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ABSTRACT

Propagation of electromagnetic energy through the atmosphere is a difficult task
because of temperature fluctuations and index-of-refraction inhomogeneities which de-
grade the beam’s coherence. Understanding this phenomena is of practical importance
for optical systems.

This thesis presents an analytical numerical technique which simulates the effects
of atmospheric turbulence. The extended Huygens-Fresnel principle was used to sinu-
late wave propagation in a two-dimensional randomly varving medium, which is repres-
ented by thin, filtered, Gaussian phase screens. The wave optics code implements both
Fresnel and Fraunhofer propagation, by emploving the fast Fourier transform (I'F'T)
algorithm. The analytical spatial coherence length, p, . and normalized intensity vari-
ance, o7/ F, of the perturbed clectric field. were examined. Results support the concept
of mtensity saturation for weak scattering cases, however. differences in the values of the

theoretical and analytical spatial coherence lengths, occurred.
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I. INTRODUCTION

Aumospheric turbulence degrades the coherence of electromagnetic energy propa-
gating through the atmosphere. The refractive-index inhomogencitics associated with
the turbulent atmosphere induce phase and intensity perturbations across the wavefront.
Understanding the propagation and scattering of optical waves in random media, is es-
sential for atmospheric laser beam propagation and imaging systems.

This thesis models the propagation through a random media bv means of the ex-
tended Huygens-Fresnel principle. A two-dimensional, thin. Gaussian phase screen re-
presents the randomly varying medium. This wave optics propagation code employs the
fast Fourier transform (FFT) algorithm in both Fresnel and Fraunhofer forms of prop-
agation. The Fresnel region incorporates two forms of the diffraction integral. the
transfer function form for “near field” distances, and the convolution form for “far field”
regions.

Previously, numerically intensive simulations of this tvpe required large, super-
computer svstems.  However, these computations were performed on a compact,
desktop computer system.

The model's accuracy was assessed by comparing computer values of the spatial
coherence length. p, . with values obtained {rom the analvtical mutual coherence func-
tion (MCFE). Additionally, the concept of intensity variance saturation was examined for
a single phase screen in the Fraunhofer approximation. The normalized intensity vari-
ancd. ¢/, approaches a saturation value asvmptotically for increasing values of the
index-of-refraction structure parameter, (. Theoretical calculations suggest saturation
for multiple scattering. however, they sav nothing about a single phase screen realiza-
tion. This thesis provides results which support saturation eflects for single scattering

cases.




1. BACKGROUND

A. STATISTICAL DESCRIPTION OF TURBULENCE

1. Random Variables

Maintaining the coherence of an electromagnetic wave propagating through the

atmospliere. requires an understanding of the effects imposed on the wave by the tur-
bulent medium. The fundamental characteristic of atmospheric turbulence is its ran-
domness, which must be described statisticallv. In addition to statistical quantities,
further assumptions must be made of atmospheric turbulence. These include the con-
cepts of stationarity., homogeneity and isotropy. Stationaritv implics that random
processes are time independent.  IHomogeneity assumies invariance under a Gualilean
transformation of coordinates. while isotropic varnables are invariant with respect to
coordinate rotations. {Ref. 1] Mathematically, these two assumptions mmply that the
statistics at two points 7 and 7, depend only on the diflerence, r, = {F, — 75! .

2. Local Homogeneity and Isotropy

In general, atmospheric random varniables do not obey the assumptions of
stationarity, homogencity, and isotropy. However, Tatarski {Ref. 2] introduces the
concept of “local” homogencous and isotropic random variabics. This concept requires
homogeneity and isotropy within a localized region of size L,, the outer scule length.
Furthermore, the difliculties associated with nonstationary random variables, are re-
moved by consdering random lieids with stationary (irst increments [Refl 2], Tatarski's
method appiics to a nonstationary random function whose mean varies slowly with tune,
by considering the difference of the {unction at two different locations. The slow func-
tionul changes do not affect the value of this difference.

3. Structure Functions

Tatarski introduces the structure function
D7, — ) = <|fiF) = A7), (1

a tensor that is the difference between two quantitics. Some important aspects of the
structure function are; that its general form is valid for anv variable, and < > denotes
an ensemble average taken over all possible point pairs /, . 7, Assuming homogencity
and isotropy. the vector dependence reduces to the magnitude r, = |7, — 7| , and the

structure function beconmes

o




DAr) = <[firy) = fir))f'>. (2)

Kolmeg. .ov showed through dimensional analyvsis, a simple power [aw dependerice of

equation (2), over a limited interval called the inertial subrange, as

D/('.) = C}?)'zﬁ. (

',d
R

Tatarski introduces the concept of “passive additives”, which are quantities independent
of position in the vector field, and do not directly influence the dvnamics of the turbulent

medium. Temperature is a passive additive and has a structure function of the form
2213
Dyr) = C*, ()

As long as r remains within the inertial subrange, temperature is approxinuated as a
passive additive. and equation (41 is valid.  Likewice the index-of-refraction is a passive

addiuve with a structure function
Dirn=Cor, t5)

Since the indev of refraction depends on the density of the atmosphere, D, and D, are
reliated by

D, = D,(vm % 107 —]— ) (0}

4. Covariance. Power Spectral Densities
In addition to the structure function, other characteristics of random processes
melude the covariance tor correiation), and Power Spectral Densities. It is the mterre-
Tors Oy [‘}.\, hree . ities whicl ‘ovide ; seful v} 1 for analvzine rando
ltionship of these three quantitios which provide a useful method for analvzing random

processes. The covariance between two rundom variables S and T can be expressed as
Bor=<[Itr)) — <Tu)>|[S(ry) — <S(r))>]>. (7)
However, more {requently it is the autocovariance function
Bipr=<{TU) — <1 >\ 1) = <I(r)>)>. {8)

which 1s needed. Furthermore, if T 18 homogeneous and <7> =0 is assumed, then

equation 18y sanphifies o




B']{") = <7'(I'1)T("2)>. (()]

Combining this relation and equation (2), gives an expression for the relationship be-

tween the structure function and covariance {unction as
Dr) = 2| B+0) — Br{r)). (10)

In one dimension the covariance function and the power spectral density are transform

pairs given by

+ o0
”'(K‘)=( e " B(»)dr. (1
and
4+
Diry = .'1__ ( "I (k). {12)

Using the {act that Bery is an even function and substituting equation (121 into equation

i1 Dory beconies,

+or
Diry= ZJ [T — costrnr)jH (k). {13)

-

Tatarski develops an expression for the one-dimensional Kolmogorov spectral density,

given by
() = 012240375, (14)

Discussion to this point has been of one-dimensional random processes, how-
ever these concepts are apphicable to three-dimensional cases. Analogous to eguation

(111 Tatarski defines the three-dimensionul power spectral density as




+oc 4o P00 o
¢(E}=J J [ e BT, (15)

and similarly, the correlation function 1s

| +o0 *+oc 400 .
B(F) = (2n)3j j j ™ T D) d’R. (16)

—oC -0 —_0C
Using the relation
) -1 dil'(x) 1
Dlx) = 2zKk dk ()
the three-dimensional Kolmogorov power spectral density becomes
D(r) = 0.033C x5, (18)

B. EM PROPAGATION THROUGH TURBULENCE
1. Wave Equation
Based upon Tatarski, Clifford [Ref. 3) develops theoretical results of line-of-sight
propagation through the atmosphere. directly from Maxwell's equations. Assunming zero
conductivity, and unit magnetic permeability in the atmosphere, as well as, a sinusoudal
time dependent electromagnetic field, Maxwell's four equations, in Gaussian units, take

the form

Vel =0, (19)
VxE = ik, (20)
VxH = —ikn’E, (21
Ve(nE)=0. (22)

Taking the curl of equation (20), and substituting it into equation (21), gives

—VE+VV L) =tn'E (23)




Rewriting equation (22) in the form
EeVn'+ 1’V E =0, (24)
and substituting it into equation (23), vields the vector form of the wave equation
V’E + k*n’E + 2V(E + V log n) = 0. (25)

The third term of equation (25) describes the change in polarization of a propagating
electromagnetic wave. This term is negligible as long as the wavelength is small com-

pared to the refractive inhomogeneities. Thus equation (23) reduces to
V’E + k*n’E =0. (26)

Equation (26) is the vector form of the wave equation describing propagation through
the turbulent atmosphere. The difficulty in solving this equation lies in the second term
containing the random variable n. Various methods are available for obtaining solutions
to equation (26), each of which relies on several critical approximations.  Strohbelin
[Ref. 4] lists these approximations as:

I. Negligible depolarization effects.

2. Negiigible back-scattering.

.3
-

o

se of the parabolic approximation to the wave equation.

4. Turbulence is uncorrelated in the direction of propagation.

2. The Method of Small Perturbations-Born Approximation
Both Tatarski [Refl. 2] and Clifford [Ref. 3], solve the wave equation in a turbu-
lent atmosphere using the method of small perturbations, which is equivalent to the
Born approximation. This method expands the electric field into a scries of decreasing

amplitudes. and the refractive index into a power series in the form
E=L+ E + .. (27)
n=1+n+.. (2$)

Substituting these into equation (26) and equating same order terms. results in two

equations

VL, + APE, =0, (29)




VE + KE + 2k’ E; =0, (30

where terms of order #? and higher are ignored. Assuming. as Tatarski does, that the
unperturbed field is a plane wave propagating in the z-direction represented as
E, = expl[ikz] , equation (30) becomes

VIE, + KE = =2k*n ™, (31)

an inhomogeneous partial differential equation with constant coeflicients. Its solution
is the convolution of a plane wave Green's function with the source term, or inhomo-

geneous term, given by

o1 3, eXpUA[T —T'{)
El(’)— ain ai i)__;_,}
5

{2h7n,(7') explikz")). (32,

3. The Method of Smooth Perturbations-Rytov Approximation
In addition to the Born approximation, Tatarski develops the Rytov approxi-

mation which assunies a solution to equation {30) of the form
IF=exp't) = exp(X +iS). (33)
or simply
E= A expliSy, (34
where A is the amplitude given by 4 = exp X . Applving equation (33) to equation {(30)
and dividing by L., viclds the Ryiov solution given by,
VE+ KnP(r) =V log £+ (Viog BV + k*n° (). (35)
Tatarski further shows that both methods of approximation are equivalent.

C. HUYGENS-FRESNEL THEORY

As we have seen, the theories of Tatarski and ClitTord use the differenual equation
approach to solve the problem of propagation through a turbulent medium. However,
Lutomirski and Yura {Ref. 5], approach this problem in terms of integral equations
which use an extended Huvgens-Fresnel theory. This technique is equivalent to a dif-

ferenuial equation approach, but it is casier to ntegrate and simulate using FIT tech-




niques.  Lutonurski and Yura, develop an extended Huvgens-Iresnel theorv by
introducing a random phase term for turbulence in the Huvgens-Fresnel integral which
is developed in standard optics texts like [Ref. 6]. This additional phase perturbation
takes the form of the Rytov approximation, e* . The extended Huygens-Fresnel integral

is,

—ik | etiklF 7))
27 7 =7

E(F) = EG)e™¥ g7 (36)

In the geometrical optics limit, Fermat's Principle is, ‘P—»kfn,(z)dz. With a power series
expansion of e¥, equation (36) reduces 1o the Green's function solution of Tatarski and
Clifford given in equation (32).

Recently, Martin and Flatté {Rell 7] presented an atmospheric turbulence algorithm
which uses the differential equation approach that has as a solution. the extended
Huygens-Fresnel integral. A filtered random Gaussian phase screen introduces the
phase perturbations while the algorithin’s path integral method, incorporates a multi-

screen transfer function form of Fresnel propagation.

D. MUTUAL COHERENCE FUNCTION

The effects of atmospheric turbulence can be expressed in terms of two functions,
the Mutual Coherence Function (MCF) and the Modulation Transler Function {(MTT).
Lutomirski and Yura [Ref. 5] derive the first concept by considering the average intensity
<> = <[(R)F)> . of equation (36). What results is an average intensity which is
a product of the autocovariance of the aperture and the atmospheric MCF. The atmo-
spheric MCF term has the Rytov form <exp(¥' +‘W"')> where the ¥ refers to the
complex phase factor at the », coordinate and ¥ ' ' corresponds to the r, coordinate. This
term is Jog-normally distributed, as long as, ¥ is composed of Gaussian variables. Using
this fact and results in Fried's work [Ref. 8], the atmospheric MCF was written in terms

of the wave structure function D(p ). given by

tsd

3 R

e

0" 100 —D(
<™ S o exp[ =Dt J (

where D(p) = Dyp) + Ddp). Lutomirski and Yura apply the structure function for a

plune wave,




L
D(p)=291kp*? | CXz)dz, (38)

0

to equation (37) which can be written as,

<™ 5 < ycRp) = exp[-—( [—”0- )5"3]. (39)

where p, , the lateral cohernece length, given by

L

po = (146K2 | CHo)dz] ", (40))

0

o
where A === and C is the index of refraction structure parameter along the optical
/.
path length L. represents the distance where the spatial coherence of the wave drops to
¢! point of the MCF. [Ref §]

E. MODULATION TRANSFER FUNCTION

Lutomirski and Yura's concept of MCF is closely related to the MTF of Fried's
[Ref. §]. The MCT and MTF are in fact the same function but expressed in terms of
different vanables. The MCF is measured in the coordinates of the propagation field
and has dimensions of distance, while the MTT, is measured in the image planc and has
the dimensions of spatial frequency. Both are equivalent under a transformution be-
tween the two planes by letting p—/Rf where R is the focal length of the optics and fis
the spatial frequency. This transformation is valid under the Wiener-Khintchine theo-
rem since the lens Fourier transformis the incident electric field at the aperture to the

image plane. Fried's cxpression for the atmospheric long term MTF is

, .-Ie \ 'ﬁ‘
MTF(f) = exp[ —3.44< /,Uf )‘J (1)

where r, = 2.1p,.
In calculating the MTF, two distinct cases exist. These are a short term and long
term MTF. The short term exposure describes the evaluation of the wavefront in sufli-

ciently short time intervals such that the turbulence appears frozen. The long term




MTF, is a single long time integrated exposure, taking into account every turbulence
configuration. This thesis focuses on the method prescribed by the short term MTT.
[Ref. §]

The analytic distinction between the two cases lies in the manner in which the
wavefront distortions are handled. Specifically, the distortion attributed to a random tilt
of the wavefront. Tilt results from the varying phase fluctuations across the aperture
which accumulate along the optical propagation path. These fluctuations produce im-
age motion in the focal plane of the receiver. For a very short exposure, the tilt is ex-
tracted, by fitting a mean square two-dimensional flat plane to the electric field and
rotating 1t through an angle so that the mean wavefront is normal to the direction of
propagation. This introduces a phase shift, resulting in the displacement of each curve
about the optical axis. Fried's [Ref. 8] development of this theoryv suggests a higher
MTI at all spatial frequencies for the short term MTIF. The short-exposure MTF for

near-field and far-field cases is respectively given by

JRf sl . [ 2RF T
<75()> = 7o) exp —3.4-1[ o ][1_[_5_]3] _

ARf s ‘R Ny

where 74 15 the MTT of a diffraction-limited lens. and the exponential term corresponds

(42)

to the atmospheric MTF. These equations predict a near field short termi MTF that
start at one. declines to a minimum, then increases to unity, at the optical cut off fre-

quency. Figure 1 illustrates this phenomena.

F. DIFFRACTION INTEGRAL

This scction presents the analytical work concerned with the development of my
propagation algorithms. It begins by illustrating the approximations that were used to
manipulate the diflraction integral and then proceceds with the analysis required to
transform the solution of the Helmholtz equation into two forms of the Huvgens-Fresnel
principle. The two forms are, first, a convolution form suited for long distance propa-
gation and second, as a transfer function form for short distance propagation. Some
initial assumptions made by Roberts [Ref. 9] include the following:

I. Light propagates in the k direction.

2. The wave amplitude is known in the xv-planc at z =0,




1.1

o g
w0 o

Mutual Coherence Function
o
™

0.7 -
1 Ct=1x10™
0-6 7!lI’T"r]TITI'IIIll'ljll'l"'
0.0 5.0 10.0 16.0 20.0 25.0 30.0
Coherence Length (cm)
Figure 1. Short Term Mutual Coherence Function for an 8 x 8 Subaperture.
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3. Polarization effects are negligible.

4. The electric field amplitude is a scalar function V(r,z).

Following Roberts, the analysis begins with the Huvgens-Fresnel integral for the
propagation of light waves given as

Vi, z)———f (P, 0) e’(p[ NE: 247 -7l ] (43)

where / is the wavelength of light and p is a vector in the aperture plane, 7 is a vector
in the image planc, and z is the propagation direction. From the Fresnel approximation
where, r < < zand p < < z, factor z? from the square root and expand by a binonual
expansion. Equation (43) becomes

e ] F—p
P(r.f)=-;:— dph{p, O)L\P[ \/l—i = | ]
""""J(FI(/) O)e\p[—*—'i—<1-%|i:—5s2)]. (44)

==L exp( =22 (a1, )exp(%lf—ﬁ\z).

’rz y)

Since the exponential phase factor outside of the integral does not affect intensity
measurements., equation (44) is

. 2= L fa%r(r). 0) exr[ == - mz]. (45)
Expanding the quadratic term gives,

, -
17, 2) -——fd"r ®,0) exp[—l[rz — 277 pz]],

ETINON I- | - it 2 ool —an] 22T
P C\p[ e r:UdBI(p,O)exp[ /:‘_p]exp[ ,.m[ = ]]

This is the convolution form of the Fresnel integral, which is equivalent to the

(46)

Fraunhofer integral except for the quadratic phase factor in the integral.
To obtain the transfer function form, the analysis begins with denoting 11/.) as the
Fourier transform of V(r.z) given by

12




F’(f_', z) =I jd? exp( —271'('/-"- FIVF, o) (47)

where F(7, z) 1s given in equation (45). Interchanging the order of integration vields

1/, 2) = —/"—’ s 1@, 0)de exp( —2rif.7) exp[ —;’— 7 — mz]. (48)

Next, a change of variables is made where
F'=r-p. (49)

Substituting this into equation (<8) gives the following equation

F(f, o) = /;_Lfdﬁl’(ﬁ. o)jdf' exp[ —2nif« (F+ )] C.\p[ —:F- ;-'2].

: A N o (30)
= /;_I-Ja’ﬁ F(p. 0) exp( =2=if » mfdf-’ expl =2zif o ¥') e\p[ —:_— r"].
The r " integral is replaced with its Gaussian transform pair,
irz expl ~inizf"), (51)
giving
f(/. z) = exp( —i:r).;/%jd}?l (P, 0) exp! —27.*1_'/-‘ D) (52)
The inverse Fourier transform of equation (52) vields
V(F,2) = fdf exp(2nif « 7) exp( —z'nizjz)fcfﬁ!’(ﬁ, 0) exp{ —2xif « p). (53)

This expression is the transfer function form of the diffraction integral, which is equiv-
alent to the solution of the differential equation approach used by Martin and Flatuté
[Ref. 7]. Reviewing the form of equations (d6) and (53). the need for two equations de-
scribing different propagations. is obvious. In one instance, the propagation distance z
enters in the denominator of the exponential term. It is at long distances that the ex-

ponential term varies slowly, On the other hand, equation (83) is suited for short




propagation distances, as z enters into the numerator of the exponential for slow vari-
ations in this case.
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HI. NUMERICAL SIMULATION MODEL

This numerical simulation, modeled wave optics propagation of an electromagnetic
wave through a random medium, represented by a two- dimensional Gaussian phase
screens. Techniques in this model required certain “tools” and their testing. These
“tools” included a need for a reliable random number gencrator, used in generating the
random phase screens. and an efficient two-dimensional FFT, used in approximating the

diffraction integrals. But first, a discussion of the experimental arrangement is needed.

A. EXPERIMENTAL ARRANGEMENT

Due to the extensive nunlerical calculations in this simulation, a Compaq deskpro
80386-20 computer was used. It features a 64 megabyte hard drive and 16 megabytes
of memory. In addition to the 20-MHz 80387 coprocessor. a Weitek 1167 math
coprocessor was added to enhance execution speed. The 32 bit Fortran-38¢ compiler
wias from Silicon Valley Software (SVS) and uses Phar Lap Software to extend the op-
erating svstem bevond onc megabyte. The math and graphics packages were produced
by Scitech Scientific. The Compag has a 640 x 480 pixel VGA graphics monitor. Both
the HP Laser Jet Series I and Panasonic KX-P1092i multi-mode printers were used in

this arrangement.

B. COMPUTER PRELIMINARIES
1. Random number generator

The main purpose of a computer simulation is to approximate natural phe-
nomena. To make things realistic, random number sequences were used to introduce
stochastic variations. One might ask, what minimal criteria should a particular random
number generator satis{v? Certainly the most important criterion is that the sequence
of numbers is sufficiently random. Other criteria are uniformity, reproducibility, nuni-
mun memory, fast, non-repeating, and statistically independent.

The more diflicult characteristic to satisfv is statistical independence. Thus a
series of tests were needed to provide a quantitative measure of the generator’s per-
formance. There are two kinds of statistical tests: empirical tests and theoretical tests,
Empirical tests focus on how the computer manipulates groups of numbers from the

sequence and evaluaies certain statistical quantities. Perhaps the best known of all sta-




tistical tests are the "Chi-Square” tests. Theoretical tests, on the other hand, establish
characteristics of a sequence using methods based on recurrence rules. [Ref. 10]

For the purpose of this simulauon, only empirical tests were applicd to the
SVS-TFortrun random number gencrator called Ran’/I, . The following five tests were
considered:

1. Frequencv Test. This test determines whether or not the sequence of numbers are
uniformiv distributed as U(0.1).

2. Senal Test. This test is an extension of the frequency test to two dimensions or
matrix forn.
3. Lagged-Product Test. This test checks for correlations between successive numbers

over a given lag period.
4. Run Tests:

a. Runs up and down. This tests for long increasing and decreasing sequences of
numbers.

b. Runs_above and below the mican. This tests for Jong sequences with values
consistently above or below the mean.

The resulis of the five tests are provided in Appendix A, Of these five tests, the
Lagged-Product und Runs Tests are the most critical when simulating atmospheric tur-
buicnce. These three tests deternune whether or not correlation is intreduced from the
random number generator which produces erroncous results in the simulation. The

SVS-Fortrun random number generator 1act the test criteria and proved to be one of the

b

ctter generators. IHowever, this generator has one significant draw back. The random
sequences begin at one of two diflerent values depending on whether the seed value is
positive or negatiave. Thus it is critical that the random numbers be called continuously
in a loop to avoid restarting the sequence. thereby introducing unwanted correlation.
2. Fast Fourier Transform

The most repeatediy used algorithm throughout the numerical simulation was
the fast fourier transform. Therefore, it was necessary to use the most efficient algorithm
available. The Scitech Scientific math package provided several options, with subrou:ine
FIT2C . best suited for this numerical simulation. This subroutine uses a complex array
input. The other FIT considered wus a routine coded by Dr. Walters which he received
in a demonstration package provided by Infotek. This FFT utilizes real arravs and will
henceforth be refered to as subroutine FFT .
Fach subroutine was timed for various configurations. Specific tinung results

are contained in Appendix B, Some general results. however, ure that subioutine
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FFT2C was faster for one-dimensional cases, with subroutine FFT faster for the two-
dimensional cases. The decline in efficiency of FFT2C can be attributed to the extra
coding required to convert between real arrays and complex arrayvs. Subroutine FI'T
was selected over FFT2C since the simulation utilized the two-dimensional form of the
FFT.

Other techniques which were emploved to increase the efliciency included in-
stalling a Weitek coprocessor in the Compaq. This reduced the processing time to ap-
proximately one-third that of the criginal time. The use of common blocks vice
dimension statements further decreased processing time by 5%. Finally, a portion of the
FFT algorithm was tnodified from wim = sin(ang) , to wim= -1 — wre? , with a negli-
gible decline in efliciency by 0.01%.

Because of the discrete nature of the simulation. there exists problems and lim-
itations associated with implementating the FFT. One such problem was that of clas-
sical edge diffraction associated with the phase or amplitude discontinuities at the edges
of the finite screen. As the propagation distance z increases, the edge diffraction spreads
toward the center of the screen mauking more and more of the diflraction pattern erro-
neous. Bucklev [Ref. 11] defines the distance from the ends of the screens where the edge

diffraction i1s important as
D) =2 =z + 2¢mz, (34)

where 7 is the propagation distance and ¢, is the root mean square phase deviation im-
posed on the wave by the screen. The severity of edge eflects, however, is reduced by
the aliusing introduced in the FFFT implementation.  Ahasing transforms the lincar
screen to a “cireular” one with the last point associated with the first. This resultsin a
continuity of phase and amphtude at the edges of the screen [Ref. 11].

The most important Iimitation was the finite spatial range imposed by the
maximum available grnid size.  This places a constraint on the available range of fre-
quencies used in the FFT from the lowest given by f  =1/L . to the highest,
Smae =n/2L. where L is the gnid length and n is the number of grid points. Figure 3 on
page 20 illustrates this setup. The FET provides a least squares fit of sine and cosine
fuctions to the perturbed wavefront phases. However, this method prevents an accurate
representation of the wavefront at low frequencies for a Kolmogorov x='' ¥ power spec-
trum. To alleviate this problem. a subaperture was superimposed at the center of the

grnid. The subaperture heips low {requencies, which contain a lurge portion of the am-
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plitude, but hurts the high frequencies by limiting the inner scale. There exists some high

frequency edge effects, however, these are minimal.

C. PROCEDURE
Figure 2 provides a summary of the coding contained in Appendix C. This con-
ceptual diagram illustrates an overview of the procedural steps of the Fraunhofer prop-
agation algorithm.
1. Input Parameters
Since this step is straightforward, extensive discussion is not required. However,
it is important to note that the input parameters were both fixed and variable. The array
size and filter value were fixed quantities. but the subaperture size, seed value, (2 value,
and propagation distance. took on different values. The actual variable names are doc-
umented at the beginning of the code.
2. Aperture Mutual Coherence Function
The second step in this procedure calculates the aperture MCFEF.  Subroutine
MCF does this. In this subroutine the initial wavefront was represented in the computer
as an L x L square array of complex numbers. Centered within this complex electric
ficld was a subaperture. The initial complex electric field had a value of zero, every-
where, except for the real part of the subaperture, which had the value of one.
Freure 3 illustrates this. With the electric field created. it was dircct Fouriter trunsformed
(DI'T) by subroutine DFTIFT . The intensity of the electric field was caleulated, and
then inverse Fourer transformed (1FT). vielding the aperture MCF.
3. Planar Electric Field
The complex electric field was created by the same method prescribed in sub-
routine M/ CF . 1t is important to realize that the concept of aperture size was used in
two wavs. One way corresponds to the simulated aperture while the other pertains to
an aperture with phyvsical dimensions. The sunulated aperture is actually a matrnx or
grid which directly reflects the dimensioning size. For example, the simulated L x L
complex electric field was actually a two-dimensional matrix corresponding to a 236 x
256 two-dimensional arrav. From the input parameters. the simulated subaperture takes
on grid sizes ranging from an § x § to 200 X 200 square matnx.
The second referencing to an aperture refers to an aperture with actual physical
units. The physical subaperture was assigned a value of 0.3123 meters, which remains

fined regardless of the simulated subaperture size. The length L of the complex electric
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field, on the other hand, had vanable phvsical lengths depending on the simulated
supaperture size. The physical value of L was calculated from

ny
L=mx—

N
N
=

~— [meters], (

where m is the physical subaperture length in meters, nr is the integer value of the array
dimensioning, and isize is the integer value for the simulated subaperture.
4. Phase Screens
a. Generation

Phase screens were created in subroutine GGAUS by constructinga L x L
matrix of Gaussian distributed random numbers. Each position was assigned an inde-
pendent random number n, thereby, requiring »* random numbers. Since the
SVS-Fortran random number generator was uniformly distributed. an algorithm pro-
vided by Knuth [Ref. 10] transformed the distribution into a Gaussian one. Two inde-
pendent, two-dimensional real arravs called phaser and phasei were created. which
represent the real and imaginary components of a two-dimensional complex phase
screen. In this algorithm. the imaginary part of the phase screen was set to zero.

The domain in which the phase screens are created is arbitrary. however,
filtering was done in the Fourier plane. Creating the phase screen in frequency space
vice real space. reduces the requirement for an additional FFT when transforming from
real space to frequency space. Martin and I'latté [Ref. 7] proposed this method, but it
creates difficulties in absolute normalization. Further discussion is presented in Chapter
four. This simulation. on the other hand. generated the randem Gaussian phase screen
in real space. This in turn was DIFT'd to frequency space where the complex phase
screen was filtered and then the filtered phase screen was IFT'd.

b. Filtering

Phase screens were filtered to obtain the correct power law form. The fil-

tering function used in subroutine FLTR was,

Gylx) = 22k°5 D, (36)

where 4, is the slab thichness and &, = 0.033C«-""'? , which gives the relationship be-
tween the phase spectrum and refractive-index spectrum [Ref. 2, pp. 101-102.]. Filtering
was accomplhished by multiplving each phase screen spectrum by the square root of
equation (56). The correct filtering method requires circular {requency filtering instead

of a linear one, because of two-dimensional isotropv.  The correct form is




_

k = ki + k7, which is radial everywhere except at the origin, where it is zero {Ref. 12].
This was reflected in the simulation by setting the position (1.1) equal to zero in each

two-dimensional real arrav which makes up the complex phase screen.

It is important to recalize that although the filtering concept is simple and
straightforward. the actual implementation is not. The difficulty arises from the sym-
metry properties of the digitally filtered phase screen.

A one-dimensional case offers a simple illustration of this concept. The
FFT of a complex function which contains only real components, results in a svmmetric
function in frequency space about the Nyquist frequency for the rcal components, and
an anti-symmetric function for the imaginaries. With these symmetries present in the
frequency domain, the correct implementation of the filtering is to mimick these sym-
metries. Thus a “folding” technique about the Nvquist frequency was required. How-
ever, when this concept was extended to a two-dimensional case, as in the phase screen
in the simulation, the svmmetries imposed by the FFT, were no longer apparent in the
frequency domain. To simplify the symmetry requirements, a real phase screen was
used.  The real and imaginary spectral components were filtered by folding about the
Nvyuist {requency. It wus suggested by both Brigham [Refl. 13] and Martin and Fatte
that a complex phase screen containing both real and imaginary components. vields two
eatirely disuinct phase screens. However, nothing was provided to support this hypoth-
esis,

Another important consequence of f{iltering resides in the units.  The phase
screens were fiitered in k units. but the FET algorithm cperates in frequency units.
Thercfore. it was necessary to make a change of variables prior to applving the I1'T.
The relationship used for the change of variables 1s & = 2nv .

The paper by Martin and Flatté [Ref. 7). specifies an additional normaliza-
NA
points and A is the sampling interval. Martin and Flatté provided no explanation for

tion factor of A7 in equation (30). where A, = and where N is the number of gnd
the additional A7 in the filtering. It was not included in the filtering code.
5. Implementation
After the filtered phase screen was 1FT'd into real space, it was introduced into
the code as a phase screen and multiplied with the electric field. The array phaser, which
contains the desired phase field, takes the form of the Rytov approximation, € . in the
extended THuvgens-Fresenel integral. This form assumes that only phase perturbations

and not amplitude variations. occur.




6. Propagation Methods
As indicated in previous sections, the Huygens-Fresnel technique was used to
simulate the propagation of light. This was accomplished by applving the FFT to the
perturbed electric ficld. Both the “far-field” and “near-field” propagation methods were
considered.
a. Fraunhofer

Of the two different propagation methods, the single screen Fraunhofer
propagation is by far the simplest technique to implement and the one implemented in
this thesis. The uniform coherent plane wave at the aperture was FFT'd vielding the
desired diffraction pattern. Looking more closely, one can see that under certain cir-
cumstances, Fraunhofer propagation is just a special case of the long distance convo-
lution form of Fresnel propagation given by equation (36). Therc exists two situations
when this occurs. One is a “fur-field” case for large distances, where the point of obser-
vation is at infinity. The other case. is when a spherical curvature is placed on the wuve
at the aperture. This curvature cancels the quadratic phase factor in the Fresnel form,
at the focal point.

Both Fresnel and Fraunhofer algorithms were needed for propagation. It
was essential to verify and validate each casce before building on the pre-existing codes.
The Traunhofer algorithm provided the basis of this simulation. Since the Fraunhofer
diffraction pattern is well-known, it provided a means to verifv the existing code by
comparing the simulated diffraction pattern with theorctical results. Figure 4 and TIig-
urc 3 illustrate one threc-dimensional quadrant of the diffraction pattern of an unper-
turbed clectric field. for two different subaperture sizes. While Figure 6 illustrates one
three-dinensional quadrant of a perturbed electric field diffraction pattern for a 16 x 16
subaperture.

b. Fresnel

Although the Iresnel propagation forms were implemented but not tested
in this thesis, discussion is warranted since multi-screen Fresnel propagation is predom-
inantly used in thermul blooming and multiple scattering scenarios.  Propagation
through the turbulent boundary laver also requires Fresnel propagation codes. Two
different forms are used for Fresnel propagation, which apply a straightforward FFT to
cvaluate them. These two forms however, do not allow for a variable receiving array
size. In addition. choosing the correct number of sample points is essential. An effective

approach used to resolve these problems is the Fresnel number.
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The Fresnel number is

Voo A):A/)

; , (57)

22
where A r is the receiving aperture size, A p is the transmitting aperture size, A is the
wavelength of light, and z is the propagation distance. Implementation of the correct
Fresnel form depends on the Fresnel number. When the Fresnel number is smaller than
the number of grid points in the field length, that is, N)<.V, the long distance propa-
gation algorithm is used. Conversely, when N>\, , the short distance code is
implemented.[Ref. 14 ]

The long distance propagation code uses the convolution form of the
diffraction integral. Implementation requires placing a curvature con the electric field
wavefront at the aperture. The subroutine called quad! , does this. Mulplving the
phase screen with the electric field, gives a perturbed clectric field that propagates the
entirc distance by means of one FFT. In the Fouricr plane, the quadratic phase factor
called quad?2 scales the electric field.

The transfer function form, on the other hand, is suited for short distances.
In this case, the entire propagation distance is divided into equally spaced slabs. Two
FFT’s are required to propagate the distance of each slab. This is accomplished by the
following method:

1. Mcsh the electric {ield and phase screen.
2. Apply the direct FFT.

(9]

Multiply the field by the propagation transfer {unction subroutine called rrnsfr .

4. Apply the inverse FFT.

This procedure is repcated for cach phase screen until the observing plane is reached.
[Ref. 7]

Both forms of Fresnel propagation were included in the simulation code

contained in Appendix C, however, neither form of Fresnel propagation was exercised.
7. Atmospheric Mutual Coherence Function ,
The final step in this simulation calculated the atmospheric MCF. The same
procedure used to calculate the aperture MCF, was applied to the perturbed electric
field. with onc exception. The difTerence is that division of the composite atmospheric-

optical MCT by the aperture MCF, gives the atmospheric MCF.
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1V. RESULTS

The main objectives of this thesis were to demonstrate that the simulation gives rc-
sults that provide insight to weak scattering wave propagation and examine the accuracy
of the simulation code. The limitations imposed by the computer mechanics and the
actual method of implementing turbulence theory are discussed. Specific areas of inter-
est include the filter function, MCF, and saturation eflects.

A. FILTERING

As previously mentioned in chapter three, Martin and Flatté proposed a very dif-
ferent approach to creating the random Gaussian phase screen. Their method suggests
creating the phasc screen in frequency space, vice real space, to reduce the required
number of FIFT's from two to one. Since the domain in which the phase screen Is gen-
erated. is arbitrary, this approach seems plausible. However, this method proved to be
awkward. As the subaperture size wus successively doubled. it was necessary to increase
the strength of turbulence, GG, by a factor of ten cach time. in order to produce the
identical level of turbulence as in the previous phase screen.  Additionally, since the
phase screen was created in frequency space. and no svmmetries were present. the fil-
tering technqgue did not reflect any folding about the Nyquist {requency. It 1s not clear
that aliasing was accounted for in the Martin and FPlatté algorithm.  Hence, the IFT of
the phase sereen appears to result in a statisticaliv incorrect phase screen. Additionally,
it 1s not clear how, with one FFT. Martin and Flatt¢ handled the 27 and | N normal-
ization requirements. With a round tnp of I'IFT's, the normalization problems are au-
tomaticallv handled. The weakly filtered phase screen, in turn, led to MCF curves which
grosslv overestimated the coherence length. p,. These problems obtained from Marun
and Flatté * s approach to simulating turbulence led to the current coding which created
one phase screen in real space and applied a folding about the Nyquist frequency, in the
filtering, to account for the svmmetries introduced by the FE'T's.

Kolmogorov theory of atmospheric turbulence predicts that the graph of the phase
screen power spectral density versus k vield a slope of —11/3. Figure 7 shows that
equation (30) produced a filtered phase screen that reflects the —11/3 slope, as well as,
the correct folding technique. Identical slopes were expected for all subapertures, as well
as, all possible angles which reflect the circular filtering. Other subaperture profiles show

a consistent slope value of —11/3. Tgure § corresponds to a 32 x 32 subaperture at a




45 degree angle while Figure 9 is representative of a 64 x 64 subaperture at a 90 degree
angle. Isotropy is apparent in that the circular filtering was implemented correctly
within the eior ntroduced by the randomness in the screen and the ability to linearly

fit a line through the data points.

B. MCF _

The MCF of the electric field provides one method of analvzing the accuracy of the
simulation. To verifv that the MCF was correctly computed, the aperture MCF of an
unperturbed electric ficld was calculated. This was ecasily accomplished since the image
intensity and aperture MCF are transform pairs and are analytical for simple square and
circular apertures. The aperture MCF is just the autocorrelation of the aperture func-
tion which 1s evaluated by calculating the area of overlap of two identical apertures as
theyv are moved laterally apart. For a square subaperture, the autocorrelation vields the
triangle function. with maximum value of 1.0 and minimum value of 0.0 corresponding
dircctly to the subaperture size. Figure 10 illustrates the MCF, or autocorrelation, of
an § x § and 16 x 16 square subaperture.

The MCF corresponding to the atmospheric turbulence was determined by dividing
the MCF of the perturbed electric field by the aperture MCF. The value of p,. the spa-
tial coherence length. was determined from the turbulence MCI curve. Figure 11 il-
lustrates a simulated p, value of 3.20 mun for a 64 x 64 subaperture with C: = 1x10-13,
The theoretical value caleulated from equation (40) vields p, = 2.41nun. Although the
64 X 64 subaperture gave accurate results other subaperture configurations did not.
When G increased, the MCFE curves fell off rapidly towards zero for all subapertures.
Figure 12 iilustrates this for a 64 x 64 subaperture. All subaperture configurations were
run for two differenct (2 values. The simulated p, values were plotted against the cor-
responding subapertures for each case. Figure 13 reflects the CZ = 1x10-¥p, values, and
Figure 141s for C = 1x10-%, The desired trend is for the simulated p, values to approach
the theoretical value as the subaperture size increased. This trend is visible in
Figure 13 where (2 = 1x10-% and p, = 2.dmm. However, Figure 14 shows continuously
decreasing g, values past the theoretical value of 9.6mm. The results of figures thirteen
and fourteen point to a problem that may involve edge effects or aliasing. resulting from
undersampling. The p, values, which were on the order of mullimeters, were smaller than
the tens of centimeter distances of the subaperture mesh size.

In an attempt to pinpoint the problem. the simulation code was changed to increase

the number of frequencics in the subaperture by using a 312 x 512 array. The results
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were identical to those for the 256 x 256 dimensioning, within the arithmetic error of the
algorithm. The information provided by the 512 dimensioning was that the inaccuracy
of the code was not due to an inner scale problem, however, a low frequency, outer scale

problem may still exist.

C. SATURATION

The last area of investigation was whether or not the simulation predicts the satu-
ration of intensity for an extended medium modeled by a single phase screen realization.
Saturation is generally considered to be caused by multiple scattering, a scattered wave
interfering with a distorted wave. One would expect from the Rytov approximation of
turbulence theory, that saturation will occur even in Fraunhofer propagation. This as-
sumption stems from the representation of turbulence in the form. ¢¢, which has a
magnitude bounded between plus and minus one. Figure 13 illustrates that the nor-
malized intensity variance saturates with increasing turbulence. Theoretically, a nor-
malized variance of one is expected for Rayvleigh statistics. However, it is premature to
assume that saturation is inherent in Fraunhofer cases, until the MCT results are veri-
fied.
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V. CONCLUSIONS AND RECOMMENDATIONS

This thesis simulated the propagation of plane waves through an extended two-
dimensional random media using a single phase screen technique. The atmospheric
turbulence had a Kolmogorov k-1 pure power law, while the propagation was strictly
Fraunhofer. Limitations of its applicability were, primarily, the finite spatial range im-
posed by the available grid size. Diflraction patterns, correlation functions and intensity
variance saturation at the observation plane, were investigated.

The results provided by the simulation suggest general agreement with the turbu-
lence theory. Saturation for weak scattering was supported by this model. The MCF

curves, although not completely correct, provided insight to the theory and illustrated
| problems which are still present in the current coding. Some specific problems include,
potential errors in the implementation of the filtering technique from edge eflects, alias-
ing and inner scale problems, or from incorrect normalization.

Any further rescarch on this topic should begin with resolving the inaccuracies still
present in the simulation coding. Several possible reasons were presented, however, an
error in the [iltering of the phase screen seems to be the most likely cause. Further
testing can be conducted on the phase screen. to include calculating the phase sereen
variance, as well as, its structure function D, By comparing the simulated phase screen
with the theoretical structure function for 0,. this technique will verifv whether or not
the simulated phase screen accurately represents turbulence.

An assumption was made, that aliasing was not a problem. since the problems as-
sociated with undersampling were not apparent.  Aliasing can be tested by using finer
grid sizes and observing changes induced by the higher spatial frequencies.

After the coding is working correctly, both the convolution and transfer function
form of Fresnel propagation can be implemented and exercised. In addition, the array
sizes should be modified to incorporate a dimension of 512 or 1024. Finallv, during the
phase screen generation, phasei should be filled with random numbers to give two usable
phase screens. It is not obvious whether two independent phase screens will be
produced. or whether the total energy will be distributed among the two phase screens.
Thercfore, testing should be conducted to ensure that each usable phase screen possesses

the correct statistics.
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APPENDIX A. RANDOM NUMBER GENERATOR TEST DATA

The following table provides the statistical results of the five empirical tests run on
the random number generator, Ran/[;. The X? values were determined from the Chi-

Square table in Bevington [Ref 15 ].

The results of the Lagged Product test correspond respectively to the theoretical

mean, u; ., calculated mean, p , theoretical standard deviation, ¢, , and calculated

standard deviation, o. A lag of three was tested.

Table 1. RANDOM NUMBER GENERATOR TEST DATA

- DLGREES OF . , .

TEST FREEDOM X2 PROBABILITY
[requency 9 4.4 §8.3%
Serial 20 17.1 65.0%
Up and Down 8 4.1 84.5%

Above and Below the . -
.\lCdn 12 6-& 90-30/0
TEST Uy Gr o
Lagged Product 0.250 0.239 0.100 0.092
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APPENDIX B. FFT TIME SERIES DATA

This appendix contains the results of the comparison between the two FFT sub-
routines, FFT72C and subroutine FFT . A function routine called SCNDS, was imple-

mentcd in the code to provide accurate time measurements.

Table 2. FFT TIME SERIES DATA
COMPUTER SETUP FFT FFT2C
1 DIMENSION TIMIE(sec) TIME(sec)
21 with 20-MHz 80387 2.64 2.64
2% with 20-NMHz 80387 25.53 23.26
2V with 20-MHz S0387 54.03 33,44
2 DIMENSION TIME(sec) TIME(sec)
128 < 128 with 20-MHz 80387 6.80 7.08
256 X 256 with 20-MI1z SO387 31.30 32.08
236 X 236 with Weitek 12.08 12.14
256 X 256 with Weitek and common 11.48 11.56
block
312 x 512 with Weitek and common 49 54 5710
block N e




APPENDIX C. SIMULATION CODE

The simulation code contained in this appendix incorporates Fraunhofer and both

forms of Fresnel propagation. This thesis only exercised the Fraunhofer propagation.

sXoNekeReokeokeEeEkeRo v EvEo ko Re koo ke koo koo kv Ao N o ReooRe ool oRoRoNoloRe oo loNoRoRo N o]

Jedevededededevevedevededeevers Ve dedeve e Yo Yede e e e Yo Yoo e de de e de e oo Se e e dedede e e e Ve Yo e e dele e de e de e e e et

THIS CODE PROVIDES A QUALITATIVE VIEW OF BOTH FRAUNHOFER AND
FRESNEL DIFFRACTION BY OBSERVING THE PERTURBATION IMPOSED ON A
MONOCHROMATIC PLANE WAVE PROPAGATING THROUGH A TURDULENT
MEDIUM. THE TURBULENT MEDIUM IS INTRODUCED IN THE FORM OF A
STOCHASTIC PHASE SCREEN. PROPAGATION OF THE ELECTRIC FIELD IS
ACCOMPLISHED THROUGH FFT'S.
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GLOSSARY OF VARIABLE NAMES:
1. ARRAYS:

RE - ONE DIMENSION REAL ARRAY OF DIMENSION NR, WHICH IS USED TO
MANIPULATE THE REAL PART OF THE COMPLEX ELECTRIC FIELD IN
TEE FFT SUBROUTINE. THIS ARRAY IS REPEATEDLY USED THROUGHOUT
THE CCDE.

RIM- ONE DIMENSION REAL ARRAY OF DIMENSION NR, WHICH IS USED
TO MANIPULATE THE IMAGINARY PART OF THE CCIPLEX ELECTRIC
FIELD IN THE FFT SUBROUTINE. THIS ARRAY 1S REPEATEDLY USED
THROUGHOUT THE CODE.

FIELDR -~ TWO DIMENSION REAL ARRAY OF DIMENSION XNR X NR
CONTAINING THE REAL PART OF THE COMPLEX ELECTRIC
FIELD. THIS ARRAY IS REPEATEDLY USED THROUGHOUT THE CODE

FIELDI

TWO DIMENSION REAL ARRAY OF DIMENSION NR X NR
CONTAINING THE IMAGINARY PART OF THE COMPLEX ELECTRIC
FIELD. THIS ARRAY IS REPEATEDLY USED THROUGHOUT THE CODE

FILL - TWO DIMENSION REAL ARRAY OF DIMENSION NR X NR USED AS A
DUMMY ARRAY IN THE IFT OF THE POWER SPECTRUM WHICH YIELDS
THE MCF.

FIELDM - TWO DIMENSION ARRAY OF DIMENSION NR X NR REPRESENTING
THE MAGNITUDE OF THE PERTURBED ELECTRIC FIELD.

FMCF - TWO DIMENSION ARRAY OF DIMENSION NR X NR REPRESENTING THE
INTENSITY OF THE PERTURBED ELECTRIC FIELD. THIS ARRAY IS
USED IN DETERMINING THE MCF.

FNORM - TWO DIMENSION ARRAY OF DIMENSION NR X NR REPRESENTING THE
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INTENSITY OF THE UNPERTURBED ELECTRIC FIELD. THIS ARRAY
IS ALSO USED IN DETERMINING THE MCF.

PHASER - TWO DIMENSION REAL ARRAY OF DIMENSION NR X NR CONTAINING
THE REAL PART OF THE RANDOM COMPLEX PHASE SCREEN.

PHASEI - TwO DIMENSION REAL ARRAY OF DIMENSION NR X NR CONTAINING
THE IMAGINARY PART OF THE RANDOM COMPLEX PHASE SCREEN.

FMAG - ONE DIMENSION SLICE OF THE PERTURBED MCF USED IN THE
GRAPHICS ROUTINE. REAL ARRAY.

DIST ~ ONE DIMENSION REAL ARRAY REPRESENTING THE PIXELS
CORRESPONDING TO THE VALUES IN THE ARRAY FMAG.

VARAIBLES:

NR - DIMENSION OF THE ARRAYS EXACTLY AS SPECIFIED IN THE DIMENSION
STATEMENTS IN THE CALLING PROGRAM. INPUT INTEGER. INDICE.

N2 - ONE HALF OF NR. INTEGER.
M ~ POWER OF 2 IN THE DIMENSIONING. USED IN THE FFT SUBROUTINE.

ISIZE - INTEGLR VALUE CORRESPONDING TO A PARTICULAR CHOICE FOR AN
APERTURE SIZE. INPUT VARIABLE.

NSIZE - INTEGER VALUE CORRESPONDING TO THE ACTUAL APERTURE SIZE.

DELMSH - REAL VALUE REPRESENTING THE SAMPLING INTERVAL FOR A
PARTICULAR APERTURE SIZE.

SEED - REAL INPUT VARIABLE USED TO BEGIN A RANDOM SEQUENCE OF
NCMBERS FOR THE SUBROUTINE GGAUS.

NYES - INPUT INTEGER VARIABLE WHICH SELECTS WHETHER TURBULENCE 1S
INTRODUCED IN THE CODE.

FILTER - FIXED INPUT VALUE USED IN THE FILTERING FUNCTION. REAL.

CN2 - REAL INPUT VARIABLE REPRESENTING THE INDEX-OF-REFRACTION
STRUCTURE PARAMETER. DETERMINES THE AMOUNT OF TURBULENCE
INTRODUCED IN THE FILTERING FUNCTION.

DREC - REAL INPUT VARIABLE REPRESENTING THE RECEIVING FIELD SIZE.

DTRNS - FIXED VALUE FOR THE TRANSMITTING FIELD SIZE. REAL.

Z - REAL INPUT VARIABLE REPRFSENTING THE TOTAL PROPAGATION
DISTANCE OF THE ELECTRIC FIELD.

DELX - REAL VARIABLE FOR THE PROPAGATION DISTANCE TO EACH SLAB.
NUUSCR - INTEGER INPUT VARIABLE USED IN NEAR-FIELD FRESNEL

PROFAGATION. THIS VARIABLE CORRESPONDS THE THE NUMBER
OF EQUALLY SPACED SLAEBES WHICH MAKE UP THE TOTAL DISTANCE.
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WVL - FIXED VALUE FOR THE WAVELENGTH.

ICNT - INTEGER VALUE WHICH DETERMINES WHETHER OR NOT THE FIELD HAS
PROPAGATED THE TOTAL DISTANCE Z. USED IN NEAR-FIELD
FRESNEL PROPAGATION.

PI - VALUE OF PI.

TPT - TWICE THE VALUE OF PI.

MODE - REAL VALUE WHICH DETERMINES THE FORM OF PROPAGATION.

SIGN - REAL VALUE EITHER 1.0 OR -1.0 WHICH DETERMINES WHETHER THE

FFT IS DIRECT OR INDIRECT. 1IT ALSO DETERMINES WHETHER
NORMALIZATION OCCURS.
FLDM - MAXINUM VALUE IN THE PERTURBED MCF ARRAY.
FMAX - MAXIMUM VALUE IN THE PERTURBED ELECTRIC FIELD ARRAY.
GRAPHICS:

THE FOLLOWING VARIABLE NAMES ARE EITHER SPECIFIC TO THE SVS
GRAPHICS ROUTINE OR USED TO MANIPULATE DATA FOR GRAPHING:

NDEX, IREG, ANS, GETC, IUNITP, IUNITV, ISYMB, ITNO, MON, NPRIN,
MODE, ONE, TITLE, IX, IY, XMAX, ICOLOR, INCR, NTOT.
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COMMON /BLK1/ RE(256),RIM(256)

COMMON /BLK2/ FIELDR(256,256),FIELDI(256,256)
COMMON /BLK3/ PHASER{256,256),PHASEI(256.256)
DIMENSION NDEX(20),FIELDM(256,256),FMCF(256,256),FNORM(256,256)
DIMENSION FMAG(130),DIST(130),FILL(256,256)
INTEGER*2 IREG(9)

DOUBLE PRECISION PI

DATA NDEX/15,15,7,7,8,8,14,14,5,5,4,6,2,2,3,3,1,1,0,0/
DATA RE/256%0.0/,RIM/256%0.0/

DATA FMAG/130%0.0/,DIST/130%0.0/

CHARACTER*4 ONE

CHARACTER*21 TITLE

CHARACTER'*2 ANS,GETC

DATA TITLE/'THE SEED VALUE IS= '/

DATA ONE/' 'y

DATA IUNITP/10/,IUNITV/20/

OPEN(4,FILE='LN. DAT',STATUS='NEW')

ISYMB=22

ITNO=5

MON=18

PI=3.141592653589792

NPRIN=0

4ODE=0

£
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969 CONTINUE

THIS SECTION OF THE PROGRAM SETS UP THE INPUT PARAMETERS FOR THE
SIMULATION.

WRITE(® %) '

WRITE(*,*)"HELLO... LET US BEGIN THIS SIMULATION BY ENTERING '
WRITE(*,%)'SEVERAL INPUT PARAMETER VALUES.'

WRITE(*,*)

WRITE(®*,*)'THE VARIABLE WHICH DIMENSIONS THE ARRAY SIZE IS THE'
WRITE(*,*) 'FIRST VALUE TO ENTER. INPUT THE INTEGER VALUE.'
READ(*,*)NR

WRITE(,*)' '

WRITE(*,%)'THE SECOND VARIABLE OF INTEREST 1S "NSIZE". THIS'
WRITE("*,%)'VARIABLE DIMENSIONS THE SIZE OF THE PLANAR ELECTRIC'
WRITE(*,*)'FIELD. SELECT ONE OF THE FCLLOWING.'

WRITE(%,%)" 1. FOR 100 X 100’
WRITE(%,%)' 2. FOR 64 X 64'
WRITE(%,%)’ 3. FOR 32 X 32'
WRITE(F,*)"' 4. FOR 16 X 16
WRITE(*,%)' 5. FOR 8 X 8'
WRITE(% %)’ 6. FOR & X &'
WRITE(®,%)" 7. FTCGR 2 X 2'
WRITE(=, %)’ '
READ(+ *)YISIZE

IF(ISIZY.EQ. 1) THEN

NSIZE=50

DELMSH=. 0031

INCR=3
ELSEIF(ISIZE.EQ.2) THEN

NSIZE=32

LLMSH=. 0049

INCR=1
ELSEIF(ISIZE.EQ.3) THEN

NSIZE=16

DELMSI=. G068

NCR=2
ELSEIF(ISIZE.EQ. 4) THEN

NSIZE=S

DILMSH=, 019531

INCR=2
ELSEIF(ISIZE.EQ.5) THEN

NSIZE=4

DELMSH=. 039063

INCR=1
ELSEIF(ISIZE.EQ. 6) THEN

NSIZE=2

DELMSH=. 0781

INCR=1
ELSE

NSIZE=1

DELNSH=. 1563

INCR=1
ENDIF
WRITE(% %) !

WRITE(*,%) " ANOTHER INPUT PARAMETER IS THE SEED VALUE OF TiE'
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WRITE(*,%*)'RANDOM NUMBER GENERATOR. INPUT THE SEED VALUE OF +1.0'
WRITE(*,*)'OR ~1.0'
READ(*,**)SEED
WRITE(¥,%)" '
WRITE(*,*)'FINALLY INPUT AN INTEGER OF VALUE 1 FOR TURBULENCE, OR'
WRITE(*,*)'0 FOR NO TURBULENGE.'
READ(*,*)NYES
IF(NYES.EQ. 1) THEN
WRITE(*,*)’ '
WRITE(*,*)' INPUT THE VALUE OF FILTER'
READ(*,*)FILTER
ENDIF
WRITE(*,*)’ :
WRITE(*,*)' INPUT THE VALUE FOR CN2'
READ(*,%)CN2
WRITE(*,*)" :

c WRITE(*,*)' INPUT THE RECEIVING FIELD SIZE IN METERS'

c READ(*,*)DREC
WRITE(*,*)’ :
WRITE(*,*)' INPUT THE TOTAL PROPAGATION DISTANCE IN METERS'

READ(*,%)Z

WRITE(%,*)’ '
c WRITE(*,*)" INPUT THE NUMBER OF SCREENS TO BE USED EITHER FOR'
c WRITE(*,%) "FRESNEL OR iRAUNHOFER '
c READ(*,7)NUMSCR

IF(SEED.GE. 1. 0) THEN
ONE(1: 2)="+1'
ELSE
ONE(1:2)="-~1"
ENDIF
. TITLE(20:21)=0ONE(1:2)
N2=\k/2
WVi=.5E-6
M=ALOG({REAL(NR))/ALOG(2.)
DTRNS=. 3125
ICNT=0

THE FOLLOWING STATEMENT DETERMINES WHICH FORM OF FRESNEL IS TO BE
USED

MODE=INT((2**DTRNS*DREC) / (WVL*Z))

THE FOLLOWING SUBROUTINE CALLED MCF DETERMINES THE AUTOCORRELATION
OF THE APERTURE WHICH IS TO BE USED IN DETERMINING THE ATMOSPHERIC
COHERENCE LENGTH.

CALL MCF(FNORM,NR,M,PI,NSIZE,N2,DELMShH,

THIS SECTION CREATES THE PLANAR ELECTRIC FIELD
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DO 40 I=1,NR
DO 40 J=1,NR
FIELDR(I,J)=0.0
FIELDI(I,J)=0.0
40 CONTINUE
. DO 41 I=NIZ-NSIZE+1 /N2+NSIZLE
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DO 41 J=N2-NSIZE+1,N2+NSIZE
FIELDR(I,J)=1.0
41 CONTINUE

THIS SECTION DETERMINES THE SLAB THICKNESS(ES) FOR WHICH THE
ELECTRIC FIELD IS PROPAGATED THROUGH.THIS IS VALID FOR BOTH
FORMS OF PROPAGATION.

IF(NR. LE. MODE) THEN
DELX=Z/NUMSCR

ELSE

DELX=Z

THE FOLLOWING SUBROUTINE PLACES A CURVATURE ON THE WAVEFRONT TO BE
USED FOR THE CONVOLUTION FORM OF FRESNEL PROPAGATION.

CALL QUADI1(NR,PI,DELMSH,DX,DY,WVL,DELX)
ENDIF

1000 CONTINUE

THIS SECTION CALLS OUT GAUSSIAN RANDOM NUMBERS FOR THE REAL AND
IMAGINARY PHASE ARRAYS.

CALL GGAUS(NR,SEED)
THIS BEGINS THE FILTERING PROCESS OF THE PHASE SCREEN
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CALL FLTR(NR,DELMSH,CN2,DELX,WVL,FILTER)

HERE THE INDIRECT TRANSFORM IS BEING APPLIED TO THE FILTERED
PHASE SCREENS.

aaaa

CALL IFTSCR(NR,M,DELMSH)

THE FOLLOWING ARRAYS USED IN THE FFT ROUTINES ARE ZEROED OUT TO
ENSURE THAT UNWANTED VALUES ARE NOT LEFT IN THE ARRAYS.

OO0

DO 990 I=1,NR
RE(I)=0. 0
RIM(1)=0. 0

990 CONTINUE

THIS SECTION DOES THE ALGEBRA NEEDED TO MESH THE PHASE SCREEN
TOGETRER WITH THE ELECTRIC FIELD

aQaan

DO 50 I=1,NR
DO 50 J=1,NR
XA=COS(PHASER(I,J))*FIELDR(I,J)
XB=COS(PHASER(I,J))*FIELDI(I,J)
XC=SIN(PHASER(I,J))*FIELDR(I,J)
XD=SIN(PHASER(I,J))*FIELDI(I,J)
FIELDR(I,J)=XA-XD
FIELDI(I,J)=XB+XC
50 CONTINUE

48




aoaon

QOoOoOcCcaoOoaOoaooooOoaaaOoaaaoOoaaanan

141

152

910

HERE THE FAST FOURIER TRANSFORM IS BEING APPLIED TO THE PERTURBED
ELECTRIC FIELD. FOR A DIRECT TRANSFORM SIGN=-1.0, AND INDIRECT
TRANSFCRYM SIGN=+1.0.

SIGN=-1.0
CALL DFTIFT(NR,M,SIGN,DELMSH)

DO 141 I=1,NR
DO 141 J=1,NR
FIELDR(I,J)=FIELDR(I,J)/(NR*DELMSH)
FIELDI(I,J)=FIELDI(I,J)/(NR*DELMSH)
CONTINUE

THIS PORTION OF THE IF STATEMENT CORRESPONDS TO THE IMPLEMENTATION
OF THE TRANSFER FUNCTION FORM OF FRESNEL PROPAGATION. THE
SUBROUTINE CALLED TRNSFER APPLIES A QUADRATIC TO THE FIELD.

IF(NR. LE. MODE) THEN

CALL TRNSFR(NR,PI,DX,DY,WVL,DELX,DTRNS)
ICNT=ICNT+1

SIGN=+1.0

CALL DFTIFT(NR,M,SIGN,DELMSH)

GO TO 888

ELSE

THE SUBROUTINE CALLED QUAD2 PUTS THE DIFFRACTION PATTERN IN REAL
SPACE COORDINATES.

CALL QUAD2(NR,PI,DX,DY,WVL,DELX)
ENDIF

CONTINUE

THIS DO LOCP DETERMINES THE POWER SPECTRAL DENSITY AND SETS IT UP
FOR AN FFT TO DETERMINE THE MCF.

DO 152 I=1,NR
DO 152 J=1,MR
FMCF(I,J)=FIELDR(I,J)**2+F1ELDI(I,J)%%*2
FILL(I,J)=0.0
CONTINU

ONCE AGAIN THE ARRAYS ARE CLEARED OF STRAY VALUES

DO 910 I=1,NR

RE(I)=0.0

RIN(I)=0.0

CONTINUE

THE INVERSE FFT IS APPLIED TO THE POWER SPECTRAL DENSITY
SIGN=+1.0

DO 901 I=1,NR
DO 911 J=1,NR
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911

921
901

941

951
931

89

29

91

87

RE(J)=FMCF(I,J)
RIM(J)=FILL(I,J)
CONTINUE
CALL FFT(M,SIGN,DELMSH)
DO 921 J=1,NR
FMCF(I,J)=RE(J)
FILL(I,J)=RIM(J)
CONTINUE
CONTINUE
DO 931 J=1,NR
DO 941 I=1,NR
RE(I1)=FMCF(I1,J)
RIM(I)=FILL(I,J)
CONTINUE
CALL FFT(M,SIGN,DELMSH)
DO 951 I=1,NR
FMCF(I,J)=RE(I)
FILL(I,J)=RIM(I)
CONTINUE
CONTINUE

THIS SECTION DETERMINES THE MAXIMUM VALUE AND NORMALIZES THE MCF

FLDM=0. 0
DO 89 I=1,NR
DO 89 J=1,NR
XMG=FMCF(I,J)
IF(¥MG. GT. FLDM) THEN
FLDN=XMG
ENDIF
CONTINUE
WRITE(*,*) FLDM
PAUSE

THE MCF IS NORMALIZED SO THE MAX VALUE IS 1.0

DO 29 I=1,N2

DO 29 J=1,N2
FMCF(1,J)=FMCF(I,J)/FLDM

CONTINUE

THE ATMOSPHERIC MCF IS DETERMINED BY DIVIDING OUT THE APERTURE
FUNCTION FROd THE PERTURBED ELECTRIC FIELD MCF.

DO 91 I=1,N2
DO 91 J=1,N2
TMCF(I,J)=FMCF(I,J)/FNORM(I,J)
CONTINUE

DO 87 1=1,1

DO 87 J=1,20
WRITE(*,*)FMCF(I,J)

CONTINUE
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827

83

80

PAUSE

THIS SECTION SETS UP THE ARRAYS TO PLOT THE 2-D MCF

NTOT=2*NSIZE

DO 827 I=1,1

DO 827 J=1,NTOT
DIST(J)=J
FMAG(J)=FMCF(1,J)
CONTINUE

DO 83 J=1,NTOT
WRITE(*,*)FMAG(J),DIST(J)

CONTINUE

PAUSE

THE FOLLOWING SUBROUTINES ARE FOR THE GRAPHICS PACKAGE
THE ATMOSPHERIC MCF IS BEING PLOTTED AT THIS POINT

CALL VSINIT(18,8.,10.,0, 'MCF1.PLT',IUNITV,IVID,S)

CALL ORIGIN(.5,1.5,0)

CALL SCATE!FMAG,S. ,NTOT,1)

CALL AXIS(O0.,0.,'MCF',0,1,1,5.,90. ,FMAG(NTOT+1),FMAG(NTOT+2),.1,1)
CALL SCALE(DIST,5. ,NTOT,1)

CALL AXiS(o0.,0.,"' ',0,~1,-1,5.,0.,DIST(NTOT+1),DIST(NTOT+2),.1,1)
CALL LINES(DIST,FMAG,NTOT,1,-1,ISYMB,.1)

CLOSE(IUNITV)

CALL INT86(ITNO,IREG)

CALL MSG(0.,0.,.15,'PRESS ANY KEY TO CONTINUE',0.,0,1)

ANS=GETC()

CALL GMODE(IVID)

THE MAGNITUDE OF THE FFT'D ELECTRIC FIELD IS CALCULATED IN ORDER
TO PLOT THE OUTPUT.

FMAX=0.0
DO 80 I=1,NR
DO 80 J=1,NR
FIELDM(I,J)=SQRT(FIELDR(I,J)**2+FIELDI(I,J)**2)
X=FIELDM(I,J)
IF(X.GT. FMAX) THEN
FMAX=X
ENDIF
CONTINUE

THIS SECTION BEGINS THE CALLING SEQUENCE FOR PLOTTING

CALL VSINIT(MON,10.,8.,0,'DITHER. PLT',IUNITV,IVID,5)
DO 100 I=1,N2
DO 100 J=1,N2

IX=J*INCR

IY=I*INCR

NMAY=ALOG10(FIELDM(I,J)/FMAX)
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100

273

INDEX=8*ABS(XMAX)+1
IF(INDEX. GE. 21) THEN
1COLOR=0
ELSE
ICOLOR=NDEX( INDEX)
ENDIF
CALL PIXEL(IX,IY,ICOLOR)
CONTINUE
CALL MSG(O.,1.,.15,TITLE,O.,0,0)
CLOSE( IUNITV)
CALL INT86(1TNO, IREG)
CALL MSG(O0.,0.,.15,'PRESS ANY KEY TO CONTINUE',0.,0,0)
ANS=GETC( )
CALL GMODE(IVID)

THIS IF STATEMENT QUES THE PROGRAM TO START OVER AGAIN IF
FRAUNHOFER OR THE CONVOLUTION FORM OF FRESNEL ARE USED

IF(NR. GT. MODE) THEN
GO TO 999
ENDIF

THIS IF STATEMENT QUES THE PROGRAM TO FULLY COMPLETE PROPAGATION
TEROUGH ALL THE SLABS IN THE TRANSFER FUNCTION FORM OF FRESENL

IF(ICNT. NE. NUMSCR) THEN
GO TO 1000

ENDIF

GO TO 999

END

SUBROUTINE QUAD1(NR,PI,DELMSH,DX,DY,WVL,DELX)

COMMON /BLK2/ FIELDR(256,256),FIELDI(256,256)

DX=DELMSH

DY=DELSH

MID=(NR/2)+1

DO 273 I=1,NR
X=(I-(MID*2-1))*DX

DO 273 J=1,NR
Y=(J-(MID¥*2-1))*DY
THETA=PI*( ((X¥X)+(Y*Y))/(WVL*DELX))
XX=FIELDR(I,J)*COS(THETA)
YY=FIELDR(I,J)*SIN(THETA)
22=FIELDI(I,J)*COS(THETA)
WW=FIELDI(I,J)*SIN(THETA)
FIELDR(I,J)=XX-WW
FIELDI(I,J)=YY+ZZ

CONTINUE

RETURN

END

SUBROUTINE QUAD2(NR,PI,DX,DY,WVL,DELX)

COMMON /BLK2/ FIELDR(256,256),FIELDI(256,256)
DX2=DX*WVL*DELX

DY2=DY*WVL*DELX

MID=NR/2+1

rn
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DO 274 I=1,NR

Y=(1-MID)*DY2
DO 274 J=1,\R
X=(J-MID)¥DX2
PHI=PI*( ((X*X)+(Y*Y))/(WVL*DELX))
CN=FIELDR(I,J)*COS(PHI)
CY=FIELDR(I,J)*SIN(PHI)
CZ=FIELDI(I,J)*COS(PHI)
CW=FIELDI(I,J)*SIN(PHI)
CBR=CX-CW
CBI=CY+C?
FIELDR(I,J)=(CBI/(WVL*DELX))
FIELDI(I,J)=-1.*(CBR/(WVL*DELX))
274 CONTINUE
RETURN
END

SUBROUTINE TRNSFR(NR,PI,DX,DY,WVL,DELX,DTRNS)
COMMON /BLK2/ FIELDR(256,256),FIELDI(256,256)
DX=DTRNS/NR
DY=DTRNS/NR
MID=NR/2+1
LO 275 I=1,NR
FY=( 1-MID)*DY
DO 275 J=1,NR
FX=( J-MID)*DX
FEE=- 1. *PI#WVL*DELX*( (FX*FX)+(FY*FY))
GX=FIELDR(1,J)*COS(FEE)
GY=FIELDK(I,J)*SIN(FEE)
GZ=FIELDI(I,J)*COS(FEE)
GW=FTELDI(I,J)*SIN(FEE)
FIELDR(I,J)=GX-GW
FIELDI(I,J)=GY+GZ
CONTINCE
RETURN
ESD
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SUBROUTINE FLTR(NR,DELMSH,CN2,DELX,WVL,FILTER)
NOTE: DELMSH*NR IS THE LARGEST APERTURE SI1ZE
COMMON /BLK3/ PHASER(256,256),PHASEI{256,256)
PI=3.141552653589792
POWER=-11. /6.
TPI=2.%PI
N2=NR/2
NPIVOT=N2+1
LAST=NPIVOT+1
DLKAPA=(TPI/(NR*DELMSH) )**PCOWER
FACTOR=SQRT((TPI*¥*3)%. Q33*CN2*DELX/(WVL*¥*2))
FUDGE=DLKAPA*FACTOR
DO 100 I=1,NPIVOT
EYE=REAL{I)
EYE2=EYE*EYE
DO 100 J=1,NR

IF(J. LE.NPIVOT) THEN




WHY=REAL(J)
ELSE
WHY=REAL(NR-J+2)
ENDIF
XKAPPA=SQRT(EYE2+WHY*WHY)
AKAPPA=XKAPPA**FILTER
PHASER(I,J)=PHASER(I,J)*FUDGE*AKAPPA
PHASEI(I,J)=PHASEI(I,J)*FUDGE*AKAPPA
100 CONTINUE
DO 110 I=LAST, NR
EYE=REAL(NR-I+2)
EYE2=EYE*EYE
DO 110 J=1,NR
IF(J.LE.NPIVOT) THEN
WHY=REAL(J)
ELSE
WHY=REAL(NR-J+2)
ENDIF
XKAPPA=SQRT(EYE2+WHY*WHY)
AKAPPA=XKAPPA**FILTER
PHASER(I,J)=PHASER(I,J)*FUDCE*AKAPPA
PHASEI(I,J)=PHASEI(I,J)*FUDGE*AKAPPA
110 CONTINUE

PHASER(1,1)=0.0
PHASEI(1,1)=0.0

NOTE: .03441=TPI**-11./6. TO TRANSFORM FROM KAPPA TO FREQ SPACE.
DO 11 I=1,NR
DO 11 J=1,\R
PHASER(I,J)=PHASER(I,J)%*. 03441
PHASEI(I,J)=PHASEI(I,J)*. 03441
11 CONTINUE
RETURN
END

SUBROUTINE IFTSCR(NR,M,DELMSH)
CO'MON /BLK1/ RE(256),RIM(256)
COMMON /BLK3/ PHASER(256,256),PHASEI(256,256)
PI=3.141592653589792
TPI=2.*PI
SIGN=-1.0
DO 20 I=1,NR
DO 21 J=1,NR
RE(J)=PHASER(I,J)
RIM(J)=PHASEI(I,J)
21 CONTINUE
CALL FFT(M,SIGN,DELMSH)
DO 22 J=1,NR
PHASER(I,J)=RE(J)
PHASEI(I,J)=RIM(J)
22 CONTINUE
20 CONTINUE
DO 30 J=1,NR
DO 31 I=1,NR
RE(I)=PHASER(I,J)
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RIM(I)=PHASEI(I,J)
31 CONTINUE
CALL FFT(M,SIGN,DELMSH)
DO 32 I=1,NR
PHASER(I,J)=RE(I)
PHASEI(I,J)=RIM(I)
32 CONTINUE
30 CONTINUE
RETURN
END

SUBROUTINE DFTIFT(NR,M,SIGN,DELMSH)
COMMON /BLK1/ RE(256),RIM(256)
COMMON /BLK2/ FIELDR(256,256),FIELDI(256,256)
DO 60 I=1,NR
DO 61 J=1,NR
RE(J)=FIELDR(I,J)
RIM(J)=FIELDI(I,J)
61 CONTINUE
CALL FFT(,SIGN,DELMSH)
DO 62 J=1,NR
FIELDR(I,J)=RE(J)
FIELDI(I,J)=RIN(J)
62 CONTINUE
60 CONTINUE
DO 70 J=1,NR
DO 71 I=1,NR
RE(1)=FIELDR(I,J)
RIM(I)=FIELDI(I,J)
71 GONTINUE
CALL FFT(M,SIGN,DELMSH)
DO 72 I=1,NR
FIZLDR(I,J)=RE(I)
FIELDI(I,J;=RIN(I)
72 CONTINUE
70 CONTINGE
RETURN
END

SUBROUTINE FFT(M,SIGN,DELMSH)
COMMON /ELK1/ RE(256),RIM(256)
PI=3.141592653589792*SIGN

N=2+¥M
N1=N-1
J=1

DO 200 I=1,NI
IF(I.LT.J) THEN

T=RE(J)
RE(J)=RE(I)
RE(I)=T
T=RIM(J)
RIM(J)=RIM(I)
RIM(I)=T

END IF

S
=N/2
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DO 201 WHILE(K.LT.J)
J=J-K
K=K/2
201 CONTINUE
J=J+K
200 CONTINUE
LE=1
DO 202 L=1,M
LE1=LE
LE=LE+LE
URE=1.
UIM=0.
ANG=PI/LE1
WRE=COS( ANG)
WIM=SIN(ANG)
DO 203 J=1,LE1
DO 204 I=J,N,LE
1P=I+LE1
TRE=RE( IP)*URE-RIM( IP)*UIM
TiM=RE( TF)*UIM+RIM( IP)*URE
RE(IP)=RE(I)-TRE
RIM(IP)=RIM(I)-TIM
RE(I)=RE(I)+TRE
RIM(I)=RIM(I)+TIM
204 CONTINUE
T=URE*WRE-UIM*WIY
UIN=URE*WIM+UIM*WRE
URE=T
203 CONTINUE
202 CONTINCE
IF(SIGN. GT. 0. 0) THEN
FTS=1. 0/(N*DELMSH)
DO 265 I=1,N
RE(I)=RE( I)*PTS
RIM(I)=R1M(I)*PTS
205 CONTINUE

ENDIF
RETURN
END

C

C

SUBROUTINE GGAUS(NR,SEED)
COMMON /RLK3/ PHASER(256,256),PHASEI(256,256)
DO 300 I=1,NR
DO 300 J=1,NR
301 V1=2.*RAN(SEED)-1
V2=2. *RAN(SEED) -1
S=V1¥V1+V2:V2
IF(S.GE. 1.0) GO TO 301
SCALE=SQRT( -2. *ALOG(S)/S)
X1=V1*SCALE
C X2=V2*SCALE
PHASER(I,J)=X1
PHASEI(I,J)=0.0
300 CONTINUE
RETURN

56




FIIIlllllIllIlllllIIIIlIllIlllllIIlIIllIlIIllIIlIIIlllIlIlIIlllllllllllllll-I-----r

anoa

39

45

80

91

92
g0

94

END

SUBROUTINE MCF(FNORM,NR,M,PI,NSIZE,N2,DELMSH)
COMMON /BLK1/ RE(256),RIM(256)

COMMON /BLK2/ FIELDR(256,256),FIELDI(256,256)
DIMENSION FNORM(256,256)

THIS SECTION CREATES THE PLANAR ELECTRIC FIELD

DO 39 I=1,NR
DO 39 J=1,NR
FIELDR(I,J)=0.0
FIELDI(I,J)=0.0
CONTINUE

DO 45 I=N2-NSIZE+1,N2+NSIZE

DO 45 J=N2-NSIZE+1,N2+NSIZE
FIELDR(I,J)=1.0

CONTINUE

SIGN=-1.0
CALL DFTIFT(NR,M,SIGN,DELMSH)

DO 80 I=1,NR

DO 80 J=1,NR
FNORM(1,J)=FIELDR(I,J)**2+FIELDI(TI,J)%**2

CONTINUE

30 122 I=1,NR

DO 123 J=1,\R
FIELDI(I,J)=0.0

CONTINUE

SIGN=+1. 0

DO 90 I=1,NR

DO 91 J=1,NR
RE(J)=FNORM(I,J)
RIM(J)=FIELDI(I,J)

CONTINUE

CALL FFT(M,SIGN,DELMSH)

DO 92 J=1,NR
FNORM(I,J)=RE(J)
FIELDI(I,J)=RIN¥(J)

CONTINUE

CONTINUE

DO 93 J=1,NR

DO 94 I=1,NR
RE(I)=FNORM(I,J)
RIM(I)=FIELDI(I,J)

CONTINUE

CALL FFT(M,SIGN,DELMSH)

DO 95 I=1,NR
FNORM(I,J)=RE(1)
FIELDI(I,J)=RIM(1)

I
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CONTINUE
CONTINUE

FLD=0. 0
DO 88 I=1,NR

DO 88 J=1,NR

XMG=FNORM(I,J)

IF(XMG. GT. FLDM) THEN

FLDM=XG
ENDIF

CONTINUE
DO 85 I=1,N2

DO 89 J=1,N2
FNORM(I,J)=FNORM(I,J)/FLDM
CONTINUE

RETURN
END
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