade mass moment of inertia about flapping axis

ration of forward speed to tip speed, V/VT

blade weight moment about flapping hinge

number of rotations at which control initiated

maximum number of revolutions for run

number of rotations to predict flapping ahead

rotational velocity of rotor, radians/sec

time for one rotor rotation

the usual constant, 3.14159

number of calculations between printouts

azimuth angle

azimuth angle, degrees

initial value of PSI (see Figure 7)

initial value of PSI (see Figure 7)

azimuth angle at which control initiated

PSIMAX
R

RHO
SALPHA
SIGMA
SPSI
SUBCNTRL
SUBFLAP
TAU
TAVG
TC
TCALC
TCON
TCONI
THIDG
TH2DG
THEII
THEILM
THE2I
THE2LM
THETA
THETAOQ
THETAI
THETA2
THETAT
THRUST
TIME

16

azimuth angle corresponding to NMAX

rotor radius

air mass density

sin of ALPHA

rotor section solidity equals B*C/PI/R

sin of PSI

subroutine provides a control input as a fvnction of TCON
subroutine integrates over R at PSI for flapping acceleration
parameter equals MW/MIF/OMEGA®**2

average rotor thrust in one revolution

total elapsed time for predictin of future flapping
integral of the rotor thrust with PSI for one revolution
elapsed time from when the control is first applied
time when control is initiated

THETA1 in degrees for printout

THETA? in degrees for printout

initial value of THETAI

maximum incremental value for lateral control

initial value of THETA2

maximum incremental value for longitudinal control
blade section pitch angle

initial trim collective pitch

initial trim lateral cyclic pitch

INITIAL trim longitudinal cyclic pitch

total blade twist

instantaneous total blade thrust at a given value of PSI

elapsed time from start of run

TIMEI
TOFF
TPRINT
TWOPI
\4

VR

vT
VTHETA
VU

w

Wi

X

XH

17

time at which prediction started of future flapping
length of time for control to be applied

time to print output

2*P1

rotor forward speed (advance velocity)

resultant velocity at blade section from VU and VTHETA
rotor tip speed due to OMEGA

velocity comonent at blade section in plane of rotation
velocity at blade section normal to plane of rotation
average downwash corresponding to TAVG

initial value of W at start of prediction of future flapping
dimensional radius

value of X at hub

18

Design of a Digital Controller

As with the numerical approach, a dynamic simulation and the appropriate feedback
calculations comprise the control algorithm. The dynamic simulation predicts the rotor
state at a future time (usually three blade revolutions from the present), and the
feedback controller determines if the flapping motion will be excessive; if so, the
controlier then automatically provides the necessary cyclic control step-input to limit the
flapping. The helicopter dynamic model is the same as that used in the numerical
control approach.

Implemented as a FORTRAN subroutine, the simulator serves the dual purpose of
generating the actual rotor motion, and of predicting the future motion of the rotor,
given the current rotor state and a control input. In the actual physical system, the
rotor state and control input would, of course, be determined by appropriate sensors. It
is envisioned that the complete controller (including the dynamic simulator) would be
implemented in a small system of microprocessors.

This portion of the report describes the digital controller, presents the results of
several simulations to test its performance, and concludes with a feasibility analysis of
implementation using dedicated microprocessors.

Construction of the Closed-Loop Control System

The digital controller was designed using largely standard techniques, although the
feedback gain matrix K was made time-varying in order to give better performance of
the system. As with the numerical controller in the earlier part of this report, a
simulator was used to generate the helicopter rotor flapping motion.

A block diagram of the complete system appears in Fig. 19. The difference between
the simulator output and a reference signal, which is the physical constraint on safe
flapping angle B, is taken as the feedback signal. The non-linear element (proportional
gain with deadband) is used to obtain better stability properties of the system. A
tracking filter is utilized to depress feedback signal noise and at the same time retain
the ability to track varying inputs. A first-order hold is used for simulator input to
achieve better tracking ability to varying inputs while zero-order holds are used
elsewhere for simplicity, following standard design practice.

Design of Control Elements
1. Design of the first-order hold

The first-order hold is constructed with reference to Fig. 20. For a single input-
single output (SISO) system, the hold is modeled as:

y(t-1) - y(t-2)

te-1 - -2

y(t) = y(t-1) + o (t-ty), <t Sty

where:
y = quantity being sampled

t = time

k = time index

19

This SISO hold is then extended to the muitiple input-multiple output (MIMO) case.
2. Design of the Deadband

The deadband size is determined by system performance as well as tracking
performance. The system performance here means the stability and transient
characteristics of the system. From the stability point it is desirable to have a
relatively large deadband size. Alternatively, from the perspective of tracking
performance, the deadband size should be as small as possible, requiring a compromise.

As a practical consideration, because there is computing error in the simulator, it is
undesirable to have the deadband size too small. In the actual implementation in a
helicopter, sensor noise would result in the same consideration. For the given helicopter
(AH-1J), the deadband A is chosen as 0.2 degree (as shown in Fig. 21). For simplicity,
a and B are both chosen as 45° (i.e., the nonlinear element has unity gain); overall
feedback gain is adjusted via the feedback gain matrix K.

3. Design of the feedback gain matrix.

As is common to all control systems, the system stability is critically dependent on
the value of feedback gain. Because the system performance is not easy to evaluate
analytically and rotor response to a step input generally takes less than 3 revolutions to
reach its steady state, it is sufficient to consider a first-order simulator for the present.

As expected, an improper choice of feedback gain can lead the system to diverge
rapidly. To obtain minimum settling time of the system, the simulator has to have some
overshoot to a step input. This requires that the loop gain cannot be too small. On the
other hand, physical considerations do not allow overshoot in the system (e.g. an
airframe strike could be the result); the feedback gain must not be so large that the
rotor displays an oscillatory transient. To resolve this contradiction, a varying gain
technique is used so that the gain decreases with time and reaches a steady state value.
The initial value of the feedback gain can be chosen so that the simulator prevents an
oscillatory transient. After several sampling points, the gain decreases so that the
transient of the simulator is no longer oscillatory.

(1) Selection of initial value of feedback gain.

Considering the closed form solution of rotor flapping, it is helpful to understand
the rotor behavior. From the closed form solutions, we have:

B=8 - A cos ¢ - B, sing
aﬂo Kﬂf4rl’ aﬂo Iy f,
F: - 2R N 'E;‘T

®, - A

A, 1 9A; KgTp (Apf, - Afy) + Ay
&y = K; w{ = A

aAl K;zrr -1
: - P . S

20

B, _ K;I‘F (Apfy Ayfy) + Ay Ky + Bylf,

B, A

where:

6, = collective pitch angle
8, = lateral cyclic pitch angle

6, = longitudinal cyclic pitch angle

A= (14+Kg2A) (1 - KfyTp) + Kpf Ty (By + KSPAp)
A, = longitudinal flapping angle
B, = lateral flapping angle
ﬂo = coning angle
&
K‘ = &

B = tip loss factor

1'4-1143s

2
Au-4(%--'§)
A = 8B

¥B? - 7‘—‘)

£ =2uBz
13 o
2
B® - ¥
Bz+“z
A x
14 B e
2
C, +C
hp=—%—7T.p.57%*. 1/ MF
4uB
By, = 2 2
XB® - F)

MIF = blade moment of inertia about flapping axis

K, = pitch-flap coupling coefficient.

For the example helicopter (AH-1J),

P
g";-o.o,%-o.u

1) 9,
Mo, Mg
*, ¥,
Ta—lt-l ,530.035
Obviously,
% ® - %, siny = + siny
¥ oA
2 - 1 2 -

Referring to Figs. (22a-22b), it is seen that the closed form expressions for
¥ B oA A B &

o —
3, 3B, B B B B
are close to the values calculated numerically. Similar agreement is obtained for other
values of the parameters o, €, and ¥. A feedback gain of 1.0 gives a critically

damped system; therefore, the initial value of feedback gain should be chosen larger than
1.0. The time-varying gain is computed as follows:

A Norm R defined for a vector (n x 1) is:

1
e 0
Norm (U) = U™, , e Uy,
0 (-1

21

This measure puts some weighting on each element of U. Note that Norm (U) 3

Euclidean norm of U.

22

Let U be a 10 x 1 vector matrix, and define

U(t,10) = E(t) Ut l)lllz

1/2
U(tag) = Ht"l) N U(t) = |:U(t92)|
U(t,1) = E(t-9) IU(t,IO)lllz

where E is the difference signal between the simulator output and reference signal, as
shown in Fig. 19.

Then, the gain is deduced using

_ . Norm [U(t)]
Gain (t) = Gain (t-1) Wr?[‘l[%-l_)l

In order to keep the tracking ability, a lower limit is set on gain. In the case studied,
¢ has been chosen as 0.1.

(2) Selection of lower limit on feedback gain.

The choice of lower limit on feedback gain is made on the basis that the simulator
should not be oscillatory after some time t and the settling time of the simulator should

be small. Obviously, a choice of dominant damping ratio of ¢ = .707 (i.e., v2/2) of
the simulator dynamics is reinforced. In the given case, the lower limit is chosen as 0.6.

4. Design of the Tracking Filter

For the SISO system, the tracking filter is shown in Fig. 23(a), and the
corresponding root locus appears in Fig. 23(b). This is a sampled-data system, and the
design is performed accordingly using z-transforms. Two open-loop poles are placed at z
= |, so that the filer has zero steady state error in tracking a ramp input.

For simplicity, a fixed relation between a and k is chosen as

k 22 - 2
k+1% a-2

where
k = tracking filter gain
a = open-loop zero
This relation has been determined to give good filtering performance.
The filter is then:

- 2(a-1) z (z-a)
F(2) (a-2) z? - 2a(a-2) z - a

To illustrate the filtering effect of F(z), some random variations (noise)
superimposed onto a deterministic ramp with a slope of 0.5 are generated and input to
the system. Referring to Figs. (24a-24c), the tracking results are given for different
choices of a.

It is seen that when a = 0.2, the filter response is fast enough to track the noise,

23

whereas some noise depression effect is achieved when a = 0.8. As the filter response
speed is further reduced, the filter will show less effect to noise and be more sluggish in
tracking a varying true signal.

As a compromise, a = 0.7 is chosen. This SISO filter is then extended to our MIMO
system.

Digital Simulation Results

Simulations were done with the sampling period being the time needed for the rotor
blade to travel 30°.

It can be seen from Figs. (25-26) that the system can follow a step input reasonably
with no overshoot across the physical flapping angle constraint line (the dot-dash line in
the figures).

From Figs. (27-28), it is seen that there is a steady-state error to ramp inputs (i.e.
the flapping actually reaches the physical limit). This steady-state error cannot be
eliminated because the control is based on an imperfect prediction of future system
response. Thus, no integral component in the loop can be used to eliminate the steady
state error. Fortunately, this error is not very big and can be reduced if a higher-order
hold is used for control inputs. Practically, a physical constraint on safe flapping angle
can be set so that the ramp-tracking error of the closed-loop system may be allowed
with no danger.

Implementation Requirements

Figure 29 is a block diagram of a typical microprocessor arrangement used in a
control system. The input device includes sensors and an A/D converter, while the
output device includes a D/A converter. The filter (digital to analog) is usually employed
to reject noise from the senors and to smooth the controi output. Coprocessors may be
utilized to reduce the complexity of the software and/or increase the processing speed
of the system through parallelism. For the helicopter blade flapping problem, the input-
output variables are shown in Table 2.

1. Sampling Rates

For digital control, sampling is necessary and the choice of sampling rate is crucial to
the performance of the system. The sampling of the measurement signals 8 and

B must be based upon azimuthal angle ¥ rather than being time-based, because

in this application, # and B are periodic with respect to ¢. It was determined

that a desirable sampling rate would be at least 5 times per revolution. Clearly, the
value of the sampling interval Ay must be less than 72 degrees. For a main-rotor tip-
speed of approximately 740 ft/sec, and a blade diameter of approximately 44 ft, the
sampling period (in time) must by less than 75 ms. Such a rate is readily achieved with
existing technology.

24

2. Storage Requirements

There are approximately 150 variables to be stored in 24-bit RAM for the
simulation. Information on C; and C, and all other helicopter parameters would be
stored in approximately 100 words of 24-bit ROM. In addition, the trigonometric
function "sin" would be stored in half-degree increments from 0 to 90 degrees in a look-
up table (for 3-digit precision, this would require 180 words of 16-bit ROM). The
controller requires another 50 variables in 24-bit RAM. The computational processor
would need another 50 words of 24-bit RAM. Therefore, the total memory requirement
for implementation is

RAM: 750 bytes
ROM: 660 bytes

which is a relatively trivial amount of memory for current technology. For example, the
AMD 80C51 CMOS single-chip controller has 4K bytes of on-chip ROM and 128 bytes of
on-chip RAM; therefore, only 1K bytes of external RAM are needed for this application.

3. Microprocessor Speed Requirement

To calculate the arithmetic operations done in one sampling period, the software
flow-chart of the system to be implemented is shown in Fig. 29. The operations in each
stage are arranged in Table 3. If parallel processing is employed for the inner loop in
Fig. 29, the necessary operations are as shown in Table 4. To execute. all of these
instructions, an AMD 80C5] would require about 900 ms with its CPU operating at 12
MHz (working with 24-bit data).

25

Conclusions and Recommendations

It appears to be feasible to limit the amount of flapping of a helicopter rotor blade
by means of a numerical controller which continuously predicts the future flapping of the
rotor given the instantaneous state of the rotor and control input. Admittedly, this
present study is limited in scope but enough has been learned about the response of the
rotor to the proposed feedback system to justify proceeding further.

One of the major unanswered questions is that of the speed with which a
microprocessor might do the calculations of the future rotor flapping. As an order of
magnitude, it appears as if the microprocessor might be called upon to calculate the
rotor flapping two revolutions ahead in the time it takes the rotor to move approximately
0.2 of a revolution, or around 40 milliseconds. This is certainly not out of the question,
particularly considering the possibility that one might be able to use closed-form
equations to predict the instantaneous aerodynamic moment on the blade. In this case,
numerical integrations need only be done with respect to the azimuth angle.

For the digital controller, the time required for the microprocessor appears at first
to be prohibitively large, but the implementation estimates were made using a relatively
inexpensive "off the shelf" microprocessor. A custom-made chip could easily complete
the required calculations in one-tenth to one-twentieth of the time estimated here. At
the current rate of increase in processor speeds, it appears likely that a standard
counterpart to the microprocessor analyzed here (AMD 80C51), with ten to twenty times
its speed, will be available within a year or two. As with the numerical controller,
further decreases in required computations might be achieved using closed-form equations
for the blade-aerodynamics.

Unlike a stability augmentation system, the authority of the system presented here
will probably have to be relatively high. However, this system will only provide a signal
to cyclic control actuators at those rare times when the rotor is disturbed to such a
degree as to result in excessive flapping.

If further work is pursued on this system, the following recommendations are made.

a. The equations of motion of the airframe should be included.
b. Considerably more cases should be examined, including trim at lower airspeeds
with combinations of collective and cyclic control inputs.
¢. The response of teetoring rotors should be compared with articulated rotors.
d. The time required for a microprocessor to do the required calculations should
be studied realizing that, in the operating system, the controller will only have
to predict the future flapping and not the continuous flapping as is done here
for the simulation.

26

References (Digital Controller)

Wayne Johnson, Helicopter Theory, Princeton University Press, 1980.

Hugh F. Vanlandingham, Introduction to Digital Control Systems, MacMillan
Publishing Company, 1985.

Goodwin, Graham Clifford, Adaptive Filtering Prediction, Control,
Prentice-Hall, 1986.

Prouty, Raymond, Helicopter Performance, Stability, and Control. PWS
Engineering, 1986.

27

Nomenclature for Digital Control Program (DCFLAP)

Note: Because the digital control program uses the same helicopter simulation code
as the numerical control program, many of the variables are common to both. This table
generally lists those variables that appear only in the digital program (DCFLAP). Refer
to the Nomenclature for the Numerical Control Program for other variable definitions.

Variable Name

Definition

All

Al2

Al3

Al4
AIRFOIL
ALPHA
ALPHAD
ANORM
ANORM(U)
Bil

BEEP

BET

BET10

BETI10D
BETIDI
BETID2
BET20

BET20D
BET2D1
BET2D2

BETD

temporary dummy variable

temporary dummy variable

temporary dummy variable

temporary dummy variable

subroutine to calculate section lift and drag coefficient CL & CD
initial trim angle of attack of disk plane

trim angle of attack of disk plane in degrees

subroutine to calculate ANORM(U)

a special norm of a vector with data weighting

temporary dummy variable

logical variable, signaling occurrence of excessive flapping

value of BETA in degrees for printout or writing to initial condition
table

initial trim flapping angle in radians at PSIBD

temporary dummy variable

temporary dummy variable in interpolation of initial condition table
temporary dummy variable in interpolation of initial condition table
first derivative of flapping angle corresponding to BET10
temporary dummy variable

temporary dummy variable in interpolation of initial condition table
temporary dummy variable in interpolation of initial condition table

value of BETAD in degs/sec for printout or writing to initial condition
table

BWFLAP
CDELAY
CNTRL
CNTRLI
CNTRL2
CRATEA
CRATEO
DO

Dl

D2
DALPHA
DAMP
DELAY
DENOM
DETECT
El

E2

Fl1

F2

F3

F4
FDBACK

GAIN

IKTEN
KTEN
NBET

28

subroutine to simulate the rotor blade flapping motion
temporary dummy variable

subroutine formulating control law

feedback signal of lateral cyclic pitch in degrees for printout
feedback signal of longitudinal cyclic pitch in degrees for printout
rate of increase of angle of attack of disk plane

rate of increase of collective pitch

perturbation in collective pitch

perturbation in lateral cyclic pitch

perturbation in logitudinal cyclic pitch

perturbation in angle of attack of disk plane

damping ratio of rotor blade flapping

phase angle delay of rotor blade flapping

temporary dummy variable

logic switch, initiating perturbation if NREV reaches PERTB
THETALI in degrees for printout

THETA?2 in degrees for printout

temporary dummy variable

temporary dummy variable

temporary dummy variable

temporary dummy variable

subroutine to determine the amount of feedback

magnitude of feedback gain vector, see Fig. 19 (the system block
diagram)

logic switch for sampling
sampling is done once every KTEN integration points
number of points per revolution in initial condition table

entry point in initial condition table

NREV

OVER
OVERO
PSI00
PSIIST
PSIBD
PSIBD1

PSID

REPLY
SOS
STEP

T1

T2

T3

T4
THETO
THETOD
THETI
THETID
THET2
THET2D

THRSTI1

TTAVG
uo(I)

29

azimuth angle PSI in terms of number of revolutions from the start of
simulation

amount of excessive flapping

maximum amount of excessive flapping

temporary dummy variable

temporary dummy variable in preparing the initial condition table
azimuth angle in degrees when simulation begins

temporary dummy variable in interpolation of initial condition table

value of PSI in degrees for printout or writing to initial condition
table

logic switch, user keyboard input

azimuth position at which maximum excessive flapping occurs
step size of PSI in degrees in the initial condition table
temporary dummy variable

temporary dummy variable

temporary dummy variable

temporary dummy variable

initial trim collective pitch

trim collective pitch in degrees

initial trim lateral pitch

trim lateral cyclic pitch in degrees

initial trim longitudinal pitch

trim longitudinal cyclic pitch in degrees

temporary dummy variable

temporary dummy variable

logical variable,specifying the status of existence of initial condition table
temporary dummy variable

similar to U(I) but used as a temporary one

UTHETI(I)
UTHET(])
u()

VAR!
VAR2
VAR3
VNUL
WNREL
XAl

XBl1

30

temporary dummy array, used in forming first-order hold
temporary dummy array, used in forming first-order hold
vector windowing the flapping angle

temporary dummy variable

temporary dummy variable

temporary dummy variable

temporary dummy variable

relative natural frequency of rotor blade flapping w.r.t OMEGA
temporary dummy variable

temporary dummy variable

TABLE 1
Param T ndin Figures 13 through 17

CASE DELFBI1 DELFB2 EBILIM FB2LIM NPRED FPRED

1* 2 2 5 5 1

PAd 2 2 5 5 1 2
3 2 2 5 5 1 2
4 2 2 5 5 2 2
5 2 2 5 5 3 2
6 4 4 8 8 3 1
7 4 4 8 8 3 2
8 4 4 8 8 3 4
9 4 4 8 8 2 2
10 3 3 8 8 2 2
11 2 2 8 8 2 2
12 2 2 6 6 2 2
13 2 2 7 7 2 2
14 4 4 8 8 3 1
15%* 2 2 8 8 2 2
16 4 4 7 7 1 2
17 4 4 7 7 2 2
18 4 4 7 7 3 2

FOR ALL CASES
BETLIM =8 (*BETLIM = 50)
TOFF = 10
PRT =3
NMAX =10

CRATEl =100 (**CRATEI = 200)
CRATE2 =100 (**CRATE2 = 200)

32

TABLE 2

Input-Output Variables for Digital Controller

VARIABLE
Downwash, w

Thrust, T

Azimuth position, ¢
Flapping angle, B

Flapping rate, §#
Forward speed, v

Angle of attack, «
Collective, §6,
Lateral cyclic, 6,

Longitudinal cyclic,

Air density, p

b

INPUT OUTPUT
X

X

X

X

X

X

X

X

X X
X

X

L

STAGE
1
2
3
4
STAGE
1
2
3
4

TABLE 3
Operations in Each _Stage

ADD SUB MUL
4 6 29
2 3 11
15 15 35
69 55 105

CMP BRANCH ABS
0 0 0
0 0 0
111 3 4
10 7 5

DIV
12

5

12

22

SORT

33

17

34

12,100

TABLE 4

ions in On

SUB
7,800

MUL
18,000

BRANCH ABS

1,000

900

bIv
5,100

SORT
200

MEM.
REF,

6,900

BINARY
OP§

700

34

> disc play
v

Vsinq

Vcos v=0

FIGURE 1
LEFT SIDE VIEW OF A ROTOR SHOWING THE

35

ANGLE OF ATTACK AND FREESTREAM VELOCITY COMPONENTS

PARALLEL AND NORMAL TO THE DISC PLANE

=X
V‘z

Vcos o cosV

Vcos asin ¥V

y=n Ve D;G

FIGURE 2
TOP VIEW OF THE DISC PLANE SHOWING VELOCITY
COMPONENTS PARALLEL AND NORMAL TO THE BLADE

36

view in plane of

z cp blade end shaft axis
B 'ﬁ blade B disc plane
I BVeos a cos ¥
, Vcos ¢ cosWV
FIGURE 3

BLADE - SHAFT AXIS PLANE SHOWING VELOCITY COMPONENTS
RESULTING FROM FLAPPING AND DOWNWASH

disc plane

Vcos @ -w- 3 Veosa cos¥Y orﬂ

wr+Vcos @ sin

FIGURE 4
BLADE AIRFOIL SECTION SHOWING THE TANGENTIAL
AND NORMAL VELOCITIES TO THE DISC PLANE WHICH
DETERMINE THE SECTION ANGLE OF ATTACK

FNILL
I N, !)]] 1 . 0¥—
P > > < — 08—
’ J VA
: A] ﬁ
J 1) A — - 02—
A S
._ ‘_ f— ~. .)_ & $
!
|

NN _ _
, , at | - -0t

__ | o
_ . _ I ,
/! \ ! 9 1~
I | /i - 01
\ /i N /! I b L 4
R T 7 T 7
{ \ v LIWIT ONIddV1d _
.f\/ v . - 0¢
MOVEQFad LNOH.LIM ONIddV T
o€

NOLLDV 39 TIOYLNOD FHL 40 DLLVIWIHDS
9 TANOI

STNIOAA °‘ONIddIV'Id 3AV1d YO.LOA

FIGURE 7
LOGIC FOR THE PROGRAM WHICH SIMULATES ROTOR 39
FLAPPING AND CONTROLLER ACTION

<
== —
TALZE @ %ri™ %rit 8 %ry]
t=0
v =0 23 T @
v =0 (10) ouTrur |
s o g
AB, =0 ! SUBFLAP TorsTIME-T o0 ‘ =
be‘O
&, =0 | CALL WRITE
Tulc'o KNTRL =3
T= 20 A-S =T | IR
SWICH2=0 Tan o1 a4
W\|r'm =0 Al = Teard 2(“1 "A.rz Jav tc:rv__n.v
t=t+ At 2'Npre
v -!'14' sz

2
ourrur [%™ %’ 2%t

4]

ot

TVOREAWAN F

JISSVID g

[} 1)

I I

Y]

ot-

_l..mll

lum.l

~ Ol

~ Cl

~ Vi

91

SINIOAA *ONIddV 3avI9 3010y

— L
~aa o€ LV LndNi + | _a
A S'€ LV 1NN O '
- 8
- _lw
sy 08 ¢ powwid [1-HY)
FICE NV ¢ v
mmmmomn ¢A0 1NdNI AO&.—.ZOU DRI AVIALYT vOlL
mmZOmmmm OZEE Javid JoLOod 40 ZOEU—QN&&

B

OLoa00 ¥ LndNl F |
NOLLOERRNIOO ON - 8

01

SNOLLNI0ATY
8 9 ¥ c 0
| |] i 1]] H Nlu
- .—.I.
0
~ T
~ Z
1] B m
I ~ .v
i = m.uo
- 9
—~ 4
o3as/oad o1 +
239S/03a00z=31vy 3 - 8
6
(91 pue ¢ $358)))
SALvVy INDITLIIG LV LNdNI
TOAINOD A g ONIddV LI 3avg 40LOY ONITINISIG 40 JLOALIg
¢ ANOI

SaOAA ‘DNIdY1S 3av4 3010y

S— —
SNOLLN10ATY
9 ¥ c 0
%M | i _ i 1 i] 2~
i - I
4 -
11
i y . ; c
i q _
i I
&)] o
! “
d 1 = m
¥ h ie "
4 . - €
b
_M.. 18) ~ ¥
| .
A ' i “w B n
- 9
Ov=3HITA ¢ - 4
0t=3HITaq +
0t=3vima Q — 8
A 6
(11 pue 0l ‘¢ sase))
mUZngxmm YITIOAINOD NOFZIS 4915 DvaaTsy 40 D344
vl RANOLY

SINIDAA ‘ONIAV 3ayig ¥owoy

e
1 1 0
£—~
H o
:u =
A
i 0 g
! m
| P8
m 7] - & m
¥ 0 - £ M
! .
} ! { o .‘ -
vy - g
:..vm.
) .9
MUQNE o s h
E=QIuIN +
1 =aydN (») _ g
6

NOTE: FIGURE 18 INTENTIONALLY OMITTED.

50

DA

ZERO-ORDER

HOLD

V

51

FIRST-ORDER
HOLD

D(Z)

TRACKING
FILTER

HELICOPTER
T &
AD
ZERO-ORDER
HOLD

>[SIMULATOR

REFERENCE

F 71

Figure 19 Block diagram of the digital control system.

52

k-2 k-1 k t

Figure 20 First-order hold model

Figure 21 Nonlinear element

53

‘BP0 mh ‘JopCl =g ‘FopC-mw
d sj3ue 8ujddey] Jo10J a1BIS-ApEalS BZZ aJn8yy

7r7ll]lllllIlll]li7l,ﬁlr,‘

L6°91

L6°9 LB'T £0€- E0'8-

(‘3ep) viag

L6°TT

54

"8 0=A ‘Bop (] =g -Fop n.,.l8.
d a18ure 8uidde[] JO10J WIOJ-PIsO]) qZZ 2Jn8yyg

0
v

'_I‘IIIIIITIITIIIIIIT

PL9 vi'e g2'r- 92°S-

PL°01

(‘Fep) vViIad

55

R + E KZ(Z-a)

— QO Z-1)° C

Figure 23a Block diagram of the tracking filter.

Figure 23b - Root- locus of the tracking filter (z-plane)
a double open-loop pole is located at z=] and
open-loop zeros at z=0 and z=a.

56

5
oot 08 08 ov 02 0

1 L | 1 1 1 1 01—~

h‘h | w.» R

A\ .»‘ } ! ‘ ‘ ~ 0%

»\ — f \.— «‘ ; - 02

" ein
PrL
b ﬂ .
v e 0 wdino Ky O
1 osjou MIfAINdU] 4 INdUF I8P — 0§
Z2’0=1 Jojindino 1aT] vpZ ain8ry

09

(syran Lxeyjqaw) ynding IITLS

eo0

\‘:\‘T
X
\$& “
. .
A
A
—"“\\ -
(‘.‘::A_-b
<
o \ ————
St _\ -
"\ 8
2 P)
=
a ~_f,»
e % -
A ndb .
g 67
veny g e
Q ’ =3 L D ———
© 3 =g -
o e L IR —
+ T\
ofF T
S . =&
= B 2 e ~
893 g,
g : 5 (‘:““.b
b 8 - 0
D = ——euunlll g, - L
a o n f‘(‘“
& *
3
o \ o4 —
h - —‘l" F
a (R) ac
i S e, XN
SR
- <»é e
)
Y
S
N\ h
i3] R ! 1 |
Q Q Q (=] [~} Qo Q
0 - -] (3] —t -
i

(m3ran Lrexjpqaw) ynding IaTRg

100

a0

60

40

20

57

eo0

R
-]
a _
g
sond
2
& :
S «q n
[ot
o+
b -d 1“
S 3 3 =N
323 Y = -
ass .
5 d 8 R
O <5 = %\
8 = . L
s y R
= I < =V
— \ 5%
O “\\
A AR
P =
5 51
g Y
\ X :
="}
AR
-
. -
<—\3
T T T T T j
o o o o =) o o
0 - 0] N -y -'-0

(syran Lxwnyqae) Inding INTI

100

ao

60

40

20

58

59

2 - ATHN 10 ‘3P g-tav ¥
ynduy 4218 01 asuodsal gurddeyy 10108 vgz 2308l

¥
z
Y -
-~ G
- B
- A
8
- 6
- 0%
- 13
- 21
- €1

a3 U gujddey) Vo JUFBNSUV0D peoyshud ---
3911031002 yondp TUA + poIIoNuBodTN —

-

(J91103U0d [MIBEP ja)
Z = AMIN 18 'Bap 9 = *gy jJo
indur dais 8 Joj *g yoird 104D 1ela1e] qCZ 2InBiyg

ATIN
6 L S ¢ l L—
i\ 1 1 | _ 1 i | ! 1°0~

60

~ 10
— 20
— £°0
~ +°0
~ G0
~ 9°0
— L°0
— 8°0
— 6°0

— L'l
- Z' 1

- ¥l
- S
- 9°1
- L)
- 81
— 671

(‘3sp) 'g

Z=ATIN 18°83p 9 = "gy Jo
indur dais e Joj Nm goud 311340 BUIpNI8UOT 0CZ 3InBjy
© ANTIN .
6 L S £ | L—
) 1 1 |) 1 L L 1 p—
- £~
e N.l
- 1L~
D
o~
o ~
¥
o
@
| I N
-
- T
| .
— ¥

62

o1

©

Z = A9HN 1®89p 9 = Tgg jo
1indur dajs » Joj um8 jyougpaag pCzZ ainsiy

ATIN

A
— %0
- 9°0

- 90

- 27
ﬁl i
- 9°7

— 8°1

ﬁl c'e

- y°2

NIVD

——
)
|

1 1
b
ool el

2R S St Suit IAS MR B et W aam aon

I

<= ATIN 18 "8ap g-
I § 01 asuodsay 8uidd

VR T W U B |

ol
LANILIENNR S M SN Bt Rt A B s aae

R e S R e .|
(e m e e RURLRLARLY

LSRL L i NURE SR M SRR My Shen nun

lllllllllll‘ll)l
e m pCELERS

(4351011000 udip yym)
U0 Jugensuos 1821sdyg- - .

onu0s [eyep M + P3tlosiuoaup

—_—

64

ATIN

(121j0nu0d [RURP yiim)

7= AN ® 8op 9- = Tgy jo
induy dais e 1031g youd ondko jerare qog gy

(‘89p) Ig

(331103100 [BuBIp Yiim)

T = ATYN 1 '35 9- = Tgy jo
indur doys ® 105 ©g youd o194 eurpnjiSuoy 997 dIndiy

-
-
- "

8'c—
L [2—
- 9°¢—
. gz—
- ¥Z—
| ¢g—
- e

r F-Nll

- 671
- m.PII

— L=

9'i—

(‘39p) g

66

o1

T = AN & 39p 9- = Tgy jo
induy doys e 10j ured oeqpaog p9z o:—u_m

ATIN

- V2

NIVD

i{

67

jo ndut d

lodt 444
vy

bl Lt 14,

Mg g ey AR

Z = ATIN 18 038
wed O} asuodsad 3ut

i
|
|
i
!
]
{
1
5
L]
»

/8ep < ='8
ddejj J0104 YA

aj3uv guyddey vo 0
Jajj0nu0d endip YA +

TRIISU0D reotsAdd ---

n81y

polloNToTA —

!
«a
(sor) §

(3911053000 jmaByp YiA)

Z = ATMN 18 235/83p C = '8
Jo induj dwes 8 JoJ*g Yo1d D1j0Ad [via1e] qLZ dinBig

L S ¢ 1
I 1 1 I 1 1 1

A

—~ €0
— ¥°0

— 9°0

— L0
— 8°0

=

- ¥°1

— L't
- 871
—~ 6°|

v("33p) '9

(9110nu0d [ENdip Yum)

T=AHUN® sBpg="g
Jo ndur dwes e oy tg yond orpoho _«c_vﬁ_w:om oLz a8y

-
- I e
10 S
vi—=
3
ci—
L=

60—
8°0—
L0—
9'0—
G'0—
¥°0—
£0—-
AN Y
10—

(‘8sp) g

S

70

o1

Z- AJYN 18 oes/8ap ¢ ~ g

Jo induy dwels Joj ure8 yoeqpaa psz ain8iy

ATIN

- ¥°2

¢

NIV

N - >m-z e 298 ﬁﬂv ﬂ - Q
.MO nd 0O . n
c.q QEQ& B 01 38U Q%Qh “C.«QGQ.—.— .-Oﬂox U”N oJ “
E

|
]
I
I
{
I
l
|
I
{

N
T

2000 bbbk
ugopopuprpny

-
222
oy

]
™
(Bsp)

JYTYgEn]
Y

TR R e SR et s g et e S g e
-y

72

(4071053000 (R I1P Yaya)

2= AMINIe 29s/83p ¢ -'g
induy dwes 8 JoJ *g youd df04AD [8ia1w] QgZ 2JnBrg

ATIN .
L S ¢ -
1 1 1 | | i A1 c—
~ 6'2-
- o
o
= S
_ g0-
0
— G°0
- 1
—~ S'l

(‘33p) g

3o indur dwes e 10j

(3211001u00 [BUBIP Yum)

T=ATIN® 98/8%p g =9
te youd orpaf> reuipni8uo] 08z 9indiyg

- *-°|

c0—-

(‘3ap) g

74

= ARUN 18 98s/80p € = %p
Jo 1nduy dweds © Joj ures yosqpaad pgz InBry

ATIN
o1) 9 14 4

vo

80

8’0

c'I

L AN |

07

I |

c'e

Ve

9°c

NIVD

75

Internal Internal
K Registers Coprocessor

(:__:> Filter (if sny)
Main (if necessary)

Microprocessor

1

External p
RAM

RoM N—
(if required)

Figure 29 Block diagram of the microprocessor controller.

> 1/0
y

STAGE 1

,:W

STAGE 2

&
vl @
o &7 | sTAGE3
HEBSE
8| &
o

Figure 30 Software flowchart for analyzing microprocessor operations.

FORTRAN listing for PROGRAM FLAP
{numerical controller)

76

77

PROGRAM FLAP _
COMMON/COM1/THE1LM, THE2LM, KNTRL, TCON, TOFF, THE1I , THE2I , SWITCH
COMMON/COM2/DELFB1,DELFB2 , FB, PI, CRATE], CRATE2 , FDBK1 , FDBK2
COMMON/COM3 /CLI (20) ,ALPHAL(20),CDI (33) ,ALPHAD(33) ,ALPHAB, CL, CD
COMMON/COM4 /OMEGA,V,ALPHA , W, BETAD, RHO , DELPST , DELR, T ,MIF,MW,D
COMMON/COMS5 /PSI,EPS,CO,CT, THETAO, THETAT , THETAL, THETA2 ,KBETA , BETA
COMMON/COM6 /FB1LIM, FB2LIM
REAL MIF,MW,KBETA,N,NPRED,NMAX
OPEN(UNIT=1,FILE='CL.DAT')

DO 100 I=1,20
READ(1,%) ALPHAL(I),CLI(I)

100 CONTINUE

CLOSE (UNIT=1)
OPEN(UNIT=2,FILE~'CD.DAT')
DO 200 I=1,33

READ(2,*) ALPHAD(I),CDI(I)

200 CONTINUE
CLOSE(UNIT~2)

PI=3.14159
TWOPI=2 . *PI
DTR=PI1/180.
DO 300 I-1,20
ALPHAL(I)=ALPHAL(I)*DTR

300 CONTINUE
DO 400 I=1,33
ALPHAD (I)=ALPHAD (I)*DTR

400 CONTINUE
WRITE(*,*)'THIS PROGRAM PREDICTS THE FLAPPING MOTION FOR A’
WRITE(*,*) 'HELICOPTER ROTOR BLADE IN FORWARD FLIGHT WITH PILOT’
WRITE(*,*) ' INPUT AND FEEDBACK CONTROL.'

WRITE(*,*)

WRITE (*,*)

WRITE(*,*)'INPUT IDENTIFYING CASE NUMBER’

READ (*,*)CASE

WRITE(*,*) ' INPUT THE MAXIMUM FLAPPING ANGLE IN DEGREES WHICH '
WRITE(*,*) 'WILL BE ALLOWED'

READ (*,*)BETLIM

WRITE(*,*)'INPUT THE INCREMENTAL CORRECTION TO LATERAL CYCLIC’
WRITE(*,*)'PITCH CONTROL WHICH IS ADDED EACH TIME BETA IS’
WRITE(*,*)'PREDICTED TO EXCEED THE LIMIT. IT IS ALSO SUBTRACTED'
WRITE(*,*)'EACH TIME BETA IS PREDICTED NOT TO EXCEED THE LIMIT’
WRITE(*,*)'IF ANY FEEDBACK IS BEING APPLIED.’

READ (*,*)DELFB1

WRITE(*,*)'SIMILARLY, INPUT THE INCREMENTAL CORRECTION TO'
WRITE(*,*)'THE LONGITUDINAL CYCLIC'

READ (*,*)DELFB2

WRITE(*,*)’INPUT THE LIMIT ON FEEDBACK TO LATERAL CYCLIC,DEGS.'
READ(*,*)FB1LIM

WRITE(*,*)'INPUT THE LIMIT ON FEEDBACK TO LONG. CYCLIC, DEGS.'
READ (*,*)FB2LIM

WRITE(*,*)'INPUT NUMBER OF ROTATIONS BEFORE INITIATING CONTROL'
READ(*,*)N

WRITE(*,+*)'INPUT NUMBER OF ROTATIONS TO PREDICT AHEAD'

READ(*, *)NPRED

100

200

300

400

78

PROGRAM FLAP
COMMON/COM1/THE1LM, THE2LM,KNTRL, TCON, TOFF, THE1I , THE21I , SWITCH
COMMON/COM2 /DELFB1,DELFB2, FB,PI,CRATEL, CRATE2 , FDBK1 , FDBK2
COMMON/COM3 /CLI (20) ,ALPHAL(20),CDI(33),ALPHAD(33) ,ALPHAB,CL,CD
COMMON/COM4 /OMEGA, V, ALPHA , W, BETAD , RHO, DELPST , DELR, T ,MIF ,MW,D
COMMON/COM5/PSI ,EPS, CO,CT, THETAO,, THETAT , THETA1,, THETA2 , KBETA, BETA
COMMON/COM6 /FB1LIM, FB2LIM

REAL MIF,MW,KBETA,N,NPRED,NMAX

OPEN(UNIT~1,FILE='CL.DAT')

DO 100 I=1,20

READ(1,*) ALPHAL(I),CLI(I)

CONTINUE

CLOSE (UNIT=1)

OPEN(UNIT=2,FILE=‘CD.DAT')

DO 200 I-1,33

READ(2,%*) ALPHAD(I),CDI(I)

CONTINUE

CLOSE (UNIT=2)

PI=3.14159

TWOPI=2.*PI

DTR=PI/180.

DO 300 I-1,20

ALPHAL(I)=ALPHAL(I)*DTR

CONTINUE

DO 400 I=1,33

ALPHAD(I)=ALPHAD(I)*DTR

CONTINUE

WRITE(*,*)'THIS PROGRAM PREDICTS THE FLAPPING MOTION FOR A’
WRITE(*,*) 'HELICOPTER ROTOR BLADE IN FORWARD FLIGHT WITH PILOT'
WRITE(*,*) ' INPUT AND FEEDBACK CONTROL.'

WRITE(*,*)

WRITE(*,*)

WRITE(*,*) ' INPUT IDENTIFYING CASE NUMBER'

READ (*,*)CASE

WRITE(*,*)’INPUT THE MAXIMUM FLAPPING ANGLE IN DEGREES WHICH '
WRITE(*,*) 'WILL BE ALLOWED’

READ (*,%)BETLIM

WRITE(*,*) ' INPUT THE INCREMENTAL CORRECTION TO LATERAL CYCLIG'
WRITE(*,*)'PITCH CONTROL WHICH IS ADDED EACH TIME BETA IS’
WRITE(*,*)'PREDICTED TO EXCEED THE LIMIT. 1IT IS ALSO SUBTRACTED'
WRITE(*,*)'EACH TIME BETA IS PREDICTED NOT TO EXCEED THE LIMIT'
WRITE(*,*)'IF ANY FEEDBACK IS BEING APPLIED.’

READ (*, *)DELFB1

WRITE(*,*) 'SIMILARLY, INPUT THE INCREMENTAL CORRECTION TO'
WRITE(*,*)'THE LONGITUDINAL CYCLIC'

READ (*,*)DELFB2

WRITE(*,*)'INPUT THE LIMIT ON FEEDBACK TO LATERAL CYCLI(: DEGS.'
READ(*,*)FB1LIM

WRITE(*,*)'INPUT THE LIMIT ON FEEDBACK TO LONG. CYCLIC, DEGS.’
READ(*,*) FB2LIM

WRITE(*,*) ' INPUT NUMBER OF ROTATIONS BEFORE INITIATING CONTROL'
READ(*,*)N

WRITE(*,*)’INPUT NUMBER OF ROTATIONS TO PREDICT AHEAD’
READ (*, *)NPRED

79

WRITE(*,*)'INPUT FRACTION OF REV REQUIRED TO PREDICT'’
WRITE(*,*)'BLADE MOTION NPRED REVOLUTIONS AHEAD’

READ (*,*)FPRED

WRITE(*,*)'ONLY CYCLIC CONTROLS WILL BE APPLIED. EACH CONTROL'’
WRITE(*,*) 'WILL BE INCREASED LINEARLY UP TO A MAX VALUE.’
WRITE(*,*)'INPUT: RATE OF INCREASE OF LATERAL CYCLIC, DEGS/SEC'
WRITE(*,%*)’ RATE OF INCREASE OF LONGITUDINAL CYC,DEGS/SEC'’
READ(*,*)CRATEL, CRATE2

WRITE(*,*)'INPUT: MAX INCREMENTAL VALUE FOR LATERAL CONTROL, DEG’
WRITE(*,*)’ MAX INCREMENTAL VALUE FOR LONG. CONTROL, DEGS’
READ(*,*)THE1LM, THE21M

WRITE(*,*)'INPUT: LENGTH OF TIME FOR CONTROL TO BE APPLIED,SECS’
WRITE(*,*)’ INPUT NUMBER OF CALCULATIONS BETWEEN PRINTOUTS’
READ (*,*)TOFF, PRT

WRITE(*,*)'INPUT MAX NUMBER OF REVS FOR RUN'’

READ (%, *)NMAX

OPEN(UNIT=5,FILE='FLP5.DAT’)

READ (5,*)D,CO0,CT,EPS

CLOSE(UNIT=5)

D=ROTOR DIAMETER,FT.

CO=-ROOT CHORD AT R=0, FT.

CT=TIP CHORD, FT.

EPS=DIMENSIONLESS HINGE OFFSET

OPEN(UNIT=6,FILE~'FLP6.DAT’)

READ (6,*)KBETA, THETAT,MW,MIF,V

CLOSE (UNIT~=6)

KBETA=PITCH-FLAP COUPLING

THETAT=TOTAL TWIST FROM ROOT TO TIP IN DEGS, NEGATIVE FOR WASHOUT
MW=BLADE WEIGHT MOMENT ABOUT FLAPPING HINGE IN FOOT-POUNDS
MIF=-BLADE MASS MOMENT OF INERTIA ABOUT FLAPPING AXIS

V=FORWARD VELOCITY IN KTS

OPEN(UNIT~7,FILE=‘FLP7.DAT')

READ (7,%*)VT,THETAO,THETAl,THETA2 ,ALPHA,Al,B1,BETAD
CLOSE(UNIT=7)

VT=TIP SPEED DUE TO ROTATION IN FPS

THETAO=INITIAL TRIM COLLECTIVE PITCH, DEGS

THETA1 :INITIAL TRIM LATERAL CYCLIC PITCH, DEGS.

THETA2=INITIAL TRIM LONGITUDINAL CYCLIC PITCH, DEGS.
ALPHA=INITIAL TRIM DISC PLANE ANGLE OF ATTACK, DEGS.
Al=LONGITUDINAL FLAPPING IN DEGREES

Bl=LATERAL FLAPPING IN DEGREES

BETAO=CONING ANGLE IN DEGREES

OPEN(UNIT=8,FILE='FLP8 .DAT’)

READ (8,*)DELX,DELPSI,RHO,TAVG

CLOSE(UNIT-8)

WRITE(*,509)

WRITE(*,503)CASE,BETLIM

WRITE(*,504)DELFB1,DELFB2

WRITE(*,505)FB1LIM,FB2LIM

WRITE(*,506)CRATE1l, CRATE2

WRITE(*,507)THE1LM, THE2LM

WRITE(*,508)TOFF,N,NPRED

503 FORMAT(' ’,’CASE=~’',F9.3,’ BETLIM=',F9.3)

504 FORMAT(' ','DELFBl=',F9.3,' DELFB2«',F9.3)

aooon

[+ ReNeNeNe!

s HeNsNeoNoNeoNoNe!

505
506
507
508
509

501
502

eNoNoNeNoNe!

80

FORMAT(' ',’'FB1LIM=',F9.3,’ FB2LIM=',F9.3)

FORMAT(' ','CRATEl=',F9.3,’' CRATE2=',F9.3)

FORMAT(' ',’'THE1lLM=',F9.3,’ THE2IM=' ,F9.3)

FORMAT(' ', 'TOFF=',F9.3,’ N=',F9.3,' NPRED=' ,F9.3)
JORMAT('1’)

WRITE(*,*) 'PROGRAM IS HALTED FOR OPPORTUNITY TO PRINT SCREEN’

WRITE(*,*)'INPUT 1 (OR ANYTHING) TO CONTINUE’

READ (*,*) DUMMY

OPEN(UNIT=20,FILE='FLAP.DAT' , STATUS='NEW')

WRITE(20,501)CASE, BETLIM, DELFB1, DELFB2 , FR1LIM, FB2LIM

WRITE(20,502)N,NPRED, FPRED, CRATEL, CRATE2 , THE1LM, THE2LM , TOFF

FORMAT (6F9.3)

FORMAT (8F9.3)

DELX~INCREMENT IN DIMENSIONLESS BLADE RADIUS FOR NUMERICAL
INTEGRATION OF THRUST WITH RADIUS

DELPSI-INCREMENT IN AZIMUTH ANGLE, DEG3, FOR NUMERICAL

INTEGRATION OF BLADE MOTION WITH PSI

RHO=AIR MASS DENSITY, SLUGS/CU. FT.

TAVG=INITIAL AVERAGE THRUST OF ROTOR IN ONE REVOLUTION

AREA=PI*D*D/4 .

V=V*1.69

BETLIM=BETLIM*DTR

DELFB1=DELFB1#*DTR

DELFB2=DELFB2*DTR

FB1LIM=FB1LIM#DTR

FB2LIM=FB2LIM*DTR

THETAO=THETAO*DTR

THETA1=THETA1*DTR

THETA2=THETA2*DTR

THETAT=THETAT#DTR

Al=A1*DTR

B1=B1*DTR

BETAO=BETAO*DTR

THE1I=THETA1

THE2I~-THETA2

CRATE1=CRATE1*DTR

CRATE2=CRATE2*DTR

THE1LM=THE1LM*DTR

THE2LM=THE2LM*DTR

ALPHA=ALPHA*DTR

OMEGA=VT/D*2

DELPSI=DELPSI*DTR

DELT=DELPSI/OMEGA

DELTPR=DELT*PRT

PSIMAX=NMAX*TWOPI

W=0.0

DELR=DELX*D/2

TPRED=FPRED*TWOPI/ .MEGA

INITIALIZATION BEGINS

TPRINT=0.0

TIME=0.

PSI=0.0

PSII=0.0

BETA=BETAO-A1

81

BETAD=--OMEGA*B1
SWTCH2=0.0
FB=0.0
DELT1=0.0
KNTRL~1
1CALC=0.0
KNTRL=1
PSILIM=N*TWOPI
TCONI=PSILIM/OMEGA
CALL DWNWSH(V,TAVG,RHO,AREA,Al,ALPHA,W)

1 CONTINUE
IF(KNTRL.EQ.1)GO TO 2

10 CONTINUE
TCON=TIME-TCONI
IF(PSI.GT.PSIMAX)GO TO 5000
CALL SUBCNTRL

2 CONTINUE
CALL SUBFLAP

3 CONTINUE
DELT2=T
TCALC=TCALC+(DELT14DELT2) /2*DELPSI
DELT1=DELT2
TIME=TIME+DELT
PSI=PSI+DELPSI

4 CONTINUE
IF(KNTRL.EQ.2)GO TO 8
IF(KNTRL.EQ.3)GO TO 11

5 CONTINUE
IF(PSI.GE.PSII+TWOPI)GO TO 19
IF(PSI.GE.PSILIM)GO TO 18

6 CONTINUE
IF(KNTRL.EQ.2)GO TO 7
IF(KNTRL.EQ.3)GO TO 7
IF(TIME.LT.TPRINT)GO TO 7
TH1DG=THETA1/DTR
TH2DG=THETA2/DTR
REV=PSI/TWOPI
BETADG=BETA/DTR
FDBK1G=FDBK1/DTR
FDBK2G~FDBK2/DTR
WRITE(*,*)'TIME=' ,TIME,’ REV=',xev, ' BETA=',BETADG
WRITE(20,500)TIME, TH1DG, TH2DG, FDBK1G, FDBK2G, REV, BETADG

500 FORMAT(7F8.2)
IF(PSI.GE.PSIMAX)GO TO 5000
TPRINT=TPRINT+DELTPR

7 CONTINUE
IF(KNTRL.EQ.1)GO TO 2
GO TO 10

19 PSII=PSII+TWO™I
TAVG=TCALC/TWOPI
CALL DWNWSH(V,TAVG,RHO,AREA,Al,ALPHA,W)
TCALC=0.0
IF(PSI.GE.PSILIM)GO TO 18
GO TO 15

18

20

15

14

21

CONTINUE
WRITE(*,*)'PSILIM=',PSILIM," KNTRL=',KNTRL
IF(KNTRL.EQ.2)THEN
WRITE(*, %) 'KNTRL=',KNTRL
PSII=PSIII
PSI=PSII
BETA=BETAI
BETAD=BETADI
W=W1
TIME=TIMEI
TC=TPRED
FB=FB-SWICH2
GO TO 21
ENDIF
KNTRL=2
IF(PSI.GE.PSIMAX)GO TO 5000
WRITE(*,*)'KNTRL=2'
CONTINUE
PSII=PSI
PSIPRI=PSIPRT
PSILIM=PSI+NPRED*TWOPI
TIMEI=TIME
BETAI=BETA
BETADI=BETAD
WI=w
PSIII=PSI
GO TO 1
IF(ABS (BETA) .GT.BETLIM)GO TO 9
SWICH2=1.0
GO TO 5
DELBT2=ABS (BETA) -BETLIM
IF(DELBT1.GE.DELBT2)GO TO 14
DELBT1=DELBT2
GO TO 5
CONTINUE
DELT1=0.
TCALC=0.
GO TO 6
CONTINUE
SWICH2=0.0
FB=FB+1.0
SWITCH=1.0
IF(COS(PSI).GE.SIN(PSI))SWITCH=2.0
WRITE(*,%*) 'KNTRL=3'
TC=TPRED*{PSI-PSIII)/TWOPI/NPRED
CONTINUE
KNTRL~3
PSIPRT=PSIPRI
PSI=PSII1
TIME=TIMEI
BETA=BETAI
BETAD=BETADI
Wil
GO TO 15

82

11

12

13

5000

83

CONTINUE
IF(TIME.LT.TPRINT)GO TO 12
TH1DG=-THETA1l/DTR
TH2DG=THETA2/DTR
REV=PSI/TWOPI
BETADG=BETA/DTR
FDBK1G=FDBK1/DTR
FDBK2G=FDBK2/DTR
WRITE(*,*)’'TIME=' fTIME, ' REV=' ,REV, ' BETA=' ,BETADG
WRITE(20,500)TIME, TH1DG, TH2DG, FDBK1G, FDBK2G,REV, BETADG
IF(PSI.GE.PSIMAX)GO TO 5000
TPRINT=-TPRINT+DELTPR
CONTINUE
IF(TIME.GE.TIMEI+TC)GO TO 13
GO TO 10

CONTINUE

KNTRL~2

DELBT1=0.

GO TO 20

CLOSE (UNIT=20)

STOP

END

SUBROUTINE SUBCNTRL
COMMON/COM1/THE11M, THE21M,KNTRL, TCON, TOFF , THE1I, THE2I, SWITCH
COMMON/COM2/DELFB1,DELFB2,FB,PI,CRATE]l,CRATE2,FDBK1, FDBK2
COMMON/COM5/PSI,EPS,CO,CT, THETAO, THETAT, THETA1l, THETA2 ,KBETA, BETA
COMMON/COM6/FB1LIM, FB2LIM

REAL KBETA

IF(TCON.GT.TOFF)GO TO 2
DELTH1=CRATE1*TCON
DELTH2=CRATE2*TCON
IF(DELTH1.GT.THE1LM)DELTH1~-THE1LM
IF(DELTH2.GT.THE21M)DELTH2=THE21M
THETA1=-THE1I+DELTH1
THETA2=THE2I+DELTH2

GO TO 3

DELTH1=CRATE1* (TCON-TOFF)
DELTH2=CRATE2* (TCON-TOFF)
IF(DELTH1.GT.THE1LM)DELTH1=~THE1LM
IF(DELTH2.GT.THE2LM)DELTH2=THE2LM
THETA1=-THE1I+THE11M-DELTH1
THETA2=-THE2I+THE21M-DELTH2
IF(FB.LE.O.)FB=0.0
FDBK1=FB*DELFB1

FDBK2=FB*DELFB2
IF(FDBK1.GT.FB1LIM)FDBK1=-FB1LIM
IF(FDBK2.GT.FB1LIM)FDBK2=FB2LIM
IF(SWITCH.EQ.1.)FDBK2=0.0
IF(SWITCH.EQ.2.)FDBK1=0.0
THETA1=THETA1-FDBK1
THETA2=THETA2 - FDBK2
IF(THETALl.LT.THE1I)THETA1=THE1I
IF(THETA2.LT.THE2I)THETA2=THE21

N O

84

RETURN
END

SUBROUTINE DWNWSH(V,TAVG,RHO,AREA,Al,ALPHA,W)

W=SQRT (0. 5% (-V#*2+SQRT (V**4+(TAVG/RHO/AREA) **2)))

DO 1 I=1,10

VPRIME=SQRT ((V-W*SIN(ALPHA+A1)) **2+(W*COS (ALPHA+A1)) #*2)
W=TAVG/2/RHO/VPRIME/AREA

CONTINUE

RETURN

END

SUBROUTINE SUBFLAP

REAL KBETA,MW.MIF,M1,M2,MAERO

COMMON/COM3 /CLI (20) ,ALPHAL(20),CDI(33),ALPHAD(33) ,ALPHAB,CL,CD
COMMON/COM4 /OMEGA, V,ALPHA, W, BETAD, RHO, DELPST , DELR, T ,MIF,MW,D
COMMON/COM5/PS1, EPS,CO,CT, THETAO, THETAT , THETA , THETA2 ,KBETA, BETA
PI=3.14159

DELT=DELPSI/OMEGA

SALPHA=SIN(ALPHA)

CALPHA=COS (ALPHA)

REM START OF INTEGRATION OF THRUST OVER RADIUS AT A PARTICULAR PSI
T=0

SPSI=SIN(PSI)

CPSI=COS (PSI)

EPSR=EPS*D/2

R=EPSR

M1=0

DT1=0

MAERO=0

REM RETURN TO HERE AFTER INCREMENTING RADIUS, R

X=R/D%2

C=C0- (CO-CT)*X

THETA=BLADE PITCH ANGLE
THETA=THETAO+THETAT*X+THETA1*CPSI+THETA2*SPSI+KBETA*BETA
VTHETA=RESULTANT TANGENTIAL VELOCITY
VTHETA=OMEGA#*R+V*CALPHA*SPST

VU=-RESULTANT VELOCITY UP THROUGH DISK

VU=V*SALPHA-W- (R-EPSR)*BETAD- BETA*V*CALPHA*CPSI
ALPHAB=ATAN (ABS (VU/VTHETA))

START OF LOGIC TO DETERMINE CL AND CD AND RESOLUTION FACTORS

CLFAC=1.0

CDFAC=-1.0

IF (VTHETA.GE.0.0.AND.VU.GE.O.0)THEN
ALPHAB=~THETA+ALPHAB
IF(ALPHAB.LT.0.0)CLFAC=-1.
ALPHAB=ABS (ALPHAB)
GO TO 3

ENDIF

IF (VTHETA.GT.0.0.AND.VU.LTI.0.0) THEN
ALPHAB~THETA-ALPHAB
IF(ALPHAB.LT.0.0)CLFAC=-1.
ALPHAB=ABS (ALPHAB)

GO T.> 3

ENDIF

85

IF (VIHETA.LT.0.0.AND.VU.LT.0.0) THEN
ALPHAB=PI -ALPHAB-THETA
CLFAC=--1.0
CDFAC=-1.0
IF(ALPHAB.GT.PI)CLFAC=1.0
IF(ALPHAB.GT.PI)ALPHAB=2 . *PI-ALPHAB
GO TO 3
ENDIF
IF (VTHETA.LT.0.0.AND.VU.GT.0.0) THEN
ALPHAB=PI+THETA-ALPHAB
CLFAC=1.0
CDFAC=-1.0
IF(ALPHAB.GT.PI)CLFAC=-1.0
IF(ALPHAB.GT.PI)ALPHAB=2 . *PI-ALPHAB

ENDIF

END OF LOGIC ON CL, CD AND RESOLUTION FACTORS

CALL AIRFOIL

CL=CL*CLFAC

CD=CD*CDFAC

VRSQD=VU**2+VTHETA**2

DLDR~RHO/2#VRSQD*CL*C

DDDR=~RHO/2*VRSQD*CD*C

DLDR AND DDDR ARE LIFT AND DRAG DERIVATIVES WRT TO R
VR=SQRT (VRSQD)

DT2=DLDR*ABS (VTHETA/VR)+DDDR*ABS (VU/VR)
M2=(R-EPSR)*DT2

DMDR=(M1+M2) /2

DTDR=(DT1+DT2) /2

DTDR AND DMDR ARE RADIAL THRUST AND MOMENT DERIVATIVES WRT R
M1-M2

DT1=DT2

MAERO=MAERO+DMDR#DELR

T=T+DTDR*DELR

T AND MAERO ARE BLADE THRUST AND MOMENT AT INSTANT OF TIME
R-R+DELR

IF (R.GT.D/2) GO TO &

GOTO 2

BETADD=MAERO/MIF- BETA*OMEGA**2 -MW/MIF
BETAD=BETAD+BETADD*DELT
BETA=BETA+BETAD*DELT+BETADD*DELT*%2/2 .

M1=0.

DT1=0.

PSI2=PSI

PSI1=PSI2

T 1S THE BLADE THRUST AT AN INSTANT OF TIME AND PSI
RETURN

END

SUBROUTINE FOR CL AND CD AS FUNCTION OF ALPHA
SUBROUTINE AIRFOIL
COMMON/COM3/CLI(20) ,ALPHAL(20),CDI(33),ALPHAD(33) ,ALPHAB,CL,CD
DO 1 I=2,20
IF(ALPHAB.EQ.ALPHAL(I)) THEN
CL=CLI(I)

N L=

oW

GO TO 2
ENDIF
IF(ALPHAB.LE.ALPHAL(I)) THEN
AI=CLI(I)
BI=CLI(I-1)
CI=ALPHAL(I)
DI-ALPHAL(I-1)
GO TO 5
ENDIF
CONTINUE
CL=(AI-BI)*(ALPHAB-DI)/(CI-DI)+BI
CONTINUE
DO 3 I=2,33
IF(ABS (ALPHAB) .EQ.ALPHAD(I)) THEN
CD=CDI(I)
GO TO &
ENDIF
IF(ABS(ALPHAB) .LE.ALPHAD(I)) THEN
AI=CDI(I)
BI=CDI(I-1)
CI=-ALPHAD(I)
DI=-ALPHAD(I-1)
GO TO 6
ENDIF
CONTINUE
CD=(AI-BI)*(ALPHAB-DI)/(CI-DI)+BI
RETURN
END

86

FORTRAN listing for PROGRAM DCFLAP
(digital controller)

87

88

PROGRAM DCFLAP

Program to simulate the helicopter rotor blade flapping
motion with real-time control system preventing excessive
flapping. The control system can be cut off by setting
GAIN=0.

Flapping angle BETA and flapping angular velocity BETAD
as a function of NREV (number of revolutions) are stored
in file RESULT.DAT.

Pitch angles THETAO (collective), THETAl (lateral cyclic),
and THETA2 (longitudinal cyclic) as a function of NREV are
stored in file CONTROL.DAT.

Feedback gain GAIN of the control system as a function of
NREV is stored in GAIN.DAT. (An adaptive gain technique
is used.)

Aerospace Engineering Department
Pennsylvania State University
University Park, PA 16802

QOO0 O00000000O0

CHARACTER REPLY*1,TRIM*5
REAL KBETA,MW,MIF, M1,M2,MAERO,NMAX,NBET,MU,

& LAMDA ,NREV, NPRED
COMMON/PMT/PI,DTR, STEP,NMAX, PSIB,DPSIB,W
COMMON/INPUT/THETO, THET1, THET2 ,ALPHA , BET1, BET2
COMMON/SIGNAL/TRIM, VAR1, VARZ, VAR3, VARG
COMMON/PTB/PERTB,DO,D1,D2, DALPHA
COMMON/SIMU/B,D,CO,CT,EPS,KBETA, THETAT ,MW,MIF,V, VT, DELX

&,RHO,KTEN, CRATEO,, CRATE1 , CRATE2 , CRATEA , GAIN, SOS , BEEP, U, U0 , iPRED
DATA TRIM/'EXIST'/

s NeNeReNeNo]

aaQ

aQ

FILE 'RESULT.DAT’' STORES THE VALUES OF PSIB,BETA,BETA DOT (IN DEGREES)
FILE 'TRIM.DAT’ STORES THE CONTROL INPUTS FOR THE CURRENT TRIM
FILE ‘IC.DAT' STORES THE INITIAL CONDITION TABLE

OPEN(100,FILE='RESULT.DAT',STATUS='NEW’)
OPEN(101,FILE="TRIM.DAT' ,STATUS="UNKNOWN')
OPEN(102,FILE='1C.DAT' ,STATUS='UNKNOWN')
OPEN(107 ,FILE='GAIN.DAT' ,STATUS="UNKNOWN')

REWIND 3

REWIND 101

REWIND 102

NBET --- THE NUMBER OF POSITIONS PER REVOLUTION TO BE CALCULATED
NBET=72

STEP -- STEP IN THE INITIAL CONDITION TABLE
STEP=360. /NBET

PI = 3.14159265
DTR=P1/180.

89

c
C HAVE YOU GENERATED THE TRIM (OR NORMAL) FLIGHT CONDITIONS?

C NO-->GOTO 1010 TO INPUT THE INITIAL VALUES NEEDED TG GENERATE:

c 'TRIM.DAT’ & 'IC.DAT’

C YES-->READ THE INITIAL VALUES FROM THE TWO FILES ‘TRIM.DAT' & ’'IC.DAT'
C THEN, GOTO 1020

c

1

000 WRITE(6,*) 'Have you generated the trim condition?(Y/N):’
READ(5,31) REPLY
IF(REPLY.EQ.'N’ .OR.REPLY.EQ.'n’') THEN
TRIM='NONE'’
GOTO 1010)
ELSE IF(REPLY.EQ.'Y'.OR.REPLY.EQ.‘y’) THEN
READ(101,32) THETOD,THET1D,THET2D,ALPHAD,W
32 FORMAT(1X,5G15.8)
READ(102,35) PSIBD,BET10D,BET20D
REWIND 101
REWIND 102
GOTO 1020
ELSE
GOTO 1000
ENDIF
1010 WRITE(6,*) ’‘Enter one blade azimuth angle in degrees:’
READ(5,*) PSIBD
WRITE(6,*) ‘Enter collective in degrees:’
READ(5,*) THETOD
WRITE(6,*) 'Enter longitudinal cyclic in degrees:’'
READ(S5,*) THET2D
WRITE(6,*) ’'Enter lateral cyclic in degrees:’
READ(5,*) THET1D
WRITE(6,%*) 'Enter ALPHA in degrees:’
READ(5,*) ALPHAD
BET10D=0.
BET20D=0.
W=0.0
GOTO 1300

c

C THE FOLLOWING BLOCK ALLOWS YOU TO EXAMINE THE EFFECTS OF EACH CONTROL
C INPUTS OR DISTURBANCES ON THE ROTOR FLAPPING
c
1

020 WRITE(S,*) ’'These are the current inputs:’
WRITE(6,34) THETOD,THET2D,THETL1D,ALPHAD
34 FORMAT(1X, 'Collective is’,Gl5.8,'degrees’
& /1X, 'Longitudinal cyclic is’,G15.8,'degrees’
& /1X,'Lateral cyclic is’,G15.8,'degrees’
& /1X,'ALPHA is’,G15.8,'degrees’)
IF(TRIM.EQ.'NONE') THEN
PERTB=1.E+30
GOTO 1205
ELSE
1100 WRITE(6,*) 'Do you want to give perturbations?(Y/N):’
READ(5,31) REPLY
IF(REPLY.EQ.'Y’ .OR.REPLY.EQ.'y’) THEN
GOTO 1101

90

ELSE IF(REPLY.EQ.'N’.OR.REPLY.EQ.'n’) THEN
GOTO 1300
ELSE
GOTO 1100
ENDIF
1101 WRITE(6,*) 'Enter number of revolutions at which the '
&'perturbations are given:'’
READ(S5,*) PERTB
1200 WRITE(6,*) 'Enter perturbations on Collective, Longitudinal’,
&'Cyclic, Lateral Cyclic, and ALPHA in degrees:’
READ(5,*) DO,D1,D2,DALPHA
DO=DO*DTR
D1=D1*DTR
D2=D2*DTR
DALPHA=DALPHA*DTR
31 FORMAT (Al)

WRITE(6,*) 'Enter changing rates on Collective, Longitudinal’,
&’'Cyclic, Lateral Cyclic, and ALPHA in deg/sec:’

READ(S5,*) CRATEO,CRATEl,CRATE2,CRATEA

C Transform CRATEO,CRATEl,CRATE2,CRATEA to RAD/SEC

CRATEO=CRATEO*DTR

CRATE1=CRATE1*DTR

CRATE2=CRATE2*DTR

CRATEA=CRATEA*DTR

WRITE(6,*) ‘'INPUT FEEDBACK GAIN:'
READ(5,*) GAIN
ENDIF

1205 CONTINUE

c
c
C
C THE FOLLOWING BLOCK PERFORMS LINEAR INTERPOTATION IN THE INITIAL CONDITION
C TABLE TO GET THE CORRECT INITIAL CONDITION FOR THE PSIB INPUT

c

C NENTRY-- THE ENTRY PLACE NUMBER-1 IN THE INITIAL CONDITION TABLE

1206 NENTRY=JNINT(PSIBD/STEP-.5)
DO 1310 JUMP=1,NENTRY
1310 READ(102,35) VNUL

READ(102,35) PSIBD1,BET1D1,BET2D1
READ(102,35) PSIBD2,BET1D2,BET2D2
BET10D=BET1D1+(PSIBD-PSIBD1)/(PSIBD2-PSIBD1)+*(BET1D2-BET1D1)
BET20D=BET2D1+(PSIBD-PSIBD1)/(PSIBD2-PSIBD1)*(BET2D2-BET2D1)
35 FORMAT (1X,3G15.8)
REWIND 102

=HOOOo

300 PSIB=PSIBD*DTR
THETO=THETOD*DTR
THET1=THET1D*DTR
THET2=THET2D*DTR
BET10=BET10D*DTR

91

BET20=-BET20D*DTR
ALPHA=-ALPHAD*DTR
NMAX=-10.
DPSIB=2.*PI/NBET
IF(TRIM.EQ. 'EXIST’) THEN
NREV=PSIB/2./PI1
WRITE(100,35) NREV,BET10D,BET20D

ENDIF
c
CALL BWFLAP
REWIND 102
C

C THE FOLLOWING WRITE STATEMENT RECORDS THE CONTROL INPUTS FOR THE CURRENT
C TRIM CONDITION
IF(TRIM.EQ. 'NONE’) THEN
WRITE(101,32) THETOD,THET1D,THET2D,ALPHAD,W
REWIND 101
WRITE(6,36)
36 FORMAT(30(/),10X, * TRIM GENERATED!’,5(/))
TRIM='EXIST'
GOTO 1020
ENDIF
STOP
END

SUBROUTINE WRITE
REAL NMAX,NREV
CHARACTER TRIM*S
COMMON/PMT/P1,DTR, STEP,NMAX, PSI,DELPSI,W
COMMON/INPUT/THETAO , THETAL , THETA2 , ALPHA , BETA , BETAD
COMMON/SIGNAL/TRIM,NREV,VAR],VAR2,VAR3
PSID~PSI/DTR
BET=BETA/DTR
BETD~BETAD/DTR
IF(TRIM.EQ.'EXIST’) THEN
WRITE(100,35) NREV,EET,BETD
35 FORMAT (1X, 3G15. 8)
ELSE IF(PSI.GE.(16.*PI-STEP*PI/360.).AND.PSI.LE.(18.%PI)) THEN
PSI1ST=(PSI-16.%PI)*180./PI
WRITE(102,35) PSI1ST,BET,BETD
ENDIF
RETURN
END

SUBROUTINE BWFLAP

CHARACTER BEEP*1,DETECT*1,TRIM*5

REAL UTHET1(2),UTHET2(2)

REAL KBETA,MW,MIF,6M1,M2,MAERO,NMAX,NBET,MU,
& LAMDA ,NREV,NPRED

DIMENSION U(10),U0(10)
COMMON/PMT/PI,DTR,STEP ,NMAX,PSI,DELPSI VW

92

COMMON/INPUT/THETAO, THETAL, THETA2 , ALPHA, BETA, BETAD

COMMON CLI(20),ALPHL(20),CDI(33),ALPHD(33),ALPHAB,CL,CD
COMMON/SIMU/B,D,CO,CT,EPS,KBETA, THETAT ,MW,MIF,V, VT, DELX
&,RHO,KTEN, CRATEO, CRATE1, CRATE2 , CRATEA, GAIN, SOS , BEEP, U, UC, NPRED
COMMON/PTB/PERTB, DO, D1, D2, DALPHA

COMMON /HOLD/UTHET1 , UTHET2

COMMON/SIGNAL/TRIM,NREV,Al,B1,AREA
COMMON/CLOSED/T1,T2,T3,T4,F1,F2,F3,F4,DENOM,All,A12,A13,A14,
& B11,TAU,CBAR,GAMMAF, SIGMA,ASIG

C NPRED is number of predict-ahead revolutions

c

<2

a0 oO0O000

NPRED=3.

DETECT=‘0’
OPEN(UNIT=1,FILE='CL.DAT',STATUS='0OLD')
DO 1 I=1,20

READ(1,*) ALPHL(I),CLI(I)

CONTINUE

CLOSE (UNIT=1)
OPEN(UNIT=2,FILE='CD.DAT’' ,STATUS='OLD’)

DO 3 I=-1,33
READ(2,*) ALPHD(I),CDI(I)
CONTINUE
CLOSE(UNIT=2)
PI=3.14159
DO 5 I=1,20
ALPHL (I)=ALPHL(I)*DTR
CONTINUE
DO 6 I=1,33
ALPHD(I)=ALPHD(I)*DTR
CONTINUE
PSII=0.0
PROGRAM READS IN ORDER: FLP5.DAT
1. NUMBER OF BLADES
2. ROTOR DIAMETER
3. ROOT CHORD AT R=0
4. TIP CHORD
5. DIMENSIONLESS HINGE OFFSET
FLP6 .DAT
1. PITCH-FLAP COUPLING, KBETA
2. TOTAL TWIST, DEGS.,NEGATIVE FOR WASHOUT
3. BLADE WEIGHT MOMENT ABOUT FLAPPING AXIS
4, MASS MOMENT OF INERTIA ABOUT FLAPPING AXIS
5. TIP SPEED IN FPS
FLP7.DAT
1. DIMENSIONLESS INCREMENT IN RADIUS, DELX
2. INCREMENT IN AZIMUTH ANGLE,DEGS, DELPSI
3. NUMBER OF DELPSI BETWEEN PRINTOUTS
FLP8.DAT
1. FORWARD SPEED IN KTS.
2. AIR DENSITY, SLUGS/CU.FT.
3. COLLECTIVE PITCH, THETAO,DEGREES

c
C
c
c
C
C
c
c
C
c

93

4. LATERAL PITCH,THETAl, DEGREES
5. LONGITUDINAL PITCH,THETA2.DEGREES
6. DISC PLANE ANGLE OF ATTACK,ALPHA,DEGS.

FLP5.DAT 2,44,2.25,2.25,.01

FLP6.DAT 0,-10,3122,1422,738

FLP7.DAT .05,5,5

FLP8.DAT 80,.002378,15.1,1.9,-1.66,-4.63 (FWD FLIGHT)
FLP8.DAT 0,.002378,15,0,0,0 (HOVER)

OPEN (UNIT=5, FILE=' FLP5.DAT' , STATUS="'0LD’)
READ (5,%*)B,D,CO0,CT,EPS

CLOSE (UNIT=5)
OPEN(UNIT=6 , FILE='FLP6 .DAT' , STATUS="OLD')
READ (6,%)KBETA, THETAT,MW,MIF,VT
CLOSE(UNIT=6)
OPEN(UNIT=7,FILE='FLP7 .DAT' ,STATUS=~'OLD’)
READ (7,*) DELX

CLOSE(UNIT=7)
OPEN(UNIT=8, FILE='FLP8 .DAT' ,STATUS="'OLD")
READ (8,*) V,RHO

CLOSE(UNIT=8)

OPEN(105, FILE=~’ CONTROL. DAT’ , STATUS=' UNKNOWN")
V=V+1.69

AREA=PI+*D*D/4 .

OMEGA=VT/D*2.

DELT=DELPSI/OMEGA

DELR=DELX#D/2.

PSIO=PSI

TAVG=0.

TTAVG=0.

C KTEN specifies the sampling period

c

KTEN=30.*DTR/DELPSI+0.5

IKTEN=0

THETAT=THETAT*DTR

MU=V /VT

T1=(.941+MU**2/2) /2
T2=(.941/3 . +MU**2/2)% 97
T3=.941/4 . %(.941+MU**2)
T4=MU/2 . % (. 9414MUX*2/4)
Fl=.97%%3/3,
F2=.941/4 . % (. 9614 MU**2)
F3=.97%%3%(.941/5 . +MU**2/6.)
F4=MU* . 97%*3/3 .
DENOM=. 941 -MU**2/2.

All=4 . % (MU*.941/2. -MU**3/8.)/.941/DENOM
A12=8 . *MU*.97/3. /DENOM
Al3=2.*MU*.941/DENOM
Al4=(.94143. /2 . *MU**2) /DENOM
Bll=d . *MU*.97/3,/(.9614MU**2/2.)
TAU=MW/MIF/OMEGA*+*2
CBAR=(CO+CT) /2.
GAMMAF=CBAR*RHO*5 . 7%D*%4/32 . /MIF

94

SIGMA=B*CBAR/PI/D*2.
ASIG=5.7*SIGMA
BETA0=0.0

B1=0.0

C WRITE INITIAL CYCLIC INPUTS AND ZERO CONTROL INPUTS TO FILE "CONTROL.DAT"
C

NREV=PSI/2./PI

CNTRL1=0.

CNTRL2=0.

E1=THETA1/DTR

E2=THETA2/DTR

WRITE(105,61) NREV,CNTRL1,CNTRL2,El,E2
61 FORMAT (1X, 5G15. 8)

THRST1=0.
2280 CONTINUE

START OF INTEGRATION LOOP FOR PSI

RETURN TO HERE AFTER INCREMENTING PSI

...

CRATEO,CRATE1,CRATE2,CRATEA ARE THE INPUT RATES OF THETAO,THETAl,THETA2,ALPHA

c
C
C
C THIS BLOCK STIPULATES THE PILOT INPUTS.
c
c

RESPECTIVELY
NREV=PSI/2./PI
IF(NREV.GE.PERTB) THEN
IF(DETECT.EQ.'0’) THEN
THETAO=THETA0+DO
THETA1=THETA1+D1
THETA2~THETA2+D2
ALPHA=AVPHA+DALPHA
DETECT='1"
ELSE
THETAO=THETAO+CRATEO*DELPSI/OMEGA
THETA1=THETA1+CRATE1*DELPSI/OMEGA
THETA2=THETA2+CRATE2*DELPSI /OMEGA
ALPHA=ALPHA+CRATEA*DELPSI /OMEGA
ENDIF
ENDIF

UTHET1(1)=UTHET1(2)
UTHET1(2)=THETAl
UTHET2(1)=UTHET2(2)
UTHET2(2)=~THETA2

SPSI=SIN(PSI)

CPSI=COS(PSI)

SALPHA=SIN(ALPHA)

CALPHA=-COS (ALPHA)

LAMDA=MU*ALPHA

DO 9050 I=-1,20
CTR=ASIG/2.*(LAMDA*T1+(THETAO+KBETA*BETAO)*T2+THETAT*T3+(THETA2

9051

9050

c

2380

95

1-KBETA*B1)*T4)
CFAC=V**4+(TTAVG/RHO/AREA) **2+Wk*3%2 . #V*SIN(A1+ALPHA)
IF(CFAC.LT.0.) THEN
W=SQRT (0. 5%(-V**2+SQRT (V¥*4+(TTAVG/RHO/AREA) **2)))
GO TO 9051
ENDIF
WFAC=-V**2+SQRT (CFAC)
IF(WFAC.LT.0.)THEN
W=SQRT (0. 5% (-V**2+SQRT (V¥*4+(TTAVG/RHO/AREA) *%2)))
GO TO 9051
ENDIF
W=SQRT (0. 5% (-V*¥*2+SQRT (CFAC)))
WVT=W/VT
LAMDA=MU*ALPHA -WVT
BETAO=GAMMAF* (LAMDA*F1+(THETAO+KBETA*BETAO) *F2+THETAT*F3+ (THETA2 -
1KBETA*B1)*F4) - TAU
Al=LAMDA*A11+(THETAO+KBETA*BETAO)*A12+THETAT#A13+ (THETA2 - KBETA*B1
1)*Al4
B1=BETAO*B11- (THETA1-KBETA*A1)
TTAVG=RHO*AREA*VT#*2*CTR
THRST2=0
START OF INTEGRATION OVER X FROM XH TO 1
EPSR=EPS*D/2
R=EPSR
M1=0
DT1=0
MAERO=0
RETURN TO HERE AFTER INCREMENTING RADIUS, R
X=R/D*2
C=CO- (CO-CT)*X
THETA=~THETAO+THETAT*X+THETA1#CPSI+THETA2*SPSI+KBETA*BETA
VTHETA=OMEGA*R+V*CALPHA*SPSI
VU~V*SALPHA -W- (R-EPSR)*BETAD - BETA*V*CALPHA*CPSI
ALPHAB=ATAN (ABS (VU/VTHETA))
CLFAC=1.0
CDFAC=1.0
IF (VTHETA.GE.0.0.AND.VU.GE.0.0)THEN
ALPHAB=THETA+ALPHAB
IF(ALPHAB.LT.0.0)CLFAC~-1.
ALPHAB=ABS (ALPHAB)
GO TO 2381
ENDIF
IF (VTHETA.GT.0.0.AND.VU.LT.0.0) THt.
ALPHAB=THETA -ALPHAB
IF(ALPHAB.LT.0.0)CLFAC=-1.
ALPHAB=ABS (ALPHAB)
GO TO 2381
ENDIF
IF (VTHETA.LT.0.0.AND.VU.LT.0.0) THEN
ALPHAB=PI-ALPHAB- THETA
CLFAC=-1.0
CDFAC=-1.0
IF (ALPHAB.GT.PI)CLFAC~1.0
IF(ALPHAB.GT.PI)ALPHAB~2 *PI-ALPHAB

2381

2690

GO TO 2381
ENDIF
IF (VTHETA.LT.0.0.AND.VU.GT.0.0) THEN
ALPHAB=PI+THETA-ALPHAB
CLFAC=+1.0
CDFAC=-1.0
IF(ALPHAB.GT.PI)CLFAC=-1.0
IF (ALPHAB.GT.PI)ALPHAB=2 . *PI-ALPHAB
ENDIF
CALL AIRFOIL
CL~CL*CLFAC
CD=CD*CDFAC
VRSQD=VU**2+VTHETA**2
DLDR=RHO/2*VRSQD*CL*C
DDDR=RHO/2*VRSQD*CD*C
VR=SQRT (VRSQD)
DT2=DLDR*ABS (VTHETA/VR) +DDDR*ABS (VU/VR)
M2=(R-EPSR)*DT2
DMDR=(M1+M2) /2
DTDR=(DT1+DT2) /2
M1=M2
DT1=DT2
MAERO=-MAERO+DMDR*DELR
THRST2=-THRST2+DTDR*DELR
R=R+DELR
IF (R.GT.D/2) GO TO 2690
GOTO 2380
BETDD2-MAERO/MIF-BETA*OMEGA*+2 - MW /MIF
BETAD2-BETAD2+ (BETDD1+BETDD2) /2 . *DELT
BETAD=BETAD2
BETA~BETA+ (BETAD1+BETAD2) /2 . *DELT
BETDD1=BETDD2
BETAD1=BETAD2
M1=0.
DT1=0.
PSI2~PSI
PSI1~PSI2
THRUST=(THRST1+THRST2) /2.
THRST1=THRST2
TAVG=TAVG+THRUST*DELPSI

CALL WRITE

PSI-PSI+DELPSI

PSII=-PSII+ DELPSI

IF (PSII.LE.2.*PI) GO TO 9801

TAVG=TAVG/2. /PI*B

CTRW=TAVG/RHO/AREA /VT**2

DO 9800 I=1,5

CFAC=V#**4+ (TAVG/RHO/AREA) **24W*3%2 *V*SIN(A1+ALPHA)

IF(CFAC.LT.0.)THEN
W=SQRT (0. 5% (-V#*%2+SQRT (Vi+4+(TAVG/RHO/AREA) ¥%2)))
GO TO 9800

ENDIF

96

9800

9801

3040
3050

4000

3100

97

WFAC=-V*%2+SQRT (CFAC)
IF(WFAC.LT.0.)THEN
W=SQRT (0. 5% (-V**2+SQRT (V¥*4+(TAVG/RHO/AREA) **2)))
GO TO 9800
ENDIF
W=SQRT (0. 5% (-V**2+SQRT (CFAC)))
WVT=W/VT
TAVG=0.
PSII~O0.
IF(PSI.GT.NMAX*2.*PI) GOTO 100
IKTEN=IKTEN+1
IF(IKTEN.EQ.KTEN) THEN

IF(TRIM.EQ. 'EXIST’ .AND.ABS(GAIN).GT.1.E-10) CALL CNTRL

IKTEN=0O
ENDIF
GOTO 2280
RETURN
END

SUBROUTINE FOR CL AND CD AS FUNCTION OF ALPHA
SUBROUTINE AIRFOIL
COMMON CLI(20),ALPHL(20),CDI(33),ALPHD(33),ALPHAB,CL,CD
DO 3040 I=2,20
IF(ALPHAB.EQ.ALPHL(I)) THEN
CL=CLI(I)
GO TO 4000
ENDIF
IF(ABS (ALPHAB) .LE.ALPHL(I)) THEN
AI=CLI(I)
BI=-CLI(I-1)
CI=ALPHL(I)
DI=-ALPHL(I-1)
GO TO 3050
ENDIF
CONTINUE
CL=(AI-BI)*(ALPHAB-DI)/(CI-DI)+BI
CL~=CL*ABS (ALPHAB) /ALPHAB
CONTINUE
DO 3100 I=2,33
IF(ABS (ALPHAB) .EQ.ALPHD(I)) THEN
CD=CDI(I)
GO TO 3200
ENDIF
IF(ABS (ALPHAB) .LE.ALPHD(I)) THEN
AI=CDI(I)
BI=CDI(I-1)
CI=ALPHD(I)
DI=-ALPHD(I-1)
GO TO 3110
ENDIF
CONTINUE

98

3110 CD=(AI-BI)*(ALPHAB-DI)/(CI-DI)+BI

3200 RETURN
END

C

c

SUBROUTINE CNTRL
CHARACTER BEEP*1,TRIM*S
REAL U(10),U0(10),UTHET1(2),UTHET2(2)
REAL KBETA,MW,MIF,M1,M2,MAERO,NMAX,NBET,
& LAMDA , NREV , NPRED
COMMON/PMT/P1,DTR, STEP, NMAX, PSIO, DELPSI, WO
COMMON/INPUT/THETAO, THETAL, THETA2 , ALPHA , XBETAO , XBETADO
COMMON/SIMU/B,D,CO,CT,EPS,KBETA, THETAT MW, MIF,V, VT, DELX
&,RHO,KTEN, CRATEO, CRATEL , CRATE2 , CRATEA, GAIN, SOS , BEEP, U, U0, NPRED
COMMON CLI(20),ALPHL(20),CDI(33),ALPHD(33),ALPHAB,CL,CD
COMMON/SIGNAL/TRIM,NREV,XA1,XB1,AREA
COMMON /HOLD/UTHET1 , UTHET2
COMMON/CLOSED/T1,T2,T3,T4,F1,F2,F3,F4,DENOM,A1l,A12,A13,AL4,
& B11l,TAU,CBAR,GAMMAF, SIGMA,ASIG
Al-XAl
B1-XB1
BETAO=XBETAO
BETADO=XBETADO
E1-THETAL/DTR
E2-THETA2/DTR
W=W0
BETA=BETAO
BETAD=-BETADO
SALPHA=SIN(ALPHA)
CALPHA=COS (ALPHA)
OMEGA=VT/D*2
DELT-DELPSI/OMEGA
TAVG=0
DELR=~DELX*D /2
C+HH+H+H+++
WNREL~-SQRT (1.+1.5*EPS/(1.-EPS))
DAMP=, 5% (CO+CT) *RHO*5 . 73%(D/2.)%*4/16 . /MIF* (1. - EPS)**4*
&(1.+1./3.%EPS)/(1.-EPS)/WNREL
CDELAY=(WNREL#**2-1.) /SQRT ((WNREL#%*2-1.)%%2+4 % (DAMP*WNREL) **2)
DELAY=PI/2. -ACOS (CDELAY)
C+H+ e e e e e
PSI00=PSIO0-KTEN*DELPSI
PSI=PSI00
OVERO=0.0
THRST1=0.
2280 CONTINUE
SPSI~SIN(PSI)
CPSI=COS(PSI)
SALPHA=~SIN(ALPHA)
CALPHA=COS (ALPHA)

C This block is the First-Order Hold
THETA1=UTHET1(2)+(UTHET1(2) -UTHET1(1)) /DELPSI*
& (KTEN*DELPSI/(NPRED*2.%PI))*(PSI-PSI00)

9051

9050

c

2380

99

THETA2=UTHET2 (2)+(UTHET2 (2) -UTHET2 (1)) /DELPSI*
& (KTEN*DELPSI/(NPRED*2.*PI))*(PSI-PSI00)

...

LAMDA=MU*ALPHA
DO 9050 I=1,20
CTR=ASIG/2.% (LAMDA*T1+(THETAO+KBETA*BETAQ)*T2+THETAT*T 3+ (THETA2
1-KBETA*B1)#*T4)
CFAC=V*%4+(TTAVG/RHO/AREA) **2+W#3%2 *V*SIN(A1+ALPHA)
IF(CFAC.LT.0.) THEN
W=SQRT (0. 5% (-V**2+SQRT (V**4+ (TTAVG /RHO/AREA) **2)))
GO TO 9051
ENDIF
WFAC=-V**2+SQRT (CFAC)
IF(WFAC.LT.0.) THEN
W=SQRT (0. 5% (- V¥*2+SQRT (V¥*4+ (TTAVG/RHO/AREA) **2)))
GO TO 9051
ENDIF
W=SQRT (0. 5% (-V**2+SQRT(CFAC)))
WVT=W/VT
LAMDA=MU*ALPHA -WVT
BETAO=GAMMAF* (LAMDA*F1+ (THETAO+KBETA*BETAO) *F2+THETAT*F 3+ (THETA2 -
1KBETA*B1)*F4) - TAU
Al=~LAMDA*A11+(THETAO+KBETA*BETAOQ)*A12+THETAT*AL3+(THETA2 -KBETA*B1
1)*Al4
B1~BETAO*B11- (THETAL-KBETA*A1)
TTAVG=RHO*AREA*VT**2*CTR
THRST2=0
START OF INTEGRATION OVER X FROM XH TO 1
EPSR=EPS*D/2
R=EPSR
M1=0
DT1=0
MAERO=0
RETURN TO HERE AFTER INCREMENTING RADIUS, R
X=R/D*2
C=CO0- (CO-CT)*X
THETA-THETAO+THETAT*X+THETA1*CPSI+THETA2*SPSI+KBETA*BETA
VTHETA=OMEGA*R+V+*CALPHA*SPST
VU=V*SALPHA-W- (R-EPSR) *BETAD- BETA*V*CALPHA*CPST
ALPHAB=ATAN (ABS (VU/VTHETA))
CLFAC=1.0
CDFAC=1.0
IF (VTHETA.GE.0.0.AND.VU.GE.0.0)THEN
ALPHAB=THETA+ALPHAB
IF(ALPHAB.LT.0.0)CLFAC~-1.
ALPHAB=ABS (ALPHAB)
GO TO 2381
ENDIF
IF (VTHETA.GT.0.0.AND.VU.LT.0.0) THEN
ALPHAB=THETA-ALPHAB
IF(ALPHAB.LT.0.0)CLFAC=-1.
ALPHAB=ABS (ALPHAB)
GO TO 2381

2381

2690

ENDIF
IF (VTHETA.LT.0.0.AND.VU.LT.0.0) THEN
ALPHAB=PI - ALPHAB- THETA
CLFAC=-1.0
CDFAC=-1.0
IF(ALPHAB.GT.PI)CLFAC=1.0
IF(ALPHAB.GT.PI)ALPHAB~2 . *PI-ALPHAB
GO TO 2381
ENDIF
IF (VTHETA.LT.0.0.AND.VU.GT.0.0) THEN
ALPHAB=~PI+THETA-ALPHAB
CLFAC=+1.0
CDFAC=-1.0
IF(ALPHAB.GT.PI)CLFAC~-1.0
IF(ALPHAB.GT.PI)ALPHAB=2 . *PI-ALPHAB
ENDIF
CALL AIRFOIL
CL~=CL*CLFAC
CD=CD*CDFAC
VRSQD=VU**2+VTHETA%*2
DLDR=RHO/2*VRSQD*CL*C
DDDR=RHO/2*VRSQD*CD*C
VR=SQRT (VRSQD)
DT2=DLDR*ABS (VTHETA/VR)+DDDR*ABS (VU/VR)
M2=(R-EPSR)*DT2
DMDR=(M1+M2) /2
DTDR=(DT1+DT2) /2
M1=M2
DT1=DT2
MAERO=-MAERO+DMDR*DELR
THRST2=THRST2+DTDR*DELR
R=-R+DELR
IF (R.GT.D/2) GO TO 2690
GOTO 2380
BETDD2=MAERO/MIF - BETA*OMEGA**2 - MW/MIF
BETAD2=BETAD2+(BETDD1+BETDD2) /2 . *DELT
BETAD=BETAD?
BETA=BETA+(BETAD1+BETAD2) /2 . *DELT
BETDD1=BETDD2
BETAD1=BETAD?
M1=0.
DT1=0.
PSI2=PSI
PSI1=PSI2
THRUST=(THRST1+THRST2) /2.
THRST1=THRST2
TAVG=TAVG+THRUST#DELPSI

BETLIM=-1.*DTIR
IF(BETA.LT.BETLIM) THEN
OVER=-BETA-BETLIM

IF(ABS(OVER) .LT.ABS(OVERO)) THEN

C SOS 1S THE ANGLE AT WHICH MAXIMUM OVERFLAPPING OCCURS

S0S=PSI+DELAY-DELPSI-AINT((PSI+DELAY-DELPSI)/2./P1)*2.*PI

100

101

BEEP='Y'
U(10)=ABS (OVERO)
DO 210 IU=1,9
210 U(IU)=UO(IU+1)
CALL FDBACK(OVERO)
CNTRL1=-GAIN*OVERO*SIN(SOS)/DTR
CNTRL2=GAIN*OVERO*COS (SOS) /DTR
WRITE(105,61) NREV,CNTRL1,CNTRL2,El,E2
61 FORMAT(1X,5G15.8)
GOTO 100
ELSE
OVERO=OVER
ENDIF
ELSE IF(BEEP.EQ.'Y'.AND.ABS(PSI-AINT(PSI/2./PI)*2.%*PI-SOS)
&.LT.DELPSI/1.9.AND.(PSI-PSIO).GT.4.*PI) THEN
UNDER=BETA-BETLIM
€ 0.2 IN THE FOLLOWING FORMULA IS THE FLAPPING ANGLE ERROR (IN DEGREES) ALLOWED
IF ((UNDER- .2%DTR) .GT.0.) THEN
U(10)=ABS (BETA)
DO 220 IU=1,9
220 U(IU)=UO(IU+1)
CALL FDBACK(UNDER- .2*DTR)
CNTRL1~-GAIN* (UNDER-0.2*DTR)*SIN(SOS)/DTR
CNTRL2=-GAIN* (UNDER- 0. 2*DTR)*COS (SOS) /DTR
WRITE(105,61) NREV,CNTRL1,CNTRL2,El,E2
SINGAL~'0’
GOTO 100
ENDIF
ENDIF
C++++++ e
c
2790 PSI=PSI+DELPSI
PSII=PSII+ DELPSI
IF (PSII.LE.2.*PI) GO TO 9801
TAVG=TAVG/2 . /PI*B
CTRW=TAVG/RHO/AREA /VT#*2
DO 9800 I=1,5
CFAC=V#**4+(TAVG/RHO/AREA) **24W#%3#%2 *V*SIN(A1+ALPHA)
IF(CFAC.LT.0.)THEN
W=SQRT (0. 5% (-V#*24SQRT (V**4+ (TAVG/RHO/AREA) *%2)))
GO TO 9800
ENDIF
WFAC=-V**2+SQRT (CFAC)
IF(WFAC.LT.0.)THEN
We=SQRT (0. 5% (-V¥*2+SQRT (V#*4+(TAVG/RHO/AREA) *%2)))
GO TO 9800
ENDIF
W=SQRT (0. 5% (-V**2+SQRT(CFAC)))
9800 WVT=W/VT
TAVG=0.
PSII=0.
9801 IF((PSI-PSIO).GT.NPRED*2.*PI) THEN
BEEP='N’
CNTRL1=0.

10

0

102

CNTRL2=0.

E1=THETA1/DTR
E2=-THETA2/DTR
WRITE(105,61) NREV,CNTRL1,CNTRL2,E1,E?2
GOTO 100

ENDIF

GOTO 2280

WRITE(107,62) NREV,GAIN
FORMAT(1X,2G15.8)
RETURN

END

[eNeNsNe]

OO0 0O0

10

c

This subprogram renews the GAIN so that the system stability may be
guaranteed although the gain so obtained makes the settling time longer.

SUBROUTINE FDBACK(OVER)

REAL U(10),U0(10)

CHARACTER*1 BEEP

COMMON/PMT/PI ,DTR,STEP,NMAX,PSIO,DELPSI,WO
COMMON/INPUT/THETAO,THETA1, THETA2 ,ALPHA,BETAO, BETADO
COMMON/SIMU/B,D,CO,CT,EPS,KBETA, THETAT ,MW,MIF,V,VT,DELX

&,RHO,KTEN, CRATEO, CRATE1, CRATE2 , CRATEA , GAIN, SOS ,BEEP, U, UO

An adaptive GAIN is chosen so a= to guarantee the system stability.

The

design principle is to place more confidence on more recent controls

with exponential confidence coefficients.
ANORM(U) is a functional subprogram which gives:

ANORM(U)={U(10)+exp(-c*1)*U(9)+...+exp(-c*9)*U(1)]/2-NORM OF U

where ¢ is the decaying coefficient.

THE

The

FOLLOWING IF-ENDIF BLOCK GIVES A SEMI-ADAPTIVE GAIN
IF (ANORM(U) . GE . ANORM(UO) . AND . ANORM(UO) .GT.1.E-4) THEN
GAIN=ANORM(UO) /ANORM(U)*GAIN

ENDIF

IF(GAIN.LE.0.8) GAIN=0.8

THETA1=THETAL - GAIN*OVER*SIN(SOS)
THETA2=THETA2+GAIN*OVER*COS (S0S)
physical limits on THETAl and THETA2 are given below:
IF(THETA1.GE.15.*DTR) THETAl=15.*DTR
IF(THETAL.LE. -15.#DTR) THETAl=-15.*DTR
IF(THETA2.GE.15.*DTR) THETA2=15.*DTR
IF(THETA2.LE. -15.*DTR) THETA2=-15.*DTR
DO 10 I-1,10

U0(I)=U(I)

RETURN

END

C

C This subprogram defines a special kind of NORM for a vector used in
C subprogram FDBACK. The NORM so defined has the following properties:

aaon

1. NORM(U) is smaller than or equal to infinite-Norm of U
2. Each coefficient of U has different weighting on NORM(U),
which is different from the usual P-Norm.

10

FUNCTION ANORM(U)
REAL U(10)
C=0.1
ANORM=0.0
DO ") I=1,10
ANORM=ANORM+EXP (-C*¥FLOAT (10-1))*U(1)
RETURN
END

103

104

Input data files for FORTRAN programs
(AH-1J case)

FLP5.DAT FOR THE AH-1J

44,
2.25
2.25
.01

FLP6.DAT FOR THE AH-1J

0.
-10.
3122.
1422.
61.0

FLP7.DAT FOR THE AH-1J

738.
15.27
1.73
0.11
-4.48
2.71
-1.24
2.6

FLP8 .DAT FOR THE AH-1J

.05

5.
.002378
9500.

105

CL.DAT FOR 0012 AIRFOIL

0.
.211
422
.633
.844
.055
.16l
.255
.334
.333
.19
.007
.800
.18
.18

e el

e

.62
.78
.0

106

107

CD.DAT FOR 0012 AIRFOIL

0. .008
1. .0083
2. .0085
3. .0088
4, .0093
5. .01
6. .011
7. .0122
8. .0138
9. .0154
10. .0174
11. .0196
12. .022
13. .0264
14. .038
15. .102
16. .155
21. .332
30. .562
50. 1.392
60. 1.66
70. 1.84
80. 1.96
90. 2.02
100, 2.02
110. 1.852
120. 1.652
140. 1.042
160. .302
165. .242
170. .132
175. .062

180. .022

