
UNCLASS1FIED
SECU':

'
V CLASS)F.W.A ION, Of ITIS PAGd (WIe ',a,.nte~cc''

REPORT DOCUMENTAT ION PAGE SLA D ?3j)CToNs

1. REPORT NUMBER 12. 6OV7 ACCESSIOk NO. 3. RECIPIENI'S CATALOG IUWB EP ,,m

4. TITLE (,ldSubr,fe) 5 IYPL Of REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: 1ncore 00 Tan. "qoq- 30 Nov. 1Q$

Computer Corporation, Encore Verdix Ada Development System -. PERFORMINGIORG. REPORT NUMBER

V rsion 5.5, Encore Miultimax 320 (Host & .'aet) P90113.3.)Q161
7. AUTNORi,) I. CONTRACT OR GRANT NUMEER()

National Institute of Standards and Technology

Gaithersburg, Maryland, USA

9. PERFORMINC, ORGANIZATION AND ADDRESS 10. PROGRAm ELEMENT. PRCj)EC. TASK
AREA £ V0R UN1T NUMBERS

National Institute of Standards and Technology

Gaithersburg, Maryland, USA

11. CONIROLLING OFFICE NAME AND ADDRESS IZ.A RPQRT of;4
Ada Joint Program Office ,Jan 1-.
United States Department of Defense 13. uNU Of'PA6L5
Washington, DC 20301-3081
14. NO ITOR'kG AGENCY NAME & ADDRESS(lf different from Controlling Office) .4. SECURITY CLASS (of this repot)

UNCLASSIFIED
National Institute of Standards and Technology IS. FC1ASJ1IECATION/DO'%RADI.

LO Gaithersburg, Maryland, USA hC E[UDU
__ I N/A

If 15. DISTRIBUTION STATEMENT (ofthsaReport)

()o Approved for public release; distribution unlimited.
0

7. DI S RI B.;110 ST AT £ Mj,.E (of the ,bntac ente,eo',n Block 20 Idfferentf, om Report)

UNCLASSIFIED DTIC
ELECTE

. SUPP ,EME AR NO IES Y 2 , 1908090 D

19. KEv:RZ'S (Continue on reversfe jjofif necemlir) nd dentif) bblock nAumber)

Ada Programming language, Ada Compiler Validation Sm.ajary Repcrt, Ada
Compile.r Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRAC I (Continue on reverse side of necessary and ,entith by block number)

Encore Verdix Ada Development System, Version 5.5, Encore Computer Corporation,
National Institute of Standards and Technology, Encore "Iultimax 390 under "max
Version R2.2, (Host and Target), ACVC 1.09

OD u", 1473 EDITION OF I NOv 65 IS OBSOLETE
I JAN U S/N C102-L,-014-660I UNCLASS!FIII±

SECURITY CLA$SItICA7lON Of 1P,/S PA., (bIen~.rFnrered)

* r

AVF Control Number: NIST89ENC515 2 1.09
01-13-89:02-09-89

Ada Compiler
VALIDATION SUMMARY REPORT:

Certificate Number: 890113S1.09161
Encore Computer Corporation

Encore Verdix Ada Development System, Version 5.5
Encore Multimax 320 Host; Encore Multimax 320 Target

Completion of On-Site Testing:
January 09, 1989

Prepared By:
Software Standards Validation Group
National Computer Systems Laboratory

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

Accesion For

Prepared For: NTIS CA&I

Ada Joint Program Office DTIC TAB 3
United States Department of Defense U11aflnoLJrvced 1

Washington, D.C. 20301-3081 JUStitfidtiVII

By
Dizt, ibtiOn

Aviitbtty Codes
• AV;, and/or

Dist Spcal

Al

Ada Compiler Validation Summary Report:

Compiler Name: Encore Verdix Ada Development System, Version 5.5

Certificate Number: 890113S1.09161

Host: Target:
Encore Multimax 320 under Encore Multimax 320 under
Umax V, Umax V,
Version R2.2 Version R2.2

Testing Completed January 09, 1989 Using ACVC 1.9

This report has been reviewed and is approved.

Dr. David K. Jef ersty
Chief, Information Systems
Engineering Division
National Computer Systems Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899

Ad's Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria, VA 22311

Ada Joint Program Office
Mr. William S. Ritchie, Acting Director
Department of Defense
Washington DC 20301

Ada Compiler Validation Summary Report:

Compiler Name: Encore Verdix Ada Development System, Version 5.5

Certificate Number: 890113S1.09161

Host: Target:
Encore Multimax 320 under Encore Multimax 320 under
Umax V, Umax V,
Version R2.2 Version R2.2

Testing Completed January 09, 1989 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validation Fil ty
Dr. David K. Jeffersan
Chief, Information Systems
Engineering Division
National Computer Systems Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899

Ada Validation Organization

Dr. John F. Kramer
Institute for Defense AnalysesJ
Alexandria, VA 22311

Ada Joint Program Office
Mr. William S. Ritchie, Acting Director
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2

1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 3-3
3.7 ADDITIONAL TESTING INFORMATION 3-4
3.7.1 Prevalidation3-4
3.7.2 Test Method3-4
3.7.3 Test Site 3-5

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

/ This Validation Summary Report (VSR)P describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of _t csng this compiler using the Ada Compiler
Validation Capability -(CV)c- An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.

Ev-en though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.-

This information in this report is derived from the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an Ada
compiler and evaluating the results. ,The purpose of validating is to
ensure conformity of the compiler to the Ada Standard by testing that
the compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
the Ada Standard. Six classes of test are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

1-1

.I PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by
the compiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
required by the Ada Standard

To determine that the implementation-dependent behavior is
allowed by the Ada Standard

On-site testing was completed January 09, 1989 at Marlborough, MA

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to
the computers, operating systems, and compiler versions identified in
this report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group
National Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

1-2

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines. Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation CaDability Implementers' Guide.,
December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada Commentary An Ada Commentary contains all information relevant to
the point addressed by a comment on the Ada Standard.
These comments are given a unique identification number
having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and
technical support for Ada validations to ensure
consistent practices.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and

1-3

interpreters.

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Language The Language Maintenance Panel (LMP) is a committee
Maintenance established by the Ada Board to recommend

interpretations and Panel possible changes to the
ANSI/MIL-STD for Ada.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test An Ada program that checks a compiler's conformity
regarding a particular feature or a combination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may comprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet
its test objective, or contains illegal or erroneous use
of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce compilation
or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A
test to check semantics. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler.

1-4

A Class A test is passed if no errors are detected at compile time and
the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs containing
some features addressed by Class E tests during compilation. Therefore,
a Class E test is passed by a compiler if it is compiled successfully
and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
atiempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure CHECK
FILE is used to check the contents of text files written by some of the
Class C tests for chapter 14 of the Ada Standard. The operation of
REPORT and CHECKFILE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then

1-5

the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all
implementations in separate tests. However, some tests contain v lues
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an implementation
is considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is
withdrawn from the ACVC and, therefore, is not used in testing a
compiler. The tests withdrawn at the time of validation are given in
Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: Encore Verdix Ada Development System, Version 5.5

ACVC Version: 1.9

Certificate Number: 890113S1.09161

Host Computer:

Machine: Encore Multimax 320

Operating System: Umax V,
Version R2.2

Memory Size 28 MBytes

Target Computer:

Machine: Encore Multimax 320

OperAting System: Umax V,

Version R2.2

Memory Size: 28 MBytes

2-1

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

- Capacities.

The compiler correctly processes tests containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately compiled as subunits
nested to 17 levels. It correctly processes a compilation
containing 723 variables in the same declarative part. (See
test D55AO3A..H (8 tests), D56001B, D64005E..G (3 tests), and
D29002K.)

- Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAXINT. This
implementation processes 64 bit integer calculations. (See
tests D4AO02A, D4AO02B, D4AO04A, and D4AO04B.)

- Predefined types.

This implementation supports the additional predefined types
SHORTINTEGER, SHORTFLOAT, and TIN; INTEGER in the package
STANDARD. (See tests B86001BC and B86001D.)

- Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAXINT during compilation, or it may
raise NUMERICERROR or CONSTRAINTERROR during execution. This
implementation raises NUMERICERROR during execution. (See test
E24101A.)

- Expression evaluation.

Apparently no default initialization expressions for record
components are evaluated before any value is checked to belong

2-2

to a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range. (See
test C35903A.)

Apparently NUMERICERROR is raised when an integer literal
operand in a comparison or membership test is outside the range
of the base type. (See test C45232A.)

Sometimes NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is :outside the range
of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

- Rounding.

The method used for rounding to integer is apparently round to
even. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round to even. (See test C4AO14A.)

- Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINTERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises no exception. (See test
C36003A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

NUMERICERROR is raised when 'LENGTH is applied to an array type
with SYSTEM.MAXINT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERICERROR when the array type is declared. (See test

2-3

C52103X)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERICERROR when the array type
is declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINTERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERICERROR
when the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to
be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

- Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible discriminant
constraint. This implementation accepts such subtype
indications. (See test E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINTERROR
is raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

- Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong
to an index subtype. (See test E43211B.)

2-4

- Representation clauses.

An implementation might legitimately place -estrictions on
representation clauses used by some f the tests. If a
representation clause is not supported, then the implementation
must reject it.

Enumeration representation clauses containing noncontiguous
values for enumeration types other than character and boolean
types are supported. (See tests C355021..3, C35502M..N, and
A39005F.)

Enumeration representation clauses containing noncontiguous
values for character types are supported. (See tests
C35507I..J, C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE -> 0, TRUE -> 1) are
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types
are supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types
are supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are not supported. (See test
A39005G.)

Length clauses with SIZE specifications for derived integer
types are supported. (See test C87B62A.)

- Pragmas.

The pragma INLINE is supported for procedures. The pragma
INLINE is supported for functions. (See tests LA3004A, LA3004B,
EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIAL 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101C, EE2201D, and EE220IE.)

2-5

The package DIRECT 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE240IG.)

Modes IN FILE and OUTFILE are supported for SEQUENTIALIO.
(See tests CE2102D and CE2102E.)

Modes IN FILE, OUTFILE, and INOUTFILE are supported for
DIRECTIO. (See tests CE2102F, CE2102I, and CE2102J.)

RESET and DELETE are supported for SEQUENTIALIO and DIRECT_10.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIALIO and DIRECTIO. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file truncates the file to last
element written. (See test CE2208B.)

An existing text file can be opened in OUTFILE mode, can be
created in OUT FILE mode, and can be created in INFILE mode.
(See test EE31O2C.)

More than one internal file can be associated with each external
file for text I/O for both reading and writing. (See tests
CE3111A..E (5 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for sequential I/O for both reading and writing. (See
tests CE2107A..D (4 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for direct I/0 for both reading and writing. (See tests
CE2107F..I (4 tests), CE2110B, and CE2111H.)

An external sequential access file and an internal direct access
file can be associataed with a single external file for writing.
(See test CE2107E.)

An external file associated with more than one internal file can
be deleted for SEQUENTIALIO, DIRECTIO, and TEXTIO. (See test
CE211OB.)

Temporary sequential files are given names. Temporary direct
files are given names. Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

- Generics.

Generic subprogram declarations and bodies can compiled in
separate compilations. (See tests CA1012A and CA2009F.)

2-6

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and

BC3205D.)

Generic unit bodies and their subunits can be compiled in

separate compilations. (See test CA3OIlA.)

2-7

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 28 tests had been withdrawn because of test errors. The AVF
determined that 226 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for
withdrawn tests. Modifications to the code, processing, or grading for
26 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 109 1049 1630 17 17 46 2868

Inapplicable 1 2 223 0 0 0 226

Withdrawn 3 2 21 0 2 0 28

TOTAL 113 1053 1874 17 19 46 3122

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

Passed 190 499 540 245 165 98 142 326 137 36 234 3 253 2868

Inapplicable 14 73 134 3 0 0 1 1 0 0 0 0 0 226

Withdrawn 2 14 3 0 1 1 2 0 0 0 2 1 2 28

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 28 tests were withdrawn from ACVC Version 1.9 at the time
of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35904B C35AO3E C35AO3R C37213H C37213J C37215C
C37215E C37215G C37215H C38102C C41402A C45332A
C45614C E66001D A74106C C85018B C87BO4B CC1311B
BC3105A ADlAOlA CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 226
test were inapplicable for the reasons indicated:

C35702B uses LONG FLOAT which is not supported by this implementation.

A39005G uses length clauses with SIZE specifications for enumeration
types which are not supported by this compiler.

3-2

The following (13) tests use LONGINTEGER, which is not supported by
this compiler.

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45631C C45632C
B52004D C55B07A B55B09C

C45531M, C45531N, C45532M, and C45532N use fire 48-bit fixed-point base
types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit fixed-point
base types which are not supported by this compiler.

C86C01F redefines package SYSTEM, but TEXTIO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package TEXT_10.

C96005B requires the range of type DURATION to be different from those
of its base type; in this implementation they are the same.

The following 201 tests require a floating-point accuracy that exceeds
the maximum of 15 digits supported by this implementation:

C24Il3L..Y (14 tests) C35705L. .Y (14 tests)
C35706L..Y %14 tests) C35707L. .Y (14 tests)
C35708L..Y (14 tests) C35802L. .Z (15 tests)
C45241L..Y (14 tests) C45321L. .Y (14 tests)
C45421L..Y (14 tests) C45521L. .Z (15 tests)
C45524L..Z (15 tests) C45621L. .Z (15 tests)
C45641L..Y (14 tests) C46012L. .Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVr in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into sub-tosts so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that wasn't anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 26 Class B tests.

The following Class B tests were split because syntax errors at one
point resulted in the compiler not detecting other errors in the test:

B24009A B24204A B24204B B24204C B2AO03A
B2AO03B B2AO03C B33301A B37201A B38003A

3-3

B38003B B38009A B38009B B41202A B44001A
B64001A B67001A B67001B B67001C B67001D
B91001H B91003B B95001A B97102A BC1303F
BC3005B

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced
by the Encore Verdix Ada Development System was submitted to the AVF by
the applicant for review. Analysis of these results demonstrated that
the compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Encore Verdix Ada Development System using ACVC Version
1.9 was conducted on-site by a validation team from the AVF. The
configuration consisted of a Encore Multimax 320 operating under Umax V,
Version R2.2.

A magnetic tape containing all tests except for withdrawn tests was
taken on-site by the validation team for processing. Tests that make
use of implementation-specific values were customized before being
written to the magnetic tape. The magnetic tape was read with a UNIX
utility, ansitape, which read the ANSI standard tape into the UNIX
system. Some of the files on the tape contained multiple ACVC test
sources and a NIST supplied utility, UNPACK.ADA, was used to "unpack"
those files such that there was one ACVC source program per file. The
files were then moved using a UNIX command, rcp, to their respective
directories on the disk of the HOST/TARGET hardware.

In a few .tst files, the macro substitutions that were done by NIST were
incompatible with the limitations of the UMAX operating system. The
macro substitutions were done again during the validation with values
compatible with UMAX. The affected files are:

C35502D C35502F CE2102B CE2102C CE2102H CE2103A
CE2103B CE2107A

Split tests as supplied by Encore were checked against those
corresponding tests from the magnetic tape using a UNIX utility, diff.
No differences were found except those expected. The split tests as
supplied by Encore were used in the validation.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the Encore Multimax 320, and all executable tests
were linked and run. Results were printed from the target computer via

3-4

UNIX remote line printer facility over Ethernet.

The compiler was tested using command scripts provided by Encore
Computer Corporation and reviewed by the validation team. The compiler
was tested using all default option settings except for the following:

Option I Switch Effect

creates an executable program called "a.out",
when there are no compilation or link errors
from the subprogram in the file argument.

"-w"t means to suppress warnings.

"-el" means to produce an output listing consisting
of the source program being compiled
interspersed with error messages (if no
errors occur in the program, then no output is
generated).

Tests were compiled, linked, and executed (as appropriate) using a
single host computer. Test output, compilation listings, and job logs
were captured on magnetic tape and archived at the AVF.

3.7.3 Test Site

Testing was conducted at Marlborough, MA and was completed on January
09, 1989.

3-5

APPENDIX A

CONFORMANCE STATEMENT

A-1

DECLARATION OF CONFORMANCE

Comile tmnpimento Efiitrm flhpterorort' i onh

Ada Validation Facility: NIST, Software Standards Validation Group
" Ada Compiler Validation Capability (ACVC) Version: 1.9

.. - .- - -Base Configuration -

- - Base Compiler Name: Encore Verdix Ada Development System Version: 5.5

, Host Architecture ISA. Encore Mulwmax 320 OS&VER t. Umax V, Version R2.2

Target Architecture ISA Encore Mulmnax 320 OS&VER . Umax V, Version R2.2

Implementor's Declaration

: 1. the undersigned, representing Encore Computer Corporation, have implemented no deliberate extensions
to the Ada Language Standard ANSI/ML-STD-1815A in the compiler listed in this declaration. I declare
that Encore Computer Corporation is the owner of record of the Ada language compiler listed above and as
such, is responsible for maintaining said compiler in conformance to ANSVMIL-STD-1815A. All
certificates and registrations for the Ada language compiler listed in this declaration shall be made only in
the owner's corporate name.

Encore Computer Corp fradon

Richard T. Simpson
Manager, Languages and T>Is

Owner's Declaration

I, the undersigned, representing Encore Computer Corporation, take full responsibility for the implemenut-
non and maintenance of the Ada compiler listed above, and agree to the public disclosure of the final Vali-
dation Summary Report. I further agree to continue to comply with the Ada trademark policy, as defined
by the Ada Joint Program Office. I declare that the Ada languaee compiler listed, and its hostharget per-
formance is in compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

Date: " .
onre Computer Corporation t

Jo n Owens
Vice President, Development

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the Encore Verdix Ada
Development System, Version 5.5, are described in the following sections
which discuss topics in Appendix F of the Ada Standard. Implementation-
specific portions of the package STANDARD are also included in this
appendix.

package STANDARD is

uype INTEGER is range -2147483648..2147483647;
type SHORTINTEGER is range -32768..32767;
type TINY_INTEGER is range -128..127

type FLOAT is digits 15 range
-I.79769313486231E+308..l.79769313486231E+308;

type SHORT FLOAT is digits 6 range
-3.40282346638529E+38..3.40282346638529E+38;

".ype DURATION is delta 6.10351562500000E-05 range
-131072.0..131071.99993;

end STANDARD;

B-1

..-... - ATTACHMENTII

- APPENDIX F. IMPLEMENTATON-DEPENDENT CHARACTERISTICS

Pre-validation Materials/Encore VADS Version 5.5

1. IMPLEMENTATION-DEPENDENT PRAGMAS

INLINEONLY

This pragma, when used in the same way as pragma INLINE, indicates to the compiler
that the subprogram must always be inlined. This pragma also suppresses the generation
of a callable version of the routine which saves code space.

BUILTIN

This pragma is used in the implementation of some predefined Ada packages, but pro-
vides no user access. It is used only to implement code bodies for which no actual Ada
body can be provided, for example the MACHINE-CODE package.

SHARELCODE

This pragma takes the name of a generic instantiation or a generic unit as the first argu-
ment and one of the identifiers TRUE or FALSE as the second argument. This pragma is
only allowed immediately at the place of a declarative item in a declarative part or pack-
age specification, or after a library unit in a compilation, but before any subsequent com-
pilation unit.

When the first argument is a generic unit the pragma applies to all instantiations of that
generic. When the first argument is the name of a generic instantiation the pragma
applies only to the specified instantiation, or overloaded instantiations.

If the second argument is TRUE the compiler will try to share code generated for a gen-
eric instantiation with code generated for other instantiations of the same generic. When
the second argument is FALSE each instantiation will get a unique copy of the generated
code. The extent to which code is shared between instantiations depends on this pragma
and the kind of generic formal parameters declared for the generic unit.

The name pragma SHAREBODY is also recognized by the implementation and has the
same effect as SHARECODE. It is included for compatibility with earlier versions of
Encore VADS Ada.

NO_IMAGE

- 1& prgma suppss the generation of the image may used for the IMAGE atibute
'of enumeration types. This eliminates the overhead required to stort the array in the exe-$7_./.c¢utable"mage._? -: ..7i .--- .; -- :- ..

....... EXTERNAL.-NAM-

- This pragma takes the name of a subprogram or variable defined in Ada and allows the
user.to specify a different external name that may be used to reference the entity from

-. other languages. The pragma is allowed at the place of a declarative item in a package
specification and must apply to an object declared earlier in the same package
specification.

INTERFACEOBJECT -- .

This pragma takes the name of a variable defined in another language and allows it to be
referenced directly in Ada. The pragma will replace all occurrences of the variable name
with an external reference to the second, link-argument. The pragma is allowed at the
place of a declarative item in a package specification and must apply to an object
declared earlier in the same package specification. The object must be declared as a
scalar or an access type. The object cannot be any of the following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

IMPLICITCODE

This pragma takes one of the identifiers ON or OFF as the single argument, and is only
allowed within a machine code procedure. It specifies that implicit code generated by the
compiler be allowed or disallowed. A warning is issued if OFF is used and any implicit
code needs to be generated. The default is ON.

2. PREDEFINED PRAGMAS

CONTROLLED

This pragma is recognized by the implementation but has no effect.

ELABORATE

This pragma is implemented as described in Appendix 3 of the Ada RM.

INLINE

..... . This pragma is implemented as described in Appendix B of the Ada RM. . ..

-77- TERF-. .-..

_ This pragma supports calls to C and FORTRAN functions. The Ada subprograms can be
- either functions or procedures. The types of parameters and the result type for functions

..-.-.-- 'must be scalar, access or the predefined type ADDRESS in SYSTEM._An optional third
. _argument overrides the default link name. All parameters must have mode IN. Record

and array objects can be passed by reference using the ADDRESS attribute. -

LIST

This pragma is implemented as described in Appendix B of the Ada RM.

MEMORYSIZE

This pragma is recognized by the implementation but has no effect. The implementation
does not allow SYSTEM to be modified by means of pragmas (the SYSTEM package
must be recompiled).

OPTIMIZE

This pragma is recognized by the implementation but has no effect.

PACK

This pragma will cause the compiler to minimize gaps between components in the
representation of composite types. For arrays, components will only be packed to bit
sizes corresponding to powers of 2, if the field is smaller than STORAGEUNIT bits.
Objects larger than STORAGEUNIT are packed to the nearest STORAGEUNIT.
level.

PAGE

This pragma is implemented as described in Appendix B of the Ada RM.

PRIORITY

* This pragma is implemented as described in Appendix B of the Ada RM.

SHARED

This pragma is recognized by the implementation but has no effect.

STORAGEUNIT

This pragma is recognized by the implementation but has no effect. The implementation

does not allow SYSTEM to be modified by means of pragmas (the SYSTEM package

must be recompil-d).

- SUPPRESS"".

This pragma is implemented as described in Appendix B of the Ada RM.

. SYSTEMNAME

This pragma is recognized by the implementation but has no effec,. The implementation
does not allow SYSTEM to be modified by means of pragmas (the SYSTEM package

.. must be recompiled).

3. IMPLEMENTATION-DEPENDENT ATTRIBUTES

The attribute REF has two forms: X'REF and SYSTEM.ADDRESS(N):

In X'REF, X must be a constant, variable, procedure, function, or label. The attribute
returns a value of the type MACHINECODE.OPERAND and may only be used to
designate an operand within a code statement.

In SYSTEM.ADDRESS(N), SYSTEM.ADDRESS must be of the type
SYSTEM.ADDRESS. N must be an expression of type UNIVERSAL_INTEGER. The
attribute returns a value of type SYSTEM.ADDRESS, which represents the address
designated by N (this is similar to the effect of an unchecked conversion from integer to
address except N must be static).

4. SPECIFICATION OF PACKAGE SYSTEM

package SYSTEM
is

type NAME is (UMAX_V);

SYSTEMNAME constant NAME:= UMAX_V;

STORAGE-UNIT : constant := 8;
MEMORYSIZE :constant:= 16777216;

-- System-Dependent Named Numbers

MIN_INT :constant:= -2147483648;
MAXINT :constant:= 2147483647;
MAXDIGITS constant := 15;
MAXMANTISSA constant : 31;

FINE-DELTA :constant := 6.10351562500000E-05;
-_ -ICK : constant:= 1.000000000000OOE-02;

Other System-dependent Declarations -

subtype PRIORITY is INTEGER range 0.. 99;

- - . _-ESZE: integer 65536..-

type ADDRESS is private;

NOADDR: constant ADDRESS;

function PHYSICALADDRESS(I: INTEGER) return ADDRESS;
function ADDR_GT(A, B: ADDRESS) return BOOLEAN;
function ADDRLT(A, B: ADDRESS) return BOOLEAN;
function ADDRGE(A, B: ADDRESS) return BOOLEAN;
function ADDRLE(A, B: ADDRESS) return BOOLEAN;
function ADDR.DIFF(A, B: ADDRESS) return INTEGER;
function INCRADDR(A: ADDRESS; INCR: INTEGER) return ADDRESS;
function DECRADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS:

function ">"(A, B: ADDRESS) return BOOLEAN renames ADDRGT;
function "<"(A, B: ADDRESS) return BOOLEAN renames ADDR.LT;
function ">="(A, B: ADDRESS) return BOOLEAN renames ADDRGE;
function "<="(A, B: ADDRESS) return BOOLEAN renames ADDRLE;
function "-"(A, B: ADDRESS) return INTEGER renames ADDR.DIFF;
function "+"(A: ADDRESS; INCR: INTEGER) return ADDRESS renames INCRADDR;
function "-"(A: ADDRESS; DECR: INTEGER) return ADDRESS renames DECR_ADDR;

pragma inline(PHYSICAL_ADDRESS);
pragma inline(ADDRGT);
pragma inline(ADDR_LT);
pragma inline(ADDR-GE);
pragma inline(ADDRLE);
pragma inline(ADDR.DIFF);
pragma inline(INCRADDR);
pragma inline(DECRADDR);

private

type ADDRESS is new INTEGER;
no._addr: constant address := 0;

end SYSTEM

5. ATTRIBUTES OF TYPES IN STANDARD

Attributes of the pre-defined type DURATION

first -131072.00000
last 131071.99993
size - 32
delta 6.10351562500000E-05
mantissa 31
small 6.10351562500000E-05
large 1.31071999938964E+05
fore 7
aft 5
safesmall 6.10351562500000E-05
safeJarge 1.31071999938964E+05
machine_rounds TRUE
machineoverflows TRUE

Attributes of type FLOAT

first -1.79769313486231 E+308
last 1.7976931348623 1E+308
size 64
digits 15
mantissa 51
epsilon 8.88178419700125E-16
emax 204
small 1.94469227433160E-62
large 2.57110087081438E+61
safeemax 1021
safe-small 2.22507385850720E-308
safelarge 2.24711641857789E+307
machine radix 2
machine.mantissa 53
machineemax 1024
machine_emin -1021
machine_rounds TRUE
machine overflows TRUE

Attributes of type SHORT_FLOAT

first -3.40282346638529E+38
last 3.40282346638529E+38
size 32
digits 6
mantissa 21

. epsilon 9.53674316406250E-07
emax 84

- small 2.58493941422821E-26
S- :-_-large . 1.93428038904620E+25

safe.emax 125
safesmall 1.17549435082228E-38
safejarge__ 4.25352755827077E+37
machineradix 2
machine-mantissa 24
machine..emax 128
machineemin -125
machinejounds TRUE
machineoverflows TRUE

Ranges of predefined integer types

TINY_INTEGER -128.. 127
SHORT_INTEGER -32768 .. 32768
INTEGER -2147483648 .. 2147483647

Default STORAGE-SIZE (collection size) for access types

100000

Priority range is 0 .. 99

Default STORAGESIZE for tasks is

10240

If tasks need larger stack sizes, the 'STORAGE_SIZE attribute
may be used with the task type declaration.

Attributes and time-related numbers

Duration'small 6.10351562500000E-05
System.tick 1.OOOOOOOOOOOOOE-02

6. RESTRICTIONS ON REPRESENTATION CLAUSES

Pragma PACK

See section (2) above.

Size Specification

* The size specification T'SMALL is not supported except when the representation
specification is the same as the value 'SMALL for the base type.

7. RECORD REPRESENTATION CLAUSES

_ Component clauses must be aligned on STORAGE_UNIT boundaries.

Address Clauses

Address clauses are supported for objects and entries.

Interrupts

Interrupt entries are supported for UNIX signals. The Ada for clause gives the UNIX sig-
nal number.

Representation Attributes

The ADDRESS attribute is not supported for the foUowing entities:

Packages
Tasks
Entries

8. MACHINE CODE INSERTIONS

Machine code insertions are supported.

The general definition of the package MACHINECODE provides an assembly language
interface for the target machine. It provides the necessary record type(s) needed in the
code statement, an enumeration type of all the opcode mnemonics, a set of register
definitions, and a set of addressing mode functions.

The general syntax of a machine code statement is as follows:

CODEN'(opcode, operand (, operand));

where N indicates the number of operands in the aggregate.

A special case arises for a variable number of operands. The operands are listed within a
subaggregate. The format is as follows:

CODEN'(opcode, (operand (, operand)));

For those opcodes that require no operands, named notation must be used (cf. RM
4.3(4)).

........ CODEO'(op => opcode);

The opode must be an enumeration literal (i.e. it cannot be an object, attribute, or a

- rename). - -

An operand can only be an entity defined in MACHINE_CODE or the 'REF attribute.

The arguments to any of the functions defined in MACHINE_CODE must be static
expressions, string literals, or the functions defined in MACHINECODE. The 'REF
attribute may not be used as an argument in any of these functions.

Inline expansion of machine code procedures is supported.

9. CONVENTIONS FOR IMPLEMENTATION-GENERATED NAMES

There are no implementation-generated names.

10. INTERPRETATION OF EXPRESSIONS IN ADDRESS CLAUSES

Address clauses are supported for constants and variables. Interrupt entries are specified
with the number of the UNIX signal.

11. RESTRICTIONS ON UNCHECKED CONVERSIONS

None.

12. RESTRICTIONS ON UNCHECKED DEALLOCATIONS

None.

13. IMPLEMENTATION CHARACTERISTICS OF I/0 PACKAGES

Instantiations of DIRECT_10 use the value MAX_REC_SIZE as the record size
(expressed in STORAGE_UNITS) when the size of ELEMENT_TYPE exceeds that
value. For example, for unconstrained arrays such as string where
ELEMENTTYPE'SIZE is very large, MAXRECSIZE is used instead.
MAX_RECORDSIZE is defined in SYSTEM and can be changed by a program before
instantiating DIRECT_10 to provide an upper limit on the record size. In any case, the
maximum size supported is 64 * 1024 bytes. DIRECT_10 will raise USE_ERROR if
MAXRECSIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL-1O use the value MAXREC_SIZE as the record size

(expressed in STORAGEUNITS) when the size of ELEMENTTYPE exceeds that
value. For exampl-, for unconstrained arrays such as string where

- -- ELEMCENTYPE'SIZE is very large, MAX-RECSIZE is used instead.
-- MAX,.RECORDSIZE is defined in SYSTEM and can be changed by a program before

- instantiating INTEGER.O to provide an upper limit on the record size.
SEQUENTIALJO imposes no limit on MAXRECQSIZE.

14. IMPLEMENTATION LIMITS

The following limits are actually enforced by the implementation. It is not intended to
imply that resources up to or even near these limits are available to every program.

Line Length

The implementation supports a maximum line length of 499 characters not including the
end of line character.

Record and Array Sizes

The maximum size of a statically sized array type is 4,000,000 x STORAGEUNITS.
The maximum size of a statically sized record type is 4,000,000 x STORAGEUNITS.
A record type or array type declaration that exceeds these limits will generate a warning
message.

Default Stack Size for Tasks

In the absence of an explicit STORAGESIZE length specification every task except the
main program is allocated a fixed size stack of 10,240 STORAGEUNITS. This is the
value returned by T'STORAGESIZE for a task type T.

Default Collection Size

In the absence of an explicit STORAGESIZE length attibute the default collection size
for an access type is 100,000 STORAGE_UNITS. This is the value returned by
T'STORAGESIZE for an access type T.

Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGEUNITS for objects declared stai-
cally within a compilation unit. If this value is exceeded the compiler will terminate the
compilation of the unit with a FATAL error message.

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

Name and Meaning Value

SBIGIDl 1..498 -> "A", 499 -> "1"

Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID2 1..498 -> "A", 499 -> "2"
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 1..249 -> "A", 250 -> "3",
Identifier the size of the 251..499 -> "A"
maximum input line length with
varying middle character.

$BIGID4 1..249 -> "A", 250 -> "4",
Identifier the size of the 251..499 -> "A"
maximum input line length with
varying middle character.

$BIGINTLIT 1..496 -> '0', 497..499 -> '298'

An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG_REALLIT 1..493 -> '0', 494..499 ->
A universal real literal of '69.0E'
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

C-1

OR - - ., m

$BIG_STRINGi 1..199 -> "A"
A string literal which when
catenated with BIG STRING2

yields the image of BIG_IDi.

$BIG_STRING2 1..299 -> A", 300 -> "1"
A string literal which when
catenated to the end of
BIG STRING1 yields the image of
BIGIDI.

$BLANKS 1..479 -> " "

A sequence of blanks twenty
characters less than the size

of the maximum line length.

$COUNT LAST 2_147_483_647
A universal integer literal
whose value is
TEXTIO.COUNT'LAST.

$FIELD LAST 2_147_483_647
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FILENAMEWITHBADCHARS 1..256 -> "abcdefghijklmnop

An external file name that abcdefghijklmnopabcdefghijklmnop
either contains invalid abcdefghijklmnopabcdefghijklmnop
characters or is too long. abcdefghijklmnopabcdefghijklmnop

abcdefghij klmnopabcdefghij klmnop
abcdefghij klmnopabcdefghij klmnop

abcdefghijklmnopabcdefghij klmnop
abcdefghij klmnopabcdefghij klmnop
abcdefghijklmnop", 257 -> "X",
258..513 -> "abcdefghijklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnopabcdefghiJklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnopabcdefghijklmnop
abcdefghijklmnopabcdefghijklmn"

$FILE_NAME WITHWILDCARDCHAR 1..256 -> "0123456789ABCDEF
An external file name that 0123456789ABCDEF0123456789ABCDEF
either contains a wild card 0123456789ABCDEF0123456789ABCDEF
character or is too long. 0123456789ABCDEF0123456789ABCDEF

0123456789ABCDEF0123456789ABCDEF

0123456789ABCDEF0123456-89ABCDEF

C-2

$MAX,_DIGITS 15
Maximum digits supported for
floating-point types.

$MAXIN LEN 499
Maximum input line length
permitted by the implementation.

$MAXINT 2147483647
A universal integer literal
whose value is SYSTEM.MAX INT.

$MAXINTPLUS 1 2147483648
A universal integer literal
whose value is SYSTEM.MAXINT+l.

$MAXLENINT BASED-LITERAL l..2 -> '2:', 3..496 -> '0',
A universal integer based 497..499 -> '11:'
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAXLENREALBASEDLITERAL 1..3 -> '16:', 4..495 -> '0',
A universal real based literal 496..499 -> 'F.E:'
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAXSTRINGLITERAL 1 -> ..., 2..498 -> 'A',

A string literal of size 499 ->
MAX INLEN, including the quote
characters.

$MININT -2147483648
A universal integer literal
whose value is SYSTEM.MIN_ INT.

$NAME TINY INTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORTINTEGER,
LONGFLOAT, or LONGINTEGER.

$NEG_BASEDINT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

C-4

0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF

0123456789ABCDEF", 257 -> "X",

258..513 -> "0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEFO123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0123456789ABCD"

$GREATERTHANDURATION 100_000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATERTHANDURATIONBASELAST 10_000_000.0
A universal real literal that is

greater than DURATION'BASE'LAST.

$ILLEGALEXTERNALFILENAMEI 1..256 +> "a", 257 -> "1",
An external file name which 258..513 -> "a"
contains invalid characters.

$ILLEGAL EXTERNALFILE NAME2 1..256 -> "b", 257 -> "2",
An external file name which 258..513 -> "a"
is too long.

$INTEGERFIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGERLAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$1NTEGERLASTPLUS_1 21474836478
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESS_THANDURATION -100_000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHANDURATIONBASEFIRST -10_000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

C-3

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 28 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form "AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) wrongly follows a later
declaration.

E28005C: This test requires that 'PRAGMA LIST (ON);' not appear in a
listing that has been suspended by a previous "pragma LIST
(OFF);"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ARG.

C34004A: The expression in line 168 wrongly yields a value outside of
the range of the target type T, raising CONSTRAINTERROR.

C35502P: Equality operators in lines 62 & 69 should be inequality
operators.

A35902C: Line 17's assignment of the nomimal upper bound of a
fixed-point type to an object of that type raises
CONSTRAINTERROR, for that value lies outside of the actual
range of the type.

C35904A: The elaboration of the fixed-point subtype on line 28 wrongly
raises CONSTRAINTERROR, because its upper bound exceeds that
of the type.

C35904B: The subtype declaration that is expected to raise
CONSTRAINTERROR when its compatibility is checked against that
of various types passed as actual generic parameters, may in
fact raise NUMERIC ERROR or CONSTRAINT ERROR for reasons not
anticipated by the test.

C35A03E, These tests assume that attribute 'MANTISSA returns 0 when
& R: applied to a fixed-point type with a null range, but the Ada

Standard doesn't support this assumption.

C37213H: The subtype declaration of SCONS in line 100 is wrongly
expected to raise an exception when elaborated.

C37213J: The aggregate in line 451 wrongly raises CONSTRAINTERROR.

D-1

C37215C, Various discriminant constraints are wrongly expected
E, C, H: to be incompatible with type CONS.

C38102C: The fixed-point conversion on line 23 wrongly raises
CONSTRAINT ERROR.

C41402A: 'STORAGESIZE is wrongly applied to an object of an access
type.

C45332A: The test expects that either an expression in line 52 will
raise an exception or else MACHINE OVERFLOWS is FALSE.
However, an implementation may evaluate the expression
correctly using a type with a wider range than the base type of
the operands, and MACHINE-OVERFLOWS may still be TRUE.

C45614C: REPORT.IDENTINT has an argument of the wrong type
(LONG_INTEGER).

E66001D: AI-330 states this test is to be changed from an "E" test to a
"B" test during the next version of the ACVC. AI-330 was
approved in July 1986, 6 months before the initial version of
ACVC Version 1.9 was released and a nearly a full year before
the final version of ACVC Version 1.9 was released. This test
is withdrawn pending further comment from AJPO regarding issue
of the test being a B Test rather than an E Test.

A74106C, A bound specified in a fixed-point subtype declaration
C85018B, lies outside of that calculated for the base type, raising
C87B04B, CONSTRAINT ERROR. Errors of this sort occur re lines 37 & 59,
CC131IB: 142 & 143, 16 & 48, and 252 & 253 of the four tests,

respectively (and possibly elsewhere).

BC3105A: Lines 159..168 are wrongly expected to be illegal; they are
legal.

ADlAOlA: The declaration of subtype INT3 raises CONSTRAINT ERROR for
implementations that select INT'SIZE to be 16 or greater.

CE2401H: The record aggregates in lines 105 & 117 contain the wrong
values.

CE320A: This test expects that an attempt to open the default output
file (after it was closed) with mode IN FILE raises NAMEERROR
or USE ERROR; by Commentary AI-00048, MODEERROR should be
raised.

D-2

