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SUMMARY

Stochastic substitution, the Gibbs sampler and the sampling-importance-resampling algorithm can be
viewed as three alternative sampling, or Monte Carlo, based approaches to the calculation of numerical

estimates of marginal probability distributions. The three approaches will be reviewed, and compared and
contrasted, in relation to various joint probability structures frequently encountered in applications. In par-
ticular, the relevance of the approaches to calculating Bayesian posterior densities for a variety of struc-
tured models will be discussed and illustrated. -
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1. Introduction

In relation to a collection of random variables, U1 , U2 . .Uk, suppose that eithcr;

(i) for i = 1. k. the conditional distributions U I LUi, j * i are available, perhaps having, for some i.
reduced forms UilUp,jESi c (1....kJ,or

(ii) the functional form of the joint density of U1 , U2. .Uk is known, perhaps modulo the normalizing
constant, and at least one Ui I Up , j * i is available,

where available is here taken to mean that samples of Ui can be straightforwardly and efficiently generated,
given specified values of the appropriate conditioning variables.

The problem addressed in this paper is the exploitation of the kind of stuctural information given by
either (i) or (ii) in order to obtain numerical estimates of non-analytically available marginal densities of
some or all of the Ui (when possible) simply by means of simulated samples from available conditional
distributions, and without recourse to sophisticated numerical analytic methods. No claim will be made that
the sampling methods to be described are necessarily computationally efficient compared with expert use of
the latter. The attraction of the sampling based methods is instead their conceptual simplicity and ease of
implementation for users with available computing resource but without numerical analytic expertise. P.ll
that the user requires is insight into the relevant conditional probability structure, together with techniques
for the efficient generation of appropriate random variates as described, for example, by Devroye (1986)
and Ripley (1987).

In Section 2, we discuss and extend three alternative approaches put forward in the literature for cal-
culating marginal densities via sampling algorithms. These are (variants of) the stochastic substitution
algorithm described by Tanner and Wong (1987), the Gibbs sampler algorithm introduced by Geman and
Geman (1984) and the form of importance sampling algorithm proposed by Rubin (1987, 1988).

We note that the Gibbs sampler has been widely taken up in the image processing literature, and in
other large-scale models such as neural networks and expert systems, but that its general potential for more
conventional statistical problems seems to have been overlooked. As we shall show (and as has also been
observed by Clayton, 1988), there is a close relationship between the Gibbs sampler and the substitution
algorithm proposed by Tanner and Wong (1987). We shall generalize the latter and show that it is as least
as efficient as the Gibbs sampler, and potentially more efficient, given the availability of distinct conditional
distributions in addition to those in (i) above. We note that, as a consequence of the relationship between
the two algorithms, the convergence results established by Geman and Geman (1984) are applicable to the
generalised substitution algorithm. The stronger convergence results established by Tanner and Wong
(1987) require the availability of a particular set of conditional distributions, including those in (i).

Both the substitution and Gibbs sampler algorithms are iterative Monte Carlo procedures, applicable
...hen the kind of structural information given by (i) above is available. When the structural information is

of the kind described by (ii), we shall see that an importance sampling algorithm based on Rubin (1987.
1988) provides a non-iterative, Monte Carlo integration approach to calculating marginal densities.

In Section 3, we illustrate various model structures, occurring frequently in applications, where one or
more of these three approaches offers an easily implemented solution. In particular, we consider the calcu-
lation of Bayesian posterior distributions in incomplete data problems, conjugime hierarchical models and
normal data models.

In Section 4, we briefly summarize the results of some preliminary computational experience in two

simple cases. Detailed applications to complex, real data problems will be presented in a subsequent paper.

Finally, in Section 5. we provide a summary discussion.
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2. Sampling approaches

In the sequel, we shall assume that we are dealing with real, possibly vector-valued, random variables
having a joint distribution whose density function is strictly positive over the (product) sample space. This
ensures that knowledge of all full conditional specifications (such as in (i) of Section 1) uniquely defines
the full joint density: see, for example, Besag (1974). Throughout, we shall assume the existence of densi-
ties, with respect to either Lebesgue or counting measure, as appropriate, for all marginal and conditional
distributions. The terms distribution and density will therefore be used interchangeably.

Densities will be denoted, generically, by square brackets, so that joint, conditional and marginal
forms appear, for example, as [X,Y], [XIY] and [X]. Multiplication of densities will be denoted by *, so
that, for example,

X,Y] = EXJY] * [YJ.

The process of marginalisation (i.e. integration) will be denoted by forms such as

[X(Y] = f [XI Y,ZW (Z I W,Y]* (WIY],

with the convention that all variables appearing in the integrand but not in the resulting density have been
integrated out. Thus, in the above, the integration is with respect to Z and W. More generally, we shall use
notation such as

f h(z, W) • (w]

to denote, for given Z, the expectation of the function h(Z, W) with respect to the marginal distribution for
W.

2.1 Substitution algorithm

The substitution algorithm for finding fixed point solutions to certain classes of integral equations is a
standard mathematical tool, which has received considerable attention in the literature: see, for example,
Rail (1969). Its potential utility in statistical problems of the kind we are concerned with in this paper was
recently observed by Tanner and Wong (1987) and associated discussion. Briefly reviewing the essence of
their development using the notation introduced above, we have

[Xi = f (X1Y* I (1)

[Y] =f[YIX]* [X], (2)

so that, substituting (2) into (1), we obtain

1X] = f [XI Y] . f (YJX' . [X'l = f h(X,X'). (X'J, (3)

where

h(X,X') = f [XlY] *Ylx'],

with X' appearing as a "dummy argument" in (3) and, of course, [X] [X']. Now suppose that, on the
right-hand side of (3), [X'] were replaced by [X']j, to be thought of as an estimate of [X] a [X'] arising at
the ith stage of an iterative process. Then, (3) implies that, for some [X]1i ,

[X]i., = f h(X,X') * [X'li

= 4lX) i,

in a notation making explicit the fact that /A is the integral operator associated with h. Exploiting standard
theory of such integral operators, Tanner and Wong (1987) show that, under mild regularity conditions, this
iterative process has the following properties (with obviously analogous results for [Y]).

TWI (uniquenexs) The true marginal density, [X1, is the unique solution to (3).
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TW2 (convergence) For any [X]o, the sequence IX]I, [X] 2 ,... defined by X] L 1 = I4[X] i , i = 0, 1 ....
converges monotonically in L1 to [X].

TW3 (rate) f I [XIi- [XII - 0 geometrically in i.

Extending the substitution algorithm to three random variables X, Y,Z we may write, analogous to (1)
and (2),

[X] = f [Xz Y] -Y] (4)

[fY = f [YX zi - [z]. (5)

[Z] = f [Z, I X] - [X1. (6)

Substitution of (6) into (5) and then (5) into (4) produces a fixed point equation analogous to (3). A
new h function arises with associated integral operator 1,. whence TW1, TW2 and TW3 will continue to
hold in this extended setting. Extension to k variables is straightforward. A noteworthy by-product, using
TWI, is a simple proof that under weak conditions specification of the conditional distributions
[ U... I U,], s = 1,2,..., k uniquely determines the joint density.

2.2 Substitution sampling

Returning to (1) and (2), suppose that [XIY] and [YIX) are available in the sense defined at the
beginning of Section 1. For an arbitrary (possibly degenerate) initial density [X] o draw a single X (°) from
[X] o . Given X ( ) since [YIX] is available draw y(t) - [YIX{Ol], whence from (2) the marginal distribution
of y(') is [Y]t = J [YJX] * [X]o. Now complete a cycie by drawing X 1 ) - [XIY(tO]. Using (1), we then

have

x - [XI = f [XiY] •[Y], = f h(x,x'), iX'n = I,[Xo.

Repetition of this cycle will produce y(2) and X(2) and eventually, after i iterations, the pair (X(°', y(i)) such
that

x(O d )X - [x], >,&) d 0 _ [y],

by virtue of TW2. Repetition of this sequence m times each to the ith iteration will generate m i.i.d. pairs
(X y(i), YP), j = 1, .... m. We call this generation scheme substitution sampling. Note that though we have
independence across j we have dependence within a given j. Some practical experience with regard to the
autocorrelation and cross correlation in very special cases of the sequence {(X ' ., Y)()), i = 1.2,... is
described in Clayton (1988).

If we terminate all repetitions at the ith iteration, the proposed density estimate of [X] (with an analo-
gous expression for [Y]) is the Monte Carlo integration

[X], = ± [XlrY0 1. (7)

m =

Note that the XJ0 are not used in (7) (see Section 2.6) and in fact need not be generated unless [Y] is to be
estimated as well.

We note that this version of the substitution sampling algorithm differs slightly from the Imputaton-

Posterior (IP) algoiithm in Tanner and Wong (1987). They propose, at each iteration 1, I = 1,2,..., i, crea-
tion of the mixture density estimate, (Xkl, of the form in (7), with subsequent sampling from fill to begin
the next iteration. This mechanism introduces the additional randomness of equally likely selection from
the y,(O before obtaining an X. We suspect this simple random sampling of the Yql) was introduced to
allow m to vary across iterations but it seems unnecessary. Systematic sampling of the X,") (as we propose
for m constant) is simpler and, as the distribution theory above shows, gives a convergent procedure.
Empirical investigation reveals little difference between the two modes of sampling the Y,"' with regard to
thL. goodness of the resultant estimated marginal density at the iLh iteration. The unnecessary resampling
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implicit in Tanner and Wong has also been noted by Clayton (1988), and systematic selection of the yJr

was also proposed by Morris (1987b) in his discussion of the Tanner and Wong paper.

The L1 convergence of [1],- to [X] is most easily studied by writing

f I [I I,.-[l <II- f I[I iI],- I X] I f I[IX]Ii- I[XI.

The second term on the right-hand side can be made arbitrarily small as i --+ ** as a consequence of

TW2 above. The first term in the r.h.s. can be made arbitrarily small as m - oo since [X]i -f [X]i for
almost all X (Glick, 1974).

Extension of the substitution sampling algorithm to more than two random variables is straightfor-
ward. We illustrate using the three variable case assuming the three conditional distributions in (4-6) are
available. Taking an arbitrary starting marginal density for X, say [X] 0 , we draw X() - LX]o then
(Z(°', Y(O)') - [Z, Y I X(0 ], then (Y1).,X(0 )') - [Y,X I Z(° ) ' ] and finally (X{l), Z(' )) - (X,Z I Y(l)]. A full
cycle of the algorithm (i.e. to generate X(' ) starting from X(0) thus requires six generated variates rather
than the two we saw earlier. Repeating such a cycle i times will produce (X( 0 , y(), Z()). The above theory

ensures that X(---)X - [X], Y(')---- Y - (Y] and Z()-- ) Z - [Z]. If we repeat the entire process m
times we obtain i.i.d. (XJ,Y(,Z J), j = 1.. m (independent between, but not within, j's). Note that
implementation of the substitution sampling algorithm does not require specification of the full joint distri-
bution. Rather, what is needed is the availability of [X,ZIYI, [Y,XIZ] and [ZYIZI. Of course, in many
cases sampling from, say, [X,ZIY) requires, for example, [XIY,ZI and [YIZJ, i.e. the availability of a full
conditional and also a reduced conditional distribution. Paralleling (7), the density estimator of [X]
becomes

= I [XIY, ,z, (8)

with analogous expressions for estimating (Y] and (Z]. Lt-convergence of (8) to [X] again follows.

For k variables, U1 ,..., Uk, the substitution sampling algorithm will require k(k - 1) random variate
generations to complete a cycle. If we run m sequences out to the ith iteration (a total of mik(k- 1) random
generations) we obtain m, i.i.d. k-tuples (U.Uj), J = 1...,m with the density estimator for [U,],
s =1. k being

[U1, = I U. I U, = W t sI. (9)
Mil j=fi ~l

2.3 Gibbs sampling

Suppose we write (4)-(6) in the form

[K] = f [XZYI. [ZlY] I

(y] = f [(Yx,z] - [Xjz] [z), (10)

[Z] = f [ZlYXI • [YIXls[XI.

Implementation of substitution sampling requires availability of all six conditional distributions on the
r.h.s. of (10), rarely the case in practice. As noted at the beginning of Section 2, the full conditional distri-
butions alone, [XIY,Z], [YIZ,X], [ZIX,Y], will uniquely determine the joint distribution, and hence the
marginal distributions, in the situations under study. An algorithm for extracting the marginal distributions
from these full conditional distributions was formally introduced in Geman and Geman (1984) and is known
as the Gibbs sampler.

The Gibbs sampler was developed and has been mainly applied in the context of complex stochastic
models involving very large numbers of variables, such as image reconstruction, neural networks and expert
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systems. In these cases, direct specification of a joint distribution is typically not feasible. Instead, the set
of full conditionals is specified, usually by assuming that an individual full conditional distribution only
depends upon some 'neighbourhood' subset of the variables (a reduced form, in the terminology of (i) in
Section 1). More precisely, for the set of variables U1 , U2 ,..., Uk

[UiIUj, j i] =- [ UI U, jeSi], i = 1 1k, 01)

where Si is a 'small neighbourhood' subset of (1,2,...,k]. A crucial question to ask is under what cir-
cumstances the specification (11) uniquely determines the joint distribution. The answer is taken up in
great detail in Geman and Geman (1984), involving concepts such as graphs, neighbourhood systems,
cliques, Markov Random Fields and Gibbs distributions. We refer the reader to that reference for details.
In all the examples we shall consider, the joint distribution will be uniquely defined. Our k's will be small
to moderate and the available set of full conditional distributions will, in fact, be calculated from
specification of the joint density.

Gibbs sampling is a Markovian updating scheme which proceeds as follows. Given an arbitrary start-
ing set of values U 0),U20), . U,", we draw Ul') - [U °( 0 ),. _ U( ° ) ] then U(1 ) -

[U2 I UP) UP
) 

--. U10 ) ]  U' - [ U3I U1.U()OU0 ) ... U ° )  and so on, up to U( ) -
[UkIU ( 1) ,...,Uk(- 1 . Thus each variable is 'visited' in the 'natural' order and a cycle in this scheme
requires K random variate generations. After i such iterations we would arrive at (Ul' ..... U (). Geman
and Geman show, under mild conditions, that the following results hold.

GG1 (convergence) U 0  
d) U, - [U,] as i - *.

In fact, a slightly stronger result is proven. Rather than requiring that each variable be visited in
repetitions of the natural order, convergence still follows under any visiting scheme provided that each
variable is visited infinitely often (i.o.).

GG2 (rate) Using the sup norm, rather than the L, norm, the joint density of (U i . ( ) converges to
the true joint density at a geometric rate in i, under visiting in the natural order. A minor adjustment to the
rate is required for an arbitrary i.o. visiting scheme.

GG3 (ergodic theorem) For any measurable function T of U1 . Uk whose expectation exists,

lia -7 T(U(0 .  Uk)' - E(T(U..... Uk)).

As in the previous section, Gibbs sampling through m replications of the above i iterations (a total of
mik random variate generations) produces m i.i.d. k-tuples (U(s).U), = m, with the proposed
density estimate for (U, ] having exactly the form (9).

It seems sensible that we might utilize the U,(1, I < i to improve upon (9). More precisely, defining

W = (U, I = U O, t * s], (9) is W, 1/m. Suppose we replace Wij by V, = l WVli and consider
i-i1 1=1

[]* = - v, i. (*)
In1 j =

a.,.
By GG3, as i -- ** V, 1 - [U,), a constant; the convergence of (*) depends only on i not on m. By
contrast, as i -- o,, Wj converges in distribution to a random variable. Upon averaging such random vari-
ables over m we obtain convergence to [U,]. In terms of variability vartU,],' < varU,], since
var(V,j) < var(W,,) whence (*) is better than (9). In practice (9) has performed so well that we haven't
needed to resort to (*). Also in practice we might delete from V,, several of the early, "far from con-
verged", W,,.
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2.4 Relationship Between Gibbs Sampling and Substitution Sampling

It is apparent, as also noti.t by Clayton (1988). that in the case of two random variables Gibbs sam-
pling and substitution sampling are identical. For more than two variables, using (10) and its obvious gen-
eralization to k variables, we see that Gibbs sampling assumes the availability of the set of k full condi-
tional distributions (the minimal set needed to uniquely determine the joint density). The substitution sam-
pling algorithm requires the availability of a total of k(k- 1) conditional distributions including all the full
conditionals.

Gibbs sampling is known to converge slowly in applications with k very large. Regardless, fair com-
parison with substitution sampling, in the sense of total amount of random variate generation, requires that
we allow the Gibbs sampling algorithm i(k- 1) iterations if the substitution sampling algorithm is allowed i.
Even so, there is clearly scope for accelerated convergence from the substitution sampling algorithm since
it samples from the 'correct' distribution each time, while Gibbs sampling only samples from the full condi-
tional distributions.

To amplify upon this point, we describe how the substitution sampling algorithm might be carried out
under availability of just the set of full conditional distributions. We shall see that it can be viewed as the
Gibbs sampler, but under an i.o. visiting scheme different from the natural one. We presert the argument in
the three variable case for simplicity. Returning to (10), if [YIXI is unavailable we can create a sub-
substitution loop to obtaiii it by means of:

fYIXJ = f [YIX,z1 * [z-x],

(ZIXI = f ZIX, Y] [YIX].

Similar subloops are clearly available to create [XIZ] and [ZIY]. In fact, for k variables this idea
can be straightforwardly extended to the estimation of an arbitrary reduced conditional distribution g'ven
the full conditionals. We omit the details.

The above analysis suggests that we could in fact view the reduced conditional densities such as
[YJX] as 'available', and that we could thus carry out the substitution algorithm as if all needed conditional
distributions were available. In fact, [YIX], for example, is not 'available' in our earlier sense. Under the
subloop in (12), we can always obtain a density estimate for [Y¥XI given any specified X, say X(0). How-
ever, at the next cycle of the iteration we would need a brand new density estimate for [YIX] at X = X ).

Nonetheless, suppose we persevered in this manner, making our way through one cycle of (10). The reader
may verify that the only distributions actually sampled from are, of course, the available full conditionals,
that at the end of the cycle each full conditional will have been sampled from at least once, and thus that
under repeated iterations each variable will be visited i.o.. Therefore, this version of the substitution sam-
pling algorithm is in fact merely Gibbs sampling with a different but still i.o. visiting order. As a result,
GG1, GG2 and GG3 still hold (TWI, TW2, TW3 apply directly only when all required conditional distribu-
tions are available). Moreover, there is no gain in implementing the Gibbs sampler in this complicated
order; the natural order is simpler and equally good.

This discussion may be readily extended to the case of k variables. As a result, we conclude that
when only the set of k full conditionals is available the substitution sampling algorithm and the Gibbs
sampler are equivalent.

Furthermore, we can now see when substitution sampling offers the possibility of acceleration relative
to Gibbs sampling. This will occur when some reduced conditional distributions, distinct from the full
conditional distributions, are available. Suppose we write the substitution algorithm with appropriate condi-
tioning to capture these available reduced conditionals. As we traverse a cycle, we would sample from
these distributions as we come to them, otherwise sampling from the full conditional distributions.

An example will help to clarify this idea. One way to carry out the Gibbs sampler in (10) is to follow
the 'substitution' order rather than the natural order. That is, given an initial X(° ), Y(°),Z(°) we start, for
example, at I" bottom line of (10), drawing



(i) y(O) from Y[X°),Z 0)],

(ii) Zt0 Y from [ZIY{°Y,X(°)],

(iii) X10 )° from [X I Z(, Y(OY) ,

(iv) yO) from [YIX( t0YZ t0 ],

(v) ZO) from [ZjY0),X(°0 ],

(vi) XM1 from [ZJY0),Z0)].

Thus, in this case, one cycle using the substitution order corresponds to two cycles using the natural

order. Suppose, however, that, in addition to the full conditional distributions, [ZI Y], say, is available and

is distinct from [ZIX, Y]. Following the substitution order, at step (v) we would instead draw Z(1) from the
'correct' distribution, [ZIY°')).

In Section 3, we provide classes of examples where distinct reduced conditional distributions will be

available and classes where they generally will not. In Section 4, we present some preliminary computa-

tions which attempt to quantify the acceleration in convergence which arises from having available distribu-

tions additional to the full conditionals.

2.3 The Rubin Importance Sampling Algorithm

Rubin's comments (1987) to Tanner and Wong include the suggestion of a non-iterative Monte Carlo

method for generating marginal distributions utilizing importance sampling ideas. We present the basic

idea first in the two variable case. Suppose we seek the marginal distribution of X, given only the func-

tional form (modulo the normalizing constant) of the joint density [X, Y] and the availability of the condi-

tional distribution [XI Y] (a special case of the conditions described in (ii) of Section 1).

Suppose further, as is typically the case in applications, that the marginal distribution of Y is not

known. Choose an importance sampling distribution for Y which has positive support wherever [Y] does

and which has density [Y],, say. Then [XIY]*[Y 2 provides an importance sampling distribution for

(X,Y). Suppose we draw i.i.d. pairs (X1,Y 1), I = 1. N fro-, this joint distribution; for example, by draw-
ing Y, from [Y1, and then X, from [XI]Y,1. Rubin's idea is to calculate r, = (XI,Yl/t[XI[Y I*[Y , ,

I = 1,..., N and then estimate the marginal density for [XI by
N

X [XY 1 Jr1
[ ] = N (13)

Xri

Note the important fact that [X,Y] need only be specified up to a constant since the latter will canccl in
(13). In other words, we do not need to evaluate the normalizing constant for [X, Y]. This feature is

exploited in the examples of Section 3.

By dividing the top and bottom of (13) by N and using the Law of Large Numbers, we immediately
have:

RI (convergence) [,X] - [X] w.p.1 as N -+ 00 for almost every X,

If, additionally, [YIX] is available we immediately have an estimate for the marginal distribution of
Y:



-9-

N
X [YIXi~r,

N
X,-,

Ii

The successful performance of (13) will typically depend strongly upon the choice of [Y], and its
closeness to (Y]. Thus the suggestion of Tanner and Wong in their rejoinder to Rubin's discussion of their
paper, to perhaps use for [Y], the density estimate created after i iterations of the substitution algorithm
merits further investigation. In fact, the whole problem of general strategies for synthesizing both the itera-
tive and non-iterative approaches under a fixed budget (total number c. random generations) criterion needs
considerable further study.

The extension of the Rubin importance sampling idea to the case of k variables is clear. For instance,
when k = 3 suppose we seek the marginal distribution of X gi .cn the functional form of [X, Y, Z I up to a
constant and the availability of the full condi! inal [X Y.Z]. In this case, the pair (Y,Z) plays the role of Y
in the two variable case discussed above and, in general, we need to specify an importance sampling distri-
bution [Y,Z],. However, if, for example, [YIZI is available we will only need to specify [Z],. In any
case, we draw i.i.d. triples (XI,Y 1,Z,), I = I. N and calculate

[Xt,Y,Z,]
rtI =YZ1 [lyzl.[,zl] .

The marginal density estimate for [XI then becomes, analogous to (13),
NY [X IY1,, Ir,

1X (14)

We note that in *he k-variable case the Rubin importance sampling algorithm requires a total of Nk
random variate generations, while Gibbs amping stopped at iteration i will require mik generations. For
fair comparison of the two algorithms, we should therefore set N = mi. The relationship between the esti-
mators (7) and (13) may be clarified if we resample Y*1, Y2 ..... Y from the distribution which places mass
r,/Xr, at Y, I I 1.. N. We could then replace (13) by

so that (7) and (15) are of the same form.' Relative performance on average depends upon whether the
distribution of y(O or of Y* is closer to [Y]. Empirical work described in Section 4 suggests that under fair
comparison (7) performs better than (14) or (15). It seems preferable to iterate through a learning process
with small samples rather than to draw a one-off large sample at the beginning (an idea which underlies
much modern work in adaptive Monte Carlo: see, for example, Smith et al, 1987).

2.6 Density Estimation

In this section, we consider the problem of calculating a final form of marginal density from the final
sample produced by either the substitution or Gibbs sampling algorithms. Since, for any estimated margi-
nal, the corresponding full conditional has been assumed available, efficient inference about the marginal
should clearly be based on utilizing this full conditicaal distribution. In the simplest case of two variables.
this implies that [XIY] and the Y,"-, j = I_. m should be used to make inferences about [X1, rather than
imputing Xj'", j = 1. m, and basing inference upon these X,(')'s. The formal argument is essentially that
of Rao-Blackwellization, for which we shall sketch a proof in the context of the density estimator itself. If
X is a continuous p-dimensional random variable, consider any kernel density estimator of [XJ based upon
the Xj') (see, for example, Devroye and Gydrfi, 1985) evaluated at say Xo:
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(iI I I I I))

'dG)~ lO - P

where K is a bounded density on R P and the sequence (/.,,) is such that as m -- o. h,, -* 0 while
mh-* . To simplify notation, set

I K1X0 -X /

Qo(X) = -K - )
hP~ hm/

so that 4) Y-- Q,_,.(XP)). Define
M7 j= l

o =I E(Q.(XI)"(')
I° M j=J

By our earlier theory, both A(T and y,(2 have the same expectation. By the Rao-Blackwell theorem,

varE(Q.jo(X Y)) < varQ..xo(X),

whence

MSE(yx") <_ MSE(4SA)

where MSE denotes mean square error of the estimate of [Xo].

Now for fixed Y, as m -+ -, E(Q..x,(XIY)) -+ [XoIY] for almost every Xo by the Lebesgue Density

Theorem (see Devroye and Gybrfi, p.3). Thus in terms of random variables we have
E(Q.,(XIY)) [X0 IY], so that, for large m, ' : , MSE( (') - MSE([Xo],), whence [YO] is
preferred to A,.

The argument is simpler for estimation of, say, Y7 E(T(X)) f T(X) * [X ]. Here 1, = P))
M j=

is immediately seen to be dominated by 72 E(T(X)--- I Yj

3. Examples

A major area of potential application of the methodology we have been discussing is in the calcula-
tion of marginal posterior densities within a Bayesian inference framework. In recent years, there have
been a number of advances in numerical and analytic approximation techniques for such calculations -see,
for example, Naylor and Smith (1982, 1988), Smith et ai (1985, 1987), 1 ierney and Kadane (1986), Shaw
(1988), Geweke (1988)-but implementation of these approaches typically requires sophisticatea numerical
analytic expertise and possibly specialist software. In stark contrast, the three sampling approaches we
have discussed are essentially trivial to implement and, for many practitioners, this feature will more than
compensate for any relative computational inefficiency. To provide a flavour of the kinds of area of appli-
cation for which the methodology is suited, we present six examples of typical probability structures that
arise.

3.1 A Class of Multinomial Models

We extend the one parameter gcneti: linkage example described in Tanner and Wong (1987, p.530).
which, in its most general form, involves multinomial sampling where some observations are not assigned
to individual cells but to aggregates of cells (see Hartley, 1958; Dempster, Laird and Rubin, 1977). We
give the model and distribution theory in detail for a two parameter version, from which the extension to k
parameters should be clear. Let the vector Y = (Y,,..., Y5 ) have a rr'xltinomial distribution

Mult(n,a 1O+ bl ,a 2 9+ b2 ,a3 q + b3.,a41 + b4 , c(I - P- TI)),
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4

where ai,bi>O are known and 0<c= I- bi aI+a2 =a 3 +a4 < 1. Thus 0,17 range over >0,
i~l

q at 0 and 0+7 4 1, so that a three parameter Dirichlet distribution, Dirichlet(al,a 2 , a3) may be a natural
choice of prior density for (,17). From the form of [Y 10, 7] * [9,17] the reader will note that obtaining the
exact marginals 101Y]. [171Y] will be somewhat messy (involving a two-dimensional numerical integral).
However, all three sampling approaches we have described are readily applicable here by considering the
unobservable nine cell multinomial model for X = (X1,X2 ,....X9 ), given by

Mult(n, a 10, b 1 , a2 0, b2 , a3 1, b3 , a41q, b4 , c(I - 0- r7)).

From the form of [XIa, qI *[C, rl we see that

[9,7 IX] - Dirichlet(Xt+X 3 +6a,X 5+X 7 a 2 ,Xg+a 3),

whence [OIX], 7 IX are available as Beta distributions for sampling. Furthermore, [01X, 17] and [7 JX, 01
are available as scaled Beta distributions, scaled respectively to the intervals [0, 1-77 and [0, 1-8]. If we
let Y, = XI+X 2, '2 = X 3 +X4 , '3 = X 5+X 6 , Y4 = X 7 +X 8 , '5 = X9 and define Z = (X 1 ,X 3 ,X 5 ,X 7), we see

that specification of X is equivalent to specification of (Y,Z). Also, [ZY, O,r7] is the product of four
independent Binomials for Xt,X 3 ,Xs,X 7 , given by

[XiJY,9,17] =Bi Yi, aib i = 1,3,5,7,

which are therefore readily available for sampling.

In the context of Section 2, we have a three variable case, (9,i7,Z), with interest in the marginal
distributions [91Y],[r7 JY],[ZIY]. Gibbs sampling requires [OY,Z.r7J, [r7JY,Z,O] and [ZJY,9,r7J. all of
which are available. But in this case the reduced distributions [01 Y, Z] and [qI Y, Z] are also available and
this allows us to accelerate the substitution sampling algorithm. These reduced distributions also substan-
tially simplify the Rubin importance sampling algorithm in obtaining [01Y] and C qIY]; only an importance
sampling distribution [ZIY], need be specified (for example, a 'default' choice might be binomials with
chance equal to one half). Detailed comparison of the performance of the three algorithm for a specific
case of this multinomial class will be given in Section 4.

3.2 Hierarchical Models Under Conjugacy

Consider a general Bayesian hierarchical model having k stages. In an obvious notation, we write the
joint distribution of the data and parameters as

[Y1191]* [01 1021 * 102103] ... * [Ok-1 Okl 1 0 ] (16)

where we assume all components of prior specification to be available for sampling. Primary interest is
usually in the marginal posterior (01 1 Y].

We note in passing that the collection of variables Y, 01. k form a random Markov field with an
'adjacent' neighbourhood system and that the joint distribution of the variables is a Gibbs distribution. See
Geman and Geman (1984) for definitions ar d other examples.

The hierarchical structure implies that

[0 11Y,0 2] i= ,
[O I , Op j*i]= [OlOi,t.o I I < i < k-I. (17)

A [0klIk-I i = k.

Suppose we assume proper conjugate distributions at each stage. This is common practice in the for-
mulation of such models except perhaps for (0k I which is often assumed vague. However, conjugate priors
can generally be made arbitrarily diffuse by appropriate choices of hyperparameters and so this case is also
implicitly subsumed within the conjugate framework. (0k] can, in fact, be vague provided [GkJIk- is

still proper and available. (See examples 3.4, 3.5.) Conjugacy implies that the densities in (17) will be
.available' as 'updated' versions of the respective priors (see e.g. Morris, 1983a). Typically. no distinct
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reduced conditional distributions will be available and Gibbs sampling would be used to estimate the
desired marginal posterior densities. To clarify this latter point, consider the case k = 3. The six condi-
tional distributions in (10) would be [,lly,02,03], 1021YO,03, 1031Y,1,02], [3Y02, O1IY, 8 3l and
(02 ly, l11. The first three are available as in (17), the fourth is available but is not distinct from the third
and the last two are usually unavailable.

As a concrete illustration, consider an exchangeable Poisson model, which will be further illustrated
in Section 4 with the reanalysis of a published data set. Suppose we observe independent counts, si, over
differing lengths of time, ti (with resultant rate pi = s./t) i = 1. p. Assume [sil;Li] = Po(.1iti) and that
the Ai are i.i.d. from G(a,#), with density Xi - e- /P /IlaF(a). The parameter a will be assumed known
(in practice, we might treat a as a 'tuning' parameter or perhaps, in an empirical Bayes spirit, estimate it
from the marginal distribution of the si's) and fl, in turn, is assumed to arise from an Inverse Gamma
distribution IG(y,") with density 87e-'/Ir'FX). (A diffuse version of this final stage distribution is
obtained by taking 8 and 7r to be very small, perhaps zero.)

Letting Y = (sl,.... sp), the conditional distributions [AjI1Y are sought. The full posterior of J is
given by

[.AJl,,Aj. J = G a+sj, pj+ , ..... P, (18)

while the full posterior for P is given by

[Y, 1,,, . .. =,] IG(y+pa,Di5 +8). (19)

No distinct reduced conditional distributions are available. The conditional distribution of Aj, given Y and 0
is (18), regardless of which or how many A,, i * j are given. The conditional distribution of P given Y and

any subset of the Aj's is unavailable. Given ( .... p)0° ) the Gibbs sampler draws A) -

G Ga~si.t+ j) ~=lI...p. and then P3() - IG(y+ap. AM5'+8) to complete one cycle. If we

carry out m repetitions each of i iterations, generating ( A. .. ,'[/), 6 = 1. m, the marginal density
estimate for tj is

I G ap\/3()) t, 0 . (20)

while

(01Y) I - G(y+qpX;A.5)+5). (21)

Rubin's importance sampling algorithm is also applicable in the setting (16), taking a particularly
simple form in the cases k = 2,3. For k = 3, suppose we seek lotly]. The joint density [8 1,82 ,8 3 1Y] =
[Y,8,,8 2 ,8 3]/[Y), where the functional form of the numerator is given in (16). An importance sampling
density for [t,02,0IY] could be sampled as (8t IY,802 ] * [803102] * [01Y], for some [8(2 1Y,. As
remarked in Section 2.5, a 'good' choice for [82 Y], might possibly be obtained through a few iterations of
the substitution sampling algorithm. In any case, for I = 1. N we would generate 82, from [82 IYb, 931
from [831 2 and 0, from [80 1Y, 82 ,1 . Calculating

[ y, 011, 021,0311
r 0, Y, 0211. * 1031102,11"*02,1 1,'

we obtain the density estimator

[8lIY = _[o 11",o:1__ ri

Note that, in the terminology of Rubin, the algorithm in this case can be 'streamlined' by writing the joint
density in the numerator of r, as [01,Y, 211 [YO 211 [82183, * 10 11 and noting that r, does not involve
8,1, so that we need not actually generate th,: 811.
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Returning to the exchangeable Poisson model, the estimator of the marginal density of A, under
Rubin's importance sampling algorithm is

[Aj1Y] G (a+s( )') I

Here
r,( Y[/ * [ ][~lL

where (YIP,] is the product of Negative Binomial densities, i.e.

(YIP ] = i 1 F(s 1  a) :+,1pfz "

while ( I] is the inverse gamma prior evaluated at fit. If [#Y], is not obtained from the substitution

sampling algorithm, as in (21), an alternative choice is IG(y+ ap, iE p,+ I ). This arises since,

(flY] = E rP....... .. )h... - ..... ,1

using I = pj in (19).

3.3 Multivariate Normal Sampling

A commonly occurring problem in combining continuous multivariate data is that often not all vari-
ables are observed for each experimental unit: see, for example, Dempster, Laird and Rubin (1977). If the
data are sampled from multivariate normal populations with conjugate priors for the mean and covariance
matrix, we have a general class of models where all full conditional distributions and at least some reduced
conditional distributions will be available. We illustrate in the simplest case, where we assume

*i... i = 1.1s 1 , .... j n 2 , k= 1. n3

are all i.i.d. N(1,A) with 0 - N(js,X), where 0 = 9) is not observable, but y = , A and X are assumed

known. Let

U ,21... U ,,

with similar notation for V and W. Finally, let X = (U, V, W), 2xN, with k = N-1XI, where I is a column
vector ofN l's and N = n, +n 2 +n 3 . Standard calculations show that [OX] is N(7,£2), where

r7 - (N4-+,-)-(N4'X+Z-g)

and

£2 (N - I + Z-)-.
With the obvious partitioning,

(771)2~ (nl 12)
77-- 2 =D21 "22

the marginals [011X] = N(ri7,121) and (021X] = N(172 ,£22) are available. Suppose, however, that V2 ,WI ,
say, are unobserved. Let Y = (U, V1,W 2), Z = (V2 ,W,) so that X a (YZ). As in Section 3.1, we have a
'three variable' problem, here involving 0,,02,Z. The full conditional distributions are all normal and

hence available. For 61 and 02,

(01 1Y, Z, 021 = N(i7 + 1222'(02- 172)' d2,!- 12,£22 £221)

[0 2 1Y,Z, )l I = N(772 +'2 21 £1(01-171 ), 1222-i221.I I1£22) •

Letting U, = n I' U, 1, with similar notation for U2 , V1, V2 , Wt, 14/2, we note, by sufficiency, that with regard
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to Z we only need the full posterior [zI, 0 1,02, where Zr = (V2,W 1 ), 17r = (U1 ,LU2 ,V 1 ,W2 ). SinceT ((0)( o11J 0)
' (U1, 12, '/1V2,WFV, W2)101, 02) - N 0 0 n2 A4 0

0 0 n- \\

the conditional distribution [Z Y,01, 021 is clearly normal. With the full conditionals and the reduced con-
ditionals [0,1 Y,Z], [021Y,Z] available, the accelerated substitution algorithm can be used to obtain [011 Y,

1021 Y1.

The Rubin importance sampling algorithm is also straightforward in this case. Simplifying notation
by working with the sufficient statistic (Y,Z), suppose, for instance, we seek the density estimator of
[91 Y]. Wehave

(1 IY1 = X[91 I Z, 2 u1r1/D,,

where

(Xt1 11 , 21] * [u 021]

8= ( 1 1YZI,O 21 ] * [0 21 1Y, Z,] * [Z1i1L,

with , rn(Y,Z1 ) and [ZjY], a specified importance sampling density. Thus, for I = . N, we generate
ii - [Z1Y], then 12z- [01Y,Z 11 and 01, - [91 iY,iZ,0 2 ]. Again, the choice of [ZIY], could be made
using a few iterations of substitution sampling, or perhaps based on the intuitively appealing 'estimated'
conditional form, [ZIYB,0 2 ], where 01 = (n 1U1 +n2 V1)/(n 1 +n2 ), 02 = (n 1 U2 +n 3 W3 )/(n 1 +n3 ).

3.4 Variance component models

Bayesian inference for variance components has typically required subtle numerical analysis or intri-
cate analytic approximation, as evidenced, for example, in Box and Tiao (1973, Chapters 5 and 6). In
marked contrast to such sophistication, marginal posterior densities for variance components are readily
obtained through simple Gibbs sampling.

We illustrate this for the simplest variance components model defined by

Yy = 6 +  , i = . K, j= 1.I,

where, assuming conditional independence throughout, [i I/, a
2 ] = N(L, a2) and [eij Ia 2 ] = N(0, o.2), so

that [Y jIO,,a;2. = N(0,,a.2).

Let 8 = ( K.), Y = (Y1,. YK) and assume that u,4.2 are independent, with priors
specified by [p1l - N(Io, .o), [0.9] - IG(al,bl) and [a,2] - IG[a2 ,b 2], where IG denotes the inverse
gamma distribution (as in Example 3.2) and uo 0 2,a,b 1 ,a2 ,b 2 are assumed known (possibly chosen to
correspond to diffuse priors).

The joint distribution (Y, 0,/u, a2, a.] can be written as

[ylO,a.1 .* (01,a0.] • [l * [a21 * [.21 (22)
and we shall follow Box and Tiao (1973, Chapter 5) in focussing interest on [0. IY1 and [e.:IY.

From the Gibbs sampling perspective, we have a four variable system, (0,g,cr0.,0 2 ) with the follow-
ing full conditional distributions:
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loT9lY,. 0, ,2] = [Uo Ig. 0] = IG(a 1 + IKb, + I(o,-U) 2)

[0r2Y,,C,o92] = [a.2 IY, 01 = IG(a2 + 'K, b2 + z=(ij -e,) 2)

a1 + Ko+ao,2 '9 2
[01Y,,,,.92,,21 = IVja92 - Nj U 1, -a92 a.2

TJoG+O a7 Ja 6 + a,2 Ja2a

where Y .... 1 Yp 1 is a Kxl column vector of l's, and I is a KxK identity matrix.
hj=..I

Since all these full conditionals are available, implementation of the Gibbs sampler is straightforward.
Moreover, extensions to more elaborate variance component models follow precisely the same pattern, since
the full conditional distributions for pu and 0 will continue to be normal, and those for the variance com-
ponents will continue to be inverse gamma.

3.5 Normal means model

The exchangeable k-group normal means model with different, unknown measurement variances in
each group provides a simple example of an 'unbalanced' class of models which has proved difficult to
handle using empirical Bayes approaches to 'estimating' posterior distributions (see, for example, Morris,
1983b, 1987a). Such models are straightforwardly handled by iterative sampling approaches, as we saw
with the Poisson example of Section 3.2 and will further illustrate here for this classical normal means
example.

Suppose then, assuming conditional independence throughout, that Yj - N(Oi,0a2), 0i - N(p2,.r 2),02 - IG(at,bt), i = 1.lj= 1..J i, N(o, 2) and "2 - IG(a2,b2), where Ao.'o2,at,bIa 2 ,b 2 are
assumed known (possibly chosen to reflect diffuse prior information). By sufficiency, we can confine atten-
tion to Y- ((,S?), i = 1.1, where Yi =  £1Z 'i and S? = 1 (Yq Yi.) 2 . Then, if we write 0

(Br... B), (. , the joint distribution of Y,, 2,p, 2 takes the form

[Yj,a-2 l * [g,r 2J * [a 2] [*p1 * [r 21, (23)

where
1

(Yr,6 a l 0 [1Bp,r 21 • [ a2] = F [Y 19,02 ] [S;2 la,2. * [Bi I.U, r2 ]. * fa2].
i-I

There is, of course, an obvious similarity between (22) and (23). but here interest is taken to focus on the
[(iIY], i = 1...... From the Gibbs sampling perspective, this is a 21+2 variable problem: (O0,zi,

= 1.I, together with A and r2 . To identify the forms of the full conditionals, we first note that

[0BY,c. 2,,r 2] = N(B .D*), (24)
where

sj, T2 + a20
ri? T

2

J,' D*=0, i

Thus the full conditional distributions [OiJY,Oj,j * i,a 2,I,r 2 ], i= .I, are, in fact, just the normal
marginals of (24) and are therefore available for sampling. From (23), we easily see that

~I
[a21y,Iq,jj,r 21 = [ 2(Y,ol = [l (aoi2(f.,S,2,9l,

where
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[ i ., Ss; , 8i ] IG(al + 'Ji, b, + £.(Yi - O 2)

Finally. and closely resembling the forms obtained in Section 3.4,

(p Y , B~ 2 , 91 = [i lO , 9] = _ 2a )

and

[9~l Y, ,Oa2,1] = [?21G,U] =IG(a2 + I, b2 + , 2)

3.6 An errors-in-variable model

Again, we consider a simple special case in order to illustrate the scope of the methodology. Con-
sider Y to be a vector of responses assumed related to levels. X, of a covariate according to the straight-line
model

Responses are obtained at specified levels, X0 , of the covariate but suppose, in fact, these are not the actual
levels, Xa. Rather, given the former, beliefs about the latter are represented by X. - N(X0 , 91). Interest
centres on 0 = (81. 02) and to complete the distributional specification suppose we place independent conju-
gate priors on 9, a 2 and T2 . The joint distribution on (Y,X., 9, a 2, T2) then has the form

[yX.,0, a2]I. X 2]* [(.2]. [01 * [a 2], (25)

where again there is obvious similarity to (22) and (23). The Gibbs sampler requires [O6Y,X 4,,,.2 ] =
[OIYX,,a 2], (oIY.X,,, 2 ] = [0.2Iy,X.,O], [r2 [Y,X.,O,a2] = [r2Xo] and [XIY,0,a2,r2]. If We
assume a normal prior for 0, together with inverse gamma priors for 02 and 9, we obtain normal full
conditionals for 0 and X., and inverse gamma full conditionals for a 2 and r2 . We omit the details, which
are somewhat similar to those in Section 3.5 and 3.4.

4. Numerical Illustrations

4.1 A multinomial model

We shall provide some preliminary insights into the relative performance and properties of the substi-
tution, Gibbs and Rubin importance sampling approaches by considering an artificial problem based on the
class of multinomial models discussed in Section 3.1.

We suppose that data Y = (Y1,Y 2 ,Y3,Y 4 ,Y5) = (14,1,1,1,5) are available as a sample from the multi-
nomial distribution

Mul(22 T'+ -1,zO, z,l at/i+ 3, 11(1 - 0- q/)),

and that the prior for (0, Y?) is taken to be a Dirichlet (1, 1,1 ) distribution. In the general notation of Section
3.1, we therefore have at = I, b, = V, a2 = z, b2 = 0, a 3 = , b3 = 0, a 4 = z, b4 = T, a, = a 2 - = a ,
with interest centring on the calculation of the marginal posterior densities (e0Y], 177 jY].

By considering instead a 'split-cell' multinomial, which in this case takes the form

(X 1,X 2. ... X7 ) - Mult(22, 10, 1, 10, 117, 17, 3, (l -

we can use the analysis of Section 3.1 for this special case of a seven cell multinomial to construct substitu-
tion and Gibbs sampling algorithms involving 0, q and Z = (X,,X 5 ).

The Gibbs sampler, based on the full conditional distributions, iterates around the cycle:



- 17-

set arbitrary 0(0), q"(0);

draw Z(' ) from [ZIO (° ) ,7 (°) ,Y] , which is given by the product of two independent binomial distributions,
X(' ) - Bi(Y1,2 0

(° )(1 +20(°))-), X41 ) - Bi(Y,,217(°)(3+277(°))-');

draw 0(') from [0[Jl(°),Z'),Y1, which is available since 0/(1-7(o)) has a Beta(Xl(')+Y 2 +1,Y 5 +1) distribu-
tion;

draw 17(1) from (1710 ( ) , Z(1) , Y], where j7/(1-0(1)) has a Beta(Y3+X4')+ 1,Y5 + 1) distribution:

reinitialize the cycle with O0(), j7(') and iterate, replicating each cycle m times.

The substitution sampler makes use of the fact that (O6Y,Z,17] and [rifY,Z,0] can be replaced in this case
by the reduced forms [0 1Y, Z], leading to iteration around the cycle:

set arbitrary 01° ) , i (0);

draw Z(" from [ZJO(0),i/(O),Y], a product of two independent binomial distributions, X ) -

Bi(Y1,29(O)(1 + 20(O)) -1), X41) - Bi(Y4 , 27(0)(3 + 2i(O))- 1);

draw q(1) from JirJO(°),Z(' ) , Y], where 17/(1-0 ( )) has a Beta(Y3 +X4')+ 1,Y 5+ 1) distribution;

draw 0( ') from [01ri71),Z(|), Y], where 0/(I- 7(')) has a Beta(X(')+ Y2 + 1, Y5 + 1) distribution;

draw Z(2) from [Zj 0( ') , 7(|), Y], a product of binomials analogous to the above;

draw Y1(2) from ( qIZ (2), Y], where 17 has a Beta(Y3 +X4 2) + ,x 2 +Y2 
+ Y5 

+ 2] distribution;

draw 0(2) from [ 017 (21,Z (2) , Y], where 0/(l _ 17(2 ) has a Beta(X (2 ) + Y2 + 1, Y5 + 1) distribution;

reinitialize the cycle with 0(2), 17(2) and iterate, replicating each cycle m times.

To compare the two forms of iterative sampling, we first obtained very accurate numerical estimates
of (8IY] , [i7lY] using techniques described in Smith et al (1985, 1987) and from these then obtained the
'true' 5, 25, 50, 75 and 95 posterior percentile points for each parameter. Iterative cycles of the two sam-
ples were then run, calibrated so that the total number of random variates generated was the same in both
cases, as described in Section 2.4. The initialization was defined (for an arbitrary generating seed) in each
case by taking independent samples from 6 - U(0, 1), r - U(0, I), subject to 0 < 0+ 7 _< 1. At each cycle,
m = 10 drawings of the parameters were then made and estimates of the cumulative posterior probabilities
corresponding to each of the five true percentile points for each parameter were obtained. This process was
replicated 5000 times, enabling us to study the mean estimates of the cumulative probabilities, together with
their standard errors, as well as the percentage of occasions on which each sampler was closest to the true
value. A summary of the results following each of the first four cycles is given in Table 1.
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Table 1

Comparison of Substitution (S) and Gibbs (G) samplers

cdf value estimate (sd) S closer than G

0 17 9 ?7

G S G S

.05 .231(.08) .217(.08) .033(.01) .044(.01) 56% 75%

.25 .504(.10) .492(.09) .177(.04) .225(.04) 55% 78%
cycle 1 .50 .713(.08) .706(.08) .380(.06) .459(.06) 54% 80%

.75 .873(.05) .871(.05) .620(.06) .706(.06) 51% 80%

.95 .978(.01) .978(.01) .878(.04) .926(.03) 49% 80%

.05 .067(.04) .055(.03) .047(.01) .048(.01) 56% 51%

.25 .286(.07) .266(.07) .236(.04) .241(.04) 56% 52%
cycle 2 .50 .535(.08) .522(.07) .478(.06) .487(.06) 53% 52%

.75 .773(.06) .768(.05) .728(.05) .737(.05) 51% 52%
.95 .956(.02) .956(.02) .940(.02) .944(.02) 51% 53%

.05 .052(.03) .049(.03) .049(.01) .049(.01) 51% 50%
.25 .254(.06) .252(.06) .247(.04) .247(.04) 51% 50%

cycle 3 .50 .505(.07) .508(.07) .496(.06) .496(.06) 51% 49%
.75 .754(.06) .760(.05) .746(.05) .747(.05) 51% 50%
.95 .951(.02) .954(.02) .949(.02) .949(.02) 51% 50%

.05 .050(.03) .047(.03) .050(.01) .050(.01) 51% 51%

.25 .250(.06) .249(.06) .250(.04) .249(.04) 50% 51%
cycle 4 .50 .500(.07) .505(.07) .499(.06) .499(.06) 51% 51%

.75 .751(.06) .757(.05) .750(.05) .751(.05) 51% 51%

.95 .950(.02) .953(.02) .950(.02) .951(.02) 51% 49%

We note from Table 1 that, initially (cycles 1 and 2) the substitution sampler adapts more quickly
than the Gibbs sampler, particularly for q. However, by the time we reach the 3rd and 4th cycles, the two
approaches are performing indistinguishably. What is astonishing, perhaps, is just how remarkably good
their performance is. By the 4th cycle, using only m = 10 drawings and starting from a default non-
informative baseline, the marginal posterior density estimators based on (8) are providing on average
extremely accurate estimates of cumulative probabilities. Our experiences with this and other examples
(see Section 4.2) suggest that satisfactory convergence with iterative sampling requires only a small fraction
of the levels of random variate generation reported by Tanner and Wong (1987).

The non-iterative Rubin importance sampling algorithm, Section 2.5, requires us to choose a sampling
density, [ZIY],2, and then to proceed as follows, for 1 = I.

draw Z, from [ZIY],, iq, from [rifZYI, , from [OIt7,Z.Y], with the latter two distributions as detailed
above, thus creating a triple (O1, ill,ZI);

calculate

[Y,ZtIOi, 7I* [Ot.7T]
rt = [A h7,,Z,, Y] *[1 IZt, Y] * [ZiIY],

form estimates,
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1. [0O1r71Zt, Ylr,

[OfY] ~
1=1

7 [771jO,Z,,Y]rl

1=1

Table 2 shows the average cumulative posterior probability estimates from this approach based on
2500 replicates of m = 40 and m = 200, taking [ZIY], to be the product of X, - Bi(Yi,) and
X5 - Bi(Y4 ,1).

Table 2

Estimates from the Rubin importance sampling algorithm

estimates: m = 40 (200)

cdf value 0 17

.05 .105(.150) .049(.049)

.25 .311(.351) .244(.241)

.50 .521(.537) .485(.477)
.75 .739(.734) .729(.714)
.95 .939(.932) .934(.921)

Despite the much larger number of drawings compared with the iterative samplers, the estimation is rather
poor. In general, experience suggests that the algorithm is highly sensitive to the choice of [ZIY]1, and that
the larger one-off simulation is no match for iterative adaptation via small simulations.

4.2 A conjugate hierarchical model

We shall apply the exchangeable Poisson model, discussed in Section 3.2, to data on pump failures,
previously analysed by Gaver and O'Muircheartaigh (1987), and reproduced here in Table 3, where si is the
number of failures and t, is the length of time in thousands of hours.

Table 3

Pump Failure data

Pump system si ti pi (xl0)

1 5 94.320 5.3
2 1 15.720 6.4
3 5 62.880 8.0
4 14 125.760 11.1
5 3 5.240 57.3
6 19 31.440 60.4
7 1 1.048 95.4
8 1 1.048 95.4
9 4 2.096 191.0

10 22 10.480 209.9

Recalling the model structure of Section 3.2 and the forms of conditional distribution given by (18)
and (19), we shall illustrate the use of the Gibbs sampler for this data set, with p = 10, 8 = i, y= 0.1 and,
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for the purposes of illustration,
-2

(S,2~~~j
the latter derived by a method-of-moments empirical Bayes argument based on

E(p8 ) = EE(p [.Ai) a

V(p1 ) = VE(p 1) + EV(p i.,) = + a = p _(p,-p)2

The cycle is defined as follows:

draw initial 8 (o) from (P], where # - IG(y, 3);

draw independent A") from [Aj I Y, P(°), j, j * i] = [;.jIY, P(°)]. which is a G(a+sj,(tj + 1I/P 0 ))-') distribu-
tion, j = 1. p;

draw fi() from [/61Y,Atj ) ...... )()], which is an IG(y+ap,3+), 1) ) distribution,

reinitialize the cycle with P(") and iterate, replicating each cycle m times.

Figure I shows a selection of four marginal posterior densities (for 1,14,1g,19) calculated from (20)
following a run of 10 cycles of the algorithm. In fact, three densities are superposed: one corresponds to
m = 10; one to m = 100, and the third is the 'exact' density calculated using techniques described by Smith
et al (1985, 1987). Even in the cases of A.s and ,9 (chosen as 'worst cases' from A1 ...... 110), the densities
are hardly distinguishable-a rather remarkable convergence from such a small number of drawings.

Figure 1

S. Discussion

The emphasis in this paper has been on providing a comparative review and explication of three pos-
sible sampling approaches to the calculation of intractable marginal densities. The substitution, Gibbs and
importance sampling algorithms all share the characteristic of being straightforward to implement in a
number of frequently occurring practical situations, thus avoiding complicated numerical or analytic
approximation exercises (often necessitating intricate attention to reparametrisation and other subtleties
requiring case by case consideration). For this latter reason, if for no other, the techniques deserve to be
better known and experimented with for a wide range of problems. We hope that the unified exposition
attempted here will provide a general, clarifying perspective within which to view the work of Geman and
Geman (1984), Rubin (1987, 1988), and Tanner and Wong (1987), and to evaluate its potential for other
structured problems. For example, in addition to the model structures given in Section 4, the methods find
immediate and powerful application to problems involving ordered random variables, or involving change-
points. We shall provide detailed and extensive numerical illustration of a number of such problems in a
subsequent applications paper.

The preliminary computational experience reported here serves to illustrate the following points:

iterative, adaptive sampling (substitution or Gibbs) invariably provides better value, in terms of efficient use
of generated variates, than an equivalent sample size, non-iterative, one-off approach (Rubin), provided a
suitable structure for iterative sampling exists;

in problems where certain reduced conditionals are available, there is scope for accelerating the substitution
algorithm so that it becomes more efficient (particularly in early cycles) than the Gibh- algorithm; however,
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the gain in efficiency is only likely to show markedly when the number of reduced conditionals is a rela-
tively large fraction of the total number of conditionals involved in a cycle;

there are important practical problems in tuning monitoring and stopping rule procedures for iterative sam-
pling in large-scale complex problems; we shall report on these in the applications paper referred to earlier.

Finally, we note that even in cases where ultimate convergence of the iterative sampling procedures
proves slow, moment or other information provided by a few initial cycles can be used to provide highly
effective starting values for more sophisticated numerical or analytic approximation techniques.
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