I THE CARY .

Report No. CG-D-07-89

AD-A209 130

ATMOSPHERIC TRANSMISSIVITY UPDATE - 1988 .

MICHAEL R. WROBLEWSKI, MARC B. MANDLER AND MILES A. MILLBACH

U.S. COAST GUARD RESEARCH AND DEVELOPMENT CENTER AVERY POINT, GROTON, CONNECTICUT 06340-6096

OCTOBER 1988

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

Prepared for:

U.S. Department Of Transportation United States Coast Guard Office of Engineering and Development Washington, DC 20593-0001

89 6 16 3**22**

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

The contents of this report reflect the views of the Coast Guard Research and Development Center, which is responsible for the facts and accuracy of data presented. This report does not constitute a standard, specification, or regulation.

SAMUEL F. POWEL, III Technical Director U.S. Coast Guard Research and Development Center Avery Point, Groton, Connecticut 06340-6096

1. Report No.	2. Government Acces	ssion No.	3. Recipient's Catalo	g No.
CG-D-07-89				
Title and Subtitle			5 Report Date	
			OCTOBER 198	8
ATMOSPHERIC TRANSMIS	SIVITY UPDATE - 1	988	6. Performing Organ	ization Code
			8 Performing Organ	ization Benort No
/. Author(s)		<u> </u>		
Michael R. Wroblewski, Marc B. I	Aandler, and Miles A. Mill	bach	H&DC 22/88	
9. Performing Organization Name and U.S. Coast Guard	d Address		10. Work Unit No. (T	RAIS)
Research and Development Cen	ter		11. Contract or Gran	it No.
Groton, Connecticut 06340-609	6			
2 Sponsoring Agency Name and Ac	dross	<u> </u>	13. Type of Report a	nd Period Covered
Department of Transportation			FINAL	
U.S. Coast Guard				
Office of Engineering and Deve Washington, D.C. 20593-0001	opment		14. Sponsoring Ager	ncy Code
5. Supplementary Notes				<u></u>
The Coast Guard uses atmos luminous range of aids to nav increases in population and ir recent atmospheric visibility d	pheric visibility data colle igation. Presently, Coasi idustry have changed atr ata in the form of transmi	cted in 1958 and t Guard aid design nospheric visibility ssivity curves to a	1959 when calculating lers question whether along our coasts. We nswer this question.	the effective or not present
The Coast Guard uses atmost luminous range of aids to nav increases in population and in recent atmospheric visibility d National Weather Service (NV from these records were sorte within each zone, forming new The new and old transmissivit should not be used to estima Further study has shown that curves can be obtained by dea dust	pheric visibility data colle igation. Presently, Coasi idustry have changed atr ata in the form of transmi /S) visibility records from ed into 28 geographical z v atmospheric transmissi y curves differ consideral te atmospheric condition even the new transmission creasing the area size to the ard accept small, localize	cted in 1958 and a t Guard aid design nospheric visibility ssivity curves to a accept c the maritime zone ones. Curves we vity curves, one for oly in many region s. vity curves can be the limit that the N proceds d regions for calcu-	1959 when calculating lers question whether of along our coasts. We nswer this question. Sector of form the basis for our st form the basis for our st re fit to frequency distr or each zone. s. The old transmissiv improved. Accurate, NS data will allow. to here decomposed lating transmissivity cu	the effective or not present study. Data ibutions ity curves localized
The Coast Guard uses atmost luminous range of aids to navincreases in population and in recent atmospheric visibility d National Weather Service (NV from these records were sorte within each zone, forming new The new and old transmissivit should not be used to estima Further study has shown that curves can be obtained by dea Hart We recommend the Coast Gu addition, we recommend the Coast Gu addition, we recommend the Coast Gu	pheric visibility data colle igation. Presently, Coasi idustry have changed atr ata in the form of transmi /S) visibility records from ed into 28 geographical z v atmospheric transmissi y curves differ consideral te atmospheric condition even the new transmission creasing the area size to the ard accept small, localize Coast Guarg develop soft s. This product would read during aid design. Kcy	cted in 1958 and t Guard aid design nospheric visibility ssivity curves to a accept the maritime zone ones. Curves we vity curves, one for oly in many region s. vity curves can be the limit that the N for calcul ware which uses in move the need for	1959 when calculating lers question whether of along our coasts. We nswer this question. Sector of form the basis for our re fit to frequency distr or each zone. s. The old transmissiv improved. Accurate, NS data will allow. to has dead of lating transmissivity cu new localized curves a look up tables and tec	the effective or not present study. Data ibutions ity curves localized wrves. In and the aid dious
The Coast Guard uses atmost luminous range of aids to nav increases in population and in recent atmospheric visibility d National Weather Service (NV from these records were sorte within each zone, forming new The new and old transmissivit should not be used to estimate Further study has shown that curves can be obtained by dea Here recommend the Coast Gu addition, we recommend the for design tables and calculation computations presently used 7. Key Words	pheric visibility data colle igation. Presently, Coasi idustry have changed atr ata in the form of transmi /S) visibility records from ad into 28 geographical z v atmospheric transmissi y curves differ consideral te atmospheric condition even the new transmission creasing the area size to t ard accept small, localize Coast Guard develop soft s. This product would rei- during aid design. Kcy	cted in 1958 and t Guard aid design nospheric visibility ssivity curves to a a p $cthe maritime zoneones. Curves wevity curves, one foronly in many regions.vity curves can bethe limit that the NNp$ c c d $dd regions for calcu-tware which uses inmove the need ford$ 18. Distribution St	1959 when calculating lers question whether along our coasts. We nswer this question. sector of form the basis for our re fit to frequency distr or each zone. s. The old transmissiv improved. Accurate, NS data will allow. to he de de de de de lating transmissivity cu new localized curves a look up tables and tec	the effective or not present study. Data ibutions ity curves localized where and ind the aid dious
The Coast Guard uses atmoss luminous range of aids to navi increases in population and in recent atmospheric visibility d National Weather Service (NW from these records were sorte within each zone, forming new The new and old transmissivit should not be used to estima Further study has shown that curves can be obtained by dea Here We recommend the Coast Gu addition, we recommend the Coast Gu addition, we recommend the Coast Gu addition, we recommend the Coast Gu addition presently used	pheric visibility data colle igation. Presently, Coasi dustry have changed atr ata in the form of transmi /S) visibility records from ed into 28 geographical z v atmospheric transmissi y curves differ consideral te atmospheric condition even the new transmission creasing the area size to the ard accept small, localize Coast Guard develop soft s. This product would read during aid design. Kay	cted in 1958 and t Guard aid design nospheric visibility ssivity curves to a accepte the maritime zone ones. Curves we vity curves, one for oly in many region s. vity curves can be the limit that the N for calcul ware which uses to move the need for the need for 18. Distribution St Document is the National T Springfield, V	1959 when calculating lers question whether of along our coasts. We nswer this question. Sector of form the basis for our sector re fit to frequency distr or each zone. s. The old transmissiv improved. Accurate, NS data will allow. to has dear of lating transmissivity cu new localized curves a look up tables and tec atement available to the U.S. po fechnical Information S irginia 22161	the effective or not present study. Data ibutions ity curves localized wrves. In and the aid dious
The Coast Guard uses atmos luminous range of aids to nav increases in population and ir recent atmospheric visibility d National Weather Service (NV from these records were sorte within each zone, forming new The new and old transmissivit should not be used to estima Further study has shown that curves can be obtained by dea Here recommend the Coast Gu addition, we recommend the Goast Gu addition, we recommend the Goast Gu addition, we recommend the Goast Gu addition presently used 7. Key Words transmissivity aids to navigation Allard's Law 9. Security Classif. (of this report)	pheric visibility data colle igation. Presently, Coasi idustry have changed atr ata in the form of transmi /S) visibility records from ad into 28 geographical z v atmospheric transmissi y curves differ consideral te atmospheric condition even the new transmission creasing the area size to t ard accept small, localize Coast Quarg develop soft s. This product would read during aid design. Kay	cted in 1958 and t Guard aid design nospheric visibility ssivity curves to a accept the maritime zone ones. Curves we vity curves, one for oly in many region s. vity curves can be the limit that the NN for calculation d regions for calculation ware which uses in move the need for 18. Distribution St Document is a the National T Springfield, V SIF. (of this page)	1959 when calculating lers question whether of along our coasts. We nswer this question. Sector of form the basis for our re fit to frequency distr or each zone. s. The old transmissiv improved. Accurate, NS data will allow. to he decompositive our hew localized curves a look up tables and teo atement available to the U.S. po fechnical Information S irginia 22161	the effective or not present study. Data ibutions ity curves localized wrves. In ind the aid dious
The Coast Guard uses atmost luminous range of aids to navi increases in population and in recent atmospheric visibility d National Weather Service (NV from these records were sorte within each zone, forming new The new and old transmissivit should not be used to estima Further study has shown that curves can be obtained by dea Here We recommend the Coast Gu addition, we recommend the G design tables and calculations computations presently used 7. Key Words Transmissivity aids to navigation Allard's Law 9. Security Classif. (of this report) UNCLASSIFIED	pheric visibility data colle igation. Presently, Coasi idustry have changed atr ata in the form of transmi /S) visibility records from ed into 28 geographical z v atmospheric transmissi y curves differ consideral te atmospheric condition even the new transmission creasing the area size to the ard accept small, localize Coast Guard develop soft s. This product would read during aid design. Kay luminous range visibility	cted in 1958 and t Guard aid design nospheric visibility ssivity curves to a accept the maritime zone ones. Curves we vity curves, one for oly in many region s. vity curves can be the limit that the N for calcul ware which uses in move the need for the National T Springfield, V SIF. (of this page)	1959 when calculating lers question whether c along our coasts. We nswer this question. Sector of form the basis for our re fit to frequency distr or each zone. s. The old transmissiv improved. Accurate, NS data will allow. to he decomposition lating transmissivity curves a look up tables and tec atement available to the U.S. po fechnical Information S irginia 22161	the effective or not present study. Data ibutions ity curves localized wrves. In and the aid dious

METRIC CONVERSION FACTORS

2

asure	Symbol		Ē	5 3	= :	D Ē	I	in ²	vd ²	Ē				20 20	٩				fl oz	υ	pţ	đ	ge'	n 3	yd ³			٩°					
Metric Me	To Find		inches	inches	laal	yaros miles		square inches	souare vards	square miles	acres			ounces	spunod	short tons			fluid ounces	cups	pints	quarts	galions	cubic feet	cubic yards			Fahrenheit	temperature	1010	200		0.001
sions from	Multiply By	зтн	0.04	4.0	2.2	0.6	A	0 16	12	40	2.5	weight)		0.035	2.2	1.1		JME	0.03	0.125	2.1	1.06	0.26	35	1.3		JRE (EXACT)	9/5 (then	add 32)	9 90	30.0 0 120 160		37 5
oximate Convers	When You Know	ILENG	millimeters	centimeters	meters	meters kilometers	ARE	souare centimeters	souare meters	source kilometers	hectares $(10,000 \text{ m}^2)$		1 COMM	grams	kilograms	tonnes (1000 kg)		NOLU	mitülters	liters	liters	liters	liters	cubic meters	cubic meters		TEMPERATU	Celsius	temperature		-40°F 0 32		-40.0 - 50 0 50
Appro	- a Symbol	8 5		81 E	E	<u>ا</u> کا د ا	9L	cm ²	י"פ או ו	► 1		5L	2	5	5	 	01	6	E	9 8	-	 2	9	°€	S S	1	,	ç I	2		س	0	
staanaa		hadaa	lint		111	tinlit	ntaata	nla	hhh	ψų	lunt	nnpu	ปมบ	1111	1111	1111	lush	ահա	110	11111	1101	nu		11111	11111	thtt	HIRL	lunhs	htm	ILLUNU	1011	#{	
» teletelete njanjarija	8 8	, 1	۱۳۱۱ ۱۰۱ ۲		' '			 	(* 1* 	189 194 1	laal '''' e	///// ///// 5	410 ('''		4414 '(')	(' ' 4)))) ()))	111 1 1 1) '{') ' ' 	1.1. 111	918 7*1* 1	119 17 17	1) ' 	1111 111	111 	911). 1917	1	" 	(()))) ' ' ' inc	 ' ' :he	11 11 5	
Sures "	Symbol 8	1. 1. 1. 1. 1. 1.	יין יין 5	cm	"" "		6 6	CH2			יייי יייי נייי נייי	· ["(* 5]	(,,,	# //1	۱۳	4 0 3	11011 ''''(' -	11111 12 12 13 13 13 13 13 13 13 13	יןי ז'י	:" 3 5		1	"'''	1111 2	ווווא ייין - '	"" "E	יין יין צ	1	יןיו כ ג	inc	ihe	tables, o	
Aetric Measures	To Find Symbol 8		centimeters cm 2 1,1	centimeters cm	meters m	kilometers km	1 1 6	souare centimeters cm ²	soliare meters m ²		souare kilometers km ² ,	hectares ha	, ,,,		grams g	kilograms kg t	tonnes t	111111 111111 1111111			milliters ml	titers	iters	lifers - 2	Iters	cubic meters m ³	cubic meters m ²		Celsius °C	temperature ou	:he	and more detailed tables, &	
rsions to Metric Measures	Multiply By To Find Symbol 8	LENGTH LENGTH	★ 2.5 centimeters cm 2 1, 1	30 centimeters cm	0.9 meters m (1,)	1.6 kilometers km		A 6 soluare centimeters cm ²			2.6 souare kilometers km ² , <u>, , </u>	0.4 hectares ha			28 grams g	0.45 kilograms kg 4	0.9 tonnes t	VOLUME			30 milliters ml		0.47 liters 1	0.95 liters 1 N	3.8 liters	0.03 cubic meters m ³	0.76 cubic meters m ²	PERATURE (Exact)	5/8 (after Celsius °C	subtracting temperature gi	32) 	vact conversions and more detailed tables, w	
vximate Conversions to Metric Measures	When You Know Multiply By To Find Symbol ¹⁸	LENGTH	inches ± 2.5 centimeters cm 2 1.	feet 30 centimeters cm	vards 0.9 meters m 1.	miles 1.6 kilometers km		souare inches & K souare centimeters cm ²	source feet 0.00 source meters m ²		square miles 2.6 square kilometers km ² , 2.5 square km ² , 2.5 square kilometers km ² , 2.5	acres 0.4 hectares ha			ounces 28 grams g	pounds 0.45 kilograms kg 🕹 🚬	short tons (2000 lb) 0.9 tonnes t 🕂 🧾			tablesnoons 15 millitters millitters E	fluid nunces 30 millititers m		oints 0.47 liters 1	quarts 0.95 liters 1 N	gattons 3.8 itters	cubic feet 0.03 cubic meters m ³	cubic yards 0.76 cubic meters m ²	TEMPERATURE (Exact)	Fahrenheit 5/9 (after Celsius °C -	temperature subtracting temperature	32) 	54 (exactly). For other exact conversions and more detailed tables, &	g No. C 13. 10.286.

TABLE OF CONTENTS

	Page
1.0 INTRODUCTION	1
2.0 BACKGROUND	1
3.0 DATA ANALYSIS	2
3.1 DATA 3.2 REDUCTION	2 2
<pre>3.2.1 Goals 3.2.2 Boundary Selection 3.2.3 Method</pre>	2 2 2
4.0 RESULTS	4
 4.1 TRANSMISSIVITY CURVES. 4.2 COMPARISON. 4.3 AUTOMATION OF CALCULATIONS. 4.4 DISCUSSION. 4.5 FURTHER ANALYSIS. 	4 4 9 11
5.0 CONCLUSIONS	13
6.0 RECOMMENDATIONS	13
7.0 REFERENCES	14
APPENDIX A - GEOGRAPHICAL BOUNDS OF THE 1988 CURVE AREAS.	A-1
APPENDIX B - AREA PARAMETERS AND TRANSMISSIVITY CURVES	B-1
APPENDIX C - CURVE COMPARISONS	C-1

v

Accession For NTIS GRA&I DTIC TAB Unannounced Justification_ By____ Distribution/ Availability Codes Avail and/or Dist Special

LIST OF ILLUSTRATIONS

Figure		<u>Page</u>
1	Representative listing of National Weather Service Data	3
2	Side by side comparison of 1961 curve and 1988 transmissivity curve for Long Island Sound	5
3	Side by side comparison of 1961 curve and 1988 transmissivity curve for Chesapeake Bay	6
4	Overlay of 1961 curve and 1988 curve for Long Island Sound	7
5	Overlay of 1961 curve and 1988 curve for Chesapeake Bay	8
6	Standard Terminal Screen Layout of the Trans- missivity and Allard's Law Program C-FAR	10
7	Overlay of the 15 component Curves for Transmissivity Area 10 (Southern California)	12
A-1	Geographic Boundaries of Areas 1 through 4	A-3
A-2	Geographic Boundaries of Area 5	A-4
A-3	Geographic Boundaries of Areas 6 through 8	A-5
A-4	Geographic Boundaries of Areas 9 and 10	A-6
A-5	Geographic Boundaries of Areas 11 through 14	A-7
A-6	Geographic Boundaries of Areas 14 and 15	A-8
A-7	Geographic Boundaries of Area 16	A-9
A-8	Geographic Boundaries of Areas 17 through 20	A-10
A-9	Geographic Boundaries of Areas 21 through 23	A-11
A-10	Geographic Boundaries of Areas 24 through 28	A-12
B-1	Transmissivity Curve for ALASKA - AREA 1	B-4
B-2	Transmissivity Curve for ALASKA - AREA 2	B-5
B-3	Transmissivity Curve for ALASKA - AREA 3	B-6
B-4	Transmissivity Curve for ALASKA - AREA 4	B-7
B-5	Transmissivity Curve for HAWAII - AREA 5	B-8

LIST OF ILLUSTRATIONS (Continued)

Figure								Page
B-6	Transmissivity	Curve	for	WEST	COAST -	AREA	6	B-9
B-7	Transmissivity	Curve	for	WEST	COAST -	AREA	7	B-10
B-8	Transmissivity	Curve	for	WEST	COAST -	AREA	8	B-11
B-9	Transmissivity	Curve	for	WEST	COAST -	AREA	9	B-12
B-10	Transmissivity	Curve	for	WEST	COAST -	AREA	10	B-13
B-11	Transmissivity	Curve	for	GULF	COAST -	AREA	11	B-14
B-12	Transmissivity	Curve	for	GULF	COAST -	AREA	12	B-15
B-13	Transmissivity	Curve	for	GULF	COAST -	AREA	13	B-16
B-14	Transmissivity	Curve	for	GULF	COAST -	AREA	14	B-17
B-15	Transmissivity	Curve	for	EAST	COAST -	AREA	15	B-18
B-16	Transmissivity	Curve	for	EAST	COAST -	AREA	16	B-19
B-17	Transmissivity	Curve	for	EAST	COAST	AREA	17	B-20
B-18	Transmissivity	Curve	for	EAST	COAST -	AREA	18	B-21
B-19	Transmissivity	Curve	for	EAST	COAST -	AREA	19	B-22
B-20	Transmissivity	Curve	for	EAST	COAST -	AREA	20	B-23
B-21	Transmissivity	Curve	for	EAST	COAST -	AREA	21	B-24
B-22	Transmissivity	Curve	for	EAST	COAST -	AREA	22	B-25
B-23	Transmissivity	Curve	for	EAST	COAST -	AREA	23	B-26
B-24	Transmissivity	Curve	for	LAKE	ONTARIO	- ARE	CA 24.	B-27
B-25	Transmissivity	Curve	for	LAKE	ERIE - A	AREA 2	25	B-28
B-26	Transmissivity	Curve	for	LAKE	HURON -	AREA	26	B-29
B-27	Transmissivity	Curve	for	LAKE	MICHIGAN	N – AF	REA 27	B-30
B-28	Transmissivity	Curve	for	LAKE	SUPERIO	r – Af	REA 28	B-31

vii

LIST OF TABLES

<u>Table</u>		Page
B-I	List of Weibull Function Parameters	B-3
C-I	New Curve / Old Curve Comparison	C-3

1.0 INTRODUCTION

The effective luminous range of a lighted aid to navigation is the distance between the light source and a point where the light just stimulates a visual response. This range is a function of effective beam candlepower, adaptation of the observer's eye, background luminance, and transmissivity. Here we are concerned only with transmissivity. Transmissivity is a measure of the clarity of the atmosphere. It is a dimensionless number representing the fraction of incident light successfully transmitted through the atmosphere per nautical mile. It depends on the concentration of aerosols, dust, and water vapor in the air and therefore varies from day to day, and even hour to hour. To account for this stochastic nature, calculations involving transmissivity involve frequency distribution curves. These curves are called transmissivity curves and are the subject of this study.

1923 the Coast Guard produced its first set of In transmissivity curves using visual sightings made over an extended period. These data were used to produce 24 cumulative distribution functions describing the proportion of nights for which the transmissivity is less than a given value. These curves allow the aid designer to determine the effective intensity required to achieve an effective range some desired proportion of nights in each region. In the late 1950's, the Coast Guard again measured transmissivity around the country because of "geographic changes in industry and local changes in climate" [Ref. 1]. The Coast Guard published an updated set of 31 curves in 1961. This report again updates the curves and discusses differences between the new and old curves.

2.0 BACKGROUND

1961 transmissivity curves, lighthouse To create the Coast Guard Station personnel made attendants and other subjective daily observations of lights in their respective regions. Researchers separated the data into 31 geographic areas to form cumulative frequency distributions. A curve was fit to by eye with dashed lines representing areas of the data These curves serve Coast Guard aid to insufficient data. navigation signal designers today as they did when first published in January of 1961.

For the present analysis, a collection of weather observations made in the coastal zone by mariners since 1854 were purchased from the National Weather Service (NWS). More than half of these 2.6 million observations were made in the last fifteen years.

3.0 DATA ANALYSIS

3.1 DATA

The NWS provided the coastal marine data in 1° latitude by 1° longitude blocks. These data represent all the visibility readings on record in each area. The NWS data fall into six visibility ranges: 0-0.5, 0.5-1.0, 1.0-2.0, 2.0-5.0, 5.0-10.0, and >10.0 nautical miles. The percentage of occurrences in each range is given, as is the total number of observations for the particular block (see Figure 1).

3.2 REDUCTION

3.2.1 Goals

The goal of this effort was to update transmissivity curves by objectively and accurately fitting curves to NWS data in various geographic regions. We sought a function that would fit all data sets with a minimum number of parameters. Such a function would allow explicit solutions rather than graphic interpretations. A second goal, established during the course of the investigation, was to simplify calculations needed to design aids to navigation.

3.2.2 Boundary Selection

The 1° square regions were combined into groups to represent various geographical areas. An attempt was made to define geographical regions similar to the 1961 regions, but the NWS data were not able to fit that description. Regional boundaries were confined to increments of 1° latitude and 1° longitude. For this reason, curves of small geographical areas such as Penobscot Bay, Maine and Green Bay, Wisconsin are included in larger areas. Similarly, large areas such as Alaska and the Gulf of Mexico are divided into a number of smaller areas. The 28 geographical areas are pictured in Appendix A.

3.2.3 Method

The data for each region were fit by least-squares method to various curves. The Weibull curve [Ref. 2] provides the best fit. This curve is of the form:

$$-((V/a)^{D})$$

PROBABILITY = c * EXP

Where V is the visibility,

- a is the placement of the 1/EXP point,
- b determines the slope near the center of the curve and c determines the probability of >0 nautical miles visibility (ideally this is 1.0, but field data seldom if ever exhibit ideal behavior).

		% obs	% obs	% obs	% obs	% obs	% obs	Total	Total no. of
Lat.	Lon.	<.5	.5<1	1<2	2<5	5<10	>=10	percentage	observations
12-	117		1 6	9	8.1	47.1	40 4	100.0	1.24
32	110	• 0	7	• 🕫	5.7	7 J+J 77.4	57 L		1440 44793
77-	110	1.0	1.9	4.4		47.6	41.3	100.0	75572
22	110	2 1	1.00	1.7	5 0	37.0	57 5		20000
77	117	1.5		1.6	4.3	31.7	60.2	100.0	15466
	120	1.5	• 7	1.0	7 7	25.0	67 1		12442
33	$\frac{121}{113}$	$-\frac{1 \bullet 7}{4 \bullet 0}$	2.0	9.9	9.1	49.3	25.9		20020
74	120	7.3	2.6	5.6	15.5	73.J	37.2	100.0	17707.
34	120	3.4	1.4	7.3	5.6	24.9	67.4	100.0	10221
74	122	2.4	1.1	1.3	4.3	26.4	64.5	102.0	10676
75	122		$\frac{1 \cdot 1}{2 \cdot 1}$	2.3	5.0	22.3	65.1	100.0	7/11
35	122	3.2	1.2	1.7	4.6	26.1	63.2	100.0	11277
$\frac{33}{75}$	122	2.6	1.2	1.5	5.0	28.2	61.5	167.2	7578.
35	122	3.5	1.6	1.7	5.2	28.5	59.6	100.0	1546.
36	127	3.2	1.6	1.5	4.7	28.0	61.0	100.0	12954
30	123	4.7	3.0	2.2	7.1	30.3	52.7	100.0	13388.
77	123	4.6	2.7	2.2	11.8	27.4	58.3	100.0	16232
70	127	2.2	3.4	7.3	12.3	49.7	25.2	100-0	5906-
10	124	6.0	1.9	2.0	5.0	25.5	58.7	107.0	13064
78	125	3.5	1.8	1.7	4.9	24.9	63-2	100.0	7632
70	124	5.4	1.3	2.1	5.8	22.4	63.1	100.0	872
70	125	4.3	1.7	2.2	5.0	27.4	64.4	100.0	10259
<u></u>	125	5.3	2.2	1.8	5.9	22.3	62.4	100.0	12819
40	126	3.0	1.4	1.9	4.6	21.0	68.7	100.0	5214
40	125	4.7	1.6	1.8	5.4	19.8	66.6	100.0	8687.
41	126	3.8	1.5	1.7	4.2	27.5	66.3	100.0	4043.
42	125	5.1	1.4	2.0	5.8	20.8	64.8	100.0	6906
42	126	5.1	1.5	1.7	4.2	21.3	66.3	100.0	4154
43	125	4.9	1.1	2.0	5.5	19.4	67.1	100.0	11098.
43	126	3.1	.9	1.6	5.4	21.3	67.6	107.0	4844
44	124	3.5	1.2	2.4	10.6	18.8	63.5	100.0	85.
44	125	3.7	1.0	1.6	6.0	20.6	67.0	100.0	15171.
44	126	2.4	1.2	1.6	4.9	22.1	67.7	100.0	5553.
45	124	3.8	.0	1.9	7.7	23.1	63.5	100.0	52.
45	125	1.9	1.1	1.6	6.0	21.5	67.9	100.0	8443.
-									

U.S. Coastal Visibility Climatology (in miles)

A computer routine calculated the three parameters (a, b and c) for each region and plotted the best fit curve along with the data points used to create it.

4.0 RESULTS

4.1 TRANSMISSIVITY CURVES

Figures in Appendix B display the best fit Weibull curves for each of the 28 areas. The Weibull parameters used to construct the curves are also found in Appendix B.

4.2 COMPARISON

Figures 2 through 5 are examples of the new and old curves. Note the scattering of data used to create the 1961 curves on figures 4 and 5. It is not clear why the 1961 data are so variable, but given this variability, one cannot expect to represent such data with a single curve. It is not a surprise that the results of the subjective 1961 curve fitting efforts differ substantially from curves objectively derived here.

The new curves closely represent the data points from which they were created. It is interesting to plot the new curves directly on the 1961 curves (See Figures 4 and 5). At the low transmissivity end of the graphs the curves are very nearly the same. In many cases, such as those shown in Figures 4 and 5, the old data points straddle the new curve. For this reason, differences between the old and new curves are not attributed to atmospheric fluctuations. Instead, these differences appear to be the result of curve fitting methods used in 1961.

Transmissivity values corresponding to frequently used proportions, 0.75 and 0.90, provide a global comparison of new and old curves. These values are shown in Appendix C.

4.3 AUTOMATION OF CALCULATIONS

The quantitative curve fitting procedures used for the new transmissivity curves enable one to automate aid design. Previously aid designers had to read transmissivities and frequencies off plotted curves. It is now possible to compute either transmissivity or frequency for any area by using the equation for the Weibull function along with the fitting parameters of Table B-1.

Long Island & Block Island Sounds

5

Long Island & Block Island Sounds

Figure 5. Overlay of 1961 curve and 1988 curve for Chesapeake Bay

A PASCAL computer program was written for the Coast Guard Standard Terminal to demonstrate how aid design can now be automated. The program combines the new transmissivity curves with Allard's law to solve for luminous range or luminous intensity. Figure 6 shows the screen layout for this program with the input and output of CASE 1 below used as an example.

To use this program one first specifies the geographic area of concern from the areas shown in Appendix A. As an alternative to specifying area, the software will determine the appropriate area given a latitude and longitude. Next, the aid designer has the option of specifying a transmissivity, frequency of visibility or atmospheric visibility. Once one of these values is specified, the software computes the other two. Finally, the aid designer provides a range or an effective intensity. Computations of required effective intensity or range, depending upon which is entered, are then made for the various background lighting conditions (See Figure 6).

This program, called C-FAR, is available through the Coast Guard Research and Development Center in Groton, CT.

4.4 DISCUSSION

The objective transmissivity curves resulting from this work make it necessary to review the luminous ranges of all aids to navigation. The following examples serve to illustrate this point.¹

Case 1

Location - Southern California (minor background lighting) New Area 10 Aid Type - Lighted Buoy Effective Luminous Range Required - 1.5 Nautical Miles Proportion of Nights to be Visible - 0.9 (90%)

01d

New

0.9 Transmissivity Point = 0.29 0.9 Transmissivity Point = 0.48 Effective Intensity Req'd = 100 Effective Intensity Req'd = 45

¹ Case 1 is Example 7 from CG-250-37.

itude minutes	st St	bility 10 n. mi	cdls		
or a latitude and long M) DD = degrees, MM =	aw plot	ercentage of ights visible Visi 90.00 % 4.	EFF. INTENSITY	Lighting	5. Candelas 45. Candelas 451. Candelas
rks : Enter either an area ((LAT and LONG in DD.M	NO# 10 LAT North	Transmissivity N. 0.48	RANGE 1.50 n.mi	Background	None Moderate Considerable

Transmissivity and Allard's Law Computations

HIT [F1] TO SAVE AND RESTART - [HELP] FOR INSTRUCTIONS

Figure 6. Standard Terminal Screen Layout of the Transmissivity and Allard's Law Program C-FAR

Case 2

Location - Key West, Florida (minor background lighting) New Area 14 Aid Type - Primary Seacoast Effective Luminous Range Required - 15 Nautical Miles Proportion of Nights to be Visible - 0.9 (90%)

OldNew0.9 Transmissivity Point = .830.9 Transmissivity Point = 0.73Effective Intensity Rq'd = 25,000Effective Intensity Rq'd = 170,000

These two examples show that effective intensities necessary to maintain advertised ranges may increase or decrease depending on area, application, etc. Aid designers will have to review operational characteristics of each aid on a case by case basis.

4.5 FURTHER ANALYSIS

The curves of Appendix B are created by combining a collection of NWS data for 1° blocks of latitude and longitude. For example, the curve for Area 10, Southern California, was created from fifteen 1° blocks. Figure 7 shows all fifteen transmissivity curves from these blocks plotted on one graph. It is interesting to note that the curves differ. Three of the fifteen curves fall well below the band which contains the twelve remaining curves. For these three blocks, which happen to be the coastal area near Los Angeles, the Area 10 curve overestimates transmissivity. Hence, more accurate predictions of transmissivity can be obtained with smaller areas.

The 1961 transmissivity curves represented large geographic areas as data from only a limited number of locations were collected. The NWS data are not so limited. It is possible to provide more accurate, localized transmissivity information with the NWS data. As stated previously, the NWS data are restricted to a smallest possible region of 1° increments of latitude and longitude. Curves representing each 1° block of latitude and longitude can be developed.

While improvements in transmissivity information would be achieved with smaller regions, the number of curves needed would increase dramatically. Approximately 450 curves would be created using the 1° increments of latitude and longitude. A computer program, such as C-FAR, would be necessary to effectively use this collection of curves.

Work is underway to produce the localized transmissivity curves. The software which shall use the localized curves is under development. In addition, the software shall be expanded to include the tables and calculations from COMDTINST M16510.2. The final product of this effort will be a software package capable of performing many of the aspects of aid design and hardware selection.

Figure 7. Overlay of the 15 component Curves for Transmissivity Area 10 (Southern California)

5.0 CONCLUSIONS

The National Weather Service Climatic Database provided sufficient marine visibility information to objectively update transmissivity frequency distribution curves. The updated curves are significantly different from those presently used by Coast Guard aid designers. In most regions, the transmissivity is actually lower than old curves indicate. It follows that effective luminous ranges of aids to navigation lights in many locations are not what they are thought to be.

Transmissivity estimates can be further improved by creating localized curves from the NWS data. The transmissivity computer program will provide a means to keep track of the new localized curves. In addition, the program will allow aid designers to efficiently review the luminous range of every lighted aid to navigation.

Work shall continue to create curves for as small a geographic region as possible. The computer program will be extended to include new localized transmissivity curves.

6.0 RECOMMENDATIONS

We recommend the Coast Guard:

- o proceed with the development of localized transmissivity curves
- o extent the C-FAR Program to include the new localized transmissivity curves
- o extend the C-FAR Program to include tables from COMDTINST M16510.2.

7.0 REFERENCES

- 1. U.S. Coast Guard (G-ECV), <u>Distribution Curves of Atmospheric</u> <u>Transmissivity for United States Coasts</u>, Civil Engineering Report CG-250-4A, January 1961.
- Weibull, W., "A Statistical Distribution Function of Wide Applicability", Journal of Applied Mechanics, 18, pp. 292-297.
- 3. U.S. Coast Guard (G-EOE), <u>Visual Signalling Manual</u>, Ocean Engineering Report CG-250-37, June 1970.

APPENDIX A

GEOGRAPHICAL BOUNDS OF THE NEW CURVE AREAS

[BLANK]

Pacific Ocean

Figure A-2. Geographic Boundaries of Area 5

A-5

A-6

A-8

Figure A-7. Geographic Boundaries of Area 16

Figure A-9. Geographic Boundaries of Areas 21 through 23

APPENDIX B

AREA PARAMETERS AND TRANSMISSIVITY CURVES

[BLANK]

Table B-I

Area		Parameters	
	a	b	c
		0 450	0 0 2 0
ALASKA - AREA I	11.500	2.432	0.929
ALASKA – AREA 2	12.757	1.699	0.930
ALASKA – AREA 3	16.716	1.710	0.9//
ALASKA – AREA 4	13.764	1.871	0.956
HAWAII – AREA 5	15.632	4.029	0.998
WEST COAST - AREA 6	13.313	2.227	0.934
WEST COAST - AREA 7	9.454	3.144	0.907
WEST COAST - AREA 8	16.146	2.066	0.959
WEST COAST - AREA 9	14.301	2.125	0.939
WEST COAST - AREA 10	12.077	2.497	0.962
GULF COAST - AREA 11	15.812	2.878	0.987
GULF COAST - AREA 12	17.380	2.943	0.993
GULF COAST - AREA 13	13.948	3.261	0.988
GULF COAST - AREA 14	18.107	3.536	0.997
FAST COAST - AREA 15	15,962	3.692	0.997
FAST COAST - AREA 16	14.117	3.089	0.991
EAST COAST - AREA 17	12.330	2.743	0.970
EAST COAST $= \Delta PEA 18$	10.060	2.774	0.967
EAST COAST ANDA TO	11.256	2.612	0.956
EASI COASI - AREA 19 EXCH COXSH - XDEX 20	12 366	2.246	0.945
EASI COASI $-$ AREA 20 EXCM COASM $-$ AREA 21	12.500	1 867	0.930
EAST COAST - AREA 21	12.044	2 107	0 917
EAST COAST - AREA 22	16 540	1 126	0 877
EAST COAST - AREA 23	10.049	1 624	0.077
LAKE ONTARIO - AREA 24	14.609	1.034	0.900
LAKE ERIE - AREA 25	14.327	1./04	0.901
LAKE HURON - AREA 26	17.683	1.665	0.900
LAKE MICHIGAN - AREA 27	19.226	1.643	0.95/
LAKE SUPERIOR - AREA 28	23.379	1.595	0.934

WEIBULL FUNCTION PARAMETERS

Figure B-1. Transmissivity Curve for ALASKA - AREA 1

Figure B-3. Transmissivity Curve for ALASKA - AREA 3

Figure B-4. Transmissivity Curve for ALASKA - AREA 4

Figure B-5. Transmissivity Curve for HAWAII - AREA 5

Figure B-6. Transmissivity Curve for WEST COAST - AREA 6

Figure B-8. Transmissivity Curve for WEST COAST - AREA 8

Figure B-9. Transmissivity Curve for WEST COAST - AREA 9

Figure B-10. Transmissivity Curve for WEST COAST - AREA 10

Figure B-11. Transmissivity Curve for GULF COAST - AREA 11

Figure B-12. Transmissivity Curve for GULF COAST - AREA 12

Figure B-13. Transmissivity Curve for GULF COAST - AREA 13

Figure B-14. Transmissivity Curve for GULF COAST - AREA 14

Figure B-15. Transmissivity Curve for EAST COAST - AREA 15

Figure B-16. Transmissivity Curve for EAST COAST - AREA 16

Figure B-17. Transmissivity Curve for EAST COAST - AREA 17

Figure B-18. Transmissivity Curve for EAST COAST - AREA 18

Figure B-19. Transmissivity Curve for EAST COAST - AREA 19

Figure B-20. Transmissivity Curve for EAST COAST - AREA 20

Figure B-21. Transmissivity Curve for EAST COAST - AREA 21

Figure B-22. Transmissivity Curve for EAST COAST - AREA 22

Figure B-23. Transmissivity Curve for EAST COAST - AREA 23

Figure B-24. Transmissivity Curve for LAKE ONTARIO - AREA 24

Figure B-27. Transmissivity Curve for LAKE MICHIGAN - AREA 27

Figure B-28. Transmissivity Curve for LAKE SUPERIOR - AREA 28

[BLANK]

.

APPENDIX C

.

CURVE COMPARISONS

[THIS PAGE INTENTIONALLY LEFT BLANK]

Table C-I

NEW CURVE / OLD CURVE COMPARISON

Areas	Transmis	sivities
NEW AREAS	Probabi 0.75	lities 0.90
ALASKA - AREA 1	0.6155	0.3484
ALASKA - AREA 2	0.5604	0.1758
ALASKA - AREA 3	0.6771	0.4621
ALASKA - AREA 4	0.6295	0.3801
Southeastern Alaska	0.90	0.72
HAWAII - AREA 5	0.7699	0.7143
Hawaiian Islands	0.88	0.82
WEST COAST - AREA 6	0.6417	0.3768
Coasts of Oregon and Washington	0.84	0.63
WEST COAST - AREA 7	0.5845	0.2288
Straits of Juan de Fuca & Georgia	0.72	0.36
Puget Sound, Washington	0.78	0.54
Admiralty Inlet, Washington	0.69	0.53
WEST COAST - AREA 8	0.6941	0.4971
Coasts of Oregon and Washington	0.84	0.63
Columbia River Entrance	0.88	0.56
WEST COAST - AREA 9	0.6557	0.3997
California Coast	0.55	0.00
San Francisco Bay and Entrance	0.59	0.28
WEST COAST - AREA 10	0.6490	0.4815
Southern California Coast	0.67	0.29
GULF COAST - AREA 11	0.7433	0.6486
Gulf of Mexico	0.88	0.59
GULF COAST - AREA 12	0.7669	0.6845
Gulf of Mexico	0.88	0.59
GULF COAST - AREA 13	0.7272	0.6420
Gulf of Mexico	0.88	0.59
GULF COAST - AREA 14	0.7899	0.7302
West Coast of Florida	0.83	0.72
EAST COAST - AREA 15	0.7683	0.7066
Atl. Coast - S. Car. to Key West	0.86	0.78

Table C-I (cont'd)

ł

•

Are	as	Transmissivities				
NEW 2	AREAS	Probabi	lities			
	Old Areas	0.75	0.90			
EAST	COAST - AREA 16	0.7256	0.6365			
	Atl. Coast - Cape Henry to S. Car.	0.84	0.71			
EAST	COAST - AREA 17	0.6716	0.5368			
	Atl. Coast - N. J. to Cape Charles	0.67	0.27			
EAST	COAST - AREA 18	0.6143	0.4647			
	Chesapeake Bay	0.72	0.57			
	Chesapeake Bay Entrance	0.70	0.52			
EAST	COAST - AREA 19	0.6330	0.4598			
	Delaware Bay and Entrance	0.75	0.49			
EAST	COAST - AREA 20	0.6284	0.3966			
	Lower New York Bay	0.72	0.15			
EAST	COAST - AREA 21	0.5685	0.2176			
	Long Island & Block Island Sounds	0.62	0.28			
EAST	COAST - AREA 22	0.6126	0.2229			
	Massachusetts Bay	0.76	0.17			
	Nantucket and Vineyard Sounds	0.44	0.08			
EAST	COAST - AREA 23	0.5177	0.0000			
	Coast of Maine (ex. Penobscot Bay)	0.61	0.16			
	Penobscot Bay, Maine	0.50	0.05			
LAKE	ONTARIO - AREA 24	0.6174	0.3351			
	Lake Ontario	0.71	0.48			
LAKE	ERIE - AREA 25	0.6366	0.4158			
	Lake Erie	0.64	0.31			
	Detroit Riv., Lk St. Clair & Riv.	0.79	0.68			
LAKE	HURON - AREA 26	0.6757	0.4167			
	Lake Huron and Straits of Mackinac	0.64	0.38			
LAKE	MICHIGAN - AREA 27	0.6924	0.4282			
	Lake Michigan	0.73	0.34			
	Green Bay and Entrance, Michigan	0.82	0.51			
LAKE	SUPERIOR - AREA 28	0.7181	0.3662			
	Lake Superior	0.86	0.66			

Table C-I shows that differences exist between the new and old curves. In 28 of 34 comparisons or 82% of the time, the 0.75 transmissivity point on the new curves has decreased an average of 0.15. In the remaining six cases, the 0.75 point increased an average of 0.08. For the 0.90 transmissivity point, there are 20 of 34 curves or 59%, which have decreased an average of 0.16. The average increase in the other 14 curves is 0.18.

The largest increase in the 0.90 transmissivity point, 0.40, is found on the curve for Area 9, the California coast. The largest increase of the 0.75 transmissivity point, 0.17, is found on the curve for Area 22, the coast of Massachusetts. The largest decreases in transmissivity are both found on the curve for Area 4, Alaska, with a decrease of 0.34 for the 0.90 point and a decrease of 0.27 for the 0.75 point.

e

The largest discrepancy between the new and old transmissivities is found in the comparison of the 1961 curve for Alaska and the new Area 4 curve. For this area the old curve shows a 0.90 point of 0.72 (9 nmi.) and a 0.75 point of 0.90 (28.4 nmi.). The new curve for Area 4 has a 0.90 point of 0.38 (3.1 nmi.) and a 0.75 point of about 0.63 (6.5 nmi.). While this decrease is quite significant, it seems unreasonable to expect a visibility of <u>28 nautical</u> <u>miles or greater</u> in Alaska 75% of the time. The new curves seem to be more in line with what would be expected.