£ Washington

WASHINGTON - UNIVERSITY- IN-ST-LOUIS

BTIC fiLE COPY

s

AD-A206 931

l  EiECTRONIC SYSTEMS
AND SIGNALS
[ RESEARCH LABORATORY

[ Department of Electrical Engineering
- Campus Box 1127
: One Brookings Drive
[ Washington University

+

HIGH RESOLUTION
RADAR IMAGING

Semi-Annual Progress Report
O.N.R. Contract NOO0Q14-86-K-0370
Perind: 1 June 1988-30 November 1988

DTIC

A S CTE
oy MAR 2 4 19833

R

- g -

Principal Invesugator: Donald L. Snvder

E!S'rm;tmon STATEMENT X ]

Approved for public release
.. Distribution Unlimited

89

1 27 003




PP

“' f“ﬂ‘ il Fatinilag [

punaang

HIGH RESOLUTION RADAR IMAGING

Semi-Annual Progress Report No. 5

Office of Naval Research Contract Number N00014-86-K-0370
Period Covered: 1 June 1988 - 30 November 1988

Principal Investigator:

Donald L. Snyder

Director, Electronic Systems and Signals Research Laboratory

Washington University
Campus Box 1127

One Brookings Drive

St. Louis, Missouri 63130

Scientific Program Director:

Dr. Rabinder Madan
Office of Naval Research
Code 1114SE

800 North Quincy Street

Arlington, Virginia 22217-5000

Acceston Far

P e e e e l

NTIS CRA&I Vi
OTIC 71a3 0
Unanno:-r,';.h; ]
Justitic it

e e

- ——

e e
—————— e §

Avaabdny  Codes
P e e o]
| Avas aodgar
Sps 2l

]

|

>
L




Poumsia

brismmarid b

DISTRIBUTION
copies
Mr. John W. Michalski 1
Office of Naval Research
Resident Representative
Federal Building, Room 286

536 South Clark Street
Chicago, Illinois 60605-1588

Dr. Rabinder N. Madan 1
Office of Naval Research

800 N. Quincy Street

Code 1114SE

Arlington, Virginia 22217-5000

Director 1
Naval Research Laboratory

Attn.: Code 2627

Washington, DC 20375

Defense Technical Information Center 12
Building 5

Cameron Station

Alexandria, Virginia 22314

Mr. Harper J. Whitehouse 1
Naval Ocean Systems Center

Code 7402

San Diego, California 92152

Dr. James Fienup 1
Environmental Research Institute of Michigan

P.O. Box 8618

Ann Arbor, MI 48107

Dr. Kenneth Senne 1
M.LT. Lincoln Laboratory
Lexington, MA 02173

Dr. Richard E. Blahut 1
I.B.M.
Owego, New York 13827

P T P

e

o



!
¢ Table of Contents
} L IDEOAUCHION ...ttt csensssanasaesnseresssesssnsrsssssssssbsssasssssssasasasbsssssstassssssasssens
' 2. Summary of Work ACCOMPUSNEA ........cccccrrrvrreeremsuereesenvesessesssssssssssusssessessessnsnsssesnesssessas
2.1. Estimation-Theory Approach to Imaging ..........ceeevcuvcrrmrernerincreencrncsnncienncscnssenn.
2.2. Chirp-Rate Modulation Approach to IMaging ............ccc.ecerererereeresserrrnsrenserareesennes
3. References ................. etrersesentsernrssstesssenssesnseRsesLasasssTbarebane Rsessaee st rassbeenstnsnsnensesan
4. Appendices ..................... teveneesststearaseaentorsasannssssssasuesestsesees e st st n et R s e beR e e e bR e e b e e bR s
4.1. Appendix 1. Preprint of Reference [1]. .. teesennertisneessisanaressterestsssasaensessesnne
4.2. Appendix 2. Status Report on Specular Imaging (K. Krause) ......c.coocoorevevennene.
4.3. Appendix 3. U.S. Patent 4,768,156 .......ccccovvererrerrerrernecrserersersesssssnessarssasssssessonsessans

it Biriaeniy g Fo—

) ———

(—




PN M g e

1. Introduction
This semi-annual progress report contains a summary of work accomplished on O. N. R.

contract number N00014-86-K-0370, High Resolution Radar Imaging, during the period from !
June 1988 to 30 November 1988.

>The goal of this project is to formulate and investigate new approaches for forming images
of radar targets from spotlight-mode, delay-doppler measurements. These measurements could be
acquired with a high-resolution radar-imaging system operating with an optical- or radio-frequency
carrier. Two approaches are under study. The first is motivated by an image-reconstruction
algorithm used in radionuclide imaging called the confidence-weighted algorithm; here, we will
refer to this approach as the chirp-rate modulation approach. The second approach is based on
more fundamental principles which starts with a mathematical model that accurately describes the
physics of an imaging radar-system and then uses statistical-estimation theory with this model to
derive processing algorithms; we will refer to this as the estimation-theory approach.

Work accomplished during the reporting period is summarized in the following section.

2. Summary of Work Accomplished )

Fi*ogiess during this reporting period has been made ox}: a, extending the estimation-theory
approach to include a constraint on input signal-to-~noise ratio; b, extending thg estimation-theory
approach to include a sieve constraint for stabilizing image estimates; : ¢, extending the

estimation-theory approach to include a specular or glint component in the radar-echo data; d,

analyzing the performance of the estimation-theory approach through computer simulations; and

‘e, modifying the chirp-rate modulation approach through the introduction of the Wigner-Ville

distribution. Some of these areas are described briefly below and more compietely in the appendices.

-—

ey

A patent was awarded associated with the chirip-rate modulation approach.
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2.1. Estimation-Theory Approach to Imaging
During this reporting period, a major effort has been expended in implementing and con-
ducting computer simulations to evaluate the performance of this imaging approach compared to

the conventional appraoch based on Fourier transforms. Preliminary results are reported in reference




v o

oo oui WD NN SR N e e

{1], a preprint of which is included in Appendix 1. We have extended the estimation-theory
approach to include constraints on the input signal-to-noise ratio and for including sieve constraints
to stabilize estimated target images. We have found that such constraints can improve the per-
formance significantly, as described briefly in [1] for the SNR constraint. A simulation program
is presently being prepared to run equations of the estimation-theory approach on an Active Memory
Technology Distributed Array Processor having 1024 processors connected in a mesh array;, we
expect that this will permit us to perform simulations with modest sized images for performance
evaluation studies. Effort continued to extend our model to include specular components in the

return signal; a brief status report is contained in Appendix 2.

2.2, Chirp-Rate Modulation Approach to Imaging

A patent was issued jointly to H. J. Whitehouse, of the Naval Ocean Systems Center in San
Diego, and D. L. Snyder for the chirp-rate modulation approach to imaging based on the use of
the confidence-weighted algorithm [2]. A copy of this is in Appendix 3.

The focus of our research on the chirp-rate modulation approach during the reporting period
has been on modifying the image formation equations following the introduction of the use of the

Wigner-Ville distribution into the problem by H. Whitehouse [3].

3. References

1. P. Moulin, D. L. Snyder, and J. A. O'Sullivan, "Maximum-Likelihood Spectrum Estimation
of Periodic Processes from Noisy Data,” submitted for presentation at the 1989 Conference on
Information Sciences and Systems, Johns Hopkins University, March 1989. A preprint is in
Appradix 1.

2. H. J. Whitehouse and D. L. Snyder, Imaging System, U.S. Patent Number 4,768,156, Aug.
30, 1988. A preprint is in Appendix 2.

3. H. J. Whitehouse, "Delay-Doppler Radar/Sonar Imaging,” presented at the Summer Program
on Signal Processing, Institute of Mathematics and Its Applications, Univ. of Minnesota, Minneapolis,
Aug. 1988.
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4. Appendices
4.1. Appendix 1. Prepriat of Reference [1).
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Maximum-Likelihood Spectrum Estimation of Periodic
Processes from Noisy Data *

P. Mpulin
D. L. Snyder
J. A O’Sullivan
Electronic Systems and Signals Research Laboratory
Department of Electrical Engineering
Washington University
Saint Louis, MO 63130

ABSTRACT

We have developed a new approach to maximum-likelihood spectrum estima-
tion of wide-sense stationary processes from noisy data. A statistical model for the
data is defined: The process whose spectrum is sought is wide-sense stationary,
periodic and Gaussian, and its observations are corrupted by an additive white noise.
A maximum-likelihood formulation of this problem has been derived, and the equa-
tions are solved numerically via the expectation-maximization algorithm. This
approach presents several attractive features, an important one being that the noise
corrupting the observations is now taken into account.

We present some recent developments for this problem. The statistical perfor-
mance of the new maximum-likelihood spectrum estimator is studied both theoreti-
cally and numerically. Comparison with traditional estimators such as the periodo-
gram highlight several strong points of the method. We also identify certain limita-
tions, namely the instability of estimates for high noise levels. These limitations can
be alleviated if ¢ priori information about the signal is available. Two such problems
are discussed in which the information at hand has the form of a constraint on the
input signal-to-noise ratio.

We show how such information can be incorporated in the maximum-likelihood
estimation procedure. First we assume the signal power to be known. Theoretical
issues of existence and uniqueness of the solution are discussed. We proceed with a
problem in which the information is less complete, when only an upper-bound on the
signal power is available. The statistical performance of both constrained estimators
is quantitatively studied.

January 17, 1989

* This work was supported by.eontnct number NO0014-36-K-0370 from the Office of Naval Research.
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Maximum-Likelihood Spectrum Estimation of Periodic
Processes from Noisy Data *

P. Moulin
D. L. Snyder
J. A. O’Sullivan

Electronic Systems and Signals Research Laboratory
Department of Electrical Engineering
Washington University
Saint Louis, MO 631:0

1. Introduction

A promising approach to maximum-likelihood estimation of Toeplitz constrained covariance
matrices has been proposed recently [1]. Several further developments can be considered. First, this
method also applies to the dual problem of spectrum estimation. Another issue of interest is that the
statistical model can account for the presence of additive noise corrupting the observations and for
linear transformations of the process whose covariance or spectrum is sought. These considerations
have motivated a new approach to high-resolution delay-doppler radar imaging, where a major goal is
to produce estimates of the target’s scattering function [2]. In the special case of a point target and a
constant envelope transmitted signal, this reduces to a spectrum estimation problem.

This paper describes some recent developments for this problem. We study the statistical per-
formance of the new maximum-likelihood spectrum estimator both theoretically and numerically.
Comparison with traditional estimators such as the periodogram highlight several strong points of the
method. We also identify certain limitations, namely the instability of estimates for high noise levels.
These limitations can be alleviated if a prior information about the signal is available. Two such
problems are discussed here in which the information at hand has the form of a constraint on the
input signal-to-noise ratio.

This paper is organized as follows. Our model is presented in Section 2. A maximum-like!thood
formulation of the problem is given in Section 3, and the equations are solved via the expectation-
maximization algorithm. Section 4 is devoted to a statistical performance analysis of this estimator
and a comparison with two other methods. In Section 5 we show how a priori information on the sig-
nal can be incorporated in the maximum-likelihood estimation procedure. First we assume the signal
power to be known. Theoretical issues of existence and uniqueness of the solution are discussed. Sec-
tion 5 deals with a less complete knowledge, where only an upper-bound on the signal power is avail-
able. The last section is devoted to a quantitative study of the statistical performance of both con-
strained estimators.

2. Model

The following is derived from the model presented in [1] for a point target and a constant
envelope transmitted signal. The observation is an N-vector sample of a wide-sense stationary,
periodic, Gaussian process corrupted by an additive noise :

r=b4+w, (2.1)

where b contains N consecutive samples of a zero-mean periodic process b, with length P > N, and w
is an zero-mean white Gaussian noise with variance Ny, uncorrelated with 5.

* This work was supported by contract number N00014-86-K-0370 from the Office of Naval Research.
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The periodicity assumption is required to guarantee that the likelihood function is bounded above;
therefore, there exists a maximum-likelihood estimator (1].

Now we define the spectral process associated with b, to be the DFT of one period of b,.
Assume that we are interested in estimating only M of the components of this spectral P-vector (1 <
M < P), the other components being zero with probability 1 ; let ¢ be this M-vector. This assumption
is introduced to deal with the bandlimited spectra encountered in radar applications, which arise
because radar targets have finite extent [2]. ¢ is a Gaussian random M-vector with diagonal covari-
ance £, whose entries 02(i), i = 0,.,.M-1, are real and positive. ¢ and b are related by a linear
transformation :

b=Tle, (2.2)
where we have defined the MX/N matrix I', consisting of the first N rows and the outer M columns of
the PXP DFT matrix. The superscript { denotes the Hermitian-transpose operator on matrices.

Our model for the observations can now be written as
r=Tlc 4+ w. (2.3)

The covariance matrix for r is given by
" K, = Elrr!] = T'ZT + Nyly, (2.4)
where [y is the NX/Nidentity matrix.

3. Spectrum Estimators

In this section we introduce a maximum-likelihood spectrum estimator for the model (2.3),
denoted by ML1. We also define two estimators which will be analyzed and compared to ours in the
next section. The first one is the maximum-likélihood estimator derived assuming noise-free data,
denoted by MLO ; the second one is the periodogram.

3.1. ML1 Estimator
From (2.4), the likelihood function for X is

L(r, L) = =% In det (T'ST + Nyly) — % r'(T'ET + Noly)™'r . (3.1)

Maximizing the likelihood with respect to L yields the necessary trace condition which the estimate T
must satisfy [1,2]:

Tr [T(T'ET + Noly) ™ (rr!=T'ET — NoINXT'ET + Noly)'TH6E] = 0, (3.2)

for all MXM diagonal matrices éf This trace condition is a nonlinear equation in T. Generally it can-
not be solved directly in closed-form, so some numerical search procedure must be implemented. f}é}
elegant solution is the expectation-maximization (EM) algorithm used in (1,2]. An initial estimate £

is selected. At step k+1 (k = 0,1,..) the estimate is updated according to

£ . argmaz Q(ﬁﬁm) (3.3)
where
QEIE) = 45 10 i) — w5 Bl 2R (3.9
iw0 im0 o*(7)
and
Elle(@)i2| 2" = [EY - £¥nrtE¥reN Iy T1E® + S0t £ r Ny L)
x et (CEW N Iy T (51) (3.5)
This algorithm produces a sequence of estimates
S = Efle(s)? Ir, £ (3.6)
-6 -
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having increasing likelihood. It can be shown that the stable points of this algorithm satisfy the neces-
sary trace condition for a maximizer [2]. The issue of uniqueness is addressed in [3].
Special case : N= M= P = | ‘

A closed-form expression for £ can be derived in this special case:

5(5) = max(0,72 = N;) . (3.7)

3.2. MLO Estimator

Additive noise corrupting observations is usually not included separately in approaches to spec-
trum estimation. This model was assumed in (1]. The sequence of estimates of ¥ is still given by (3.6)
and (3.5), in which we now let Ny = 0. We call this the MLO estimation. Clearly MLO and ML1 are
equivalent for noise-free problems.

Special case : N= M

The problem for which the number of observations (N) is equal to the number of parameters to
be estimated (M) is of some practical interest. It also turns out that the trace condition can be solved
in closed-form in this instance. The matrix I is then invertible, indicating the existence of a one-to~
one mapping between r and ¢. The MLO estimator is simply

5°(5) = (Tr)6)? (38)
where I'™! denotes (™)',

3.3. Periodogram
The periodogram estimate of the spectrum is defined as the (scaled) magnitude-squared Fourier
transform of the N observations padded with P-N zeroes [4]. The first M spectrum samples are then
given by
2. .
& (5) = (P/N)(Tr)s)? (3.9)
Special case : N= M= P

When N = M = P, the matrix I' is equal to the PxP DFT matrix and the periodogram and
MLO estimates are the same. In this case, a full period of the process is estimated.

4. Performance Analysis

In this section, we estimate T for the model (2.3) and study the statistical performance of the
three estimators above. For each method the bias and variance are evaluated, where

Bias[Z) = E[T) - T (4.1)
and
Var(E] = E[£*] - (EIZ]? . (42)

As we shall see in Section 4.3, the performance strongly depends upon the input signal to noise ratio
defined by

SNR,, = Ey / Ny , (4.3)
where Ej is the average power of the process, defined by
Ey=(1/P)Tr (T]. (4.4)
From (4.1) and (4.2), we derive the mean-squared error (MSE) matrix, defined by
MSE [£] = E[(E-T)%] = Var(Z] + (Bias(Z))? . (4.5)
The output signal to noise ratio matrix is defined as follows :
SNR,u[E] = EIE] (MSE [Z)™ . (48)
-7 -




In the following section, we evaluate the bias and mean-squared error for the estimators derived
in Section 3. Whenever closed-form expressions for the ML estimates cannot be derived, computer
simulations are performed. Typically 3000 realizations are generated for each process. For a given esti-
mator, (4.1) and (4.8) are then estimated from the 3000 estimates.

4.1. Performance Analysis

Closed form expressions for the bias and mean-squared error are derived for MLO and the
periodogram when possible. Simulations were carried out to compare the performance of the estima-
tors for various levels of input SNR. The performance was then compared to the Cramer-Rao lower
bound for the variance of unbiased estimators. Much effort was made for the special case M = N.
This provides insight into the problem since the MLO equations can be solved in closed form. The
choice of P is free, so long as P > N [2].

4.2. Closed-form Expressions for Estimator Performance

(a) ML1

As indicated in Section 3.1, no closed-form expression for the estimator is available, so the
evaluation of bias and variance is obtained by computer simulation.

b) MLO
®) Closed-form expressions for MLO can be derived when M = N. The results are presented below.
Bias
Combining (2.3) and (3.8), we can write
5°(i) =l(c + Ttw)(i)2 . (4.7)
Taking the expectation of (4.7), we get
E°(5)) = 0%(5) + No(TT!)(3,d) , (48)
which implies
Bias[5"(i)] = No(TT") (i) _ (49)

The bias is due to the noise corrupting the observations and is proportional to its variance. The sensi-
tivity of the bias to the noise is determined by the diagonal entries of the matrix (I'T")™.

Mean-Squared Error
Taking the expectation of (4.7) squared, we obtain

E‘[(&z(i))e] = 04(i) (249;0) + No o2(3) (4(TTH)(4,8) + ‘.’Ag Re[T(4,5)°] )

+ M (o5 + INS (i, )42 ) . (4.10a)
z
After some algebraic manipulations, this expression can be lower-bounded by
EIE"G)P) > 2 [0%() + No(TT) (i) = 2 ( EE"G)] 2 - (4.10b)
From (4.8) and (4.10), (4.5) becomes
MSE [5°()) = ( B ()] ) + (No (CTY(ii) P , (4.112)
and
MSE [5°()) 2 0*(s) + 2 02(3) No (T (i,3) + 2 (No (T (5,0))% . (4.11b)
-8 -
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(¢) Periodogram

Bias
Combining (2.3) and (3.9), we write the periodogram estimates in the equivalent form
() = (P/N)| (TTe + Tw)(i)l? . (4.12)
Taking the expectation of (4.12), we get
ElG*(#)] = (P/N) ((T'SIT! + NgIT')(irs) , (4.13)
and
Biaslg"(i)] = ( (P/N) (TT'SITY) — £ )(3,i) + (P/N) N, (TT')i i) . (4.14)

The bias contains two terms. The second is due to the noise and is proportional to Ny. The sensitivity
of the bias to the noise is deterniined by the diagonal entries of the matrix I'T!. The other term is
independent of Ny. Even for noise-free observations, the periodogram is a biased estimator of & unless
IT! is the identity matrix. This would be the case only for N = M = P (observation of a full period of
the process) or N/M — oo (infinite data).

Mean-Squared Error
Taking the expectation of (4.12) squared, we obtain

EE" @) = (P2/N?) (2 [Ag A TGP + 4 N MZ-l A TTE A (TTY)E )
J j=0
+ 2N3 (TTY)(4,4)?
+ | 62(0) (T3, 0 + o2(M/2) (CTNY(i, M/2)° + N Mil IR AL (4.15a)
=0
This expression is lower-bounded by
2(P/N)? [(TT'ZIT! + NoITH):,6) 2 = 2 ( E[6'2(i)] 2. (4.15b)
From (4.13) and (4.15), (4.5) becomes
MSE [5°(i)] = ( El°(i)] * + [ (P/N) (TTISIT! — (N/P) S + NoITW(i.i) |2, (4.16a)
and )
MSE [32(:')] > (P/N?) ( [(TT'ZITY)(i,6)° + (TTIEIT! — (N/P) £)(1,¢))
+ 2 No (TT(3,8) (2 TTTEIT! — (N/P) T)(i,1)
+ 2 [Ny (TTH(E,6))? ) . {4.16b)

4.3. Simulation resulits
Process 1

The first process we consider is real and has period P = 10. Its spectrum is symmetric and lowpass (M
= 5). All nonzero spectrumn samples are identical :

i) =1, i=0,.4.

The number of observations is N = M = 5.

The noise variance N, ranges from 0 to 1. Figures 1 and 2 show the bias and SNR,, for the estima-
tors of 0>(2) as a function of SNR,,, according to the definitions (4.1), (1.3), and (4.6). In the absence
of additive noise { SNR;, — o0), ML1 and MLO are the same. Both are unbiased estimators. The
periodogram, however, is biased, and its MSE is also larger than the MSE for the ML estimators.
When N, increases from 0, the performance of the estimators is roughly constant so long as SNR;,
remains above some threshold. For larger Nj, all three estimators exhibit a strong degradation in

-9 -
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performance. Comparing the thresholds for MLO and ML1, we see the tremendous improvements
brought by taking the noise into account in the model. Typically, for a same SNR,,,, ML1 will have
the same performance as MLO operating in a 20 dB noisier environment.

We also notice that the threshold for the periodogram is located at a lower SNR,, than for the
ML estimators. In Sections 4.2(b) and 4.2(c), we indicated how the sensitivity of the performance to
noise can be determined for MLO and the periodogram when N = M. It turns out that for the flat-
spectrum process considered here, the periodogram has a lower sensitivity than MLO and ML1. This is
thought to be due to the smooth spectrum used in the simulation.

Process 2

It has been conjectured that the periodogram does not perform well for nonuniform spectra (5].
This motivated our study of a sharply peaked spectrum. The process has period P = 10, and a single
nonzero spectrum component

aA0)=1.

There is just N = M = 1 observation.

Bias and SNR,,; for the estimators of 0%(0) are plotted as a function of SNR;, in Figures 3 and
4. In the absence of additive noise, the periodogram is very strongly biased, and its MSE is large.
Furthermore, in high-noise environment the periodogram is no longer more robust than the ML esti-
mators. Clearly, the periodogram is outperformed by MLO and ML1. It should also be noticed that for
this process, the improvement of ML1 over MLO is quite reduced.

Computational Considerations

The convergence rate of the EM algorithm depends on several parameters. The computation
time for each iteration is of order M N2. The number of iterations required for convergence of the
algorithm grows as M and N increase. For ML1, more iterations are required as [N, increases, espe-
cially in the threshold region and beyond. Typical figures are: for process 1 with Ny = 0.1, 30 itera-
tions are required before the spectrum estimates are stable; when N = 1, 300 iterations must be per-
formed. Our algorithm is implemented on a Masscomp model 5500. Running the program on 3000
realizations in the latter case is typically completed in 8 CPU hours. We are presently implementing
these algorithms on a mesh-connected 1024 processor (DAP by Active Memory Technology), and we
expect a major reduction in the time required to produce estimates.

4.4. Cramer-Rao Bounds
In this section, we study how the MSE of the estimators considered so far relates to the
Cramer-Rao bound on the variance. The Cramer-Rao bound on the variance of any unbiased (UB)
estimator of & (z) for our model has been found to be (3]
UB—C’R[c (1)) = (02(5) + No(TTH(4,4))% . (4.17)

From (4.5) and (4.17), the MSE for an unbiased estimator whose variance attains the Cramer-Rao
bound is given by

MSE[5°(5)] = (02(3) + No(TTH™(5,i))2 . (4.18)
Next we state the Cramer-Rao bound on the variance of a biased (B) estimator of &2(i ):
B—CR[5*(i)] = UB~CRI5* (i) (—f}g-(-(?]- (4.19)

From (4.5), (4.17) and (4.19), the MSE for a biased estimator reaching the Cramer-Rao bound is given
by
a2
MSEG ()] = () + N6 (22 L + (Bl (420

From the analytical expressions given for E[c (1)] in Section 4.2, we can now calculate the gradient of
E’[a ()] for MLO and the periodogram. Then, the minimum MSE for a biased estimator having the

- 10 -
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same bias as MLO and the periodogram is derived, and a comparison with the actual MSE is made. No
closed-form expression has been found for ML1.

MLO
From (4.7), ’ :
BEIS(3) _
s = (4.21)
From (4.9), (4.20) and (4.21), the MSE is lower-bounded by .
MSE,[5°(3)] = a*(3) + 2 02(§) No (TT1)(4,4) + 2 [ No (CTH~(i,s) 12 . (4.22)
Periodogram
From (4.13),
a2,
2Ele ()] _ (p /Ny (TS, ) . (4.23)

ad3(s)
Combining (4.14), (4.20) and (4.23), the MSE is Jower-bounded by
MSE,, [&2(:')] = (P? /N?) ( [(TT*EIT!)s, 8P + (CTTETT! — (N/P) £X1,4)?]
-+ 2 Ny (TT)4,4) (2 TTIZIT! - (N/P) E)(i,4)
+2 [ Ng (TTNE9))? ) . (4.24)
Comparison o f MSE’s with Cramer-Rao bounds
The Cramer-Rao bounds (4.22) and (4.24) on the MSE are the same as the bounds (4.11b) and
{4.18b) derived algebraically from the exact expressions (4.11a) and (4.18a). Figure 5 shows how the

lower bounds compare with the exact expressions for Process 1. The actual MSE’s are 3-4 dB above
their respective bounds.

4.5. Discuasion

The results derived above suggest additional comments on a comparison between periodogram
and ML estimators. Typically each component of the gradient of Elo ()] given in (4.23) is much
smaller than unity (for the processes we consider), and the Cramer-Rao bound on the variance of the
periodogram-like biased estimator is much smaller than the Cramer-Rao bound on the variance of
unbiased estimators. When the variance dominates the MSE, the periodogram offers a good MSE per-
formance. This was the case for Process 1. For a less uniform spectrum such as the one chosen for
Process 2, the bias dominates the MSE and the periodogram is outperformed by the ML estimators.

5. Constrained maximum-likelihood estimation

5.1. Description of the problem

An examination of Figures 1-4 suggests that ML1 suffers in certain situations. When SNR,, is
low, the estimates are biased and their variance is large. Although the maximum-likelihood estimator
is asymptotically unbiased and efficient, these properties are not guaranteed in the small-sample prob-
lems considered in Section 4. This limitation can be alleviated if a priori knowledge, such as SNR,,, is
available. Since N is known, such a constraint on the signal-to-noise rativ can be translated into a
constraint on the signal power that must be satisfied by the maximum-likelihood estimates. Now we
show how this constraint can be incorporated into the EM algorithm. The constrained estimates exist
and are unique.

In Section 5.2, SNR,, is known. In Section 5.3, our knowledge is more incomplete, and only an
upper bound on SNR,, is available.

-11 -
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5.2. Known SNR,,

The equations for ML1 presented in Section 3.1 can be mogmed as follows to satisfy the con-
straint. At each step of the EM algorithm, we maximize Q(Z| £') defined in (3.4), subject to the
power constraint . ’

M-
Y oXi)=PEy =5, (5.1)
=0
where Ej is the signal power. The solution also maximizes
. M
QEIE¥) 42 (T2 - 5), (5.2)
im0

where X is a Lagrange multiplier. Taking the gradient of (5.2) with respect to I, we obtain a quadratic
equation for each spectral component
2rot(i) =)+ C; =0, (5.3)
where
Ci = Efle(i)? 1, £*)
is calculated according to (3.5). The solution to (5.3) is

1 + [\/1-8C\
4A

o3(1) = A#0
- C,' A=0 , (54)
where [; is either +1 or -1. The equation for ) is
M-l
45X — M= ¥ IN1-8C\ . (5.5)
im0

In general this nonlinear equation in X\ cannot be solved in closed-form. Furthermore, an ambiguity
subsists about the choice of the signs ;. The latter problem is solved by application of the following
theorem : :

Theorem
Assume that Co > C;, i = 1,..,M-1. Then
(1)

[=-1 :i=1,.,M-1

Ih=+1 :8 <2C [M—ASI,'VI—(C"/CO) J
it

-] :else
{2) X is the largest nonzero solution of

M= M=t

(452 =M+ T INV1-HC;/Co) ¥ =1=8Co), for S= ¥ C;, (5.6a)
it imi

and
M-
A=0, for S= Y C,. {5.6b)

i)

) is upper-bounded by 1,/8C;, and (5.6a) can be solved numerically for . Note tt%t the particular
case (5.8b) is also the solution to the unconstrained maximization problem. Next, & (i)**! is calcu-
lated from (5.4). The whole procedure is repeated at each maximization step of the EM algorithm.
Note that because of the highly nonlinear nature of the problem, no analytic expression is available for
the constrained estimator, even in the special case mentioned in (3.7).

- 12 -




el WUNR SED M W e

5.3. Known upper bound on SNR,,

In this section, the a priori knowledge about SNR,, has the form of an upper bound. Our
approach parallels that of the previous section, with the upper bound now expressed as an mequa.lbf?'
constraint on the estimated signal power. At each step of the EM algorithm, we maximize Q(E] )
defined in (3.4), subject to the inequality constraint

M-
) ()< PEy =S, (5.7)

where Ej is the upper bound on the signal power. If the unconstrained solution satisfies the upper
bound, the constraint is inactive and the estimate is given by (3.6). Otherwise, the constraint is
active, and as in Section 5.2, the solution is the maximizer of the expression (5.2).

We can expect the performance of this estimator to be strongly conditioned by the choice of £,.
In the limiting case Eq ~— oo, the constraint is always inactive and the estimator is equivalent to the
unconstrained estimator. For the other extreme case £y —+ 0, the constraint is always active.

8. Simulation results

In this section, we apply the SNR-constrained estimators derived above to Process 1, and we
evaluate numerically both their bias and mean-squared error.

Figures 8 and 7 give a plot of the bias and SNR,,, for different estimators of 0%(2) as a function
of SNR;,, according to the definitions (4.1), {4.3), and (4.8). The estimators represented on these
figures are: the two constrained estimators of Section 5, respectively denoted by EQ-MLE and INEQ-
MLE, and defined for the (true) power constraint S = 5; the unconstrained estimator ML1 of Section
3.1; and the periodogram PER of Section 3.3.

In the absence of additive noise ( SNR,, — o0}, ML1 and EQ-MLE are unbiased. The periodogram
and INEQ-MLE, however, are biased. For the latter, this can be understood as follows. The sum of
the M estimates is smaller or equal to S = 5, and therefore the sum of all biases is negative. When N,
increases from 0, the performance of the estimators is roughly constant so long as SNR; remains
above some threshold. For larger Ny, all estimators exhibit a degradation in performance. Note that
for the SNR-constrained estimators, each bias is upper-bounded by S — ¢*(), and lower-bounded by
— o*(i). Comparing the SNR,; performance in Figure 2, we see the favorable effects of incorporating
SNR constraints into the problem. For low N, SNR,,; is improved. This is due to the estimates hav-

ing a lower variance, which is the dominant term in SNR,,,. For very noisy data, the performance of
the estimators is clearly improved. We can easily derive a lower bound for SNRW,[U (#) :

02(_L <I.
max (S — o*(i) , °()] ~

This bound is independent of Ng.

Conclusions

In this paper, we have described an approach to spectrum estimation from noisy data, based
upon a statistical model for the observations. First we derive a maximum-likelihood estimator, and
evaluate its statistical performance. A comparison is made with two other methods that do not take
the additive noise into account. One is the traditional periodogram and the other is the maximum-
likelihood estimator derived for a noise-free model. It is shown that in terms of bias and MSE, the
new estimator can offer a better performance than the latter ones. The improvement over the periodo-
gram is noticeable for rough spectra: The MSE was 15 dB lower for the process we considered.

In general however, the maximum-likelihood estimates are still unstable at high noise levels. In
the second step of our study, we refine our technique to improve the performance when some side
information exists. We have studied one such problem in which some information about the signal-
to-noise ratio is available. The performance for the SNR-constrained estimators has been numerically
evaluated, and compared with that of the unconstrained estimator and of the periodogram. The new
estimators perform significantly better than their competitors for low SNR;,. Because of the SNR
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constraint, the estimates are not allowed to take on the large values that were produced in the uncon-
strained estimation problem. This results in the estimates having a lower variance. One additional
feature of our approach, and an attractive one, is its versatility. Only a slight modification of the
(unconstrained) algorithm is required.
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Figure 1. Bias(o*(2)) for Process 1

MLO (solid line), ML1 (dotted line),
periodogram (dashed line)
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Figure 3. Bias(c*(0)) for Process 2
MLO (solid line), ML1 (dotted line),
periodogram (dashed line)

A

Figure 5. Comparison of SNR,.(0%(2)) and
Cramer-Rao bounds for Process 1
MLO (solid line), its CR bound (short-
dashed line), periodogram- (long-dashed
line), its CR bound (dotted line)

e * * *
Figure 2. SNR,.(0?(2)) for Process 1

MLO (solid line), ML1 (dotted line),
periodogram (dashed line)

A

Figure 4. SNR,,,(¢°(0)) for Process 2

MLO (solid line), ML1 (dotted line),
periodogram (dashed line)
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Figure 7. * SNR,u(0*(2))

ML1 (solid line), EQ-MLE (dotted line),
INEQ-MLE (short~dashed line), periodo-
gram (long-dashed line)

* Currently we are redrawing Figure 7 in which a
former definition of the output signal-to-noise ratio
was adopted.
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K. E. Krause
January 8, 1989

STATUS REPORT:

MAXIMUM LIKELIHOOD APPROACH TO
SPECULAR TARGET IMAGING

The following summarizes activity between June of 1988 and January of 1989
in the statistical model formulation and imaging approach for the Maximum
Likelihood Estimation based imaging of delay and doppler spread specular
targets.

At the time of the last report, two concepts were identified for further analysis
and possible selection as the theoretical model to use in the specular target
imaging problem. They were: (1) Maximization of a likelihood function which
is assumed to factor into a product of identically structured likelihood functions,
one for each scatterer in the delay-doppler plane and (2) Application of the EM
algorithm to the likelihood function in quest of a complete/incomplete data
space formulation which would cause the factorization as described in (1) above
to occur.

The consequence of the factorizations mentioned is to reduce a multi-
dimensional problem to the complexity of a one-dimensional problem that will
be solved many times, once for each point in the target space grid. The idea in
investigating the EM algorithm was to provide a rigorous justification for this
likelihood factorization.

Recalling that each scatterer in the model under investigation is assumed to be
characterized by a deterministic amplitude(to be estimated at each point in the
target space to form the image) and a random phase(varying from known
exactly to uniform - and to be integrated out in the estimation procedure), the
EM algorithm was considered for a complete data space which consisted of a
scatterer return plus white noise constituting the signal for each scatterer. By
this construction, the signals for each scatterer were independent, hence the
likelihood factorable in a theoretically rigorous manner from the start. The
remaining issue was to work out the equations to see what, if any,
computational complications might occur with this formulation. Limiting forms
of the random phase were considered in some detail. Specifically, phase
known exactly was first assumed and the equations for the Expectation and
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Maximization steps worked out. The result was a one step iteration with
equation form comparable to the solution that results in the non-EM approach.
Added in the Scheme of computational complexity was the need to do a linear
smoothing in the E step, which was easily done in this case. Phase  uniform
was considered next. The expectation to be evaluated took a very complex
form, so it was decided to look at limiting cases to see how the formulation and
computational complexity would proceed. In considering a high signal to noise
ratio condition, the estimate could be theoretically calculated but would require
doing a nonlinear smoothing to determine a constant required in the solution.
The EM algorithm in this application then seems to provide the basis for a
rigorously correct likelihood factorization resulting in a one step solution, but
with increased calculational complexity.

In light of this complexity, and with the realization that any simulations and/or
data that the model would be tested against would likely use stepped frequency
waveforms(the complex envelope of which would make factorizations appear
reasonable for the integration times that would be used), it was decided to
proceed with a simulation to test the first, non-EM model formulation.
Evaluation of results will determine the necessity to proceed with the EM
approach. Currently, the first model concept is being coded for imaging of
simulated data from simple generic targets. Its performance in comparison
with standard imaging techniques will then be studied.
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(5T ABSTRACT

An improved imuing system has applications to syn-
thetic aperture radar, inverse synthetic aperture radar,
ddly-dopplcr radar, positron-emission topography so-

nar, radiometry and other applications having a target
m'eptovuedbynamo{dnupanmetenzed by a
varisble such as §. A receiver structure includes 2 band-
pass matched-filter, square law envelope-detector, spe-
clalized processing and convolving to produce the im-
proved images irrespective that the radar signals have
practical side lobe structures and other features. Despite
the demands of specialized processing the architecture
of the algorithm permits real-time implementations.
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1
IMAGING SYSTEM

STATEMENT OF GOVERNMENT INTEREST

The invenuion descnibed herein may be manufactured
and used by or for the Government of the United States
of America for governmental purposes without the
payment of any royalties thereon or therefor.

BACKGROUND OF THE INVENTION

This invention relates to 3 method and means for
improving an imaging system. In greater particularity it
is for a method and means for incorporating the opera-
tions of resolution enhancement and spriori information
utilization simuitaneously in the design of an improved
imaging system. [n still greater particularity it is to
provide for an improved method and means for improv-
ing an imaging system that is adapted to imaging in a
syuthetic aperture radar, or in an inverse synthetic aper-
ture radar, a radiometer, s sonar, an electromagnetic or
acoustic tomographic system or a related system in
which there is an interaction between the measurements
that are being taken of physical phenomenon and the
phenomenon which are being observed.

Recently an anslogy has become recognized which
exists between delay-doppler imaging-radar systems
and tomographic systems used in clinical radiology.
The analogy appears to hold the possibility of improv-
ing radar imaging because the use of matched filtering
for noise suppression is suggested even by initial com-
parisons, and, more importantly because a line of think-
ing is emerging by which new mathematical models for
the radar-imaging problem might be formulated and
solved for improving processing. These new models
account for dominant effects including noise. M. Bern-
feld, in his article entitled “Chirp Doppler Radar™ Pro-
ceedings IEEE, Vol. 72, No. 4 pp 540-541, April 1984,
made a restricted form of this observation and the re-
stricted form also appears in a different form in the
work of D. Menss, S. Halevy, and G. Wade in their
article entitled “Coherent Doppler Tomography for
Microwave Imaging”™ Proceedings IEEE, Vol 71, No. 2
pp 254-261, February 1983. Both of these articles draw
the analogy to a tomography system wherein the data
available for processing are in the form of idealized,
noise-free line-integrals through the object being im-
aged. This type of tomography system embraces a situa-
tion that is well approximated with X-ray tomography
systems because X-ray sources can be highly collimated
0 a3 to form narrow X-ray beams of high intensity that
are passed through the object being imaged. Although
the analogy was articulated in these two articles, there
is strong reason to believe that its applicability to practi-
cal radar/sonar signals of interest is limited because the
ambiguity functions normally associsted with such ra-
dar/sonar signals do not approximate line distributions
in mass and thus do not permit the evalustion of line
integrais of the scattering function. Two additional
writings dealing with frequency-stepped, chirp-signals
have discussions which clarify this limitation. M. Prick-
ett, and C. Chen in “Principles of Inverse Synthetic
Aperture Radar (ISAR) Imaging,” /JEEE EASCON
Record, pp. 340-343, September 1980 and M. Prickett
and D. Wehner in “Stepped Frequency Target Imag-
ing”™, Applications of Image Understanding and Spatial
Processing to Radar Signals for Automatic Ship Classifica-
tion Workshop, New Orleans, La., February 1979 dis-
cuss side lobe structures and other features that cause a
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departure from idealized line-integrais and the tact that
noise can be non-negligible in some radar-imaging situa-
tions. A soiution was not evident, however. These aru-
cles are included in the Appendix for a reader’s conve-
nience.

Thus. there is a continuing need in the state-of-the-art
for a method and means which may permit the removal
of the restriction of noise-free line-integrais so that gen-
eral magnitude squared ambiguity functions can be
accommodated and the recogaition of the effects of
noise can be developed for improved imaging. In this
discussion the ambiguity function is defined as the mag-
nitude squared of the time-frequency autocorrelation or
cross correlation function.

SUMMARY OF THE INVENTION

The present invention is directed to providing a
means and method for improving the target imaging
provided by a series of discrete data parameterized by a
variable such as an angie @ in an imaging system which
receives data representative of a physical phenomena
and the pheonomena being observed and the interaction
of data therebetween. Providing a plurality of discrete
data inputs each for one of the series of discrete data
enabies a convolving-processing in paralle! to generate
two-dimensional preimage functions:

Jhr Y= [ [pott Pwglr =7 [ v df

where fo('.f") as a function of 8,7'.[ is the set of avail-
able data and wg¢ are chosen by the system designer.
Summing the two-dimensional preimage functions ena-
bles a convolving the summed functions with a circu-
larly symmetric function h where h is obtained from the
equation:

drfym [ [Mr =7 [~ p(r drd).

where d is the desired response to a known distribution
p- In particular if p('.f") is a two-dimensional deita
function, then h is the point spread function of the imag-
ing system.

A prime object of this invention is to improve the
design of an imaging system.

Another object is to provide for an improved method
and means for improving an imaging system relying on
an interaction between the measurements taken of a
physical phenomena and the phenomena which is being
observed.

Still another object of the invention is to provide for
an improved imsging system relying upon new process-
ing algorithms impiemented by associated circuitry that

- provide improved visualization of targets.

bH]
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Another object is to provide for an improved method
and means for imaging targets having specialized pro-
cessing for real time implementations.

Yet still another object of the invention is to provide
for an improved imagiag system such as in a synthetic
aperture radar, an inverse synthetic aperture radar, a
sonar, an electrometric or acoustic tomographic system
or related system having a target image provided by a
series of data parameterized by a variable such as angle
2]

These and other objects of the invention will become
more readily apparent from the ensuing specification
and drawing when taken in conjunction with the ap-
pended claims.
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BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic representation of a preferred
form of the invention.

F1G. 2 illustranve for a 2D Gaussian approximation
of the 2D ellipsoidal contour of the ambiguity function
of the linear FM waveform.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

First, a mathematical analysis of radar imaging is
presented and analogized t0 a reiated analysis concern-
ing a tomographic imaging system. These two techno-
logical discussions are set forth to provide a thorough
appreciation of the salient features of a specific embodi-
ment of this inventive concept. It is of course under-
swodihudlemb;ieofmeesystemandneom
quent improvement by the inclusion of this inventive
concept are also applicable to imaging synthetic aper-
ture radar, inverse synthetic aperture radar, radiometric
systems, sonar systems or other devices in which there
is an interaction between the messurements that are
being taken of the physical phenomenon and the phe-
nomenon which are being observed. More specifically
this improvement can be incorporated in systems which
eaable the taking of a series of messurements not identi-
cally repeating the same measurements but paramater-
ized by a variable which is generally designated as an
angle 8. This need not necessarily be a physical angle in
the case of an inverse synthetic aperture radar but could
be the angle made by the ambiguity function of the
chirp waveform relative to the delay axis on each suc-
cessive transmission and is the chirp rate of the actual
signal transmitted. In the case of a radiometer it is the
real angie in which the radiometer observes the scene of
which it is trying to form an image.

In other words, this concept applies to a system in
which there exists a free parameter called an angle ¢
and that 2 series of measurements is made, each one of
these measurements at a different angle of 61, . .. 8, It
is recognized that each messurement may itseif be a
series of submeasurements in which the angle is held
constant so as to improve the quality of the measure-
ment at that angle. What is being described is the combi-
nation of these multiple measurements and a reconstruc-
tion algorithm which has the capability of providing
high resolution and simuitaneously the incorporation of
apriori knowledge. For example, in conventional X-ray
tomography an attenuation projection can be measured
that is an integral of some physical property, a scatter-
ing cross-section is measured in the case of an inverse
synthetic aperture radar and a voluminous flux projec-
tion is measured in the case of a radiometer. A set of
integrals is availabie for thesé functions. The fundamen-
tal theorem forming the subject matter of this improve-
ment is the radon inversion lemma which says that a
Fourier transform of this observation of the one-
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dimensional projections is represented as a slice through '

the two-dimensional Fourier transform of the distribu-
tion that is trying to be measured. This, however, stand-
ing by itself is equivalent to having no additional infor-
mation available and, therefore, the evaluation of the
inverse radon transform tends to be numerically unsta-
ble and is equivalent to doing numerical differentiation.
However, addition apriori information often is avail-
able. For example, we know the range resolution in the
case of an inverse synthetic aperture radar, or when
cross-bearing fixes are provided in the case of a radiom-
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65

4

eter, they give an indication of the approximate range.
This apriori information can be incorporated in pre-
cisely the same way that it is incorporated in the posi-
tron emission tomography that is referenced herein and
discussed 1n greater detail below. That is to say, that
instead of doing a back projection which is a transfor-
mation of a one-dimensional data field into a two-di-
mensional data fieid by spreading the one-dimensional
data (ield everywhere parallel to itself into two-dimen-
sions, the information is spread in a region determined
by the available aprion knowledge. This apriori knowi-
edge indicates a probebility that the information is more
likely to be known in one region than it is in another
region and therefore it is not necessary to spread the
information uniformly over lines in the two-dimensional
plane by back projection. This operation is referred to
with respect to positron emission tomography as “confi-
dence weighting” but may be interpreted as being a
weighting of the information according to whatever
form of apriori knowledge that is available that indi-
cates that the information is more likely to be encoun-
tered in one portion of the plane than uniformly along
lines (back projection) in the plane.

Radar imaging has been typified and characterized by
a number of parameters. These are discussed at length
by H. L. Van Trees in his text “Derection. Estimation.
and Modulation Theory: Vol 3, John Wiley and Sons,
New York, 1971. The parameter p(r.f) is the target
scattering-function which is the average reflectivity as a
function of delay r and doppler f, see pp. 448 of the Van
Trees text. The parameter a(r,f) denotes the ambiguity
function of the transmitted radar-signal, (page 279 of
Van Trees). In the absence of noise, the output p(7.f) of
a radar receiver consisting of a bandpass matched-fiiter
(BPMF) matched to the transmitted radar signal) fol-
lowed by a square-law envelope-detector (SLED) is the
convolution of the target scattered function and the
ambiguity function of the transmitted signal. Through-
out this inventive concept, ambiguity function, a(r.f)
refers to the magnitude squared ambiguity function as
elucidated in somewhat different notation in the Van
Trees text. These expressions are set forth on pages 462
and 463 of the Van Trees text and form the basis for:

prfym [ [ole' Natr = f=dr df. m

For the delay-doppler radar-imaging problem with-
out noise, a sequence of target illuminations by chirp-
FM signals is considered. Each of the chirp-FM signals
has a different chirp rate. The effect of changing the
chirp rate of a signal on its ambiguity function is to
rotate the ambiguity function to an angle 8 in the delay-
doppler plane, (page 291 of Van Trees). This depen-
dency is indicated in equation (1) by changing the nota-
tion:

pelrNm [ [ (e’ Nag(r = f=dr'df «n(r /) 2)

where @ is determined by the chirp rate relative 10 the
radar pulse without chirp-FM and n(r.f) is an undesired,
naturally occurring contaminating noise function which
is to be minimized according to well established tech-
niques. The noise-free radar-imaging problem arises in
the observation of the output of the BPMF-SLED re-
ceiver, pe(7.[) for a sequence of target illuminations
having different chirp-FM rates, §=0n, 01, . . . 8,and to
determine the scattering function p(r.f).
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To elaborate, in the case of the chirp waveform, the
angle is not the real angle as it would be in the case of
trying to do a triangulation with a radiometer or doing
the actual physical measurement in the positron emis-
sioa tomograph. The chirp waveform angle is a valid
parameter, however. [t has been knowa in the art since
the fundamental paper by Klauder in the Bell System
Technical Journal in 1960 in that the response of a radar
to a chirp waveform is parmeterized by a chirp rate
aumber. Thnscmrpmnumbe the rate at which the
frequency is changing, parameterizes the ambiguity
function, that is, its ability to localize as a function of
delay and doppler, which is inclined in the delay dop-
plerphneuaphyuulmgleproporuonlzomecmrp
rate, which is the mathematical parameter that de-
scribes how fast the chirp changes. Stated in another
way, if the chirp does not change at all, the angie is 0
andthuonehntheablhtytolouhzeprecndym
dopplebmmueumeqmvdmymaconmm
sampleofasnmmdmdthaenalmnoabﬂnyw
resolve as a function of delay. As the chirp rate is in-
creased, range and doppler are coupled together so that
a two-dimensional surface is defined which reiates the
ability of the waveform (0 resolve the target. By anal-
ogy to the usage for optical imating systems, the term
“point spread function™ can be used to describe this
quantity since the ability of the radar to resolve a single
point target is being described and is ambiguous in the
sense that some of the targets at a near range will be
received by the radar precisely the same way for their
doppler as the targets at a larger range will be received
with their doppler. That is, the target point gives rise to
a response surface with a contour which is an ellipse
whose major axis is along the line in range delay dop-
pler space parameterized by the angle 8.

Recent developments in positron-emission tomo-
graphic imaging systems have a relation analogous to
equation (2). In these tomographic systems a positron-
emitting radionuclide is introduced inside a patient, and
the resulting activity is observed externally with an
array of scintillation detectors surrounding the patient
in a planar-ring geometry. When a positron is produced
in a radicactive decay, it annihilates with an electron
producing two high energy photons that propsgate in
opposite directions along a line. In the first system em-
ploying positron emission, the line-of-flight of the two
oppositely propagating photons is sensed for each de-
tected event. The data attributed to these events are
organized according to their propagsation angle and
processed with the same algorithms used in X-ray to-
mography. The resuit is an estimate of the two-dimen-
sional spatial distribution of the radionuclide within the
patient in the plane of the detector ring. Recent devel-
opments attributed to improvements in high-speed elec-
tronics and detector technology have made it feasible to
mesasure the useful accuracy not only of the line-of-
flight of annihilated photons but also their differential
time-of-flight. As a consequence, in the absence of
noise, the measurements are in the form of information
of equation (2) with p(r,f) being a two-dimensional
activity distribution to be imaged and with a¢(7.f) being
the error density associated with measuring the location
of an annihilation event. In this regard p(7.0), 26(7.0),
and pe(r.f) correspond to A(x). p(x/8), and u(n9),
respectively, where x and p are two-dimensional vec-
tors. These parameters and their applicability to posi-
tron emission tomography systems are explained in the
article by D. L. Sayder, L. J. Thomas, Jr., and M. M.

20

Jo

35

6
Ter-Pogossian entitled “A Machematical Model tor
Positron Emission Tomography Systems Having Time-
of-Flight Measurements™ /EEE Transactions on Nuclear
Science. Vol. NS-28, pp. 1575-358). June 1981, see the

The noise-free imaging problem of emission tomogra-
phy is to observe the line-of-flight and the time-of-flight
of the sequence of detected annihilation photons, mod-
eled on the average by pe(r.f) in equation (2) and to
determine the two-dimensional acnvuy distribution
p(r.0). Here, the parameter a¢(7.f) is a known function
determined by instrumentation errors and pe(r.f) is the
number of detected events having a line-of-flight with
angle & and differential time-of-flight corresponding to
position (7.f) along the line-of-flight. In a recent experi-
ment the data has been quantized to ninety-six angies
(0;=180i/96, im0, 1, ..., 95) and t0 128-by-128 posi-
tions collected in an instrument being developed at
Washington University and discussed by J. Blaine, D

Ficke, R. Hitchens, and T. Holmes in their article “Data
Acquisition Aspects of Super-PETT,” IEEE Transac-
tions on Nuclear Science Vol NS-29, pp. 544-547, Febru-
ary 1982, see the Appendix.

The error density ae(r.f) is determined by both the
physical size of the crystals used in the scintillation
detectors (resulting in about a l-centimeter uncertainty
transverse of the line-of-flight) and the timing resolution
of the electronic circuitry used to measure the differen-
tial propogation-time (resulting in about a 7-centimeter
spatial uncertinty along the line-of-flight). For present
systems, this density is reasonably modeled by a two-di-
mensional, elliptically assymetric Gaussian-function
having its major axis oriented with the line-of-flight and
its minor axis orieated transversely to this.

For the radar-imaging probiem this density corre-
sponds to the ambiguity function of a radar puise having
an envelope that is a Gaussian function and an instanta-
neous frequency that is a linear function of time and the
phase which is a quadratic function- of time.

From the foregoing for an improved delay-doppler
radar-imaging system certain assumptions must be
made, the first of which is that the target is illuminated
by a sequence of radar pulses each having a distinct
FM-chirp rate corresponding to angles 8=8p, 01, . . .,
8, spanning the range from 0°-180°. A BPMF-SLED
receiver produces data pe(7.f) for 8o, 81, . . ., 0, and
quantized values of (7,f). The problem that remains is to
estimate the target scattering function p(r.f) using the
relationship stated in equation (2). For emission-tomog-
raphy imaging when both time-of-flight and line-of-
flight information are available, event data is provided
which is representative of pe(7.f) at angles 8=gg, 91, . .

. 8, spanning 0-180 and quantized to values of (7.0.
The measurement-error density ag(7.f) is known. The
activity distribution p(r.f) is to be estimated using the
relatinship in equation (2). In both cases, the delay-dop-
pler radar-imaging and the emission-tomography imag-
ing, the activity distribution p(r,f) need be estimated
using the relationship expressed in equation (2).

A number of preliminary considerations must be ex-
amined and defined to allow a more thorough compre-
hension of the improvement of this inventive concept.
Part of the solution for improving the radar, tomogra-
phy, sonar, or radiometer image lies in developing an
appropriate algorithm for suitable processing of an out-
put signal from a known BPMF-SLED receiver. The
algorithm is derived by applying statistical-estimation
theory to a mathematical model that accounts for the
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noise and other effects seen 1n an emission-tomography
system having time-of-flight measurements. The algo-
rithm (or solving equation (2) above was proposed by
D. L. Sayder et al in their article referenced above. This
algorithm was evaluated in a later writing by Sayder
“Some Noise Comparisons of Data-Collection Arrays
for Emission Tomogrsphy-Systems Having Time-of-
Flight Measurements™ IEEE Transactions on Nuclear
Science. Vol NS-29, No. 1, pp. 1029-1033, February
1982 and by Politte and Snyder in the article “A Simula-
tion Study of Design Choices in the Implementation of
Time-of-Flight Reconstruction Algorithms™ Proceed-
ngs Workshop on Time-of-Flight Tomography, Washing.
ton University, May 1982, published by the IEEE Com-
puter Society, [EEE Catalog No. CHIT91-3, please see
these articles in the Appendix.

The noise was found to be Poisson distributed as
might be expected because of the quantum nature of
radicactivity decay, an effect well modeled by a Pois-
son process with intensity p(r.f) proportional to the
concentration of the radioactive source. It is argued in
the earlier referenced D. L. Sayder et al article that the
measured data (that is, line- and time-of-flight of annihi-
lation photons) are also Poisson distributed, with the
intensity being pe(r.f) in equation (2). Maximum-likeli-
hood estimation is then used t0 estimate p(r.f). An ex.
tension of this algorithm development is discussed in a
later article by D. L. Sayder et al entitied “Image Re-
construction from List-Mode Daca in an Emission To-
mography System Having Time-of-Flight Measure-
ments” JEEE Transactions on Nuclear Science, Vol. NS-
20, No. 3, pp. [843-1849, June 1983, see Appendix. The
extended aigorithn development is said to enable far
mare accurate reconstructions at the expense of greatly
increased computation.

Neglecting the effects of noise and statistical fluctua-
tions in the messurement data enable the expression of
pe(r.f) as the messurement described above. The im-
proved imaging system 10 for enhanced radar imaging,
radiometer imaging, sonar imaging, and the like adapts
itself to the established state-of-the-art and improves
thereon, see FIG. 1. The output pe(r.0) of a BPMF-
SLED receiver, schematically represented as memory
15, is three-dimensional because it is a function of the
threeidependentnriable&.f.mdf.‘rhemgetimage
sought, p(7.f) bowever, is two-dimensional. Thus, a
three-dimensional to two-dimensional transformation of
Pe(r.f) is required as part of the improved processing.

The improved processing is accomplished in two
steps. The first step is 10 form a two-dimensional
“‘preimage array” 20. This is accomplished by convoiv-
ing the data pe(r.f) obtained ar each FM<chirp rate &
with a weighting function we(7.f) and then summing the
resuits over §; that is we form the functions

Jos = [ [polr Nywatr ~ 7 f~Prdrdf M
from which a (wo-dimensional preimage f(r.0) is de-
rived according to

» *
frh = q/‘ SirHd® = I fo(r )

extent wi.th t_he back-projection step of the “unfiltered
back-projection, post two-dimensional filtering™ ap-

J‘M‘

10

3o

35

45

0

55

8
proach to idealize line-integral tomography. Exampies
of weighting functions that might be adapied are:

v He 38N = sdriisaf day

B v eANm . .71 S8772 1 $3/72 0. otherwise. 1481

Here, wo(7.f) is unity for delays and dopplers in a smail
bin located at r and f in the delay-doppler piane and 1s
zero otherwise, independently of the sweep rate 9. In
this case, fo(7.f) equals pe(r.f), and the preimage is

v
Arh = o/ 2T = Topeit ).

This choice of we(r,f) might be reasonable if the ambi-
guity function ae(r.f) is concentrated about the origin
(r.f)=(0,0), which requires a signal with a large time-
bandwidth product. Then, pe(7.f) equals p(z.f), and the
preimage is obtained simply by post detection integra-
tion in each delsy-doppler bin without further process-

Give wy(r.0) 2 value of unity for values of delay and
doppler within a narrow strip of width § passing
through the origin of the delay-doppler plane at angle 6
and we(7.0) a value of zero otherwise Then fo(r.,f) is a
strip integral, or line integral for § small, through the
data pe(r.f), which corresponds to unfiltered back-pro-
jection in tomography.

A confidence weighting function we(r/)mae(r,) is
used to form the preimage as suggested from the posi-
tron-emission tomography experience. This corre-
sponds to taking the value of the BPMF-SLED signal
pe(r.{) shown in the drawings as coming from measure-
ment memories 15 at each value of delay and doppler
poi(7.f) . . . peos(7.f) and distributing the values over the
delay doppler plane according to the ambiguity func-
tion ag(7.f). This approach is the one now used routinely
in emission-tomography systems having time-of-flight
data. If the mathematical development of the cited Sny-
der et al paper on mathematical modeling carries over
the radar-imaging problem, the choice of the weighting
function is motivated by noting that the resuiting fo(r,f)
is the maximum-likelihood estimate of the delay-dop-
pler reflectance in the target that led to the measure-
ment pe(r.f) assuming apriori that p(r,f) is uniform.

The second processing step in the imsging approach
relies on the summing of the preimage outputs in a
summer 25 and the deriving of a target image from the
preimage in a convolver 30. Such a target image resolu-
tion is provided within a resolution function h(r,f),
which defines a “desired image” according to

drfye [ [Mr =¥ f=Lop(r Podraf. (4
It has been found that including such a resolution

fanction is important in processing emission-tomogra-
phy dats as a way to trade off resolution and smoothing

for noise suppression. A narrow two-dimensional, cir- .

cularly symmetric Gaussian resolution-filter is used as
convolver 30. Let d(r.f) denote the estimate of d(r.0)
Qbtained by processing the preimage f(r.f). Also let
D(u,v) and F(y,v) denote the two-dimensional Fourier

; 3 transforms of d(z.f) and f(r,0), tively. Thus:
The formation of this preimage corresponds to some | (7.f) and f{(r.0), respectively. Thus

Ke.rrm B B/ Clam, 9
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where H(u.v) (see FIG. 2) is the transform of h(r.f) and
G(u,v) is the transform of the function g(r.) defined
according to

» (1]
wr) = (i/m { agir/Yweir )dl.

FIG. 2 is illustrative for the 2D Gaussian approxima-
tion for the 2D ellipsoidal contour of the ambiguity
function of the linear FM waveform. This required
filter function is provided for a general 2D coatour in
accordance with established techniques.

The image d(r.f) is obtsined from D(u,v) by a two-di-
mensional, inverse Fourier transformation. The func-
tions g(7.f) and G(u,v) are precomputable since they
depend only on the ambiguity function and the
weighting function used to form the preimage and not
on the measured data.

For the choice of the weighting function:

we(rymas(r N

the function g(r.f) is the average over 9 of the square of
the ambiguity function ag(7.f) is a two-dimensional
ssymmetric Gaussian function, and g(7.f) is a Bessel
function. The derivation does not require that ay(7.f) be
Gaussian, but g(r.f) will usually need to be evaluated
numerically for practical ambiguity functions.

The processing thusly described lends itself to the
radar-imaging enhancement and is motivated by the
processing derived from a mathematical model for the
emission-tomography imaging problem. The end result
is an improved imaging for radar doppler, radiometric
sonar and the like information gathering systems.

The architecture suggested by the algorithm defined
by equation (3) through (6) above is similar to that dis-
cussed in a later article by D. L. Sayder entitled “Algo-
rithms and Architectures for Statistical Image Proces-
ing in Emission Tomography” Rega! Time Signal Process-
ing VII, Vol 495, Society of tical Instrumenta-
tion Engineers, pp. 109-111, 1984, see the Appendix.
Data acquired for each doppler rate can be processed in
parallel and then combined to form f{r.f) according to
equation (4) and the processing in equation (3) required
forachdopplcmeanbcplpdmed.mpmng
implemented in current emission-tomographs is per-
formedmzhemndmhummcl’mdm
The algorithm has been i ted by a computer,
for example, a Perkin-Elmer 3242 computer with a
flosting point processor but no array processor. Two
convolutions and a division are required at esch stage
for each of the data gatering angles. Simuitaneous pro-
cesting can be performed and pipelined for each angle.

Olmouly many modifications and variations of the
present invention are possible in the light of the above
teachings such as substituting magnitude in place of
magnitude squared. It is therefore 10 be understood that
within the scope of the appended claims the invention
mayb;.e practiced otherwise than as specifically de-
scril

(6a)
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1. ~Algonthms and Architectures for Statisncal Image
Processng i Emisson in Tomography™
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Vol. NS-29. pages 544-347. February 1982

“A Mathemenical Madel for Poutron

Eeussion Tomography Systems Having
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by D. L. Sayder et al.

IBEE Tram. on Nuciesr Science.

Vol NS-28, pages 3575-1583. Jume 1981
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Tomography-Systems Having
Time-of-Flight Messurements™,
by D. L. Sayder
IEEE Trans. on Nuclear Science.
Vol. NS-29, pages 1029-1033. February 1982
. “Image Recoastruction from List-Mode
Data in an Emission Tamography
Systarm Having Time-of-Flight Measurements”
by D. L. Sayder et al.
IEEE Trans, on Nuclear Science.
Vol NS. 20, No. 3.
peges 1843-1849. June 1983
“CHIRP Doppler Radar™.
by M. Bernfeid.
Proc. IEEE,
Vol. 72, No. 4. pages 340-341. April 1984
“Cob Doppler T for
Microwave Imaging™,
by D. L. Mensa et al.
Proc. IEEE, Vol. 71, No. 2
peges 254-261, February 1993
“Stepped Frequency Radar Target Imaging™.
by M. J. Prickett et al.
{(privase correspondence)
“Principles of (averse
Synthetc Aperture Radar (ISAR) imaging”,
by M. J. Prickett et al.
IEEE EASCON Record.
pages 340-1435. September 1980
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What is claimed is:
1. An apparatus for improving the target provided by
a series of discrete target image data signals parameter-
ized by a variable such as an angle # comprising:
means for providing a plurality of target image data
input signals pe(rf) each for one of the series of
discrete target image data signals;
means coupled to a separate input providing means
for processing the target image data input signals in
total to generate separate two-dimensional preim-
age functions {(r.0);
means for summing the two-dimensional preimage

means coupled to summing means for convoiving the
summed preimage functions with a response func-
tion to form an improved target image signal ac-
cording to the equation

A= [ [Mr =1/~ (1 [)drdf
that has equivalence as
Dixsym H 3. )PV Gl o)
in Fourier transform notation where H(u.v).is the
Fourier transform of h(r,0); and
means coupled to the convolving means for control-

ling the display of an enhanced image in response
to the improved target image signal.
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lAaammuwcordmgwdnmlmwmchachor
the target image dats input signal providing means is
fabricated to provide & separate one of the target image
dats input signals from a separate one of the series of
discrete target image data signals to be characterized by
the function:

peirNm [ [pie. Nagir = ¢ f=Npir' v df.

over 0 aaglemd, . . . 0
J.Annpp-mmmordmuocmzmwluchachof
processing means is fabricated to convolve the data
Poi(T.0) . .. pea(7.0) with a confidence weighing function
w.(f,t)notbmcbe(ucmu:

Sorrm [ [ poir. iwglr =7 [=rdr'df.
and the summing means sums over the angle & to obtain
the summed two-dimensional preimage function of:

»
frh = [ firpee
[

]

10

15

whic!loptionallyhexpraudumeapproximex-v

pression

ArN=Zfelr ).
4. An apparatus according to claim 3 in which the

convolving means is a two-dimensional, circularly sym- %0

metrical Gaussian resolution-filter whose impulse re-
sponse is the solution computed by a two-dimensional,
inverse Fourier transformation expressed as

g = (I/m) of alr)we(r/)d0

that has equivalence as a two-dimensional, circularly

. symmetrical Gaussian resolution-filter which satisfies

the equation:
D(u.rym Hu. ) Fu. W/ Ginv)
where G(u,v) is the Fourier transform of g(r.f).

35

40

S. A method of improving a target image from a 43

series of discrete target image data signals parameter-
ized by a variable such as an angie § comprising:
providing a plurality of discrete target image data
input signais each for one of the series of discrete
tame.tnugedauslmhudach target image
data input signals expressed as:

polrNm= [ [ (v, NNaelr =7 [=dv'df +mr /)

55

65

12

where n(r.) is an undesired naturally occurring
noise function over § angie=é,. . . 8

processing in total the plurality of series of discrete
mmmmmmpmngmbtogmntetwo-dx
mensional preimage functions {(r.0);

summing the plurality of mo-dmeanonal preimage
functions; convolving the summed plurality of
two-dimensional preimage functions into an im-
proved target image signal corresponding to the
function

drfm [ [Mr=r f=Lptr Ldrdf

coatrolling the display of the improved target image

signal to provide an improved target image on a
iewing

&Awhodmgtoc!umSmwhlchxheuepof

20 proeesmg convoives each discrete target image data

mpu signals po(f.f) with a weighting function we(7.f) to
be expressed as:

Jor Ny [ [pole S ywelr ~ v S~ )T,

to each obtain the two-dimensional preimage function
of:

k4
Arf) = o/ fetr /0
for angle 9=8,. . . 9, which optionally is expressed as
the approximate expression:

ArN=3/eir N

7. A method according to claim 6 in which the step of

convolving with a circularly symmetric response func-
tion relies on & two-dimensional circularly symmetrical
Gaussian resolution-filter computed by a two-dimen-
sional inverse Fourier transformation expressed as:

o)) = (/®) oj’ ae(rywe(r /)0

that has an equivalence as a two-dimensional, circularly
symmetrical Gaussian resolution-filter which satisfies

the equation:
Dtuv)m H(w DR 7Y/ Gl )

where G(u,v) is the Fourier transform of g(r.f).
[ ] [ ] [ ] -« -
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