APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNUMITED

This report was submitted by The Aerospace Corporation, El Segundo, CA 90245, un-
der Contract No. F04701-85-C-0086-P00016 with the Space Systems Division, P.O. Box
92960, Los Angeles, CA 90009-2960. It was reviewed and approved for The Aerospace Cor-
poration by J. M. Straus, Acting Director, Computer Science Laboratory.

Lt. Chris Warack, SSD/CNDA was the project officer for the Mission-Oriented Inves-
tigation and Experimentation (MOIE) Program.

This technical report has been reviewed and is approved for publication. Publication
of this report does not constitute Air Force approval of the report’s findings or conclusions.
It is published only for the exchange and stimulation of ideas.

CHRISTOP WARACK, LT, USAF
MOIE Project Officer
SD/CNDA

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a.

REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS
N/A

2a.

SECURITY CLASSIFICATION AUTHORITY
N/A because unclassified

3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release:;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited
N/A because unclassified
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
TR-0086A(2920-05) -2
() SD-TR-89-33
6a. NAME OF PERFORMING ORGANIZATION 6b. C(J'l':FlCIE cgglM)BOL 7a. NAME OF MONITORING ORGANIZATION
The RAerospace Corporation applicable
P P Space Systems Division
6¢c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
P.O. Box 92957 Los Ang2les Air Force Base
Los Angeles, CA 90009-2957 Los Angeles, CA 90009-2960
8a. NAME OF FUNDING / SPONSORING 80. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
Space Division ’ Headqua rters FO‘O 70 1_85_C_0086_P00016
8¢c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
P.O. Box 92960 PROGRAM PROUECT TASK WORK UNIT
Los Angeles, CA 90009 ELEMENT NO. NO. NO. ACCESSION NO.
11, TITLE ({Include Secunty Classification)
Gauge: Its Philosophy and Design (UNC)
12. PERSONAL AUTHOR(S)
Gorlick, Michael M., Kesselman, Carl F., Parker, D. Stott
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
FROM TO 1989 May 22 27
16. SUPPLEMENTAL NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP programming environments, software performance analysis

19. ABSTRACT (Continue on reverse if necessary and identity by block number)

Gauge is a workbench for gaining understanding of the performance of large parallel logic programs. A Gauge
user is provided with a variety of interactive tools for analyzing the execution of programs. Tl/liiyort describes the

philosophy, design, and implementation of Gauge and its use in analyzing parallel systems.

L Dl

Sh e /oy

JLL‘%‘-«f/ TAL S &

-~

! - / J
75744/7\

¢ .'ZL’,L‘

/\

20.

DISTRIBUTION / AVAILABILITY OF ABSTRACT
B8 UNCLASSIFIED / UNLIMITED

[same "5 reT.

O oric users

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDVIDUAL

22b. TELEPHONE (inciude Area Code) | 22c. OFFICE SYMBOL

DD FORM 1473, 84 MAR

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Accession For

oTiC NTIS GRA&I
- DTIC TAB
INQPRCTES Unannounced 0
6 Justification
By.
Distribution/
Contents Avellability Codes |
Avall and/er
Dist Special
1 Introduction 3
. -l
2 Philosophy A 5
3 Concepts 7

3.1 Programs e e e e

32 Events S 9
3.3 Gauges. e e e e 10
3.4 ExecutionModels. 13
4 Functions 15
4.1 Static Performance Analysis 15
4.2 Execution Design, 17
4.3 Execution Performance Analysis 18
5 Subsystems 21
5.1 Static Performance Analysis 21
5.2 Execution Harness 21
53 EventDataBase s .. 21
5.4 Presentation Functions and Execution Analysis 22
6 Conclusion 23
References 25

1 Introduction

Understanding the performance properties of a large software system is prob-
lematic, particularly for parallel or distributed software systems. Several
research fields in computer science are devoted to this concern, both to de-
fine performance or complexity measures and develope methodologies for
determining whether programs meet these measures.

Logic programming is an interesting, but largely unexamined, platform for
performance analysis. A promising formalism for writing parallel software,
logic programs benefit from the clean semantics and performance potential
of single-assignment languages [1]. Logic programs can also be viewed as
data and are easily manipulated by analysis programs.

The importance of graphic environments that support system modeling and
analysis is widely recognized {2, 3, 4, 5, 6, 7, 8, 9]. Typically these environ-
ments provide the user with a trace facility coupled with tools for displaying
the trace in a variety of useful ways.

Unfortunately, many of these environments encountered problems when ap-
plied as parallel-program analysis tools:

o Monitoring a parallel system (for example, with breakpoints and event
tracing) may introduce overhead that perturbs program execution, to
the extent that the execution of a traced system differs from that of
the original.

e Standard tracing and breakpoint techniques for sequential programs
are inadequate for parallel programs, and must be generalized to deal
with a global state that may be difficult or impossible to determine,
a nondeterminism of execution that may not be controllable. and ex-
ecution behavior that may not be reproducible.

o Traces are a limited abstraction, and do not provide information cor-
responding to a user-level view or model of the system.

This report describes Gauge, an environment for measuring and analyzing
the performance of parallel logic programs. Gauge is written in SICStus

Prolog and C, with graphics services supplied by the X Window Systein
(10]. Although Gauge is intended for use with logic programs, we expect it
will apply to other ervironments.

This report is organized as follows: After the philosophy of Gauge is made
explicit in Section 2, Section 3 introduces concepts underlying the Gauge
performance models. Section 4 then outlines the intended functionality and
use of Gauge, and Section 5 summarizes the individual components of the
system. Finally, Section 6 summarizes the contributions of Gauge.

2 Philosophy

Large pieces of industrial machinery have many dials and meters attached
to them. In a normal plant environment, monitors regularly note the values
from these gauges and record the status of the machines. Many inferences
may be drawn from the values: for example, wear on turbine bearings can be
determined from operating temperatures. Thus dangerous conditions and
performance problems can be anticipated from the measurements.

Why is program monitoring not this straightforward? The instrumentation
of programs is a painful, largely ad hoc process. Maintaining the perfor-
mance history of programs is no better, and studying program performance
in real time is usually impossible.

The goal of the Gauge environment can be summarized simply: to gain
an understanding of the performance behavior of parallel logic programs
running on shared-memory multiprocessors. This goal is related to many
needs that are not addressed by existing environments today, specifically
the following:

e Tools for the effective measurement of existirg logic programs.
o Accurate general models of logic program performance.

o Useful tools for the user exploration of the execution behavior of logic
programs.

o Techniques for the automated analysis of the execution behavior of
logic programs.

What the performance analyst needs first is an overall understanding of the
program. This understanding is critical, since it establishes the scale on
which measurements are calibrated, the relative impact of components on
the performance of the whole program, and the critical performance issues.
Effective performance analysis requires perspective.

Simple models are best for getting a feel for the performance of a complex
program. Sophisticated theories and deep models are usually not of much

help, and do not necessarily lead to useful tools. A good analogy can be
drawn from physics: although relativity theory has gradually become ac-
cepted as an accurate model of gravitation in the universe, in any earthly
situation Newton’s laws are a sufficient model.

We believe that performance analysis has its own sense of parsimony — most
of the useful performance information comes from simple statistics that are
inexpensive to gather. In performance analysis, less is more. Having com-
plete information can be overwhelming, and it is expensive (or impossible)
to gather in the first place. We can gain by understanding programs thor-
oughly in terms of simple models.

Though performance analysis benefits from its association with the pre-
cise formalisms of computational complexity and algorithmic analysis in the
foreseeable future, neither discipline will have sufficient strength or breadth
to encompass the performance questions of actual working systems [11, 12].
Rather than chase an elusive formal theory, we are better off admitting from
the start that performance analysis is, and will be, a discipline based upon
experimentation. The successful performance analysis environment will be
a skillful, mutually dependent, cooperative marriage of formal analysis and
experimentation.

With the points above in mind, Gauge emphasizes the following:

Low-Overhead Statistical Measurements While the overhead of trac-
ing is usually high, certain run-time measurements can be made cheaply
(for example, counts of entries and exits from predicate ports, maxi-
mum stack heights, and timing estimates [13]). Rather than seeking
precise measurements at the cost of altering the very behaviors of in-
terest, one should use nonintrusive statistical samples, accepting the
indeterminacy of probe measurements as a basic fact of life in parallel
processing. We believe that most useful performance information can
be obtained from these low-overhead measurements.

Simple Analytic Models Just as Gauge is predicated on the thesis that
much of the useful performance information comes from low-overhead
measurements, it also is based on the belief that simple models of
program execution provide most of the understanding about the pro-
gram. Although performance measurements are easiest to obtain for
logic program models (say, call graphs or proof trees), the models can
apply to any level of abstraction. The point is that they be simple, so

that they supply the overall program understanding we want. Modecls
permitting static analysis are particularly important, since they can
eliminate execution overhead.

Lifetime Monitoring Today, programs are usually stored separately from
their documentation, and no historical information is kept about their
evolution, use, or performance. This situation is unfortunate, since a
great deal of useful information about programs can be found in their
history. History also provides expectations about future evolution,
use, and performance.

Gauge is designed so that performance information stays with a pro-
gram over its entire lifetime. An advantage of low-overhead measure-
ments is the possible storage of performance parameters with the pro-
gram itself.

Some interesting issues in programming-environment technology are raised
by these emphases. However, the philosophical thrust of Gauge is pragmatic
— we simply want results.

3 Concepts

In this section we define the basic concepts behind Gauge. The Gauge
vocabulary defines programs, events, gauges, and erecution models.

In addition to maintaining information about a program over the program'’s
lifetime, Gauge supports a number of erecution models. Each model pro-
vides a different view of the program, and requires a different set of gauges.
Aimed at low-cost/high-value performance modeling, Gauge supports simple
models requiring only inexpensive measurements.

3.1 Programs

In its lifetime each program goes through a sequence of versions, and each
version through a sequence of executions. Gauge maintains information
about the program over the program’s lifetime, since one can resolve many
important performance questions only by examining this history. For exam-
ple, program history describes the cumulative effects over time of changes
in software, hardware configurations, and operating assumptions.

Programs go through a sequence of versions as they evolve. Thus whenever
we talk about programs here, we mean versions of programs. Each program
version can be characterized statically by the following information:

Predicates A program version corresponds to a collection of predicates,
which have the following attributes:

1. Definition representing of the predicate that can be analyzed.
Prolog predicate definitions consist of a set of clauses, each of
which has a head, a body, and an abstract machine coding.
Non-Prolog predicates have only trivial definitions that describe
whether they are built-ins or external programs.

2. Argument modes specifying whether arguments are either in-
put or output.

Argument types specifying the data types of arguments.
Argument indexing specifying how arguments are indexed.

Parallelism assertions suggesting possible and- and or-parallelism.

A

Performance assertions stating expected performance under
expected operating conditions.

Performance assertions are one innovation encouraged by the lifetime
monitoring of programs. When programmers develop programs, es-
pecially parallel programs, they make assumptions about operational
conditions (throughput requirements, probable system loading, task
allocation to available hardware, ratios of reads to writes for data
structures, estimates of branching probabilities, and so forth). Today
there is no means for recording these assur:ptions in a way that can
be monitored automatically.

Static Call Graph The static call graph of a program version indicates
which predicates call another. Although knowing how many times a
predicate was called is part of the execution history, a complete picture
comes only from knowing where the call came from.

Performance History A performance history is a sequence of results of
executions. These results are the “long”-lived statistics kept after the
execution of tle program version, not the more ephemeral “short-
lived” statistics gathered and displayed when the program version is
run.

An execution consists of

1. a machine configuration showing exactly the hardware and
software environment of the program;

2. the commands used showing exactly how the program was run;
and

3. the gauges available specifying what performance information
was kept.

Frequently, the commands used will specify a test sutte, a set of con-
trolled experiments.

3.2 Events

During an execution a change in any program object is viewed as an event.
Gauge represents events at three levels:

Abstract Machine-Level Events The abstract machine level is the low-
est level represented by Gauge, capturing the operational behavior of
the Prolog emulator that executes the abstract machine instructions
produced by the compiler. This operation includes tnstruction events
that are raised when individual instructions are encountered by the
emulator, and storage events, such as abstract machine stack (envi-
ronment, trail, heap) changes, register use, and so forth.

Logic Program-Level Events One level up, at the program level, events
are naturally divided into two types. Predicate events record the port
entry and exit of every predicate, the selection of clauses, and so forth.
Call-graph events are raised when one predicate calls another (or it-
self).

Program Model-Level Events Programmers conceptualize programs above
the abstract machine level and the logic program level, reflecting the
domain of the problem solved by the program. For example, a program
simulating a satellite might be modeled in terms of the functions of
the satellite. Events are determined by the model under consideration;
an event in satellite simulations could be the rotation of the satellite’s
solar panels in response to an attitude change. Gauge supports the
development of simple program models.

Events have the following attributes:

Type Events are either boolean (they happen), or valued (they involve some
change of value).

Display Information Associated with each type of event is information
about how that event may be most effectively displayed. This is impor-
tant in displaying gauges based upon the event. A format for encoding
this information is described in [5, 6].

3.3 Gauges

A gauge is a value or measurement extracted from a program execution in
real time. Measurements in Gauge are restricted to have low overhead -
requiring only minimal computational effort to gather. This reduces the
impact of monitoring on execution, and eliminates the need for expensive
synchronization techniques, such as locking, in saving parallel-processing
measurements.

Internal Gauges An internal gauge describes the occurrences of some pro-
gram event over time, and is updated by the program itself. Since the
program can be affected by any significant effort spent in updating
these gauges, the effort is restricted to require at most a few machine
instructions.

Recall that events are either boolean (they happen), or valued (they
involve some change of value). An example of a boolean event is
a program reaching a certain predicate, while valued events include
stack pointer changes and selections of clauses.

The only gauges available for boolean events are counts.
For valued events the following internal gauges are available.
Constant-Time Statistics A constant-time statistic is a numeric

value that can be gathered easily from valued events. Gauge
supports statistics such as

e minimum
o maximum

e average (running count and sum)

10

e variance (running count, sum, and sum of squares)

Bounded Samples Frequently in large systems code it is useful to
monitor windows of activity on some valued event. For example,
we might want to record the identifiers of the last ten clauses
invoked, or identifiers of the ten most frequently invoked clauses.
This can be done by storing samples of some variable in a circular
buffer of size n. Gauge supports the following bounded samples

last n

first n

maximum n

minimum n

n quantile estimates

The time to perform this storage is usually constant, needing only

a few machine instructions. Fast algorithms are used for quantile
estimation [14, 15].

External Gauges All the internal gauges mentioned above can be in-
spected by some monitor process external to the program itself. On
a shared-memory multiprocessor, this inspection can be done without
a serious impact on performance. In addition, some gauges involv-
ing more global information are useful and are available with Gauge.
Perhaps the most important example is the snapshot.

External gauges operate through monitor processes that either run in
parallel with, or stop, the program being measured. These monitor
processes obtain gauges by inspecting the program state. Thus what-
ever program state information is needed for external observation must
be made visible.

The basic parameter determining the accuracy of external gauges is
their sampling rate. The sampling rate is a tunable value; by increasing
it we obtain more information, although a higher level of accuracy is
achieved at the cost of increased bandwidth and storage requirements.
Thus the internal gauges above can also be obtained externally, but
statistically rather than precisely. However, by increasing the sampling
rate to approach the clock speed of the processor running the program
being monitored, we can obtain, as a limit, complete traces of the
program. The performance analyst can trade off the expense of keeping
more timely statistics with the accuracy they offer.

There are three important kinds of external gauges:

11

timing gauges Internal gauges cannot afford the overhead implied by
real-time clock information. Thus all timing information concern-
ing events (for example, inter-event time, average path execution
times, and frequencies) are obtained by external gauges.

snapshots A snapshot saves a timestamped copy of the internal gauges
of the program being monitored. Obtaining this global infor-
mation does not necessarily require stopping the program. A
background process can run in parallel with (but on a different
processor than) the program and gather the information needed.

derived gauges Gauges may be either primitive (directly implemented
at the machine level) or derived. A derived gauge combines sev-
eral primitive internal gauges into a more abstract value. Derived
gauges can be useful in capturing program model events.

A sequence of snapshots 5,...,S, is called a history. Note that Gauge
does not include trigger-type gauges, which keep track of multiple events
occurring in prespecified ways. Although it is conceivable that these gauges
could be implemented efficiently as external gauges (using, for example, the
RETE-net technology of modern production systems such as OPS-5), they
are counter to the philosophy of Gauge. Higher-level abstractions of event
trace information can be extracted post facto by individual execution-model
performance-analysis systems.

A gauge has several attributes:

Event Type Internal gauges and external timing gauges correspond to cer-
tain program events.

Lifetime Gauges can be long-lived or short-lived, depending on whether the
result is saved after the execution or is discarded (having been used
only for interactive, real-time display). Long-lived gauges tend to be
associated directly with program structures, and are time-insensitive
in that they are computed only once, or are averaged over time. Short-
lived measurements tend to be associated with collections of program
objects, or consist of the values of a single program structure sampled
over time.

12

3.4 Execution Models

An execution model is an abstraction of the available gauge values, and is
usually presented at the program level. If the history of gauge values is a
data base, the execution model is a view of this data base.

At a minimum, we are interested in looking at three basic aspects of pro-
grams: the timing of individual components, the flow patterns among indi-
vidual components, and the overall use of space. Our program models must
provide perspective on these aspects.

Gauge supports the following simple models of program structure and exe-
cution:

Abstract Machine Model Logic programs are usually compiled into in-
structions for some variant of the well-known Warren Absiract Ma-
chine (WAM) [16]. Events in this model correspond to state changes in
the abstract machine: instruction sequencing, register contents, stack
contents, and so forth.

Dynamic Call Graph Model The static call graph stored with every pro-
gram reflects who calls whom. The dynamic call graph uses the same
structure, but decorates it with frequencies: who calls whom how often.
In addition, the dynamic call graph reflects invocations of predicates
via higher-order primitives such as call/1 and setof/3, which may not
be included in the static call graph.

Dynamic Proof Tree Model The execution of every logic program can
be thought of as a process of constructing a tree. In a parallel context,
this is viewed as the “parallel painter model.”

Statistical Model Statistical models represent a program as a collection

of independently sampled random variables. An example is the timing
model of [13].

Other abstract models of programs will be supported as the need arises, in-
cluding, for example, logical ripple-effect models, control flow models, phase
models (which divide a program into logical phases or parts), extended queu-
ing network models, Petri net models, and so forth.

13

14

4 Functions

Like most empirical parts of computer science, performance evaluation is
an iterative affair. Gauge supports three phases of performance evaluation,
reflecting our opinions about the methodology that performance analysts
would apply to real Prolog programs. These phases are static performance
analysis, execution design, and execution performance analysis.

Initially, Gauge performs a static analysis of programs for potential per-
formance problems. This analysis provides several functions, including a
mechanism to warn about poor performance, a source of information en-
abling the program developer to improve programs, and a source of ideas
for designing experiments to test the program. Just as software developers
first rely on tools to perform “lint checking” to eliminate possibly danger-
ous programming techniques from their programs, static analysis highlights
performance problems.

Once the program appears ready to run, the first goal of the performance
analyst is to get a “feel” for the program’s behavior. This is done by re-
peatedly designing suitable test suites for the program and then analyzing
the resulting data obtained from low-overhead program models. Roughly
speaking, the idea is to “search and destroy bottlenecks.” The search thus
inspects only a small portion of the program’s performance behavior.

4.1 Static Performance Analysis

The static analysis of programs [17] has two main benefits: it provides the
programmer information about the program, and it can be used to increase
the efficiency of program execution. With flow analysis, for example, one
can remove useless or redundant code, rearrange goals, and improve partial
evaluation. This information is important in shoriening the performance
improvement cycle. By avoiding obvious pitfalls early, static analysis speeds
overall development.

It seems that static analysis can also serve as a manager of heuristic in-
formation about performance. User-specified performance assertions and

15

program annotations describing likely parallelism in program clauses can be
useful in static analysis. Static analysis can serve as a repository of common
wisdom about program performance problems. Many performance problems
arise repeatedly in programs written by less-expert programmers and in pro-
grams generated by combinations of tools (such as programs generated by
a sequence of source-to-source transformations).

These problems are not really errors of programming - they are simply
pitfalls, or poor-performance-prone ways of coding. Static analysis can
therefore alert the programmer about potential performance issues in his
program.

Static analysis permits us to answer performance-related questions such as
the following:

¢ Does the program make heavy use of the external progran: interface?

o Which clauses appear to manifest bad coding style? Bad Prolog coding
style is difficult to make precise, but the following guidelines illustrate
the approach taken by Gauge:

— superfluous cuts
— inefficient use of ==/2 or =/2

— the unnecessary use of known expensive predicates such as as-
sert, retract, or =...

~ large terms in the heads of clauses
— long clauses

— disjunctions in clause bodies

In addition to these, static analysis includes queries that an abstract-machine
compiler can immediately use in improving code:

e Which recursive predicates are not tail recursive?

o Would changing the argument order reduce the number of WAM reg-
isters used?

e Would changing the subgoal order or eliminating disjuncts in clause
bodies improve the WAM code generated?

16

e Are there global variables that can be eliminated? Are unnecessary
structures created?

o Where could recursion be advantageously replaced by repeat-fail?

Thus static analysis covers many of the queries we would expect of a powerful
optimizing compiler.

Static analysis goes beyond compilation techniques, however. When specific
branching probabilities are affixed to edges of the call graph. program per-
formance can be estimated through simulation. This simulated execution is
an example of abstract interpretation [18, 19, 20, 21}, in which one estimates
the behavior of a program by simulating some abstracted version of it. This
approach underlies most static program-analysis techniques [19].

4.2 Execution Design

The Gauge measurement harness permits users to specify the runs to be

made, and for which short-lived models, if any, the runs should make mea-
surements.

Two kinds of executions can be specified:

1. specific execution A specific goal (or sequence of goals) is to be run.

2. test suite Test suites generated from underspecified Mockingbird con-
straints [22] can be ezplicit (constraints made specific by test require-
ments), randomized (constraints made specific by random assignment).
or goal-oriented. A goal-oriented suite is an executive that repeatedly
executes the program either in a hill-climbing attempt to maximize
some parameter, or in a randomized way, seeking some specific behav-
ior such as the occurrence of an event.

The Mockingbird system [22] is used as a way to specify which gauges arc
to be enabled in a test suite, and provides a declarative way to state what

the execution should accomplish. Performance constraints are specified as
in {23].

17

4.3 Execution Performance Analysis

Imagine now that our program is finally running on a multiprocessor. What
displays do we want to see? What queries must we ask to get a feeling for
the program’s behavior? Although no two people will view exactly the same
things as important, some common queries include the following:

e Which predicates are called most often?
e Which subtree of the program call graph uses the most cpu time?

e Which specific predicate calls wind up taking most of the cpu time
over all calls to that predicate? (How long did q take whenever it was
called by p?)

¢ Ignoring the predicates that, while time-consuming, cannot be avoided,
which predicates look like the bottlenecks?

e Which predicates create unnecessary choice points?

e Which clauses contribute most to stack depth? By stack we mean any
of the environment, heap, trail, and choice point stacks, so answering
this query can require significant amounts of data processing.

o Which clauses regularly do lots of work before failing?

e What would improve the failure profile (changing the argument order,
indexing, breaking the clause up into smaller pieces)?

o Which clauses are active during (and hence possibly cause) garbage
collection?

e Are lists used where functors (vectors, arrays) might be faster?
e Is the interpreter being used unnecessarily?

o What is the success profile of unifications against arguments?
e How does the profile suggest arguments should be reordered?

e What is the success profile of the built-in type-testing primitives such
as var/1 or integer/1?

e What is the success profile of unifications against clauses?

18

e How does the profile suggest clauses should be reordered?

Here is the point: ali of these queries ask about the behavior of simple an-
alytical program models, and can be answered from low-level measurements.
More than this is rarely needed: once we have answers to these queries, it is
usually evident what parts of the program need attention, and more or less
how they should be changed.

Gauge offers limited event gathering and limited viewing of the events. It
does not permit programmers to generate arbitrary event data bases and ask
general temporal queries. Events can be gathered only for any predefined
program model, and can be analyzed only by predefined execution-analysis
tools. Since Gauge is extensible, new models and analysis tools can be added
as needed, without any real loss in power.

Queries can be initiated in one of the two following ways:

1. static analysis corroboration The potential performance hotspots
identified by static analysis can be automatically investigated when
real execution performance data are available. In addition, branching
probabilities obtained from execution can b. used to improve static
program models. This information is of great importance in program
partitioning and task allocation.

2. user queries Naturally, interactive query by users is the main way a
feel for the program’s behavior can be obtained. One benefit of the
limited model approach of Gauge is that common performance queries
can be organized in menus for easy access, avoiding the clumsiness of
query languages.

The queries listed above are basic and apply to both sequential and parallel
environments. For parallel environments, however, much more sophisticated
queries are needed. We must be able to evaluate the relationship between
program events and memory contention, I/O contention, cache conflicts,
load imbalance (poor task allocation), the improper use of bag predicates or
other multiple-solution primitives, and the general use of parallel operating
system primitives. Gauge provides support for all of these.

19

20

5 Subsystems

Gauge incorporates the following different components.

5.1 Static Performance Analysis

The static analyzer performs extensive global analysis of programs, and
includes a performance “lint checker” for programs decorated with perfor-
mance assertions and other programmer annotations. The output of the
analysis includes performance warnings to the programmer, program model
information used by the Prolog compiler, program model information used
in execution performance analysis, and tests to be run after execution to
verify conjectured performance hotspots.

5.2 Execution Harness

Gauge has an environment for creating test suites, assigning processes to
processors, initializing and running the program, and capturing results in
an event data base.

5.3 Event Data Base

The event data base is a fast, sequential storage manager with some sup-
port for time series analysis. A full-function data base manager and query
processor is not necessary here, since the performance analysis problem is
so special: the data base is append-only, and is read-only after execution;
functionally the emphasis is on very rapid insertion and moderately rapid
sequential scanning. Also, these data bases are used only briefly, and most
queries are run only once.

The event data base is updated either during program execution by external
gauges, or after execution terminates and internal gauges of the program are
captured.

21

5.4 Presentation Functions and Execution Analysis

Since graphics are essential to a subjective understanding of numerical data,
Gauge provides a variety of different ways of viewing these data: static pre-
sentations (plots), dynamic presentations (movies), browsing, and statistical
analysis.

Static presentations can be either textual or graphic. Graphic presenta-
tions give plots of specific variables of interest; conventional curve, surface,
and histogram plotting; gestalt-like plots; and other displays that maximize
information transfer [5, 6, 24).

Dynamic presentations also can be textual or graphic, and include anima-
tion, moving gauges/dials, and model-oriented movies. Postmortem displays
can be rerun, can use different timing speeds, and so forth. This permits
one to browse through subhistories of interest, abstract subhistories (zoom
in/out), and view a program from the perspective of multiple models simul-
taneously.

Some models require statistical analysis and the display of performance data.
Gauge automates some of this analysis, such as linear-regression analysis and
general curve fitting. These combine to yield a semi-automated complexity
analysis. While this does not provide a complete model-validation mecha-
nism, it does provide the means for making comparisons between expected
and actual complexity.

22

6 Conclusion

Gauge gives a system designer a practical tool for investigating large software
system behavior during (parallel) execution. Its approach emphasizes the
use of louw-level mechanisms of low cost and only statistical accuracy. These
mechanisms have the benefit that they are nonintrusive, yet they extract
most of the useful information about execution behavior.

Gauge also emphasizes the use of a limited number of program models that
can be displayed or analyzed in predefined ways, as well as the lifetime mon-
iloring of programs to obtain performance histories that are unfortunately
not preserved today. The system is extensible and will evolve to support
the tools that are most useful in program performance analysis.

23

24

References

(1]

2]
(3]

[4]

[6)

(7]

(8]

[9)
[10]

[11]

L. Sterling and E. Shapiro, The Art of Prolog: Advanced Programming
Techniques, (MIT Press, 1986).

W. Gale, Artificial Intelligence and Statistics, (Addison-Wesley, 1986).

J. Joyce, G. Lomow, K. Slind, and B. Unger, “Monitoring Distributed
Systems,” ACM Trans. Computer Systems, Vol. 5, pp. 121-150, May
1987.

J. Kurose, K. Gordon, R. Gordon, E. MacNair, and P. Welch, “A
Graphics-Oriented Modeler’s Workstation Environment for the RE-
Search Queueing Package (RESQ),” in IEEE Fall Joint Computer Conf.
(FJICC-86), pp. 719-728, 1986.

J. Mackinlay, “Automatic Design of Graphical Presentations,” Report
STAN-CS-86-1138, Dept. of Computer Science, Stanford University,
December 1986.

J. Mackinlay, “Automating the Design of Graphical Presentations
of Relational Information,” ACM Transactions on Graphics, Vol. 5,
pp. 110-141, April 1986.

B. Melamed, “The Performance Analysis Workstation: An Interactive
Animated Simulation Package for Queueing Networks,” in IEEE Fall
Joint Computer Conf. (FJCC-86), pp. 729-740, 1986.

J. Sinclair and S. Madala, “A Graphical Interface for Specification of
Extended Queueing Network Models,” in IEEE Fall Joint Computer
Conf. (FJICC-86), pp. 709-718, 1986.

R. Thisted, “Computing Environments for Data Analysis,” Statistical
Science, Vol. 1, no. 2, pp. 259-275, 1986.

R. W. Scheifler and J. Gettys, “The X Window System,” ACM Trans-
actions on Graphics, Vol. 5, pp. 79-109, April 1986.

J. Cohen, “Computer-Assisted Microanalysis of Programs,” Comm.
ACM, Vol. 25, pp. 724-733, October 1982.

25

{12] L. Ramshaw, “Formalizing the Analysis of Algorithms,” Technical Re-
port 79-741, Computer Science Dept., Stanford University, June 1979.

[13] M. Gorlick and C. Kesselman, “Timing Prolog Programs Without
Clocks,” in Proceedings Fourth Symposium on Logic Programming.
pp. 426-432, IEEE Computer Society, 1987.

[14] R. Jain and 1. Chlamtac, “The P? Algorithm for Dynamic Calculation
of Quantiles and Histograms Without Storing Observations,” Commu-
nications ACM, Vol. 28, no. 10, pp. 1076~1085, 1985.

[15] J. Pearl, “A Space-Efficient On-Line Method of Computing Quantile
Estimates,” Journal. of Algorithms, Vol. 2, pp. 164-177, 1981.

[16] D. H. D. Warren, “An Abstract Prolog Instruction Set,” technical note,
SRI International, Artificial Intelligence Center, October 1983.

(17} M. Hecht, Flow Analysis of Computer Programs, (Elsevier North-
Holland, 1977).

(18] M. Bruynooghe, G. Janssens, A. Callebaut, and B. Demoen, “Abstract
Interpretation: Towards the Global Optimization of Prolog Programs,”
in Proceedings Fourth Symposium on Logic Programming, pp. 192-204,
IEEE Computer Society, 1987.

(19] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints,” in Fourth Symposium on Principles of Programming
Languages, pp. 238-252, January 1977.

[20] S. Debray and D. Warren, “Automatic Mode Inference for Prolog
Programs,” in Proceedings Third Symposium on Logic Programming,
pp. 78-88, IEEE Computer Society, 1986.

[21] C. Mellish, “Abstract Interpretation of Prolog Programs,” in Proceed-
ings Third International Conf. on Logic Programming, pp. 463-474,
Springer-Verlag, 1986.

[22] M. Gorlick, C. Kesselman, D. Marotta, and D. Parker, “Mockingbird: A
Logical Methodology for Testing,” Technical Report ATR-86A-(8544)-
3, The Aerospace Corporation, June 1987.

26

[23] R. McCartney, “Synthesizing Algorithms with Performance Con-
straints,” in Proceedings AAAI 1987, pp. 149-154, July 1987.

[24] E. R. Tufte, The Visual Display of Quantitative Information, (Graphics
Press, 1983).

27

-
L
3

LABORATORY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer” for
national security projects, specializing in advanced military space systems.
Providing research support, the corporation's Laboratory Operations conducts
experimental and theoretical investigations that focus on the application of
scientific and technical advances to such systems. Vital to the success of
these investigations is the technical staff's wide-ranging expertise and its
ability to stiy current with new developments. This expertise is enhanced by
a vesearch program aimed at dealing with the many problems associated with
rapidly evolving space systems. Contributing their capabilities to the
research effort are these individual laboratories:

Aerophysics Laboratory: Launch vehicle and reeatry fluid mechanics, heat
transfer and flight dynamics; cheamical and electric propulsion, propellant
cheaistry, chemical dynamics, environmental chemistry, trace detection;
spacecraft structural mechanics, contamination, thermal and structural
control; high temperature thermomechanics, gas kinetics and radiation; cw and
pulsed chemical and excimer laser development including chemical kinetics,

spectroscopy, optical resonators, beam control, atmospheric propagation, laser
effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric cheaical reactions,
atmospheric optics, light scattering, state-specific chemical reactions and
radiative signatures of missile plumes, sensor out-of-field-of-view rejection,
applied laser spectroscopy, laser chemistry, laser optoelectronics, solar cell
physics, battery electrochemistry, space vacuum and radiation effects on
materials, lubrication and surface phenomena, thermionic emission, photo-
sengitive materials and detectors, atomic frequency standards, and
environmental chemistry.

Cowputer Science Laboratory: Program verification, program translation,
performance-sensitive system design, distributed architectures for spaceborne
computers, fault-toleraut cowputer systems, artificial intelligence, micro-
electronics applications, communication protocols, and computer security.

Electronics Research Laboratory: Microelectronics, solid-state device
physics, compound semiconductors, radiation hardening; electro-optics, quantum
electronics, solid-state lasers, optical propagation and communications;
aicrowave semiconductor devices, microwave/millimeter wave measurements,
diagnostics and radiometry, microwave/millimeter wave thermionic devices;
atomic time and frequency standards; antennas, rf systems, electromagnetic
propagation phenomena, space communication systems.

Materials Sciences Laboratory: Development of new materials: metals,
alloys, ceramics, polymers and their cowposites, and new forms of carbon; non-
destructive evaluation, component failure analysis and reliability; fracture
mechanics and stress corrosion; analysis and evaluation of materials at
cryogenic and elevated temperatures as well as in space and enemy-induced
environments.

Space Sciences Lsboratory: Magnetospheric, auroral and cosaic ray
physics, wave-particle interactions, magnetospheric plasma waves; atmospheric
aad ionospheric physics, density and composition of the upper atmosphere,
remote sensing using atgospheric radiation; solar physics, infrared astronoamy,
infrared signature analysis; effects of solar activity, magnetic storms and
nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere;
effects of electromagnetic and particulate radiations on space systems; space
instrumentation.

