AD___

AD-A208 428

REPORT NO. T10-89

EFFECTIVENESS AND ACCEPTABILITY OF NUTRIENT SOLUTIONS IN ENHANCING FLUID INTAKE IN THE HEAT

U S ARMY RESEARCH INSTITUTE OF ENVIRONMENTAL MEDICINE

Natick, Massachusetts

MARCH 1989

Approved for public release distribution unlimited

UNITED STATES ARMY MEDICAL RESEARCH & DEVELOPMENT COMMAND

89 5 30 090

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

.

•

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return to the originator. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

		REPORT D	DOCUMENTATIO	N PAGE			Form Approved OMB No. 0704-0188
1a. REPORT S	SECURITY CLAS	SIFICATION	n <u>na sene and and an </u>	1b. RESTRICTIVE I	MARKINGS		geggengengenegenprenarianisan namenaan nyekeraan syndoste statististe
2a. SECURITY	CLASSIFICATIO	ON AUTHORITY		3. DISTRIBUTION	AVAILABILITY OF	REPORT	ang pang pang pang pang pang pang pang p
2b. DECLASSI	FICATION / DO	WNGRADING SCHEDU	LE	Approved fo unlimited	r public re	lease;	distribution is
4. PERFORMI	NG ORGANIZA	TION REPORT NUMBE	R(S)	5. MONITORING (ORGANIZATION RE	PORT NU	MBER(S)
6a. NAME OF USARII	PERFORMING	ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MC US Army Med	NITORING ORGAN	uzation ch & De	evelopment Cmd
6c. ADDRESS	(City, State, ar	nd ZIP Code)	SGRD-UE-NK	7b. ADDRESS(City Fort Detric Frederick,	y, State, and ZIP C .k MD 21701-50	ode) 12	
8a. NAME OF ORGANIZ	FUNDING / SPO ATION	ONSORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	INSTRUMENT IDE	NTIFICATI	ON NUMBER
8c. ADDRESS	(City, State, and	d ZIP Code)		10. SOURCE OF FU	JNDING NUMBER	5	
				PROGRAM ELEMENT NO.	PROJECT NO. 3M263	TASK NO.	WORK UNIT ACCESSION NO.
•				63002D	002D819	AI	DA305222
11. TITLE (Inc. EFFECTIV 12. PERSONAL	LAUTHOR(S)	Classification)) ACCEPTABILITY M.S. Rose, P.(Cardello, R.D.	Y OF NUTRIENT SC C. Szlyk, R.P. D Popper, L. St	DLUTIONS IN E Francesconi,	NHANCING FL L.S. Lester	UID IN'	TAKE IN THE HEAT
13a. TYPE OF Final	REPORT	13b. TIME CO FROM Jun	NUERED n 88 TO Nov 88	14. DATE OF REPOR 1988 Nove	RT (Year, Month, C ember 18	Day) 15.	PAGE COUNT 256
16. SUPPLEME	NTARY NOTA	TION					
17.	COSATI	CODES	18. SUBJECT TERMS (Continue on reverse	if necessary and	identify b	y block number)
FIELD	GROUP	SUB-GROUP	carbohydrate-e	lectrolyte so	lution, glu	cose-e	lectrolyte
- 19			solution, nutr	ient solution	, NBC Nutri	ent so	lution, heat,
			fluid intake,	nutritional i	ntake, fiel	d teed:	ing, Army Reserve
19. ABSTRACT	(Continue on	reverse if necessary a	and identify by block no	umber)			
Nutrion	colored,	Ilavored, 2.5	% carbohydrate-	electrolyte s	solutions (4	Armyade	and NBC
for ad	libitum co	onsumption and	g revers of mag	nesium, potas during 8 deus	ssium, and port in	onospno	orus were tested
(max T.	$=31-38^{\circ}$	C). Sixty-one	male and femal	e soldiers w	ere divided	into 4	test grouns.
A Contro	ol group d	drank water wh	ile the remaini	ng three grou	ups were giv	ven one	of the
followi	ng test be	everages: NBC	Nutrient solut	ion, Armyade,	or a color	ed fla	vored water
(placebo	o). A11 i	four groups we	re allowed to c	onsume other	fluids such	n as pl	ain water,
soda, ji	uice, etc.	Acceptabili	ty in terms of	hedonic ratir	ngs and cons	umptio	n rate was
and Plac	cebo) afta	subjects abso	av. but did ret	to drink the	assigned Le	st bev	erages (Armyade
study.	The data	on the accept	ability of the	test beverage	es and demos	raphic	s were assigned
to the a	appropriat	te groups for	these two subje	cts, however,	the bioche	mical,	hydrational,
food, an	nd fluid o	consumption dat	ta were analyze	d as if these	e two subjec	ts bel	onged to the
20 DISTRIBUT	ON AVAILAR	LARCE WERE NO	group differenc	eg in terma c	of energy fr	it eko	
	SIFIED/UNLIMIT	ED D SAME AS RP	T. 🗍 DTIC USERS	Unclassi	fied		
22a. NAME OF	RESPONSIBLE	INDIVIDUAL		22b. TELEPHONE (In	clude Area Code)	22c. OFF	ICE SYMBOL
Madelein	ne S. Rose	e, LTC, AMSC		(508)651-4	979	SGRD-	-UE-NR
DD Form 147	3, JUN 86		Previous editions are o	bsolete.	SECURITY C	LASSIFICA	TION OF THIS PAGE

UNCLASSIFIED

. 1 The subjects in the NBC group had a significantly higher (p < 0.001) average daily fluid intake than those in the Armyade group, but their intake was not significantly greater than that of the soldiers in the Control (water) or Placebo groups. Under conditions of light-moderate activity, moderate heat stress, and when other colored flavored beverages are available, there is no evidence that carbohydrate-electrolyte beverages will enhance fluid consumption over plain water. However, partitioning the total fluid intake for each subject into Colored Flavored Test Beverage (CFTB), Water, and Other fluids for the Armyade, Placebo, and NBC (not Control group since the test beverage had been plain water) groups, indicated that consumption of the CFTB was significantly greater (p < 0.001) than Water and Other fluid consumption, with subjects in the Placebo group drinking up to 10 times as much CFTB as Water.

The daily hedonic ratings for the test beverages were: NBC Nutrient solution (6.7), Placebo (6.6), Water (6.5-rating by Control group only), and Armyade (5.1). The hedonic ratings of acceptability did not decrease with <u>ad libitum</u> ingestion during the 8 days. On a daily basis, the subjects in the NBC and Placebo groups rated their test beverages as more acceptable than the water rated by the Control group, drank more of these test beverages than water, and had lower incidences of hypohydration. The subjects in the NBC group rated their test beverage significantly higher than the subjects in the Armyade group rated their test beverage, drank significantly more fluid on a daily basis, and had significantly lower incidences of hypohydration.

Urine specific gravity and electrolytes, body weight, and fluid intake were monitored twice daily to assess hydration status. Urine specific gravity displayed a diurnal periodicity, with morning values higher than those in the late afternoon. The Control group had the highest incidence of urine specific gravities >1.030 (22%) whereas only 8% of the samples from the Placebo group had urine specific gravities ≥ 1.030 (p(0.05). Increased heat stress elevated urine specific gravity in all groups despite enhanced fluid intakes. On the hottest day, incidence of urine specific gravities >1.030 peaked in the Armyade (33%) and Control groups (34%); significantly lower (p < 0.05) incidences were observed in the Placebo (8%) and NBC (0%) groups. Individuals having urine specific gravities ≥ 1.030 consumed about 22% less fluid than those with urine specific gravities <1.030. Likewise, urinary creatinine concentration obtained the morning after the hottest day were significantly greater for the Armyade and Control groups compared to the Placebo and NBC groups. Urinary sodium and potassium mirrored electrolyte ingestion. The NBC and Placebo beverages were effective in reducing the incidence of hypohydration by enhancing fluid intake during field exercises in hot climates. When food intake is adequate, the carbohydrate-electrolyte beverages are not necessary to provide electrolytes but may be helpful in improving fluid intake. According to the clinical chemistries, ingestion of the carbohydrate-electrolyte solutions was not accompanied by deviation from physiologically normal values. Drinking NBC and Armyade solutions appeared to be safe under the conditions studied.

In climatic extremes weather has a profound effect on soldier performance and drinking requirements. The ability to measure heat stress levels across a large area would provide valuable information for optimizing soldier performance. The close correlation between field and satellite-derived WBGT readings during the field trial indicates significant potential for the use of satellite remote sensing technology to accurately assess WBGT in training/operational environments.

HUMAN RESEARCH and DISCLAIMER STATEMENTS

Human subjects participated in these studies after giving their free and informed voluntary consent. Investigators adhered to AR 70-25 and USAMRDC Regulation 70-25 on Use of Volunteers in Research.

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation.

TECHNICAL REPORT

EFFECTIVENESS AND ACCEPTABILITY OF NUTRIENT SOLUTIONS IN ENHANCING FLUID INTAKE IN THE HEAT

LTC Madeleine S. Rose, Ph.D., Military Nutrition Div, USARIEM¹ Patricia C. Szlyk, Ph.D., Heat Research Div, USARIEM¹ Ralph P. Francesconi, Ph.D., Heat Research Div, USARIEM¹ Laurie S. Lester, Ph.D., Science & Advanced Technology Dir, NRD&EC² Lawrence Armstrong, Ph.D., Heat Research Div, USARIEM¹ William Matthew, B.S., Heat Research Div, USARIEM¹ Armand V. Cardello, Ph.D., Science & Advanced Technology Dir, NRD&EC² Richard D. Popper, Ph.D., Science & Advanced Technology Dir, NRD&EC² Richard D. Popper, Ph.D., Science & Advanced Technology Dir, NRD&EC² Ingrid Sils, Heat Research Div, USARIEM¹ SGT Glenn Thomas, Heat Research Div, USARIEM¹ MAJ Dan Schilling, D.V.M., Food Engineering Directorate, NRD&EC² COL Robert Whang, M.D., 44th Evacuation Hospital, 807th Medical Brigade³

¹U.S. Army Research Institute of Environmental Medicine Natick, MA 01760-5007

 $^2\mathrm{Natick}$ Research. Development and Engineering Center Natick, MA 01760

³44th Evacuation Hospital 3021 W. Reno Ave. Oklahoma City, OK 73107

FOREWORD

Two carbohydrate-electrolyte solutions, NBC Nutrient solution and Armyade. were tested to determine their effectiveness in enhancing fluid intake. The major purpose was to prevent hypohydration in soldiers working in the heat over an 8 day period.

Another purpose of this study was to test the acceptability of a NBC Nutrient solution recommended by a National Research Council advisory committee for soldiers working in the heat wearing Nuclear, Biological, Chemical (NBC) protective clothing (MOPP4). In previous tests where hydration was forced, water was as effective as the NBC Nutrient solution in maintaining physiological and psychological performance for the first 12 hours. This test of the acceptability of the NBC Nutrient solution was to answer the question of whether <u>ad libitum</u> availability of the NBC Nutrient solution.

A third purpose of this study was to test the acceptability and usefulness of Armyade in enhancing fluid intake during work in the heat and as a possible oral rehydration fluid for the treatment of diarrhea. Using the formulation of the NBC Nutrient solution as a base, extra electrolytes were added to expand the usage to include treatment of diarrhea. The possibility of replacing the NBC Nutrient solution with Armyade would provide the Army with a multipurpose solution that could improve soldier performance.

This technical report is a compilation of ten separate sections of physiological and sensory tests written by the individual authors. Each section contains its own methods, results, and discussion. The literature review, general methods, integrated summary, general conclusions, and general recommendations contain an overall view of the study. The figures, tables, and references are listed sequentially throughout the report.

iii

ACKNOWLEDGEMENTS

The authors wish to express their heartfelt thanks to all the subjects and workers who participated in this study. There would not have been a study without the 61 officers and enlisted men and women of the 44th Evacuation Hospital. Oklahoma City, OK and Detachment 1 from El Paso, TX who committed themselves to finishing the project. A study of this magnitude would not have been possible without the complete cooperation of BG Ran Phillips, commander of the 807th Medical Brigade; COL Duane May, commander of the 44th Evacuation Hospital: and LTC Paul Boensch II, Executive Officer of the 44th Evacuation Hospital. The authors would like to thank Dr. Kenneth Rider, Director of the Pathology Laboratory, Wishard Memorial Hospital, Indianapolis, IN for analysis of the pre- and post-serum samples.

We are indebted to LTC E. W. Askew for his encouragement and support. SSG C. Santiago is thanked for handling all of the administrative details during data collection and for working as a computer technician during this study. Robert W. Rose and Carol Baker started early and worked late in the field kitchens collecting data on food preparation for computer analysis. Without their dedicated efforts this study would not have been possible. MAJ John Edwards of the British Army Catering Corps and CPT E.G. Szeto spent long hours collecting between-meal and fluid data from the test subjects.

The skilled technical assistance of the following individuals are gratefully acknowledged; their participation and spirit of cooperation contributed immeasurably to the successful completion of these demanding experiments: Mr. Richard Mahnke. Ms. Jane DeLuca, Ms. Elaine Christensen, Ms. Tanya Morgan, Ms. Regine Beakes, Ms. Allison Rawley, and Ms. Brooke Cheema.

iv

And last but not least we thank Carlo Radovsky and his computer technicians for their hard work. Without the help of Lisa Zajonc, Daniel Williams, and Noopur Patel the thousands of data points would never have been analyzed and plotted.

TABLE OF CONTENTS

CHAPTER	PAGES
Foreward	. iii
Acknowledgements	. iv
Introduction	1
Objectives	11
General Methods	. 12
Demographic Data	. 21
Effects of Deployment	. 26
Environmental Heat Stress Levels	. 39
Incidence of Heat Illness	45
Fluid Consumption	. 50
Acceptability of Test Beverages	. 65
Nutritional Intake	. 87
Hydration Status	102
Biochemical Indices	. 122
Circulatory System Function	137
Integrated Summary	148
General Conclusions	. 152
General Recommendations	154
References	. 155
Appendices A - Formulation and Composition of NBC Nutrient Solution, Armyade, and Placebo B - List of Dependent Variables C - WBGT Profiles of Fluid Recommendations D - Fluid Intake Data Collection Form E - Fluid Intake Normalized to Body Weight F - Ratio of Test Beverage to Total Fluid Consumption	162 167 170 179 182 190

TABLE OF CONTENTS (continued)

Appendices (continued)	
G - Sample of Post-Scenario Acceptability Questionnaire	192
H - Ration Record Form	200
I - Missing Data	202
J - Mean Nutrient Intake by Group and Gender	208
K - Mean Nutrient Intake Normalized to Body Weight	214
L - Energy from All Fluids	222
M - Sodium Intake (mg/day)	224
N - Hydration Status Tables	226

LIST OF TABLES

NUMB	ER	PAGES
1	Comparison of the energy, carbohydrate and electrolyte content, and osmolality of Armyade and NBC Nutrient Solution	8
2	Comparison of the electrolyte composition of sweat, diarrhea, and carbohydrate solutions	10
3	Composition and description of <u>ad libitum</u> fluids consumed by the test groups	13
4	Testing for all subjects (no heat casualties)	18
5	Physical characteristics of subjects	21
6	Demographic information of subjects consuming water, a flavored water placebo, or two nutrient solutions	22
7	Effect of deployment on urinary specific gravity	30
8	Effect of deployment on body weight (kg)	34
9	Effect of deployment on urinary sodium and potassium (mEq/L)	35 ·
10	Effect of deployment on urinary creatinine (g/dl)	36
11	Effects of point of origin on urine indices of hydration during deployment	37
12	Maximum dry bulb and WBGT temperatures and sky and wind conditions	41
13	Temporal and spatial variation of the WBGT environment. Day 2	42
14	Comparison of satellite-derived WBGT with contemporary surface level measurements	43
15	Mild heat exhaustion & heat cramps casualties	47
16	Heat illness admissions at the 44th Evacuation Hospital	49
17	Daily total fluid intake (ml/day)	55
18	Daily total fluid intake divided by gender and test beverage group	58

LIST OF TABLES (continued)

NUMB	ER	PAGES
19	Daily total fluid intake normalized to body weight	59
20	Average daily fluid intake (ml/24 hr) partitioned into type of beverage consumed	60
21	Hedonic ratings of test beverages	62
22	Acceptability ratings of five beverages used in laboratory acceptance test	70
23	Percentage of subjects in each group that reported drinking and eating sufficient amounts during this exercise	73
24	Mean temperature ratings of liquids consumed during this exercise	. 73
25	Mean ratings of self-reported thirst and hunger	75
26	Distribution of subjects according to the number of food service meals skipped	. 90
27	Total energy intake (kcal) from all foods and fluids consumed during 8 days of work in the heat	91
28	Comparison of mean nutrient intake of Military Recommended Dietary Allowances (MRDA)	. 93
29	Mean nutrient intake by groups	94
30	Body weight changes from arrival at site (Day 0 PM) to the last afternoon (Day 8 PM)	. 95
31	Potassium intake (mg/day)	97
32	Percent of individuals with urine specific gravity \geq 1.030	106
33	Frequency (%) of urine specific gravity \geq 1.030 for Days 1 to 8	109
34	Serum changes after 8 days of work in the heat	124
35	Cardiovascular responses observed during tilt test	. 140

LIST OF TABLES (continued)

NOWR	2 R 0	PAGES
36	Cardiovascular changes observed when going from supine to standing position	141
37	Number of samples displaying positive indices of impending hypohydration	143
38	Circulating responses to tilt-test in subjects meeting criteria for impending hypohydration	144
39	Average values for tilt-test as defined by indices of impending hypohydration	146

LIST OF FIGURES

NUMBE	ER	PAGES
1	Urine specific gravity pre- and post-deployment	31
2	Percent change in body weight during deployment	33
3	Daily (Mean <u>+</u> SE) fluid intake of soldiers working in the heat for 8 days	54
4	Ratio of test beverage consumption to total fluid intake	64
5	Mean acceptability ratings of test beverages consumed during this exercise (1=dislike extremely, 5=neither like nor dislike, 9=like extremely)	76
6	Comparison of water acceptability ratings to test beverage acceptability ratings by group (1=dislike extremely, 5=neither like nor dislike, 9=like extremely)	78
7	Mean saltiness ratings of test beverages consumed during this exercise (1=not at all salty, 6=extremely salty)	80
8	Mean acceptability ratings of the quantity of test beverage issued daily (1=needed much less, 4=amount just right, 7=needed much more)	82
9	Sodium intake during 8 days of field exercises in the heat	99
10	Diurnal urine specific gravity measurements during 8 days in the heat	105
11	Incidence of urine specific gravity \geq 1.030 for the Armyade group	107
12	Incidence of urine specific gravity \geq 1.030 for the Control group	107
13	Incidence of urine specific gravity \geq 1.030 for the Placebo group	108
14	Incidence of urine specific gravity \geq 1.030 for the NBC group	108
15	Effects of consumption of carbohydrate-electrolyte beverages and controls on diurnal excretion of sodium	110
16	Effects of consumption of carbohydrate-electrolyte beverages on diurnal urinary excretion of potassium	112

LIST OF FIGURES (continued)

NUMBI	ER	PAGES
17	Diurnal urinary sodium to potassium ratios as indicators of hydration	113
18	Urinary creatinine excretion as indicators of hydration	115
19	Body weight changes during 8 days of work in the heat	117
20	Percent change in body weight during the work day (0700 - 1600 hrs)	118
21	Percent change in body weight from pre-deployment	119
22	Serum glucose (mean \pm SE) before and after 8 days of work in the heat	126
23	Serum magnesium (mean <u>+</u> SE) before and after 8 days of work in the heat	127
24	Serum sodium (mean <u>+</u> SE) before and after 8 days of work in the heat	128
25	Serum cholesterol (mean <u>+</u> SE) before and after 8 days of work in the heat	129
26	Serum potassium (mean <u>+</u> SE) before and after 8 days of work in the heat	132
27	Serum triglycerides (mean \pm SE) before and after 8 days of work in the heat	134

ABSTRACT

Two colored, flavored, 2.5% carbohydrate-electrolyte solutions (Armyade and NBC Nutrient solution) with varying levels of magnesium, potassium, and phosphorus were tested for <u>ad libitum</u> consumption and acceptability during 8 days of work in a hot environment (max $T_{amb}=31-38^{\circ}C$). Sixty-one male and female soldiers were divided into 4 test groups. A Control group drank water while the remaining three groups were given one of the following test beverages: NBC Nutrient solution, Armyade, or a colored flavored water (placebo). All four groups were allowed to consume other fluids such as plain water, soda, juice, etc. Acceptability in terms of hedonic ratings and consumption rate was determined. Two subjects absolutely refused to drink the assigned test beverages (Armyade and Placebo) after the first day, but did rate their acceptability at the end of the study. The data on the acceptability of the test beverages and demographics were assigned to the appropriate test beverage groups for these two subjects, however, the biochemical, hydrational, food, and fluid consumption data were analyzed as if these two subjects belonged to the Control group. There were no group differences in terms of energy intake.

The subjects in the NBC group had a significantly higher (p<0.001) average daily fluid intake than those in the Armyade group, but their intake was not significantly greater than that of the soldiers in the Control (water) or Placebo groups. Under conditions of light-moderate activity, moderate heat stress, and when other colored flavored beverages are available, there is no evidence that carbohydrateelectrolyte beverages will enhance fluid consumption over plain water. However, partitioning the total fluid intake for each subject into Colored Flavored Test Beverage (CFTB), Water, and Other fluids for the Armyade, Placebo, and NBC (not Control group since the test beverage had been plain water) groups, indicated that

xiii

consumption of the CFTB was significantly greater (p < 0.001) than Water and Other fluid consumption, with subjects in the Placebo group drinking up to 10 times as much CFTB as Water.

The daily hedonic ratings for the test beverages were: NBC Nutrient solution (6.7), Placebo (6.6), Water (6.5-rating by Control group only), and Armyade (5.1). The hedonic ratings of acceptability did not decrease with <u>ad libitum</u> ingestion during the 8 days. On a daily basis, the subjects in the NBC and Placebo groups rated their test beverages as more acceptable than the water rated by the Control group, drank more of these test beverages than water, and had lower incidences of hypohydration. The subjects in the NBC group rated their test beverage significantly higher than the subjects in the Armyade group rated their test beverage, drank significantly more fluid on a daily basis, and had significantly lower incidences of hypohydration.

Urine specific gravity and electrolytes, body weight, and fluid intake were monitored twice daily to assess hydration status. Urine specific gravity displayed a diurnal periodicity, with morning values higher than those in the late afternoon. The Control group had the highest incidence of urine specific gravities ≥ 1.030 (22%) whereas only 8% of the samples from the Placebo group had urine specific gravities ≥ 1.030 (p<0.05). Increased heat stress elevated urine specific gravity in all groups despite enhanced fluid intakes. On the hottest day, incidence of urine specific gravities ≥ 1.030 peaked in the Armyade (33%) and Control groups (34%); significantly lower (p<0.05) incidences were observed in the Placebo (8%) and NBC (0%) groups. Individuals having urine specific gravities ≥ 1.030 consumed about 22% less fluid than those with urine specific gravities <1.030. Likewise, urinary creatinine concentration obtained the morning after the hottest day were significantly greater for

xiv

the Armyade and Control groups compared to the Placebo and NBC groups. Urinary sodium and potassium mirrored electrolyte ingestion. The NBC and Placebo beverages were effective in reducing the incidence of hypohydration by enhancing fluid intake during field exercises in hot climates. When food intake is adequate, the carbohydrate-electrolyte beverages are not necessary to provide electrolytes but may be helpful in improving fluid intake. According to the clinical chemistries, ingestion of the carbohydrate-electrolyte solutions was not accompanied by deviation from physiologically normal values. Drinking NBC and Armyade solutions appeared to be safe under the conditions studied.

In climatic extremes weather has a profound effect on soldier performance and drinking requirements. The ability to measure heat stress levels across a large area would provide valuable information for optimizing soldier performance. The close correlation between field and satellite-derived WBGT readings during the field trial indicates significant potential for the use of satellite remote sensing technology to accurately assess WBGT in training/operational environments.

XV

INTRODUCTION

Heat casualties are sometimes a major problem when working in the heat. Unacclimated individuals working in the heat often lose more than 2% body weight from sweat. The resulting hypohydration can affect performance and recovery from physical activity (1-3). Dehydration causing greater than a 2% reduction in body weight will decrease plasma volume, increase osmolality, decrease stroke volume and cardiac output, increase heart rate, increase core temperature, and reduce sweat rate and cutaneous blood flow (2.4-10). Significant loss of water with accompanying losses of sodium (Na⁺) and potassium (K⁺) may predispose an individual to heat cramps, heat exhaustion, and heat stroke (3). Hypohydration can adversely affect discipline and morale which may lead to moroseness, aggressiveness, and obvious signs of fatigue (2).

Optimal performance of a fully acclimatized person, performing intermittent hard work in the heat, is achieved by continually replacing the water lost in sweat (4). Small frequent sips of water are recommended to prevent dehydration and its attendant hyperthermia (11). However, subjects drinking water <u>ad libitum</u> tend to delay drinking and then consume all their fluid at one time (2). Observers have reported that subjects will voluntarily dehydrate when fluid requirements are high, and water losses may exceed 2.0% body weight depending on the work-rest cycle (2.12.13). Adequate hydration helps maintain body temperature during exercise (3.4.14) in the heat. If sufficient water is ingested, core temperature is maintained at a lower level (4).

The optimal oral hydrating solution should (a) be absorbed rapidly from the digestive system allowing for maximal fluid delivery to the body and maintenance of an adequate hydration level, (b) provide carbohydrate to the blood thereby sparing

muscle and liver glycogen stores and preventing hypoglycemia; (c) provide carbohydrate that will not result in a significant insulin response; and (d) provide minerals to replace those lost during periods of heavy sweating (15,16).

Glucose concentrations as low as 5% by volume can retard gastric emptying (15.17-23) and reduce absorption of the ingested fluid. The volume of nutrient solutions emptied from the stomach is delayed as the osmolar concentration of the gastric contents increases. This delayed emptying of hyperosmotic gastric content can cause nausea and discomfort. Coyle (19) reported that plain water emptied 39% faster than a 5% glucose solution when the subject was at rest, whereas Neufer et al. (23) noted that water emptied 22% faster than a 5% glucose solution at 50-70% VO2max. However, delayed gastric emptying has not been shown to result in performance decrements. The total carbohydrate delivered from a 5% carbohydrate solution is inadequate to meet the carbohydrate requirement of heavy exercise (24). However, continued ingestion of a carbohydrate solution can stabilize blood glucose levels and thus the work rate (4,25-32) when compared to water. Of equal importance, is the coupling effect of glucose, Na⁺, and water absorption in the small bowel which is distinct from the normal absorption of salt (NaCl) in the brush border. Solutes such as glucose utilize an independent brush border carrier which permits one Na⁺ ion to be absorbed with each glucose molecule entering the cell. The resulting flow of water enhances further NaCl absorption (solvent drag) (33).

Another factor that may affect performance is electrolyte balance i.e., sodium is important in preserving extracellular volume. Costill (34) described electrolyte losses in the sweat ranging from 40-60 mEq Na⁺/L sweat. Excessive sweating results in large water losses but the electrolyte losses are much smaller (35). Researchers do not agree on the need for electrolyte replacement during exercise in the heat. Pitts

et al. (4) reported that replacement of salt hour by hour during heavy sweating has no demonstrable advantage for fully acclimatized men who receive adequate amounts of salt in their daily diet. Most research on salt replacement is for short periods of time (2-6 hours) (4,35) followed by a meal soon afterward and therefore salt replacement was not needed. However, moderate sustained activity for 24 hours in a hot environment (sweating 0.5L/hr) could cause losses of up to 12 liters of sweat and hence 480-720 mEq (11,040-16,560 mg) of Na⁺ per day. Frizzell et al. (36) reported on two unusual cases of hyponatremia resulting from excessive consumption of dilute fluids (about 20 liters containing 196 mEq Na⁺) during excessive sweating in ultramarathon running, and concluded that in a small minority of long distance runners some replacement of sodium is necessary. Americans usually ingest 2300-6900 mg Na $^+$ /day when only 100-150 mg of sodium is needed to meet the physiologic needs of people who do not lose excessive amounts of fluid (37). Food deprivation caused by anorexia in the heat could preclude salt replacement. The possibility of sustained exercise which can elicit hyperthermia (14,38), excessive fluid loss due to heavy sweating, and lack of regular meals suggest that sodium supplementation during the first 3-5 days may be important for unacclimated persons.

About 60% of the Mg⁺⁺ in the body is in the skeleton. The remainder is chiefly in the intracellular space where it is involved in: (a) membrane permeability and transport, muscular contraction, and nerve impulse conduction; (b) intracellular fluid regulation such as viscosity, buffering, phosphate (PO₄) transport, activation of enzyme systems, activation of adenosine triphosphatase, and actions as a chelating agent; and (c) regulation of protein synthesis (39). There is evidence that Mg⁺⁺ has an important role in maintaining cell K⁺ integrity (40). Magnesium is pivotal in restraining the loss of cell K⁺ during K⁺ depletion (41) as well as in repleting cell

 K^+ (42). Thus, avoidance of a Mg^{++} deficiency is important in order to circumvent the problem of refractory or resistant K^+ repletion (43,44). While body Mg^{++} is fairly well conserved by the kidney, losses may occur in sweat or diarrhea. About 1 liter of sweat contains about 1.5 - 5.0 mEq of Mg⁺⁺ (34,45); therefore, soldiers sweating heavily in the heat and not eating regular meals may become depleted. If consumed, the average American diet is nutritionally adequate in its Mg⁺⁺ content. A recent study of soldiers eating 3 A-ration meals per day in the field found magnesium intakes of about 414 mg/day (46). The Military Recommended Dietary Allowances (MRDA) for Mg^{++} for males is 400 mg/day. hence supplementation does not appear to be necessary when regular meals are However, Mg⁺⁺ deficiency can occur when there are excessive losses either eaten. through the kidneys, sweating, or gastrointestinal tract, or due to inadequate intake (47). Clinical and experimental Mg^{++} deficiency is characterized by hyper-irritability, soft tissue calcification, muscular dysfunction, cardiovascular arrhythmia, tremors, disorientation, ataxic gait, motility problems manifested by dysphagia, and malnutrition (48). Thus, it appears important to avoid Mg^{++} deficiency especially under field conditions.

Severe heat stroke is characterized by hypokalemia and rhabdomyolysis. Maintenance of normal K^+ homeostasis is important for skeletal muscle and gastrointestinal smooth muscle function (49). Similarly, normal cardiac conduction and function is dependent on maintenance of normal intracellular and extracellular K^+ concentrations. It is especially relevant to avoid K^+ depletion because of the vasopressin resistant hyposthenuria or loss of renal concentrating power associated with K^+ deficiency (48,50). This inability to concentrate urine and to conserve water is crucial under conditions of heat stress.

Phosphorus losses, incurred either in response to heat or secondary to diarrheal losses, should be replaced in view of the pivotal role played by this cation in cell energy production, i.e., adenosine triphosphate (ATP). Other potential clinical problems associated with phosphorus depletion include decreased red blood cell (RBC) 2,3 diphosphoglycerate, and decreased RBC ATP which may impair red cell oxygen release from oxyhemoglobin. Abnormal white blood cell phagocytic, chemotactic, and bactericidal activities have been demonstrated in association with phosphorus depletion as has central nervous system dysfunction characterized by irritability, apprehension, muscular weakness, numbness, dysarthria, confusion, obtundation, seizures, and coma (51). Rhabdomyolysis is associated with phosphorus depletion. Creatine phosphokinase (CPK) elevation, with or without myoglobinuria, has been observed experimentally as well as clinically (51). These observations strongly support the view that phosphorus depletion should be avoided and that phosphorus may need to be supplemented if it is possible that dietary intake may not be adequate.

Troops who are encapsulated in mission oriented protective posture 4 (MOPP4) for 24 hours are fasting because current doctrine only provides for water intake in this configuration. A soldier must find a decontaminated area or shelter before he can remove his mask to eat. Dehydration, hypoglycemia, and ketosis can incapacitate a soldier. A sedentary individual in MOPP4 only requires water for a 24 hour fast. A person who must work at intense levels in a hot environment in MOPP4 could become a heat casualty very quickly and nutrient solutions or water would be ineffective in reducing the rate of this occurrence (52). A soldier working at a moderate workload at a Wet Bulb Globe Temperature (WBGT) of 70°F is subjected to high heat stresses in MOPP4. A nutrient solution might prolong his

ability to work for sustained periods of time. Comparing a 2.5% fructose/maltidextrin solution (NBC solution) to water showed no significant differences in endurance time (17 vs. 16 hours): however, the only subjects that were able to finish the 24 hour test were drinking the nutrient solution (53).

In the event of a war, reservists will be called to duty and must be ready to perform their assigned duties immediately and for a prolonged period of time. Many reservists work in air-conditioned offices and do not exercise extensively. Rapid transition to heavy work in a hot environment presents the very real possibility of extensive dehydration and heat casualties that could incapacitate the unit and make it ineffective. A nutrient solution that could replace fluid and electrolyte losses might reduce personnel incapacitation or performance degradation from heat. Consumption of nutrient solutions may replenish vital body fluids to prevent fatigue and heat injury.

A multipurpose nutrient and electrolyte solution that could be used for troops encapsulated in MOPP4 for 24 hours, for enhancement of fluid intake to prevent heat injury, and for treatment of heat casualties (exhaustion and cramps) could be paramount to the success of military operations. A National Research Council advisory committee recommended a nutrient solution for consumption by encapsulated troops during a chemical/biological attack (NBC Nutrient solution) at a WBGT of 70°F and working at a moderate workload (52). See Appendix A-1 for the NBC Nutrient Solution formulation and chemical analysis. This NBC Nutrient solution may have military value and potential beyond its original purpose such as increasing fluid consumption and replacing lost electrolytes to prevent or treat heat injury in unacclimated soldiers in a hot environment. Another potential use is as an oral replacement fluid for diarrhea. The efficacy of a glucose containing oral rehydration

solution in restoring electrolyte and water deficits in patients suffering from diarrhea is established (54,55). Using the formulation of the NBC Nutrient solution as a foundation, the authors developed a field expedient multipurpose solution called Armyade 1 (Appendix A-2). The electrolyte concentrations were altered by adding ${\sf Mg}^{++}$ and increasing the amounts of ${\sf K}^+$ and ${\sf PO}_{{\tt A}}$ to replace potential losses in sweat or diarrhea. At regular dilution Armyade contains the same amount of carbohydrate as the NBC Nutrient solution but the carbohydrate source is entirely in the form of glucose polymers (Malti Dextrin 42) instead of partially from fructose. Several researchers (56,57) have reported gastric upset, epigastric pain, and diarrhea when fructose (20-50 g) is the source of carbohydrate in a nutrient solution. In comparison to glucose, glucose polymers are more rapidly emptied from the stomach, more rapidly absorbed, and immediately available for uptake by the exercising muscle (15,16,60). Glucose polymers also produce a lower osmolality than isocaloric concentrations of glucose. A comparison of the energy, carbohydrate and electrolyte content, and the osmolality of Armyade and NBC Nutrient Solution is shown in Table 1. The sodium and chloride levels in Armyade are the same as in the NBC Nutrient solution, potassium and PO $_{\mathtt{A}}$ levels are increased and Mg $^{++}$ has been added. Armyade should meet the needs of soldiers in MOPP4 ensemble who are in a fasting state and sweating about 0.5 liter per hour. Although a NBC Nutrient solution is already developed, logistical considerations would dictate consolidating the NBC solution and Armyade into one multipurpose solution. While hyperkalemia, hypermagnesemia, and hyperphosphatemia can result from hemoconcentration from

^{1./} Armyade is a descriptive name derived by the authors of this report to describe an experimental multipurpose beverage formulation. The name should not be construed to imply official U.S. Army or Department of Defense endorsement of this product.

FLUID Na ⁺ Cr K ⁺ HCO ₃ Mg ⁺⁺ PO ₄ Energy (scal/l) Monolity (monolity) Armyade 22.8 25.5 9.5 10 5.2 3.2 25 107 127 NBC Nutrient Soln 25.0 24 0.02 0.14 2.0 24.8 99 166				ELECTRO	DLYTES	(mEq/L)				
Armyade 22.8 25.5 9.5 10 127 NBC Nutrient Soln 25.0 24 0.02 0.14 2.0 24.8 99 166	FLUID	Na+	כו	+ +	нсо ₃	Mg++	PO4	Carbohy- drate (g/L)	Energy (kcal/L)	Osmolality (mOsm/kg)
MBC Nutrient Sola 25.0 24 0.02 0.14 2.0 24.8 99 166	Armyade	22.8	25.5	9.5	10	5.2	3.2	25	100	127
	NBC Nutrient Soln	25.0	24	0.02		0.14	2.0	24.8	66	166
8										
	0									
				- 						

heat injury, these increases are of a modest nature. Clinically significant increases in serum K^+ , Mg^{++} , and PO_4 usually occur only in the anuric subject with acute renal failure. Since all soldiers undergo frequent physical examinations and should be in excellent health, pre-existing renal insufficiency is not a widespread condition. Thus, drinking Armyade or NBC solution should not result in hyperkalemia. hypermagnesemia, or hyperphosphatemia. Armyade should be useful not only to soldiers who are in MOPP4 but also to those who are working hard in the heat and who may not consume 3 meals per day due to time constraints, nonavailability of food, and/or anorexia. One packet of Armyade dissolved in a canteen of water would provide sufficient electrolytes to replace sweat losses (Table 2). Treatment of mild heat casualties such as exhaustion or cramps requires hypotonic replacement of fluid and electrolytes (0.1% NaCl). Armyade contains the correct balance of fluids and electrolytes and should be palatable enough to encourage high levels of fluid intake (forced fluids). At double strength (Table 2), Armyade should contain sufficient carbohydrate and electrolytes in the proper balance to serve as an oral rehydrating fluid for treatment of diarrhea in soldiers in the field. The composition of a commercially available carbohydrate-electrolyte beverage (Gatorade $^{\sf R}$) is shown in Table 2 for comparison. In summary, the purpose of the Armyade solution is to maintain fluid and electrolyte balance in soldiers encapsulated in MOPP4, enhance fluid intake to prevent heat injuries, treat heat injuries, and to treat diarrhea in the field.

Comparison of the electrolyte composition of sweat, diarrhea, and carbohydrate solutions Table 2.

FLUID			EL	ECTROLY	TES (mEq/l	(-)		
	Na+	ם'	+ *	нсо ₃	Mg ⁺⁺	PO4	Carbohydrate (g/L)	Osmolality (mOsm/kg)
Sweat ¹ Diarrhea ²	40-60 25-50	30-50 20-40	4-5 35-60	0 30-45	1.5-5 8-17 ³	11	1 1	
Armyade ⁴ Armyade 2x 01 NBC Nutrient Gatorade	22.8 45.6 25 22.3	25.5 51 24	9.5 19 0.02 2.46	10 20	5.2 10.4 0.14	3.2 6.4 0.0	25 50 43.8	127 261 340

¹Reference 34.

²Reference 58.

³Reference 59.

⁴Armyade is a descriptive name derived by the authors of this report to describe an experimental multipurpose beverage formulation. The name should not be construed to imply official U.S. Army or Department of Defense endorsement of this product.

⁵Gatorade (R) is a proprietary trademark of Stokely-Van Camp, Inc., Chicago. IL and is shown here to illustrate Hereafter, this product will be referred to as Gatorade. the composition of a popular commercial beverage.

OBJECTIVES

 To evaluate fluid intake and voluntary dehydration in a hot field training environment in soldiers who are offered NBC Nutrient solution. Armyade, or a colored-flavored placebo in addition to water and other normally available beverages.
To identify and evaluate heat injury in a medical field unit by measuring Total Body Water, Na⁺ levels, and blood profiles.

To evaluate body weight fluctuations prior to and during desert field exercises.
To determine the acceptability of the NBC Nutrient solution compared to water, placebo, and Armyade in the heat.

5. To evaluate the accuracy of satellite-derived estimates of WBGT.

6. To study the relationship between fluid intake and food consumption in prolonged heat exposure.

GENERAL METHODS

The presentation of temperature as degrees Fahrenheit in this technical report is a departure from scientific convention but was done to be consistent with current military doctrine recommendations on heat stress in the field and instrument outputs in the Environmental Heat Stress Section of this report.

Study Population

Volunteers were recruited from reservists of the 44th Evacuation Hospital 807th Medical Brigade participating in a field training exercise (FTX Dusty Bull 1988) at Fort Hood, TX during June 1988. The Reservists were briefed on the purpose of the study in February and March 1988 and signed Volunteer Agreement forms at that time. Prior to the volunteers deploying from their home base, they were assigned to one of 4 beverage groups: Armyade, Control (plain water), a coloredflavored Placebo, and NBC Nutrient Solution (Table 3). However, they were not notified of their group assignments and they were not given any of the test beverages until the day after deployment. To reduce the confounding effects of activity level, age, gender, and work experience, the assignment of volunteers to the different groups was stratified according to military rank, gender, age, and Military Occupational Specialty.

Two subjects did not like the flavor of their pre-assigned test beverage (Armyade and Placebo) and refused to drink their respective test beverages after Day 1. For all intents and purposes, they had assigned themselves to the Control group. Therefore their biochemical, hydration, food, and fluid data were analyzed with that of other soldiers assigned to the Control group.

GROUP	n	FLUIDS ALLOWED
ARMYADE	14	TEST BEVERAGE - Armyade - 2.5% maltidextrin solution with Na ⁺ , Mg ⁺⁺ , K ⁺ , PO ₄ , Ca ⁺⁺ . and HCO ₃ Water Other fluids
CONTROL	17	TEST BEVERAGE - water Other fluids
PLACEBO	12	TEST BEVERAGE - Placebo - colored, flavored, artificially sweetened solution Water Other fluids
NBC	18	TEST BEVERAGE - NBC Nutrient Solution - 2.5% fructose/maltidextrin_soln with Na ⁺ , K ⁺ , PO ₄ , Ca ⁺⁺
24. 21		Water Other fluids
TOTAL	61	

Table 3. Composition and description of <u>ad libitum</u> fluids consumed by the test groups

However, they rated the acceptability of their test beverages on the final questionnaire, and therefore their demographic and fluid acceptability data were analyzed according to their originally assigned test beverages.

The subjects in each group were allowed to consume their test beverage <u>ad</u> <u>libitum</u>. They were free to choose either water, the test beverage, or other available fluids (soda, juice, koolaid, milk, coffee, tea, etc.). However, the subjects only had one canteen each. They made their own decision as to what they would put into their canteens (test beverage or water) whenever they refilled the canteens. See Appendix A for the formulation and composition of the NBC Nutrient Solution,

Armyade, and Placebo solutions. The packets of Armyade and NBC solution powder were issued to the volunteers two times per day. The Placebo was pre-mixed and available to the soldiers in three thermos jugs placed before the dining tent, heat injury treatment tent, and in the formation area. The test beverages were made from water in the lyster bags and water buffalo. No effort was made to cool the beverages. Water was readily available in 1 water buffalo and 3 lyster bags spread throughout a 0.04 km² area for the soldiers to fill their canteens or canteen cups with water. Other available fluids were kept near their cots or in their work area. The data collection sheets showed that some subjects alternated test beverage with water in their canteens, however, others only put test beverage in their canteens.

Sixty-one subjects participated in this study. However, six subjects dropped out of the study after 5 or 6 days and therefore their data could not be used for food and fluid intake analyses (n=55). Three of these subjects had remained in the study for a sufficient period of time that the demographic, biochemical, and final questionnaire data were still valid (n=58). Some subjects dropped out of the study because they had to return to their home station early. Other subjects were dropped out of certain analyses because the data were incomplete. In the hydration section, values were calculated to replace the missing data.

Study Design

Reservists were studied at their home station (Oklahoma City, OK and El Paso, TX) pre-deployment (Day 0 AM); post-deployment (arrival at Fort Hood, TX or Day 0 PM); and during 8 days (Day 1 to 8) of field training. The field training included an Army field training exercise (FTX) named Dusty Bull 88 at Fort Hood, TX. The soldiers erected and lived in tents for the 8 days of the exercise. However, some of

the soldiers attended classes in garrison during the day. On Day 5 of the study, all soldiers including the test subjects were allowed to return to garrison in the afternoon to shop at the PX, take a shower, attend movies, etc. Most of the activities at garrison were conducted in air-conditioned buildings. The subjects kept records of the different foods and fluids that they consumed during this break but urine and body weight data could not be collected for the PM period. The subjects returned to the field by 2200 hours that night.

Two flavored 2.5% carbohydrate-electrolyte solutions, plain water, and a placebo were studied to determine their acceptability and effects. The subjects in the Control group were not given any special test beverage but drank water and any other fluid that they brought to the field ad libitum as did the other three groups. The Placebo group was included to determine the effects of the coloring and flavoring components of the test beverages. Measurements of acceptability included a laboratory acceptance test, final questionnaire, quantity of fluid consumed, and daily hedonic ratings of the beverages. See Appendix B for a complete list of the dependent variables. The first carbohydrate-electrolyte solution was the NBC Nutrient solution (NBC solution) which was developed by Natick Labs, on the recommendations of a NRC advisory committee (37) for soldiers encapsulated in MOPP4. The NBC solution was composed of a 2.5% mixture of fructose and maltidextrin, 25.0 mEq/L of Na⁺, 24 mEq/L of Cl⁻, 0.02 mEq/L of K⁺, 0.14 mg of Mg^{++} . 2.0 mEq/L of PO_A, and 11.3 mEq/L of Ca⁺⁺. The osmolality of the solution was 166 mOsm/kg. To form the Armyade solution, Mg⁺⁺, PO₄, HCO₃, and K⁺ concentrations were added or increased in the NBC solution formula and the fructose was replaced with an equal amount of maltidextrins. The Placebo was colored and flavored as a low calorie (aspartame) lemon-lime drink to match the

appearance and taste of Armyade and the NBC solution. The soldiers were told that we were comparing 3 nutrient-electrolyte solutions to water. Packets for all three solutions were labeled as lemon-lime electrolyte solutions.

The effects of deployment on hydration status were studied by taking body weights and collecting urine from all soldiers on Day 0 AM and Day 0 PM. Body weights and urines were collected two times per day for Days 1 to 8 to examine the effects of the carbohydrate-electrolyte beverages, heat, and light-moderate activity (including periods of more intense physical labor i.e., erecting tents on Day 0 to Day 4) on hydration status. Blood chemistries were obtained on Day 0 PM and Day 8 PM to study the effect of the carbohydrate-electrolyte solutions on serum glucose and electrolytes. Another aspect of the study was to determine the effects of hydration on circulatory system functions. The tilt-test was used to measure orthostatic hypotension on Day 1 and Day 8.

Total body water and rectal temperature data were collected on four test subjects presenting with heat cramp or heat exhaustion. Blood was collected at the time of examination and questionnaires were administered to collect data on the effects of heat illness.

Body Weights

Body weights were taken immediately before deployment (Day 0 AM) and within 2 hours of arrival at the field site, Day 0 PM (Table 4). Measurement of daily weights (AM and PM) began on the morning after the deployment day (Day 1 AM and Day 1 PM) using Seca digital battery operated scales. Weighings were conducted before breakfast and again before dinner. The subjects were weighed in BDU pants, t-shirt, and boots. They were asked to remove their helmet, weapons.

web gear, blouse, and items from their pockets. If all weights could not be obtained on a subject, the mean weight for all other weighings was inserted.

Urine Collection

Urine was collected Day 0 AM in Oklahoma or Texas and Day 0 PM at Fort Hood (Table 4). Starting Day 1 the first urine upon rising (AM) and a late afternoon (PM) urine sample were collected concurrently with body weight measures. The twice daily collections continued for the 8 days (Days 1-8) of field training. Urine samples were analyzed for specific gravity (TS meter) and by dipstick. Aliquots were frozen in liquid nitrogen and transported to the U.S. Army Research Institute of Environmental Medicine (USARIEM) for analyses of Na⁺, K⁺, Mg⁺⁺, and creatinine. If a subject displayed signs of impending dehydration (\geq 3% body weight loss and/or urine specific gravity \geq 1.030), he/she was advised to increase his consumption of fluids and food. Urine samples were not available from all subjects at all collections; therefore the mean of the reading from the day before and the day after that missing value was calculated and used for data analysis. AM urine values were used to calculate AM values, and likewise, PM values were used to calculate the missing PM data. This procedure was used to replace missing values because only 5% of the urine samples were missing and the computer programs could not handle missing data. When reporting the incidence data, only available data were used.
casualties).
heat
<u>0</u>
subjects
all
for
Testing
4
Table

TIME	weight am & pm	URINE ¹ (AM void) ² (PM void)	ACCEPTA- BILITY	FOOD INTAKE (B & D)	24h Fluid Intake Am & Pm	ORTHOSTATIC HYPOTENSION	BLOOD
Pre-Deploy (Day 0 AM)	1x	1x					
Post-Deploy (Day 0 PM)	1x	1×					1x
Day 1	2x	2x	1x	2x	2x	ŢX	
Day 2	2x	2x	1x	2x	2x		
Day 3	2x	2x	1x	2x	2x		
Day 4	2x	2x	1x	2x	2x		
Day 5	2x	2x	1 x	2x	2x		
Day 6	2x	2x	1x	2x	2x		
Day 7	2x	2x	1x	2х	2x		
Day 8	2x	2x	1x	2x	2х	1x	1x
Day 9			Questionna	ire			

¹First morning void

²Void at end of work shift before dinner meal

Blood Collection

Blood was collected from most of the volunteers twice during the test period. The first sample was taken within 2 hours of arrival at Fort Hood (Day 0 PM), and the second during the Day 8 PM body weight and urine collection. The blood was centrifuged, the serum frozen in dry ice, and the samples sent to Wishard Memorial Hospital, Indianapolis, IN for analysis. The serum samples were analyzed to obtain serum glucose, sodium, potassium, creatinine, cholesterol, albumin, total protein, triglyceride, chloride, blood urea nitrogen, magnesium, and phosphorus. The Kodak Ektachem 700 blood analyzer was used to measure blood chemistries on the serum samples. The Dupont ACA 3 was used to determine serum magnesium and triglyceride levels.

Fluid Temperature

Several investigators have reported that fluid temperature affects the acceptability of a beverage (13,61-63), and therefore, the water temperatures were measured. The water in the water buffalo, mess hall lyster bag, and heat tent lyster bag were tested from Days 4-7. The pre-mixed Placebo fluids in the thermos jugs were tested at the same time. Fluid temperatures averaged about 75.1°F for the water and about 79.4°F for the Placebo solution. In general the Placebo fluids were warmer than the water because the lyster bags and water buffalo maintained cooler temperatures due to wet bulb effects and the large water mass.

Statistics

The data were analyzed using the BMDP 2V program to test for sphericity and the 4V program for a multivariate ANOVA with repeated measures. The analyses

GENERAL METHODS

were run to test for differences between the 4 beverage groups and for repeated measures differences over the 8 days. If significant differences were found, then Tukey's HSD <u>post hoc</u> tests were run to determine which groups were different. If other statistical tests were used, the information was included in the methods sections of the specific section. The data are reported as mean and standard error of the mean (mean±SEM).

DEMOGRAPHIC DATA

Physical characteristics of subjects participating in this study are listed in Table 5. The weight that was used for this table is the pre-deployment (Day 0 AM) weight taken at their home station (Oklahoma City. OK or El Paso. TX) before the soldiers were transported to Fort Hood, TX. Some data were missing on height because the soldiers were unsure of their exact height or did not fill out the final questionnaire.

VARIABLE	NUMBER	MEAN±SEM	MINIMUM	MAXIMUM
Age, years	61	33.6±1.1	19	51
Height, cm _*	51	173.5±1.5	152.4	198.1

75.4±2.0

41.5

128.2

Table 5. Physical characteristics of subjects.

61

Pre-deployment or Day 0 AM weight

Weight, kg

The demographic data were collected on the morning of Day 9 as part of the final questionnaire. Fifty-eight of the 61 subjects completed the final questionnaire. Descriptive statistics were obtained using the Statistical Package for the Social Sciences (SPSSx). Table 6 displays the demographic information collected from subjects in each of the four groups. Inspection of the entries in this table reveals considerable similarity in subject characteristics across groups in terms of age, height, weight, sex, years of service, and distribution of ranks. In each of the groups, approximately half of the subjects were between the ages of 18 and 34 years and approximately half of the subjects were age 35 years or older. Males and females

DEMOGRAPHIC DATA

		GROU	PS	
	CONTROL (n=14)	PLACEBO (n=12)	ARMYAD (n=15)	E NBC (n=17)
AGE (years) (%) under 18 18 - 24 25 - 34 35 - 44 45 - 54 55 or older	0 21.4 21.4 57.1 0 0	0 8.3 33.3 41.7 16.7 0	0 6.7 40.7 46.7 6.7 0	0 17.6 35.3 35.3 11.8 0
HEIGHT (inches) ^a	69.7 (1.3)	68.6 (1.2)	66.1 (0.7)	69.0 (1.0)
WEIGHT (pounds) ^a	165.6 (10.1)	151 (6.1)	145.7 (7.6)	160.5 (7.8)
SEX (%) Male Female 50	50 45	55 53	47 41	59
YEARS OF SERVICE (%) 0 - 5 6 - 10 11 - 15 16 - 20 more than 20	50 21.4 21.4 7.1 0	41.7 16.7 8.3 8.3 25.0	33.3 33.3 13.3 13.3 6.7	52.9 17.6 5.6 23.9 0
POINT OF ORIGIN (%) El Paso, TX Oklahoma City, OK Other	36 64 0	33 67 0	53 47 0	24 71 5

Table 6.	Demographic information of subjects consuming water, a flav	ored
	water placebo, or two nutrient solutions.	

Table 6. (Continued)

		GROUPS		
	CONTROL (n=14)	PLACEBO (n=12)	ARMYADE (n=15)	NBC (n=17)
DISTRIBUTION OF RANKS (%) ENLISTED				
E-1	0	0	0	0
E-2	14.3	0	0	0
E-3	7.1	16.7	13.3	5.9
E-4	7.1	8.3	0	17.6
E-5	7.1	16.7	26.7	17.6
E-6	7.1	0	6.7	0
E-7	0	8.3	0	0
OFFICERS				
0-1	14.3	16.7	20.0	23.5
0-2	7.1	0	6.7	0
0-3	21.4	8.3	6.7	11.8
0-4	14.3	0	13.3	11.8
0-5	0	16.7	6.7	11.8
WARRANT OFFICER				
WO-1	0	0	0	0
WO-2	0	8.3	0	0
EXPERIENCE LIVING/WORKING IN A HOT CLIMATE (%)	<u>, , , , , , , , , , , , , , , , , , , </u>			
No experience	0	8.3	0	0
blightly experienced	28.6	25.0	13.3	23.5
Vioderately experienced	21.4	25.0	33.3	17.6
/ery experienced	50.0	41.7	53.3	58.8
TRYING TO LOSE WEIGHT (%)	23.0	17.0	40.0	24.0

Note. With the exception of height and weight, all entries in this table are in terms of the percentage of subjects that responded to the question.

^a The mean height and weight of subjects responding with standard errors given in parentheses.

DEMOGRAPHIC DATA

were evenly distributed across groups with approximately 50% of each sex in each group. With the exception of subjects in the Armyade group, the highest percentage of subjects in each of the categories for years of service fell into the 0-5 year category. One third of the subjects in the Armyade group had been in the service for 0-5 years while another third had been in the service for 6-10 years. In each of the four groups, 40-50% of the subjects were enlisted personnel and the remaining 50-60% were officers.

Table 6 shows that the four groups were also similar in terms of the amount of previous experience that subjects had working/living in a hot climate. The subjects were living in El Paso, TX or Oklahoma City, OK, but they were separated into each of the four groups. A very low percentage of subjects indicated having no experience in a hot climate while approximately half of the subjects in each group described themselves as very experienced. No consistent relationship was detected between the amount of experience an individual reported and the individual's report of having had heat-related injuries in the past. The absence of a clear relationship here may be due to the subjects' inability to recognize the symptoms of heat exhaustion, dehydration, heat stroke, and heat cramps. Even while experiencing these injuries (identified by high specific gravities, symptoms, and positive tilt test; see Hydration Section) during the field test, many subjects may have been unaware of their problems.

Subjects also were asked whether they were trying to lose weight. Averaged across groups, 26% of the subjects answered this question affirmatively. While the existence of cells with expected frequencies less

than five did not permit use of a Chi Square analysis to examine between group differences, the 26% overall compares well with the frequency of reported dieting noted in other studies (64).

METHODS

Body weights were taken about 2 hrs before the soldiers embarked (Day 0 AM) from their home station (El Paso, TX or Oklahoma City, OK) and within 2 hrs of arrival at the Fort Hood field site (Day 0 PM). Body weight was obtained while each subject was dressed in BDU trousers, t-shirt, socks, boots, and undergarments. Sequential weights were taken identically before meals in the morning (AM) and afternoon (PM) for the next eight days (Days 1-8) after deployment. A body weight loss of \geq 3% from pre-deployment weight and/or a urinary specific gravity of \geq 1.030 were used as indices of impending hypohydration.

Pre-labeled urine containers (about 50 ml capacity) were provided to each subject at each collection and weigh-in for the next collection period. Individuals were instructed to collect about 25 ml of urine. Urine was collected pre- and postdeployment. Beginning on the morning of DAY 1, the first void urine (AM) and an afternoon sample (PM) were collected concurrently with body weight measures. Urine collections were made for the next seven days of the field exercise.

An aliquot of the fresh urine was assayed for specific gravity by refractometry in a field chemistry lab. Another aliquot was taken and frozen in liquid nitrogen for analysis of sodium, potassium, creatinine, and magnesium at USARIEM, Natick, MA. If urinary specific gravity was \geq 1.030 and/or body weight loss was \geq 3% of predeployment weight, individuals were encouraged to consume fluids and food. The test beverages were not available for consumption during deployment. During the analysis of the deployment data the subjects were categorized according to the study test groups to ensure that no group started the study significantly different from the other groups.

Calculated values were generated from a subject's AM or PM values (for AM or PM values, respectively) when a urine sample or body weight measurement was unavailable. However, these calculated values were not used when generating frequency distributions. A chi-square was computed to establish the relationship between incidence of urine specific gravity \geq 1.030 and groups.

RESULTS AND DISCUSSION

In an earlier study (64), about 15% of the troops lost more than 3% body weight when transportation comprised airflight and ground movement. In these same troops, a very high incidence (40-60%) of concentrated urines occurred following deployment.

In the present study, troops deployed by chartered bus from El Paso, Texas at about 0230 hrs and arrived at the field testing site at Fort Hood, Texas around 1900 hrs. Deployment from Oklahoma City, Oklahoma to Fort Hood occurred between 0600 and 1630 hrs of the same day. Because frequent stops for food and beverages were made, and deployment occurred in less than one day, absence of acute dehydration in many of the troops was not surprising.

Subjects were randomly assigned to the four groups prior to initial data collection. By chance, the heaviest individuals were assigned to the Control, Placebo, and NBC groups in which ranges of body weight were 53-128 kg, 55.5-107 kg, and 42-118 kg, respectively. In contrast, the heaviest individual in the Armyade group weighed only 92 kg. However, differences in average pre-deployment body weights were not statistically significant among groups. In fact, random differences in mean body weights can be tolerated because responses were unrelated to the pre-deployment body weight. Body weight changes and urine specific gravity obtained within two hours prior to deployment (PRE) and about two hours after arrival at the test site at Fort Hood (POST) were used to evaluate the effects of deployment on hydration status. Urinary specific gravity \geq 1.030 was used as an initial criterion for hypohydration.

Average urine specific gravity for each group is presented in Table 7. None of the groups had an average urine specific gravity that exceeded 1.030 prior to or

following deployment. Only the individuals assigned to the Control group had a statistically higher urine specific gravity (p<0.05) post-deployment, but the physiological importance of this increment is minimal since the average values were well within the normal range (1.002-1.030) expected for a random sampling (65).

Table 7. Effect of deployment on urinary specific gravity.

	ennennen in en	GRC	UPS			
	ARMYAI	DECONTRO	L PLACEB	O NBC	MEAN	
PRE DEPLOYMENT	1.021 ±0.002	1.020 ±0.002	1.019 ±0.002	1.022 ±0.002	1.020 ±0.001	54
POST DEPLOYMENT	1.020 ±0.002	1.023 [*] ±0.002	1.020 ±0.002	1.019 ±0.002	1.021 ±0.001	·
NUMBER OF SUBJECTS	(14)	(17)	(12)	(18)	(61)	۰.

Values are mean±1SEM.

* Indicates significant difference (p < 0.05) between pre- and post-deployment.

No statistical differences were noted in urine specific gravity among the four groups either pre- or post-deployment. For this reason, the values from all four groups were combined and their observed incidences were plotted as frequency histograms in Figure 1 for both pre- and post-deployment. These data show a similar distribution and average value for urinary specific gravity, pre and postdeployment. These frequency distributions indicate that hydration varies quite remarkably between individuals even when activity is limited, and also that not all individuals were optimally hydrated. Four subjects (8%) pre-deployment and

Figure 1. Urine specific gravity pre- and post- deployment

six subjects (11%) post-deployment had concentrated urines with specific gravities exceeding our criteria for impending hypohydration. These data support the finding that soldiers riding all day in tanks or trucks do not rehydrate as well as men sitting in the shade and drinking voluntarily (66).

The frequency distribution (Figure 2) of body weight changes for all soldiers demonstrates the variability in change of body weight (range= -2.75 to 2.15%) during the deployment phase. The second criterion of hypohydration was loss of \geq 3% of pre-deployment body weight. Table 8 shows the mean body weights for all four groups before and after deployment as well as the percent body weight lost during the deployment. The average body weight data also confirm that acute dehydration did not occur in any group during deployment. None of the differences in body weight were physiologically significant and no group had a weight loss \geq 3% during the deployment.

Normal values for creatinine ordinarily range between 0.8 g/dl and 2.0 g/dl in 24 hour urine collections, whereas urinary sodium and potassium values are correlated with dietary intake (65). Table 9 shows the values obtained for sodium and potassium during the deployment day. While there were no significant differences between pre- and post-deployment values for subjects assigned to (but not consuming during deployment) the Armyade and NBC solution groups, the subjects assigned to (but not consuming during deployment) the Control and Placebo groups showed an increase in sodium (and for the Control group an increase also in urinary potassium) that resulted in corresponding significant decreases in urine sodium to potassium ratios pre- to post-deployment. Decrements

		GROUPS	·····		
	ARMYADE	CONTROL	PLACEBO	NBC	MEAN
PRE DEPLOYMENT	68.4 ±3.1	78.4 ±4.2	74.9 ±4.2	78.5 ±3.7	75.4 ±2.0
POST DEPLOYMENT	68.6 ±3.1	78.5 ±4.2	75.0 ±4.1	78.9 [*] ±3.7	75.6 ±2.0
% CHANGE IN BODY WEIGHT FROM PRE	0.3 ±0.2	0.1 ±0.2	0.2 ±0.3	0.5 ±0.3	0.3 ±0.1
NUMBER OF SUBJECTS	14	17	12	18	61

Table 8. Effect of deployment on body weight (kg).

Values are mean±1SEM.

* Indicates significant difference (p < 0.05) between pre- and post- deployment.

		and the second	GROUP		· · · · · · · · · · · · · · · · · · ·
	ARMYADE	CONTROL	PLACEBO	NBC	MEAN
	(n=14)	(n=17)	(n=12)	(n=18)	(n=61
SODIUM (Na ⁺) PRE- DEPLOYMENT	152 ±14	121 ±18	127 ±14	130 ±15	132 ± 8
POST-	139	147*	152*	130	141
DEPLOYMENT	±18	±16	±16	±14	± 8
POTASSIUM (K ⁺) PRE- DEPLOYMENT	46.0 ±7.4	43.5 ±6.7	35.5 ±5.8	48.4 ±7.0	43.9 ±3.4
POST-	40.0	66.9*	48.2	56.8	54.0*
DEPLOYMENT	±5.2	±7.3	±5.0	±8.0	±3.6
Na ⁺ /K ⁺ RATIO PRE- DEPLOYMENT	4.14 ±0.60	3. 78 ±0.59	4.23 ±0.64	3.53 ±0.61	3.88 ±0.30
POST-	3.58	2.48*	3.31*	2.97	3.04*
DEPLOYMENT	±0.32	±0.44	±0.53	±0.33	±0.20

Table 9. Effect of deployment on urinary sodium and potassium (mEq/L).

Values indicated are mean±1SEM.

* Indicates significant difference (p<0.05) from pre-deployment.

in sodium to potassium ratios may be indicative of developing hypohydration as Na⁺ becomes conserved (67). Since none of the groups consumed their assigned test beverage during deployment, the increased urinary sodium most probably reflected the increased salt intake from frequent food stops enroute to the deployment site.

Table 10 shows that urinary creatinine concentrations were generally consistent among groups and from pre- to post-deployment.

-			GROU	Р	· · · · ·
15	ARMYADE	CONTROL	PLACEBO	NBC	MEAN
15127-1414 - 1419	(n=14)	(n=17)	(n=12)	(n=18)	(n=61)
PRE-	0.19	0.18	0.16	0.18	0.18
DEPLOYMENT	±0.02	±0.03	±0.03	±0.02	±0.01
POST-	0.17	0.20	0.17	0.18	0.18
DEPLOYMENT	±0.03	±0.03	±0.02	±0.03	±0.01

Table 10. Effect of deployment on urinary creatinine (g/dl).

Values are mean±1SEM.

The majority of the 61 subjects lived and worked in Oklahoma City, OK. The soldiers from El Paso. TX were distributed among the four different test groups so as not to bias the data due to area of residence. The only significant difference in hydration indices based upon the point of origin (Table 11) was the significantly higher (p<0.05) urinary potassium for the post-deployment sample for the El Paso. TX group compared to the Oklahoma City, OK group. This high level may reflect losses due to more frequent food stops, the longer distance deployed, and perhaps

deployment.
during
hydration
of
indices
1 urine
ō
origin
of
point
of
Effects
Ξ
(1)
Table

	ď	OINT OF ORIGIN		
HVDRATION	EL PASO, TX		OKLAHOMA (сіту, ок
INDICES	AM (n=21)	PM (n=21)	AM (n=40)	PM (n=40)
Body Weight (kg)	75.5±3.3	75.4±3.3	75.4 ±2.5	75.8±2.5
Urine Specific Gravity	1.021±0.002	1.023±0.001	1.020±0.001	1.019±0.001
Urinary Na ⁺ (mEq/L)	142±15	154 ±15	127±9	134±9
Urinary K ⁺ (mEq/L)	51.5±7.4	66.4±7.0	39.9±3.3	47.5 ±3.9 *
Urinary Na ⁺ /K ⁺	3.88±0.52	2.91±0.45	3.87±0.38	3.43±0.34
Urinary Creatinine (g/dl)	0.18±0.02	0.18±0.02	0.17±0.01	0.18≠0.02

Values are mean±1SEM.

*Indicates significant differences (p<0.05) between points of origin.

greater hypohydration during deployment compared to the Oklahoma group. No significant differences were noted between pre- and post-deployment in either group.

CONCLUSIONS

In general, fluid and food consumption during the day of deployment was sufficient to maintain body weight and adequate hydration in most troops.

.

,

METHODS

Prevailing heat stress levels, measured in terms of Wet Bulb Globe Temperature (WBGT) index, were monitored throughout the test period 6-13 June 1988. WBGT measurements, using the standard WBGT apparatus (68), and sling psychrometer readings were taken at half hour intervals during the daylight hours. Instantaneous and average windspeed and relative humidity were continuously recorded using a battery operated portable weather station (Met Set 4B, MET ONE, Inc.).

WBGT measurements also were made by 44th Medical Evacuation personnel using the WBGT Kit (NSN 6665-00-159-2218). These readings were disseminated to local units through the communications network.

Additional WBGT measurements were taken to more rigorously document the temporal (minute-to-minute) and spatial (place-to-place) variation in the level of heat stress experienced by the soldiers across time as they moved about within the training area. An array of 7 electronic WBGT data loggers (hs-371, Metrosonics Inc.) was deployed within a 1 km² section of the training area which included the hospital location. Time indexed WBGT data from the 7 data loggers were obtained at 1 minute intervals.

Area WBGT assessments were made using data obtained from National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and remote-sensing methods currently under development by USAMRDC (SBIR Contract No. DAMD-17-86-C-6004, Gulf Weather Corporation. Bay Saint Louis, MS).

To present the results in a form that is familiar to those having field experience with military heat stress measurements and to be consistent with current doctrine specifications and instrument outputs, degrees Fahrenheit and quarts per hour were used as units of measure on charts in this section.

RESULTS AND DISCUSSION

Heat Stress Conditions During the Test Period.

Table 12 shows maximum Dry Bulb and WBGT temperatures, and sky and wind conditions for each of the test days.

Table 12. Maximum dry bulb and WBGT temperatures and sky and wind conditions^a.

Day	Max Dry Bulb (^o F)	Max WBGT (^o F)	Sky	Wind (mph)
1	91.4	83.3	pt. cloudy	1-5
2	94.1	85.9	pt. cloudy	1-10
3	97.0	85.7	clear	5-15
4	101.0	90.3	clear	3-10
5	87.9	79.3	clear	3-15
6	87.6	79.4	clear	1-7
7	89.5	78.5	clear	2-15
8	88.4	82.3	pt. cloudy	1-12

^aAs measured by standard WBGT apparatus described in Reference 68 within 0.5 km radius of the hospital tents.

Appendix C, shows daily WBGT profiles in relation to doctrine-based water consumption guidelines and work/rest cycle limits (69,70).

The most severe environmental heat stress occurred on day 4, when WBGT values exceeded the 82^oF threshold for more than 9 hours (1000 hrs - 1930 hrs), and the maximum WBGT for the day reached 90.3^oF. From day 5 through day 8 the daily maximum WBGT remained below 82.3^oF. With the exception of days 2 to 4, the test period would have to be characterized as one of low environmental heat stress and below the normal temperatures expected for Fort Hood, TX in the month of June.

Spatial and Temporal Uniformity of the Heat Stress Environment.

Although the half-hourly standard WBGT readings were taken approximately 50 meters away from the nearest tents to minimize wind shadow effects, it is clear from the WBGT profiles that the passing clouds and windspeed fluctuations had a striking effect on the WBGT profiles for days 1,2, and 8. Since doctrine-based guidelines are issued on the basis of a single WBGT measurement, made typically on the hour or half hour, it is worthwhile to examine how well a single, discrete WBGT reading represents conditions during the next measurement interval, and also, how well it represents conditions some distance from the measurement site.

Table 13 illustrates the temporal and spatial variation associated with the 1430 hrs reading on day 2 using 1 minute interval data from the Metrosonics WBGT meters.

	VARIATION			
	TEMPORAL*	SPATIAL**	TOTAL***	=
N:	30	7	210	
Range:	78.5-83.7	78.4-83.7	77.5-84.7	
SD:	±1.5	±1.8	±1.6	

Table 13. Temporal and spatial variation of the WBGT environment, Day 2.

* 1 minute interval readings, 1430-1459, central site.

** 1430 reading at central and six outlying sites.

*** 1 minute interval readings, 1430-1459, at central and six outlying sites.

The standard WBGT apparatus at the central site provided a reading of $84.5^{\circ}F$ at 1430. (The co-located electronic WBGT logger was reading $83.7^{\circ}F$ at that time.) In

comparison to the spatially and temporally averaged WBGT logger values for the 1 km² area over the next 29 minutes, the standard half-hourly reading misrepresented average conditions, in this case, by approximately 4^oF. Since a single point measure of WBGT every half hour per km² of troop activity probably represents a practical limit for environmental monitoring at the unit level, other approaches to augment or improve point-measurement capabilities in operational settings merit consideration.

Satellite Remote Sensing of the Heat Stress Environment

Table 14 shows a comparison of the satellite-derived WBGT with the nearest minute WBGT measurements from the loggers.

DAY	TIME	SATELLITE/ORBIT#	SATELLITE WBGT	MEASURED WBGT	DIFFERENCE
0	9:04	NOAA 10/8913	75.4 ⁰ F	68.8 ⁰ F	6.6 ⁰ F
1	8:42	NOAA 10'/8927	70.9	69.4	1.5
2	17:27	NOAA 9'/17965	80.1	82.5	-2.4
3	9:39	NOAA 10/8956	75.8	75.1	0.7
	17:16	NOAA 9/17979	81.1	84.9	-3.8
4	9:17	NOAA 10/8970	78.9	79.5	-0.6
	17:05	NOAA 9/17993	81.6	85.7	-4.1
	20:34	NOAA 10/8977	75.2	78.2	-3.0
5	16:54	NOAA 9'/18007	74.9	78.6	-3.7
6	16:42	NOAA 9'/18021	73.1	77.4	-4.3
7	16:31	NOAA 9/18035	68.0	73.1	-5.1

Table 14. Comparison of satellite-derived WBGT with contemporary surface level measurements.

For the eleven satellite passes in Table 14, the average difference between the satellite-derived and surface WBGT measurements was $-1.8^{\circ}F$ (too low) and the

standard deviation around that bias was $\pm 3.7^{\circ}$ F. Work is in progress to identify those satellite-derived WBGT components responsible for the generally low estimates of WBGT at Fort Hood, and the necessary adjustments will be made to the respective algorithms. Nevertheless, in the context of the inherent uncertainty in the 'ground truth' measurements themselves (spatial variation $\pm 1.8^{\circ}$ F, logger accuracy specification $\pm 0.9^{\circ}$ F) these results are remarkably good. We conclude that the satellite remote sensing methods currently being developed under the SBIR contract with Gulf Weather Corporation performed very well at Fort Hood. The full development of this methodology will offer dramatic improvements over existing capabilities for heat stress assessments in training or operational settings.

INCIDENCE OF HEAT ILLNESS

METHOD

Four cases of mild heat exhaustion and heat cramps were studied. Heat stroke patients (requiring evacuation) did not exist and were not studied. Rectal temperatures, symptoms, and neurological status were obtained as soon as each subject appeared at the air-conditioned treatment tent (Table 15) according to a predetermined protocol. All heat exhaustion and heat cramp patients had 2 blood samples drawn to determine Na⁺ depletion and total body water (TBW) via stable isotope dilution procedures. A 16 ml sample of blood was drawn, the subject was asked to drink 100 ml of a deuteurated water (D_2O) dose, and an additional 16 ml sample of blood was drawn 2 hours post-dose. In addition to the D₂O measurement, the first blood sample was analyzed for total protein, hematocrit, BUN, Na $^+$, K $^+$, Cl $^-$, Mg^{++} , Ca^{++} , osmolality, creatinine, CPK, LDH, SGOT, and SGPT. Total body water also was measured by pre- and post-dose urine and saliva collections. Twentyfour hour urine samples were collected from all heat injury patients. Each subject was asked to complete 6 questionnaires during recovery. These questionnaires requested data on health history (life); personal characteristics (height, weight, age, PT test score); exercise history; heat exposure history (30 days); environmental symptoms; and pre-disposing factors. After the field exercise ended, all heat casualties were contacted by mail, with follow-up questions.

(32 ml blood) QUESTIONNAIRES TBW¹ Table 15.....Protocol for evaluation of mild heat exhaustion & heat cramps casualties - each event ASAP 1x² **1**X 1_{X} 24-hr URINE 1× WEIGHT 1X 1× RECTAL TEMP BODY ASAP+3X = Day became casualty 2X 2X Casualty Day Post-FTX C+24 h C+48 h TIME υ 47

ASAP= As soon as subject was stabilized and was free to talk.

 1 Maximum of 2 times in 8 days

²Examined medical records

RESULTS and DISCUSSION

Specific results regarding the total body water and blood chemistry values of the four heat exhaustion patients will appear in a separate technical report. However, records of heat illness admissions were maintained during the study plus one extra day; these appear in Table 16. The heat injuries consisted mainly of soldiers from units other than the 44th Evacuation Hospital (i.e., other units of the 807th Medical Brigade and tank units in the area) who were transported to the 44th Evacuation Hospital for treatment. This occurred because the 44th Evacuation Hospital served as a triage point for all heat illness (except heat stroke) during the FTX Dusty Bull 88. The heat illness admissions to the 44th Evacuation Hospital heat treatment tent were categorized as either (a) heat cramps, (b) non-specific heat effects, (c) mild heat exhaustion/dehydration, (d) heat exhaustion, or (e) heat syncope. The obviously high incidence of heat illness on Day 4 coincides with the high dry bulb and WBGT values recorded on that day (maximum dry bulb 101^oF, category IV. maximum WBGT 90.3°F). Progressive dehydration and fatigue may have played a role in the large number of admissions on Day 4; however, they did not alter the number of admissions on Days 5-9.

A total complement of 268 Reservists of the 44th Evacuation Hospital reported to Fort Hood. Some of these reservists are included in Table 16 but additional data from the entire period of the FTX indicated that ten soldiers were treated for heat illness (3.6%). Three of the sixty-one subjects participating in the study were admitted for mild dehydration and seven of the 207 non-study soldiers were admitted for mild to moderate dehydration. The three study subjects were assigned to three different study groups, therefore there was no relationship between test beverages and the incidence of hospital admissions for mild dehydration.

DAY	HEAT CRAMPS	NON-SPECIFIC HEAT EFFECTS	MILD HEAT EXHAUSTION/ DEHYDRATION	HEAT EXHAUSTION	HEAT SYNCOPE
1 . 2 3 4		1 5	5	1 ^{*+} 3 [*]	1
5 6 7 8 9			1		1
Total	0	6	6	4	2

Table 16. Heat illness admissions at the 44th Evacuation Hospital.

* - full measurements (blood, total body water) attempted

+ - including heat cramps

FLUID CONSUMPTION

FLUID CONSUMPTION

METHODS

One of the purposes of this study was to test the acceptability of the test beverages by allowing the subjects free choice on the types and amounts of fluids that they could consume. The subjects in all four test groups were allowed to consume water and other fluids <u>ad libitum</u>. The Control group used plain water as its test beverage whereas the other three groups were given Armyade, the NBC solution or a Placebo to drink <u>ad libitum</u> in addition to water and other available fluids.

To determine if the test beverages were encouraging fluid intake, the soldiers were given fluid intake cards to record the number of canteens of each fluid (water and test beverage) consumed. The subjects were asked to record all other fluids that they consumed between meals (e.g., soda, tea, koolaid, etc.) on these cards. Because the data are not 100% complete, means were calculated and used to replace missing values for the data analysis of daily total fluid consumption only (Table 17). Approximately 2% of the 1705 data collection forms for total fluid intake data were missing values. Data were collected from: a) breakfast meals served by food service personnel; b) dinner meals served by food service personnel (dinner changed to lunch on day 5); c) self-reported forms at 0530 hours that covered the period from 1630 hr of the previous day to 0530 hours (PM card); and d) self-reported forms at 1630 hours (AM card) that covered the period from 0530 hours that morning to 1630 hours (except Day 5 when the data from the AM and PM cards were combined and collected at 0530 hours on Day 6). The procedure of using calculated means to replace missing data was not possible for other analyses (e.g., energy intake, sodium intake, etc.), and therefore the values in Table 17 do not exactly match other tables. The cards were issued and collected at the AM and

PM weighings. Information on fluid intake at the two hot meals served by Food Service were collected by the nutrition data collectors. Information on fluid intakes during the lunch period were recorded on the fluid intake cards. A rating scale was included on the fluid intake card so the soldiers could rate the acceptability of the solutions daily (Appendix D).

RESULTS AND DISCUSSION

Daily Total Fluid Consumption

The mean intake of fluid was 4672±104 ml/day with individual intakes ranging from a minimum of 705 ml on Day 5 for one subject in the Armyade group to a maximum of 13,770 ml on Day 4 for a subject in the Control group. On each of the eight days the subjects in the NBC group consumed the most fluid with a mean intake of 5241±195 ml/day while the subjects drinking Armyade consistently tended to consume the least at 4097±185 ml/day. During the Bright Star field exercises (71), subjects consumed about 1344-4224 ml of plain water from their canteens in the 8 hour period that covered the hottest part of the day. The units were participating in desert field exercises where the WBGT ranged from 81.0-86.0°F as in the present study. The mean intake for a 24-hour time period in the present study was similar to the water intakes during a shorter 8-hour period for the medical. engineer, and Marine units that were engaged in light activity.

A one way analysis of variance of total daily fluid consumption for each manday (440 man-days in 4 groups) showed significant differences (p<0.001) between groups (Table 17 and Figure 3). Essentially, the subjects in the NBC group consumed significantly greater amounts of fluid than those in the Armyade group. This difference in fluid intake is clearly related to similar differences in daily hedonic ratings and in hydration status. Briefly, the NBC solution had a significantly higher hedonic rating and a lower incidence of hypohydration as measured by specific gravity \geq 1.030 than the Armyade group (See Hydration Status section).

A repeated measures analysis of variance by group and across days showed a clear day effect (F(7.45)==5.69, p<0.001), no strong group differences (F(3.51)=0.95, p=0.42), and no evidence of a group by day effect. See Table 17

Figure 3. Total fluid intake divided into water, colored flavored test beverage (CFTB), and other fluids.

FLUID INTAKE (ml/24 hrs)

			GROUPS		
DAY	ARMYADE (n=13)	CONTROL (n=15)	PLACEBO (n=11)	NBC (n=16)	MEAN (n=55)
1	3400±365	5121±648	4856±358	5926±703	4895±312
2	4260±524	5042±846	5024 ± 638	5300 ± 401	4928±310
3	4429±474	4734±627	4592±736	5567±660	4876±314
4	4611±578	5374±712	5397 ± 454	6068±607	5400±310
5	3729±470	3972±619	3648±333	4483±421	3998±243
5	4704±652	4100 ± 594	5130 ± 440	5248±447	4783±273
7	3674±500	4446±723	4403±447	4887±517	4383±288
8	3970±589	4037±558	3903±402	4448±558	4114 ± 269
– x±SE	4097±185 ^a	4603±235	4619±178	5241±195 ^b	4672±104

Table 17. Daily total fluid intake (ml/day).

Means with unlike superscripts differ, p < 0.05.

for a summary of the group by day means and standard errors. In particular, note the day to day rank order of the NBC and Armyade values and how that is ultimately reflected in the 1.2 L/day difference in their overall average fluid intakes. While the general F test (F(3.51)=0.95, p=0.42) is not significant, due primarily to small numbers of individuals in each group many of whom behaved drastically differently from one another, it is still the case that the significant difference (p<0.001) between the NBC and Armyade group found in the one way analysis of variance is valid.

As mentioned, there was a significant difference (F(7,45)=5.69, p<0.001) over time (Table 17). Except for the Armyade group, fluid intake increased to its highest level on Day 4, the hottest day of the study, then decreased to its lowest level on Day 5 as the temperature decreased. The amount of fluid consumed by all groups

FLUID CONSUMPTION

except the Armyade group decreased significantly on the 5th day. This decrease may have been due to the drop in temperature, to the fact that the subjects were given half a day off to return to garrison where they had access to air-conditioning, or to the fact that the subjects were fatigued and did not make an effort to drink.

Estimates of the daily fluid requirements from 0800-2000 hours for the present study period can be found in the Environmental Stress Section of this report. The recommendations for fluid intake (Appendix C) are based on military doctrine and show that generally: <1/2 a quart of water/hr was required on Day 1, about 1/2-1 quart/hr on Days 2 and 3, and >1.5 quarts/hr on Day 4 for the critical 12 hour period when the environmental stress conditions were high. Converting the above quarts/hr to L/hr and using a rate of 0.3 L/hr for WBGT less than 82° F, the intakes for the 12-hour period from 0800-2000 hours for the 8 days should have been: 3.8, 4.4, 5.0, 10.1, 3.6, 3.6, 3.6, and 3.6 L, respectively. The 24-hour fluid intake for the NBC group exceeded the minimum fluid requirements for all days except Day 4. The 24-hour intakes for the other groups (Armyade, Placebo, and Control) did not meet the 12-hour recommendations about a third of the days. The majority of these deficient days occurred around the hottest days (Days 3 and 4). and the incidence of hypohydration was highest (~33%) at that time for the Control (water) and Armyade groups (See Hydration Status Section).

The subjects drinking the NBC solution did not appear to have any gastrointestinal problems with the fructose in the solution. The mean intake for the NBC Nutrient solution was 5241±195 ml/day. There were no reports of gastric upset. epigastric pain, or diarrhea due to the concentration of fructose (1.4%) in the solution.

In the Armyade, Control, and Placebo groups the males drank significantly more daily total fluid than the females F(1.47)=12.39, p<0.001) (Table 18). The interactions of group, sex, and days were not significant (F(21,118.28)=0.77, p<0.74); all four groups were increasing and decreasing their fluid intake in similar patterns. One reason for the significant differences between males and females could be the differences in body weight with the males generally weighing more than the females. When the daily total fluid was normalized to the weight of the soldier, there were no significant differences in terms of groups, the interaction of groups with gender, or the interaction of group by day (Table 19). However, the fluid intake was significantly different for gender (p<0.05) and over time (p<0.01). See Appendix E for information on the analysis of total fluid intake standardized by body weight. Normalizing fluid intake by weight showed the males drinking more than females (p<0.05) and all soldiers drinking more on the hottest day of the study (Day 4).

Test Beverage Acceptability Determined by Consumption

The subjects were allowed to bring any beverage to the field exercise. Since they could drink any of the available fluids in any amounts and at any time, the amount consumed was used as a direct estimate of acceptability. The average daily amount of fluid consumed was partitioned into Water, Colored Flavored Test Beverage (CFTB), and Other to determine the relative acceptability of the different test beverages during extended work in the heat (Table 20 and Figure 3). The CFTBs were Armyade. NBC Nutrient solution, and placebo for their respective groups. The test beverage for the Control group had been plain water up to this point in the discussion, but for this special analysis, the Control group had no

Table 18. Daily total fluid intake separated by gender and test beverage group

		FEMALE (n=7)	4835±1046	5336±531	5500±772	5523±1259	4042±500	4295±879	3888±656	3562±471		4623±597	
	NBC	MALE (n=9)	6775±897	5066±612	5453±1030	6203±755	3854±684	5830±472	5663±684	5138±879		5498±468	
	EBO	FEMALE (n=6)	4244±295	4361 ± 1011	3779±738	5085±637	2969±368	4553±593	3581±740	3198±514		3971±501	
	PLAC	MALE (n=5)	5591 ±573	5819±646	5073±1599	5771±680	3905±588	5822±565	5001 ± 682	4748±404		5216±489	
GROUPS	TROL	FEMALE (n=9)	4346±655	3807±810	3507±372	4342±571	2920±495	3177±334	3481 ± 1044	2990±229		3571±422	
	CON	MALE (n=6)	6283±1207	6894±1513	6575 ± 1135	6922±1401	4455±880	5484±1251	5123±1143	5608±1111		5918±1097	
	ADE	FEMALE (n=7)	2865±498	3958±609	3566±555	3680±552	3225±625	4358±1021	2502±315	3088±571		3405±403	
	ARMY	MALE (n=6)	4023±449	4613±929	5435±601	5696±935	3851±845	5108±833	5043±683	5000±976		4846±600	
	2	DAY	4 -4	3	ო	4	ß	9	۲ 58	∞ }	l	X±SE	

FLUID CONSUMPTION

VARIATE	MEAN (ml/kg)	SEM	р	
Grand Mean	62.3	1.3	0.0001	
Group Armyade Control Placebo NBC	59.7 58.1 63.9 67.1	2.4 2.5 2.5 2.7	0.56	
Gender Male Female	67.0 57.7	1.8 1.8	0.04	
Group by Gen	der		0.21	
Day Day 1 2 3 4 5 ^a 6 7 8	66.7 67.4 65.2 72.5 49.4 64.4 57.0 55.5	4.0 4.0 3.9 3.7 2.7 3.4 3.7 2.9	0.001	
Day by Group			0.90	

Table 19. Daily total fluid intake normalized to body weight (ml/kg).

^aAfternoon off

CFTB. Because of the empty cell for CFTB for the Control group, one way analyses were run between groups and between Water, CFTB, and Other to test for statistical significance. A comparison showed significantly (p<0.001) larger intakes of CFTB than Water or Other fluids for the Armyade, Placebo, and NBC groups. The pattern of significant differences was the same for the overall means with the Water,

GROUP	S	
NTROL PLACE 15) (n=11)	BO NBC (n=16)	6) ·
)±234 ^d 256±7!	5 ^a 965±114 ^b	2
2 2974±18	88 ^e 2557±152 ^{d,e}	
)±82 ^c 1306±67	7 ^c 1592±76 ^c	
	VTROL PLACE 15) (n=11) 0±234 ^d 256±7! 2 2974±1? 0±82 ^c 1306±6?	VTROL 15)PLACEBO (n=11)NBC (n=16) 0 ± 234^d 256 ± 75^a 965 ± 114^b 2 2974 ± 188^e $2557 \pm 152^{d,e}$ 0 ± 82^c 1306 ± 67^c 1592 ± 76^c

Table 20. Average daily fluid intake (ml/24 hr) partitioned into type of beverage consumed.

¹CFTB - Colored Flavored Test Beverage (Armyade, placebo, and NBC Nutrient solution).

 2 Since water was the test beverage for the Control group, the CFTB cell is empty for this categorization only.

Within a row or column, Means with unlike superscripts differ, p < 0.05.

CFTB. and Other values being signficantly different from each other at 1245±90, 2527±97. and 1505±41 ml/24 hr. respectively. The mean intake of CFTB was 4 times as much as the Water intake for the Armyade group. 10 times for the Placebo group. and 2.5 times as great for the NBC group. In terms of the different fluid groups (Water, CFTB, and Other), the amount of Water consumed by the Control group was significantly greater than by the Armyade, Placebo, and NBC groups. This might be expected since the Control group had no CFTB. The subjects in the Placebo group drank significantly more CFTB than the subjects in the Armyade group suggesting that the flavor of the Armyade beverage was not as acceptable and probably affected the daily total fluid consumption. The amount of Other fluids consumed was not statistically different between the 4 groups. For the groups that

had the CFTB, the intakes of CFTB plus Other fluids were much greater than Water intake. It appears that when given a choice, soldiers preferred and drank significantly more colored and flavored beverages (CFTB and Other) than plain water. The intakes of all CFTBs were significantly greater than the Water and Other fluids suggesting a greater acceptability of this type of beverage under light-moderate activity and moderate heat conditions.

When the Control group was given the chance to drink the Other fluids <u>ad</u> <u>libitum</u> to make up for not having a CFTB, they appeared to prefer plain water. Their intake of Other types of beverages was approximately the same as that of subjects in other groups (p<0.07). The subjects were given the freedom to drink all the Other fluids that they wanted; however, a reason for the Other fluids being approximately the same for all four groups could be the limited amount of Other fluids that could be obtained and stored in the field.

One subject in the Control group drank unusually large amounts of water. His daily intake of water for all but one day was more than two standard deviations outside the mean, ranging from 6720 to 13440 ml/day. His data increased the mean water intake of that group to 2930±234 ml/day from 2419±158 ml/day. If his data had not been used, the average water intake for the Control group would have been much lower.

The daily hedonic ratings of the Armyade, Placebo, NBC solution, and water consumed by the Control group were obtained from the AM and PM fluid intake cards. The ratings were not statistically different over time and therefore they were pooled for analysis (Table 21). The 9-point Hedonic Rating Scale showed that the Armyade, Control (water), Placebo, and NBC solutions were rated at 5.1, 6.5, 6.6,

FLUID CONSUMPTION

Extension dura industria de parte activa de activa en entre en entre de la decaración de	ningang in Alber degUnden ing kananan na kananan kananan	TEST BEVER	RAGES		
	ARMYADE	CONTROL(WATI	ER) ¹ PLACEBO	NBC	-
N	91	208	86	123	
Daily Rating	5.1±0.2 ^a	6.5±0.1 ^b	6.6±0.1 ^{b,c}	6.7±0.1 ^c	

Table 21. Hedonic ratings of test beverages.

Note. Mean acceptability ratings are based on a 9-point hedonic scale where 1 = dislike extremely, 5 = neither like nor dislike, and 9 = like extremely.

¹Includes water ratings from Control group only.

Means with unlike superscripts differ, p < 0.05.

and 6.7, respectively. Armyade was rated significantly lower (p<0.001) than the placebo, NBC solution, and water (Control group only) at "neither like nor dislike." The NBC, Placebo, and Control (water) beverages were rated between "liked slightly" and "liked moderately" by their respective groups. The NBC group rated the NBC Nutrient solution significantly higher than the water group rated Water but the difference was less than one rating point. The data in Tables 17 and 21 appeared to follow the hedonic rating trends with the rating for Armyade being significantly less than the other test beverages and also the least consumed. It appears that the acceptability ratings of beverages can significantly affect their consumption.

Considering that the Placebo solution was always several degrees warmer than the Water and several studies (62,63) have shown that cooler beverages are more acceptable, the relative intakes of test beverage and water by the Placebo group clearly show the greater effect of coloring and flavoring on beverage selection (i.e.,

Placebo subjects chose to drink approximately 10x more colored flavored water than plain water). The subjects in the Armyade. Placebo, and NBC groups drank an average of 2527±97 ml of test beverage per day compared to 567 ml of plain water. Including the water drunk by the Control group only increased the mean water intake to 1245±90 ml/day. The subjects were drinking a mean of 2113±159 ml/day of Armyade ranging from a minimum of 0.0 ml/day to a maximum of 7200 ml/day. Of course, one of the subjects in the Control group drank about twice as much fluid with the intake on one day as high as 13,770 ml/day of Water and Other fluids.

Dividing the total amount of test beverage consumed by the total quantity of fluid consumed gives a method of standardizing the amount consumed so that comparisons are possible. The trends of the ratios of test beverage to total fluid consumed also show that the test beverages were acceptable. About 65% of all fluids drunk by the Placebo group was test beverage (Figure 4). For the Armyade and NBC groups the subjects drank smaller amounts or about 50% of their fluids as test beverage (Appendix F). The ratios fluctuated, but the percent of test beverage drunk by the Placebo group was consistently higher than for the other groups. The subjects in the Armyade, Placebo, and NBC groups drank 11.8, 5.6, and 18.9%, respectively, of their total daily fluid intake as water (Table 20), whereas the Control group drank 65% of the total daily fluid as water.

METHODS

Laboratory Acceptance Test

<u>Subjects</u>. Test subjects were randomly drawn from a volunteer pool of approximately 450 civilian and military employees of the United States Army Natick Research, Development and Engineering Center (Natick) who comprise the Sensory Analysis Section's Consumer Acceptance Panel. Of the thirty-seven subjects who served in this test, 51% were male and 49% were female. Ages ranged from 18 to 39 years. All subjects were naive to the purpose of the study.

<u>Samples</u>. Test samples consisted of the NBC solution, Armyade, the placebo solution (NBC Control), Crystal Light \mathbb{R}^2 (sugar free, lemon-lime flavor; General Foods, Inc., White Plains, NY) and Gatorade Thirst Quencher Lemon-Lime Drink \mathbb{R}^3 (Stokely-Van Camp, Inc., Chicago, IL). All powdered products were prepared according to manufacturer's or other specified directions, using distilled deionized water. Gatorade, which was bottled in liquid form, required no preparation before use.

All solutions were prepared 24 hours before use and stored in a refrigerator at 41°F. In addition all solutions were maintained and served at 41°F by placing them in metal containers that were embedded in chipped ice throughout the test. The beverages were served in the laboratory at 41°F because chilled beverages tend to be better accepted (13,61-63). Beverages were not chilled in the field; however, the difference between the beverage temperature and the ambient temperature may affect *****

2./ Crystal Light B is the proprietary trademark of General Foods, Inc., White Plains, NY. Hereafter, the product will be referred to as Crystal Light.
3./ Gatorade B is a proprietary trademark of Stokely-Van Camp, Inc., Chicago, IL. Hereafter, this product will be referred to as Gatorade.

ratings and therefore efforts were made to create an artificial difference of about 20-30^oF that would match the difference between beverage temperature and ambient temperature in the field. Samples consisted of 2 fl oz of solution served in a 5 fl oz polypropylene cup.

<u>Procedure</u>. Panelists were tested in individual sensory testing booths. Ambient temperature was approximately 70°F. The five test samples were presented sequentially and in random order to each subject. Samples were served through a port located in the front of the test booth. Subjects were instructed that upon receipt of the sample, they were to drink the contents of the cup and to rate the solution on each of the following hedonic and sensory attributes: overall acceptability, acceptability of color, acceptability of flavor, degree of thirst quenching. saltiness, sourness, and sweetness. The three acceptability ratings were made using a 9-point hedonic scale (72) where 1=dislike extremely, 5=neither like nor dislike, and 9=like extremely. The four intensity judgments were made using a 9-point category scale of intensity where 1=not present, 5=moderate, and 9=extreme.

All questions and scale options were presented to subjects on CRT screens located in each test booth, and they responded by typing entries on a computer keyboard. Subjects were instructed to rinse their mouths with distilled deionized water between samples, and a thirty second inter-stimulus interval was maintained.

Field Study Final Questionnaire

<u>Procedure</u>. The final questionnaire (Appendix G) was administered to the test subjects in the field on the morning of day 9. The purpose of including a final questionnaire was to obtain the subjects' opinions on general aspects of the test

beverages consumed during the exercise. The final questionnaire also asked for acceptance ratings of water and the test beverages. SPSSx was used to analyze the data collected with the final questionnaire.

RESULTS AND DISCUSSION

Laboratory Acceptance Test

<u>Test beverage acceptance</u>. Table 22 lists the means and standard errors of the ratings given to the five products. One-way analyses of variance with repeated measures (program ANOVSUBJ, version 1.3, 1980. L. Klarman) were performed for each rating scale to determine whether there were any significant differences among the products. Significant differences, as indicated by the F-ratios in Table 22, were found on all scales except acceptability of color. Significant F-ratios were followed by <u>post hoc</u> Duncan LSD tests to identify the products which differed from one another.

Armyade was significantly less acceptable than the NBC solution, both overall and in terms of acceptability of flavor. Armyade was also rated as significantly less thirst quenching. Armyade and the NBC solution were rated equally salty and sour, but the NBC solution was perceived as significantly sweeter. Thus, the difference in acceptability between Armyade and NBC solution may be due to the rather large difference in sweetness. On the other sensory dimensions tested, the two products did not differ.

The saltiness of the Armyade and NBC solution undoubtedly contributed to their lower acceptability compared to the commercial products. On the other hand, the placebo was rated no saltier than the commercial products, but was also significantly less acceptable. The placebo did not differ from Armyade in overall acceptability, acceptability of flavor, degree of thirst quenching, or sweetness. The placebo was perceived as significantly less salty and less sour than Armyade. The placebo seemed in general to be characterized by a weak flavor, rating low on saltiness, sweetness, and sourness.

	Crystal Light	Gatorade	Placebo	Armyade	NBC	F(4,144)	2
Overall Acceptability	5.78 ^a (.29)	5.32 ^a (.25)	3.19 ^{bc} (.32)	2.51 ^c (.26)	3.84 ^b (.31)	28.73*	
Acceptability of Flavor	5.65 ^a (.31)	5.46 ^a (.23)	3.16 ^c (.32)	2.43 ^c (.26)	4.00 ^b (.31)	27.65*	
Acceptability of Color	4.43 ^a (.30)	4.89 ^a (.30)	5.00 ^a (.31)	4.84 ^a (.34)	5.03 ^a (.33)	0.96	
Thirst Quenching	4.92 ^a (.31)	5.14 ^a (.31)	3.16 ^{bc} (.26)	2.68 ^b (.26)	3.68 ^c (.34)	18.41*	
Saltiness	3.43 ^a (.37)	3.70 ^{ab} (.33)	3.14 ^a (.39)	5.51 ^c (.40)	4.62 ^{bc} (.42)	7.40*	
Sourness	6.27 ^a (.27)	4.54 ^b (.28)	3.05 ^c (.36)	3.92 ^{bd} (.41)	3.62 ^{cd} (.35)	19.04*	
Sweetness	4.68 ^a (.37)	4.62 ^a (.29)	2.46 ^b (.26)	3.08 ^b (.32)	4.81 ^a (.28)	14.86*	

Table 22. Acceptability Ratings of Five Beverages Used in Laboratory Acceptance Test.

Note. Mean acceptability ratings are based on a 9-point hedonic scale where 1 = dislike extremely, 5 = neither like nor dislike, and 9 = like extremely.

Mean intensity judgements are based on a 9 point rating scale where 1 = not present, 5 = moderate, and 9 = extreme.

Beverages that differ significantly from one another (p<0.05) have different superscripts.

Numbers in parentheses are standard errors.

* p<0.01

The placebo and NBC solution did not differ in terms of overall acceptability. degree of thirst quenching, and sourness. However, the placebo was perceived as significantly less salty and less sweet. The difference in acceptability of flavor was significant, suggesting that the NBC solution had a somewhat more acceptable flavor than the placebo. No prior experimentation had been performed in order to match the placebo to the NBC beverage from a consumer point of view. Although the acceptability ratings are significantly different, the differences are very small. Thus, while the products differ in terms of some of their sensory characteristics, they are reasonably well matched in terms of acceptability.

The commercial products (Crystal Light and Gatorade) differed significantly only in sourness (Crystal Light was significantly more sour); otherwise, there were no significant differences between them.

Both commercial products rated higher in overall acceptability, flavor acceptability, and degree of thirst quenching than any of the military products. Both were rated as less salty than the military nutrient solutions (NBC and Armyade), and about as salty as the placebo. The Crystal Light product and the placebo did not contain any electrolytes and thus the less salty rating was expected. The commercial products were perceived as sweeter than the placebo and Armyade, but no sweeter than the NBC solution. In terms of sourness, Crystal Light was rated the most sour of all five products, with Gatorade second. Gatorade was rated more sour than the placebo and the NBC solution, but the same as Armyade.

It is interesting to note that neither the commercial products nor the NBC beverage received highly favorable acceptance ratings (all average acceptability ratings below 6.0=like slightly). These findings are unusual in two respects. First, one would expect successful commercial products to score higher. Secondly, the NBC

solution has received higher ratings in previous tests. However, those tests were conducted with military subjects in hot environments or with subjects who were wearing MOPP gear. In a hot environment, aspects of the NBC beverage that make it unacceptable in a laboratory environment may not matter, possibly because of the expected benefits of a nutrient beverage. Similarly, Gatorade, which is marketed as a nutrient beverage, can be expected to score higher under conditions more similar to those for which it was intended (e.g. after physical exertion). Crystal Light, while rated higher than most of the other products, was also not rated above 6.0 on average, even though it does not share some of the properties of the nutrient beverages (e.g. saltiness). The reason for the low score for the Crystal Light, which is marketed as a low calorie beverage, is not clear.

Field Study Final Questionnaire

<u>Self-reported liquid and food intake</u>. The percentages of subjects in each group that reported drinking and eating sufficient amounts during this exercise are shown in Table 23. The four groups were quite similar in these respects. In all cases, 65% or more of the subjects reported having enough to drink and eat.

Of those that reported that they did not have enough to drink, many gave a variety of reasons including having to go too far to pick up the water, not liking the beverage provided, and finding the liquid (Water, Test Beverage, or Other fluids) too warm to drink. In regards to the temperature of the liquids consumed, Table 24 provides the mean temperature ratings assigned to the various drinks by each of the four groups. One-way analyses of variance conducted with these data indicated that there were no marked differences between the groups in terms of their perceptions of the temperature of the liquids available to them during this exercise.

Exercise governmenter open en elemente en elemente de la construction de la const	CONTROL (n=14)	GROUPS PLACEBO (n=12)	ARMYADE (n=15)	NBC (n=17)	
8 -	%YES	%YES	%YES	%YES	-
Drank as much as wanted/needed	77	75	67	69	
Ate as much as wanted/needed	71	92	67	65	

Table 23. Percentage of subjects in each group that reported drinking and eating sufficient amounts during this exercise.

Note. Table entries represent percentages of subjects that responded to the question.

Table 24. Mean temperature ratings of liquids consumed during this exercise.

	CONTROL (n=14)	PLACEBO (n=12)	ARMYADE (n=15)	NBC (n=17)
Liquid in Canteen (water, placebo.or nutrient solution)	4.1 (.48) ^a	4.3 (.36)	4.9 (.29)	4.3 (.24)
Cold Drinks Served With Breakfast (milk. juice. etc.)	2.4 (.20)	2.8 (.40)	2.3 (.23)	2.4 (.27)
Cold Drinks Served With Dinner (Koolaid, juice, etc.)	2.4 (.17)	2.6 (.28)	2.2 (.20)	2.3 (.22)

Note. Means in this table are based on a 7-point rating scale where 1 = cold, 4 = neutral, and 7 = hot. See Appendix G for the descriptions associated with the ratings.

^a Numbers in parentheses are standard errors.

Cold drinks served with the breakfast and dinner meals were generally perceived as moderately to slightly cool, whereas the liquids that subjects carried in their canteens were rated as neutral to slightly warm.

Of those subjects that reported that they did not have enough to eat, at least one subject from three of the groups indicated that he did not like the food in the MRE. Previous field evaluations of the acceptability of the MREs provided to subjects in this study have identified several features of the ration that require modification (73). The newest version of the MRE, the Improved MRE, will satisfy these needs by including greater variety and larger portion sizes in the entrees, two breakfast entrees, wet pack fruits instead of dehydrated fruits, and fruit flavored beverages in all menus. According to the current distribution schedule, the Improved MREs will be available to troops in 1991.

Subjects were also asked to rate how often they were thirsty and how often they were hungry. The data obtained from these inquiries are summarized in Table 25. A one-way analysis of variance of the thirst ratings did not reveal any significant differences between the four groups. However, as can be seen in Table 25. subjects that drank Armyade tended to be thirsty somewhat more frequently than did subjects that drank other liquids. On the average, subjects in the Armyade group reported that they were often thirsty (x=5.2), whereas subjects in the other groups reported that they were sometimes to fairly often thirsty (i.e., at or below the mid-point on the scale). The tendency of subjects in the Armyade group to express slightly higher thirst ratings is probably related to the findings that Armyade received lower acceptance ratings, daily and on the final questionnaire, and was consumed in smaller quantities than the other test beverages. The acceptability data collected on the final questionnaire will be discussed in detail below.

	CONTROL	PLACEBO	ARMYADE	NBC
	(n=14)	(n=12)	(n=15)	(n=17)
Frequency of self-	4.1	3.7	5.2	3.4
reported thirst	(.31) ^a	(.31)	(.83)	(.30)
Frequency of self-	3.2	2.8	3.6	3.1
reported hunger	(.37)	(.25)	(.34)	(.33)

Table 25. Mean ratings of self-reported thirst and hunger.

Note. Means in this table are based on a 7-point rating scale where 1 = never, 4 = fairly often, and 7 = always. See Appendix G for the descriptions associated with the ratings.

^aNumbers in parentheses are standard errors.

The groups also did not differ in terms of the self-reported ratings of hunger (NS). Consistent with the subjects' report that they generally ate as much as they needed/wanted (Table 23), they also reported that they were sometimes hungry which is below the mid-point on the scale.

<u>Test beverage acceptance</u>. The acceptability of water and the three test beverages was assessed using a 9-point hedonic rating scale which ranges from 1=dislike extremely to 9=like extremely. The mean acceptability ratings and corresponding standard errors for the three groups that consumed a test beverage are shown in Figure 5. A one-way analysis of variance indicated that the groups differed in terms of acceptance ratings (F(2, 40)=4.2, p<0.05). <u>Post hoc</u> comparisons conducted by the Student-Newman-Keuls method showed that Armyade was rated reliably less acceptable (p<0.05) than either the placebo or the NBC solution. The average rating for Armyade (x=5.1) corresponded to the neutral point on the scale (neither like

nor dislike). The average ratings for the placebo (x=6.6) and the NBC nutrient solution (x=6.9) were on the positive end of the scale (like moderately). These findings parallel those reported from the daily acceptance ratings of the test beverages and are also consistent with those from the taste test conducted at Natick. In the laboratory acceptance test, Armyade received significantly lower ratings than the NBC solution and commercial beverages. Acceptability ratings of Armyade did not differ from those of the placebo in that test. As discussed earlier, the fact that acceptability ratings were generally higher under field conditions than under laboratory conditions suggests that soldiers working in a hot environment tend to be less critical of any beverage that is offered, perhaps due to the expected benefits of consuming the beverage (74).

In an effort to discover why Armyade received lower ratings than the placebo and the NBC nutrient solution, the groups were also compared in terms of their ratings of the acceptability of water. It may have been the case that subjects in the Armyade group tended to rate any drink lower than did subjects in the other two groups. Figure 6 illustrates the comparison between Water and Test Beverage acceptability ratings for the three groups that consumed a test beverage. Although it appears that the Armyade group did tend to rate water, as well as Armyade, somewhat lower than did the other groups, a one-way analysis of variance of the water acceptability ratings indicated that this difference was not statistically significant (mean water acceptability ratings: Armyade x=5.3, Placebo x=6.2, NBC x=6.6). In short, the fact that Armyade was not favorably received in this study does appear to reflect some undesirable property of the beverage rather than a group tendency to assign low ratings.

The subjects in the three groups that drank a test beverage were also asked to use a 6-point scale (1=not at all salty, 6=extremely salty) to rate the saltiness of the beverage they consumed. A one-way analysis of variance with accompanying <u>post</u> <u>hoc</u> comparisons (Student-Newman-Keuls, p<0.05) indicated that Armyade was perceived as significantly more salty than the placebo (F(2,41)=6.1, p<0.01). Armyade received a mean rating that corresponded to somewhat salty ($\bar{x}=3.0$), whereas the placebo was rated as not at all to slightly salty ($\bar{x}=1.3$). Ratings for the NBC solution fell in between these two at slightly salty ($\bar{x}=2.2$). These data are illustrated in Figure 7. When asked to indicate what they thought about the amount of saltiness in the drink, subjects in the Armyade group and the NBC group both gave mean ratings that were above the neutral point on the scale (7-point scale, 1=much too little, 4=just right, 7=much too much). However, there were no reliable differences between groups in their replies to this question (Armyade $\bar{x}=4.4$, Placebo $\bar{x}=3.8$, NBC $\bar{x}=4.5$).

These findings are very similar to those reported from the laboratory acceptance test conducted at Natick and suggest that the perceived saltiness of Armyade probably decreased its overall acceptability and contributed to the lower intake noted for subjects in that group during the field test. The results obtained from the laboratory acceptance test also indicated that the test beverages used in this field study differed in terms of sweetness. The NBC solution was rated as significantly sweeter than the placebo and Armyade in the laboratory test. The beverages were not found to differ significantly on this dimension in the field test.

<u>General comments and recommendations</u>. Not surprisingly, subjects in the Armyade group (x=2.7) and the NBC group (x=3.0) reported needing (or perhaps, wanting)

significantly less of the test beverage than did subjects in the placebo group (x=4.2) (F(2.39)=6.4, p<0.01). These results are shown in Figure 8 (7-point scale, 1=needed much less, 4=amount just right, 7=needed much more). Subjects in the Armyade group and the NBC group did not differ from subjects in the placebo group in terms of the amount of energy they felt they gained from the test beverage. All reports indicated that the three test beverages provided about the same or slightly more energy than water even though the placebo did not contain any calories. Although the three groups did not differ, all felt that the test beverage was slightly better than water at replacing body fluids lost by sweat. This opinion may have been influenced by the fact that they had been told during their briefings that they were testing carbohydrate-electrolyte beverages.

As would be expected from the acceptability data discussed above, subjects in the Armyade group recommended decreasing the salt content of the test beverage. Suggestions were mixed on the issue of sweetness. Independent of group assignment, subjects also recommended increasing the variety of flavors offered. Subjects suggested that the beverages be made available in cherry, lemon-lime, orange, and grape flavors. This suggestion is worth pursuing since previous work has indicated that variety enhances fluid intake in humans (75). Although the NBC solution is available in a variety of flavors, flavor was held constant in this study because Armyade is only available in one flavor.

Comparison to Previous Acceptability Tests of NBC Nutrient Solution

The acceptability results obtained in the present study can be compared to those obtained in previous laboratory and field tests of the NBC solution. For example, in a recent study (53) the NBC solution was tested against a colored, flavored

GROUP

control (no natural or artificial sweetener added) with subjects exercised at 400 watts in a climatic chamber (98° F, 20% rh. 2 mph wind speed) for up to 24 hours. However, unlike the present study, in which <u>ad libitum</u> consumption was allowed, the previous study employed a forced drinking regimen. A comparison of both the daily acceptance ratings (x=6.7) and the post-test acceptance ratings (x=6.9) of the NBC solution in the present study with ratings of the NBC solution in the previous study (x=6.3) show good agreement. However, the addition of aspartame to the placebo solution in the present study produced much higher acceptance ratings (x=6.6 for both daily and post-test ratings) then were obtained for the sweetener-free control in the previous study (x=4.0).

The acceptance ratings for the NBC solution can also be compared to previous laboratory and field studies in which the acceptance ratings for these solutions were obtained from subjects who were in MOPP4 and who consumed them through the drinking tube on their face respirators. These data show mean acceptance ratings of 5.8 at the CANE Exercise at Fort Ord, CA in 1983 (76), 5.7-5.8 at the REDLEG Demonstration at Fort Sill, OK in 1986 (77) and 5.8-6.1 in laboratory tests at Natick (77). While still acceptable, these values are lower than those found in the present field study and in the previous climatic chamber study (53). One possible explanation for these differences is that the difficulty and stress of drinking when in MOPP4 may cause a reduction in the overall acceptance of these beverages through generalization of effect. Future studies of the NBC solution should certainly look at the role that consumption mechanics may play on both fluid consumption and acceptance of alternative solutions.

The data obtained from the laboratory test of acceptance in the present study is consistent with both the field acceptance data and the previous chamber data (53) in

showing that the NBC solution (x=3.84) scored higher in acceptance than the placebo or control (x=3.19), although the difference is not statistically significant. However, unlike the field and chamber data, the absolute acceptance ratings for both the NBC and placebo solutions are dramatically lower. The reason for this lies in the difference in the test subject populations and the environmental and situational conditions of the tests. In the laboratory acceptance test the subjects were comprised of both civilian and military personnel, were tested in a cool, comfortable laboratory setting, and were presented the beverages in conjunction with two well-liked commercial beverages. In both the present field test and the previous chamber study military subjects tested the solutions under high heat stress conditions and without a direct basis for comparison with commercial counterparts. It has long been held that laboratory acceptance panels are more critical towards foods and beverages than field panels (78). This fact, combined with the contrast effect of presenting these products together with well-liked commercial beverages (Crystal Light and Gatorade) are what is likely responsible for the very low ratings of the NBC solution and placebo in the laboratory acceptance test.

Two last points should be made concerning the acceptability data from this test and previous work. The first concerns the relationship between the acceptability of each of the beverages/solutions and the availability of water. It is very likely that the acceptance and, ultimately, the consumption of any nutrient fluid is dependent upon the availability of plain water to drink. In previous lab and field studies (76,77) it has been shown that, given the choice of a nutrient solution, nutrient solution plus plain water, or plain water only, subjects will decidedly choose in favor of having both fluids available. The reason for this is that while the usually fruity or tart flavor of a nutrient solution is a welcome addition to water, especially when the water is

chlorine or iodine-treated, exclusive consumption can lead to sensory specific satiety and a strong desire to "rinse" the mouth with plain water. Studies that are conducted with forced or ad libitum drinking of a single nutrient solution, without plain water available, may result in markedly lower acceptance and consumption than was found in the present study. The second point relates to the "placebo effect" and the need to conduct double-blind tests. The "placebo effect", in which physiologically innocuous substances are given to patients who believe themselves to be receiving physiologically active substances, has been shown to produce both behavioral and physiological effects in those subjects, and these effects have been shown to be consistent with the subject's belief about the nature of the expected effects (74). In future studies of the NBC solution, double-blind procedures should be implemented to ensure that experimenters and field technicians are not aware of the treatment condition for the subjects. If this is not done, information about the condition can inadvertently be passed on to the subjects (79), who will then be susceptible to a "placebo effect."

CONCLUSIONS

1. Field and laboratory acceptance data were consistent in showing the NBC solution to be significantly more acceptable than Armyade. Acceptability ratings of the placebo were intermediate to those of Armyade and the NBC solution in both tests.

2. Since the laboratory and field data were consistent in demonstrating that the perceived saltiness of Armyade was too intense, it is recommended that additional formulation studies be conducted to optimize the sensory characteristics of this solution.

3. Future field tests should employ a double-blind procedure and should limit fluid consumption to only the test solutions and control fluids.

NUTRITIONAL INTAKE

.

METHODS

Food intake data were collected at the breakfast and dinner meals using a modified visual estimation method (MVEM) developed at USARIEM (80). In this method the subject selected his food, showed his tray to the data collector, ate his meal, and showed his tray to a data collector again. Data on food and fluids consumed with meals were recorded on a ration record form (Appendix H) by the data collector who was able to estimate portion sizes to within a tenth of a standard portion. Each data collector was responsible for approximately 15 subjects so that there was minimal interference in the schedule of the soldiers in terms of long lines and cold food during the meal period. Subjects recorded between meal food intake on the fluid intake card (Appendix D). All extra foods brought to the field, purchased from the PX mobile kitchen, and eaten at restaurants or fast food establishments were recorded on the card. The Meal, Ready-To-Eat (MRE) ration (version VI, 1986 procurement) was available for the lunch meal. All the MRE food items were pre-printed on the fluid intake card and the subjects were asked to circle the food and amount eaten.

A-rations were served at the breakfast and dinner meals. The MRE was given to the soldiers at the breakfast meal for use at the lunch meal. On Day 5 the breakfast and lunch meals were A-rations and the MRE was issued for the Dinner meal; however, because of the opportunity to eat at a variety of on-post eating establishments, most of the soldiers did not eat the MREs.

RESULTS AND DISCUSSION

The effects of carbohydrate-electrolyte solutions on work in the heat are affected by the adequacy of dietary intakes and therefore the nutritional adequacy of the diet was determined.

Meal Attendance Data

Collection of the data on food eaten at meals served by food service personnel and between meals was 98% complete. Data were collected on 100% of the meals served by the food service personnel but 4% of the between meal data forms were missing (Appendix I). A majority of the missing forms were from the PM period which covered the period from after supper until breakfast the next morning. Between meal food items were consumed until bedtime but less fluid was consumed during this time period so the loss of this data should not drastically affect the means. The missing data will cause the energy and fluid intake to be slightly underestimated. Data were collected on all subjects who ate meals served by food service personnel, but of the 976 possible breakfast and dinner meals (61 subjects x 8 days x 2 meals) that could be consumed during the study period. 13% were skipped. Breakfast was the meal that was most often skipped. Since all soldiers were wakened and gathered in formation just prior to the breakfast meal, skipping the breakfast meal was probably deliberate. Some soldiers were scheduled for early classes in garrison and left the area before breakfast was served but this was very seldom. Table 26 shows the number of subjects that skipped a certain number of meals. Only 17 subjects or 28% of the sample ate all hot meals that were served by the food service personnel. About 85% of the soldiers skipped 3 meals or less of a possible 16 (2 meals/day x 8 days). Data for the present study show that one
person skipped 11 meals and another skipped 15 meals. The subject who skipped 15 meals had come prepared to miss all meals. She was attempting to lose weight and had brought her own food: yogurt, distilled water, skim milk, etc. The subject who skipped 11 meals was involved in coordinating administrative details of the FTX

Table 26. Distribution of subjects according to the number of food service meals skipped^a.

NUMBER OF	NUMBER OF SUBJECTS SKIPPING FOOD	Martin 1997
MEALS SKIPPED	MEALS (N=61)	
0	17	
1	15	
2	10	
3	10	
4 C	2	
5	2	
7	1	
8	Ô	
9	Ö	
10	Ŭ.	
11	1	
12	0	
13	0	
14	0	
15	1	
16	0	

^aFood intake data were collected two times a day for 8 days for a maximum of 16 meals.

and skipped many hot food service meals, but he was eating in garrison and recording his food intake on the fluid intake/between meal food card.

Energy Intake

The daily caloric intake from all foods and fluids to include the test beverages was not significantly different (F(3,51)=0.45, p=0.72) between groups but was significantly different over time (F(7,45)=7.26, p<0.001) (Table 27). Caloric intake increased to the third day for all groups then decreased significantly (p<0.05) to Day 7 for the Armyade and Control groups. The interaction of group with time was not significant (F(21,129.77)=1.13, p=0.33). For all groups, the caloric intake dropped on the hottest day of the study. The mean energy intakes of all groups were very similar. The mean intake for all soldiers involved in the study was 2680±48 kcal/day which is well below the Military Recommended Dietary Allowances (MRDA)

Table 27. Total energy intake (kcal) from all foods and fluids consumed during 8 days of work in the heat.

			GROUPS		
DAY	ARMYADE (n=13)	CONTROL (n=15)	PLACEBO (n=11)	NBC (n=16)	MEAN (n=55)
1	2675±321	2389±313	2653±244	2963±298	2676±150
2	3160±250	2742±325	3081±280	2963±284	2973±144
3	3624±275	3072±346	2929±230	2986±256	3149±145
4	2414±254	2262±192	2895±170	2799±272	2581±120
5	2724±369	2460±285	2602±193	2502±196	2563±133
6	2949 ± 342	2456±261	2799±192	2825±283	2749±139
7	2522±294	2025±224	2184±199	2253±173	2241±112
8	2335±233	2690±228	2722±285	2334±196	2509±115
_ x±SE	2800±108	2512±99	2733±82	2703±89	2680±48

NUTRITIONAL INTAKE

of 3200 kcal/day set for moderately active military male personnel, ages 17 to 50 years (81). The daily caloric intakes ranged from a minimum of 137 kcal/day for one subject in the Armyade group to a maximum of 6162 kcal/day for one subject in the the Control group. A mean of 2680 ± 48 kcal/day is low compared to the energy intake of previous field studies where mean intakes of subjects consuming 2 A-ration meals + 1 MRE ration/day for extended periods (5-6 weeks) have been reported to be 2950 and 3271 kcal/day (64.82). A mean intake of 3713 kcal/day was reported for field artillery soldiers fed 3 A-ration meals during 8 days of sustained artillery operations in the field (46).

The most probable reason for the lower energy intake in the present study is that approximately half of this sample were women, whereas all other previous studies were done on males. Females do not require as many calories as males because of their lower body mass. Comparing the mean caloric intake for males (3056±74 kcal) in the present study (Table 28) to previous field studies showed that energy intakes were similar. The mean caloric intakes for the present study were very similar to previous garrison dining facility studies (83,84). The female intakes at 2343±55 kcal/day (SEM) were much lower than male intakes, but very close to the 2467±560 kcal/day (SD) of the female basic trainees at Fort Jackson, SC (85).

Although there were no group differences for energy intake (Table 29), there were significant differences (F(1,47)=20.33, p<0.001) between males and females (Appendix J). To determine if the differences were related to body size, the total energy intake was divided by body weight. Appendix K shows that there were no significant differences between gender, groups, and group by gender when intake was normalized to body weight.

Comparison of mean nutrient intake to Military Recommended Dietary Allowances (MRDA). Table 28.

0.2 42.7 0.5# 35.1 0.1# 8.6# 8.4# 54.8 0.8 9.8 488.3± 41.6 2.9 2.5 2891.9± 86.5 3.1 19.5 0.1 0.1 529.3±110.7 MEAN±SEM 1.9± 2.0± 22.0± 14.1± 243.7± 2343 ± \$57.2± 1.7± 3.5± 916.1± **1035.6**± 286.2± 82.4± 80.3± 31 172.0± 10.4± 327.8± 56 FEMALE 2000-2800 800-1200 800-1200 1875-5625 <4100 2.0 3.0 1.2 1.4 _a5 50-55 20 300 800 400 8 19 15 MRDA 8 0.0# 0.4# 0.1# MEAN±SEM 73.8 0.2 9.6 10.8 3.0 0.8 6.74 0.5 3.1 22.1 0.1 0.1 1416.7± 43.9 3879.3±109.5 406.8± 15.7 2016.8± 56.7 5005.9±128.3 3056 ± 11.7± 403.5± **18.6**± 261.9± 113.1± 112.1± 33 581.4± 28.2± 167.5± 2.6± 2.7± 2.1± 4.3± 1083.4± 53 MALE 2800-3600 875-5625 800-1200 3.2 800-1200 <5500 1.6 -__35 350-400 10-18 50-55 8 1000 100 MRDA 21 400 5 POOLED SUBJECTS MEAN±SEM 2.3 6.8 2.1 14.9 0.4 ± 29.2 9.1 36.8 6.2 0.5 72.8 0.1 0.4 0.1 0.1 32.2 91.1 \$0 57.6 ± Ŧ 515.9 ± -H 24.9 169.9 1.9 3.9 2.3 1227.3 3358.6 96.90 95.3 32 2.2 16.2 11.0 363.6 1215.7 343.2 252.3 738.1 22 2687 Vitamin A (mcg RE) (mcg) mg Potassium (mg)^b BB **B** Magnesium (mg) ဖွ် Cholesterol (mg) Phosphorous (m Sodium (mg)^b Vitamin C (mg) Niacin (mg NE) Riboflavin (mg) Vitamin B₁₂ Carbohydrate Thiamin (mg) Calcium (mg) Folacin (mcg) Energy (kcal) Vitamin B_e Fat (g) (%)^b VARIABLE Protein (g) Zinc (mg) Iron (mg)

^aAmerican Heart Association recommendation: <100 mg cholesterol/1000 kcal with an upper limit of 300 mg/day. ^DMRDAs are not available and therefore Safe and Adequat<mark>e Esti</mark>mations are used as the standard. #Indicates inadequate intake (i.e.. nutrient intake is below the MRDA) for this nutrient.

		U	GROUPS	
VARIABLE	ARMYADE	CONTROL	PLACEBO	NBC SOLUTION
Energy (kcal) Protein (g) Carbohydrate (g) Fat (g) Cholesterol (mg) Thiamin (mg) Niacin (mg NE) Vitamin B ₆ (mg) Vitamin B ₁ 2 Vitamin (mg) Phosphorous (mg) Phosphorous (mg) Potassium (mg)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrr} 2512 & \pm & 98.7 \\ 2328.0 & \pm & 12.6 \\ 328.0 & \pm & 12.6 \\ 328.0 & \pm & 12.6 \\ 511.5 & \pm & 4.4 \\ 511.5 & \pm & 2.5 \\ 2.1 & \pm & 0.1 \\ 2.3.9 & \pm & 0.1 \\ 1.8 & \pm & 0.1 \\ 1.8 & \pm & 0.1 \\ 3.8 & \pm & 0.1 \\ 1.8 & \pm & 0.1 \\ 3.8 & \pm & 0.1 \\ 1255.7 & \pm & 62.3 \\ 10.1 & \pm & 76.4 \\ 3393.0 & \pm & 147.3 \\ 10.5 & \pm & 0.7 \\ 135.9 \\ 246.0 & \pm & 12.8 \\ 10.7 & \pm & 0.7 \\ 135.9 \\ 246.0 & \pm & 12.8 \\ 10.7 & \pm & 0.7 \\ 10.5 & \pm & 0.7 \\ 135.9 & \pm & 0.7 \\ 135.9 & \pm & 0.7 \\ 135.9 & \pm & 0.7 \\ 10.7 & \pm & 0.7 $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcccccccccccccccccccccccccccccccc$

Table 29. Mean nutrient intake by study groups

Values are mean±1SEM.

.

<u>____</u>

Another reason for the low intake could be that about 26% of the subjects were attempting to lose weight while only 1 subject was attempting to gain weight as reported in the final questionnaire (Table 6). The subjects were very close to equilibrium in their energy intake and expenditure since the mean weight loss for all 4 groups was less than 1 kg (Table 30). This group of subjects may not have needed excessive calories because they started with moderate activity (with spurts of heavy activity) during the first 3 to 4 days while setting up the hospital area but their activity level decreased markedly during the later days while they waited for events to occur in the FTX.

			GROUPS		
e	ARMYADE	CONTROL	PLACEBO	NBC	MEAN
Day0PM	68.6±3.1	78.5±4.2	75.0±4.1	78.9±3.7	75.6±2.0
Day8PM	67.8±3.2	77.7±4.1	74.4±4.2	78.0±3.6	74.8±1.4
Differ	0.8	0.8	0.6	0.9	0.8
p n	0.01 14	0.05 17	NS 12	0.01 18	0.001 61

Table 30. Body weight changes from arrival at site (Day 0 PM) to the last afternoon (Day 8 PM).

The greatest caloric intake matched the days of highest caloric expenditure. The subjects were fairly active setting up the hospital during the first 3-4 days. After the 5th day, they were put on 12 hour work schedules which were fatiguing, but

NUTRITIONAL INTAKE

their physical activity was reduced. A small number of the subjects were sleeping during the day and working at night which reduced their total activity and exposure to the heat stress.

The energy supplied by the test beverages did not significantly affect the energy intakes of the four groups (F(1,51)=0.42, p=0.74). The calories supplied by the two carbohydrate-electrolyte beverages did not affect the consumption of other foods and fluids. The mean difference in calories supplied by the test beverages ranged from 0 to a maximum of 322 kcal/day. The subjects drinking the NBC and Armyade beverages had consistently higher energy intakes from fluids (NS) (Appendix L) but the difference was probably offset by the wide variations in caloric intake from food.

Potassium and Sodium Intake

No significant differences existed between the groups (F(3,51)=2.22, p=0.10) for potassium intake but the 2-way ANOVA showed a significant decrease in potassium intake (F(7.45)=10.95, p<0.001) over the eight days (Table 31). There was no interaction between groups and time (F(21.129.77)=1.44 p=0.10). On day 4, the potassium intake for the Control group was significantly less than for the Placebo group even though both groups were drinking beverages (water and placebo) that did not contain potassium. Most of the potassium for the Placebo group came from food sources. The intake of potassium for the Control group was consistently (NS) less than for the Armyade and Placebo groups. The mean intake of potassium for all soldiers, 3359 ± 73 mg/day, was well within the range 1875-5625 mg/day that was set for safe and adequate intake in the MRDA (81). Armyade was supplemented with 9 mEq/L of potassium and the intake of potassium for this group was higher than for the other groups (NS). One concern in using potassium supplements

JAY	and the same state of the same				-
2429 /1 202	ARMYADE (n=13)	CONTROL (n=15)	PLACEBO (n=11)	NBC (n=16)	MEAN (n=55)
	3862±438	3447±455	3829±405	3304±295	3580±197
2	4450±403	3445±407	4282±441	3379±314	3831±199
3	5373±590	3767±484	3715±312	3475±298	4051±236
1	3648±431	2725±252	4196±307	3530±425	3472±193
5	3240±481	2957±321	3319±352	2911±191	3083±166
5	4232±596	2711±358	3390±298	2909 ± 425	3264±228
7	3145±521	2218±341	2792±277	2214±281	2551±186
3	3358 ± 443	3132±335	3092±382	2653±228	3038±171
-					
(±SE	3913±182	3050±136	3577±130	3047 ± 115	3359±73

Table 31. Potassium Intake (mg/day).

is ingestion of toxic amounts. The maximum mean intake of potassium was 5373±590 mg/day on Day 3 for the Armyade group but this level is within the range for safe and adequate intake according to AR 40-25. However, the maximum intake of potassium for an individual drinking Armyade was 9361±231 mg/day, which is about twice the safe and adequate levels. Of equal concern is the fact that one subject in the Control group, which was drinking plain water as its test beverage, ingested 8293±1176 mg of potassium on Day 1. Such high intakes of potassium for the average soldier could lead to concerns about toxicity from drinking potassium-supplemented fluids, but serious problems are usually restricted to humans with impaired kidney function.

Sodium intake was significantly different between groups (F(3.51)=3.58, p<0.05)and over time (F(7.45)=4.50, p<0.001) but the interaction between group and time was not significant (F(21,129.77)=1.04, p=0.41). The subjects in the Control (water) group ingested significantly less (p<0.05) sodium than the subjects in the

NBC group on Days 1, 2, and 4 and less than those drinking Armyade on Day 7 (Figure 9). The Armyade and NBC Solutions were supplemented with similar amounts of sodium and the intakes by subjects in those groups were generally higher than for the Control and Placebo groups, but the amount of sodium ingested by the subjects drinking Armyade was not significantly greater than those in the unsupplemented Placebo and Control groups. The exception was Day 7 for the Control group, but was due more to a decrease in sodium intake by the Control group, rather than an increase in sodium intake by the subjects in the Armyade group. On the average the mean sodium intakes were well below the upper limit of the MRDA (5500 mg/day) for all 4 groups and for all 8 days (Appendix M). As with potassium intake, there were subjects that ingested excessively large amounts of sodium. Four subjects in the Control and NBC groups consumed over 10,000 mg of sodium in one day. Sweat and urine losses helped to rid the body of some of this sodium. A soldier sweating about 1/2 L/hr for 24 hours (moderate work at 70°F WBGT) could lose 11,040-16,560 mg of sodium per day in sweat. Hard physical work in a hot environment could cause sodium losses as high as 8000 mg/day (37); however, soldiers in the present study were not working that hard.

Macronutrient, Vitamin, and Mineral Intakes

The mean intakes for males met the MRDA for energy, protein, vitamins, and minerals except vitamin B_6 , folacin, and zinc (Table 28). The females had inadequate intakes (i.e., nutrient intakes below the MRDA) of iron and magnesium in addition to those mentioned for males. However, the data for Vitamin B_6 , folacin, and zinc may be underestimated due to missing data in the nutrient data file and therefore these values should not be interpreted to mean that intakes were deficient.

NUTRITIONAL INTAKE

The mean intake values for males for all nutrients is comparable to other garrison dining facility (83-85) and field (46,64) studies. The group drinking Armyade, which was supplemented with Mg^{++} , ingested 128-170% of the MRDA for males and females for Mg^{++} but dividing the data by group showed that intakes were inadequate for almost all of the other test beverage groups (Table 29). Females have always had problems meeting the MRDA for iron and eating in the field is no different especially when the MREs, which contain about 8 mg of iron, are not eaten for lunch.

For the pooled subjects, the mean carbohydrate intake was within the 50-55% of energy intake guidelines suggested in AR 40-25 (Table 28). The NBC and Armyade solutions contained fructose and glucose polymers, respectively, whereas the placebo and water did not contain any carbohydrates. However, there were no significant differences in carbohydrate intake between the groups (Table 29). The mean protein intakes for males and females met the MRDA. The value for fat intake for the pooled subjects (Table 28) was excellent at 32% because it was less than the 35% recommended by the 1985 MRDAs. Previous studies showed that soldiers were eating more than 35% fat in their diet in garrison and in the field (46,64,83,84) except for the basic trainees at Fort Jackson, SC (85). The cholesterol intake of 581±22 mg for males in the present study was much lower than the 677-761 mg of previous garrison dining facility and field studies (46,83,84,85).

The average pooled data showed that the subjects in the present study consumed 85% of the MRDA for Mg^{++} , 77% for Na^+ , 60% for K^+ , and 145% for phosphorus from their diets and all fluids including the test beverages (Table 28). The maximum amount of Armyade that was consumed was 7200 ml/24 hours which would provide the following percentages of the MRDA (81): 114% for Mg^{++} , 69%

for Na⁺. 47% for K⁺, and 59% for phosphorus. Due to the supplementation of Armyade with Mg^{++} , the intake of Mg^{++} was almost twice as high in the group drinking Armyade as in the other groups. Consumption of Armyade in these quantities should not cause any toxicity problems especially since about half of the electrolytes that Armyade provided was probably lost in an equal amount of sweat (Table 2). Since Armyade contains 22.8 mEq/L of sodium, consumption of Armyade could contribute to hypernatremia resulting from dehydration. However, while hypernatremia can occur as a consequence of mild heat injury, the increase in serum sodium concentration was modest. In addition Armyade is hypotonic (127 mOsm/kg) and therefore the likelihood of hypernatremia occurring was remote. Armyade also contains K⁺ (9.5 mEq/L), Mg⁺⁺ (5.2 mEq/L), and PO_A (3.2 mEq/L). While hyperkalemia, hypermagnesemia, and hyperphosphatemia can result from hemoconcentration from mild heat injury, these increases would be of a modest nature. Clinically significant increases in serum K^+ , Mg^{++} , and PO_4 occur usually in the anuric subject with acute renal failure. Identification and discontinuation of Armyade consumption by anuric subjects was insured by the requirement for twice daily urine samples by all study subjects. The consumption of Armyade in the present study did not appear to present a hazard to subjects consuming this solution.

HYDRATION STATUS

METHODS

The method for collecting urine and body weight data is discussed in the General Methods Section. Urine data were statistically analyzed by two-way ANOVA with repeated measures to determine significances and Tukey's <u>post hoc</u> tests were run to establish where the differences occurred. Calculated values were generated for a subject's database when a urine sample or body weight measurement was unavailable. Because drinking behavior and therefore, hydration status is variable among adults (86), frequency distributions which describe the incidence of urine specific gravities \geq 1.030 provide a better characterization of hypohydration of a group than the average group values. The calculated values were not used when generating frequency distributions. A chi-square was computed to establish whether the incidence of urine specific gravity \geq 1.030 and group was related. Urine specific gravity measurements \geq 1.030 and body weight losses \geq 3% were used as criteria to define hypohydration. Appendix N contains the mean data for the figures in this section.

RESULTS AND DISCUSSION

Generally, urinary specific gravity displayed a diurnal periodicity, with higher recordings in the morning (AM) sample compared to the late afternoon (PM) sample. The data indicated a trend toward increasing urinary specific gravity with elevated wet bulb globe temperature (WBGT). A reduction in heat load due to reductions in both ambient conditions and work intensity on Day 5 was accompanied by a decline in group averages of urinary specific gravity.

Group means for urine specific gravity (Figure 10) were significantly higher at collections 2AM, 2PM, 5AM, and 7AM when either Armyade or Control (plain water) was consumed compared to those measured in the Placebo and NBC groups.

Increases in urinary specific gravity can reflect hypohydration, impending hypohydration or renal adaptations preventing significant hypohydration, and can therefore be used as an index of hydration status. None of the groups displayed an average urinary specific gravity greater than 1.030 at any sampling time. This was surprising because many of the volunteers were erecting tents for the field hospital from about 0800-2000 hrs during the first five days. On day 4, work continued despite oppressive ambient conditions (d.b.max = $101^{\circ}F$, WBGTmax = $90.3^{\circ}F$).

Significant differences (p<0.05) in the incidence of urinary specific gravity equal to or greater than 1.030 during the eight days of the field exercise were found among the four groups. While 8% of urine samples collected from soldiers consuming the placebo and 6% of those from individuals assigned to the NBC solution had specific gravities \geq 1.030 during the eight test days (Table 32), 13% and 22% of the urine samples collected from the soldiers drinking Armyade and plain water (Control group), respectively, had specific gravities \geq 1.030. Based on the Chisquare test, the relationship between group and the incidence of urine specific gravity

HYDRATION STATUS

% OF INDIVIDUALS	
13 22	
8 6	
	% OF INDIVIDUALS 13 22 8 6

28.S**N**

Table 32. Percent of individuals with urine specific gravity ≥ 1.030

Percents are calculated from the number of man-observations in each group over the course of the eight test days.

 \geq 1.030 is significant.

Figures 11-14 depict the incidence of urine specific gravity ≥ 1.030 for the eight study days: while significant numbers of individual values were observed to be ≥ 1.030 , none of the group means attained this value. Of importance is the observation that the number of urine samples exceeding the criterion for hypohydration differed significantly (p<0.05) between groups on Days 1.3 and 4 (Table 33). The incidence of urinary specific gravity ≥ 1.030 in soldiers drinking the Armyade or Control beverage (plain water) peaked on the hottest day (Day 4) and then declined. The reduction in the number of samples exceeding the criterion for hypohydration from Day 4 to Day 5 was surprisingly small, but this may be attributed to the persistently low fluid intake. Although the fluid intake seen after Day 5 did not reach the magnitude of Days 3 and 4, the incidence of high urinary specific gravity decreased. This decrease was most likely due to a combination of the following factors: moderately elevated drinking. reduced environmental heat stress, and lessened work load. In comparison, urine samples having specific gravities ≥ 1.030 from soldiers consuming either the placebo or the NBC solution

Subject	DA	Y 1	DA	Y 2	DA	Y 3	DA	Y 4	DAY 5	DA	Y 6	DA	Y 7	DA	<u>Y</u> 8
	AM	PM	AM	РМ	AM	PM	AM	PM	AM	AM	PM	AM	PM	AM	PM
n=	14	14	13	14	14	12	14	13	13	13	12	14	13	14	14
A03															
A04															
A06					Х		Х	Х	Х						
A08							Х		X						
A09															
A10						Х		Х							
A11								Х	Х	Х	Х				Х
A12			Х												
A13	Х		Х			Х									
A14															
A17					Х		Х	Х	Х		Х				
A19							Х	Х		Х			•		
A20															
A21				-											

Figure 11. Incidence of urine specific gravity ≥ 1.030 for the Armyade group.

Figure 12. Incidence of urine specific gravity ≥ 1.030 for the Control (water) group.

Subject	DA	Y 1	DA	Y 2	DA	Y 3	DA	Y 4	DAY 5	DA	Y 6	DA	Y 7	DA	<u>Y</u> 8
	_AM	PM	AM	PM	AM	PM	AM	PM	AM	AM	PM	AM	PM	AM	PM
n=	16	16	16	17	17	16	1 7	15	16	16	14	14	15	14	14
B01		х		X	X		х		х	Х	х	х	Х	х	
B03															
B04															
B05								Х							
B07															
B08	Х	Х		Х	Х	Х		Х	Х						Х
B10,		Х		Х											
B13						Х									
B15								Х			Х	Х			
B16	Х	Х					Х	Х	Х	Х	Х				
B17															
B18															
B19	Х	Х	Х	Х	Х	Х	Х	Х	X						
B20	Х		Х	Х	Х	Х	Х								
B21	Х		Х												
B22		Х					Х	Х	Х						
B23															

Subject	DA	Y 1	DA	¥ 2	DA	Y 3	DA	Y 4	DAY 5	DA	Y 6	DA	Y 7	DA	Y 8
	AM_	PM	AM	PM	AM	PM	AM	PM	AM	AM	PM	AM	PM	AM	PM
n=	12	12	12	12	12	12	12	12	12	12	12	12	11	11	11
C01		х	х					х							
C02															
C03															
C04															
C06		Х		Х							Х				
C07		Х	Х									Х		Х	
C10										X	Х				
C13								х							
C14															Х
C15															
C16															
C17															

Figure 13. Incidence of urine specific gravity ≥ 1.030 for the Placebo group.

Figure 14. Incidence of urine specific gravity ≥ 1.030 for the NBC group.

Subject	DA	Y 1	DA	Y 2	DA	Y 3	DA	Y 4	DAY 5	DA	Y 6	DA	Y 7	DA	Y 8	
	AM	PM	AM	PM	AM	PM	AM	PM_	AM	AM	PM	AM	PM	AM	PM	
n=	18	18	18	18	17	18	18	17	17	18	15	16	16	16	17	
D01																
D02																
D03																
D04																
D05									Х	Х				Х		
D06		Х													Х	
D07																
D08																
D10																
D12																
D13			X													
D14																
D16					Х	Х			Х	Х						
D17																
D18																
D19		Х		Х		Х										
D21				Х		Х										
D23																

GROUP			<u></u>	DAY				and the second second	
	1*	2	3*	4*	5	6	7	8	
ARMYADE	4	11	19	33	31	16	4	4	
CONTROL	31	21	30	34	31	17	11	7	
PLACEBO	12.5	12.5	0	8	0	12.5	4	9	
NBC	5.5	8	11	0	12	6	0	6	

Table 33. Frequency (%) of urine specific gravity ≥ 1.030 for Days 1 to 8.

FREQUENCY (%) = <u>number of samples with specific gravity > 1.030</u> * 100⁻ total number of samples

* Indicates significant relationship between group and urine specific gravity \geq 1.030.

were consistently fewer in number.

Urinary excretion of sodium is depicted in Figure 15 and generally indicates that both groups consuming the electrolyte-supplemented beverages. Armyade and NBC solution, manifested the highest levels of sodium excretion. On Day 1 PM, the group consuming Armyade excreted more sodium than all other groups (p<0.01), and at the same sampling time on Day 2, this group manifested greater sodium excretion than either the Control group (drinking water) (p<0.05) or placebo (p<0.01). If Figure 15 is compared with Figure 9 (mean sodium intake by day), it is interesting to note that sodium excretion tracks sodium intake quite closely. Therefore, it appears that the subjects were receiving enough sodium in their diet and were excreting excesses from the carbohydrate-electrolyte beverages.

It should also be noted that urinary sodium excretion will also be affected by level of acclimation, sweat secretion, and hydrational status, all of which could have contributed to the inconsistency of data at specific sampling times (e.g. Day 4 AM and PM, p=NS, all groups).

Data depicted in Figure 15 indicate again that dietary consumption of electrolytes is the most critical factor determining urinary excretion levels. Comparison of the data depicted in Figure 16 and Table 31 provide several interesting observations. The Armyade group had the highest level of potassium consumption (Table 31. 3913 mg/d) and clearly manifested the greatest potassium excretion (Figure 16). Similarly, the placebo group (3577 mg/d) consumed more potassium than both groups drinking Control beverage (water) and NBC solution (3050 mg/d), and Figure 16 demonstrates generally that the placebo group excreted consistently more potassium than either the Control or NBC groups during the first four days of the scenario. On days 6,7, and 8, the only statistically significant difference among groups was observed on Day 6 PM where subjects drinking Armyade excreted significantly (p<0.01) more potassium than individuals consuming NBC solution.

Occasionally, urinary sodium/potassium ratios have been used as an approximation of hydrational status (67) since, during hypohydration, hormones which promote sodium reabsorption and potassium excretion are ordinarily secreted. Such an endocrinological adaptation then would tend to decrease urinary sodium/potassium ratios during hypohydration. The data depicted in Figure 17 generally indicate no consistent trends in these calculated values. The significantly increased mean values of this ratio calculated for the NBC group (e.g. Day 3, PM, NBC group > Control (water) group, p<0.05; Day 6, PM, NBC group > Armyade,

HYDRATION STATUS

Control (water) and placebo groups p<0.01; Day 7, AM, NBC group > Armyade, Control (water) and placebo groups p<0.01)) are probably reflective of the fact that in the NBC solution the ratio of sodium to potassium is extremely high while in the Armyade solution this ratio is reduced to 2.

Ordinarily, urinary specific gravity is closely correlated with urinary creatinine concentration and both are usually inversely correlated with urinary volume. Thus, it is interesting to note (Figure 18) that on Day 5 AM, the creatinine concentration of the Armyade group is significantly greater than that of the Placebo group (p<0.05); at this particular sampling time the Armyade group had four subjects with urinary specific gravity ≥ 1.030 while the Placebo group had none.

The blood urea nitrogen (BUN), serum creatinine, and BUN/Creatinine ratios measured on Day 0 and Day 8 are within the normal range (65) reported for each parameter in Table 34 in the Biochemical Indices Section. Although statistically significant, the fall in the BUN/Creatinine ratio from Day 0 to Day 8 in the soldiers in the Control (water) group is within normal values. Because we have previously observed an increase in this ratio with progressive dehydration (67), this fall was unexpected. However, it may be explained in part by the high incidence of urine specific gravity \geq 1.030 on Day 0 (5/29) which peaked on Day 4 (11/32) and fell by Day 8 (2/28). Unfortunately, blood samples were not available on Day 4. and thus no assessment of these variables could be made on the day of apparently maximal hypohydration.

These data indicate that electrolyte ingestion was remarkably mirrored in urinary excretion. Generally, the intake of sodium from both the Armyade and NBC supplements was reflected in the urinary concentration of this electrolyte in the urine specimens of these two Groups. Likewise, the increased potassium of the

HYDRATION STATUS

Armyade relative to the NBC solution was reflected in the potassium excretion of this group, and contributed to the increased urinary sodium/potassium ratios of the NBC group versus the Armyade group. Therefore, under conditions of light to moderate activity where meals are eaten, consumption of water or non-nutritive flavored beverages are adequate to maintain electrolyte homeostasis.

The other criterion of hypohydration was body weight. Figure 19 shows that group averages for body weight were virtually unchanged for the eight days. Differences between groups were not statistically significant. The change in body weight measured during the work day (0700 - 1600 hrs) is shown for the four groups in Figure 20. No group average exceeded the $\geq 3\%$ body weight loss criterion during the work day. Generally, the pattern was similar for all groups. and actually represented a weight gain during the work day. Surprisingly, the weight gain occurred when the intensity of both work and environmental heat stress was greatest. Increases in weight accrued during the 8 hr work day, increased during the first four days of the exercise, and then fell after day 6. The greatest gains were observed on Days 2, 3, and 4 in the group assigned the Placebo as the test beverage, but no statistically significant differences were noted between groups on any day. This pattern in weight change of the group averages followed the changes seen in group means for fluid intake (Table 17). The percent change in body weight (Figure 21) normalizes body weight changes to the pre-deployment weight. The cumulative percent change in body weight was not different among the four groups; group averages did not exceed the 3% criteria, and displayed a diurnal pattern.

The number of soldiers attempting to lose weight during this field exercise was lower than that seen during a previous study in 1985 (64) in which 31% of the

12, 1,

HYDRATION STATUS

males and 86% of the females reported trying to reduce weight. In the current study, demographic data collected on Day 9 indicated that only 26% of the subjects were attempting to lose body weight. Of the eight females attempting weight loss, a loss was recorded in six subjects and a small weight gain was observed in the remaining two. The six males attempting to lose weight were equally divided in weight loss and weight gain. Although body weight loss provides an accurate index of hypohydration level in a laboratory setting, the impact and variations in environmental conditions reduces its reliability as a measure of hydration status in a long term field environment.

Sohar and associates (62) reported that even mild dehydration causes drowsiness, impatience, discomfort, weariness, irritability, and reduces work efficiency. Because we collected data twice daily from our subjects, we had an opportunity to witness their behavior. On several of the hottest days (Days 1-5) during which physical labor was intense, about eleven of our subjects (A06, A11, A14, A17, A19, B07, B19, B20, D06, D12, D16) displayed symptoms of mild dehydration. Of notable interest is subject B19, who is a young nineteen year old, hard working male. This subject worked daily setting up hospital tents and perimeters as well as being on 12 hour guard duty shifts without shade protection during the hottest portion of the day. On several occasions, B19 displayed symptoms of about 3-5% dehydration including aggressive behavior, impatience, anorexia, headache, and stumbling. This subject had urine specific gravities \geq 1.030, low urinary sodium to potassium ratios, and high urinary creatinine outputs (270-385 mg/dl) on almost all days and had a loss \geq 3% from pre-deployment body weight commencing on the Day 6 AM collection. In this particular subject, urine specific gravity was a good indicator of hypohydration or impending hypohydration.

Although urine specific gravity values for individual subjects suggest some hypohydration or impending hypohydration, the group averages for body weight changes concur with the group averages for urine specific gravity and indicate that generally, acute hypohydration was not a problem in any test beverage group during the eight test days. These group data suggest that individuals were eating and drinking sufficient quantities during the work day to maintain weight and hydration status. Our data also indicate that in a population comprised of reservists consuming field rations during field exercise training, fluid intake can be enhanced and consequently, hypohydration can be lessened, by flavoring the field drinking water.

BIOCHEMICAL INDICES

METHODS

The methods for collecting blood, urine, and body weight data are discussed in the General Methods Section and in the preceding Hydration Status Section.

RESULTS AND DISCUSSION

Serum biochemical monitoring included examination of the following twelve clinical chemistries: glucose, sodium (Na⁺), potassium (K⁺), magnesium (Mg⁺⁺), blood urea nitrogen (BUN), creatinine (Cr), phosphorus (PO₄), chloride (Cl⁻), total protein, albumin, cholesterol, and triglycerides (Table 34). Because dehydration can be accompanied by hypernatremia, hyperkalemia, hyperchloremia, azotemia, and hypercreatininemia, serum Na⁺, K⁺, Cl⁻, BUN, Cr, and BUN/creatinine (BUN/Cr) ratio were closely monitored. In addition, because the Armyade and NBC solution contained carbohydrates (2.5% maltidextrins and 2.5% fructose/maltidextrin. respectively), changes in blood glucose were of interest. Only one of the beverages, Armyade, contained Mg⁺⁺. This fact dictated the necessity to monitor serum and urine Mg⁺⁺.

In examining the pooled data for all subjects (Table 34), a statistically significant increase was seen for serum glucose (Figure 22) and magnesium (Figure 23), while statistically significant decreases were seen for serum Na^+ (Figure 24) and cholesterol (Figure 25) when comparisons were made between Day 0 versus Day 8. While those changes were of statistical significance, the values per se were all within the normal range.

Table 34. Serum changes after 8 days of work in the heat.

PARA	METER MEASURED	ALL SUBJECTS	ARMYADE	GROUPS CONTROL	PLACEBO	NBC
Day 0	Glucose (mg/dl)	88 ± 3 _b	84 ± 2	85 ± 5	101 ± 8	83 ± 3
Day 8	Glucose	96 ± 2 ^b	94 ± 6	94 ± 4	97 ± 3	100 ± 3 ^a
Day Day 8	Sodium (mEq/L) Sodium	142 ± 0 139 ± 1 b	143 ± 1 136 ± 4	141 ± 1 140 ± 1	$\begin{array}{c} 143 \pm 1 \\ 141 \pm 1 \\ \end{array}$	141 ± 1 141 ± 1
Day	Potassium (mEq/L)	4.4 ± 0.1	4.2 ± 0.1	4.3 ± 0.1	4.6 ± 0.2	4.3 ± 0.1
Day 8	Potassium	4.3 ± 0.1	4.4 ± 0.2	4.2 ± 0.1	4.5 ± 0.1	4.3 ± 0.1
Day 0	Magnesium (mg/dl)	2.12 ± 0.02	2.12 ± 0.40	$\begin{array}{r} 2.08 \ \pm \ 0.05_{\rm b} \\ 2.18 \ \pm \ 0.03^{\rm b} \end{array}$	2.19 ± 0.05	2.08 ± 0.04
Day 8	Magnesium	2.20 ± 0.03^{a}	2.18 ± 0.06		2.19 ± 0.06	2.23 ± 0.05
Day 0	BUN (mg/dl)	14 ± 1	13 ± 1	12 ± 1	17 ± 2	12 ± 1
Day 8	BUN	13 ± 1	13 ± 1	10 ± 1	17 ± 2	13 ± 1
Day 0	Creatinine (mg/dl)	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1
Day 8	Creatinine	1.0 ± 0.0	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1
Day 0	BUN/Cr	14.62 ± 0.72	14.24 ± 0.90	14.48 ± 1.53	$\frac{17.17}{17.71} \pm 2.09$	12.68 ± 0.90
Day 8	BUN/Cr	14.19 ± 0.89	14.07 ± 1.36	10.79 ± 0.69 ^b		14.23 ± 1.64
Day 0	Chloride (mEq/L)	108 ± 0	109 ± 1	108 ± 1	110 ± 1	107 ± 1
Day 8	Chloride	108 ± 1	105 ± 4	109 ± 1	110 ± 1	109 ± 1
Day 0	Total Protein (g/dl)	7.5 ± 0.1	7.6 ± 0.1	7.4 ± 0.2	7.4 ± 0.2	7.4 ± 0.1
Day 8	Total Protein	7.3 ± 0.1	7.2 ± 0.3	7.2 ± 0.2	7.3 ± 0.2	7.4 ± 0.1

Table 34. Continued

					GROUPS		
	PAKA	METEK MEASURED	ALL SUBJECTS	AKMYADE	CONTROL	PLACEBO	NBC
	Day 0	Albumin (g/dl)	4.3 ± 0.1	4.5 ± 0.1	4.3 ± 0.1	4.3 ± 0.1	4.4 ± 0.1
	Day 8	Albumin	4.3 ± 0.1	4.2 ± 0.2	4.2 ± 0.1	4.2 ± 0.1	4.5 ± 0.1
	Day 0	Cholesterol (mg/dl)	$191 \pm \frac{5}{2}$	191 ± 8	190 ± 13	201 ± 10	182 ± 14
	Day 8	Cholesterol	176 $\pm 5^{a}$	175 ± 10	174 ± 12 ^b	182 $\pm 6^{0}$	172 ± 10
	Day 0	Triglyceride (mg/dl)	139 ± 16	115 ± 17	133 ± 21	170 ± 48	137 ± 31
	Day 8	Triglyceride	124 ± 13	129 ± 19	96 \pm 5	143 ± 43	127 ± 24
125	Day 0	Phosphorus (mg/dl)	3.96 ± 0.08	4.06 ± 0.17	4.03 ± 0.14	3.85 ± 0.15	3.90 ± 0.20
	Day 8	Phosphorus	3.92 ± 0.07	3.85 ± 0.20	3.88 ± 0.09	3.90 ± 0.14	4.06 ± 0.09
			1				

All Statistical Comparisons Are Between Day 0 vs Day 8

Values are mean±1SEM

^ap < 0.01 b_p < 0.05

BIOCHEMICAL INDICES

Serum Na⁺ was significantly decreased for the pooled subjects (142 vs 139 mEq/L, p < 0.05) and for the Placebo Group (143 vs 141 mEq/L, p < 0.05). The Placebo group drank a large amount of test beverage that was not supplemented with sodium (Table 20); however, the total sodium intake for this group was not significantly different from the other groups (Figure 9). Glucose was increased in the pooled data (88 vs 96 mg/dl, p < 0.05) which was probably due to the significant increases in the NBC Group (83 vs 100 mg/dl, p<0.01) (Figure 22). Both Armyade and the NBC solution contained carbohydrates but the increase in serum glucose for the Armyade group was not significant. The significant increase in serum glucose could be attributed to the consistently higher intake (NS) of the NBC solution compared to Armyade but the carbohydrate content of both diets (to include test beverages) were similar (Table 31) at 388 and 390 g/day, respectively. The cholesterol values were significantly decreased for all pooled subjects (p<0.01) as well as in the Control group (190 vs 174 mg/dl, p<0.05) and in the Placebo Group (201 vs 182 mg/dl, p<0.05) (Figure 25). Serum magnesium was significantly increased (p < 0.05) in the Control and NBC groups as well as in the mean data for all pooled subjects (p < 0.01). Neither the NBC solution nor water was supplemented with magnesium. Analysis of dietary Mg^{++} intake by groups (Table 31) indicated that food intake did not contribute to these significant increases in serum Mg^{++} . The total intake of Mg^{++} in the Armyade group was twice as much as in the other groups but no significant differences were noted in serum values from Day 0 PM to Day 8 PM. Urine Mg^{++} concentrations were not statistically significant between groups. Whether total urine. sweat, or fecal Mg⁺⁺ losses were decreased in the Control and NBC Groups to account for the increases in serum Mg^{++} cannot be defined from these studies and therefore remain unresolved. However, the absolute

values of these changes in Mg^{++} are well within the limits of normal and are therefore of no clinical significance. Supporting this view is the observation that none of the subjects in the field drinking water or NBC solution voiced any complaints related to clinical hypermagnesemia.

For the Armyade and NBC Groups the Na⁺, K⁺ (Figure 26), Cl⁻, and carbohydrate content of these beverages did not adversely affect serum electrolyte composition, although there was a small but statistically significant increase (p<0.01) in serum glucose in the NBC Group (Figure 22). In the group drinking Armyade, the only test beverage containing Mg⁺⁺, there was no statistically significant difference in serum Mg⁺⁺ (2.12 vs 2.18 mEq/L). It should be noted that the Mg⁺⁺ content of Armyade did not cause any gastrointestinal symptoms. Thus, in this study consumption of carbohydrate-electrolyte beverages under conditions of moderate heat stress did not result in clinically significant perturbations in serum electrolyte composition. Urine Na⁺, K⁺ and Mg⁺⁺ excretion was highest in those groups drinking the carbohydrate-electrolyte beverages (Armyade and NBC solution). These data are depicted in Figures 15 and 16. Thus intact renal function assures maintenance of normal serum electrolyte balance.

The BUN, creatinine, and calculated BUN/creatinine ratios were determined for each of the four groups. Changes were small and did not differ significantly. These data support the view that none of the groups were subjected to significant dehydration and are consonant with the lack of change in body weight as commented upon earlier (Figure 18) (67,87).

Estimation of cholesterol consumption in garrison range from 744 \pm 219 (SD) mg/day at Fort Lewis and 761 \pm 296 (SD) mg/day at Fort Riley (83). The daily cholesterol intake of the subjects in the present study was much lower at

BIOCHEMICAL INDICES

 523 ± 317 (SD) mg/day. Thus the significant decreases in serum cholesterol in the group as a whole, and in the Control, Placebo. and NBC Groups may reflect diminished dietary intake while consuming field rations. An additional factor contributing to the decrease in serum cholesterol could be increased physical activity in the field. While not achieving statistical significance, decreases in serum triglycerides (Figure 27) were noted for all groups except for the subjects consuming Armyade.

Serum phosphorus on Day 0 and Day 8 for all groups showed no changes resulting from drinking the different beverages. Armyade (3.2 mEq/L PO_4) and NBC solution (2.0 mEq/L PO_4) both contained phosphorus but there were no statistically significant differences in serum phosphorus resulting from drinking these beverages. Thus, drinking Armyade and NBC solutions under moderate heat conditions was disassociated from problems of hyperphosphatemia.

The data from the 4 study groups were subjected to an analysis of variance searching for statistically significant intergroup differences for Day 0 PM. At the start of the study the Placebo group showed statistically significant (p<0.05) differences for serum glucose, BUN, and chloride compared to the other groups. However, all these values are clinically within the normal ranges and the Day 8 PM values also appeared to be higher than in the other groups. Thus, the 4 study groups appeared to be homogeneous at the start of the study.

Although the majority of serum electrolyte changes were not statistically significant, the large decrement in serum sodium and small rise in serum potassium (Table 34) despite high urinary excretion (Figures 15,16,17) are worthy of comment. Although the total intake of sodium was similar for the Armyade and NBC groups. the Armyade group had higher urinary levels of sodium and potassium but lower

BIOCHEMICAL INDICES

serum sodium values. This unexpected fall in serum sodium accompanied by a small rise in serum potassium while drinking the Armyade beverage for 8 days is unexplained. We hypothesize that these unexpected changes may be the result of the ratio of sodium to potassium in Armyade (2.4:1) compared to the NBC solution (1250:1) and gatorade (9.1:1). In light of our results, the impact of the sodium to potassium ratio of Armyade solution on serum electrolytes should be addressed.

CONCLUSIONS

1. All serum electrolyte values were within normal range (but P_{Na}^+ for Armyade is at the low end of normal). There were no clinically significant deviations in serum electrolyte composition (Na⁺, K⁺, Mg⁺⁺, Cl⁻, PO₄) from drinking the carbohydrate-electrolyte beverages while under conditions of moderate heat stress.

 Armyade and NBC solutions appear to be safe to consume under field conditions for up to 8 days as judged by minimal variances in serum electrolyte composition.
 These studies did not maximally test the potential efficacy of Armyade or the NBC solution since the subjects were studied under conditions of moderate heat stress, light-moderate activity, and food availability.

4. Consumption of supplemental electrolytes in the carbohydrate-electrolyte beverages (Armyade and NBC solutions) resulted in increased renal excretion of electrolytes. Thus under moderate heat stress, consumption of field rations appears to be adequate to maintain electrolyte homeostasis.

.

RECOMMENDATIONS

The efficacy of Armyade and/or NBC solution in the prevention and treatment of heat injuries under conditions of maximum heat stress remains undefined by this study. Therefore another study should be carried out in troops undergoing combat arms training under maximum heat stress conditions to rigorously test the efficacy of these carbohydrate-electrolyte oral rehydration solutions.

CIRCULATORY SYSTEM FUNCTION

METHODS

A tilt-test was used to measure orthostatic hypotension tolerance in a random sample of subjects before (Day 1) and after (Day 8) consumption of assigned beverages. This test required about 4-8 minutes per subject and measured the blood pressure and heart rate responses to a change in position from supine to erect. Because the data were collected on selected individuals in the subject's work place, a tilt-table was not used to passively change the subject's position. Instead, subjects reclined for 4 minutes on a cot. With the aid of an investigator, the subject raised himself from the lying position to an erect (90°) position, and remained standing for an additional 2 minutes. While other investigators have had subjects standing for 2 min up to 45 min, hemodynamic changes responsible for preventing a hypotensive response usually occur within the first 1-2 min (88,89). In the current protocol, subjects stood for only 2 min which allowed for collection of valuable data with minimal interference with their duties. Subjects displaying any symptoms of syncope during this maneuver were referred to the Medical Officer in Charge.

RESULTS AND DISCUSSION

Orthostatic hypotension can occur in normal healthy people subjected to strenuous exhaustive physical work or hot climates or both (90,91). Symptoms of hypotension represent the inability of the circulatory system to cope with precipitating factors such as dehydration and heat prostration.

A tilt-test was used to assess the integrity of adaptive circulatory mechanisms when changing position from horizontal to erect. Heart rate and blood pressure responses to the tilt-test were examined in 46 Reservists randomly selected from the four beverage groups.

Tables 35 and 36 show the group averages for blood pressure and heart rate changes when subjects raised themselves from the lying to standing position. For all groups, data on Days 1 and 8 show the expected increases in diastolic pressure and heart rate, and falls in the systolic and pulse pressures. We anticipated that differences in hypohydration between groups might be manifested by differences in the magnitude of the circulatory responses. For example, dehydration of 2.5-5% of initial body weight augments the rises in diastolic pressure and heart rate and the fall in pulse pressure (88,90,92). On either Day 1 or Day 8, there were no significant differences between groups in hydration status as measured by urine specific gravity and percent change in weight from pre-deployment. Not surprisingly, group averages were not different for any of the hemodynamic measures, and syncopal episodes and related symptoms did not occur in any of the individuals. A significant difference between hydration status and the circulatory response to the tilt-test might have been noted had we performed this maneuver during the evening hours of Day 4 (WBGT_{max} = 90.3^oF).

Table 35. Cardiovascular responses observed during tilt-test.

				18	JPINE		STA	DNIDN		SUPIN	E	STAI	DING
GROUP	TIME	usg	%dBW	Psys	Pdias	HR	Psys	Pdias	HR	dd	BP	μ	BP
ARMYADE (N=7)	DAY 1	1.024 ± 0.003	-0.90 <u>+</u> 0.52	124 ±6	8 ‡I	74 ±1	123 14	77 1-13	% ‡ I	61 1 1 3	88 ‡ I	4 1+3 8	1 ¹ 33
	DAY 8	1.019 <u>+</u> 0.002	-0.65 <u>+</u> 0.30	124 ±5	74 <u>+</u> 3	1 , 1	121 F1	8 ‡I	1+5 15	なず	8 1	45 1+3	\$ £1
CONTROL (N=10)	DAY 1	1.024 ±0.002	-0.83 <u>+</u> 0.33	1 <u>5</u> 6	6 ‡I	F ¥1	119 14	13 1-3	8 ‡I	1 1 33	8 ¥I	1 1 38	94 1+3
	DAY 8	1.018* ±0.002	-0.99 ±0.49	1 [‡] 12	69 [1	8 ‡I	115	77 ±3	£ 71	t3 51	% [1	1 1 38	*0 ⁶
PLACEBO (N=6)	DAY 1	1.017	-0.71 <u>+</u> 0.80	17]]	8 ¥I	ξ; ‡l	108 143	5 1 3	ا ل 8	45 ±5	14 83	1 1 38	2 tj
140	DAY 8	1.018 <u>+</u> 0.004	-0.70 <u>+</u> 1.02	117 ±3	73 1 3	1 1	118 ±2	79 ±3	<u>+</u> 3 55	45 1+5	8 7 ₁	39 +3	92**
NBC (N=13)	DAY 1	1.017 <u>+</u> 0.002	-0.10 <u>+</u> 0.39	119 ±2	1 7 2	74 1-2	115 ±3	14 14	89 1+2 2	1 1 3	15 15 85	41 +2	88 1±2
	DAY 8	1.020 <u>+</u> 0.002	-0.47 <u>+</u> 0.40	15 15 15	69 14 69	** 86 **	* 121 	1+2 8	75 <u>+</u> 4	はよい	14 14 86	43 1+2	17 2 [*]
GRAND MEAN M-36	DAY 1	1.021 ±0.001	055 ±0.24	121 12	69 Çi	75 ±2	116 12	76 ±1	2 ÇI	17 23	88 1+1	94 [1	8 [+]
	DAY 8	1.019 <u>+</u> 0.001	-0.68 <u>-</u> 0.26	121 <u>+</u> 2	70 1+2 2	2 17 2	119 1-1-2-	78 ±1	F 71	51 1+2 1	17 83	41 ±1	±1 22
Values are me Significance h	ean <u>+</u> 1SEM Detween Da	L y 1 and Day	'8: * p<0:0	l5; ** p<0	1 *** 101	P-0.001							
Abbrevia	tions:	USG 2, Å BW	Urine sp Percent	ecific g change i	ravity n body	weight fro	E	Psys Pdias	Systol Diastc	ic pressu lic press	ure (mmHg sure (mmH	; [g]	
		HR	predeplo Heart ra	yment te (BPM)				PP BP	Pulse Mean b	pressure lood pres	(mmHg) ssure (mm	ukg)	

!

GROUP	TIME	Δ HR@	ΔPP	ΔPsys	△ Pdias	∆BP
ARMYADE	DAY 1	11	-13	-1	10	9
(L=N)		i+3	1 -5	Ψı	ξ	1 3
	DAY 8	6	-12	ų	00	4
		l+3	1 -2	[1]	1 1 2	1 2
WATER	DAY 1	9	-15	L-	6	ε
(N=10)	-	Ę.	1+3	4	1+3	ţ;
	DAY 8	s	-13	-5	~~~	e
		71 1	1 5	143	÷	2 1
PLACEBO	DAY 1	11	6-	γ	4	1
(9=N)		6 1 1	1 -5	£Ί	‡ I	1 3
	DAY 8	6	φ	0	9	4
		÷1	1 3	1 + 3	Ŧı	[]
NBC	DAY 1	10	-11	4	9	ŝ
(N=13)		1+3	71	Ϋ́ι	17	71
	DAY 8	6	-10	Ļ	6	9
		1 1 2	‡ 1	Ŧı	۲ 1	14
GRAND	DAY 1	10	-12	4	4	3
MEAN		2 1	71	뒤	71	Ŧı
(05=N)	DAY 8	90	-11	7	œ	S
		Ŧ	2 1	Ţ.	Ŧ	Ŧı
@	G-SUPINE; + + ISEM	= INCREA	SE; - = DECF	LEASE		
No significant di	fferences betw	een Day 1	and Day 8 we	re observed.		

Table 36. Cardiovascular changes observed when going from supine to standing position.

CIRCULATORY SYSTEM FUNCTION

Significant differences between Day 1 and Day 8 were noted for several of the circulatory measures (Table 35). Of particular interest, on Day 8 both supine and standing heart rate were lower in the group consuming NBC solution and in the pooled data, and standing systolic pressure was higher in the groups drinking placebo and NBC solution. A lower heart rate was noted on Day 8 compared to Day 1 in all four groups (Table 35) but this was statistically significant only for the pooled data. Although a low heart rate during the tilt suggests an improved tolerance (93), it has also been correlated to a low resting heart rate (93,94). A significantly lower supine heart rate was observed for the pooled data on Day 8. The differences in hemodynamic responses probably did not result from a change in the orthostatic response of these individuals. Because these changes were not consistent between the groups, and the changes initiated when assuming an erect position from the supine position (Table 36) were not different between the two days, a more likely explanation for the apparent improvement is that many of the individuals underwent physical training and heat acclimation as a result of the intense physical labor during four days of severe heat stress (Days 1-4).

A remarkable variability was observed in hypohydration and/or impending hypohydration as measured by urine specific gravity and daily weight changes (see Hydration Status Section). Using these indices of impending hypohydration, the incidence of urine specific gravity \geq 1.030 and/or % weight loss \geq 3% of pre-deployment weight was calculated in the tilt-test population (Table 37).

CIRCULATORY SYSTEM FUNCTION

INDICES	DAY 1	DAY 8	
$USG^+ \ge 1.030$	6	1	
$\%$ BWL ⁺⁺ \ge 3%	1	2	
USG <u>≥</u> 1.030 + %BWL <u>≥</u> 3%	0	2	
TOTAL # OF SAMPLES	7	5	

Table 37. Number of samples displaying positive indices of impending hypohydration.

 $USG^+ =$ urine specific gravity %BWL⁺⁺ = % body weight loss from pre-deployment weight

The circulatory responses to the tilt-test for the twelve samples meeting these criteria are shown in Table 38. Because the criteria used to identify a positive tilt or hypotensive response to the tilt-test vary among reports (88,89,92,93), we selected, with the consult of an Emergency Medicine physician, the following as the rule of thumb:

> Positive response to tilt Fall in pulse pressure (PP) = 15 mmHg or Increase in diastolic pressure (Pdias) = 10 mmHg or Increase in heart rate (HR) = 20 bpm

We identified at least one positive circulatory change based on these guidelines in nine of these twelve samples.

Although weight loss is a good index of hypohydration in short-term studies in a controlled laboratory setting, we might expect the weight loss values of Day 8 to be more indicative of food intake than fluid consumption. Therefore, it is not surprising

non.
ettby
hộ
t by
ding
pen
L III
afo
iteri
5
ctin
em :
ects
Iqns
t ii
t-tes
0 til
es tu
Suo
I ssi
ting
cula
ij
38.
Table

				N S	PINE			STAI	NIGN	تحا						
TIME	NUBLECT	nsG	% BW	Psys	Pdias	HR	Ы	Psys	Pdias	HR	dd	A Psys@ A	Pdias	AHR	APP	RESPONSE
<u>USG > 1.</u>	<u>ଟ</u> ା "	1.001		120	22	6	ŕ	261	20	00	60	ç	ę	V	Ę	
T IVA	-	TCO'T		001	8	70	71	001	00	00	20	?	R	Ø	-17-	÷
	2	1.032	-1.7	144	78	76	8	128	32	96	36	-16	14	20	-30	+
	ŝ	1.030	-1.1	120	72	72	48	116	74	88	42	4	6	16	φ	•
	4	1.033	-2.5	118	80	22	38	120	8	76	30	7	10	°°	Ŷ	+
	Ś	1.030	-2.6	128	62	8	86	136	22	88	52	8	77	8	-14	+
	9	1.030	0.0	108	72	22	36	94	66	96	38	-14	φ	12	ŵ	•
DAY 8	1	1.032	1.4	120	2	68	56	116	76	80	40	4	12	12	-16	+
% BW> DAY I	8 8	1.009	-3.2	104	70	2	3	100	63	8	38	4	ထု	32	4	÷
DAY 8	4	1.020	-3.0	132	80	2	23	132	80	56	52	0	0	Ŷ	0	•
	¢.	1.028	-3.1	130	58	23	72	124	76	8	48	φ	18	2	-24	÷
USG > 1.	030 AND 9	5 BW > 3	22													
DAY 8	10	1.030	-3.2	128	2	72	74	126	2	22	62	?	10	20	-12	÷
	90	1.032	43	118	74	76	44	112	74	8	38	φ	0	ନ୍ନ	φ	+

@A= STANDING - SUPINE.

that subject #4 displayed no response indicative of a positive tilt on Day 8.

Using urine specific gravity on Days 1 and 8 and percent body weight loss on Day 1 as indices of impending hypohydration, we observed nine positive tilt responses out of the eleven anticipated hypotensive responses (subject #4 Day 8 excluded).

Of notable interest are the positive results obtained from subjects #7 and #10. Subject #7 is a 40 year old male officer who was usually busy during both day and evening, and although he claimed that his fluid intake was adequate, he did not rehydrate well. His urine specific gravity averaged 1.029 for the first morning void and 1.031 for the afternoon sample. That his food consumption was adequate is shown by the gain in body weight. Subject #10 lost more than 3% of his pre-deployment body weight, and the specific gravity of his urine averaged 1.032 and 1.033 for the AM and PM samples, respectively. A positive response in several circulating variables in this subject was not at all surprising because he worked intensely setting up tents and keeping guard, and also displayed many symptoms of dehydration (e.g. irritability, apathy, lethargy, weariness, anorexia, and flushed skin) during the first five days of the field exercise.

The average values for the hemodynamic responses to the tilt-test grouped according to urine specific gravity ≥ 1.030 or body weight loss $\geq 3\%$ are shown in Table 39. Individuals having urine specific gravity ≥ 1.030 had higher supine and standing heart rates compared to the 73 responders whose urine specific gravity <1.030. Mean values for diastolic (Pdias) and pulse (PP) pressures were different when individuals were grouped according to weight loss. These differences might reflect a greater hypotensive effect possibly resulting from hypohydration in individuals having urine specific gravity ≥ 1.030 and/or body weight loss $\geq 3\%$.

Table 39. Avera	ige values	for tilt-test	as defined by	v indices of i	impending	hypohydratio	'H						
			SUP	INE	i		STA	NDING					
GROUP	z	Psys	Pdias	HR	ЪЪ	Psys	Pdias	ΗŔ	PP	APsys@	ΔPdias	ΔHR	ДРР
USG <1.030	73	120 <u>+</u> 1	69_ 1	71±1	52 <u>+</u> 1	118±1	77 <u>+</u> 1	79 <u>+</u> 1	41 <u>+</u> 1	-3 <u>-</u> 1	8±1	<u>8</u> -1	-11 <u>+</u> 1
USG ≥1.030	6	125 <u>1</u> 4	69 <u>+</u> 3	77±7*	<u>561</u> 5	120 <u>+</u> 4	78 <u>+</u> 3	89 <u>+</u> 2	42 <u>+</u> 4	4+2	9±3	12 <u>+</u> 3	-14 <u>+</u> 3
									r.				
BWL <3%	76	121±1	69±1	72 <u>+</u> 1	52±1	118 <u>+</u> 1	<i>1</i> 1 <u>−</u> 1	80 <u>+</u> 1	40 <u>+</u> 1	-3 <u>+</u> 1	9 <u>+</u> 1	9±1	-12 <u>+</u> 1
BWL ≥3%	Ś	122 <u>+</u> 5	67 <u>+</u> 5	66 <u>1</u> 4	55±8	11946	71±3	80 1 9	48 <u>1</u> 4*	4+1	4±5	14+6	-8±5
Values are mean	1+ ISEM												

Indicates statistical significance p<0.10
 Indicates statistical significance p<0.07
 Indicates statistical significance p<0.02
 STANDING-SUPINE

•

ψđ

CIRCULATORY SYSTEM FUNCTION

Based on these results, we conclude that measuring blood pressure and heart rate during a 4-8 minute tilt-test during which an individual assumes an upright position from a supine position, can be used in conjunction with the urine specific gravity to assess hypohydration or impending hypohydration in a field setting. The absence of highly significant differences between groups obscures the potential importance of the tilt-test as a diagnostic tool for impending hypohydration.

INTEGRATED SUMMARY

This report encompasses research activity related to four general areas: 1) acceptability and evaluation of oral carbohydrate-electrolyte solutions (NBC and Armyade), 2) correlation of on-site Wet Bulb Globe Temperature (WBGT) measurements with satellite-derived WBGT, 3) hydration status, and 4) circulatory system function.

Daily hedonic ratings of acceptability in the field and laboratory taste tests placed the NBC solution and the Placebo in the same range as water in terms of acceptability with the Armyade solution being significantly lower. Two subjects absolutely refused to drink their assigned test beverages (Armyade and Placebo) after the first day, but they did rate the acceptability of these beverages at the end of the study. Their data on acceptability of the test beverages and demographics were assigned to the appropriate groups, however, the biochemical, hydrational, food, and fluid consumption data were analyzed as if these two subjects belonged to the Control group.

The NBC group had a significantly higher (p<0.001) total fluid intake (x=5241±195 ml/day) than the Armyade group (x=4097±185 ml/day) when analyzed in terms of man-days. Mean daily fluid consumption for the entire study was 4672±104 ml/day. The multivariate analysis of variance showed no significant differences between groups because of the small cell sizes, but there were significant differences over time and especially in relation to Day 4 (the hottest day of the study). Under the conditions of this study (light-moderate activity and moderate heat stress). there is no evidence that consuming carbohydrate-electrolyte solutions will enhance total fluid consumption over plain water. However, for the subjects in the Armyade, NBC, and Placebo groups, significant differences (p<0.001) were noted between the types of beverage drunk. The beverages for these groups were partitioned into Water, Colored

high

Flavored Test Beverage (CFTB), and Other. The Control group was not included in the CFTB analysis because plain water was the test beverage. Significantly greater (p<0.001) amounts of CFTBs were consumed when compared to plain water and Other beverages. The subjects drank 4x, 2.5x, and 10x as much CFTB as Water for the Armyade, NBC, and Placebo groups, respectively. The Armyade, Placebo, and NBC groups drank 11.8, 5.6, and 18.9%, respectively, of their total fluid as water. The soldiers in the Control group drank 65% of their total fluid as water. They would drink plain water when their only other choice was Other fluids probably because their access to <u>ad libitum</u> Other fluids may have been limited by the field situation.

None of the test beverages interfered with food intake judging by the isocaloric intake of all groups. Mean energy intake was lower than found in other studies at 2680±48 ml/day because of the inclusion of females with a lower mean intake of 2343±55 kcal/day. The mean energy intake of 3056±74 kcal/day for males only was very similar to of previous studies. The levels of energy intake for males and females came very close to meeting their energy needs. The subjects were able to maintain their body weight in the field with less than a 1 kg weight loss.

Biochemical analyses (12 serum clinical chemistries) revealed some statistically significant deviations in serum composition resulting from ingestion of the carbohydrate-electrolyte solutions but they were not physiologically significant. There were no observed adverse clinical effects resulting from drinking the carbohydrate-electrolyte beverages. However, drinking Armyade may cause potential problems because of the Na⁺/K⁺ ratio. Urine electrolyte analyses demonstrated increased urinary electrolyte excretion in the NBC and Armyade groups suggesting that the body was excreting excess electrolytes. Further studies need to be conducted to determine if the problems are of significant physiological concern.

Statistical analyses showed that there were no significant differences between the 4 groups for total quantity of fluid ingested, total energy intake, energy intake from fluid and food (no test beverage), energy intake from food alone, and total potassium intake. The data showed significant differences over time for all of the comparisons. No significant interactions occurred between the groups over time so trends were essentially parallel between groups.

There were significant differences between the groups for energy intake from fluids (p<0.05), total sodium ingested (p<0.05), and the ratio of test beverage to total quantity of fluid drunk (p<0.001). The subjects drank significantly more (p<0.05) NBC solution than Other fluids and almost twice as much Water (NS). This indicates that palatable colored flavored fluid could improve fluid intake in the heat. At this activity level, under these heat stress conditions, and consuming regular meals, fluid intake is more important than electrolytes in maintaining hydration.

On-site WBGT readings at Fort Hood, TX correlated very well with the NOAA weather satellite readings. The results were very encouraging with the average difference between satellite-derived and surface WBGT measurements about -1.8±3.8°F (Mean±SD).

Hydration status was monitored using twice daily weighings, urine specific gravity, urine electrolyte excretion, and the BUN/Creatinine ratio. These indices revealed that all 4 groups were, in general, eating and drinking adequately. On the hottest days of the study (Days 3 and 4), the subjects were consuming larger quantities of fluid; however, the intake for the Armyade and Control group may not have been sufficient. There was a greater incidence of urine specific gravities \geq 1.030 on these days for the Armyade and Control groups compared to the NBC and Placebo groups. This study also demonstrated that hypohydration can be lessened by flavoring field grade water.

Measuring blood pressure and heart rate during a tilt-test was found to be a useful technique in conjunction with urine specific gravity to assess hypohydration or impending hypohydration in a field setting.

GENERAL CONCLUSIONS

Under conditions of light-moderate activity, moderate heat stress, and when other colored, flavored beverages are available, there is no evidence that providing a carbohydrate-electrolyte solution will enhance total fluid consumption over plain water.
 When food intake is adequate, activity is light-moderate, and heat stress is moderate, consumption of water or non-nutritive flavored beverages is adequate to maintain electrolyte homeostasis.

3. Subjects consumed significantly more of the colored, flavored test beverages (carbohydrate-electrolyte beverages and placebo) than water or other fluids when given the freedom to select any beverage and allowed to drink <u>ad libitum</u>.

4. Under the conditions of this study, carbohydrate-electrolyte beverages are not necessary to provide electrolytes but may be helpful in improving fluid intake when compared to plain water.

5. Consumption of carbohydrate-electrolyte beverages did not significantly alter food consumption.

6. Body weight was maintained in the field with losses less than 1 kg for 8 days.
7. According to the clinical chemistries, the ingestion of carbohydrate-electrolyte solutions was not accompanied by deviation from normal values. Drinking NBC and Armyade solutions appeared to be safe under the conditions studied.

8. The close correlation between field and satellite-derived WBGT readings indicates significant potential for the use of satellite remote sensing technology to accurately assess WBGT in training/operational environments.

9. Studies on hypohydration utilizing field expedient methodology (i.e., urine specific gravity, body weight, tilt-test, blood pressure, and pulse) are important and assist in evaluating body fluid status.

10. Soldiers in the NBC group drank significantly more fluid per day than those in the Armyade group. The Placebo and Control groups tended to drink consistently more than those in the Armyade group but the difference was not significant. The NBC and Placebo groups had the smallest number of specific gravities ≥ 1.030 . Preference for the Placebo suggested that soldiers preferred the coloring and flavoring over plain drinking water in the field.

11. Percent of individuals with urine specific gravities \geq 1.030 were significantly different (p<0.05) between groups with subjects in the Placebo and NBC groups being better hydrated.

12. On days 1,3,4 for which there were significant differences (p<0.05) between groups, the water group was more hypohydrated than the groups drinking colored flavored solutions.

13. In a population of reservists consuming field rations during field exercise training, fluid intake can be enhanced and consequently, the incidence of hypohydration can be lessened, by coloring and flavoring the field drinking water with a non-nutritive or NBC nutrient solution.

14. Based on daily ratings. Armyade had a significantly lower hedonic rating than water (rated by Control group), placebo, or NBC Nutrient solution. The NBC Nutrient solution had a significantly higher rating than water but the difference was within one rating point.

15. The NBC solution had a significantly higher hedonic rating than Armyade; subjects in the NBC group drank significantly more total fluid/day than those in the Armyade group; and the incidence of hypohydration was significantly lower in the NBC group compared to the Armyade group. The placebo rating was intermediate.

16. The results from this study appear to confirm that urine specific gravity \geq 1.030 and body weight loss \geq 3% are reliable indices of hypohydration or impending hypohydration.

GENERAL RECOMMENDATIONS

1. Conduct further studies under rigorous heat stress where food intake is sporadic to assess the clinical efficacy of oral carbohydrate-electrolyte solutions (NBC, Armyade) since this investigation shows that the solutions can be used safely.

2. Continue refinement of the capability of satellite-derived WBGT.

3. Develop field expedient monitors of body hydration status.

4. Test the effectiveness of <u>ad libitum</u> consumption of carbohydrate-electrolyte solutions in preventing hypohydration in soldiers in MOPP4.

5. Joint research activities between Army Reserve units and Army Medical Research Laboratories should be pursued as a method of upgrading annual training of the Reserve Component as well as providing support for Army Medical Research Laboratory studies.

6. Potential importance of the tilt test as a diagnostic tool for impending hypohydration needs further study.

REFERENCES

REFERENCES

- 1. Williams MH. Nutritional aspects of human physical and athletic performance. Springfield, IL: Charles C. Thomas Publisher, 1976:44-75 and 169-207.
- 2. Strydom NB, Wyndham CH, van Graan CH, Holdsworth LD, Morrison JF. The influence of water restriction on the performance of men during a prolonged march. So Afr Medical J 1966;31:539-544.
- 3. Macaraeg PVJ Jr. Influence of carbohydrate electrolyte ingestion on running endurance. In: Fox EL, ed. Report of the Ross symposium on nutrient utilization during exercise. Columbus, OH: Ross Laboratories, 1983:91-96.
- 4. Pitts GC, Johnson RE, Consolazio FC. Work in the heat as affected by intake of water, salt and glucose. Am J Physiol 1944;142:253-259.
- 5. Ladell WSS. The effects of water and salt intake upon the performance of men working in hot and humid environments. J Physiol 1955;127:11-46.
- 6. Adolph EF, Brown AH, Goddard DR, Gosselin RE, Kelly JJ, Molnar GW, Rahn H, Rothstein A, Towbin EJ, Wills JH, Wold AV. In: Physiology of man in the desert. New York: Interscience Publishers, 1947.
- 7. Wyndham CH. Heat stroke and hyperthermia in marathon runners. In: Milvy P, ed. The marathon: Physiological, medical, epidemiological, and psychological studies. New York: New York Academy of Sciences, 1977: 128-138.
- 8. Keys A, Brozek J, Henschel A, Mickelsen O, Taylor HL. Human starvation. U. of Minn Press, 1951.
- 9. Consolazio CF, Johnson RE, Pecora LJ. Physiological measurements of metabolic function in man. New York: Blakiston Division, McGraw-Hill Book Co., 1963.
- 10. Saltin B. Aerobic and anaerobic work capacity after dehydration. J Appl Physiol 1964;19:1114-1118.
- 11. Kenney RA. The effect of the drinking pattern on water economy in hot, humid environments. Brit J Industr Med 1954;11:38-39.
- 12. Kerndt PR, Naughton JL, Driscoll CE, Loxterkamp DA. Fasting: The history, pathophysiology and complications. West J Med 1982;137:379-399.
- 13. Szlyk PC, Hubbard RW, Matthew WT, Armstrong LE, Kerstein MD. Mechanisms of voluntary dehydration among troops in the field. Mil Med 1987;152:405-407.
- 14. Costill DL, Kammer WF, Fisher A. Fluid ingestion during distance running. Arch Environ Health 1970;21:520-525.
- 15. Foster C, Costill DL, Fink WJ. Gastric-emptying characteristics of glucose and glucose polymer solutions. Res Q Exer Sport 1980;51:299-305.

REFERENCES

- 16. Seiple RS, Vivian VM, Fox EL, Bartels RL. Gastric-emptying characteristics of two glucose polymers-electrolyte solutions. In: Fox EL, ed. Report of the Ross symposium on nutrient utilization during exercise. Columbus, OH: Ross Laboratories, 1983:85-87.
- 17. Costill DL, Saltin B. Factors limiting gastric emptying during rest and exercise. J Appl Physiol 1974;37:679-683.
- 18. Hunt JN. The site of receptors slowing gastric emptying in response to starch in test meals. J Physiol 1960;154:270-276.
- 19. Coyle EF, Costill DL, Fink WJ, Hoopes DG. Gastric emptying rates for selected athletic drinks. Res Q 1978;49:119-124.
- 20. Daum F, Cohen MJ, McNamara H, Finberg L. Intestinal osmolality and carbohydrate absorption in rats treated with polymerized glucose. Pediatr Res 1978;12:24-26.
- 21. Elias E, Gibson GJ, Greenwood LF, Hunt JN, Tripp JH. The slowing of gastric emptying by monosaccharides and disaccharides in test meals. J Physiol 1968;194:317-326.
- 22. Hunt JN, Pathak JD. The osmotic effects of some simple molecules and ions on gastric emptying. J Physiol 1960;154:254-269.
- 23. Neufer PD, Costill DL, Fink WJ, Kirwan JP, Fielding RA, Flynn MG. Effects of exercise and carbohydrate composition on gastric emptying. Med Sci Sports Exerc 1986;18:658-662.
- 24. Pirnay F. Lacroix M. Mosora F. Luyckx A. Lefebvre P. Effect of glucose ingestion on energy substrate utilization during prolonged muscular exercise. Eur J Applied Physiol 1977;36:247-254.
- 25. Bonen A, Malcolm SA, Kilgour RD, MacIntyre KP, Belcastro AN. Glucose ingestion before and during intense exercise. J Appl Physiol 1981;50:766-771.
- 26. Brooke JD, Davis GJ, Green LF. The effects of normal and glucose syrup work diets on the performance of racing cyclists. J Sports Med 1975;15:257-265.
- 27. Ivy JL, Costill DL, Fink WJ, Lower RW. Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports 1979;11:6-11.
- 28. Ahlborg G, Felig P. Substrate utilization during prolonged exercise preceded by ingestion of glucose. Am J Physiol 1977;233:E188-E194.
- 29. Bueding E, Goldfarb W. Blood Changes following glucose, lactate and pyruvate injections in man. J Biol Chem 1943;147:33-40.
- 30. Hermansen L, Pruett EDR, Osnes JB, Giere FA. Blood glucose and plasma insulin in response to maximal exercise and glucose infusion. J Appl Physiol 1970;29:13-16.

- 31. Wahren J, Felig P, Ahlborg G, Jorfeldt L. Glucose metabolism during leg exercise in man. J. Clin Invest 1971;50:2715-2725.
- Norris WA, Kanonchoff AD, Prall V, Rupp J, Fox EL, Bartels RL, Hecker AL. Metabolic response to an experimental hydration solution in long-term exercise. In: Fox EL, ed. Report of the Ross symposium on nutrient utilization during exercise. Columbus, OH; Ross Laboratories, 1983:87-91.
- 33. Hughes S. Acute secretory diarrhoeas: Current concepts in pathogenesis and treatment. Drugs 1983;26:80-90.
- 34. Costill DL. Sweating: Its composition and effects on body fluids. In: Milvy P, ed. The marathon: Physiological, medical epidemiological, and psychological studies. New York: New York Academy of Sciences, 1977: 160-174.
- 35. Kozlowski S, Saltin B. Effect of sweat loss on body fluids. J Appl Physiol 1964;19:1119-1124.
- 36. Frizzell RT, Lang GH, Lowance DC, Lathan SR. Hyponatremia and ultramarathon running. JAMA 1986;255:772-774.
- 37. Committee on Dietary Allowances, Food and Nutrition Board, Commission on Life Sciences, National Research Council. Recommended Dietary Allowances. 9th ed. Washington, DC: National Academy Press, 1980.
- 38. Maron MB, Wagner JA, Horvath SM. Thermoregulatory responses during competitive marathon running. J Appl Physiol 1977;42:909-914.
- 39. Kutsky RJ. Handbook of vitamins, minerals and hormones. 2nd ed. pp. 30-41.
- 40. Whang R, Welt LG. Observations in experimental magnesium depletion. J Clin Inves 1963;43:305.
- 41. Ryan MP, Whang R, Yamalis W. Effect of magnesium deficiency on cardiac and skeletal muscle potassium during dietary potassium restriction. Proc Soc Exp Biol Med 1973;143:1045.
- 42. Whang R, Morosi HJ, Rogers D, Reyes R. The influence of continuing magnesium deficiency on muscle K⁺ repletion. J Lab Clin Med 1967;70:895.
- 43. Whang R, Alkawa JK. Magnesium deficiency and refractoriness to potassium repletion. J Chron Dis 1977;30:65.
- 44. Whang R, Flink EB, Dyckner T, Wester PO, Aikawa JK, Ryan MP. Magnesium depletion as a cause of refractory potassium repletion. Arch Int Med 1985;145:1686-1689.
- 45. Costill DL, Cote R, Fink WJ. Dietary potassium and heavy exercise: Effects on muscle water and electrolytes. Am J Clin Nutr 1982;36:266-275.

REFERENCES

- 46. Rose MS, Carlson DE. Effects of A-ration meals on body weight during sustained field operations. (Technical Report No. T2-87) Natick, MA: US Army Research Institute of Environmental Medicine, 1986.
- 47. Whang R. Magnesium deficiency: Causes and clinical implications. Drugs 1984;28 (supp 1):143-150.
- 48. Kaufman CE, Felsenfeld AJ, Vannatta JB, Whang R, Llach F. Maintenance of body fluid potassium. calcium. magnesium. and phosphorus. In: Frohlich ED, ed. Pathophysiology Third Edition. Philadelphia, PA: JB Lippincott, 1984:249-269.
- 49. Whang R. Medical and health aspects of potassium. In: Munson RD, ed. Potassium in agriculture. Madison, WI: American Society of Agronomy, 1985:621-633.
- 50. Papper S, Whang R. Hypokalemia and hyperkalemia. Disease-A-Month, June 1964.
- 51. Knochel JP. The pathophysiology and clinical characteristics of severe hypophosphatemia. Arch Int Med 1977;137:203.
- 52. Conclusions and recommendations arising from a workshop, held June 3-4, 1982, to determine nutritional requirements of military personnel in protective clothing, Committee on Nutritional Requirements in Protective Clothing, Food and Nutrition Board, Commission on Life Sciences, National Research Council.
- 53. Rose MS, Francesconi R, Levine L, Shukitt B, Cardello A, Warren P, Munro I, Banderet L, Poole P. Frykman P. Sawka M. Effects of a NBC nutrient solution on physiological and psychological status during sustained activity in the heat. USARIEM, Natick, MA. Technical Report No. T25-87, July 1987.
- 54. Palmer DL, Koster FT, Rafiqul Islam AFM, Mizanur Rahman ASM. Sach RB. Comparison of sucrose and glucose in the oral electrolyte therapy of cholera and other severe diarrheas. New Eng J Med 1977;297:1107-1110.
- 55. Guerrant RL, Shields DS, Thorson SM, Schorling JB, Groschel DHM. Evaluation and diagnosis of acute infectious diarrhea. Am J Med 1985;78:91-98.
- 56. Pawan GLS. Fructose. In: Birch GG, ed. Mol Struct Funct Food Carbohydrates. Industry-University Cooperative Symposium 1973. NY: Wiley, 1973:65-80.
- 57. Fruth JM, Gisolfi CV. Effects of carbohydrate consumption on endurance performance: Fructose versus glucose. In: Fox EL, ed. Report of the Ross symposium on nutrient utilization during exercise. Columbus, OH: Ross Laboratories, 1983:68-75.
- 58. Washington University Manual of Medical Therapies. 25th ed. Boston, MA:Little Brown & Co., 1986:43.

- 59. Lau K. Magnesium metabolism: Normal and abnormal. In: Ariess Al, DeFronzo RA, eds. Fluid, Electrolyte and Acid Base Disorders. NY: Churchill Livingston, 1985:575-623.
- 60. Ahlborg B, Bergstrom J, Ekelund LG, Hultman E. Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta Physiol Scand 1967;70:129-142.
- 61. Hubbard RW, Sandick BL, Matthew WT, Francesconi RP, Sampson JB, Durkot MJ, Maller O, Engell DB. Voluntary dehydration and alliesthesia for water. J Appl Physiol 1984;57:868-875.
- 62. Sohar E, Kaly J, Adar R. The prevention of voluntary dehydration. UNESCO/India Symposium on Environmental Physiology and Psychology, 1962:129-135.
- 63. Sandick BL. Engell DB, Maller O. Perception of drinking water temperature and effects for humans after exercise. Physiol Beh 1984;32:851-855.
- 64. US Army Combat Developments Experimentation Center, Fort Ord, CA and US Army Research Institute of Environmental Medicine, Natick, MA. Combat Field Feeding System-Force Development Test and Experimentation (CFFS-FDTE) Test Report CDEC-TR-85-006A, 1986.
- 65. Tietz N., ed. Fundamentals of clinical chemistry. Philadelphia, PA: W.B. Saunders Co., 1976.
- 66. Rothstein A, Adolph EF, Wills, JH. Voluntary dehydration. In: Adolph EF, ed. Physiology of man in the desert. New York: Interscience, 1947:254-270.
- Francesconi RP, Hubbard RW, Szlyk PC, Schnakenberg D, Carlson D, Leva N, Sils I, Hubbard L, Pease V, Young J, Moore D. Urinary and hematologic indexes of hypohydration. J Appl Physiol 1987;62:1271-1276.
- 68. TB MED 507 (NAVMED P-5052-5, AFP 160-1) Occupational and Environmental Health: Prevention, and Control of Heat Injury. Headquarters, Departments of the Army, Navy, and Air Force, 1980.
- 69. DA Cir. 40-82-3, Prevention of Heat Injury. Headquarters, Department of the Army, (Interim Changes: Issued July 1982, Expired July 1984).
- 70. GTA 8-5-45 Heat Injury Prevention and First Aid. Headquarters, Department of the Army, August 1985.
- 71. Bandy JT, Smith ED, Hubbard R, Sandick B, Matthew WT, Thomas G, Testa M. Bright star 83 after action report: Water management (Production/Consumption) and heat stress management. US Army Construction Engineering Research Lab. USA Natick Research & Development Center, and USA Research Institute of Environmental Medicine. March 1984.

- 72. Peryam DR, Girardot NF. Advanced taste-test method. Food Engineering 1952;58:194.
- 73. Popper R, Hirsch E, Lesher L, Engell D, Jezior B, Bell B. Field Evaluation of Improved MRE, MRE VII, and MRE IV. USANRDC Technical Report No. TR-87/027, 1987.
- 74. Beecher HK. Measurement of subjective responses: Quantitative effects of drugs. New York: Oxford U. Press, 1959.
- 75. Engell D, Edinberg J, Abrams I. Effect of beverage variety on beverage and food intake in humans. Paper presented at the Neuroscience Satellite Conference, November, 1987, San Antonio, TX.
- 76. Cardello, AV. Acceptance and human factors data collected on prototype NBC beverage and packaging during Exercise CANE. Internal Memo, May, 1983.
- 77. Cardello AV, Darsch GA. A feeding system for use with chemical protective suits: product development and user acceptance. Paper presented at the Annual Meeting of the Institute of Food Technologists, Las Vegas, June 1987.
- 78. Ellis BH. Acceptance and consumer preference testing. J. Dairy Sci., 1969, 52:833.
- 79. Rosenthal R. Experimenter effects in behavioral research. New York: Appleton, 1966.
- 80. Rose MS, Buchbinder JC, Dugan TB, Szeto EG, Allegretto JD, Rose RW, Carlson DE, Samonds KW, Schnakenberg DD. Determination of nutritional intakes by a modified visual estimation method and computerized nutrition analysis for dietary assessments of military field and garrison feeding. USARIEM Technical Report No. T6-88, 1987.
- 81. Army Regulation 40-25. Nutrition Allowances, Standards, and Education. Headquarters, Departments of the Army, the Navy, and the Air Force. Washington, DC, 15 May 1985.
- Hirsch E, Meiselman HL, Popper RD, Smith G, Jesior B, Lichton I, Wenkam N, Burt J, Fox M, McNutt S, Thiele MN, Dirige O. The effects of prolonged feeding meal, ready-to-eat (MRE) operational rations. USANRDC Technical Report No. TR-85/035, 1983.
- 83. Szeto EG, Carlson DE, Dugan TB, Buchbinder JC. A comparison of nutrient intakes between a Ft. Riley contractor-operated and a Ft. Lewis military-operated garrison dining facility. USARIEM Technical Report No. T2-88, 1987.
- 84. Szeto EG, TB Dugan, Gallo JA. Assessment of habitual diners nutrient intakes in a military-operated garrison dining facility Fort Devens I. USARIEM Technical Report No. T3-89, 1988.

- 85. Rose RW, Baker CJ, Salter C, Wisnaskas W, Edwards JSA. Rose MS. Dietary assessment of U.S. Army basic trainees at Fort Jackson, SC. USARIEM Technical Report No. T6-89, 1989.
- 86. Szlyk, PC, Sils IV, Francesconi RP, Hubbard RW, Matthew WT. Variability in intake and dehydration in young men during a simulated desert walk. Aviat Space Environ Med (In Press).
- 87. Dossetor JB. Creatininemia versus uremia. Ann Int Med 1966;65:1287-1299.
- 88. Beetham WP, Buskirk ER. Effects of dehydration, physical conditioning and heat acclimation on the response to passive tilting. J Appl Physiol 1958; 13:465-468.
- 89. White NJ. Heart rate changes on standing in elderly patients with orthostatic hypotension. Clin Sci 1980; 58:411-413.
- 90. Eichna LW, Bean WB. Orthostatic hypotension in normal young men following physical exertion, environmental thermal loads, or both. J Clin Invest 1944; 23:942.
- 91. Horvath SM, Botelho SY. Orthostatic hypotension following hot or cold baths. J Appl Physiol 1949; 1:586-596.
- 92. Harrison MH, Hill LC, Spaul WA, Greenleaf JE. Effect of hydration on some orthostatic and haematological responses to head-up tilt. Eur J Appl Physiol 1986; 55:187-194.
- 93. Dikshit MB, Banerjee PK, Rao PLN. Orthostatic tolerance of normal Indians and those with suspected abnormal cardiovascular reflex status. Aviat Space Environ Med 1986; 57:168-173.
- 94. Shvartz E, Strydom NB, Kotze H. Orthostatism and heat acclimation. J Appl Physiol 1975; 39:590-595.
APPENDIX A - FORMULATION AND COMPOSITION OF NBC NUTRIENT SOLUTION, ARMYADE, AND PLACEBO

APPENDIX A-1

NBC NUTRIENT SOLUTION POWDER FORMULA

INGREDIENTS	<u>g/l</u>
Malti Dextrin-42	10.3960
Fructose	14.4372
Aspartame	0.1060
Salt 1.3250	
Citric acid	2.6500
Tricalcium phosphate	0.3890
Sodium benzoate	0.2120
LL Flavor Fries & Fries 88481	0.0636
LL Flavor Fries & Fries 88484	0.0424
LL Flavor Fries & Fries 80523	0.0530
FDC Yellow color #5	0.0016
Lime shade McCormick C00266	0.0042

APPENDIX A-2

-

ARMYADE FORMULA

INGREDIENTS	g/L
Malti Dextrin-42	25.0000
Aspartame	0.1060
Magnesium Chloride	0.406
NaHCO ₃	0.8581
Potassium Chloride	0.6710
Citric acid	2.6500
Tricalcium phosphate	0.778
Sodium Chloride	0.5856
Sodium benzoate	0.212
LL Flavor Fries & Fries 88481	0.0636
LL Flavor Fries & Fries 88484	0.0424
LL Flavor Fries & Fries 80523	0.0530
FDC Yellow color #5	0.0016
Lime shade McCormick C00266	0.0042

APPENDIX A-3

PLACEBO SOLUTION

LL Flavor Fries & Fries 88481	g/l 0.0636
LL Flavor Fries & Fries 88484	0.0424
LL Flavor Fries & Fries 80523	0.0530
FDC Yellow color #5	0.0016
Lime shade McCormick C00266	0.0042
Aspartame	0.1060

Comparison of the e Placebo.	energy, c	carbohydra	ate and ele	sctrolyte c	ontent, aı	ilomso br	ality of Armyad	e, NBC Nut	
FLUID			ELECI	TROLYTE	S (mEq/L				
	Na+	ต่	+ ¥	нсо ₃	Mg++	P04	_Carbohy- drate (g/L)	Energy (kcal/L)	Osmolality (mOsm/kg)
Armyade	22.8	25.5	9.5	10	5.2	3.2	25	100	127
NBC Nutrient Soln	25.0	24	0.02		0.14	2.0	24.8	66	166
Placebo	0	0	0	0	0	0	0	0	2
•									

APPENDIX A-4

APPENDIX B - LIST OF DEPENDENT VARIABLES

.

DEPENDENT VARIABLES:

Weight

```
after urine collection in morning and afternoon (2 min)
```

Urine

Weight (for 24-hour collection only)

Specific Gravity - first morning urination in container (2 min)

afternoon urination (2 min)

Dipstick

Analysis for Na^+ , K^+ , Mg^{++} , creatinine

Solution Acceptability

rating on fluid intake card (2 min)

post-test questionnaire (20 min)

Fluid Consumption 24 hour

mark canteen numbers at source of water

soldiers keep cards - 24-hr

Food Intake at Meals - Visual Estimation Method

Na⁺-individual packets

No. of Meals-VEM

Caloric Intake-VEM

Fluid intake at meals

Food Intake between meals and MRE for lunch

soldiers mark snacks and MRE foods on fluid cards

Orthostatic Hypotension

4-8 min/individual

selected subjects from each group (ie ambulance drivers, aidmen, etc.) will be tested during free time during Day 1 and Day 8. test also will be administered to subjects displaying symptoms of dehydration/heat injury

Evaluation of heat casualties (exhaustion and cramps)

Questionnaire

Body Weight

24 hour urine collection

rectal temperature

Total Body Water-stable isotope-2 16-ml draws

Clinical enzymes and electrolytes obtained from first blood draw

- for heat exhaustion and cramps patients after seen by doctor and able to talk
- not applicable to heat stroke or severe heat exhaustion patients who will be evacuated from the area

Wet Bulb Globe Temperature

Satellite

Ground Readings

Unit readings

APPENDIX C - WBGT PROFILES OF FLUID RECOMMENDATIONS

APPENDIX D - FLUID INTAKE/BETWEEN MEAL FOOD DATA COLLECTION FORM

REASONS DID NOT EAT/FINISH	Write in the number of the PRIMARY REASON that you didn't finish an item or did not eat the item at all. If your PRIMARY REASON is is not listed. write it in. 1 Spilled 7 Unable to heat 2 Feel full 8 Not enough water 3 Too salty 9 Tasted bad	4 Disting 10 Smelled bad 5 Saved 11 Feel Sick 6 Traded 12 Not snough time	BEEF W/SPICED SCE BEEF W/SPICED SCE BEEF ATTIES BEEF ATTIES BEEF STEW CHICKEN A LA KING FRANKFURTERS HAM SLICE MAM/CHICKEN LOAF MAM/CHICKEN V/GRAVY MAM/CHICKEN LOAF MAM/CHICKEN V/GRAVY MAM/CHICKEN LOAF MAM/CHICKEN V/GRAVY MAM/CHICKEN LOAF MAM/CHICKEN V/GRAVY MAM/CHICKEN V/GRAVY MARENER CHEESE FLUT MAPLE SAUCE RUIT MIX PEANUT BUTTER APPLE SAUCE RUIT MIX PEANUT BUTTER MAPLE NUT CAKE MAPLE NUT CAKE RANGERNES COCOA POWDER RANGE NUT CAKE RANGY ALE SUBS	
ADDED WATER	Flease list the amount of water you added to each food or beverage item that you ate. Write in "0" if you did not add water to an item that you consumed.	<u>WATER (in canteen cups)</u> i.e. <u>1/4.</u> 1/2. 3/4. etc.		
ID NUMBER	MKE KATION CONSUMPTION Circle the amount that indicates how much of each item you ate today. If the appropriate number is not listed, write it on the line provided. For example: If you eat 2 beef stew entrees, circle 2. If you drink 2 1/2 canteen cups of coffee, write in "2 1/2".	FOOD ITEM CODE AMOUNT CONSUMED (by package)	BEEF W/BBQ SCE 1/4 1/2 3/4 1/2 2/1 1/2 2/4	1 Mary 88

FLUID INTAKE DATA COLLECTION FORM for period from 0500-0500 hours

HOUR FILLED: PU	AMOUNT (3/4 UT IN CANTER	4, full, EN: THR(<u>etc)</u> DWN AWAY:	CIRCLE SPECIFY	TYPE OF FL IF OTHER:	JID IN CANTI	CEN.	
			P1	ain Water.	Test Beve	rage Other		
		<u></u>	P1	ain Water.	Test Beve	rage Othe	r:	
_			P1	ain Water	Test Beve	rage Other	r:	
<u> </u>		, 	P1	ain Water.	Test Beve	rage Other	r:	
			P1	ain Water.	Test Beve	rage Other	c:	
			P1	ain Water	Test Beve	rage Othe	c+	
		·	P1	ain Water	Test Beve	rage Othe	r:	
		i,	*****	*****				
ACCEPTABI were given your opin:	LITY RATING n to drink i ion. (If y	- We wor between n ou had or	uld like your meals. Circl nly water to	opinion o le the rati drink betw	of the test ng that be ween meals,	beverage yo st describe rate water	5 5 •)	
DISLIKE EXTREMELY	DISLIKE VERY MUCH	DISLIKE MODERATI	DISLIKE ELY SLIGHTLY	NEITHER LIKE NOR DISLIKE	LIKE SLIGHTLY	LIKE MODERATELY	LIKE VERY MUCH	LIKE EXTREMELY
· 1	2	3	4	5	6	7	8.	9
		***	*****	*****				
			BETWEEN-MEAL	. SNACKS				
HOUR	AMOUNT		DESCRIPTION	1				•10
1e: 0800 1 1600 1	hr 1-12 oz hr <u>2.16 oz</u>	can .	Coke Snickers Ba	ar				
	·							
							—	

APPENDIX E - FLUID INTAKE NORMALIZED TO BODY WEIGHT

SUMMARY STATISTICS FOR VARIATE(S):

VARIATE	COUNT	MEAN	STDERROR	STD_DEV	WTD_MEAN	MAXIMUM	MINIMUM
DEP_VAR	440	32.25	1.291	27.09	62.39	165.4	6.480
FACTOR	LEVEL	COUNT	MEAN	STDERROR	STD_DEV	WTD_MEAN	MAXIMUM
GROUP	< aud	164 126 128	59.6855 58.0669 63.9289 67.1101	2.4081 2.5167 2.5315 2.6537	24.5577 27.5689 23.7472 30.0227	59.935Ø 59.3673 62.8578 67.3812	133.5200 160.9200 139.6000 165.3500
SEX	MALE FEMALE	216 224	67.ØØ12 57.6736	1.7647 1.8337	25.9355 27.4446	67.2249 57.5457	165.3500 160.9200
раү	* * * * * * * * * * * * * * * * * * *	88888888888888888888888888888888888888	66.6907 67.3544 65.1904 65.1904 72.5247 72.5247 72.5247 52.3955 56.3555 55.49855 55.4985	4.0187 4.00387 3.8540 3.8575 3.8575 3.8575 3.8509 3.5593 3.5593 3.5593 3.5560 3.5560 3.5560 3.5560	29.8838 29.6870 28.5818 27.1251 19.8461 19.8461 27.325 21.8255 21.8255	65.9893 67.8221 65.3339 65.3339 72.9356 72.9356 65.38012 56.80012 55.7301	158.9500 139.6000 165.3500 147.5300 94.9500 126.3100 115.2800 115.2800

10.9300 6.4800 16.0700 10.1700

MUMINIM

10.0700 6.4800 14.7160 26.7260 10.0760 10.1760 10.3760 17.2460 6.4860 6.4860 11.6160

ARMYADE GROUP

79.3500 125.8700 80.5400 133.5200 79.5400 88.3400 88.3400 887.3000 97.7200 76.1300 102.8200 97.5000 87.3800 94.9500 94.9500 126.3100 61.0300 91.3700 MAXIMUM MAXIMUM 48.0843 65.9800 60.7843 61.6229 61.6229 52.8800 71.5257 41.4243 51.2314 53.4683 61.8450 71.0383 75.4583 49.2333 65.6800 65.5007 63.1967 WTD_MEAN WTD_MEAN 21.8970 25.1761 28.3809 22.9533 21.8312 39.8448 10.6416 25.8556 16.1643 34.1697 10.6500 32.7524 22.8439 18.0302 17.8587 21.8838 STD_DEV sto_dev 8.2763 9.5157 9.5157 8.6755 8.6755 8.6755 8.2514 15.0599 4.0221 9.7725 6.5991 13.9497 4.3479 13.3711 9.3260 7.2908 8.9340 **STDERROR** STDERROR 53.4683 61.845Ø 71.0383 75.4583 49.2333 65.68ØØ 65.5067 63.1967 48.0843 65.9800 60.7843 61.6229 52.8800 71.5257 41.4243 51.2314 MEAN MEAN COUNT COUNT ファファファ 1.0000 2.0000 3.0000 5.0000 6.0000 6.0000 8.0000 8.0000 1.0000 2.0000 4.0000 5.0000 6.0000 6.0000 8.0000 8.0000 8.0000 LEVEL LEVEL FEMALE MALE FACTOR FACTOR DAY DAY Â Î ÷ ≈ ≈ 184

31.3400 37.5500 53.2102 38.7603 38.7603 10.9300 44.2700 46.9600 36.8900

MUMININ

14.7166 41.9566 33.6866 26.6666 32.33667 32.3366 22.5267 23.8366 13.8566

MUMINIM

CONTROL GROUP

	M
<u>ن</u>	ŝ
H	

FACTOR LEVEL COUNT MEAN STDERROR STD_DEV WTD_MEAN MAXIMUM MININ DAY * 1.00000 6 555517 7.9289 19.4218 69.5217 90.6800 37.9 * * 2.00000 6 73.4267 11.8862 29.11518 69.5217 90.6800 38.1 * * 3.0000 6 73.4267 11.8862 29.11518 69.5217 90.6800 38.1 * * 4.0000 6 61.3833 11.6165 18.8776 73.4267 106.2400 38.1 * * 4.0000 6 56.0133 8.11817 20.3875 73.4267 106.2400 38.1 * * 1.0000 6 56.7233 8.1817 20.38495 56.7233 81.7900 29.5 * * 8.0000 6 56.7233 8.4666 20.7388 56.7233 82.3700 25.4 * * 1.00000 6 56.7233 8.4666 20.7388 56.7233 91.2300 25.4 * * 7.00000 55.7323 8.4666 20.7388 56.7233 91.2300 25.4 * 50000 <t< th=""><th>SEX ===></th><th>MALE</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	SEX ===>	MALE							
DAY * 1.0000 6 59.5217 7.9289 19.4218 69.5217 96.6800 37.9 * 2.0000 6 76.5867 11.8862 29.1152 76.5867 106.2200 36.1 * 3.0000 6 73.4267 8.3231 20.3875 73.4267 106.2200 36.1 * 4.0000 6 76.4133 8.11517 20.3875 73.4267 106.2200 36.1 * 5.0000 6 56.1333 8.116105 28.4399 61.3853 109.8100 56.7 * 7.0000 6 56.7233 8.0155 19.6338 56.7233 82.3700 29.2 * 7.0000 6 56.7233 8.0155 19.6338 56.7233 82.3700 29.2 * 8.0000 6 56.7233 8.0155 19.6338 56.7233 82.3700 29.2 * 8.0000 6 56.7233 8.0155 19.6338 56.7233 82.3700 29.2 * 8.0000 6 6.3080 52.7233 8.2.3700 29.2 29.2 29.2 * 8.0000 6 6.2.8833 <th>FACTOR</th> <th>LEVEL</th> <th>COUNT</th> <th>MEAN</th> <th>STDERROR</th> <th>STD_DEV</th> <th>WTD_MEAN</th> <th>MAXIMUM</th> <th>MUMINIM</th>	FACTOR	LEVEL	COUNT	MEAN	STDERROR	STD_DEV	WTD_MEAN	MAXIMUM	MUMINIM
# 8.0000 6 62.8833 8.4666 20.7388 62.8833 91.2300 42.4 =:> SEX FEMALE	рау	* 1.0000 * 2.0000 * 4.0000 * 5.0000 * 6.0000 * 7.0000	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	69.5217 76.5867 73.4267 76.4133 56.0133 61.3856 61.3856	7.9289 11.8862 8.3231 7.7065 8.1817 8.1817 11.6105 8.0155	19.4218 29.1152 20.3875 18.8776 18.8776 28.4399 28.4399 19.6338	69.5217 76.5867 73.4267 73.4267 76.4133 56.7133 61.3850 61.3850 56.7233	90.6800 105.2200 106.2400 109.8100 81.7900 106.3300 126.3300	37.9900 36.7100 48.2500 57.4600 26.9500 26.9500 29.1000 29.1000
FACTOR LEVEL COUNT MEAN STDERROR STD_DEV WTD_MEAN MAXIMUM MININ DAY # 1.0000 9 65.2022 11.0272 33.0815 65.2022 127.8000 30.1 * 2.0000 9 57.0489 13.1868 39.5604 57.0489 131.1200 26.1 * 4.0000 9 52.3744 6.8049 20.4147 52.3744 86.0200 31.1 * 4.0000 9 52.3744 6.8049 20.4147 52.3744 86.0200 31.1 * 4.0000 9 52.3744 6.8073 32.7833 65.7022 130.4000 31.1 * 5.0000 9 52.3744 6.8060 341.6033 15.2123 15.01200 25.3744 86.0200 31.1 * 5.00000 9 47.4856 6.0800 241.6033 77.3300 25.31 * 7.00000 9 47.4856 74.7300 26.1 25.2125 45.6376 49.6044 160.9200 6.1	==> SEX ====>	* 8.0000 FEMALE	Ø	62.8833	8.4000	20.1388	62.8833	0052.16	42.5500
DAY * 1.0000 9 65.2022 11.0272 33.0815 65.2022 127.8000 30.4 * 2.0000 9 57.0489 13.1868 39.5604 57.0489 131.1200 26.1 * 3.0000 9 52.3744 6.8049 20.4147 52.3744 86.0200 31.3 * 4.0000 9 52.3744 6.8049 20.4147 52.3744 86.0200 31.3 * 4.0000 9 65.7022 10.9278 32.7833 65.7022 130.4000 26.3 * 5.0000 9 47.4856 6.0806 18.5188 41.6033 77.3900 15.4 * 6.0000 9 47.4856 6.0806 18.2419 47.4856 74.7300 26.4 * 7.0000 9 49.6044 15.2125 45.6376 49.6044 160.9200 6.4	FACTOR	LEVEL	COUNT	MEAN	STDERROR	STD_DEV	WTD_MEAN	MAXIMUM	MUMINIM
D * 8.0000 9 43.9022 3.0441 10.4421 43.4027 00.0000 23.0	₹ 185	 1.0000 2.0000 3.0000 4.0000 5.0000 5.0000 4.7.0000 8.0000 8.0000 	თთთთთთთთთ	65.2022 57.0489 52.3744 65.7022 41.6033 47.4856 49.6044 43.9022	11.0272 13.1868 6.8049 10.9278 6.2063 6.0806 15.2125 3.6497	33.0815 39.5604 20.4147 32.7833 18.6188 18.2419 45.6376 10.9491	65.2022 57.0489 52.3744 65.7022 41.6033 47.4856 43.9022	127.8000 131.1200 86.0200 130.4000 77.3900 74.7300 160.9200 160.8500	30.4900 26.7200 31.2800 23.1000 15.4300 15.4300 6.4800 6.4800 26.4800 26.2900

PLACEBO	
GROUP	

SEX SEX

FACTOR LEVEL COUNT MEAN STDERROR STD_DEV WTD_MEAN MAXIMUM MINIMUM DAY # 1.0000 8 77.8183 5.3135 13.9155 77.8183 92.6700 56.4700 # * 2.0000 8 77.8183 5.3135 13.9155 77.8183 92.6700 56.4700 # * 2.0000 8 77.8183 5.31345 73.5483 139.1550 159.1700 56.4100 56.4100 56.4100 56.4100 56.4100 56.4100 56.4100 56.4100 56.4100 56.4100 56.4100 56.4100 56.4100 56.4100 56.4700 56.1000 56.	SEX ===>	MALE							
DAY * 1.0000 6 77.8183 5.3135 13.0155 77.8183 55.4700 * 2.0000 6 77.8183 5.3135 12.7958 31.3432 99.56700 48.0300 * 4.0000 6 73.5483 18.8250 41.12126 73.5483 19.7999 48.0300 * 5.0000 6 87.4433 4.4070 10.73149 80.4400 95.8460 56.4700 * 5.0000 6 87.4433 4.4070 10.73149 80.4400 95.8460 51.4700 * 5.0000 6 82.8667 5.0017 8.24837 12.1349 80.4400 53.4700 * 7.0000 6 85.4867 1.01734 82.4667 100.7504 40.2300 * 8.0000 6 85.4867 4.2033 10.5164 41.2106 53.4700 * 8.0000 6 85.4867 4.22368 105.5164 54.4433 55.4400 55.4400 55.4400 55.4400 55.11100 * EX FEMALE 7.0000 6 85.4480 7.5164 14.2208 54.4433 55.4400 55.4400 55.4400 55.4400 55.4400 55.4400 55.4400 55.4400 55.4400	FACTOR	LEVEL	COUNT	MEAN	STDERROR	STD_DEV	WTD_MEAN	MAXIMUM	MUMININ
Ref 1	DAY	* 1.0000 * 2.0000 * 3.0000	000	77.8183 90.3150 73.5483	5.3135 12.7958 18.8250	13.Ø155 31.3432 41.2126	77.8183 90.3150 73.5483	92.67 <i>00</i> 139.6000 110.1500	56.4700 48.0300 10.0700
* 8.0000 6 65.4867 4.2908 10.5104 65.4867 79.6106 51.1109 * SEX FEMALE * 8.0000 6 65.4867 4.2908 10.5104 65.4867 79.6106 51.1169 * SEX FEMALE * 1.0000 5 85.4807 79.6109 51.1169 PAT * 1.0000 5 58.4480 7.0735 15.8169 58.4480 46.3009 DAY * 1.0000 5 58.4480 7.0735 15.8169 58.4480 46.3009 * 2.0000 5 44.9140 6.1793 13.2174 48.6080 58.4490 37.3300 * 2.0000 5 58.4480 7.0735 15.7124 58.4480 57.4900 53.3300 * 2.0000 5 70.0340 6.5377 70.0340 56.4900 57.4700 56.3000 * 4.0000 5 70.0340 8.2858 18.5277 70.0340 55.4700 55.4700 55.4700 55.4700 55.4700 55.4700 55.4700 55.4700 55.4700 55.4700 55.4700 55.4700 55.4700 <t< td=""><td></td><td>+ + 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td><td>00000</td><td>80.0400 54.4433 82.8667 72.6017</td><td>4.9540 4.4070 5.0076 8.489</td><td>12.1349 10.7949 12.2662 20.7934</td><td>80.0400 54.4433 82.8667 72.6017</td><td>95.8400 83.8700 100.5200 92.5400</td><td>62.0109 40.2300 63.4700 35.8600</td></t<>		+ + 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	00000	80.0400 54.4433 82.8667 72.6017	4.9540 4.4070 5.0076 8.489	12.1349 10.7949 12.2662 20.7934	80.0400 54.4433 82.8667 72.6017	95.8400 83.8700 100.5200 92.5400	62.0109 40.2300 63.4700 35.8600
FACTOR LEVEL COUNT MEAN STDERROR STD_DEV WTD_MEAN MAXIMUM MINIMUM DAY * 1.00000 5 58.4480 7.0735 15.8169 58.4480 48.3000 * 2.00000 5 48.6080 6.1793 13.8174 48.6080 68.8800 37.3900 * 2.00000 5 44.9140 6.5871 14.7292 44.9146 62.9606 23.3000 * 4.00000 5 70.03340 8.2858 18.5277 70.0340 96.7400 56.6700 * 5.00000 5 39.3360 4.4820 18.5277 70.0340 96.7400 58.6700 * 5.00000 5 39.3360 18.5277 70.0340 96.7400 58.6000 58.4700 58.6700 * 7.00000 5 39.5360 14.4816 59.5200 74.00 56.0700 58.3400 * 7.00000 5 59.5200 79.5200 59.5220 78.400 </th <th>==> SEX</th> <th>* 8.0000 Female</th> <th>Q</th> <th>65.4867</th> <th>4.2908</th> <th>10.5104</th> <th>65.4867</th> <th>79.6100</th> <th>51.1160</th>	==> SEX	* 8.0000 Female	Q	65.4867	4.2908	10.5104	65.4867	79.6100	51.1160
DAY * 1.0000 5 58.4480 7.0735 15.8169 58.4480 85.4900 46.3000 * 2.00000 5 48.6080 6.1793 13.8174 48.6080 66.8800 37.3900 * 3.0000 5 44.9140 6.5871 14.7292 44.9146 62.9606 23.3000 * 4.0000 5 70.0340 8.2858 18.5277 70.0340 90.7400 59.0706 * 5.0000 5 39.3356 4.4820 10.0220 39.3360 55.4700 28.0606 * 5.0000 5 39.3356 4.4820 18.5277 70.0340 90.7400 58.0606 * 5.0000 5 59.5226 7.0238 15.7056 59.5226 78.6400 36.3400 * 7.00000 5 59.5085 21.2616 44.0180 74.780 56.4900 36.3400 * 7.00000 5 59.5220 7.0238 15.7056 59.5220 78.6400 36.3400 * 8.00000 5 44.0180 73.09	FACTOR	LEVEL	COUNT	MEAN	STDERROR	STD_DEV	WTD_MEAN	MAXIMUM	MUMINIM
* 5.0000 5 39.3360 4.4820 10.0220 39.3360 55.4700 28.0600 * 6.0000 5 59.5220 7.0238 15.7056 59.5220 78.6400 36.3400 * 7.0000 5 44.0180 9.5085 21.2616 44.0180 73.0900 14.5700 * 8.0000 5 43.7240 9.3694 20.9505 43.7240 68.8100 18.6800	DAY	* 1.0000 * 2.0000 * 3.0000 * 4.0000	លលល	58.4480 48.6080 44.9140 70.0340	7.0735 6.1793 6.5871 8.2858	15.8169 13.8174 14.7292 18.5277	58.4480 48.6080 44.9140 70.0340	85.4900 66.8800 62.9000 90.7400	46.3000 37.3900 23.3000 56.0700
	186	* 5.0000 * 6.0000 * 7.0000 * 8.0000	លលលល (39.3360 59.5220 44.0180 43.7240	4.4820 7.0238 9.5085 9.3694	10.0220 15.7056 21.2616 20.9505	39.3360 59.5220 44.0180 43.7240	55.4700 78.6400 73.0900 68.8100	28.0600 36.3400 14.5700 18.6800

NBC GROUP

158-9500 90-3100 165-3500 162-4300 90-6500 89-3500 89-3500 117-4500 115-2800 151.4800 108.0000 114.2700 147.5300 89.3900 89.3900 88.4400 88.4400 81.9600 MUMIXAN MAXIMUM 82.1844 59.1589 64.9322 72.5200 46.0467 67.8744 67.6067 61.3733 72.5471 83.0343 81.6529 81.6529 81.6943 62.8414 63.6700 56.9200 54.0429 NTD_MEAN NTD_MEAN 43.5475 21.0960 41.9189 26.9770 26.9770 24.8784 17.2411 28.6999 33.0489 38.9436 22.5362 23.3981 41.9205 20.0972 32.3247 21.0297 16.2403 STD_DEV STD_DEV 14.7193 8.5179 8.8437 8.8445 15.8445 7.5960 12.2176 7.9485 6.1383 14.5158 7.0320 13.9730 8.9923 8.9923 8.2928 5.7470 9.5666 9.5666 STDERROR STDERROR 72.5471 83.0343 81.6529 81.6943 62.8414 63.6700 56.9200 54.0429 82.1844 59.1589 64.9322 72.5200 46.0467 67.8744 67.6067 61.3733 MEAN MEAN COUNT COUNT თთთთთთთთ ~~~~~~ 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 8.0000 8.0000 8.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 8.0000 8.0000 8.0000 LEVEL LEVEL FEMALE MALE ٠ ****** ******* FACTOR FACTOR DAY PAY € Set Set ==> SEX

43.6500 27.3700 28.5600 25.5900 10.3700 42.2400 30.5300 11.6100

MUMININ

187

29.6600 44.3300 52.4300 10.1700 29.1500 17.2400 32.2700 35.1700

MUMININ

EFFECT	VARIATE		STATISTIC	Ľ	DF		₽.
OVALL:	GRAND MEA	z		 			
	1	SS=	1.649645ØE+6 1 849845ØE+8	719 29	-	12	0 0000
G: GROI	UP			30.34	(F	
	DEP_VAR	= SS	4823 164873				
		MS=	1607.701624	Ø.69	ຕົ	47	0.5602
S: SEX	DEP VAR						
		= SS:	9927.561971		,	ļ	
S.S.		II NE	9927.561971	4.29	г,	4	0.0439
3	DEP_VAR	;					
		SS=	10832.169178		,	ļ	
		MS=	3610.723059	1.56	'n	47	0.2118
ERROR	DEP VAR						
		=SS	108846.53835987				
		MS=	2315.88379489				

WITHIN EFFECT: D: DAY

EFFECT	VARIATE STATISTIC	щ	_	DF	٩
٩	DEP VAR				
	TSQ= 42.4799	5.29	7,	41	0.0002
	WCP SS= 21673.063818 WCP VC- 2606 271074	10	1	000	0000 0
	ACT MGE 30830.1313/4 ARFENHOLICE_AFTACER AD 1 DE	0 4 0 4	л , л , л	246 68	0.0000
	HUYNH-FELDT ADJUSTED DF	6.85	6.87,	322.71	0.0000
× (0)	(G: GROUP) DEP VAR				
	- LRATIO= Ø.739372	Ø.62	21,	118.28	Ø.8935
	TRACE= Ø. 322892				
	TZSQ= 13.8844				
	CHISQ = 4.87			9.924	0.8965
	MARUUIE 0.15281/ WCD CC- 6667 575700				7100.0
	WCP NS= 0001.0/0128	0.70	- 16	329	0.8316
	GREENHOUSE-GEISSER ADJ. DF	0.70	15.75.	246.68	0.7891
	HUYNH-FELDT ADJUSTED DF	0.70	20.60,	322.71	0.8288
× e	(S: SEX) DEP VAR				
	TSQ= 9.65427	1.20	7.	41	0.3229
	WCP SS= 2459,769757		•		
	WCP MS= 351.39568Ø	0.78	7,	329	0.6068
	GREENHOUSE-GEISSER ADJ. DF	0.78	5.25,	246.68	0.5726
1	HUYNH-FELDT ADJUSTED DF	0.78	6.87,	322.71	0.6045
× E 89	(GS) DEB VAB				
•		0	2		0001
	LRAIIU= 0.647043	0,92	21,	118.28	0.5638
	TYCO- 0.4820//				
	CHTSD = 8.69			9.974	Ø.5619
	MXR00T= 0.227397				Ø.5398
	WCP SS= 7918.445763				
	WCP MS= 377.068846	0.83	21,	329	0.6772
	CREENHOUSE-GEISSER ADJ. DF	6.83	15.75,	246.68	0.6445
	HUYNH-FELDT ADJUSTED DF	0.83	20.60,	322.71	0.6749
ERROR					
	DEP VAR				
	WCP SS= 148747.25251756 WCP MS= 452.11930856				
	ANT EBCTION A 71084				
	H-F EPSILON 0.98088				

APPENDIX F - RATIO OF TEST BEVERAGE TO TOTAL FLUID CONSUMPTION

			GROUPS			
DAY	ARMYADE (n=13)	CONTROL (n=15)	PLACEBO (n=11)	NBC (n=16)		
1	0.61±0.07	0.69±0.04	0.77±0,06	0.56±0.06		
2	0.52±0.06	0.54 ± 0.06	0.50 ± 0.08	0.46±0.07		
3	0.43±0.06	0.59±0.05	0.61±0.08	0.50±0.07		
4	0.53±0.06	0.64±0.05	0.70±0.02	0.48±0.07		
5	0.34±0.08	0.46±0.08	0.47±0.09	0.44±0.05		
6	0.42±0.06	0.60 ± 0.05	0.70±0.07	0.48±0.07		
7	0.48±0.07	0.58±0.08	0.69±0.04	0.42±0.08		
8	0.49±0.09	0.58±0.05	0.52±0.08	0.41±0.08		

Ratio of test beverage to total quantity of fluids consumed.

APPENDIX G - SAMPLE OF POST-SCENARIO ACCEPTABILITY QUESTIONNAIRE

FINAL QUESTIONNAIRE

We would like your opinions about the beverages that you drank last week. Your answers will be kept confidential. Please answer honestly and thoughtfully. Use a No. 2 pencil when filling in the circles. Completely erase any changes or stray marks. THANK YOU.

Proper Mark

Please indicate your test identification letter and number.

- How long have you been in the Armed Services?
 Fill in one answer.
 - 0-5 years 6-10 years 11-15 years 16-20 years More than 20 years

2. What is your age? under 18 18-24 25-34 35-44 45-54

55+

4. What is your height?

6. What is your sex?

Male

Female

7. Were you trying to lose weight during the study?

8. Were you trying to gain weight during this study?

1974

9. Rate how much you like/dislike the water you drank last week.

NEVER TRIED	DISLIKE EXTREMELY	DISLIKE VERY MUCH	DISLIKE MODERATELY	DISLIKE SLIGHTLY	NEITHER LIKE NOR DISLIKE	LIKE	LIKE MODERATELY	LIKE VERY MUCH	LIKE EXTREMELY
0		\bigcirc^2	3	4	5	6		8	9

10. How would you describe the temperature of the drink or water in your canteen during most of the exercise?

COLD	MODERATELY COOL	SLIGHTLY COOL	NEUTRAL	SLIGHTLY WARM	MODERATELY WARM	нот
1	2	3	4	5	6	7
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

11. How would you describe the temperature of drinks (milk, juice, etc.) served with breakfast? Do not rate hot drinks (coffee, cocoa, etc.).

12. How would you describe the temperature of the beverages (Kool Aid, juice, etc.) served with the evening meal? Do not rate hot drinks (coffee, cocoa, etc.).

COLD	MODERATELY COOL	SLIGHTLY COOL	NEUTRAL	SLIGHTLY WARM	MODERATELY WARM	нот
1	2	3	4	5	6	7
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

13. Did you drink as much as you wanted/needed during the exercise?

YES IF YES, SKIP TO QUESTION 16.

14. Why did you not drink as much as you wanted/needed during the exercise? Fill in a circle for all that apply.

) NO

 DO NOT WRITE

 IN BOX

 O

 O

 O

 O

 O

 O

 No

 b

 c

 Not

 e

 Water/beverage

 in

 c

 pick-up

 water

 c

 pick-up

 water

 d

 b

 not

 e

 Pick-up

 water

 d

 d

 d

 d

 d

 d

 d

 d

 d

 d

 d

 <t

6401

1 1 1

15. If you circled more than one reason in question 14, fill in one circle for the most frequent reason.

 \bigcirc

Oa Ol	o Oc	Oď	Oe	\bigcirc^{f}	Oà	∩'n	Oi	Ĺ	⊖ ^k
16. What comm list all in this o <u>Be</u>	mercial (b) beverages bircle verage	and name and amou	e) bevera ints. Ii	ages did E you dic	you drin 1 not dri Average	nk during ink any o <u>amount p</u>	g the exc commercia er day	ercise? al bevera	Please ages fill
		-							
17. Did you e IF YES, SKI	at as much) YES IP TO QUEST	a as you (CION 20.	wanted/r	needed du	nring thi	s exerci.	lse?		
18. Why did y circle for DO NOT WRITE IN BOX	rou not eat	as much apply. a. Di b. Di c. Po d. Po e. No f. To g. No h. Co i. A j. No k. Go l. Fe n. Fe q. Tr r. ot	as you sliked to sliked to ortions to ortions to ortions to ortions to ortions to ortenough ould not ration to ortenough ot enough ot bored alt too to alt too to the too too too too too too too too too to	wanted/n the food the food too small too small too small too small too small too small too small too small too too small too too heat the too heat the too too theat the too too thirsty lose wei tase expl	in the M in A rat in A rat in A rat in A rat in A rat o prepare o eat o prepare o eat MRE not hot co prepare food ced	ARE Lions ations the MRI ce the MRI enough te the MR	e exerci: E RE RE	se? Fill	L in a

19. If you circled more than one reason in question 18, fill in one circle for the most frequent reason.

 \bigcap^{f})a)b)c d Oe)a)h)i \bigcirc m \bigcirc n \bigcirc o \bigcirc p)j \bigcirc^k \bigcirc ¹ $\bigcap^{\mathbf{q}}$ \bigcirc r Page 3 195 \cap 9203

28. If you had only 1 canteen with you in the field, which would you prefer to carry in a hot climate? Fill in only one circle.

\bigcirc	Water		
\bigcirc	Test beverage		
\sub	Kool Aid		
$\overline{\bigcirc}$	Gatorade		
\bigcirc	Lemonade		
\bigcirc	Juice	(write	in)
\bigcirc	Carbonated beverage (soda)	(write	j.n)
\bigcirc	Other '	(write	in)

ANSWER THE REST OF THE QUESTIONNAIRE ONLY IF YOU WERE IN ONE OF THE TEST BEVERAGE GROUPS DURING THE WEEK.

29. We would like your opinion of the test beverage you were given to drink last week. Using the scale below, fill in the circle that best describes how much you like/dislike the drink.

38. Would you buy the test drink if you were going to be exercising or working in the heat?

39. Would you buy Gatorade or another commercial sports drink if you were going to be exercising or working in the heat?

40. What did you like about the test drink you were issued last week?

41. How could the test drink be improved?

2492	

......

APPENDIX H - RATION RECORD FORM

RATION RECORD

NAME:		DATA COLLECTOR	#
SUBJECT #:		DATA ENTERER	#
JULIAN DATE: 85			
MEAL: (CIRCLE ONE)	RATION TYPE:	(CIRCLE ONE)	
BREAKFAST - B	A B	т	
DINNER - D			

			REASON NOT	PORTION	PORTION	RATING
FOOD TYPE	DESCRIPTION	CODE #	EATEN CODE	SERVED	RETURNED	CODE
~~~~~~~~						•
ENTREE						
				<u> </u>		
	_ <u>.</u>			<b></b>		
VEGETABLE						
	* *					
STARCH						
	·		·			<u></u>
						<del></del>
FROIT	<u></u>					
BREAD						
		<u> </u>				
		-				
SPREAD						
				<u> </u>		
DESSERT				<del></del>		
	<u> </u>	<u></u>		<u></u>		
					<u></u>	
BEVERAGE						
DEVENAGE	4					
				·		
				······································		
OTHER						
		-				

NATICK Form 613 (ONE-TIME) 1 Jul 85

## APPENDIX I - MISSING DATA

# NUMBER OF FLUID INTAKE/BETWEEN MEAL FOOD FORMS MISSING PER SUBJECT

NU FC	IMBER OF FLUID INT RMS MISSING	AKE NUMBER OF SUBJECTS (n=61)	
	0	39	
	1	15	
	2	2	
	3	3	
	4	2	
	5	<b>-</b>	
	6	-	
	7	-	
	8	-	
	9	-	
	10	-	
	11	-	
	12	-	
	13	-	
ĺ	14	-	
	15	-	

NOTE: Fluid intake forms were collected two times a day (except Day 5 when only one form was collected) for 8 days and therefore the maximum number of forms that could be collected was 15.

CUD IF CT		GROU	IPS (n=61)		· ··· · · · · · · ···
NUMBER	ARMY	ADE CONTI	ROL PLACE	BO NBC	
1	-	0	0	2	
2	15	-	5	3	
3	1	2	2	0	
4	1	3	2	3	
5	-	1	-	0	
6	0	-	1	4	
7	-	2	0	1	
8	1	1	-	0	
9	3	-	-	-	
10	3	0	0	0,	
11	6	-	-	-	
12	0	_	-	1	
13	11	2	2	1	
14	1	-	5	1	
15	-	3	0	-	
16	-	7	0	0	
17	0	1	4	1	
18	-	2	2	2	
19	1	3	-	6	
20	0	3		- ~	
21	-	3	_	3	
22	1	-	-	-	
23	<u> </u>	_	_	Λ	

### FOOD SERVICE MEALS SKIPPED BY EACH SUBJECT

### APPENDIX

# MISSING FLUID INTAKE/BETWEEN MEAL FOOD DATA FOR EACH SUBJECT

•

SUBJECT		GRO	UP		
NUMBER	ARMY	ADE CONTR	OL PLACE	BO NBC	
		2			
· <b>1</b>	-	0	0	0	
2	1	-	0	0	
3	0	1	0	0	
4	0	0	0	0	
5	-	1	-	0	
6	1	-	1	0	
7	-	0	0	0	
8	0	1	-	1	
9	2	-	-	-	
10	0	0	1	1	
11	0	-	-	-	
12	1	-	-	0	
13	2	4	0	3	
14	1	-	0	1	
15	-	0	0	-	
16	-	0	0	1	
17	0	0	1	0	
18	- `.	0	0	0	
19	4	0	-	3	
20	3	1	-	-	
21	-	0	-	0	
22	0	-	-	-	
23	-	_	-	0	

FOOD SERVICE MEALS SKIPPED PER DAY^a

		PERCENT AM/PM	13 11 12 12 13 14 14 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16
		TOTAL PM	14 7 19 13 13 128 128
		TOTAL AM	ტი/იფ წ 4 ი 4
		PM	∞cttoot∞
:			04040044
	NBC	AM	10411133
GROUPS	PLACEBO	AM PM	0000010
	CONTROL	AM PM	000400000
	ARMYADE	AM PM	7999977
		DAY	1 206 701 206

^aMeals served by food service (breakfast and dinner) were not eaten but data were collected on sustitute foods on a Fluid Intake/Between Meal Food Data Collection Form.

"EMISSING FLUID INTAKE/BETWEEN MEAL FOOD DATA PER DAY

		L	
		PERCEN%	90449405 4
		TOTAL AM/PM	40000000000000000000000000000000000000
		TOTAL PM	24641546
		TOTAL AM	00040000
	BC	M	0004 000
	Z	AM	0000000
	CEBO	PM	0040,440
ROUPS	PLA	AM	00000000
ច	TROL	PM	0400 1444
	CON	AM	4040040
	ADE	PM	NDN0 1 7 NON
	ARM	AM	40044000
	I	DAY	100400 207

APPENDIX J - MEAN NUTRIENT INTAKE BY GROUP AND GENDER

LABEL		LABEL
VALID N	88888888888888888888888888888888888888	VALID N 232 232 232 232 232 232 232 232 232 23
NUS	1361795.451 635583.778 23519.736 83934.761 23312.355 122939.911 538.470 559.882 559.882 559.882 559.882 559.882 558.707 3442.984 942.984 942.984 942.984 942.984 942.227 294676.045 84614.556 84614.556 84614.556 846884.231 54465.732 2425.458	SUM 1120099.512 543600.496 19113.394 76051.544 19113.394 76051.544 76051.544 446.470 446.470 446.470 5100.954 3913.509 392.550 392.550 392.1728 66399.728 818879.390 66399.728 818879.306 66399.728 818872.306 66399.728 818872.306 66399.728 818577.284
MAXIMUM	14458.19 5944.03 302.70 799.21 799.21 705.54 7.12 657.76 657.76 657.76 657.76 652.42 3988.87 1146.42 1146.42 1146.42 832.94 1146.92 832.94 1146.92 832.94 1146.92 832.94 10713.94	MAXIMUM 12514.95 535.26 758.58 758.58 758.58 758.58 758.58 758.58 8.77 1552.71 552.71 552.71 552.71 553.26 967.95 66.11 112.92 5631.21 9366.78 5327.95 5631.21 9366.78 5327.58 5337.56 5336.78 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 5336.76 53376.76 533776.76 533776.76 533776.76 533776.76 533776.76 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 533776.77 577777777777777777777777777777777
208.00 Minimum	1888.86 597.54 54.95 5.24 15.28 15.98 15.98 15.98 15.98 15.98 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.86 11.8	232.00 MINIMUM 600.98 136.798 34.75 34.75 .000 .000 .000 .000 .000 .000 .000
STWISE) = STD DEV	2348.616 1663.806 1663.806 156.401 156.401 1.176 1.176 1.117 1.117 1.117 1.117 6.92.687 7.662 6.33.816 6.33.816 1.817 2.25 1.817 1.276 1.579.672 1.579.672 1.561 1.579.672 1.561	STWISE) = STV DEV STV DEV 1995.233 834.196 47.466 128.619 37.424 128.619 128.619 128.65 128.65 128.65 128.65 138.565 138.565 138.565 138.565 138.565 138.565 138.565 138.565 14.145
RVATIONS (LI S.E. MEAN	182.847 73.765 73.765 73.117 3.117 3.844 22.684 22.685 833 22.685 833 23.65 833 844 15.666 15.666 15.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.6666 125.66666 125.66666 125.66666 125.66666 125.66666 125.66666 125.66666 125.66666 125.666666 125.66666 125.666666666 125.666666 125.666666 125.666666 125.666666666666666666666666666666666666	RVATIONS (LI S.E. MEAN 138.993 138.993 3.116 19.5467 1919 19.554 19.556 1988 42.988 86.73 35.081 86.88 141.552 186.485 86.485 86.485 86.485 86.485 86.485 86.428
LES Valid obsei Mean	6547.094 3055.691 113.076 403.532 112.079 581.438 581.438 2.592 2.592 2.592 167.517 187.517 187.517 188.801 188.801 186.822 5805.983 3879.251 261.854 11.661	VALID OBSEI VALID OBSEI MEAN 4828.015 2343.1065 82.385 82.385 82.385 82.385 82.385 82.385 1.955 1.955 1.987 1.892 1.892 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485 1.485
POOLED MAI NUMBER OF VARIABLE	QUANTITY ENERGY FROTEIN CARBOHYD FAT CHOLESTR THIAMEN THIAMEN NIACIN VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VITB8 VIT	POOLED FE VARIABLE VARIABLE CARBOHYD FROTEIN CARBOHYD FROTEIN CARBOHYD FROTEIN CARBOHYD VITBOFLAV VITBOFLAV VITB12 VITB12 VITB12 VITB12 IRON CALCIUM MAGNESUM FOLACIN FOLACIN FOLACIN

SROUP: AI AUMBER OF /ARIABLE	RMYADE VALID OBS MEAN	SEX: MALE SERVATIONS (L' I S.E. MEAN	ISTWISE) = STD DEV	48.00 Minimum	MAXIMUM	WNS	VALID N	LABEL
VERTING CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTION CONTINUTIO	8172.00 3540.30 473.751 473.751 473.751 646.35 646.83 751.756 8356 8356.83 71.116 73.7574 1.116 857.956 8597.9856 8597.9856 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.8576 13.857676 13.857676 13.857676 13.857676 13.857676 13.857676 13.857	281 646 119 655 5 7 7 7 7 7 7 9 1 2 6 7 7 9 1 2 6 7 9 2 2 7 6 7 9 2 2 7 6 7 9 2 2 7 6 7 9 2 2 6 7 9 2 2 6 7 9 2 2 7 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9	1951.388 354.638 357.688 129.314 129.314 1.171 2.68.1171 1.28.314 1.29.334 1.28.199 1.282 5.488 5.488 5.488 5.488 5.488 1.285 5.488 1.285 5.488 1.285 5.488 1.285 5.488 5.488 5.488 5.884	1878.60 61.40 61.40 229.04 229.04 141.88 167.75 41.88 11.01 11.63 376.34 11.61 3376.34 11.63 11.63 11.63 11.63 11.63 376.34 11.63 376.34 376.34 376.34 376.34 376.34 376.34 376.34 376.34 376.34 376.34 376.34 376.34 376.34 376.34 376.34 376.34 376.34 376.34 376.34 376.34 376.34 376.34 376.34 376.34 377.35 376.34 377.34 377.34 376.34 377.35 376.34 377.35 376.34 377.35 376.34 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.35 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.55 377.5	10264.60 2689.22 2689.22 2689.22 2689.22 221.22 652.02 652.02 652.02 29151.22 29151.61 29151.61 29151.67 29151.67 29151.67 29.27 8306.92 8306.92 29.27	296256.699 6435.267 6435.267 6435.267 22746.656 6688.106 1311.668 1319.9665 1329.568 1523.452 8213.667 1523.452 8213.667 1623.452 8213.667 1623.452 8213.667 1623.452 123.568 123.583 123.583 1174 16221 16221 16221 16221 16221 16221 16221 16221 1623 1174 16221 1623 1174 1623 1633 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1174 1663 1774 1774 1775 1775 1775 1775 1775 1775	444444444444444444444444444444444444	
AGUNES AUMBER AUMBER AUMBER ARABER SPOREN SPOREN SCHCLAV ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACCIN ACC	XWYADE VALID OS VALID OS VALID OS 21651995 21651995 21651995 2167197 22645 22645 22645 22645 22645 22613932 22613932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0932 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0032 2808.0030	EEX: FEMALE EEXATIONS (L S.E. MEAN 2.E. MEAN 121.131 5.679 13.714 39.746 39.746 39.746 39.746 39.746 39.746 39.746 39.126 39.126 39.126 39.137 39.137 30.742 31.422 31.422 31.422 31.422 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.178 31.1783 31.1783 31.1783 31.1783 31.1783 31.1783 31.1783 31.1783 31.1783 31.1	ISTWISE) = STD DEV STD DEV 1805.304 908.482 908.482 142.500 142.500 173.535 175.175 171.537 171.537 171.537 173.536 85.414 85.414 85.414 85.414 173.536 173.536 85.414 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.536 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.537 173.5377 173.5377 173.5377 173.5377 173.53777 173.537777 173.537777777777777777777777777777777777	MINIMUM 56.00 1348.62 34.75 34.75 34.75 60 60 60 60 60 60 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 1830.55 18300.55 1830.55 18300.55 18300.55 1800.55 1	MAXIMUM AXIMUM 5359.95 5159.85 758.58 758.58 8.71 1315.68 8.71 135.68 4.12 762.77 762.77 58.76 8.71 129.28 58.76 58.76 58.76 58.76 58.76 58.76 58.76 58.76 58.76 58.76 58.76 58.76 58.76 58.76 58.76 58.76 58.77 58.76 58.76 58.77 58.76 58.76 58.77 58.76 58.76 58.77 58.76 58.76 58.77 58.76 58.77 58.76 58.77 58.76 58.77 58.76 58.77 58.76 58.77 58.76 58.77 58.77 58.77 58.76 58.77 58.76 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.75 58.77 58.77 58.77 58.75 58.77 58.77 58.77 58.75 58.77 58.75 58.77 58.75 58.77 58.77 58.75 58.77 58.75 58.77 58.77 58.77 58.75 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 57.77 5	236785 300 121295 300 121295 300 3930 370 3944 863 3944 863 3944 863 1144 288 1144 288 1144 288 1144 288 1144 288 1144 288 1197 322 87 295 87 295 197 198 87 295 197 198 87 295 197 30 87 295 197 30 87 295 1157 256 196 44 082 887 382 87 295 157253 245 157253 245 157253 245 157253 245	VX LI D D D D D D D D D D D D D D D D D D	LABEL.

LABEL		LABEL
VALID N	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	VALID N 7222772222222222222222222222222222222
MNS	340196.710 147480.288 5408.432 18747.769 5738.344 36014.083 1124.761 1124.761 1336.440 1236.440 1336.440 1336.440 1336.440 12610.125 902.058 73797.530 196510.125 90835.170 13126.463 13126.463 13126.463 13126.463	SUM 329246.231 153958.235 5863.491 20615.725 5863.491 26615.725 11428.235 11428.323 11428.323 11428.323 1632.482 117.955 11428.323 1632.482 1632.482 1632.482 1632.465 1632.465 1632.956 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.895 1934.855 1934.855 1934.855 1934.855 1934.855 1934.855 1934.855 1934.855 1934.855 1934.855 1934.855 1934.855 1934.855 1934.855 1934.855 1935.955 1934.855 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.955 1935.9555 1935.9555 1935.9555 1935.9555 1935.95555 1935.95555 1935.955555 1935.95555555555555555555555555555555555
MAXIMUM	14450.19 5944.03 382.70 784.67 784.67 784.67 784.67 784.67 784.67 784.65 7.82 66.15 66.15 66.15 6.95 7.92 86.95 84.47 8292.53 844.47 8292.53 844.47 30.94	MAXIMUM 12514.95 535220 535220 4452214 535220 44431990 112.92 112.92 44411900 5444.17 2815.26 112.92 112.92 2844.17 2844.17 2844.17 2844.17 2844.17 2849.74 569.20 592.72 69.21
48.00 MINIMUM	2718.66 724.61 9.87 54.95 54.95 54.95 15.28 16.224 16.224 16.224 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 17.23 1	MINIMUM MINIMUM 600.98 14.45 17.12 17.12 17.12 17.12 17.12 1.33 1.14 166.08 166.08 166.08 166.08 1.33 265.22 265.22 265.22 265.22 27.53 1.71
STWISE) = STD DEV	2869.563 1224.581 55.731 55.731 173.659 369.936 369.936 364.158 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.632 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.633 1.6333 1.6333 1.6333 1.6333 1.6333 1.6333 1.6333 1.6333 1.6333 1.6333 1.6333 1.6333 1.6333 1.6333 1.6333 1.6333 1.63335 1.6335 1.6335	STWISE) = STD DEV 1986.766 783.941 61.813 86.864 86.864 86.864 322.962 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.8577 1.857 1.8577 1.8577 1.8577 1.8577 1.8577 1.8577 1.8577 1.8577 1.85
SEX: MALE VATIONS (LI S.E. MEAN	414.177 176.757 8.644 24.979 7.268 53.1946 1932 1932 1934 1936 1936 1936 1936 1936 1936 1936 1936	FEMALE S.E. MEAN S.E. MEAN S.E. MEAN 234.143 7.285 10.237 10.237 11697 11.697 11.697 11.697 11.697 11.697 11.697 11.6936 11.6936 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.6938 11.69388 11.69388 11.69388 11.69388 11.69388 11.69388 11.69388 11.69388 11.69
ONTROL S VALID OBSEF MEAN	7687.431 3072.566 112.676 390.579 390.579 119.667 2.599 2.599 191.662 1.967 1.384 1862 1838.649 1838.649 1838.649 1836.1449 1837.449 1837.449 1836.146 1836.146 273.343	VALID OBSEF VALID OBSEF MEAN 4572.864 2138.336 81.437 286.336 81.437 286.336 1.58.336 1.958 21.284 1.958 1.58 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.6388 1.63888 1.63888 1.6388 1.63888 1.63888 1.63888 1.63888 1.638888 1.63888 1.638888 1.638888 1.6388888 1.638888888 1.63888888888888888888888888888888888888
GROUP: C NUMBER OF VARIABLE	QUANTITY ENERGY FAT FAT FAT FAT FAT FAT FAT FAT FAT FAT	CARBOHER OF ARIABLE NUMBER OF ARIABLE PROTEIN CARBOHYD FAT PROTEIN CARBOHYD FAT FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD FAT CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOHYD CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARDOH CARD

LABEL		LABEL
VALID N	44444444444444 <b>444</b> 4444444444444444444	ALID V A A A A A A A A A A A A A A A A A A
NUS	252911.988 164719.755 4426.956 12944.434 4605.135 23593.785 2557.135 6492.964 6492.964 8492.964 1105.819 6492.964 8492.964 1105.819 6492.964 1165.819 6492.964 12377.085 777.134 62976.563 11613.662 11613.662 11613.662 11613.662	SUM 252300.240 135793.493 5122.886 17410.794 5122.886 17410.794 133.273 123.114 133.273 133.440 9788.785 110.723 133.440 9788.785 116.924 5371.626 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.612 837.73 837.612 837.73 837.73 837.73 837.73 837.73 837.812 837.73 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 837.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 857.812 85
MAXIMUM	100555.20 100555.20 106.91 106.91 106.91 117.163.65 1117.163 6.946 6.946 6.946 6.946 6.946 6.946 6.946 6.946 6.946 7.19 2.17 26.48.17 26.48.17 26.48.17 26.48.17 26.48.17 26.48.17 26.48.17 26.48.17 27511.85 21.85 21.85 21.72	MAXIMUM MAXIMUM 19654.05 1245.24 1245.24 629.53 629.53 629.53 629.53 62115 629.53 62115 62112 62112 62112 62112 62112 62112 62112 62112 62112 62112 62112 62112 62112 8807.179 62112 8807.179 62112 8807.179 62112 8807.179 62112 8807.179 62112 8807.179 62112 8807.179 62112 8807.179 62112 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.179 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8807.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.178 8007.1788 8007.1788 8007.1788 8007.1788 8007.1788 8007.1788 8007.1788 8007.1788 8007.1788 8007.1788 8007.1788 8007.1788 8007.1788 8007.1788 8007.1788 8007.1788 8007.1788 8007.1788 8007.1788 8000
40.90 Minimum	1808.88 1123.38 39.01 121.45 40.34 40.34 6.32 197.21 197.21 88.63 88.63 88.63 1221.37 1221.37 88.63 84.59 1221.37 88.63 84.59 1221.37 88.63 84.59 1221.37 88.63 84.59 1221.37 88.63 84.59 84.59 84.59 84.59 84.59 84.59 84.59 84.59 84.59 84.59 84.59 84.59 84.59 84.59 84.59 84.59 84.59 84.59 84.59 84.59 84.59 85.50 84.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.500	MINIMUM 48.00 1456.115 1456.115 1456.115 26.115 167.88 110.22 187.119 18.155.62 18.169 18.169 18.169 18.169 18.161 18.161 18.161 18.161 18.161 18.161 18.161 18.161 18.161 18.161 18.161 18.161 18.161 18.161 18.161 18.161 18.161 18.161 18.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161 19.161
STWISE) = STD DEV	1769.734 783.376 35.868 35.868 35.868 375.968 317.935 147.923 147.923 147.923 147.923 147.923 147.923 147.923 147.923 147.923 147.923 1265.133 1265.153 1265.153 166.138 166.138 166.138	STWISE) = STV DEV STD DEV 1750.789 38.3715 38.3715 38.3715 111.565 111.283 188.656 11.283 1.191 1.191 1.191 1.191 1.229 849.539 649.539 649.539 649.539 1244.539 1244.554 1244.554
SEX: MALE RVATIONS (LI S.E. MEAN	279.828 123.8828 5.671 17.893 5.671 5.543 5.543 5.543 17.893 1.935 1.935 1.935 1.935 1.935 1.935 1.935 1.3389 1.3368 1.1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.3368 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.33768 1.3376	FEMALE S.E. MEANLE S.E. MEAN S.E. MEAN 5.650 16.103 16.103 16.103 1.177 1.123 1.177 1.123 1.177 1.123 1.177 1.123 1.177 1.123 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172 1.172
LACEBO VALID OBSEN	6322.800 2617.994 110.651 323.611 323.611 323.611 100.651 227.645 128 227.645 128 27.645 182.324 128.928 18.928 18.928 18.928 18.928 174.263 368.512 368.512 368.512 368.512 368.511 374.263 1752 11.752	VALID OBSEF VALID OBSEF 5266 255 5266 255 2829 631 1288 767 559 649 559 649 559 649 263 933 262 725 108 725 128 367 277 75 263 933 263 933 268 111 8 966 1344 668 1332 599 1332 569 1332 560 1332 560 1325 560 120000000000
GROUP: P NUMBER OF VARIABLE	QUANTITY ENERGY FROTEIN CARBOHYD FAT CHOLESTR THIDGESTR THIDGESTR VITBG VITBG VITBG CALCIUM MAGNESUM POTASIUM FOLACIN FOLACIN	Carbon NUMBER OF VARIABLE FOLACTING CARBOHYD CARBOHYD FAT DUNARTITY FAT DUANTITY FAT DUANTITY FAT CARBOHYD FAT THIAMIN FAT CARBOHYD CARBOHYD CARBOHYD CARBOHYD FAT THIAMIN FAT THIAMIN FAT THIAMIN FAT THIAMIN FAT THIAMIN FAT THIAMIN FAT THIAMIN FAT THIAMIN FAT THIAMIN FAT THIAMIN

LABEL		LABEL
VALID N	86666666666666666666666666666666666666	ALLID N 555555555555555555555555555555555555
SUM	472438.676 213449.657 7249.961 29562.442 3718.987 192.633 178.496 1961.665 147.816 147.816 147.816 147.816 147.816 147.816 147.816 13335.915 13335.916 1187.144 87114.929 87114.929 1187.144 87114.929 1187.144 87114.929 122224.035 122224.635 12558.4495 694.196	SUM - 301767.740 1325552816 4196.647 20206.528 3995.611 2995.611 2995.611 2995.611 2995.611 109.675 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.773 109.775 109.775 109.775 1000 1000000000000000000000000000000
MUMIXAM	.14608.26 5738.16 212.71 799.21 799.21 799.21 799.21 86.32 6.31 6.31 6.31 6.31 6.31 8.31 8.31 8.31 7127.33 4323.17 10743.43 7127.33 435.58 3915.34 22.15 7127.63	MAXIMUM 11904.44 11904.44 14455.44 128.67 904.110 44.150 44.150 740.73 3.60 740.73 740.73 128.67 1591.81 1591.81 1591.81 1591.81 1591.81 12633.95 11653.95 12633.95 127.33
72.00 MINIMUM	2120.14 59.54 110.62 16.13 16.13 16.13 16.13 16.23 13.72 13.72 13.72 13.28 111.60 111.60 111.60 116.81 16.28 16.28	MINIMUM MINIMUM MINIMUM MINIMUM 12114 1214 1221 136.88 136.78 136.78 136.78 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 127.96 120
STWISE) = STD DEV	2463.576 1115.429 43.131 162.179 162.179 162.179 162.179 132.684 11.149 132.684 11.149 132.684 6.197 6.197 6.197 6.197 119.988 1325.534 1325.533 1325.533 1325.533	STWISE) = STD DEV 2194.175 738.817 239.4817 239.4817 28.927 256.7398 154.395 154.395 1.872 1.872 1.872 1.872 314.675 95.581 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 314.675 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 317.781 31
MALE RVATIONS (LI S.E. MEAN	296.335 131.455 5.683 5.683 5.186 5.186 35.451 1.314 1.314 1.374 76.126 76.126 76.126 76.126 11.37 85.496 85.496 11.863 11.863 11.863 11.863 11.863	FEMALE S'ATIONS (LI S'E. MEAN S'E. MEAN 293.269 37.566 34.318 34.318 34.318 34.318 34.318 34.318 34.318 34.318 26.632 75.639 75.639 75.639 12.773 563 12.773 563 13.773 563 13.773 527 533 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.775 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.755 13.7555 13.7555 13.7555 13.7555 13.7555 13.7555 13.7555 13.75555 13.75555 13.75555 13.755555 13.7555555555555555555555555555555555555
BC SEX: VALID OBSE	6561.537 2964.579 100.694 409.756 103.927 103.927 26.475 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.755 2.675 2.675 2.675 2.755 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.675 2.755 2.675 2.755 2.755 2.675 2.755 2.675 2.755 2.675 2.755 2.6755 2.6755 2.7555 2.75555 2.7555555555555555555	BC SEX: VALID OBSEI MEAN 5388.710 5387.710 2367.915 71.350 436.823 71.350 436.823 71.350 436.823 1.531 1.787 1.368 1.531 1.787 1.368 1.531 1.787 1.368 1.531 1.787 1.368 1.531 1.787 1.368 1.531 1.787 1.368 1.531 1.787 1.368 1.531 1.787 1.368 1.531 1.787 1.368 1.531 1.787 1.368 1.531 1.787 1.368 1.531 1.787 1.368 1.531 1.787 1.368 1.531 1.787 1.368 1.531 1.787 1.268 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269 1.269
GROUP: N NUMBER OF VARIABLE	QUANTITY ENERGY FAT CARBOHYD FAT CHOLESTR CHOLESTR THIBOFLAV NIACIN VITBB VITBB VITBB VITBB VITBB VITBB VITBB VITBB CALCIUM MAGNESUM POTASIUM FOLACIN	513 CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARBOHYD CARDAN CARBOHYD CARBOHYD CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CARDAN CANDAN CARDAN CANDAN CARDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDAN CANDA

.

APPENDIX K - MEAN NUTRIENT INTAKE NORMALIZED TO BODY WEIGHT ENERGY INTAKE NORMALIZED TO BODY WEIGHT (KCAL/KG) FOR WALES AND FEMALES

	MININIM	2.100
	MAXIMUM	89.05
	WTD_MEAN	37.80
	STD_DEV	14.09
	STDERROR	Ø.6719
•	MEAN	37.22
BJECTS	COUNT	440
POOLED SI	VARIATE	DEP_VAR

MARGINALS

"ACTOR	LEVEL	COUNT	MEAN	STDERROR	STD_DEV	WTD_MEAN	MAXIMUM	NIMINIM
aroup	ARMYADE CONTROL PLACEBO NBC	1264 1264 126	41.2866 33.8360 39.7326 35.7326	1.3990 1.3133 1.5184	14.2671 14.3862 14.2437	41.7217 34.2951 39.7310 35.4590	78.4900 89.0500 73.9500 74.3700	2.1000 7.8300 10.8700
šeX	MALE FEMALE	216 224	39.0877 35.4239	1.6319 0.8522	15.1654 12.7551	39.6255 35.9749	78.4900 89.0500	7.2306 2.1006
AY	+ 1.0000 + 2.0000	22 22 22	37.2756 41.4678	2.1879 1.9552	16.2257 14.5002	37.6134 42.5618	78.4900 76.7000	10.8100 7.8300
	* 3.0000	ស ស ស ស ស	43.7125 35.8925	2.0045 1.6953	14.8660 12.5729	44.3420 36.3392	89.0500 62.4600	17.2206
	+ 5.0000	22	35.7345	1.8824	13.9666	36.5848	69.3100	2.1006
	* 5.0000 * 7.0000	2 2 2 2	38.3/33 30.5913	1.4225	14./854	38.52/8 31.0546	59.1300	8.7306
	* 8.0000	LC C	34.7322	1.4755	10.9423	35.3780	57.9500	10.2806

GROUP ARMYADE

î

SEX ====>	MALE							
FACTOR	LEVEL	COUNT	MEAN	STDERROR	STD_DEV	WTD_MEAN	MUMIXAM	MUMINIM
DAY	1.00000 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.00000000 1.00000000 1.000000000 1.0000000000	<i></i>	48.5217 51.2133 66.6683 46.3956 44.2633 48.7465 48.7467 39.4683	8.4972 5.7588 2.9816 4.2824 3.9868 3.1723 2.4938 2.4938	26.8139 14.1066 7.3833 14.4682 14.4682 7.7786 9.8533 6.1682	48.5217 51.2133 60.9683 40.3950 44.2033 48.467 48.467 39.4083	78.4906 76.7000 67.1400 51.4100 69.3100 69.3100 69.3100 59.1300 59.1300 59.0200 59.0200	31.2500 50.4800 55.6800 23.5500 25.45600 33.12500 33.12500 33.5200 33.5200
€ SEX	FEMALE							
FACTOR	LEVEL	COUNT	MEAN	STDERROR	STD_DEV	WTD_MEAN	MUMIXAM	WOWINIW
<b>čeo</b> 216	1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	~~~~~	31.8100 43.4343 47.8443 31.5186 36.7543 39.2443 39.2443 28.1315 28.1315 28.1315	2.1491 2.6254 3.5615 4.2927 7.4946 7.4946 2.9378 2.9378 2.9378	5.6859 6.9462 9.2646 11.3574 21.1515 12.615 7.7709 7.7709 7.4223	31.8100 43.4348 47.8443 31.5186 36.7543 38.7543 39.2457 28.1314 29.7871	41.0100 53.3800 61.5400 50.1800 63.08300 74.48300 39.6100 39.1800	23.2400 32.9700 33.1700 16.6700 5.1700 18.1600 6.8500 18.7600 18.2000

71.1900 64.5700 64.0200 44.3100 62.0400 58.7900 58.7900 57.9500 50.1800 53.0600 89.0500 54.7000 40.9300 56.7900 39.0200 41.4500 MAXIMUM MAXIMUM 34.7917 46.5967 44.4300 29.5100 39.6633 29.8067 28.7700 39.1583 30.7411 30.5844 39.1144 32.1311 28.4900 36.3767 33.5556 33.5556 NTD_MEAN NTD_MEAN 21.6704 16.0798 15.4177 11.4186 17.9579 16.2714 12.6430 12.6594 111.3686 112.9464 20.4653 113.8093 9.1440 15.1530 8.5546 8.5546 7.6853 STD_DEV STD_DEV 8.8469 6.5645 6.5645 6.2943 4.6616 7.3313 6.6428 6.6428 5.1682 3.7895 6.8218 6.8218 4.6031 3.0480 5.0510 5.0510 2.8515 2.5618 STDERROR STDERROR 30.7411 30.5844 39.1144 32.1311 28.4900 36.3767 33.5556 34.7917 46.5967 44.4300 29.5100 39.6633 39.6633 29.8067 28.7700 39.1583 MEAN MEAN COUNT COUNT ~~~~~~~~~~ **のののののののの** 1.0000 2.0000 3.0000 5.0000 5.0000 6.0000 8.0000 8.0000 8.0000 1.0000 3.0000 4.0000 5.0000 6.0000 8.0000 8.0000 LEVEL LEVEL FEMALE MALE CONTROL * * * * * * * * . . . . . . . . FACTOR GROUP FACTOR DAY DAY ==> SEX ==> SEX ====>

11.7300 18.0300 18.7000 13.5800 10.9600 9.6700 12.5200 27.1400

MUMINIA

10.8100 7.8300 17.2200 12.6400 15.6500 16.800 8.7300 8.7300 17.1200

MINIMUM

56.0800 69.0200 62.4500 56.1700 71.2800 56.2400 56.2400 56.3000 70.3900 59.6000 59.9920 56.5500 54.5100 53.8400 53.8400 53.1100 53.1100 MUMIXAW MAXIMUM 38.9500 44.7467 42.0200 42.0533 32.9300 42.0530 34.6117 46.6500 39.4080 45.9240 43.4780 41.9966 43.1280 39.6120 39.6120 37.8660 WTD_MEAN WTD_MEAN 13.3347 21.2307 20.2501 14.5541 11.8527 17.4947 12.2573 14.7484 22.1138 12.4448 9.6761 11.4489 8.6659 8.4506 8.4506 8.4101 18.6154 STD_DEV STD_DEV 5.4439 8.6674 8.2674 5.9417 7.1422 5.0040 6.0210 9.8896 5.5655 4.3273 5.1201 5.1201 3.8755 3.7792 3.7792 3.7611 7.4306 STDERROR STDERROR 39.4080 45.9240 43.4780 41.9960 43.1280 39.0120 26.8960 37.8660 38.9500 44.7467 42.9200 42.9533 32.9309 32.9309 34.6117 34.6117 40.6500 MEAN MEAN 000000000 ດດວດດວດດວດດວດ COUNT COUNT 1.0000 2.0000 4.0000 6.0000 8.0000 8.0000 8.0000 8.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 8.0000 8.0000 LEVEL LEVEL FEMALE PLACEBO MALE * * * * * * * * * ****** 6 FACTOR FACTOR DAY DAY GROUP ==> SEX 

24.3600 13.6200 24.2300 27.8300 21.0900 21.7400 21.7400 21.6.9800 16.9800

MININUM

218

٠

15.9460 28.4300 35.6360 31.2306 33.5666 33.5666 32.7666 15.3869 16.8766

MUMINIM

GROUP	NBC			3 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0			
=> sex ====>	MALE						
FACTOR	LEVEL	COUNT	MEAN	STDERROR	STD_DEV	WTD_MEAN	MAXIMUM
DAY	* 1.0000 * 2.0000	თთძ	41.7044 35.2522 38 1422	6.4683 5.1529 4.5832	19.4048 15.4587 12.6897	41.7044 35.2522 38.1422	74.3700 62.0300 61.3700
	* 4.0000	000	35.3922	4.3684	13.1051 11.9210	35.3922 31.3611	55.6300 45.3800
	* 6.0000 * 7.0000 * 8.0000	თთთ	39.2700 28.6889 28.4689	5.1446 2.5206 3.5556	15.4338 7.5619 10.6669	39.27 <i>00</i> 28.6889 28.4689	67.0100 42.2200 42.4800
==_> SEX ====>	FEMALE						
FACTOR	LEVEL	COUNT	MEAN	STDERROR	STD_DEV	WTD_MEAN	MAXIMUM
DAY	* 1.0000 * 2.0000 * 3.0000	~~~~	34.9800 42.7429 39.6386	4.8178 2.7041 2.9205	12.7467 7.1544 7.7268	34.9800 42.7429 39.6386 37.7171	58.1400 54.7900 50.6900 58.4900
219	+ + + + + + + + + + + + + + + + + + +		36.1486 36.1486 34.0200 29.5900 34.1300	4.5672 4.5672 4.8660 3.5368	12.0838 12.0838 6.3931 9.3575	26.1486 36.1486 29.5900 34.1300	60.8400 47.3100 48.0400 45.5900

23.2980 28.2880 21.9480 14.8488 7.2389 17.2888 18.2788 18.2788

MUMINIM

21.4500 36.1700 28.6900 17.3400 26.3600 15.8400 21.5000 22.4800

MININIM

WITHIN EFFECT:	DBS: WITH	IN CASE N	KEAN				
EFFECT VARIA	TE	TATISTIC		Ľ	DF		٩
DVALL: GRAND	MEAN						
1	SS SS	665639.	440637	10 010	۴	14	00000000
	三つ変	005553	440031	TR.SCA	6 7	4	00000.0
G: GRUUP DEP VA	Q,						
1	SS=	3988.	194802				
	MS=	1329.	398267	2.09	ົຕົ	47	6.1137
S: SEX DFP VA	č						
	SS=	1412.	219415				
1	=SM	1412.	219415	2.22	1,	47	0.1426
GS DEP VA	û						
	SS=	2609.	955226				
	MS=	869.	985075	1.37	ຕິ	47	Ø.2634
ERROR							
DEP_VA	R S	C 7 0 0 0	0000000				
	WS=	634.	97669444				

WIHIN	EFFECT: D: DAY				
EFFECT	VARIATE STATISTIC	u.		DF	٩
6	DEP VAR				
	TSQ= 66.1796	8.25	7,	41	0.0000
	WCF 22= 0411.665689 WCP MS= 015 050241	8 00	7	300	0.0000
	GREENHOUSE-GEISSER ADJ. DF	8.00	6.00,	281.84	0.0000
× (a)	HUYNH-FELDT ADJUSTED DF (G: GROUP)	8.00	7.00,	329.00	0.0000
•	DEP_VAR ( I DATTO- & 202007	10 F	5	90 911	0 4820
	TRACE 0.528736		( # 7	07.011	010t.0
	TZSQ= 22.7358				
	CHISQ = 9.70 WYDOTT- 0 227506			9.924	Ø.4606
	WCP SS= 2424.316423				0701.0
	WCP MS= 115.443639	1.01	21,	329	0.4517
	GREENHOUSE-GEISSER ADJ. DF HIYNH_EELDT AD HISTED DE	1.01	17.99,	281.84	0.4495 0.4517
× (a)	(S: SEX)	7 <b>.</b>	(77.17		
	VCT_TAN TSQ= 5.21807	0.65	7,	41	0.7119
	WCP SS= 512.699077		<b>`</b> 1		
	WCP MS= 73.242725 CDECNHOIDE CETECED AD 1 DE	0.64	0000	329	0.1226
	HUYNH-FELDT ADJUSTED DF	0.84	7.00.	329.00	0.7226
× 0 221	(GS) DFP VAR				
_	LRATIO= 0.640595	0.94	21,	118.28	0.5354
	TRACE= 0.518484 T7CD- 22 2248				
	CHISQ = 9.46			9.924	Ø.4825
	MXROOT= 0.298158 WCP SS- 0383 463639				0.2240
	WCP MS= 113.497792	0.99	21,	329	0.4728
	GREENHOUSE-GEISSER ADJ. DF HUYNH-FELDT ADJUSTED DF	0,99 0,99	17.99, 21.00,	281.84 329.00	Ø.4690 Ø.4728
FRROR					
1	DEP_VAR WCP_SS= 37645.33611597 WCP_MS= 114.42351403				
	GGI EPSILON Ø.85665 H-F EPSILON 1.00000				

APPENDIX

•

#### APPENDIX L ENERGY FROM ALL FLUIDS

.

			GROUPS		
DAY	ARMYADE	CONTROL	PLACEBO	NBC	MEAN
	(n=13)	(n=15)	(n=11)	(n=16)	(n=55)
1	538±72	471±118	$\begin{array}{r} 417 \pm 99\\ 569 \pm 90\\ 456 \pm 93\\ 545 \pm 94\\ 618 \pm 112\\ 549 \pm 100\\ 440 \pm 56\\ 488 \pm 71\end{array}$	836±108	582±56
2	889±122	659±106		931±128	775±60
3	1007±108	613±118		938±107	769±61
4	752±107	561±92		930±140	710±60
5	743±106	546±121		765±87	670±54
6	886±189	509±129		884±107	715±70
7	617±87	442±105		714±80	562±46
8	558±99	473±62		727±73	570±40
_ x±SE	749±43	534±38	510±32	841±37	669±20

Energy from all fluids (water, test beverage, and other)

Values are mean±1SEM.

# APPENDIX M - SODIUM INTAKE (mg/day)

			GROUPS		
DAY	ARMYADE (n=13)	CONTROL (n=15)	PLACEBO (n=11)	NBC (n=16)	MEAN (n=55)
1	4130±499	3276±425	3903±385	5315±473	4196±246
2	5445±506	3779±437	4702±445	5562±677	4876±285
3	5067±551	3958±551	4331±417	4708±422	4513±248
4	4089±486	3184±314	4425±374	5391±625	4288±263
5	4202±626	3769±422	4468±565	4060±361	4096±238
6	4669±664	3269±407	4467±342	4952±505	4329±261
7	4638±658	2684±398	3548±321	3966±395	3691±245
8	4062±437	3225±338	3892±506	4162±653	3829±254
-					
x±SE	4538±197	3393±147	4217±150	4764±189	4227±91

Sodium Intake from All Foods and Fluids Eaten during 8 Days in the Heat (mg/day).

Values are mean±1SEM.

APPENDIX

.

APPENDIX N - HYDRATION STATUS TABLES

•

	·····	GROU	PS	
DAY	ARMYADE (n=14)	CONTROL (n=17)	PLACEBO (n=12)	NBC (n=18)
1AM	-1.02±0.39	-0,39±0,22	-0.95±0.31	-0.33±0.19
1PM	-0.93±0.43	-0.54±0.31	-0.57±0.44	0.19±0.28
2AM	-1.34±0.35	-0.85±0.32	-1.40±0.48	-0.72±0.31
2PM	-0.48±0.42	0.08±0.35	-0.08±0.64	0.23±0.28
3AM	-1.47±0.42	-0.57±0.34	-1.33±0.60	-0.42±0.28
3PM	-0.79±0.37	-0.02±0.44	-0.34±0.61	0.30±0.34
4AM	-1.34±0.35	-0.66±0.36	-1.24±0.65	-0.48±0.31
4PM	-0.81+0.40	-0.16±0.33	-0.19±0.55	0.27±0.36
5AM	-1.66±0.33	-0.65±0.43	-1.23±0.91	-0.58±0.30
5PM				
6AM	-1.45±0.33	-0.71±0.37	-0.70±0.90	-0.41±0.37
6PM	-0.74±0.44	-0.07±0.40	-0.12±0.63	0.24±0.37
7AM	-1.00±0.35	-0.77±0.38	-0.49±0.61	-0.34±0.42
7PM	-1.11±0.25	-0.48±0.35	-0.55±0.55	-0.32±0.32
8AM	-1.03±0.29	-0.91±0.37	-0.77±0.48	-0.49±0.29
8PM	-0.95±0.35	-0.86±0.35	-0.66±0.58	-0.56±0.31

PERCENT CHANGE IN BODY WEIGHT FROM PRE-DEPLOYMENT.

Values are mean±1SEM.

,

#### APPENDIX

.

	· · · · · · · · · · · · · · · · · · ·	GROU	PS	
DAY	ARMYADE (n=14)	CONTROL (n=17)	PLACEBO (n=12)	NBC (n=18)
1AM	39.8±4.7	52.9±6.8	41.6±6.8	42.3±5.4
1PM	59.4±5.9	63.4±9.2	38.0±6.9	48.5±6.3
2AM	38.9±3.0	37.6±4.0	42.8±7.1	27.9±2.9
2PM	74.5±8.0	57.3±8.6	38.8±8.4	42.1±6.2
3AM	$41.6 \pm 5.1$	44.1±6.4	32.2±6.4	36.5±4.8
3PM	73.5±6.0	52.0±7.1	46.3±6.5	49.4±8.3
4AM	48.3±6.3	39.5±4.3	39.1±6.3	36.8±5.1
4PM	82.3±13.2	47.6±6.7	61.0±12.7	34.0±5.3
5AM 5PM	57.5±7.8	39.2±4.5	33.5±5.9	32.9±5.2
6AM	44.9±6.1	35.2±6.3	45.8±8.8	26.8±4.2
6PM	70.3±7.5	49.2±7.8	45.0±11.9	31,4±5,1
7AM	$39.3 \pm 5.0$	$39.8 \pm 5.3$	29.6±6.0	23.6±3.9
7PM	53.0±5.7	47.3±7.7	49.5±11.1	36.9±4.8
8AM	46.9±7.7	35.6±4.4	28.6±4.2	34.1±5.0
8PM	48.8±5.7	53,1±6,2	49.6±8.9	42.3±4.9

#### EFFECTS OF CONSUMPTION OF CARBOHYDRATE-ELECTROLYTE BEVERAGES ON DIURNAL URINARY EXCRETION OF POTASSIUM (mEq/L).

Values are mean±1SEM.

		GROU	PS	
DAY	ARMYADE (n=14)	CONTROL (n=17)	PLACEBO (n=12)	NBC (n=18)
1AM	134.2±15.8	101.2±12.5	111.2±14.3	111.2±12.7
1PM	158.7±15.8	92.1±14.4	76.8±14.2	107.7±13.0
2AM	$131.1 \pm 12.1$	$101.8 \pm 12.9$	82.3±10.3	93.5±12.7
2PM	$144.8 \pm 14.3$	83.9±15.7	53.8±11.4	96.1±16.2
3AM	104.6±10.9	93.9±12.1	76.4±10.5	109.3±16.6
3PM	139.5±12.5	80.3±12.6	85.6±16.7	108.7±16.8
4AM	130.9±15.4	99.9±10.5	104.4±11.5	104.8±12.5
4PM	96.6±16.8	72.9±12.9	61.3±13.2	86.8±13.5
5AM 5PM	116.0± 8.2	89.1± 9.9	83.6±18.0	86.5±10.2
6AM	133.7±15.4	109.9±11.4	128.8±15.8	103.2±11.2
6PM	$121.4 \pm 13.4$	89.7±12.8	84.3±21.5	$108.8 \pm 14.8$
7AM	$111.0 \pm 13.8$	88.9±10.2	$64.5 \pm 10.2$	79.7± 8.5
7PM	$152.9 \pm 16.7$	79.3±11.5	73.1±11.1	$126.1 \pm 14.3$
8AM	104 1+12 8	87.6+ 8.7	79 6+10 4	116 7±11 8
8PM	$146.7 \pm 14.6$	$110.6 \pm 8.3$	$104.0 \pm 13.2$	135.7±13.2

EFFECTS OF CONSUMPTION OF CARBOHYDRATE-ELECTROLYTE BEVERAGES AND CONTROLS ON DIURNAL EXCRETION OF SODIUM (mEq/L).

Values are mean±1SEM.

### APPENDIX

anna an ann an an an an an an an an an a	GROUPS				
DAY	ARMYADE (n=14)	CONTROL (n=17)	PLACEBO (n=12)	NBC (n=18)	
1AM	183.3±21.9	201.4±24.4	178.0±27.1	176.2±16.5	
1PM	176.5±15.2	239.7±29.6	126.4±25.5	166.5±27.6	
2AM	198.5±21.0	210.8±27.3	160.6±22.4	147.9±14.3	
2PM	164.9±13.3	236.7±36.3	201.0±41.0	245.4±42.5	
3AM	$161.0 \pm 16.9$	171.8±19.8	$121.3 \pm 20.1$	144.6±14.4	
3PM	178.4±15.6	$180.7 \pm 25.2$	113.9±11.5	153.0±22.3	
4AM	204.1±19.3	203.8±22.0	173.3±15.3	166.8±18.6	
4PM	184.8±32.5	$189.8 \pm 29.1$	156.6±31.7	120.1±16.2	
5AM	228.1±19.5	219.3±24.3	128.3±22.9	162.7±26.5	
5PM					
6AM	$185.4 \pm 20.8$	165.1±21.5	169.3±16.4	143.7±20.6	
6PM	178.9±20.5	176.0±28.0	118.3±27.2	116.2±12.3	
7AM	131.0±17.7	184.6±23.0	110.9±20.9	107.5±14.7	
7PM	167.6±16.9	161.9±26.3	109.2±21.6	126.2±14.5	
8AM	157.4±19.8	195.8±27.0	125.0±19.3	149.8±26.8	
8PM	$130.3 \pm 19.1$	155.9±21.4	140,5±25.8	156.3±27.3	

URINARY	CREATININE	(mg/dl)	EXCRETION	AS	INDICATORS	OF
HYDRATI	ON.	· -/ /				

Values are mean±1SEM.

•

	GROUPS				
DAY	ARMYADE (n=14)	CONTROL (n=17)	PLACEBO (n=12)	NBC (n=18)	
1AM	3.53±0.30	3.00±0.43	2.48±0.62	3.60±0.45	
1PM	2.86±0.32	2.59±0.33	3.36±0.69	3.12±0.38	
2AM	3.18±0.55	2.75±0.33	3.25±0.54	3.20±0.30	
2PM	2.56±0.42	2.46±0.28	2.67±0.39	3.07±0.32	
3AM	3.82±0.71	4.08±0.52	3.44±0.49	4.40±0.31	
3PM	3.11±0.44	2.61±0.31	2.67±0.37	4.14±0.53	
4AM	2.74±0.37	2.72±0.22	3.11±0.37	4.11±0.35	
4PM	3.90±0.55	$2.69 \pm 0.40$	3.37±0.39	3.20±0.68	
5AM	2.98±0.44	1.71±0.24	2.30±0.31	2.46±0.27	
5PM					
6AM	2.01±0.20	$1.63 \pm 0.20$	2.04±0.41	2.61±0.39	
6PM	$1.37 \pm 0.22$	$1.54 \pm 0.20$	1.24±0.20	$2.93 \pm 0.40$	
7AM	1.71±0.22	1.79±0.18	1.64±0.25	$3.16 \pm 0.30$	
7PM	2.06±0.31	2.02±0.20	2.61±0.45	$3.93 \pm 0.58$	
8AM	3.31±0.54	2.09±0.23	2.15±0.35	3.75±0.33	
8PM	3.74±0.66	2.70±0.40	2.66±0.40	3.56±0.28	

DIURNAL URINARY SODIUM TO POTASSIUM RATIOS AS INDICATORS OF HYDRATION.

Values are mean±1SEM.

- -

• • • • • • • •	GROUPS				
DAY	ARMYADE (n=14)	CONTROL (n=17)	PLACEBO (n=12)	NBC (n=18)	
1AM	67.76±3.13	78.11±4.22	74.15±4.09	78.26±3.73	
1PM	67.77±3.04	77.91±4.10	74.36±3.99	78.61±3.69	
2AM	67.51±3.05	$77.69 \pm 4.13$	73.77±4.03	77.94±3.71	
2PM	$68.06 \pm 3.03$	78.39±4.13	74.69±3.97	78.64±3.69	
3AM	67.41±3.04	77.95±4.19	73.77±3.97	78.19±3.73	
3PM	67.92±3.14	$78.31 \pm 4.14$	74.47±3.90	78.66±3.63	
4AM	67.53±3.09	77.85±4.13	73.79±3.87	78.11±3.66	
4PM	$67.91 \pm 3.15$	78.26±4.20	74.65±4.02	78.72±3.71	
5AM	67.29±3.05	77.85±4.13	73.89±4.06	78.05±3.67	
5PM					
6AM	67.44±3.07	77.80±4.12	74.35±4.24	78.14±3.64	
6PM	67.94±3.12	78.27±4.10	74.77±4.20	78.64±3.65	
7AM	67.73±3.05	77.75±4.12	74.43±4.08	78.21±3.66	
7PM	67.69±3.10	77.95±4.09	74.45±4.19	78.23±3.64	
8AM	67.74±3.08	77.64±4.11	74.24±4.09	78.10±3.65	
8PM	67.84±3.19	77.67±4.09	74.37±4.19	78.01±3.61	

.

BODY WEIGHT (kg) CHANGES DURING 8 DAYS OF WORK IN THE HEAT.

Values are mean±1SEM.

GROUPS					
DAY	ARMYADE (n=14)	CONTROL (n=17)	PLACEBO (n=12)	NBC (n=18)	
1	-0.048±0.201	-0.168±0.266	0.381±0.271	0.519±0.248	
2	0.879±0.250	0.995±0.184	1.334±0.281	0.960±0.161	
3	$0.638 \pm 0.333$	0.651±0.248	0.952±0.435	0.741±0.277	
4.	0.538±0.277	0.459±0.187	1.086±0.332	0.893±0.284	
5					
6	0.804±0.238	0.668±0.219	$0.559 \pm 0.382$	0.707±0.296	
7	-0.095±0.299	$0.363 \pm 0.286$	-0.168±0.259	$0.082 \pm 0.326$	
8	0.078±0.212	0.036±0.187	$0.014 \pm 0.387$	$0.018 \pm 0.231$	

PERCENT CHANGE IN BODY WEIGHT DURING THE WORK DAY (0700-1600 HRS).

Values are mean±1SEM.

.
#### APPENDIX

GROUPS						
DAY	ARMYADE (n=14)	CONTROL (n=17)	PLACEBO (n=12)	NBC (n=18)		
1AM	1.022±0.002	1.022±0.002	1.020±0.002	1.020±0.002		
1PM	$1.022 \pm 0.001$	$1.024 \pm 0.002$	$1.017 \pm 0.003$	1.019±0.002		
2AM	$1.024 \pm 0.002$	$1.022 \pm 0.002$	$1.020 \pm 0.002$	$1.018 \pm 0.001$		
2PM	$1.024 \pm 0.001$	$1.022 \pm 0.003$	1.016±0.002	1.018±0.002		
3AM	$1.023 \pm 0.002$	$1.022 \pm 0.002$	1.017±0.002	$1.019 \pm 0.002$		
3PM	$1.024 \pm 0.002$	$1.021 \pm 0.002$	1.016±0.002	1.019±0.002		
4AM	1.025±0.002	1.024±0.002	1.022±0.001	$1.020 \pm 0.002$		
4PM	$1.022 \pm 0.003$	$1.022 \pm 0.003$	$1.020 \pm 0.003$	1.016±0.002		
5AM	$1.025 \pm 0.001$	$1.024 \pm 0.002$	$1.018 \pm 0.002$	1.018±0.002		
5PM						
6AM	$1.021 \pm 0.002$	$1.019 \pm 0.002$	$1.021 \pm 0.002$	1.016±0.002		
6PM	$1.022 \pm 0.002$	$1.021 \pm 0.003$	1.016±0.003	1.016±0.002		
7AM	$1.018 \pm 0.002$	$1.020 \pm 0.002$	1.015±0.002	$1.013 \pm 0.001$		
7PM	$1.022 \pm 0.002$	$1.018 \pm 0.003$	$1.014 \pm 0.002$	1.017±0.002		
8AM	$1.019 \pm 0.002$	$1.020\pm0.002$	$1.017 \pm 0.002$	1.018±0,002		
8PM	$1.020 \pm 0.002$	$1.022 \pm 0.002$	$1.019 \pm 0.003$	$1.019 \pm 0.002$		

DIURNAL URINARY SPECIFIC GRAVITY MEASUREMENTS DURING 8 DAYS IN THE HEAT.

Values are mean±1SEM.

#### DISTRIBUTION LIST

NO. OF COPIES

Defense Technical Information Center ATTN: DTIC-DDA Alexandria, VA 22304-6145	18
Commander U.S. Army Medical Research and Development Command SGRD-RMS SGRD-PLC Fort Detrick Fredrick, MD 21701-5012	1 1
Commandant Academy of Health Sciences, U.S. Army ATTN: AHS-CDM ATTN: HSHA-CDM ATTN: HSHA-CDS Fort Sam Houston, TX 78234	1 1 1
Dir of Biol & Med Sciences Division Office of Naval Research 800 N. Quincy Street Arlington, VA 22217	1
CO, Naval Medical R&D Command National Naval Medical Center Bethesda, MD 20014	1
HQ AFMSC/SGPA Brooks AFB, TX 78235	1
Under Secretary of Defense Research and Engineering ATTN: OUSDRE(RAT)E&LS Washington, DC 20310	1
Dean School of Medicine Uniformed Services University of Health Sciences	1
4301 Jones Bridge Road Bethesda, MD 20014	
Commander U.S. Army War College Carlisle Barracks, PA 17013	1

# DISTRIBUTION LIST (continued)

	NO. OF COPIES
Commander U.S. Army Soldier Support Center Ft. Benjamin Harrison, IN 46216	1
Assistant Secretary of Defense (Health Affairs) ATTN: ASD(HA) PA&QA Washington, DC 20310	1
Assistant Secretary of Defense (Aquisition & Logistics) ATTN: OASD(A&L)SD Washington, DC 20310	1
Commander U.S. Army Troop Support Command ATTN: AMSTR-E 4300 Goodfellow Boulevard St. Louis, MO 63120-1798	1
Commander U.S. Army Test and Evaluation Command ATTN: AMSTE-EV-S Aberdeen Proving Ground, MD 21005-5055	1
Commander U.S. Army Operational Test Evaluation Agency ATTN: CSTE-ZX 5600 Columbia Pike Falls Church, VA 22041	1
Commander U.S. Army Training and Doctrine Command ATTN: ATCD-S Fort Monroe, VA 23651	1
Commander U.S. Army TRADOC Combined Arms Test Activity ATTN: ATCT-PO Ft. Hood, TX 76544	1
Commander U.S. Army Materiel Command ATTN: AMCDE-S Alexandria, VA 22333	1
Commander U.S. Army Combined Arms Center ATTN: ATZL-TIE Fort Leavenworth, KS 66027-5130	1

### DISTRIBUTION LIST (continued)

	NO. OF COPIES
HQDA OTSG ATTN: DASG-DBD Rm 617, Bldg 5 Skyline Place 5111 Leesburg Pike Falls Church VA 22041-3258	1
HQDA ATTN: DASG-RDZ Washington, DC 20310-2300	<b>1</b>
HQDA DCSLOG ATTN: DALO-TST Washington, DC 20310-2300	1
Commandant U.S. Army Quartermaster School ATTN: ATSM-CDT ATTN: ATSM-SFS-FM Fort Lee, VA 23807	1 1
Commandant U.S. Army Troop Support Agency ATTN: DALO-TAF ATTN: DALO-TAF-F FT. Lee, VA 23801	1 1
Commander U.S. Army Natick Research, Development and Engineering Center ATTN: STRNC-W ATTN: STRNC-Y ATTN: STRNC-Y ATTN: STRNC-T ATTN: STRNC-E ATTN: STRNC-E ATTN: STRNC-TAA Natick, MA 01760-5000	1 1 1 1 1
HQ U.S. Marine Corps Code LFS-4 Washington, DC 20380-0001	1
Dept of Clinical Investigation Chief, Army Medical Specialist Corp-CIS WRAMC Washington, DC 20307-5001	2

# DISTRIBUTION LIST (continued)

	NO. OF COPIES
Commander U.S. Army Training and Doctrine Command ATTN: ATPL-MSS Fort Monroe, VA 23651-5000	1
MAJ Robert Stretch DCIEM 1133 Sheppard Ave. West P.O. Box 2000	2
Downsview, Ontario, Canada M3M 3B9 Commander, 807th Medical Brigade 701 West Simonds Road Seagoville, TX 75159-3201	2
Commander, 44th Evacuation Hospital 3021 W. Reno Ave. Oklahoma City, OK 73107	2
Dr. Kenneth Rider Department of Pathology Wishard Memorial Hospital Indianapolis, IN	1
Commander, 344th Medical Group ATTN: Maj David Alderson 701 West Simonds Road Seagoville, TX 75159-3201	2