e

. UNCLASSIFIED s o
SECUE:Tv CLASSIFICATION OF THIS PAGE (Wher Dats fnterech R
REPORT DOCUMENTATION PAGE pernd peemuemoss f
1. REPORT NUMBIR 12. 60VY ACCESSION NO.]3. RECIPIENT'S CATALOG NumBS

4. TILE (and Subtitie) 5 TYPt OF REPORT & PERIOD COVERLD

: . : . eq_

Ada Compiler Validation Summary Report: v¥ncore [|0° Jan. 19%9- 30 Nov. 1089
Computer Corporation, Encore Verdix Ada Development Systemf ™ praroaming ORG. REPORT NUMBLR
Version 5.5, Encore ‘Multimax 320 (Host & Target) £90113S1.p9lA] :

7. AUTMOR(s)

8. CONTRACT OR GRANT NUMEE R(s)

National Ins*itute of Standards and Technology
Gaithersburg, Maryland, USA

9. PERFORMING ORGANIZATION AND ADDRESS

10. PROGRAM ELEMENT, PRLOECY, TASK

AREA & WORK UNIT WUMBERS
National Institute of Standards and Technology

Gaithersburg, Maryland, USA

11. CONTROLLING OFFICE MAML AND ADDRESS xz.ﬂqju?m oplk
Gdg nggt Program Office £ Def Jan 10vc
nite tates Department © efense T RURE
Washington, DC 20301-3081 : R UF PALES
14, MONITOR'NG AGENCY NAME & ADDRESS(!f aifferent from Controling Office) .5, SECURITY CLASS (of thireport)
UNCLASSIFIED

National Institute of Standards and Technology 158 CLASSITICATION, - -
. DOWAGRADING
Gaithersburg, Maryland, USA gEntDuEé N

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

7. DISTRIBUTION STATEMINT (of the abstractentered inBiock 20 1 o.Herentfrom Report)

UNCLASSIFIED

AD-A208 515

ELECTE

8. SUPPLEMINTARY NOTES

v D

18. KEYWORDS (Continue onreverse 06 ({ necessary andidentify by block numper)

Ada Programring language, Ada Compiler Validation Summary Repcrt, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRALT (Continue onreverse s:0e if necessary and (dentify by block number)

Encore Verdix Ada Development Svstem, Version 5.5, ®ncore Computer Torporation,
National Institute of Standards and Technology, Encore “Multimax 3?0 under "max Vv,
Version R2.2, (Host.and Target), ACVC 1.09

DD 'oxm 1473 eDITiON OF 1 NOV 65 IS OBSOLETE

1308 73 S/N £102-LF-014-6601 UNCLASSIFI-D
SECURTITY CLASSIFICATON OF TIMIS PACL (vWhen Date Entered)

e

AVF Control Number: NIST89ENCS15 2 1.09
01-13-89:02-09-89

Ada Compiler
VALIDATION SUMMARY REPORT:
Certificate Number: 890113§1.09161
Encore Computer Corporation
Encore Verdix Ada Development System, Version 5.5
Encore Multimax 320 Host; Encore Multimax 320 Target

Completion of On-Site Testing:
January 09, 1989

Prepared By:

Software Standards Validation Group
National Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

Accesion For

i
Prepared For: NI‘? CRA&| d
Ada Joint Program Office DTIC 748 Q
United States Department of Defense Unannounced Q

Washington, D.C. 20301-3081 Justitication

By ...
Diztiibution |
I

Avaiab¥ty Codes

I AV i and/or

/}\ Dist ' Special
ANy \ ‘)
Al
H |

Ada Compiler Validation Summary Report:

Compiler Name: Encore Verdix Ada Development System, Version 5.5

Certificate Number: 89011351.09161

Host: Target:
Encore Multimax 320 under Encore Multimax 320 under
Umax V, Umax V,
Version R2.2 Version R2.2

Testing Completed January 09, 1989 Using ACVC 1.9

This report has been reviewed and is approved.

N/

Ada Validation r;é]:ni:y(

Dr. David K. Jeffers

Chief, Information Systems

Engineering Division

National Computer Systems Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899

A/ -

Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria, VA 22311

AN /S vl

Ada Joint Program Office

Mr. William S. Ritchie, Acting Director
Department of Defense

Washington DC 20301

Ada Compiler Validation Summary Report:

Compiler Name: Encore Verdix Ada Development System, Version 5.5

Certificate Number: 890113S51.09161

Host: Target:
Encore Multimax 320 under Encore Multimax 320 under
Umax V, Umax V,
Version R2.2 Version R2.2

Testing Completed January 09, 1989 Using ACVC 1.3

This report has been reviewed and is approved.

e

Ada Validation E ility\

Dr. David K. Jefferson

Chief, Information Systems

Engineering Division

National Computer Systems Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899

Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria, VA 22311

\

Ada Joint Program Office

Mr. William S. Ritchie, Acting Director
Department of Defense

Washington DC 20301

CHAPTER 1

el el al ala
0N SR NN

CHAPTER 2

CHAPTER

w

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

W WwWwWWwWwwwww
NN NNV W

W=

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT
USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES

DEFINITION OF TERMS

ACVC TEST CLASSES

CONFIGURATION INFORMATION

CONFIGURATION TESTED . .
IMPLEMENTATION CHARACTERISTICS .

TEST INFORMATION

TEST RESULTS . . .
SUMMARY OF TEST RESULTS BY CLASS .
SUMMARY OF TEST RESULTS BY CHAPTER .
WITHDRAWN TESTS .o
INAPPLICABLE TESTS .

TEST, PROCESSING, AND EVALUATION MODIFICATIONS .

ADDITIONAL TESTING INFORMATION .
Prevalidation
Test Method
Test Site

CONFORMANCE STATEMENT

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHDRAWN TESTS

W W Wwwwwww
t

1 [[}
(U P N N N

CHAPTER 1

INTRODUCTION

v

This Validation Summary Report (VSR)? describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability ((ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.-

mdated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.)

This information in this report is derived from the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an Ada
compiler and evaluating the results. | The purpose of validating is to
ensure conformity of the compiler to the Ada Standard by testing that
the compiler properly implements legal language constructs and that it

identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
the Ada Standard. Six classes of test are used. These tests are

designed to perform checks at compile time, at link time, and during
execution.

1-1

..1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

Tc attempt to identify any language constructs supported by
the compiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
required by the Ada Standard

To determine that the implementation-dependent behavior is
allowed by the Ada Standard

On-site testing was completed January 09, 1989 at Marlborough, MA .

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act”™ (5 U.S.C. #552). The results of this validation apply only to
the computers, operating systems, and compiler versions identified in
this report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group

National Computer Systems Laboratory

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

1-2

1.3 REFERENCES

1. e

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

e L [o] e a o n n e,

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines. Ada Joint
Program Office, 1 January 1987.

3. Ada Com v dation Capabilit mplementers’ Guide.,
December 1986.

1.4 DEFINITION OF TERMS

ACVC

Ada Commentary

Ada Standard
Applicant

AVF

AVO

Compiler

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

An Ada Commentary contains all information relevant to
the point addressed by a comment on the Ada Standard.
These comments are given a unique identification number
having the form AI-ddddd.

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.
The agency requesting validation.

The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and

Guidelines.

The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and
technical support for Ada validations to ensure
consistent practices.

A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and

1-3

Failed test

Host

Inapplicable
test

Language
Maintenance

Passed test

Target

Test

Withdrawn
test

interpreters.

An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

The computer on which the compiler resides.

An ACVC test that uses features of the language that a
compiler is not required to support or may legitimately
support in a way other than the one expected by the
test.

The Language Maintenance Panel (IMP) is a committee
established by the Ada Board to recommend
interpretations and Panel possible changes to the
ANSI/MIL-STD for Ada.

An ACVC test for which a compiler generates the expected
result.

The computer for which a compiler generates code.

An Ada program that checks a compiler’s conformity
regarding a particular feature or a combination of
features to the Ada Standard. 1In the context of this
report, the term is used to designate a single test,
which may comprise one or more files.

An ACVC test found to be incorrect and not used to check
conformity to the Ada Standard. A test may be incorrect
because it has an invalid test objective, fails to meet
its test objective, or contains illegal or erroneous use
of the language.

1.5 ACVC TEST CLASSES

The ACVC

Conformity to the Ada Standard is measured using the ACVC.
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce compilation
or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A
test to check semantics. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler.

1-4

A Class A test is passed if no errors are detected at compile time and
the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a

conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is

self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs containing
some features addressed by Class E tests during compilation. Therefore,
a Class E test is passed by a compiler if it is compiled successfully
and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
atvempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library wunits, the package REPORT and the procedure CHECK FILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure CHECK
FILE is used to check the contents of text files written by some of the
Class C tests for chapter 14 of the Ada Standard. The operation of
REPORT and CHECK_FILE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then

1-5

the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all

implementations in separate tests. However, some tests contain v lues
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A

list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an implementation
is considered each time the implementatinn is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is
withdrawn from the ACVC and, therefore, is not used in testing a
compiler. The tests withdrawn at the time of validation are given in
Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this wvalidation was tested under
the following configuration:

Compiler: Encore Verdix Ada Development System, Version 5.5

ACVC Version: 1.9

Certificate Number: 89011351.09161

Host Computer:

Machine: Encore Multimax 320

Operating System: Umax V,
Version R2.2

Memory Size 28 MBytes

Target Computer:

Machine: Encore Multimax 320

Operating System: Umax V,
Version R2.2

Memory Size: 28 MBytes

2-1

2.2 IMPLEMENTATION CHAPACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. <Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

- Capacities.
The compiler correctly processes tests containing loop

statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately compiled as subunits

nested to 17 levels. It correctly processes a compilation
containing 723 wvariables in the same declarative part. (See
test D55A03A..H (8 tests), D56001B, D6400SE..G (3 tests), and
D29002K.)

- Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See
tests D4AOOZA, D4AQO2B, D4A004A, and D4ADO4B.)

- Predefined types.

This implementation supports the additional predefined types
SHORT_INTEGER, SHORT_FLOAT, and TINY INTEGER in the package
STANDARD. (See tests B86001BC and B86001D.)

- Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may
raise NUMERIC_ERROR or CONSTRAINT_ERROR during execution. This
implementation raises NUMFRIC_ERROR during execution. (See test
E24101A.)

- Expression evaluation.

Apparently no default initialization expressions for record
components are evaluated before any value is checked to belong

2-2

to a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range. (See
test C35903A.)

Apparently NUMERIC_ERROR is raised when an integer literal
operand in a comparison or membership test is outside the range
of the base type. (See test C45232A.)

Sometimes NUMERIC_ERROR is raised when a literal operand in a
fixed-point comparison or membership test is cutside the range
of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

- Rounding.

The method used for rounding to integer is apparently round to
everi. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round to even. (See test C4AO0l4A.)

- Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT _ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX INT. For this
implementation:

Declaration of an array type or subtype declaration with more
than SYSTEM.MAX INT components raises no exception. (See test
C36003A.)

NUMERIC_ERROR is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components, (See test C36202A.)
NUMERIC_ERROR is raised when 'LENGTH is applied to an array type
with SYSTEM.MAX_INT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a ’'LENGTH exceeding INTEGER'LAST
raises NUMERIC_ERROR when the array type is declared. (See test

2-3

€C52103X)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC_ERROR when the array type
is declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER' LAST may raise NUMERIC_ERROR or CONSTRAINT ERROR either
vhen declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERIC_ERROR
when the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype 1is
compatible with the target’s subtype. In assigning
two-dimensional array types, the expression does not appear to
be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression’'s subtype is compatible
with the target’s subtype. (See test C52013A.)

- Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible discriminant
constraint. This implementation accepts such subtype
indications. (See test E381044A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT_ ERROR
is raised when checking whether the expression’'s subtype is
compatible with the target's subtype. (See test C52013A.)

- Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a

bound in a nonnull range of a nonnull aggregate does not belong
to an index subtype. (See test E43211B.)

2-4

- Representation clauses.

An implementation might legitimately place xestrictions on
representation clauses used by some .f the tests. If a
representation clause is not supported, then the implementation
must reject it.

Enumeration representation c¢lauses containing noncontiguous
values for enumeration types other than character and boolean
types are supported. (See tests (C35502I..J, C35502M..N, and
A39005F.)

Enumeration representation c¢lauses containing noncontiguous
values for character types are supported. (See tests
C355071..J, C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types
are supported. (See test A39005B.)

Length clauses with STORAGE_SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE_SIZE specifications for task types
are supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are not supported. (See test
A39005G.)

Length clauses with SIZE specifications for derived integer
types are supported. (See test C87B62A.)

- Pragmas.

The pragma INLINE is supported for procedures. The pragma
INLINE is supported for functions. (See tests LA3004A, LA3004B,
EA3004C, EA3004D, CA3004E, and CA3004F.)

- Input/output.

The package SEQUENTIAL IO can be instantiated with unconstrained

array types and record types with discriminants without
defaults. (See tests AE2101C, EE2201D, and EE2201lE.)

2-5

The package DIRECT I0 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL IO.
(See tests CE2102D and CE2102E.)

Modes IN_FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT _IO. (See tests CE2102F, CE2102I, and CE2102J.)

RESET and DELETE are supported for SEQUENTIAL IO and DIRECT_lO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIAL IO and DIRECT_IO. (See tests CE2106A and CEZ106B.)

Overwriting to a sequential file truncates the file to last
element written. (See test CE2208B.)

An existing text file can be opened in OUT_FILE mode, can be
created in OUT_FILE mode, and can be created in IN_FILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external
file for text I1/0 for both reading and writing. (See tests
CE3111A..E (5 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for sequential I/0 for both reading and writing. (See
tests CE2107A..D (4 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for direct I/0 for both reading and writing. (See tests
CE2107F..I (4 tests), CE2110B, and CE2111H.)

An external sequential access file and an internal direct access
file can be associataed with a single external file for writing.
(See test CE2107E.)

An external file associated with more than one internal file can
be deleted for SEQUENTIAL_IO, DIRECT_IO, and TEXT_IO. (See test
CE2110B.)

Temporary sequential files are given names. Temporary direct
files are given names. Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

- Generics.

Generic subprogram declarations and bodies can compiled in
separate compilations. (See tests CA1012A and CA2009F.)

2-6

Generic package declarations and bodies can be compiled in

separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

2-7

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 28 tests had been withdrawn because of test errors. The AVF
determined that 226 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for
withdrawn tests. Modifications to the code, processing, or grading for
26 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B c D E L
Passed 109 1049 1630 17 17 46 2868
Inapplicable 1 2 223 0 0 0 226
Withdrawn 3 2 21 0 2 0 28
TOTAL 113 1053 1874 17 19 46 3122
3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2.3 _4_35_6_7_8 9 10 11 12 13 14
Passed 190 499 540 245 165 98 142 326 137 36 234 3 253 2868

Inapplicable 14 7313 3 0 O 1 1 0 0 O O 0 226
Withdrawn 2 14 3 o0 1 1 2 o0 O O 2 1 2 28

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 28 tests were withdrawn from ACVC Version 1.9 at the time
of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
€35904B C35A03E C35A03R C37213H C37213J C37215¢C
C37215E C37215G C37215H c38102¢ C41402A C45332A
C45614C E66001D A74106C C85018B C87BO4B CC1311B
BC3105A AD1AO1A CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 226
test were inapplicable for the reasons indicated:

C35702B uses LONG_FLOAT which is not supported by this implementation.

A39005G uses length clauses with SIZE specifications for enumeration
types which are not supported by this compiler,

3-2

The following (13) tests use LONG_INTEGER, which is not supported by
this compiler.

C45231C C45304C C45502C €45503C C45504C
C45504F C45611C C45613C C45631C C45632C
B52004D C55B07A B55B09C

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point base
types which are not supported by this compiler.

€455310, C45531P, C455320, and C45532P use coarse 48-bit fixed-point
base types which are not supported by this compiler.

C86CO1F redefines package SYSTEM, but TEXT_IO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package TEXT_IO.

C96005B requires the range of type DURATION to be different from those
of its base type: in this implementation they are the same.

The following 201 tests require a floating-point accuracy that exceeds
the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y {14 tests) C35707L..Y (14 tests)
C35708L. .Y (14 tests) C35802L..Z (15 tests)
C45241L. .Y (14 tests) C45321L..Y (14 tests)
C45421L. .Y (14 tests) C45521L..Z (15 tests)
C45524L. .2 (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVI in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into sub-tests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that wasn't anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 26 Class B tests.

The following Class B tests were split because syntax errors at one
point resulted in the compiler not detecting other errors in the test:

B24009A B24204A B24204B B24204C B2A003A
B2A003B B2A003C B33301A B37201A B38003A

3-3

B38003B B38009A B38009B B41202A B44001A
B64001A B67001A B67001B B67001C B67001D
B91001H B91003B B95001A B97102A BC1303F
BC3005B

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced
by the Encore Verdix Ada Development System was submitted to the AVF by
the applicant for review. Analysis of these results demonstrated that
the compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3,7.2 Test Method

Testing of the Encore Verdix Ada Development System using ACVC Version
1.9 was conducted on-site by a validation team from the AVF. The
configuration consisted of a Encore Multimax 320 operating under Umax V,
Version R2.2.

A magnetic tape containing all tests except for withdrawn tests was
taken on-site by the validation team for processing. Tests that make
use of implementation-specific values were customized before being
written to the magnetic tape. The magnetic tape was read with a UNIX
utility, ansitape, which read the ANSI standard tape into the UNIX
system, Some of the files on the tape contained multiple ACVC test
sources and a NIST supplied utility, UNPACK.ADA, was used to "unpack"
those files such that there was one ACVC source program per file. The
files were then moved using a UNIX command, rcp, to their respective
directories on the disk of the HOST/TARGET hardware.

In a few .tst files, the macro substitutions that were done by NIST were
incompatible with the limitations of the UMAX operating system. The
macro substitutions were done again during the validation with wvalues
compatible with UMAX. The affected files are:

C35502D C35502F CE2102B CE2102C CE2102H CE2103A
CE2103B CE2107A

Split tests as supplied by Encore were checked against those
corresponding tests from the magnetic tape using a UNIX utility, diff,
No differences were found except those expected. The split tests as
supplied by Encore were used in the validation.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the Encore Multimax 320, and all executable tests
were linked and run. Results were printed from the target computer via

3-4

UNIX remote line printer facility over Ethernet.

The compiler was tested using command scripts provided by Encore
Computer Corporation and reviewed by the validation team. The compiler
was tested using all default option settings except for the following:

Option | Switch Effect

"-M" creates an executable program called "a.out”,
when there are no compilation or link errors
from the subprogram in the file argument.

"ew" means to suppress warnings.

"-el" means to produce an output listing consisting
of the source program being compiled
interspersed with error messages (if no
errors occur in the program, then no output is
generated).

Tests were compiled, 1linked, and executed (as appropriate) using a
single host computer. Test output, compilation listings, and job logs
were captured on magnetic tape and archived at the AVF,

3.7.3 Test Site

Testing was conducted at Marlborough, MA and was completed on January
09, 1989.

3-5

APPENDIX A

CONFORMANCE STATEMENT

A-1

... DECLARATION OF CONFORMANCE

'*-"Ada Compnlcr Vahdauon Capability (ACVC) Version: 19

: ‘ S B ~ Base Configuration

o Base Compﬂer Namc Encore Ve.rdnx Ada Developmem Systcm Vasxon 5.5

" _Host Architceture ISA: Encore Multimax 320 OSAVER# Umax V, Version R2.2
- Target Architecture ISA: Encore Multimax 320 OS&VER #' Umax v, Vusxon R2 2

s msn.an.

Implementor’s Declaration

.~ 1, the undersigned, representing Encore Computer Corporanon. have unplcmcmcd no deliberate extensions

" to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler listed in this declaration. I declare
that Encore Computer Corporation is the owner of record of the Ada language compiler listed above and as
such, is responsible for maintaining said compiler in conformance to ANSUMIL-STD-1815A. All
certificates and registrations for the Ada language compiler listed in this declaration shall be made only in
the owner's corporate name.

W%AA;A— Date: "/’/5’?

Encore Computer Corpéfation
Richard T. Simpson
Manager, Languages and Tools

Owner’s Declaration

I, the undersigned, representing Encore Computer Corporation, take full responsibility for the implementa-
tion and maintenance of the Ada compiler listed above, and agree to the public disclosure of the final Vali-
dation Summary Report. 1 further agree to continue o comply with the Ada rademark policy, as defined
by the Ada Joint Program Office. I declare that the Ada languace compiler listed, and its hostiarget per-
formance is in compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

W o : /2
A% Date: #Q’ZSZ

re Computer Corporation

- John Owens

Vice President, Development

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the Encore Verdix Ada
Development System, Version 5.5, are described in the following sections
which discuss topics in Appendix F of the Ada Standard. Implementation-
specific portions of the package STANDARD are also included in this
appendix.

package STANDARD is

type INTEGER is range -2147483648..2147483647;
type SHORT_INTEGER is range -32768..32767;
type TINY INTEGER is range -128..127

type FLOAT is digits 15 range
-1.79769313486231E+308..1.79769313486231E+308;

type SHORT_FLOAT is digits 6 range
-3.40282346638529E+38..3.40282346638529E+38;

*ype DURATION is delta 6.10351562500000E-05 range
-131072.0..131071.99993;

end STANDARD;

B-1

- . ATTACHMENT I

e APPENDIXF IMPLEMENTATION-DEPENDENT CHARACTERISTICS -

Pre- vahdauon Materials/Encore VADS Version 5.5

This pragma, when used in the same way as pragma INLINE, indicates to the compiler
that the subprogram must always be inlined. This pragma also suppresses thc generation
of a callable version of the routine which saves code space.

BUILT_IN

This pragma is used in the implementation of some predefined Ada packages, but pro-
vides no user access. Itis used only to implement code bodies for which no actual Ada
body can be provided, for exampie the MACHINE_CODE package.

SHARE_CODE

This pragma takes the name of a generic instantiation or a generic unit as the first argu-
ment and one of the identifiers TRUE or FALSE as the second argument. This pragma is
only allowed immediately at the place of a declarative item in a declarative part or pack-
age specification, or after a library unit in a compilation, but before any subsequent com-
pilation unit.

When the Grst argument is a generic urit the pragma applies to all instantiations of that
generic. When the first argument is the name of a generic instantiation the pragma
applies only to the specified instantiation, or overloaded instantiations.

If the second argument is TRUE the compiler will try to share code generated for a gen-
eric instantiadon with code generated {or other instantiations of the same generic. When
the second argument is FALSE each instantiation will get a unique copy of the generated
code. The extent to which code is shared between instantiations depends on this pragma
and the kind of generic formal parameters declared for the generic unit.

The name pragma SHARE_BODY is also recognized by the implementation and has the
same effect as SHARE_CODE. It is included for compatibility with earlier versions of
Encore VADS Ada.

NO_IMAGE

- This pmgma suppresses the gcneranon of the i c image array uscd for the IMAGE attribute

" of enumeration types. This eliminates the overhead 1 reqmmd to stom thc array in thc cxc-
.“_fu‘“ .:- cutable unage i ‘:” ”"_ T ETTIeTTITT

wﬁ-w‘ FENE [
et -

P C wes weva mem L L L

"EXTERNAL NAME '

e . - This pragma u_xkcs the name of a subprogram or variable defined in Ada and allows the .
j’_j;’;_‘_;i__f'user_toj specify a different external name that may be used to reference the entity from
- other languages. The pragma is allowed at the place of a declarative item in & package
 specification and must apply to an object dcclarcd carlier in thc same packagc
spcmﬁcanon

+ INTERFACE_OBJECT L

This pragma takes the name of a variable defined in another language and allows it to be
referenced directly in Ada. The pragma will replace all occurrences of the variable name

- with an external reference to the second, link_argument. The pragma is allowed at the
place of a declarative item in a package specification and must apply to an object
declared earlier in the same package specification. The object must be declared as a
scalar or an access type. The object cannot be any of the following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.
IMPLICIT_CODE
This pragma takes one of the identifiers ON or OFF as the single argument, and is only
allowed within a machine code procedure. It specifies that implicit code generated by the
compiler be allowed or disallowed. A warning is issued if OFF is used and any implicit
code needs to be generated. The default is ON.
2. PREDEFINED PRAGMAS
CONTROLLED
This pragma is recognized by the implementation but has no effect.
ELABORATE
This pragma is implemented as described in Appendix B of the Ada RM.

INLINE

""" This pragma is implemented as described in Appendix B of the Ada RM.

N ?—"'”MERFACE. -=:_.;—__~_« ‘___ — -:,——. ezl e e .- _«_-,., . ____

B Vet,...\‘.

Thxs pragma supports calls to C and FORTRAN funcuons The Ada subprograms can be
2 T either functions or procedures. The types of parameters and the result type for functions
. ... = must be scalar, access or the predefined type ADDRESS in SYSTEM._An optional third
"% - I argument overrides the default link name.: All parameters must have mode IN. Record
" and array objects can be passed by reference using the ADDRESS attribute. -
- This pragma is implemented as described in Appendix B of the Ada RM.
MEMORY_SIZE

T}us pragma is rccogmzcd by the implementation but has no cffoct. The xmplcmcmauon
does not allow SYSTEM to be modified by means of pragmas (the SYSTEM package
must be recompiled).

OPTIMIZE
This pragma is recognized by the implementation but has no effect.
PACK
This pragma will cause the compiler to minimize gaps between components in the
representation of composite types. For arrays, components will only be packed to bit
sizes corresponding to powers of 2, if the field is smaller than STORAGE_UNIT bits.
Objects larger than STORAGE_UNIT are packed to the nearest STORAGE_UNIT.
level.
PAGE
This pragma is implemented as described in Appendix B of the Ada RM.
PRIORITY

" This pragma is implemented as described in Appendix B of the Ada RM.
SHARED
This pragma is recognized by the implementation but has no effect.

STORAGE_UNIT

This pragma is recognized by the implementation but has no effect. The implementation

must be rccompxlcd)

| 'I'hxs pragma is mplemcnted as described in Appcndxx B of the Ada RM.

SYSTEM NAME

R Thxs pragma is recognized by the mplcmcntanon but has no effect. The implementation
- does not allow SYSTEM to be modlﬁed by means of pragmas (the SYSTEM package
~--- 7~ must be recompiled). .

3. IMPLEMENTATION-DEPENDENT ATTRIBUTES
The attribute REF has two forms: X’REF and SYSTEM.ADDRESS(N):

In X’REF, X must be a constant, variable, procedure, function, or label. The attribute
returns a value of the type MACHINE_CODE.OPERAND and may only be used to
designate an operand within a code statement.

In SYSTEM.ADDRESS(N), SYSTEM.ADDRESS must be of the type
SYSTEM.ADDRESS. N must be an expression of type UNIVERSAL_INTEGER. The
attribute returns a value of type SYSTEM.ADDRESS, which represents the address

designated by N (this is similar to the effect of an unchecked conversion from integer to
address except N must be static).

4. SPECIFICATION OF PACKAGE SYSTEM

package SYSTEM
is

type NAME is (UMAX_V);
SYSTEM_NAME : constant NAME := UMAX_V;

STORAGE_UNIT : constant ;= 8;
MEMORY_SIZE rconstant ;= 16777216;

-- System-Dependent Named Numbers

MIN_INT : constant :=-2147483648;
MAX_INT : constant := 2147483647,
MAX_DIGITS : constant := 15;
MAX_MANTISSA : constant := 31;

dbes not allow SYSTEM to be modified by means of pragmas (the SYSTEM package

FINE_DELTA : constant ;= 6.10351562500000E-05;

TICK , constant 1 00000000000000E-02

Othcr System-dependent Dcclarauons -

'; subtypc PRIORITY is INTEGER range 0. 99;

JRPURE LA A A Ly T - . Cem R

CnEET MAX REC SIZE mtegcr - 65536;

K type ADDRESS is private;
NO_ADDR: constant ADDRESS;

- function PHYSICAL_ADDRESS(I: INTEGER) return ADDRESS;
function ADDR_GT(A, B: ADDRESS) return BOOLEAN;
function ADDR_LT(A, B: ADDRESS) return BOOLEAN;
function ADDR_GE(A, B: ADDRESS) return BOOLEAN;
function ADDR_LE(A, B: ADDRESS) return BOOLEAN;
function ADDR_DIFF(A, B: ADDRESS) return INTEGER;
function INCR_ADDR(A: ADDRESS; INCR: INTEGER) return ADDRESS;
function DECR_ADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS:

function ">"(A, B: ADDRESS) return BOOLEAN renames ADDR_GT;

function "<"(A, B: ADDRESS) return BOOLEAN renames ADDR_LT;

function ">="(A, B: ADDRESS) return BOOLEAN renames ADDR_GE;

function "<="(A, B: ADDRESS) return BOOLEAN renames ADDR_LE;

function "-"(A, B: ADDRESS) retum INTEGER renames ADDR_DIFF,

function "+"(A: ADDRESS; INCR: INTEGER) return ADDRESS renames INCR_ADDR;
function "-"(A: ADDRESS; DECR: INTEGER) return ADDRESS renames DECR_ADDR;

pragma inline(PHYSICAL_ADDRESS),
pragma inline(ADDR_GT);

pragma inline(ADDR_LT);

pragma inline(ADDR_GE);

pragma inline(ADDR_LE);

pragma inline(ADDR_DIFF);

pragma inline(INCR_ADDRY);

pragma inline(DECR_ADDR),

private

type ADDRESS is new INTEGER;
no_addr: constant address :=0;

end SYSTEM

5. ATTRIBUTES OF TYPES IN ST. ANDARD

- - -~ Atributes of the pre-defined type DURATION -

first -131072.00000

... Jlast . 131071.99993

- Tosize - 32 0 -
delta 6.10351562500000E-05

" . mantissa 31 -

small 6.10351562500000E-05
large 1.31071999938964E+05
fore 7
aft 5

safe_small 6.10351562500000E-05
.. safe_large 1.31071999938964E+05

machine_rounds TRUE

machine_overflows TRUE

Attributes of type FLOAT
first -1.79769313486231E+308
last 1.79769313486231E+308
size 64
digits 15
mantissa 51
epsilon 8.88178419700125E-16
emax 204
small 1.94469227433160E-62
large 2.57110087081438E+61
safe_emax 1021

safe_small 2.22507385850720E-308
safe_large 2.24711641857789E+307

machine_radix 2
machine_mantissa 53
machine_emax 1024
machine_emin -1021

machine_rounds TRUE
machine_overflows TRUE

Attributes of type SHORT_FLOAT

first -3.40282346638529E+38
last 3.40282346638529E+38
size 32

digits 6

mantissa 21

 __epsilon __ 9.53674316406250E-07

 emax - 84
SEESEE omall S 2.58493941422821E-26 < ¢ ¢
i large - --~1.93428038904620E+25
" safe_emax 125

safe_small 1.17549435082228E-38
... safe_large=_" 4.25352755827077E+37
% 'machine_radix - 2 '

machine_mantissa 24
- machine_emax - 128
machine_emin -125

machine_rounds TRUE
machine_overflows TRUE

Ranges of predefined integer types

TINY_INTEGER -128..127 -
SHORT_INTEGER -32768 .. 32768
INTEGER -2147483648 .. 2147483647
Default STORAGE_SIZE (collection size) for access types
100000
Priority range is 0 .. 99
Default STORAGE_SIZE for tasks is
10240

If tasks need larger stack sizes, the 'STORAGE_SIZE attribute
may be used with the task type declaration,

Atributes and time-related numbers

Duraton’smalil 6.10351562500000E-05
System.tick 1.00000000000000E-02

6. RESTRICTIONS ON REPRESENTATION CLAUSES
Pragma PACK
See section (2) above.

Size Specificaton

The size speclﬁcatxon T'SMALL is not supported_except when the representation

spec1ﬁcauon is the same as the value 'SMALL for the basc typc

7. RECORD REPRESENTATION CLAUSES

- Compopcnt _clauscs must be aligned on STORAGE_UNIT boundaries. o
s G

- Address clauses are supported for objccts- and énm’cs.

Interrupts

Interrupt entries are supported for UNIX signals. The Ada for clause gives the UNIX sig-
nal number.

Representation Attributes
The ADDRESS attribute is not supported for the following entities:

Packages

- Tasks

Entries
8. MACHINE CODE INSERTIONS
Machine code insertions are supported.
The general definition of the package MACHINE_CODE provides an assembly language
interface for the target machine. It provides the necessary record type(s) needed in the
code statement, an enumeration type of all the opcode mnemonics, a set of register
definitions, and a set of addressing mode functions.
The general syntax of a machine code statement is as follows:

CODE_N’(opcode, operand {, operand});

where N indicates the number of operands in the aggregate.

A special case arises for a variable number of operands. The operands are listed within a
subaggregate. The format is as follows:

CODE_N’(opcode, (operand {, operand}));

For those opcodes that require no operands, named notation must be used (cf. RM
4.3(4)).

' CODE _0'(op => opcode);

~ The opcode must be an enumeration htcral (i.e. it cannot be an objcct, attribute, or a

B St

-~-~renamc) ——-—-—— IR -

‘An operand can only be an entity defined in MACHINE_CODE or the "REF attribute.

) ~The aréumcnts to any of thc funcuons dcﬁned in MACHINE CODE must bc static

expressions, string literals, or the functions defined in MACHINE_CODE. The 'REF

~ . attribute may not be used as an argument in any of these functions.

: Inhne expansion of machine code procedures is supported.

9. CONVENTIONS FOR IMPLEMENTATION-GENERATED NAMES

L e -

There are no mplcmcntanon—gcncratcd names.

10. INTERPRETATION OF EXPRESSIONS IN ADDRESS CLAUSES

Address clauses are supported for constants and variables. Interrupt entries are specified
with the number of the UNIX signal.

11. RESTRICTIONS ON UNCHECKED CONVERSIONS

None.

12, RESTRICTIONS ON UNCHECKED DEALLOCATIONS

None.

13. IMPLEMENTATION CHARACTERISTICS OF 1/0 PACKAGES

Instantiations of DIRECT_IO use the value MAX_REC_SIZE as the record size
(expressed in STORAGE_UNITS) when the size of ELEMENT_TYPE exceeds that
value, For example, for unconstrained arrays such as string where
ELEMENT_TYPE'SIZE is very large, MAX_REC_SIZE is used instead.
MAX_RECORD_SIZE is defined in SYSTEM and can be changed by a program before
instantiating DIRECT_]O to provide an upper limit on the record size. In any case, the
maximum size supported is 64 * 1024 bytes. DIRECT_IO will raise USE_ERROR if
MAX_REC_SIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL_IO use the value MAX_REC_SIZE as the record size

(expmssed in STORAGE _UNITS) when the size of ELEMENT_TYPE exceeds that

“value. For example, for unconstrained arrays such as string where
~-#i-== g EMENT. TYPE'SIZE is very 1arge, MAX_REC_SIZE is used instead.
- MAX RECORD_SIZE is defined in SYSTEM and can be changed by a program before
"~ 7instantiating INTEGER_IO to provide an upper limit on the record size.
" SEQUENTIAL_IO imposes no limit on MAX_REC_SIZE.

"' 14. IMPLEMENTATION LIMITS =

_The following limits are actually enforced by the implementation. It is not intended to
- imply that resources up to or even near these limits are available to every program.

Line Length

The implementation supports a maximum line length of 499 characters not including the
end of line character.

Record and Array Sizes

The maximum size of a statically sized array type is 4,000,000 x STORAGE_UNITS.
The maximum size of a statically sized record type is 4,000,000 x STORAGE_UNITS.

- Arecord type or array type declaration that exceeds these limits will generate a warning
message.

Default Stack Size for Tasks

In the absence of an explicit STORAGE_SIZE length specification every task except the
main program is allocated a fixed size stack of 10,240 STORAGE_UNITS. This is the
value returned by T'STORAGE_SIZE for a task type T.

Default Collection Size

In the absence of an explicit STORAGE_SIZE length atiribute the default collecton size
for an access type is 100,000 STORAGE_UNITS. This is the value retumned by
T’STORAGE_SIZE for an access type T.

Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE_UNITS for objects declared stati-
cally within a compilation unit. If this value is exceeded the compiler will terminate the
compilation of the unit with a FATAL error message.

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

Name and Meaning Value

$BIG_ID1 1..498 => "A", 499 => "1"
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID2 1..498 => "A", 499 <> "2"
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID3 1..249 => "A", 250 => "3",
Identifier the size of the 251..499 =~> "A"
maximum input line 1length with
varying middle character.

$BIG_1D4 1..249 => "A", 250 => "4",
Identifier the size of the 251..499 => "A"
maximum input line 1length with
varying middle character.

$BIG_INT_LIT 1..496 => '0', 497..499 => 298"

An integer literal of value 298
with enough leading zeroes so
that it 1s the size of the
maximum line length.

$BIG_REAL_LIT 1..493 ~> '0', 494, .499 =>
A universal real literal of '69.0E1’

value 690.0 with enough leading

zeroes to be the size of the

maximum line length.

c-1

$B1G_STRING1
A string literal which when

catenated with BIG_STRING2
yields the image of BIG_ID1.
$BIG_STRING2
A string 1literal which when
catenated to the end of
BIG_STRINGl yields the image of
BIG_ID1.
$BLANKS
A sequence of blanks twenty
characters less than the size

of the maximum line length.

$COUNT_LAST
A universal integer literal
whose value is

TEXT_IO.COUNT'LAST.

$FIELD_LAST
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

$FILE_NAME WITH_BAD_CHARS
An external file name that
either contains invalid
characters or 1is too long.

$FILE_NAME WITH_WILD_CARD_CHAR

An external file name that
either contains a wild card
character or is too long.

C-2

1..199 => "A"

1..299 => "A", 300 => "1"

1..479 => " "

2_147_483_647

2_147_483_647

1..256 ~> "abcdefghijklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnop”, 257 => "X",
258..513 => "abcdefghijklmnop
abcdefghijklmnopabecdefghijklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnopabedefghijklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnopabcdefghijklmn"

1..256 => "0123456789ABCDEF

0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456~ 89ABCDEF

$MAX DIGITS
Maximum digits supported for
floating-point types.

$MAX_ IN_LEN
Maximum input line length
permitted by the implementation.

SMAX_INT
A universal integer literal
whose value is SYSTEM.MAX INT.

$MAX INT_PLUS_1
A universal integer 1literal
whose value is SYSTEM.MAX INT+1.

$MAX LEN_INT BASED_LITERAL
A universal integer based
literal whose ~value is 2#11#
with enough leading zeroes in
the mantissa to be MAX IN_LEN
long.

$MAX LEN _REAL BASED_LITERAL
A universal real based literal
whose value 1is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX IN LEN long.

$MAX STRING_LITERAL

A string 1literal of size
MAX IN LEN, including the quote
characters.
SMIN INT
A universal integer 1literal
whose wvalue is SYSTEM.MIN_ INT.
SNAME

A mname of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.

$NEG_BASED INT
A Dbased
highest

integer literal whose

order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

C-4

15

499

2147483647

2147483648

1..2

L2 => 127, 3,.,496 => ‘0,
497..499 =>

‘11:°

1..3 => *16:', &4..4G5 => 'O’
496..499 ~> 'F.E:’

1 => """, 2..498 ~> ‘A’

499 => *n

-2147483648

TINY_ INTEGER

16#FFFFFFFD#

0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF", 257 => "X",
258..513 => "0123456789ABCDEF
0123456 789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456 789ABCDEF(0123456789ABCD"

SGREATER_THAN DURATION 100_000.0
A universal real 1literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATER_THAN_DURATION_ BASE_LAST 10_000_000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

SILLEGAL_EXTERNAL FILE NAME1l 1..256 +> "a", 257 => "1",
An external file name which 258..513 => "ag"
contains invalid characters.

SILLEGAL_EXTERNAL FILE NAME2 1..256 => "b", 257 => "2",
An external file name which 258..513 => "a"
is too long.

SINTEGER_FIRST -2147483648
A universal integer literal
whose wvalue is INTEGER'FIRST.

$INTEGER_LAST 2147483647
A universal integer 1literal
whose value 1is INTEGER’LAST.

$1NTEGER_LAST_PLUS_1 21474836478
A universal integer literal
whose value is INTEGER’LAST + 1.

$LESS_THAN_DURATION -100_000.0
A universal real 1literal that
lies between DURATION’BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS_THAN_DURATION_ BASE_FIRST -10_000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

c-3

—

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 28 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form "AI-ddddd" is to an Ada Commentary.

B28003A:

E28005C:

C34004A:

C35502P:

A35902C:

C35904A:

€35904B:

C35A03E,
& R:

C37213H:

C37213J:

A basic declaration (line 36) wrongly follows a later

declaration.

This test requires that ‘PRAGMA LIST (ON);' not appear in a
listing that has been suspended by a previous "pragma LIST
(OFF);"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ARG.

The expression in line 168 wrongly yields a value outside of
the range of the target type T, raising CONSTRAINT ERROR.

Equality operators in lines 62 & 69 should be inequalicy
operators.

Line 17’'s assignment of the nomimal upper bound of a
fixed-point type to an object of that type raises
CONSTRAINT_ERROR, for that value lies outside of the actual
range of the type.

The elaboration of the fixed-point subtype on line 28 wrongly
raises CONSTRAINT ERROR, because its upper bound exceeds that
of the type.

The subtype declaration that is expected to raise
CONSTRAINT _ERROR when its compatibility is checked against that
of various types passed as actual generic parameters, may in
fact raise NUMERIC_ERROR or CONSTRAINT_ERROR for reasons not
anticipated by the test,

These tests assume that attribute 'MANTISSA returns 0 when
applied to a fixed-point type with a null range, but the Ada
Standard doesn’t support this assumption.

The subtype declaration of SCONS in line 100 is wrongly
expected to raise an exception when elaborated.

The aggregate in line 451 wrongly raises CONSTRAINT_ERROR.

D-1

C37215C,
E, G, H:
c38102C:

C41402A:

C45332A:

C45614C:

E66001D:

A74106C,
C85018B,
C87B04B,
CC1311B:

BC3105A:

AD1AOQ1A:

CE2401H:

CE3208A:

Various discriminant constraints are wrongly expected
to be incompatible with type CONS.

The fixed-point conversion on 1line 23 wrongly raises
CONSTRAINT_ERROR.

'STORAGE_SIZE 1is wrongly applied to an object of an access
type.

The test expects that either an expression in line 52 will
raise an exception or else MACHINE _OVERFLOWS is FALSE.
However, an implementation may evaluate the expression
correctly using a type with a wider range than the base type of
the operands, and MACHINE OVERFLOWS may still be TRUE.

REPORT.IDENT_INT has an argument of the wrong type
(LONG_INTEGER) .

AI-330 states this test is to be changed from an "E" test to a
"B" test during the next version of the ACVC. AI-330 was
approved in July 1986, 6 months before the initial version of
ACVC Version 1.9 was released and a nearly a full year before
the final version of ACVC Version 1.9 was released. This test
is withdrawn pending further comment from AJPO regarding issue
of the test being a B Test rather than an E Test.

A bound specified in a fixed-point subtype declaration

lies outside of that calculated for the base type, raising
CONSTRAINT _ERROR. Errors of this sort occur re lines 37 & 59,
142 & 143, 16 & 48, and 252 & 253 of the four tests,
respectively (and possibly elsewhere).

Lines 159..168 are wrongly expected to be illegal; they are
legal.

The declaration of subtype INT3 raises CONSTRAINT ERROR for
implementations that select INT'SIZE to be 16 or greater.

The record aggregates in lines 105 & 117 contain the wrong
values.

This test expects that an attempt to open the default output
file (after it was closed) with mode IN_FILE raises NAME_ERROR
or USE_ERROR; by Commentary AI-00048, MODE_ERROR should be
raised.

D-2

