
Technical Report

CMU/SEI-89-TR-4
ESD-TR-89-J 004

Carnegie-Mellon University

Software Engineering Institute

Human-Machine Interaction
Considerations for
Interactive Software

Len Bass
Joelle Coutaz

February 1989

Technical Report
CMU/SEI-89-TR-4

ESD-TR-89- (Jo4
February 1989

Human-Machine Interaction

Considerations for
Interactive Software

Len Bass
User Interface Prototyping Project

Joelle Coutaz
Laboratoire de Genie Informatique (IMAG)

Grenoble, France

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1989 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

A previous version of this report appeared as follows: Coutaz, J., & Bass, L, Ergonomics and Software Principles for the
Construction of Interactive Software, Research Report 731-1, Laboratoire de Genie Informatique, Grenoble, France.

2.6.2.1. Guideline 1:
2.6.2.2. Guideline 2:
2.6.2.3. Guideline 3:
2.6.2.4. Guideline 4:
2.6.2.S. Guideline 5:
2.6.2.6. Guideline 6:
2.6.2.7. Guideline 7:

Table of Contents
1. Introduction 1
2. Models and Design Guidelines 3

2.1. The Model of Human Processor 3
2.1.1. Overview of the Model Human Processor 3
2.1.2. About the Perceptual System 5
2.1.3. About the Motor Syetem 6
2.1.4. About the Cognitive System 7
2.1.5. Evaluation of the Model of the Human Processor 9

2.2. Practical Guidelines for Design 1 0
2.3. The Theory of Action and Conceptual Models 1 2

2.3.1. Conceptual Models 12
2.3.2. Toward a Theory of Action: Stages of User Activities 14

2.4. Theory of Knowledge: The Semantic/Syntactic Model of Knowledge 1 7
2.4.1. General Theory 17
2.4.2. Syntactic/Semantic Knowledge 18

2.5. Theoretical Models: Summary 1 9
2.6. Practical Guidelines: Methods and Golden Rules 1 9

2.6.1. General Method for User Interface Design 20
2.6.2. Guidelines 23

Consistency 23
Conciseness 2 4
Cognitive Load Reduction 27
Ueer Driven Interaction 29
Flexibility 29
Structured Dialogue 31
Error Prediction 31

3. The Levels of Abstractions In Interactive Software 35
3.1. Introduction 3 5
3.2. Device Independence 3 7

3.2.1. The Problem 37
3.2.2. The Notion of Virtual Termlnel 3 7

3.3. Device Sharing 4 0
3.3.1. Justification 40
3.3.2. The Window at the Center of 4 0
3.3.3. Trend In Windowing Systems 41

3.4. Abstract Imaging 4 2
3.4.1. The Problem 42
3.4.2. The Principles of ths Notion of Abstract Image 4 2

3.5. Dialogue Handling 4 5
3.5.1. Introduction 45
3.5.2. Dialog Handling in the Application 4 6
3.5.3. Dialog Handling in the Ueer Interface 47

4. Windowing Systems 49
4.1. Introduction 4 9
4.2. Virtual Terminal 4 9
4.3. Single Window 5 2

4.3.1. Decorationa 53
4.3.2. Geometry 54

4.3.2.1. Viewport 54
4.3.2.2. Resizing Contents 55
4.3.2.3. Informing Client 56

4.3.3. Shape of Wlndowe 5 6
4.4. Multiple Windows 5 6

4.4.1. Input Management 5 6
4.4.1.1. Mouse Cursor 56
4.4.1.2. Text Cursor 57

CMU/SEI-89-TR-4 T

4.4.1.3. Currant Focus 57
4.4.1.4. Cognitive Aspects 57

4.4.2. Output Management 5 8
4.4.2.1. Window Placement • Overlapping 58
4.4.2.2. Window Placement • Tiled 59

4.4.3. Management of Obscured Windows 5 9
4.4.4. Hierarchies of Windows 60
4.4.5. Graphic Context 6 2
4.4.6. Dsts Interchsngs Across Windows 6 2

4.5. Networking Considerations 6 2
4.5.1. Communication 62
4.5.2. Networking 6 3

4.6. Desirable Features of window Systems 6 4
4.7. Rooms 6 4
4.8. Introduction to Toolkits 6 4

5. Toolkits 67
5.1. A Taxonomy of Tools for User Interface 6 7
5.2. Toolkits 6 8

5.2.1. Ovsrvisw: Gsnsral Services 68
5.2.2. Advantagee and Drawbacka of Toolkits 69

5.2.2.1. Advantagea 69
5.2.2.2. Drawbacks 70

5.2.3. Comparative Analysis 71
5.2.3.1. Control Strategy 72
5.2.3.2. Overloading and Customizing Interaction Techniques 73
5.2.3.3. Facilities for Implementing Direct Manipulation Interfacee 73

5.3. Graphics Tools for Abstract Imaging 7 4
5.3.1. Low-Level Graph lea Toola 74
5.3.2. Abstract Imaging and Structural Relationships 75

5.3.2.1. Box-Based Abstract Imaging 75
5.3.2.2. PHIGS 77

5.3.3. Constraint-Based Imaging . 79

6. User Interface Management Systems 81
6.1. User Interface Runtime Kernels 81

6.1.1. Introduction 81
6.1.2. Software Structure 81
6.1.3. Serpent Component Interface Management 82
6.1.4. Threads of Control 84
6.1.5. The Model Used to Describe Interaction 85

6.1.5.1. Formal Grammar Model 85
6.1.5.2. Transition Networks 85
6.1.5.3. Production Model 86
6.1.5.4. Object-Oriented Model 87
6.1.5.5. The Interest Aspects of ths PAC MOC*JI 90

6.1.6. Multiple Vlsws of Data 91
6.1.7. Fssdbsck 91

6.2. User Interface Environments 9 2
6.2.1. introduction 92
6.2.2. Tsxtual Language Specification 94
6.2.3. Graphical Editor Specification 97

6.2.3.1. Realization 97
6.2.3.2. Smart Edltora 98

6.2.4. Environment 9 8
6.2.5. Stete of the Art 9 8

Bibliography 99

CMU/SEI-89-TR-4

Human-Machine Interaction Considerations for
Interactive Software

Abstract: This document introduces current concepts and techniques
relevant to the design and implementation of user interfaces. A user
interface refers to those aspects of a system that the user refers to,
perceives, knows and understands. A user interface is implemented by
code that mediates between a user and a system. This document covers
both aspects.

1. Introduction

This document introduces current concepts and techniques relevant to the design and
implementation of user interfaces. A user interface refers to those aspects of a system
that the user refers to, perceives, knows and understands. A user interface is
implemented by code that mediates between a user and a system. This document
covers both aspects.

The first chapter is an introduction to the psychology of human-computer interaction. It
presents the theoretical models that have had a significant impact on the evolution of
the field. These models offer a way to organize the design process and help
understand the cognitive processes involved in interacting with a computer.

The rest of the document is concerned with the software design of user interfaces and
shows how the principles established by the cognitive principles can be put into
practice. Following a presentation on the abstractions involved in the organization of
an interactive system, attention is then directed to the tools for constructing user
interfaces: windowing systems, toolkits and user interface management systems.

CMU/SEI-89-TR-4

CMU/SEI-89-TR-4

2. Models and Design Guidelines

Human-computer interaction is extensively cognitive. Even the most routine of
activities, such as text editing, involves problem solving, requires the formulation of
sequence of commands and implies the communication of these commands to the
computer. To match the user's tasks, designers must go beyond their intuitive
judgments and exploit ideas from cognitive psychology and human factors. These
ideas may be classified into three categories:

• Theoretical models

• Practical guidelines

• Test strategies

The tutorial concentrates on some of the significant theories such as the Model of
Human Processor [Card 83], GOMS [Card 83], the theory of Action [Norman 86] and the
theory of Knowledge [Shneiderman 87]; it also briefly presents some practical
guidelines based on these theories, on the Command Language Grammar [Moran 81]
in particular. [Shneiderman 87] can be consulted for detailed comments on test
strategies.

2.1. Models from Cognitive Psychology
2.1.1. Overview of the Human Processor Model
The Human Processor Model represents an individual as an information processing
system. This system is comprised of three interdependent subsystems and operates
according to a set of principles. As Figure 2.1 shows, the subsystems include
perceptual, motor and cognitive systems. Each one is comprised of a processor and a
memory. Processors and memories are characterized by parameters:

• x, the processor cycle.

• m, the storage capacity in items.

• d, the decay time of an item, the time after which the probability of
retrieving the item is less than 50%.

• k, the type of item held in memory (e.g., symbolic, physical).

CMU/SEI-89-TR-4

Capacity
memory ^'Degradation

'•Info type

processor —Cycle Cognitive
System

Stimuli

••>

••>

->

->

Perceptual
System

•

Motor
-->

 ->

System
 \

Capacity
memory ^'.'Degradation

'**info type

processor —Cycle

Capacity
memory<£ Degradation

'•info type

processor —Cycle

Figure 2.1: The subsystems of the human processor.

The general principles of operations that Card, Moran and Newell proposed include:

• The Encoding Specificity Principle: "Specific encoding operations
performed on what is perceived determine what is stored, and what is
stored determines what retrieval clues are effective in providing access
to what is stored." [Card 83, p. 27]

• The Discrimination Principle: "The difficulty of memory retrieval is
determined by the candidates that exist in the memory relative to the
retrieval clues." [Card 83, p. 27]

• The Rationality Principle: "A person acts so as to attain his goal through
rational action, given the structure of the task and his inputs of
information and bounded by limitations on his knowledge and
processing ability." [Card 83, p. 27]

CMU/SEI-89-TR-4

• The Problem Space Principle: "The rational activity in which people
engage to solve a problem can be described in terms of (1) a set of
states of knowledge, (2) operators for changing one state into another,
(3) constraints on applying operators, and (4) control knowledge for
deciding which operator to apply next." [Card 83, p. 27].

• The last two principles have served as a basis for the model presented
in Section 2.2.

The following subsections describe the usefulness of the model from the point of view
of the computer scientist.

2.1.2 The Perceptual System
The perceptual system consists of a set of subsystems, each one specialized in the
processing of a particular class of stimuli. A stimulus is a physical phenomenon that
can be detected by a perceptual subsystem. A perceptual subsystem includes a
processor, sensors and memory buffers called the visual image store (for the visual
subsystem) and the auditory image store (for the auditory subsystem).

The visual image store holds the output of the visual sensory subsystem. It contains
the physical representation of some stimuli, i.e., a coding that characterizes the
physical properties of the stimuli. For example, in the visual image store represented in
Figure 2.2, the coding of the character P expresses some shape and size but does not
express the recognition of the character. Recognition is performed by the cognitive
system described in Section 2.1.4.

A stimulus which impinges upon the retina at time t, is available in the visual store at
time T+TS- where xs is the cycle of the visual processor. The mean cycle of the visual
processor is around 100 msec and varies with the intensity of the stimuli. This means
that an individual generally needs 100 msec before having the feeling of perceiving. In
other words, two images produced in the same cycle are perceived as a single one.
This result means that refreshing the screen will appear instantaneous to the user if the
image can be produced in less than 100 msec. Satisfying the 100 msec constraint
relies heavily on hardware technology and has impact in software construction. An
example is the work of Uebbing [Uebbing 86] in analyzing the objects in object-
oriented languages. One drawback of object-oriented languages is the overhead due
to message passing. Uebbing comments on an interesting experiment about code
optimization. He shows how to reorganize objects and minimize message passing
times. Knowing :

1. Tm, the transfer time of a message between two objects (e.g. 0,04 msec
for Objective-C on a MC68010).

2. n, the number of elementary objects comprised in a compound object.

then, the total time x spent in message passing to redraw the compound object is x =
ntm- If i is greater than the threshold which is a function of the visual processor cycle xs,
then it is desirable to:

• Minimize message passing by reorganizing the compound object.

CMU/SEI-89-TR-4

Draw part or all of the compound object with low-level tools (even
assembly language if this turns out to be necessary).

P. T = 100 ms 9
>

WORKING
MEMORY

QTsttie letter p;

/N /N /N

COGNITIVE FILTER

/\ /\ /K /\ /\

Figure 2.2: The visual sensory subsystem and its relationship
 with the cognitive system.

message passing is the notion of windowing service through local area networks. This
technique will be subsequently developed in Sections 3 and 4. X-Windows [Scheifler
86], which is such a server, is able to handle mouse events fast enough to make
immediate feedback possible without making the user aware of the network.

2.1.3. The Motor System

Shortly after information has reached a perceptual memory, the cognitive system
receives symbolically coded information in its working memory. The cognitive system
uses previously stored information in the long -erm memory to make decisions about
how to respond: the model views thought as translated into actions by activating
muscle movements. The Motor System is responsible for movements. Movements that
are of interest for human-computer interaction include arm-hand and eye-head
gestures.

A movement is made of a sequence of discrete micromovements. Each
micromovement requires one cycle ?m of the motor system. The mean value for xm has
been evaluated to 70 msec. With the hypothesis that a movement results from a

CMU/SEI-89-TR-4

sequence of micromovements, it is possible to compute the theoretical time to move the
hand to a given target. Figure 2.3 shows the initial situation: the hand is located in Xrj,
at a distance D from the target (Xrj - D). The size of the target is S. After the first
micromovement, the hand is in X1, then in X2, etc. One can show that the time T
required to place the hand on a target depends on the required relative precision, that
is on the ratio between the distance and the size of the target:

T = I log 2(D/S + 0.5)

where I is a constant determined experimentally (around 100 msec),
known as Fitts's law.

This equation is

~s >

< — D ~ "
r A

 ->

X0 • «1 x2

TARGET

Figure 2.3: Hand movement towards a target.

Fitts's law can be usefully applied to determine the time spent in hand homing between
input devices or in object selection on the screen. Such computations can serve as a
quantitative evaluation of alternatives between syntaxes.

2.1.4. The Cognitive System
There are two important memories in the cognitive system: the working memory and
the long-term memory (see Figure 2.4). The working memory (also called short-term
memory) holds information under current consideration just like the general registers of
a computer. It contains the intermediate product of thinking, the representations
produced by the perceptual system, and a subset of activated items extracted from the
long-term memory. The long-term memory stores knowledge for future use in the form
of symbols, called chunks.

A chunk is a cognitive unit whose nature depends on the user. For example, SNCF is
made of four chunks (i.e. the four letters S, N, C and F) for someone who does not
know that SNCF is the acronym for the French train company, whereas it is a single
chunk for French people. Chunks can be organized into larger units and be related to
other chunks. For example, the chunk "car" is composed of the chunks "wheel," "body,"

CMU/SEI-89-TR-4

etc., and the chunk "weather" is related to the chunks "sun," "rain," "cloud." Semantic
networks have been widely used to represent such relationships between pieces of
knowledge.

When a chunk is activated, previously activated chunks are less available because of
limited capacity of the working memory. The new chunks interfere with the other ones
which tend to disappear from the working memory if they are not reactivated. Note that
the working memory behaves like the working set of virtual memory paging systems:
when a page fault occurs (i.e., when a chunk is activated), pages in the main memory
that have not been used (i.e., chunks that have not been reactivated) are swapped out
to let the last referenced page be installed in the main memory. The Room model
presented in Section 4.7 illustrates this notion of "cognitive working sets" by organizing
the task space of the user in closely related windows.

The capacity of the long-term memory is infinite: there is no erasure from the long-term
memory, but retrieval of a chunk may fail. This failure may have several causes: no
association can be found or similar association to several chunks interfere with the
retrieval of the target chunk. As a consequence, the best way to remember something
later and avoid chunk interference is to associate it with chunks of the long-term
memory in a unique way.

While the capacity of the long-term memory is infinite, that of the working memory is
very limited. It has been demonstrated that the capacity of the short-term memory is 5 ±
2 [Miller 75]. As a result, not only should software engineers pay attention to short-term
memory overload but also should devise effective electronic extensions. Section 2.6
shows that menus and forms constitute such appropriate extensions.

8 CMU/SEI-89-TR-4

LONG-TERM MEMORY

Mass of Knowledge
Permanent storage
of a computer

|Lt|t = oo

WORKING MEMORY

Data under consideration
Registers of a computer

JLLW m = 7 ± 2 chunks

PERCEPTUAL MEMORIES

/\

ASSOCIATION ACTIVATION

v

E 5 E C
Figure 2.4: Perceptual memories, short-term memory and long-term memory.

2.1.5. Evaluation of the Human Processor Model
Clearly, the Human Processor model is a simplification of the complex state of present
knowledge in cognitive psychology. However, it provides the computer scientist with a
comprehensible framework on which various aspects of this knowledge can be

CMU/SEI-89-TR-4

gradually plugged. Actually, the goal of Card et al. goes beyond providing a framework
for thoughts. The goal is to create a new discipline that would combine characteristics
from fundamental and applied sciences. As in physics, this discipline would allow the
designer to perform approximate evaluations. With the help of a technical theory
[Newell 86], it would be possible to elaborate models that would allow the designer to
answer questions about a particular phenomenon in human-computer interaction. The
model of the Human Processor is a step towards this technical theory. For doing so, it
introduces parameters that help in formalizing user performance and making predictive
evaluations.

Unfortunately, the parameters of the model of the Human Processor are useful for
computing low-level behavior only. They are useful in determining the optimal rate for
refreshing the screen; they stress the incidence of size targets on the effectiveness of
selection actions; they explain why special attention should be devoted to short-term
memory overload. Although mathematical expressions bring some scientific coloration
to the development of a domain, the parameters of the model of the Human Processor
are driven purely by performance considerations. They do not help in the
understanding of the underlying cognitive processes that lead to such performance.
The principles of operation that accompany the model are an attempt in this direction.
One of them, the principle of rationality, serves as a basis to goals, operators, methods,
and selection [Card 83], described in the next subsection.

2.2. Practical Guidelines for Design
GOMS:

• Is based on the theoretical hypothesis described in the previous
subsection: a human being acts in a rational manner.

• Is a model for the performance of the user who does not make errors.

• Structures the cognitive activity involved in accomplishing a task into
four components: Goal, Operators, Methods, Selection.

A goal is a symbolic structure that:

• Defines a desired state.

• Determines the set of methods which lead to this goal.

• Constitutes a backtrack point in case of failure.

Goals are organized hierarchically. The leaves of the hierarchy are operators. For
example, when starting to edit a document, the user has the top level goal "edit-
manuscript." The user segments this larger task into smaller tasks and devises the
subgoals to achieve the subtasks. Figure 2.5 gives an example of such a subtask,
which consists of transposing two words.

1 0 CMU/SEI-89-TR-4

Transpose
Word1,Word2

Insert Wordl
after Word2

Select Wordl
with the mouse

Figure 2.5: The decomposition of a goal (transpose two words) into a hierarchy of
subgoals. The leaves of the tree denote physical actions. The illustration

does not make explicit the selection rules applied by the user
 when several methods lead to the same goal.

An operator:

• Is a perceptual, a motor or a cognitive action.

• Provokes a change in the mental and environmental state.

• Is characterized by I/O parameters and an execution time.

A method:

• Describes the know-how. The know-how is made of learned procedures
that the user already has at execution time. They are not plans created
at execution time. The learned procedures express skill built from prior
experience. They reflect the knowledge of the exact sequence of steps
to accomplish a task

• Is a sequence of conditions about goals and operators.

A selection rule determines the choice between the methods that achieve the same
goal.

GOMS can be used to model and predict the users behavior at various levels of
abstractions. One application of GOMS at a low level of abstraction is the
KEYSTROKE level model [Card 83] which, given a command language, allows the
designer to predict the time needed by the user to enter a command.

CMU/SEI-89-TR-4 1 1

To summarize, GOMS:

• Is useful for predicting errorless behavior.

• Does not deal with concurrent operations: the behavior is assumed to be
linear. The goal stack model does not fit non linear planning; and non
linear planning is required to deal with the user's interruptions (e.g.
errors).

• Is behaviorist: it is a model about performance. It is not cognitive, as is
the theory of action in the next section.

2.3. The Theory of Action and Conceptual Models
One of the goals of cognitive engineers is to identify and understand the principles that
guide the actions of the individual. The theory of D. Norman relies on the hypothesis
that the user elaborates conceptual models and that task accomplishment involves
several stages [Norman 86].

2.3.1. Conceptual Models

A conceptual model:

• Is a mental representation of oneself and of the environment.

• Depends on previous knowledge and understanding.

• Is modified by the nature of the interaction.

When considering the interaction of a user with an artifact, it is important to consider
two conceptual models (the designer's and the user's conceptual models) and the
notion of system image. If the artifact is a computer, there is also the system's model to
consider. Figure 2.6 represents these models.

1 2 CMU/SEI-89-TR-4

DESIGNER

SYSTEM

USER

Figure 2.6: Conceptual models.

777e Designer's Conceptual Model:

• Is the model that the designer devises for the artifact.

• Relies on the representation that the designer has about the typical user
of the artifact. Ideally, this conceptualization is based on a thorough
analysis of the user's tasks, requirements, capabilities, background and
experience.

7776 User's Conceptual Model:

• Results from the user's interpretation of the system image.

• Defines the "view" that the user has about the system.

7776 System Image:

• Results from the physical structure that has been built (artifact).

CMU/SEI-89-TR-4 13

• Should be explicit, intelligible and consistent, so that the user may
elaborate a conceptual model compatible with the design model. The
burden is placed on the image that the system projects. Accomplishing
a task will be easier or harder, depending on the system image.

777© System's Model:

• Is the model that an intelligent program might build about the user.

• Allows for automatic customization.

2.3.2. Toward a Theory of Action: Stages of User Activities

Accomplishing a task involves approximately seven stages (see Figure 2.7):

1. Establishing the Goal

A goal is a mental representation of the desired state. It is expressed in terms
of psychological variables. The system state is defined by the value of its
physical variables, such as the location of the cursor or a sequence of words
that forms a sentence. The user compares the system state to the goal. To do
so, the system state is translated into a psychological representation.

2. Forming the Intention

The evaluation of the distance between the goal and the translated state of the
system gives rise to an intention. An intention is the decision to act toward
achieving a goal. An intention is stated in psychological terms. It specifies the
meaning of the input expression that is to satisfy the user's goal. To do so, the
user must know the mapping between the psychological variables and the
physical variables; for example, the user must have established the
correspondence between the notion of insertion point, which is a psychological
variable, and the location of the cursor, which is a physical variable; As another
example, in order to achieve the goal "delete wordi" in Figure 2.5, the user
must know the link between suppressing a word, which is a psychological
notion, and the command "cut," which is a physical input expression. The user
must know the effect, the meaning, of the command "cut."

3. Specifying the Action Sequence

The intention must be translated into a sequence of actions. To do so, the user
has to know the mapping between the physical variables and the physical
control mechanisms. A physical control mechanism allows for the modification
of physical variables. The specification of an action sequence is a mental
representation of the actions to perform on the physical control mechanisms. It
prescribes the form of the input expression that has the desired meaning. For
example, the user must know that the location of the cursor can be modified
with the mouse. In the example in Figure 2.5, the user knows the syntactic-
lexical definition of the command "cut."

14 CMU/SEI-89-TR-4

4. Executing the Action

The execution of an action is the manipulation of physical control mechanisms.

5. Perceiving the System State

The system state is embedded in an output expression. The perception of this
expression is the translation of the physical variables into psychological
variables. For example, after typing the character backspace in Figure 2.5, the
user perceives that the output expression no longer contains the word
displayed in reverse video in the previous output expression.

6. Interpreting the System State

The interpretation of the output expression results in determining the meaning
of the output expression. For the example in Figure 2.5, the disappearance of
the word is interpreted as the deletion of the word.

7. Evaluating the System State with Respect to the Goals

The evaluation establishes the relationship between the meaning of the output
expression and the user's mental goal. This evaluation may result in a
modification or in continuing to the next step in the plan.

CMU/SEI-89-TR-4 15

o

m
m
x
m o c

Input
Semantic
Distance

Input
Articulatory

Distance
•

1

t
Output

Semanic
Distance

!
f

Output
Articulately

Distance

a
c
r—
T|

O

x
m

m
<
> r-
C
>
H
o

Figure 2.7: Stages in user's activities and gulfs of execution and evaluation.

Accomplishing a task:

• Does not necessarily require the presence of the seven stages.

• Does not require these stages to happen in a specific order.

• Creates different needs at different stages. For example, menus can
assist in the stage of forming an intention and specifying an action, but
frequently make execution more clumsy.

• Does require a translation between the psychological representations
and the physical presentations. This translation reveals the existence of

16 CMU/SEI-89-TR-4

a gap between the mental world and the physical world. Norman calls
this discrepancy a "gulf."

The gulf between the user and the system is two-way: from the mental representation
to the physical presentation, and from the physical world to the mental world. The first
gap is called the gulf of execution, whereas the second is the gulf of evaluation.

The gulf of execution consists of the semantic distance and the articulatory distance.
The semantic distance is covered by the intention, which goes from the goal to the
specification of the meaning of an input expression that is to satisfy the goal. The
articulatory distance is covered by the action specification, which goes from the
meaning of the input expression to its syntactic/lexical form.

The gulf of evaluation also consists of an articulatory distance and a semantic distance,
covered respectively by the interpretation of the output expression and the evaluation
of the meaning of the output expression.

In summary, this theory stresses the fact that the accomplishing of a task involves
several stages, that each stage has its own possibly conflicting needs, that these needs
result from the gulf between the mental representation and the physical presentation,
and that this gulf should be bridged by the system designer as much as possible
through the system image. Conversely, if the matches between the psychological and
the physical variables are weak, the user has to bridge the gulfs by creating more
plans, more action sequences and more interpretations that move the psychological
description closer to the physical requirements.

Opposite GOMS, which provides the designer with a synthetic view of human behavior,
Norman's theory of action analyzes the mental processes that lead to such behavior.
Whereas GOMS is limited to the ideal case of errorless interaction, Norman stresses
the difficulties encountered by the user and provides the designer with a general
framework for explaining the cause of errors. GOMS is a quantitative model about
human performance, whereas Norman's theory of action is an informal, explanatory,
cognitive model about human behavior. The informal nature of Norman's theory
prevents the designer from making predictive evaluations. However, such a theory can
serve as a basis for the development of evaluation techniques (e.g., ETIT [Moran 83]).
The intuitive view of Norman's theory is interestingly complemented by ACT*
[Anderson 83], a formal theory of human cognition based on production systems.

2.4. Theory of Knowledge: The Semantic/Syntactic
Model of Knowledge

The nature of knowledge has been studied extensively, resulting in various theories
about how knowledge is organized and exploited. This section, first describes briefly a
general theory of knowledge, as well as the semantic/syntactic model of knowledge,
useful in the context of user interface design.

2.4.1 A General Theory [Simon 84, Card 83]

Subsection 2.1.4 explains that knowledge is organized as a network of chunks. This
network contains two classes of information:

CMU/SEI-89-TR-4 17

• Factual knowledge: a set of assertions, predicates, known facts with
possibly confidence factors

• Procedural knowledge: a set of procedures that describe the know-how.
A procedure is an elementary action, such as a computer instruction.
Unlike the computer instruction set, the procedure set of the cognitive
processor evolves with time.

In the context of human-machine interaction, the chunks of interest here are those that
constitute the user's conceptual model. This conceptual model contains facts and
know-how about the system. Today, it is widely agreed that these facts and skill can be
classified into two categories: syntactic knowledge and semantic knowledge (see
Figure 2.8) [Shneiderman 87].

The User's Model

Semantic Knowledge Syntactic Knowledge

Figure 2.8: The Syntactic/Semantic model of knowledge.

2.4.2. Syntactic/Semantic Knowledge

Syntactic knowledge:

• Represents the linguistic conventions that the user must know to specify
requests to the system (input expressions) or to interpret responses from
the system (output expressions). These conventions allow the user to
communicate with the system image.

• Is system dependent.

• Is arbitrary, inconsistent, difficult to retrieve and has many other negative
qualities.

• Must be acquired by rote memorization and repetition.

18 CMU/SEI-89-TR-4

Semantic knowledge is:

• An organized hierarchy of factual and procedural concepts: factual
concepts are in the form of objects or data. Procedural concepts are
operations on objects or procedures on data. In addition, a distinction
should be made between domain-dependent objects and operations,
and system-dependent objects and operations.

• Potentially transferable across different computer systems.

• Independent of syntactic details.

• Acquired by meaningful learning.

The distinction between syntax and semantics, and between domain-dependent
concepts and system-dependent concepts, match the usual forms of competence: a
user may be incompetent in a domain but skillful at using a particular computer.
Conversely, the user may be knowledgeable in a field, but ignorant in the use of a
particular computer system.

2.5 Theoretical Models: Summary
Models presented so far are concerned with phenomena related to human-computer
interaction.

• Some models, such as the Human Processor Model, GOMS and
Keystroke, are useful for making quantitative predictions about a
particular design. However, by oversimplifying the real world, they are
too limited in scope and too low level.

• Other models, such as Norman's Theory of Action and Shneiderman's
model of Syntactic/Semantic Knowledge, provide the designer with
explanations about the cognitive behavior of the user. Although they
take a more realistic view of the real world, these models lack of a
scientific formalism makes them unusable as predictive tools.

The user interface designer has the difficult task of integrating these various theories
into a unique "easy-to-whatever" computer system! Combining all of these principles
leads directly to some kind of combinatory explosion. Combinatory explosion may be
avoided with the use of heuristics. Heuristics does not guarantee an optimal solution,
but it provides a reasonable answer. The following section we introduces some general
heuristics that needs to be flavored with the peculiarities of the specific case at hand.

2.6. Practical Guidelines: Methods and Golden Rules
The general method presented in this section is an application of the Command
Language Grammar [Moran 81], although the Command Language Grammar (CLG) is
not a methodology. CLG conveys a type of top-down approach that can be found
useful as a framework for designing user interfaces. CLG is a grammatical structure to
represent computer systems at various levels of abstractions. Each level of
representation defines a particular view of the system, and each view results from an

CMU/SEI-89-TR-4 i~9

analysis that any competent designer should perform. Figure 2.9 illustrates the
principles of CLG, whose terminology is explained in Section 2.6.1.

2.6.1. General Method for User Interface Design

The design of a particular interactive system may be structured along five axes:

1. Definition of the profile of the user based on a general classification
(notion of novice, expert, and occasional user, combined with the notion
of semantic and syntactic knowledge).

2. Definition of the profile of the tasks: utility of the system according to the
needs of the user. This constitutes the task level of CLG. It consists of
defining the domain-dependent entities as perceived by the user:

the task entities of the domain.

the tasks to be performed in the domain.

the decomposition of the tasks into a hierarchy of subtasks.

the task procedures (methods) to perform the various tasks.

the privileged tasks, i.e., tasks that need special attention due,
perhaps, to their frequency.

3. Definition of system-dependent notions to implement the domain-
dependent concepts. This constitutes the semantic level of CLG. It
includes:

• the conceptual entities, which act as the electronic
representations of the conceptual objects and of the additional
entities that the system uses for its own purposes.

• the user and system conceptual operations to manipulate the
conceptual entities (looking for an information on the screen is
considered a user conceptual operation).

• the semantic procedures (methods) expressed in terms of the
user, and system conceptual operations to perform the tasks
defined in the task level.

4. The definition of the structure of the dialogue in layers of increasing
complexity and leading to task closure. This is the syntactic level of
CLG. It includes:

• the commands and their arguments.

• the clustering of commands into contexts and the mechanisms
for switching between contexts.

• the syntactic procedures (methods) expressed in terms of the
commands, as well as in terms of the conceptual operations of

2 0 CMU/SEI-89-TR-4

the user. A syntactic procedure shows how to perform a task
defined at the task level.

5. Definition of the interaction style, choice of the lexical details (e.g. world
metaphor vs. conversational metaphor). This is the interaction level of
CLG. It includes:

• the interaction elements and the primitive actions performed by
the user and by the system (keystroke and mouse selection are
examples of user actions; prompts and responses are system
primitive actions).

• the order in which the interaction elements must be specified by
the user or produced by the system.

• the interaction procedures (methods) expressed in terms of the
primitive actions and in terms of the conceptual operations of the
user. An interaction procedure shows how to perform a task
defined at the task level.

CMU/SEI-89-TR-4 2 1

User and
System

Conceptual
Operations

User's
Conceptual
Operations
Commands

User and
System
Primitive
Actions

Entities specific
to the level

Relation of correspondence

Used to express

Figure 2.9: The CLG layers for the Design of User Interface.

As the description of CLG shows, a particular system is fully described at various levels
of abstraction. Each level manipulates its own entities and operators, but these
elements are combined to fully describe the system. Each level can be viewed as a
refinement of the previous one (i.e., higher in the hierarchy) and each level is
independent of the following one (i.e., lower in the hierarchy). By following this
hierarchical method, CLG yields a top-down approach to the design of a user interface.

22 CMU/SEI-89-TR-4

Although CLG can be usefully exploited as a method, the basic difficulty for the
designer is defining and structuring the user's tasks. If the description of the task
domain does not match the mental representation and the cognitive processes of the
user, the system will probably be hard to use and hard to learn. Unfortunately, an
appropriate organization of the user's tasks requires an intensive knowledge in the
domain of cognitive psychology, a knowledge that most computer scientists do not
master.

The subsections that follow provide the designer with practical guidelines that may be
useful to define the syntactic and interaction levels of CLG.

2.6.2. Guidelines
The guidelines presented in this subsection form a very small fraction of hundreds of
rules currently available in the literature. For a more complete enumeration, refer to
[Scapin 87, Shneiderman 87]. The guidelines that follow are a selection of general
human factor principles that computer scientists may apply easily. They are organized
as a set of seven guidelines: consistency, concision, cognitive load reduction, user-
driven interaction, flexibility, dialogue structuring, and error prediction.

2.6.2.1. Guideline 1: Consistency
Consistency implies the absence of exception. Exceptions increase learning time and
the likelihood of error. System consistency is a concern at all of the stages that D.
Norman identified for modeling human-computer interaction. This subsection is limited
to the stage of action specification and to the execution stage. Rules for the perception
and the evaluation stages derive directly from those considered here.

• Consistency and the Action Specification Stage

If a goal is similar in different environments, then the sequence of
actions to accomplish the goal should be the same.

For example, a user needs to "duplicate an object and print the copy of
the object". The object may be a document or an electronic mail
message. In both environments, the mail system and the document
preparation system, the sequence of actions should be the same.

• Consistency and the Execution Stage

The execution stage includes syntactic, lexical and pragmatic issues.

• With regard to syntax, the designer should determine the order of
command arguments. Experiments indicate that when
commands share arguments, these arguments should appear in
the same order in every command.

• Note that the order does not always match the sequencing of
natural languages and that there is a choice between postfixed
notation and prefixed notation. It seems that for graphical
environments, a postfixed notation is more appropriate whereas
the prefixed notation is adequate for text-based interaction.

CMU/SEI-89-TR-4 2 3

• With regard to lexical issues, naming should be consistent . I
some function appears in different contexts, it should be
designated with the same name.

A counter example of this rule is the function "terminate'' in the
Unix world: to terminate a message in the mail system, the user
must enter a single character line (character"."); to terminate the
mail system, the user must type "q" (or "x" depending on how the
user wants to reenter the mail system); typing "logout" terminates
a Unix session.

• With regard to pragmatics issues, consistency recommends that
spatial layout of output information should be preserved.

This principle of locality helps the user anticipate gesture on
system outputs. In particular, menu items should always appear
in the same order. The order must primarily depend on a logical
sequencing defined by the task; if the task does not show any
logical order, the frequency criteria should be applied; however,
if the frequency criteria is not applicable, alphabetical order
should be used. Similarly, locality rules have been defined for
forms: at the top of the form, the user should find the fields that
must be filled whereas optional items can be gathered at the
bottom. Note that this guideline is consistent with Fitts's Law: it
minimizes hand movements.

2.6.2.2. Guideline 2: Conciseness
Consiceness is the harmonious combination of brief and powerful expressions. In
computer-human interaction, conciseness is achieved in the form of abbreviations,
macrocommands, cut and paste facilities, undo and redo features, and default values.

This section illustrates the difficulty in applying these guidelines with the use of
judgement by the designer. For example, conciseness is desirable for the experienced
user but not for the novice user. It is important to identify the end users of a particular
interface and tailor the interface to their characteristics.

• Conciseness and Abbreviations

Abbreviations are usefu shortcuts for experienced users. Shortcuts are
mandatory. For example, menus are adequate as a technique for
minimizing memory load, but they are clumsy when considering the
action specification stage (a Keystroke level model can be used to
support this assertion). However, in order to be understandable,
abbreviations should be derivable from precise rules.

Common rules for deriving abbreviations include:

1. Special character (e.g., escape or control) followed by a letter
(usually the initial of the command name). EMACS is a good
example of the application of this rule.

2 4 CMU/SEI-89-TR-4

4.

Vowel deletion. For example, the command delete would be
abbreviated as "dlt".

Maximum truncation which consists of suppressing characters
from command names as long as there is no ambiguity. For
example, given the set of command names "compile, copy,
delete," the rule respectively derives "com, cop, del".

Two character truncation. This rule applied to the set "compile,
copy, delete," would derive "cm, cp, dl".

Figure 2.10 illustrates the results of a study that compares user performance according
to the abbreviation rule [John87]. The response time is the mean time the user needs to
enter an abbreviated command.

RESPONSE TIME (msec)

2292

1754

2519

2060

2-Char Maximum Special Vowel
Truncation Truncation Character Deletion

Figure 2:10: Comparative user performance according
to the abbreviation rule.

Conciseness and Macrocommands

A macrocommand is to interaction languages what a procedure is to
programming languages. It is an abstraction mechanism and an
extension technique. As an abstraction mechanism, it matches human
learning cognitive processes that encapsulate related pieces of
knowledge into a "bigger" chunk. As an extension technique, it allows
for combining generality and particularity.

CMU7SEI-89-TR-4 25

Considering human-computer interaction, particularity denotes user
specific needs. Norman's theory of action identifies the semantic
distance between the formation of the intention and the elaboration of a
plan of commands. One way to shorten the gulf is to provide the user
with a high-level language that directly expresses the most frequent
problem-solving plans. The drawback of a highly tailored language is
the difficulty to express unusual tasks.

The conflict between particularly and generality has been solved in Unix
and Lisp-based systems by providing the user with a fairly low-level,
general purpose language to build new commands. These commands
may encapsulate frequently encountered actions into a single
parametrizable chunk. Unfortunately, the user interface for defining such
macros forms a highly disappointing cognitive barrier to the newcomer
or to the unmotivated user.

Conciseness and Cut and Paste Facilities

"Cut and Paste" is the electronic version of manual patchwork. As with
manual patchwork, it offers a way to reuse information. For example, it
avoids the need to retype information, or it allows the user to enter
information already provided by the system. Cut and paste is also a
means for overcoming lack of integration between tools. For example,
the user can develop a text with a special purpose text editor, then draw
a picture with a sophisticated interactive editor, and eventually paste the
picture into the text document. In integrated environments, there would
be no need for the user to explicitly use different tools. In any case, cut
and paste operations must appear consistent to the user.

An example of inconsistency is a round-trip transfer of information
between MacDraw and MacPaint. MacDraw manipulates graphical
objects such as circles and polygons, whereas MacPaint handles pixels
only. Suppose a user performs the following actions: draw a circle C
with MacDraw, cut C from MacDraw, paste C into MacPaint, cut C from
Macpaint and finally paste C back into MacDraw. As far as the naive
user is concerned, C looks like a circle in the MacDraw document, but is
not editable anymore as a circle. Cut and pasted operations have lost
"semantic" information about transferred data.

Consistency in the behavior of "cut and pasted " information relies on the
existence of a universal format, as well as on a general type translator..
A universal format defines a common data representation, i.e., a
common formalism, for all of the applications, say, of a workstation. A
type translator performs the required transformations between the data
representations specific to an application and the universal format. To
our knowledge, "type recasting" is a research topic that has not been
investigated in its full generality.

Conciseness and Undo and Redo Features

Undo has two advantages: it allows the user to easily correct a mistake
and it avoids the execution of the plan of actions that would undo the

2 6 CMU/SEI-89-TR-4

desired effect. A redo feature avoids the repetition of a sequence of
actions. Both undo and redo support conciseness.

Conciseness and Default Values

Default values are another means to reuse information. There are two
kinds of default values: static and dynamic. Static values do not evolve
with the session. They are generally wired in the system, or are
acquired at initiation time from a profile file. On the other hand, dynamic
default values evolve during the session. They are computed by the
system from previous user inputs. Figure 2.11 gives an example of the
default value proposed by a system for the file name of a document
being saved in the course of an editing session.

Q Section2-Principes Pratiq...

D Chaps-Regies <I'I)r
Q Chap?-E»reur*
CD Pictures
D Sec1lon2-lnlroduc1lon

O

O

Save Current Document Rs

Chap5-Regles d'Or

HD21

E jed

[Saue Cancel] [Onoe "")

(§) Entire Document OTeHt Only

Figure 2.11: An example of a dynamic default value: the default file name for saving
a document is the name of the document being edited. In order to attract attention, the
 name is highlighted in reverse video.

2.6.2.3. Guideline 3: Cognitive Load Reduction
The literature describes many ways of reducing the cognitive load. Among them, we
select the use of menus and forms, and the informative and immediate feedback.

• Cognitive Load Reduction and Menus/Forms

CMU/SEI-89-TR-4 27

Experiments show that the human being is better at recognizing than at recalling.
Menus and forms, which present alternatives, are good alternatives as short-term
memory extensions.

Cognitive Load Reduction and the Immediate and Informative Feedback

Generally speaking, a feedback is a reaction to some cause. In the context of
human-computer interaction, the feedback is an output expression produced by
the system that has processed some user input. The interpretation of the feedback
by the user leads to the evaluation of the situation before carrying on the plan of
actions. Thus, the feedback has the responsibility of expressing the state of the
system.

Non Informative
urn u« i|ue ia nyne u,ui LUIIUBI

pas dans la fenetre. II tape ur
pour consequence, deux enum
@beg1n(enumerate) explicits
ne change pas d'aspect sur l'e
1'impression du document. Da
physique n'est que partlellerr
ri ii

o
• ijjji

•Pi!

<k
Q]

iDli Medium Informatiue
uai cs que ia nyne qui Lunuei
pas dans la fenetre. II tape ur
pour consequence, deux enum
@beg1n(enumerate) expllclte
ne change pas d'aspect sur l'e
1'impression du document. Da
physique n'est que partiellerr

o

o
a

IDI Informatiue Scroll Bar
i eiai au lexie qui sun mais 16 texte qui suit ne ci^.
l'ecran. II changera d'aspect seulement a l'1mpres|
conditions, l'expression de l'etat physique n'est q
Les systemes dlts WYSIWYG (What You See Is Whe
inconvenients en indiquant explicitant immediate
complere l'etat du texte.

.:.:;_
;!;!:

La specification des actions et la realisation

,,t?,e,$,Qj.n.§-&P.n.t.rs!3.i.clQ.]i.ce.§..
NT1 i:i:i Jj j j j j j j i j j j j j j j j j j j j j j j ; j j j j j j j j j ; j j I W " a9e Z

(ii:
o
Q

Figure 2.12: How informative is informative feedback?

The system state is described by a wide variety of data structures. As far
as human-computer interaction is concerned, the system state is
comprised of the data structures that are of interest to the user. These
data structures are those that match the psychological variables involved
in accomplishing the task. The system feedback has the responsibility of
presenting these data structures in a form that helps the evaluation. It is
also in charge of immediately informing the user of the changes
happening to such structures.

28 CMU/SEI-89-TR-4

The changing shape of the cursor.is an example of immediate feedback.
A cursor shape can be used to remind the user that a particular mode is
active (e.g., drawing or erasing); cursor shapes, such as the hour glass,
the wrist watch (or the cup of tea) are useful to inform the user of % long
operation. Dynamic techniques such as progression bars convey more
information about the evolution of a time-consuming operation.

As an illustration of how informative an informative feedback can be, we
consider the presentation of the psychological variable "page number,"
which is of interest in document editing tasks. Figure 1.12 presents three
possible feedbacks for this variable. On the top left comer of the figure,
the position of the elevator in the scroll bar indicates that the current
view is about half-way in the document. On the top right corner, the
elevator includes extra information: an integer. After some practice, the
user infers that it refers to a page number. On the bottom screen, the
user is fully informed of the current position of the window in the
document.

In a nutshell, informative feedback should answer the following user questions
[Nievergelt 80]: "Where am I?, What can I do?, What have I done?"

2.6.2.4. Guideline 4: User-Driven Interaction
Users should have the initiative in a dialogue with a computer. This recommendation
stems from the view of the computer as a tool: the computer is a submissive server,
whereas the user is the principal actor. Actually, there is a more generous view of the
computer: that of a collaborator.

In a collaboration, each partner acts according to each one's competence. In the
particular case of human-computer interaction, the computer should behave as the
extension of the user's skills. It should let the user act freely and take control
arbitrarily. The difficulty for the user interface designer lies in identifying the transition
points where control shifts from the user to the computer and back.

In both cases, whether the computer is a tool or a collaborator, users should not be
modeled as finite state machines. Automata offer a convenient way for modeling
relations between predictable and well-defined states. States involved in human
problem solving are rather unknown and their relations are mostly unpredictable.
Human problem solving is basically opportunistic, mixing the top-down approach with
the bottom-up approach [Hayes-Roth 79]. As a result, it must not be constrained by an
inflexible model of interactions.

To summarize, give the user the illusion of driving the system.

2.6.2.5. Guideline 5: Flexibility
Flexibility is mainly concerned with the notions of customization and multiple rendition
of a concept.

• Flexibility and Customization

Customization is the adaptation of the user interface to the user. A user
interface can be adaptative or adaptable. An adaptative user interface
automatically evolves depending on the user's mental state. An

CMU/SEI-89-TR-4 2?

adaptable user interface is manually modified to fit the user's
requirements. In both cases, whether the user interface is adaptative or
adaptable, the current facilities for customization are rather limited.

An adaptative user interface relies on the existence of an intelligent
observer that tracks the actions of the user, infers the user's mental state
and modifies its behavior accordingly. The notion of intelligent observer
supports the view of the computer as a collaborator. Unfortunately, the
realization of an effective observer relies on a thorough understanding of
human cognitive behavior. Given our limited knowledge in this domain,
a lot of research needs to be pursued in the area of adaptative user
interface. Currently, a more practical approach is the manual adaptation
of user interfaces.

An adaptable user interface relies on the existence of a software
architecture that makes a distinction between functional mechanisms
from presentation policies. Functional mechanisms implement the high
level semantics of the interaction, whereas presentation policies deal
with the syntactic and lexical issues. A software architecture that
satisfies this requirement makes possible the modification of the
syntactic and lexical aspects of the system without side effects on the
internal functioning. For example, it is easy to repair the "surface" of the
interaction, such as changing a command or a parameter name, without
any code recompilation. Although it is possible to modify the lexical and
syntactic aspects of the presentation, it is not possible to change the
structuring of the interaction. This issue is the topic of Guideline 6.

Other complementary approaches to customization include facilities for
building new commands (macrocommands) and defining abbreviations.
These two aspects have already been discussed in 2.6.2.2.

A priori customization seems to conflict with consistency. In analogy to
architectural design, a framework is provided that can be moderately
reorganized and decorated as desired: it will be possible to change the
location of a secondary wall but certainly not the location of a wall that
supports the building. It is also possible to choose wallpaper and
carpeting, because it is independent of the framework. Similarly, with an
appropriate software architecture, it is possible to change the lexical and
syntactic aspects of the interactive system without damaging the overall
organization that is the referential framework for consistency.

• Flexibility and Multiple Rendition

Multiple rendition is a facility for multiple, possibly simultaneous views of
a given concept. Each view matches a particular need at some stage of
a given task. For example, in text editing, it could be possible to view the
document as a table of contents and simultaneously read a particular
chapter or subsection. The table of contents and the subsection are two
views of the same data structure that represents the document.

Figure 2.13 gives an example of a multiple representation of the same concept.
Chapter 4 describes some software techniques that support multiple rendition.

30 CMU/SEI-89-TR-4

S318

171*

>MMbr» ltvDMtM Ci

ma NIMBI mKresQim nmKRmaiinHi

UntfwtWtM nit niHlUM OK apnrtMkuft its

imOlNMUl mi Tn«^r«-I«m as irama^tUta 191

f*«*it*M I2!l Trw*n***k IB imamrtftmi i«7

acanUii-n*! 1111 **wl»-n»>1l I2S7 u•o»»i(iaM im

Figure 2.13: Multiple representation of the same concept. On the left, data are
presented as bar charts; on the right, the same data are collected in a table.

2.6.2.6. Guideline 6: Structured dialogue
Structuring is a general technique for mastering complexity. Dialogue structuring
consists of organizing the command space into layers of increasing complexity. By
doing so, the novice user is able to successfully accomplish simple tasks that are
presented right away in the system image. As the system becomes more familiar, the
user will gradually discover new functions more complex to handle but not necessarily
mandatory to get usual tasks done. Dialogue structuring into levels of increasing
complexity is known as the "training wheels" technique [Carroll 84].

This principle of dialogue structuring, which has the nice effect of leading to successful
task closure (feeling of relief, satisfaction of work done), is certainly not easy to put into
practice. It requires a thorough task and user analysis which is not often performed by
computer scientists.

2.6.2.7. Guideline 7: Error Prediction
Errorless interaction is illusory, but the computer system can provide support for error
detection and error recovery. D. Norman, [Norman 86] identifies two classes of errors:
mistakes and slips. A mistake results from the formulation of an inappropriate
intention. A slip is an unintended action. Both of them, mistakes and slips, generally
come from the inadequacy of the system image. The system image should minimize
error occurrences, and facilitate error detection and error repair.

• Support for minimizing errors and for improving detection

Occurrences of errors can be minimized and error detection can be
improved in several ways: an appropriate metaphor of interaction, an
adequate terminology, and an immediate and informative feedback.
When considering slips only, techniques dealing with concision avoid
slips by allowing the user to reuse information without any risks of enter
incorrect data.

A metaphor of interaction defines a model to which a novice user
can refer by analogy to interact with the system. There are

CMU7SEI-89-TR-4 31

currently two major metaphors for interaction: the world
metaphor and the conversation metaphor [Hutchins 86]. The
world metaphor electronically mimics objects of the real world. A
popular example of the world metaphor is the desktop metaphor,
where icons represent actual folders and documents, and where
the mouse is the electronic extension of the hand. The
conversation metaphor is based on a linguistic description of the
actions to be performed on system objects. Examples of the
conversation metaphor include the textual command languages
such as the Unix Shell. In the conversation metaphor, the user
talks about an implicit world (the user describes what is to be
done), whereas, in the world metaphor, the user directly
manipulates objects (the user does not tell how to do it, but does
it instead). Thus, "direct engagement" of the user shortens the
gulf between mental and computerized representations. It
should minimize error occurrences. However, in cases where
there is a mismatch between the metaphor and its electronic
implementation, errors might be created rather than reduced.
Consequently, care should be taken to make clear the limits of
the metaphor used.

Adequate terminology has to do with the choice of names.
Consistency is an important feature in naming but the terms
should be understandable to the user. Weil designed software
architecture combined with tools for lexical and syntactic
customization can overcome an inappropriate wording.

Immediate and informative feedback has been discussed in
2.6.2.3 in relation to reducing cognitive load. With regard to
errors, feedback may avoid slips such as forgetting the current
mode of interaction. It may protect the user from making wrong
decisions or wrong inferences.

Support for Easy Repair

Error repair is a problem solving activity. The support for such activity
comes in several forms. It includes undo/redo facilities and informative
error messages.

The combination of undo and redo facilities, not only avoid
possible slips during the respecification of a command, but also
encourage investigation. As such, they provide the user with an
effective support for problem solving.

Error messages, such as "SYNTAX ERRORI," are useful for error
detection but are far from being helpful for error repair. They
require a rather fastidious and sometimes frustrating evaluation
phase. Error messages should clearly express the exact cause
of the error and provide the user with additional information
about state variables relevant to the current problem. Figure
2.14 illustrates the case of an error message helpful for error
repair.

3 2 CMU/SEI-89-TR-4

0 There isn't enough room on the disk to
duplicate or copy the selected items
(additional 145,408 bytes needed).

^o
Figure 2.14: An example of an informative error message for easy repair. The

system makes explicit the cause of error and provides the user with additional
 information useful in the repair problem solving task.

CMU/SEI-89-TR-4 33

3 4 CMU/SEI-89-TR-4

3. The Levels of Abstractions in Interactive Software

This chapter:

• Identifies the abstractions involved in constructing interactive software.

• Introduces the terminology that will be used in the remainder of this
document.

3.1. Introduction
An interactive system calls for various levels of services, ranging from low-level
physical I/O handling to the high-level management of the interaction. As shown in
Figure 3.1, these services may be viewed as a hierarchy of abstract machines:

• At the bottom of the hierarchy, device drivers directly control the physical
devices. A device driver is a program tailored to the physical functioning
of a particular class of devices. Interactive software includes a driver for
each class of devices it supports. Generally, these drivers are part of the
underlying operating system. They define the device dependent layer.

• The next layer hides the diversity and the functioning of the physical
devices by defining a virtual terminal. A virtual terminal provides client
programs with device independence but is not able to support device
sharing.

• Device sharing between multiple software activities is implemented by
window systems. Window systems give client programs the illusion of
being the unique owners of one (or several) virtual terminal(s). Virtual
terminals are programmable at a fairly low level of abstraction. This
level may not be convenient for client programs which deal with highly
structured data.

• Abstract image machines shorten the gap between the internal
representations used by client programs and the external
representations required by the graphics package provided by (or sitting
on top of) the window system. An abstract image is an intermediate data
structure which expresses output rendition at a high level of abstraction
and which supports high level input facilities. Inputs and outputs,
whether they are expressed at a high level of abstraction or not, require
some kind of control that organizes their occurrence.

• dialogue control shapes the interaction between the application and the
user down the way through the underlying abstract machines. The
dialogue machine can be seen as a mediator between the application
and the user. It bridges the gap between the abstract, media
independent world of the application and the universe that makes up the
user interface.

• At the very top of the hierarchy, the application implements the functional
core of the interactive system. This core is media independent, that is,

CMU/SEI-89-TR-4 35

At the very top of the hierarchy, the application implements the functional
core of the interactive system. This core is media independent, that is,
has no knowledge of the way its data structures and functions are
exposed to the user. Its purpose is to implement an expertise in a
specific domain that will allow the user to perform specific tasks in that
domain. It is not concerned by how this expertise is made accessible to
the user.

CLIENT PROGRAM / FUNCTIONAL CORE

I
Dialogue Management

Abstract Imaging

Device Sharing

Device Independence

Device Dependencey

Figure 3.1: The levels of abstraction involved in the construction
of interactive software.

The following sections detail the nature of the abstractions that respectively allow for
device independence, device sharing, abstract imaging and dialogue management.

36 CMU/SEI-89-TR-4

3.2. Device Independence
Physical independence has multiple facets. It primarily comes in the form of a virtual
terminal that hides the actual functioning of quite different I/O devices without modifying
client programs. It may also allow for the addition or suppression of new devices
without recompiling or even relinking the existing code. In this section, the focus is on
code reusability. We first identify the problems due to the diversity of physical devices.
We then sketch the principles of how physical independence is achieved.

3.2.1. The Problem

Reading or writing data with direct control of the physical terminal presents two
difficulties: first, it imposes a precise knowledge of the functioning of the physical
devices on the programmer; second, and more important, it compromises software
portability. For example, to move the cursor to "Hne1,column2" of the physical screen, a
programmer would provide a VT100 driver with the sequence "ESC[1 ;2f." Clearly, this
sequence becomes obsolete when the VT100 is replaced by a bitmap display.

The software solution to the diversity and the complexity is the use of the abstraction
mechanism. In the case of interest, the abstraction is a virtual terminal which provides
client programs with a unified and a simplified view of actual terminals.

3.2.2. The Notion of Virtual Terminal

A virtual terminal is an abstract terminal. As such, it provides client programs with an
instruction set for expressing inputs and outputs, and the instruction set can be
mapped to a variety of physical terminals. Let's see the principles of these I/O
primitives.

CLIENT PROGRAM TERMINAL HANDLER

Set Cursor (2,3) «—•

caseLinkedTerminal of
VT 100 : ESC[1;2f

end case;

Figure 3.2: The principles of output operations of a virtual terminal.

Figure 3.2 illustrates the principles of output operations of a virtual terminal. In this
example, the primitive SetCursor issued by the client program moves the cursor to
location (2;3) in the virtual space coordinate. The virtual terminal, whose job is the
interpretation of primitives from client programs, translates the virtual location into the

CMU/SEI-89-TR-4 37

physical coordinate space and calls device dependent primitives. These primitives
correspond to the physical device that is currently linked to the client program.

This example mentions the notion of space coordinate. Virtual space coordinates may
be integer or fractionary systems. The choice between the two is based on
compromises between ease of implementation and effectiveness of physical
independence. As an example of compromise, the virtual terminal defined in X
Windows is based on the hypothesis that physical screens have square pixels. As a
result, the primitive that is supposed to draw a circle produces an ellipsis on screens
whose pixels are rectangular (such as the Apple Lisa or TV screens).

For inputs, the chaos due to the diversity of physical devices (keyboards, mouse,
electronic glove, etc.) has been organized in the form of typed classes. The types are
specific to a particular implementation of a virtual terminal. In general, they include:

The class key, which models physical keyboards.

The class locator to denote the location of a pixel in the virtual
coordinate space.

The class choice, which returns an integer value useful to represent
mouse buttons.

The class valuator to model physical devices such as potentiometers
that generate real values.

The class modifier, a bit string whose value can be interpreted as a
modifier of the semantics of the value returned by other classes.

The class application to allow client programs to synthesize client-
dependent events.

The class time-stamp to indicate the time when a physical action
happened.

Input classes such as locator, choice and valuator, were first introduced by GKS [ISO
85] and Core. Today, they are implicitly embedded in the device-independent layer
provided by window systems. Other classes, such as modifier, application and time-
stamp classes have been made popular by window systems. The last two deserve
additional comments:

• The application class allows client programs to extend the basic set of
input classes. Application programs can set up their own protocol of
communication by defining special purpose events, and exploit the
communication mechanism provided by the window system. This
feature is an interesting property of the Macintosh event manager.

• The time-stamp class is useful to overcome two types of hardware
limitations. The first limitation is the sequentiality of the interrupt
mechanism: two actions that appear as simultaneous to the user are
reflected to the client program as two separate events. A time-stamp
value may be considered a means to glue the events back into a single

3 8 CMU/SEI-89-TR-4

abstract one. The second limitation happens at the physical device
itself. One well-known example is the one-button mouse of the
Macintosh, which can be used as a two-button (or even a three-button)
mouse by double (or triple) clicking the unique physical button. Again,
time-stamps associated with the successive events allow for
synthesizing events.

To complete our picture of the functioning of a virtual terminal undertaken in Figure
3.2, we need to observe Figure 3.3. The client program acquires an event through the
GetEvent primitive provided by the virtual terminal. This event is a device-independent
description of some action performed by the user on physical input devices. The job of
the client program is to interpret the content of the description. The job of the virtual
terminal is to build the abstract representation of the physical events. In the example of
Figure 3.3, the returned event is a combination of a locator and a choice that represents
the screen location pointed to by the user with a mouse.

CLIENT PROGRAM TERMINAL HANDLER

repeat

GetEvent (myevent) *~

of
case myevent.class

locator :
choice :

end case;

until (condition)

Figure 3.3: The principles of input operations of a virtual terminal

To sumn .arize, device independence is:

• Primarily intended to increase software portability by allowing the
substitution of physical devices without damaging existing code.
Although this capability is a desirable feature for programmers, it should
be stressed that, from the point of view of the user, physical devices are
not equivalent. Card, Moran and Newell suggested [Card 83] that the
mouse is adequate for the selection of 2D objects, whereas the joystick
is more appropriate for 3D manipulations.

• Embedded in window systems.

• Hard to achieve fully.

CMU/SEI-89-TR-4 39

3.3. Device Sharing

Device sharing is built on device independence. Its purpose is to make available not a
single virtual terminal as device independence does, but instances of virtual terminals.
Why is this interesting? What are the principles of its realization in windowing systems,
and what is the trend in current windowing systems?

3.3.1. Justification

A virtual terminal, as provided by the device independence layer, is a resource that
may be simultaneously accessed by multiple activities. In the late sixties,
multiprocessing was not accessible to the user. Processes were internal creatures that
helped the system do its job. Today, the user can explicitly or implicitly launch multiple
activities, all of which act as producers and consumers of the terminal. In the same way
that system engineers introduced the notion of virtual resources (e.g. virtual memory) to
extend the capabilities of the core hardware components, interactive software
engineers defined windowing systems to extend the capability of terminals.
Windowing systems behave like virtual resource generators by providing client
programs with any number of virtual terminals.

Device sharing is necessary for multiprocessing environments. Whether the
environment is multiprocess or not, it is also useful as a technique for organizing
information on the screen: output expressions that are linked by some logical criteria
need to be physically gathered on the screen. Regions that result from such grouping
compete for rendition. This competition also occurs for input events which are to be
dispatched to the appropriate destinatary (process, region, etc.). This is the familiar
multiplexing/demultiplexing problem that is commonly encountered in operating
systems. In the case of interest, the solution to the problem is based on the notion of
window.

3.3.2. The Window at the Center of the Multiplexing/Demultiplexing
Mechanism

The notion of window and the terminology vary widely from one window system to
another. It is necessary to distinguish between the window as the elementary drawing
surface that is mapped onto the screen, the notion of drawing surface that needs not be
mapped onto the screen, and the window as the object that the user manipulates. The
way these notions are implemented and organized together depends on the window
system. Tie primary interest in this section is the window as the elementary drawing
surface mapped onto the screen. More details are provided in Chapter 4.

A window as an elementary drawing surface is a drawing context. This context
includes a set of pixels and a system coordinate space. The set of pixels is used for
rendering output expressions and for returning pixel locations expressed in the window
coordinate space. To take advantage of possible hardware support for raster
operations, the set of pixels usually forms a rectangular area. This area is conceptually
visible on the screen and defines the sharing unit.

Sharing uses the notion of owning: a window has an owner (e.g. a particular process).
The way the owner is identified is out the scope of this subsection. Output requests
issued by client processes are demultiplexed by the window system; input requests are

4 0 CMU/SEI-89-TR-4

multiplexed. For output, the window system clips any information that lies outside the
drawing area of a window. Input events are dispatched according to two possible
techniques. Either the window system, such as NeWS [SUN 87], broadcasts the event
to all of the windows that have expressed their interest in this type of event, or, such as
X Windows [Scheifler 86], sends the event to the "current focus window." The fact that
a particular window is the current focus for keyboard events or for any combination of
typed events is decided by some client process by issuing the appropriate request.

3.3.3. Trends In Windowing Systems

At first sight, window managers look very similar: client programs can create windows,
move windows, resize windows, etc. Nevertheless, there is no common terminology;
the basic functional concepts such as the way events are dispatched differ profoundly
for one windowing system to another; as showed in Chapter 4, windowing systems
also differ in their architecture. However, the new generation of window systems
illustrated by NeWS and X-Windows have several features in common:

• Presentation policies are distinct from functional services. By doing so,
the "look and feel" of windows can be customized without changing the
code that implements terminal resource sharing;

• A server is in charge of the execution of the functional services. By
doing so, client programs and the windowing system need not be
running on the same physical machine and client programs can create
remote windows.

These issues will be further discussed in Chapter 4. To summarize the topic about
device sharing, we take the point of view of the user. Window systems allow the user to:

• Carry several activities concurrently.

• Gather information that are semantically connected by some
psychological or task criteria.

• Ask for multiple views of the same concepts in distinct regions of the
screen.

So far, we have identified and described abstractions that make possible the
expression of inputs and outputs in a device independent way and without any risk that
a client process will damage other processes space. We need now to analyze the
information that is carried by these expressions.

3.4. Abstract Imaging

Abstract imaging is a technique for acquiring inputs and for rendering outputs at a level
of abstraction compatible with client programs and windowing systems requirements.
The problem posed by input and output operations is identified in the next paragraph.
The principles of one possible solution is then presented.

CMU/SEI-89-TR-4 41

3.4.1. The Problem

Primitives provided by window systems for the expression of l/O's are device
independent but the concepts they manipulate generally lie at a fairly low level of
abstractions: pixels, lines, circles, rectangles, splines are the usual notions. At most,
one finds the encapsulation of graphical requests in very much the same way a
macrocommand denotes a set of commands: PostScript proposes the notion of path
[SUN 87], QuickDraw implements the notions of region and picture [Rose 86], and GKS
the notion of segment [ISO 85]. These encapsulations help structuring the output
expressions but the operators they allow are very limited in scope. In particular, the
entity described in a graphic macro can be rotated, enlarged, moved as a whole but its
content cannot be dynamically modified. This restriction is in conflict with the editing
nature of interaction.

In Chapter 5, we will describe tools that are more appropriate for this sort of
requirement. For now, the principles of the approach is presented in the next
subsection.

3.4.2. The Principles of the Notion of Abstract Image

The purpose of an abstract image is to hide the functioning of the virtual terminal. An
abstract image is a data structure that acts as a mediator between some client data
structure to be exposed to the user, and a real image expressed in terms of some
graphics package. The exact nature of abstract images will be made more explicit in
the Chapter 5. For now, we Jimit the description to the principles. Figure 3.4 illustrates
the role of an abstract image.

The client program builds an abstract image that represents a domain-dependent data
structure. The abstract image is automatically processed by an abstract image
machine. This machine generates graphic requests that are interpreted by the
underlying graphics package. The "concrete" or real image can be produced either in
an offscreen bitmap, or in a window. If there is no windowing system, then the image
must be generated on the physical screen. The choice between the two first
techniques depends on the facilities provided by the window system.

4 2 CMU/SEI-89-TR-4

REAL IMAGE

a) Offscreen Bitmap
PHYSICAL SCREEN

DOMAIN DEPENDENT
DATA STRUCTURE ABSTRACT IMAGE

if (a>b) then a >a+1 else b :-c;

if (a>c) then
begin

a :=a+l;
b>b+1;

end

/ V

b)Window

if (a>b) then
a :=a+1

else
b :-c;

c) Physical Screen

if (a>b) then
a >a+1

else
b:=c;

if (a>c) then
begin

a >a+l;
b >b+1;

Figure 3.4: An abstract image is a mediator between a domain dependent
 data structure and a real image.

For some windowing systems such as X Windows-V10, offscreen bitmaps accept a very
limited set of operations. In particular, it is impossible to draw on an offscreen bitmap,
but it is possible to solely fill it with pixels with raster operations. In such circumstances,
the real image must be produced in a window. The advantage of an offscreen bitmap
over the direct mapping in a window, is its use as a "visual cache.'' An offscreen
bitmap can be larger that a window. As a result, it may contain extra information useful
for repainting the content of an enlarged or scrolled window.

Abstract imaging is not only useful for hiding the functioning of the virtual terminal and
for processing syntactic user tasks such as scrolling and resizing windows, but also as
a convenient technique for multiple rendition of a given concept. The capability for the
user to observe different views of the same concept enhances the flexibility of the
interaction. (Flexibility is one of the ergonomics rules described in 1.6.2). Figure 3.5

CMU/SEI-89-TR-4 43

shows how multiple views are obtained from the same abstract image. In the example,
the client data structure represents the concept of a house. Its corresponding abstract
image is interpreted in two ways. One possible interpretation provides a picture of the
house as a floor plan with a lot of details (room names and furniture). In the second
interpretation, irrelevant details are suppressed. Both real images may be
simultaneously visible on the screen and both are automatically updated as the
abstract image is modified.

REAL IMAGES ON
OFFSCREEN BfTMAPS

PHYSICAL SCREEN

| Bed-roomO "C

%P i Kitchen
Bath

I Li

Figure 3.5: Multiple presentations of the same concept
 provided by an abstract image.

So far, we have described the contribution of abstract images as an output mechanism.
Figure 3.6 shows how input is processed: from the selection of a point on the screen to
the concept of the client program. Let (x,y) be the location of the point in the screen
coordinate system. The selection is first interpreted by the windowing system as a
location (x\ y') relative to the top window which owns (x,y). The abstract image
machine receives a triple which identifies the window and a point (x\ y') in this window.
The window identification allows the abstract image machine to identify the abstract
image, and (x\ y') allows it to determine which item of the abstract image owns the
selected point. If an item is linked to a concept or a part of a concept, then the client
program is directly informed of which concept element the user has selected.

44 CMU/SEI-89-TR-4

OFFSCREEN BITMAP
CONCEPTS ABSTRACT

OF THE DOMAIN IMAGE

!
:

 JR

PHYSICAL SCREEN

VINDOV

i • iv^ y

I * «• -< : ;.^ **• • 1 :
1
!

........ ^

Figure 3.6: From locators to concepts with an abstract image.

While abstract imaging automatically translates low-level input information into client
dependent concepts and takes care of multiple rendition and window resizing and
scrolling, abstract imaging does not control the interaction between the user and the
application. This task is the purpose of dialogue handling introduced in the next
section.

3.5. Dialogue Handling

Dialogue handling is concerned with the control and the maintenance of the
interaction. This section introduces this issue by making the analogy with actual
dialogues between human beings. Dialogue handling is then discussed from the
computer side, stressing the fact that the responsibility of the interaction must be shared
between the application and the user interface itself.

3.5.1. Introduction

In a conversation between individuals, the control of the dialogue is distributed among
the partners. At some point in time, one of the partners initiates the dialogue by
submitting an expression or a sequence of expressions to interlocutors. The
expressions are processed by the partners and new expressions are produced as
results of the processing. Expressions are not elaborated by chance. Their meaning
and their syntax depend on the mental representation that each partner maintains of
interlocutors in the dialogue.

The interaction between a computer system and a human being should be organized
in a similar way. The control of the dialogue should be ruled according to the
respective competence of the user and the computer (see Rule 4 about user driven
interaction in Section 2.6.2.4). The user makes use of a conceptual model that gathers
semantic and syntactic knowledge about the functioning of the computer system (see
the definition of conceptual models in Section 2.3). In short term memory (see Section
2.1.4), the user maintains the state of the interaction. Similarly, the computer system

CMU/SEI-89-TR-4 45

maintains a conceptual model as well as the state of the interaction. As mentioned in
Section 2.6.1, CLG offers the designer a convenient way for representing the
conceptual model and the state of the interaction with the conceptual and the
communication components.

The conceptual component describes the concepts and operations that can be
handled by the user, whereas the communication component deals with their
presentation. When considering the practical business of designing a software
architecture, the conceptual component is naturally mapped into a software component
called the application whereas the communication component constitutes the user
interface itself. Figure 3.7 shows a simplified view of the software architecture of an
interactive system. Given this view as a basis, dialogue handling is handled partially in
the application and partially in the user interface.

— i nteractive System ~*» ^ i

Application User Interface

Figure 3.7: A simplified view of the software architecture of an
interactive system.

3.5.2. Dialogue Handling In the Application

In the application, the conceptual model is comprised of a set of domain-dependent
abstractions that allow the user to accomplish domain specific tasks. These
abstractions are data structures and operations. This is a static view of an application.
The dynamic view is concerned with the way states of the application relate to each
other. A state is the model that an application has for the interaction. It includes:

• The conditions which describe its relations with other states.

• The set of abstractions that are accessible to the external world.

For the application, the external world is the user interface: the user interface is its only
partner. The application receives requests from the user interface when its data
structures need to be accessed; it sends output requests to the user interface to
express changes about its state and data structures. As device independence is
guaranteed by windowing systems, so low-level details of the user's actions are hidden
from the application.

3.5.3. Dialogue Handling In the User Interface

In the user interface, the conceptual model and the state of the interaction are
maintained in a set of agents specialized in human-machine interaction. These agents
are mediators between the abstractions handled by the application and the actions of
the user. Each one takes part to the interaction. Each one is a miniature interactive

"46 CMU/SEI-89-TR-4

system which handles a piece of the conceptual model and a piece of the state of the
interaction. A judicious collection of such active agents defines an instantiation of a
user interface for an application. Considered as a whole, a user interface is a
translator between the formalism recognized by the application and the formalism
employed by the user. At the opposite of the translation process involved in a virtual
terminal, the translation process involved in a user interface is very difficult to achieve.

Translation between formalisms for terminals rely on well understood techniques and
theories such as finite state automata. The translation process is easy to formalize
because the functioning of the source and the target agents are well defined. In the
case of human-computer interaction, our knowledge about human behavior is rather
fuzzy. However, we do know that human behavior is not well modeled by deterministic
computer science techniques. It is not surprising then that the construction of user
interfaces is an active area of investigation. Tools for implementing user interfaces are
being progressively made available. Such tools are the topic of Chapters 4, 5 and 6.

CMU/SEI-89-TR-4 4 7

48 CMU/SEI-89-TR-4

4. Windowing Systems

4.1. Introduction
Modern computing systems have multiple simultaneous processes ongoing, each of
whose processes might have some interaction with the end user. Each process hides
its interaction from other processes. The hiding is accomplished through the use of
virtual terminals. Chapter 2 introduced the abstractions associated with the notion of a
virtual terminal. Multiple virtual terminals all sharing a single physical terminal require
management of the terminal's resources. A window sytem is a resource manager for
the resources associated with a particular physical terminal. This section discusses
some of the issues associated with that resource management, and then discusses an
experimental method of managing the complexity associated with multiple windows.

The resources that a real terminal is assumed to have and which are managed by the
window manager are:

• High resolution screen. The screen can be bitmapped, rastor or vector.

• Keyboard.

• Pointing device. A multibutton mouse is the most common pointing
device, but joysticks, track balls and various gesturing devices also
exist.

• Graphic context. The color map for a particular terminal determines
which bit patterns represent which colors. The graphic context
determines other stataic information such as style and thickness of lines.

4.2. Virtual Terminal
As introduced in Section 3.2.2, Figure 4.1 gives a picture of a single client interacting
with a physical terminal. The client provides, at some level of abstraction, images that
are displayed on the screen and handles, again at some level of abstraction, inputs that
come from the keyboard and the mouse. As a way of making concrete the hierarchy of
abstract machines introduced in Chapter 3, consider the user action of selecting an
image on the screen. Since at this point we have a client interacting directly with a
physical device, the virtual machines that are of concern are the device driver and the
terminal handler.

CMU/SEI-89-TR-4 4 9

screen
client

keyboard III
mousi

Terminal
Figure 4.1: Single Client System.

The current cursor position is displayed through some image on the screen. The user
moves the mouse. With each increment of movement, the physical controller generates
a message to the device driver software. This software calculates the current pixel
location of the mouse and reports the location to the terminal handler. The terminal
handler generates instructions to move the cursor image to a new position on the
screen and passes those instructions to the device driver which generates the new bit
map to be displayed. When the user performs a button down, an interrupt is generated,
the interrupt is passed through to the terminal handler. The terminal handler then
informs the client of a button down operation that occurred at a particular location on the
screen. When the button is released, the terminal handler is informed of another
interrupt and, in turn, informs the client of a button up at a particular location.

Note here several themes which will reoccur. The first is that the feedback associated
with the movement of the mouse and reflected in the movement of the cursor is handled
by the terminal handler. The second theme is the level of abstraction reflected in the
button events. The location of the cursor is hidden by the terminal handler and is
reported to the client only in association with another event. Another example of the
level of abstraction of the terminal handler is that it does not deal with objects on the
screen or with interpretation of events. The mapping of the cursor position into a
particular object and the interpretation of the button down, button up as a select are all
handled at a higher level of abstraction than the terminal handler.

50 CMU/SEI-89-TR-4

client

screen

keyboard

Virtual Terminal

client

screen

I keyboard

Window
Manager

-

screen

|iii| keyboard

Virtual Terminal

Figure 4.2: Multiple Client System.

Once the client becomes one of a collection of clients, then the real terminal becomes a
virtual terminal. The level of abstraction managed by the virual terminal handler is the
same as with a real terminal, but the virtual terminal handler must map the multiple
virtual terminals onto the single real terminal. The common name for this level of
abstract machine is window manager. Figure 4.2 gives a representation for the role of
the window manager. Figure 4.3 shows a collection of windows.

CMU/SEI-89-TR-4 51

ICF
Q«f>.rtnent.
|iri travel
• dl rector
[]itratC(H

•el-llbr.ry
C.n.r.1
market

Q.rchl tecUirg

Fee: •blindoox
Subject:fyi

I Has speaking to
Assistant project
project and gave i
while whether It

Len

ws have written the element specific Information, next create
component list and pass It and bltstrlng to component writing
routine

bltcount • 0;
conpcnent_nanee • ldd_create_conponent_l 1st (

cur_prm.sss->data_ definition, current_element->element_name):
for„all_llst <component_names. current_element->chengecLcomponents,

lpb_wrlte_component >:
ldd_destrou.componsntLl 1st < component_names):
fwrlte (NULL, talzeof<NULL>. 1, fp);
return:

I Routine: ipb_record_transactIon
I
I Description:
I The record transaction routine writes a transaction to record.fp.

void ipb_record_transactlon<change_table,sender.receiver)
HASH change_table:
process_recoi*d "sender:
pioresa—reroi'fl "receiver:
{ /- local variable definitions

lnt len: /'
Initialization.

[bn:srcl rm Junk.mss
Cbn:src] xsnapshot

xsnapshot as> Please select the window uou wish
«o to dump by clicking the
•s> mouse In that window.

l"»--'-fa"M
•8P

± ^u
;...u.j.-.m.,.n.

Figure 4.3: Actual screen.

4.3. Single Window
A window is the screen portion of the virtual terminal of a process and provides the
output portion of that process. Since the window manager manages the window it is no
longer tied to the physical screen size or shape. The window may be represented by
an icon (the lower left corner of Figure 4.3 is ah icon representing the mailbox used in
rural areas of the United States. It represents the output of the mail process). Windows
may also have different sizes and locations on the screen.

One of the virtues of abstracting functionality into specific locations is that the
functionality can then be embellished without affecting the remainder of the client. In
particular within a window system, a window has decorations, geometry, and content.

52 CMU/SEI-89-TR-4

4.3.1. Decorations

Figure 4.4 displays a single window with its components identified. It has not only the
window and its contents, but also it has been decorated with additional functions.
These functions are:

1. Title Bar. The window may have a title bar which provides the end user
with a cue as to the process that owns the window. The size and title
within the title bar can be set by the client.

2. Close Tabs. In the lower right hand comer is a box that enables the end
user to iconify the window. That is, when the end user selects this box,
the window is turned into an icon by the window manager and additional
action is required to expand the window again.

3. Scroll Bars. It is possible that all the information that the client wishes to
display cannot be placed simultaneously on the screen. The scroll bars
allow the end user to navigate over the whole screen and display the
portion desired. This point is further explained in the section on
geometry.

Note an additional consequence of performing the abstraction. The original motive
behind providing the abstraction was to relieve the client of the management of lower
level details. Once the abstraction existed, then it became embellished and the client
now has to inform the abstraction manager (the window manager in this case) of
additional information to support the embellishments (title for title bar, shape when
iconified in the example). The end result of performing the abstraction is that additional
functionality is available to the client at lower cost than directly implementing that
functionality but the use of the implementation of the abstraction is not free.

CMU7SEI-89-TR-4 5 3

Untitled

O

II
ijijl

: :'
:-:-:•

: :•:• '

PS
Figure 4.4: Decorated Single Window.

4.3.2. Geometry

The client interacts with a virtual terminal with a single screen size. One of the functions
provided by the window system is the resizing of the window. The end user may
indicate to the window system that a particular window is to be resized and then
indicate the new size. The problem then becomes how to map from the size that the
client assumes to be the size visible to the user. Three options are available.

1. Display only a portion of the client screen (viewport).

2. Resize the contents to fit the visible window.

3. Report to the client that the visible window has changed size and allow
the client to control the display.

4.3.2.1. Viewport
Figure 4.5 displays the situation when a resize has occurred and the resulting window
is smaller than the client's virtual terminal. The client has a collection of information, a
portion of which has been sent to the virtual terminal. The information available to the
virtual terminal represents a canvas of information (or an offscreen bitmap). The
information available through the window is a viewport onto the canvas. The
information is maintained on the canvas using the same scale and proportions as the
information sent from the client.

54 CMU/SEI-89-TR-4

This is complete
canvas with

this portion
visible

in window

Figure 4.5: Canvas concept.

The viewport can be moved around on the canvas presenting the user with different
visible portions of the canvas. This moving around is controlled, typically, with the scroll
bars on the viewport window.

The distinction between the information that the client thinks is visible (the canvas) and
the information that is actually visible allows the client to generate output to the portion
of the canvas that is obscured. The two alternatives when this occurs are to block the
client until the information becomes visible to the end user or to allow the output to be
placed (logically) on the obscured portion of the canvas.

Note that the size of the information on the canvas does not change when a resize
occurs. Only the portion of the information visible to the end user changes.

4.3.2.2. Resizing Contents
Another option when resizing a window is for the window manager to maintain the
same information visible to the end user. In this case, the scale of the information must
be changed. Pixel replication or sampling techniques are used to expand or shrink the
view. Handling aspect ratio changes (the ratio of the sides of the window) becomes a
very difficult problem and is typically not dealt with by the window manager. For
example, if a circle is displayed in a window and the resize extends the x direction
without modifying the y direction, stretching the image to fill the new window will result
in the circle being displayed as an ellipse.

4.3.2.3. Informing Client

Informing the client that a resize event has occurred is the final option for the window
system. This option can be used in conjunction with the other two. For example,
suppose the viewport becomes larger than the underlying canvas. This client may wish
to enlarge the canvas and the window system has no knowledge of how this is to be
accomplished.

CMU/SEI-89-TR-4 55

4.3.3. Shape of Windows

In most systems, windows are rectangular. This simplifies the management of the
windows and the clipping of the information within the canvas to the window. On the
other hand, rectangular windows make certain selection and display problems difficult.
For example, two diagonal lines become difficult to separate with rectangular regions.

In at least one system (NeWS) it is possible to have an arbitrarily shaped window. The
boundary of the window is represented by spline curves and the canvas is clipped by
the curves.

4.4. Multiple Windows

Window systems manage multiple virtual terminals. This gives the end user a view of
the physical screen such as that displayed in Figure 4.3. The management of the
resources of the physical terminal involves both the input portion of the terminal and the
output. In general, the problem is to allow the end user to differentiate between the
various active processes and provide input to the processes as desired.

4.4.1. Input Management

The physical terminal being managed has two different types of input devices. These
are the keyboard and a pointing device (a mouse is assumed). Each of the devices
generates events of the classes discussed in Chapter 3. The terms key event and
choice event will be used to refer to the actions of the key class and.the choice class.
The basic problem of the window manager is to direct the various events to the
appropriate client process. Since each window is assigned to a particular process, this
is equivalent to directing the events to the appropriate window. To assist the end user
in determining the current state of the window manager two different types of cues are
used—the mouse cursor and the text cursor. Each provides the location of one of the
types of input devices. Together, they determine to which active process an input event
is directed.

4.4.1.1. Mouse Cursor
The mouse is assumed to have a single position within the physical screen. The
location of that position is displayed to the end user by means of a mouse cursor. The
shape of the mouse cursor can be different depending upon context allowing
processes to give the end users a general cue as to the activities of the process.

The position of the mouse cursor is maintained by the window manager level and is
available to the client upon request or when a choice event (button press) occurs. The
client can also move the mouse cursor to a desired position on a particular window.

Choice events are always directed to the window within which the mouse cursor is
located. More properly to the process which owns the window. When windows are
overlapping then the event is possibly directed to the window which is invisible below
the current window (see Section 4.4.4 for a discussion of window ordering). In certain
cases, the overlapping windows are designed to support a single cognitive task (a
menu, for example) and in this case, it is the responsibility of the top window to pass the
event on to underlying windows.

5 6 CMU/SEI-89-TR-4

4.4.1.2. Text Cursor
Some windows are created as text windows. This allows them to receive key events.
Within these windows is an additional cursor, the text cursor, which indicates current
keystroke position.

4.4.1.3. Current Focus
Keystrokes are assigned to the window that is currently the user's focus of attention.
Two models exist to determine the current focus:

1. Mouse focus. Keyboard events are assigned to the window within which
mouse cursor is located.

2. Click to focus. The end user must explicitly assign keyboard to a window by
selecting that window with a choice event. Keyboard events are assigned to
that window unless explicitly changed by the end user or by the client.

4.4.1.4. Cognitive Aspects
Both models for assigning keyboard events present problems. If keyboard events are
assigned to the window within which the mouse currently resides, end users can shift
their focus of attention and forget to move the mouse to reflect the shift. This results in
input being directed to the incorrect process (from the end user's perspective).

The same problem occurs within click to focus systems. The end user can shift the focus
of attention without performing the actions required to inform the system of that shift.

One method that systems use to avoid these problems is to give the end user cues
which indicate which window is currently the focus. In Figure 4.3, the window in the
middle right is the current focus. The text cursor is a square block in that system. The
current focus is indicated in two ways. First, the title bar for the window in the current
focus is darkened and secondly, the text cursor is filled in within the current window and
hollow within the other windows.

Since the window system performs actions for the client (resizing, moving windows,
scrolling windows) certain events must be dedicated to specifying these actions. These
events then permeate the window system and restrict the types of interactions that a
client can specify. For example, if a resize is specified with the right button of the mouse
and the client cannot override that specification then the right button is unavailable for
the client to use. If the client can override that specification then resize is either
unavailable or must be specified in a different fashion depending upon which window is
to be resized. This problem is called the button overload problem.

One technique used to avoid the overloading problem is to utilize the title bars and
scroll bars as areas where window manager functions are specified. If the mouse
cursor is within a title bar or a scroll bar then the buttons perform one task and if they
are inside a window the buttons perform other tasks.

4.4.2. Output Management
The window manager displays multiple virtual screens on the same physical screen.
Typically, all of the active virtual screens will not simultaneously fit on the physical
screen. This leads to the problem of the arrangement of the windows on the physical

CMU/SEI-89-TR-4 5 7

screen. Figure 4.3 shows seven different active windows. Two of these (the two in the
lower left corner) are represented by icons. Three are text windows (the ones in the
middle of the screen) and two are graphic windows (in the upper left and lower right
corners). The particular arrangement of windows obscures portions of some of the
active windows. The issues involved in output management are:

1. Window placement

2. Management of obscured windows

3. Hierarchy of windows

4. Graphic contexts

5. Data interchange between windows

4.4.2.1. Window Placement—Overlapping
One strategy for the placement of the window on the physical screen is to allow
overlapping windows. This is usually associated with allowing the end user to specify
the placement of windows. The client generates a window in a particular location and
with a particular size and the user then has the ability to move and resize the window.
The user also has the ability to make windows visible.

The basis for managing overlapping windows is to-maintain a list of active windows.
Each window has a size and physical location. The windows are placed on the physical
screen in the reverse order of the list. Those windows on the top of the list then become
the ones displayed last and, consequently, become the visible windows.

There are two operations available to manage the windows on the list (other than the
create, delete operations). These are: move to top of list and move to bottom of list.
Move to top of list makes a particular window visible and move to bottom of list removes
a particular window from its visibility (assuming there are windows being obscured by
the particular window). The window system has a mechanism to allow the end user to
specify those two types of events.

The window system also has a mechanism for iconifying and de-iconifying a window.
The iconification will not change the position of the window on the screen but will
usually cause it to take up less space on the physical screen and make visible other
windows.

4.4.2.2. Window Placement—Tiled
A tiled window manager is responsible for the size and placement of the individual
windows. The rationale for such systems is:

1. Screen real estate can be more efficiently and more simply managed by
the system than by the end user

2. If the end user can only see a portion of a window then that portion
should define the client's virtual terminal and since there are no
obscured windows, the problems of output to obscured windows do not
exist.

5 8 CMU/SEI-89-TR-4

Within a tiled window system, each client defines the minimum and maximum window
size for a virtual terminal. When less than the minimum is available, the process is
suspended. The output from a process is mapped directly into the available virtual
terminal.

Tiled window systems will shift the location and size of a window when new windows
are created. This can be disconcerting to the end user. Evidence on receptiveness of
end users to tiled window systems is mixed. It does seem clear that massive and
frequent screen reorganizations, unless user initiated, are undesirable [Bly 86].

4.4.3. Management of Obscured Windows

Output occurs to virtual terminal regardless of window visibility. Windows are also
obscured by being overlapped by other windows. This leads to the problem of
redrawing the window which is newly exposed. There are two techniques for dealing
with exposure of obscured windows:

1. Generate "exposed" event for the client process. This places the client in
charge of redrawing the exposed portion of the window. It simplifies the
problem of the window manager and saves window manager storage. If
the window manager is to have the ability to redraw each virtual terminal
then it must maintain a current copy of each window, whether visible or
not. This can be expensive in terms of memory.

2. Maintain virtual terminal in separate buffer which is then mapped onto
screen. Performance considerations dictate that a separate "frame
buffer" is maintained which is used to do the screen mapping. The
separate frame buffer limits the number of virtual terminals which can be
managed in this fashion.

4.4.4. Hierarchies of Windows

Up to this point, all of the windows were assumed to be bound to distinct processes and
to be independent. This allows one window to be repositioned without any effect on the
other windows. For some purposes, windows should be considered to be related and
either moved together or constrained not to be moved outside a particular region. Some
examples are:

1. Figure 4.6 displays a menu. The items of the menus are, in fact, windows
ail residing within a parent menu. Because the window system will
determine within which window the cursor is located, this formulation is
more convenient for the client than treating the menu items as the
contents of a single window. If the menu items are treated as the
contents of a single window then the client must determine which item
was chosen when a choose event occurs. Using the parent, child
concept, the window system will do the determination. When the parent
window is positioned, all of the items of the window should be positioned
relative to the parent window.

2. Figure 4.5 displays the canvas, viewport concept. An easy mechanism
for managing this relationship is the parent child. The way it is done is
slightly counter-intuitive and relies on the fact that the window system
clips a window based on its parent. The viewport is the parent window

CMU/SEI-89-TR-4 5 9

and the canvas is the child window. Then the portion of the canvas that
is visible is determined by the clipping mechanism applied to the
viewport window. Scrolling is accomplished by moving the canvas
rather than the viewport.

Window 1

Window 2

Window 3

Window 4

Window 5

Figure i 4.6: Example of menu.

Windows can be specified by the client to form a hierarchy. Within this hierarchy,
children are positioned relative to the parent. The children can be moved
independently of the parent but the calculation of their position on the screen is done by
first determining the position of the parent and then the position of the child within the
parent. Children are clipped based on their parents. Thus, when a child window is
moved off of the edge of the parent, only a portion of the child remains visible.

A choice event or a key event is directed to the visible window. If that window does not
wish to handle the event, it will direct it to its parent, and so on up the hierarchy. All
windows are children of the root window and it consumes any unwanted event.

The hierarchy notion allows many complications. Menus have already been discussed.
Another use of hierarchies is the title bar, scroll bar concepts that have been discussed.
The parent window has children windows which represent the title bar and the scroll
bars, etc. Again, this allows the window system to determine the cursor position rather
than forcing the client to perform the determination. It, of course, is possible for the client
to attach its own title bar, scroll bars to the window and use different mechanism than
the window mechanism.

One determining factor in whether children windows are used for auxiliary functions
such as menus and title bars is the performance nf the window system. Using the
window manager for such purposes will generate several hundred windows very
quickly. If the window manager is efficient enough to manage a large number of
windows then the window abstraction provides for a very attractive solution to choice
problems. See Section 5.2.3.3 for a discussion of facilities for manipulating direct
manipulation user interfaces.

60 CMU/SEI-89-TR-4

4.4.5. Graphic Context

The graphic context defines color maps, line style and other graphic attributes (Section
5.3 gives a fuller discussion of graphic concepts). Within a window system, each
process has a graphic context and the system typically changes the current graphic
context whenever the window focus changes.

4.4.6. Data Interchange Across Windows

Since multiple windows are being managed by the same window manager, it becomes
possible to transfer information from one process to another through the window
manager. This "cut and paste" facility is implemented by retrieving information from one
window (client process) at the level of abstraction of the underlying communication
mechanism (see the next section) and communicating that information to a second
window (client process). The second process must be able to recognize the structure of
the information received but windowing systems automatically have a level of
interchanging data from one process to another which is at a higher level of abstraction
than pure bit maps.

4.5. Networking Considerations
The functionality of the window manager can be implemented in a variety of different
manners. The possible partitioning of the functionality are [Gosling 86]:

1. Replicate the window manager functionality in the address space of
each client process.

2. Install the window manager functionality in the kernel of the operating
system, outside the address space of the clients.

3. Have a separate window server process which is outside both the kernel
and the client address spaces.

The problem with the first option (replication) is the difficulty in multiple processes
accessing the same window since the window is maintained in the address space of
the process. The problem with the second option (embed in kernel) is that overloads
the functionality of the kernel. In order to modify the window manager the kernel must
be modified and this introduces configuration problems on most systems. The
technique being used by most window systems is the third option. The client processes
are considered to be clients of a single server. A number of consequences flow from
this partitioning of the functionality.

4.5.1. Communication

Since the client is in a distinct address space from the server, they must communicate
through some fixed protocol. The fixed protocol uses the underlying operating system
inter-process communication mechanism and performance issues become important.
The performance of inter process communication mechanisms depends upon the
volume of traffic sent through the mechanism. Within window systems, the protocol for
communication is defined at a higher level of abstraction than bit maps in order to
reduce the volume of traffic. The X Window system [Scheifler 86] has commands which
"draw circle" or "draw line" and graphical communication is handled at that level of

CMU/SEI-89-TR-4 61

abstraction. The NeWS system [SUN 87] sends messages which carry PostScript
programs [Adobe 85]. PostScript is a display formatting language described in more
detail in Section 5.3.

This ability to communicate at higher levels of abstraction is also exploited to allow the
client to change the interpretation of key or choice events. The use of PostScript allows
the "downloading" of actual programs which can change any facet of the window
system behavior.

The use of the operating system's inter-process communication mechanism means that
the communication between the client and the process is asynchronous. Order of
communications in one direction is maintained but the sequencing of messages is not.
Each window could have a collection of clients and each client could have a variety of
different windows being managed by the server.

4.5.2. Networking

The use of the operating systems inter-process communication mechanisms for
communication between client and server allows the client and server to be distributed
across a local area network. Figure 4.7 displays a network which exploits the distinction
between clients and servers. A client resides on one workstation and can have a server
which resides on a different physical workstation and manages a different physical
terminal. The implications of that type of structure are still being explored for various
client domains.

client 1 client 2

i ~~w
server 1 server 2

Terminal 1 Terminal 2

Figure 4.7 ': Network of servers.

4.6. Desirable Features of Window Systems
A number of the items discussed are important features in the evaluation of any window
system. They are:

1. Does the system separate basic mechanisms for managing windows
from the policies involved in the management. NeWS or the X window
system, for example, support either tiling or overlapped windows. It is the

62 CMU/SEI-89-TR-4

responsibility of the client to adopt a policy and the window system will
provide the mechanisms.

2. Does the system provide one communication channel per client
process. When this is so the client is guaranteed to receive events in the
right order. If there were one communication channel per window then
distinguishing the order of events across windows becomes difficult.
Having one communication channel per client also avoids polling by the
client on all of the channels to see if an event has arrived.

3. Does the system allow the definition of a hierarchy of windows. When
using a direct manipulation interface, it is important to be able to handle
object overlapping. Object overlapping is easily handled within a
hierarchy of windows. Movement of the parent will move the entire
object.

4. Does the system provide the client with offscreen bitmaps (or canvases
with the same graphics operations as visible windows. If the client needs
to distinguish between visible and obscured windows in order to perform
basic operations then the interaction between the client and the window
system becomes needlessly complex. Also, the offscreen bitmap acts as
a cache for pixels and becomes a performance enhancement
mechanism.

5. Does the system allow the clients visiblity into and use of non window
management facilities. For example, communication between various
clients is greatly simplified if the window systems communication
facilities are available.

6. Does the system allow the clients control in the case of failures. For
example, if the client requests an unavailable font then the window
system should have a well defined, consist method of allowing the
clients to determine strategy. This facility is important in the building of
robust systems.

4.7. Rooms
A particularly interesting user interface which has been developed on top of a window
system is Rooms by Card and Henderson [Card 87]. It is an example of how cognitive
studies and information can be used to develop better user interface software.

The first step in the development of Rooms was to analyze the way in which people
used windows. The data gathered showed that people used windows in groups. That is,
there was one group of windows in which there was activity and that activity was
localized in that one group and then activity was transferred to a second group of
windows and activity was localized in that second group and so on. The pattern of
activities supports the hypothesis that an end user performs one task at a time. The
windows in which activity was localized were those windows which supported the
particular task being performed.

The second step was the realization that the set of all existing windows could be
collected into the groups within which activity was localized and that these groups

CMU/SEI-89-TR-4 6 3

could be made the basis for a system. The metaphor of rooms in a building and the
windows within each room was used as the basis for building a system.

In Rooms, the end user is provided with a collection of rooms in a building. Examples
might be the mail room or the project meeting room. Within each room windows could
be created or destroyed. A particular room is current at any point in time and within this
room all of the windows are exposed. Rooms which are not current (in the metaphor,
rooms in which there are no occupants) are represented as icons. Thus, when a user
moves from one room to another (changes tasks), the windows in the room being exited
become unavailable and the windows in the room being entered become available.

Each room is given a different background so the user can tell which room is currently
active and an architectural plan of the building is kept available so that the user can
determine how to navigate from one room to another.

There are a number of additional features to Rooms (window sharing and expanding
upon the metaphor) but the heart of the system came from the realization that people
used windows in a localized manner and that if the system supported this localization
then windows would be used more efficiently. Pre and post studies showed that the
typical user managed about three times as many windows using Rooms than using a
normal window manager. Since users manage as many windows as they can
comfortably handle, Rooms increased the number of windows with which a user is
comfortable. Rooms is an outstanding example of the connection between
understanding the cognitive machine of the end user and the requirements of software.

6 4 CMU/SEI-89-TR-4

4.8. Introduction to Toolkits
The level of abstraction available from a window manager is really too low for
convenient use by a client programmer. The client receives detailed knowledge of
choice events (button up and button down are separate events, for example) and the
ability to determine the location of the mouse cursor within a window. The client also
specifies precisely the type of output to be placed within a window.

At a higher level of abstraction, the client programmer would have available a library of
interaction objects. Each with its own geometry and behavior. Such things as command
buttons, dials, sliders could be used to interact with the client at the level of "object
selected" and "value set." These types of interactors are available in toolkits and are
discussed extensively in the next section.

CMU/SEI-89-TR-4 6 5

6 6 CMU/SEI-89-TR-4

5. Toolkits

Tools for implementing user interfaces are becoming more available. Although they
aim at the same goal, they are not all equivalent. The purpose of this chapter is to
present a classification that organizes the space of existing tools into classes. Each
class is characterized by the level of services it offers to the implementer. Tools for the
construction of user interfaces range from the low-level toolkits to the more elaborate
User Interface Management Systems (UIMS).

A brief taxonomy for user interface tools is presented in the first section. In Section 5.2,
attention is focussed on toolkits per se. One important component of toolkits includes
facilities for graphics. This topic is presented in the last section of the chapter.
Sophisticated tools known as User Interface Management Systems are described in
Chapter 6.

5.1. A Taxonomy of Tools for User Interface
As shown in Figure 5.1, tools for the development of user interfaces come in two
categories: toolkits and User Interfaces Management Systems (UIMS).

Legend

Tools for the Construction
of User Interface

4— "Is-Built-On-Top-Of" Relation

4— "Is-A" Relation

Toolkit User Interface
Run Time Kernel

User Interface
Environment

 *.

Library
Ready for Use
Architecture

Specification
System

Figure 5.1: A taxonomy of tools for the construction of user interfaces.

A toolkit is a set of building blocks that the implementer assembles to manufacture a
user interface. It provides the programmer with a wide range of functions from the low-
level management of the workstation such as windowing, graphics, sound and text

CMU/SEI-89-TR-4 67

editing, to the higher level of dialogue handling in the form of menus, buttons, control
panels, etc.

User Interface Management Systems come in two forms: user interface run time kernels
and user interface environments. A user interface run time kernel is a skeleton upon
which the functional components of applications can be embedded. A user interface
environment automatically generates a user interface from the specification provided by
the designer and link the interface to the application. For doing so, it includes a run
time kernel into which the application and the "compiled" specification are plugged.

In summary, toolkits provide the building blocks, run time kernels package the code that
implements the foundation of an interactive system into a reusable and extensible
skeleton, and a user interface environment automatically generates the specific aspects
of a user interface from high-level specifications. When considering the ease of
construction, the level of service increases from toolkits to user interface environments.

5.2. Toolkits

5.2.1. Overview: General Services

Figure 5.2 shows a classification of the types of services provided by any toolkit. These
services can be organized in two categories: services related to the management of the
workstation and services for the management of the dialogue.

Services for the management of the workstation define a virtual terminal as presented
in Chapter 4. Abstractions vary from one toolkit to another, but they usually include:

• Foundations for graphics (e.g., offscreen bitmaps or canvas, viewports,
windows).

• Primitive graphic entities (e.g., icons, cursor shapes).

• Elements for text processing (fonts), and sound.

• Support for event handling.

Services for the management of the dialogue rely on the abstractions defined for the
management of the workstation. They inch de:

• Elementary entities for dialogue handling such as buttons and scrollbars.

• Compound objects such as menus and forms.

In addition, recent toolkits such as X Toolkit, propose a model and a general
mechanism for building special purpose dialogue objects.

For some toolkits, such as the Macintosh Toolbox [Rose 86], workstation management
and dialogue management are gathered in a single library. For others, the distinction
between the two levels of services is more explicit. For example, in the X-Windows
environment, services for the management of the workstation are accessible through X-
Lib whereas services for the management of the dialogue are gathered in X-Toolkit.

"68 CMU/SEI-89-TR-4

Toolkits

Workstation
Management

Dialogue
Management

A
Windowing Menus Forms

/ \
Sound Text Buttons

Graphics

Figure 5.2: Services provided by a user interface toolkit.

5.2.2. Advantages and Drawbacks of Toolkits

5.2.2.1. Advantages
As for any library, a toolkit is a convenient support for portability and flexibility. Its last
advantage is specific to the domain to which it applies by defining a consistent style of
interaction.

1. Portability. Software portability is one of these practical problems that
computer scientists face continuously. Knowing that the user interface
part of an interactive system can represent up to 80% of the code, the
portability of user interfaces deserves special attention. Toolkits offer a
convenient and natural way for defining levels of portability.

2. Flexibility. Software flexibility covers issues about diversity and
extensibility. Diversity is concerned with the availability of various levels
of abstractions. With user interface toolkits, the programmer has the
choice between the low-level services that allow him to control the
workstation at a very fine grained detail and high-level services that
provide him with ready for use local dialogues. Extensibility is the ability
to add new features. As mentioned earlier, recent toolkits provide the
programmer with a mechanism for building new interaction techniques.
Other toolkits, in particular those integrated to an object-oriented

CMU/SEI-89-TR-4 69

environment, encourage software ^utilization through the subclassing
mechanism.

3. Consistent style of interaction. Toolkits include a variety of interaction
techniques that can be reused from one application to another. As a
result, they define a style of interaction with which the user can
progressively become familiar. In addition, the behavior of the
interaction techniques has been determined in accordance with
ergonomics principles. For example, in order to facilitate the evaluation
stage, a button displays itself in reverse video as it is visited by the
mouse.

The ability to determine the arrangement of the building blocks allows the implementer
to fully control the behavior of a user interface. Unfortunately, this freedom has its
counterparts.

5.2.2.2. Drawbacks
Toolkits do not embed any software architecture; they are hard to use and they lead to
duplication of efforts.

1. Wrong Software Architecture. A library does not embed an architecture.
In particular, user interface toolkits do not enforce the modular distinction
between the application and the user interface. As a result, toolkits may
lead to suspicious software architectures where the expression of the
user interface is mixed with the expression of domain dependent
functions. Mixing the two aspects impedes the maintenance of the
interactive system and does not make it possible to iteratively adjust the
user interface.

2. Long Learning Phase. As Figure 5.3 demonstrates, a toolkit is a big bag
of functions. Finding the right arrangement may be a tremendous
technical barrier specially for the first time developer.

3. Duplication of Efforts. Making the glue must be carried out for each
interactive system. It is not surprising then that a strong interest has
recently emerged for run time kernels that provide implemented with
reusable code organized in a ready for use architecture. This facility will
be further described in Chapter 6.

7 0 CMU/SEI-89-TR-4

Interactive
System

' /rrnr ffiTTff1TTTlT\ ^^

Figure 5.3: Toolkits provide the implementer with a set of building blocks
 to be glued together.

5.2.3. Comparative Analysis

Toolkits differ mainly in the control strategy they embed, the ability to allow the
programmer and the user to overload and customize presentation policies, and facilities
for implementing direct manipulation interfaces. This issues are successively
developed in the next paragraphs.

5.2.3.1. Control Strategy
Protocols for acquiring and processing events have a strong impact on the control
structure of a system. With regard to user interface toolkits, there are two types of
protocols whether or not the control strategy is embedded in interaction techniques.

When the control strategy is embedded, the interaction techniques have a mechanism
to process events. This mechanism is automatically activated when an event is of
interest to the technique. (A technique can express interests for classes of events at
any time). When the technique has completed processing an event, it automatically
calls a procedure provided by the client program. This procedure performs some
domain dependent computation. If no callback procedure has been specified for the
event class, there is no further processing. It means that this event class has no domain
dependent meaning. X-Toolkit widgets and NeWS interactive objects are built
according to this policy.

When the control strategy is not embedded in interaction techniques, the processing
sequence has to be specified by hand. The programmer needs to explicitly ask each
possible interaction techniques whether it is concerned by the event. If so, the
programmer chooses one of the possible methods attached to the techniques. The

CMU7SEI-89-TR-4 71

technique has no event handler. It has a collection of methods that can be invoked. The
technique is not an agent endowed with capabilities for decision making. It is a passive
server. The Macintosh Toolbox is based on a non embedded control strategy.

To summarize, the embedded control strategy automatically performs the sequence of
actions for processing events and client programs are called for complementary
processing. At the opposite, when the control strategy is not embedded, the
programmer is in charge of gluing the pieces of processing together.

5.2.3.2. Overloading and Customizing Interaction Techniques
A consistent style of interaction is a desirable feature. However, the style defined by a
toolkit cannot be expected to be satisfactory for every situation. In some circumstances
standard behavior needs to be adjusted. The adjustment can be performed either by
the programmer or by the user.

Programmers may desire to modify the visible behavior of an interactive object or the
internal functional behavior. Toolkits based on the object-oriented paradigm such as
ones in the Smalltalk-80 [Goldberg 84] or Loops [Bobrow 83] environments encourage
such overloading: the programmer defines a new subclass and overloads the inherited
methods with his special purpose code. Toolkits such as the Macintosh Toolbox,
although they claim to be designed according to the object-oriented paradigm, make
the modification much harder, hard enough to be discouraging!

Users may want to customize a user interface without getting involved in a
programming task. The type of customization that is currently feasible without
programming is concerned with the lexical level only. For doing so, a toolkit must
provide an external permanent representation for interaction techniques. External,
means that the description of the interaction technique is not wired in the code of the
user interface. Permanent, means that the existence of the representation is not tied up
to the execution of the interactive system. Files provide a convenient way for
maintaining permanent data. Finally, the external representation can serve as input
data to an editor which allows the user to interactively customize the lexical aspects of
the interaction techniques. The notion of resource developed for the Macintosh
Toolbox is an excellent illustration of how lexical customization can be performed by
any user.

5.2.3.3. Facilities for Implementing Direct Manipulation Interfaces
User interfaces based on the direct manipulation metaphor are very demanding on the
software side. In particular, an object may, as a whole, be constrained to follow the
movements of the mouse and, as a part, be locally edited in real time.

Mouse tracking requires a loop of three software actions: erase the object from its
previous location, repair the surface that has been damaged, and draw the object at the
new location. Current toolkits do not provide much support for satisfying these
requirements. The Macintosh Toolbox offers the notion of region that the client program
can drag around as long as the user holds the mouse button down (cf primitive
DragGreyRgn). However, this local facility, although very convenient, is not a general
mechanism to deal with overlapping objects. X Windows with its recursive notion of
overlapping windows offers an attractive foundation for implementing overlapping
objects.

7 2 CMU/SEI-89-TR-4

Editing part of an object is a second heavy requirement on software programming.
Objects are usually compound entities. Sometimes, they are treated as wholes (as in
mouse tracking) and sometimes as parts (as in editing tasks). Graphics tools available
in user interface toolkits either do not have any facilities for encapsulation or they have
encapsulation facilities which hide access to the parts. In the first case, there is no way
to consider the object as a whole. In the second case, there is no way to edit part of the
object. For example, pictures and regions of the Macintosh Toolbox, and GKS
segments are like graphics macrocommands. The client program can execute them
with different parameters involving location, rotation and scaling. Pictures, regions and
segments are mechanisms for encapsulation. They allow for the definition of a
graphics object from elementary graphics primitives. However, if the client program
needs to modify a line segment of the object as the user moves the mouse, the picture,
the region and the segment do not allow this. The picture, region and segment must be
destroyed and rebuilt with the new line segment! The following paragraph describes
graphics tools that are more appropriate for interactively editing graphics objects.

5.3. Graphics Tools for Abstract Imaging
Information layout can be viewed as a sequence of transformations from internal
domain dependent data structures to actual images. Information acquisition from a
selected point in an actual image to some internal data structure is the reverse
sequence of transformations. This subsection presents two general techniques that
automatically perform these two way transformations. The first category focuses
attention on structural relationships between the components of an image. The second
one is based on a general constraint problem solver approach. Before describing these
techniques, we need to briefly review low-level graphics tools. *

5.3.1. Low-level Graphics Tools

Low-level graphics tools such as CGI [ISO 86b] define a graphics machine for drawing
lines, circles etc. in a graphics space coordinate. Other tools such as PostScript [Adobe
85], QuickDraw [Rose 86] and GKS [ISO 85] include a simple encapsulation
mechanism. They respectively propose the notions of path, region/picture and
segment. Although encapsulation is a convenient way for grouping logically connected
information, it is not adequate for interactively editing parts of graphics compound
objects. PostScript, however, deserves additional comments.

PostScript is a powerful programming language that has the ability to describe the
appearance of any type of information on a rendition surface (paper or screen). Its
power is Turing equivalent; the syntax incorporates a postfix notation and the data
model includes, like LISP, the ability to treat programs as data. PostScript imaging
model is very general and very simple. Figure 5.4 illustrates the model. Imaging is
based on a stencil/paint model. A stencil is an outline specified by an infinitely thin
boundary that is piecewise composed of spline curves. Paint is some pure color or
texture or even an image which is be dropped on the drawing surface through the
stencil. PostScript has been extended to serve as the programming interface for
NeWS: client programs are not limited to a predetermined set of requests but they can
download PostScript programs to the NeWS server.

CMU/SEI-89-TR-4 7 3

Paint

(T
is

Stencil

Image

Rgure 5.4: The PostScript imaging model.

74 CMU/SEI-89-TR-4

Figure 5.5 gives an overview of the level of abstractions of graphics tools.

Client
Program

I
ABSTRACT IMAGE MACHINES 1

ex: Boites, PHIGS, Thing Lab

i
REAL IMAGE MACHINES LEVEL 1

ex:GKS

REAL IMAGE MACHINES LEVEL 0
ex: QuickDraw, Postscript

Figure 5.5: How graphics tools relate to each
other with regard to their level of abstraction.

5.3.2. Abstract Imaging and Structural Relationship »

As described in Chapter 3, an abstract image is an intermediary data structure between
structures maintained by the application program and the actual image on a rendition
surface. It shortens the distance between the representation convenient for the
application program and the representation required by windowing systems. Its
purpose is to express logical relationships maintained in the application data structures
into graphic relations. The goal is not to express all of the logical relationships but the
relationships that help the user perform the execution and the evaluation stages. One
important class of relations is the structural relationship. A number of tools based on
the notion of box and the graphics ISO standard PHIGS propose abstract imaging
around the notion of structure.

5.3.2.1. Box-Based Abstract Imaging
The notion of box has first been used for TgX [Knuth 79] for output rendition only. Since
then, the notion of box has been extended by a number of tools [Mikelsons 81, Coutaz
85a, Coutaz 85b, Alhers 86, Quint 87] to consider inputs as well.

The box as described in [Coutaz 85a and Coutaz 85b] is a tree-like structure. A tree
facilitates the definition of an inheritance and a synthesis mechanisms for computing
attributes. Attributes decorate nodes to express spatial relations (such as alignment
and indentation), visual effects (such as highlighting and coloring), polymorphism (such
as elision), and links to application dependent data structures. Leaves contain
displayable application dependent information. They are recipients. They do not have
any semantic knowledge about their content but its type (e.g. image, text). As a
recipient, a leaf wraps an imaginary rectangle around the information. Nodes are

CMU/SEI-89-TR-4 75

compound boxes. A compound box is the result of a formatting composition from
subtrees.

Figure 5.6 shows one possible tree of boxes that corresponds to an "if statement"
maintained by a syntactic editor.

if

(HorV)f Box

<H>(COND) (""^•'WTSS.I (Hlndent=5)(*»E

{Cond} then {Stmt} else {Stmt} endif

Figure 5.6: A tree of boxes as an abstract image for an "IF statement".

The formatting attributes HorV first tries to concatenate the subtree horizontally. If the
resulting rectangle is too wide to fit the available width of the rendition surface, a
vertical composition is applied automatically. The attribute H concatenates the
subtrees horizontally. Hind specifies the value of the horizontal indentation if one has
to be performed.

If {Cond} Then {stmt} Else {Stmt} endif

Figure 5.7: Layout in a wide enough window.

The interpretation of the tree will generate the actual images shown in Figures 5.7 and
5.8 depending on the effective width of the output window. Note that when the user
resizes the window, the new formatting is automatically handled by the abstract image
interpreter. The application is not bothered by syntactic user actions that are irrelevant
to its expertise.

76 CMU/SEI-89-TR-4

If {Cond}

Then {Stmt}

Else {Stmt}

endlf

Figure 5.8: Layout in a too narrow window.

5.3.2.2. PHIGS
PHIGS [ISO 86a] is a standard for graphics which takes GKS as a point of departure.
However, the static notion of segment has been replaced by the editable notion of
structure. Figure 5.9 shows an example of a structure definition. The interpretation of
the request POST_STRUCTURE(A) executes the definition of A. The definition of A is
comprised of graphics elements included between the requests
OPEN_STRUCTURE(A) and CLOSE_STRUCTURE. The element
EXECUTE_STRUCTURE behaves just like a procedure call: it saves the current
context, deviates to a new context and comes back to the calling context.
EXECUTE_STRUCTURE(B) saves the current graphics context about A, interprets the
definition of B and, once B has been made part of A, returns to the execution of A. For
inputs, PHIGS uses an extension of the GKS notion of logical units to take into account
the structural organization. In particular, a PICK returns a path which uniquely denotes
the selected element.

CMU/SEI-89-TR-4 77

POST-STRUCTURE (A)

OPEN-STRUCTURE(A)

EXECUTE-STRUCTURE(B)

EXECUTE-STRUCTURE(E)

CLOSE-STRUCTURE

OPEN-STRUCTURE(B)

EXECUTE-STRUCTURE(C)

EXECUTE-STRUCTURE(D)

CLOSE-STRUCTURE

OPEN-STRUCTURE(E)

EXECUTE-STRUCTURE(F)

EXECUTE-STRUCTURE(D)

CLOSE-STRUCTURE

Figure 5.9: A PHIGS STRUCTURE is an oriented acyclic graph.

In contrast to GKS segments, PHIGS structures can be dynamically modified. The
model for modification is inspired from line text editors. Figure 5.10 shows an example
of a structure edition. As for text editors, you first need to open the recipient:
OPEN_STRUCTURE(MYHOUSE) opens the structure MYHOUSE. By doing so, the
interpreter places the insertion point at the end of the structure definition and sets itself
in input mode. This means that subsequent graphics elements will be automatically
added at the end of the current structure. If the client program needs to delete the
window element, then a DELETE_ELEMENT(MYWINDOW) will do the job. The LABEL
(MYWINDOW) is a symbolic way of denoting a graphics element, just like a line number
designates text lines in line based text editors. Similarly, if one wants to replace the
definition of the door, then the insertion point can be set at the appropriate point in the
structure definition and the replace mode will substitute old graphics elements by new
ones.

78 CMU/SEI-89-TR-4

Initial Definition of MY HO USE

OPEN-STRUCTURE (MYHOUSE)

LABEL (MYWINDOW)

LABEL (MYDOOR)

CLOSE-STRUCTURE

Editing MYHOUSE

OPEN-STRUCTURE (MYHOUSE)
DELETE_ELEMENT(MYWINDOW)
SET_ELEMENT_POINTER(MYDOOR)
SET_EDIT_MODE (REPLACE)

SET_EDIT_MODE(INSERT)
CLOSE-STRUCTURE

Figure 5.10: A PHIGS structure can be dynamically edited.

5.3.3. Constraint-Based Imaging

A constraint describes a relation which must always be satisfied. The set of relations
maintained in the abstract image machines presented in Paragraph 5.3.2 is limited in
scope. More general mechanisms for expressing any type of graphics constraints need
to be developed. ThingLab [Borning 86], although its goal is not abstract imaging, is an
interesting illustration of a graphics constraint solver.

ThingLab is an interactive environment built on top of Smalltalk-80. It allows a user to
specify constraints between graphics objects. At the opposite of the box mechanism,
these constraints are not restricted to a predetermined set. A ThingLab constraint is
comprised of a predicate and one or several methods. The predicate is an algebraic
expression which is used for constraint checking. The methods modify the entities
referenced in the predicate in order to guarantee visual consistency. The power of
ThingLab is that these methods are automatically generated from the specification of
the predicate. Figure 5.11 shows an example.

CMU/SEI-89-TR-4 79

MyBar

'1.

1

n:75

«>

n _ h1 V ' h
2^

100 Pjy-i^y

• p2

Figure 5.11: Principles of constraint specifications in ThingLab.

The bottom window contains the object MyBar as it will appear at runtime. The upper
window gathers the usual Smalltalk browser menus which allow the user to define an
algebraic expression, identify the constants, the variables, and indicate which class is
reused to build the new object (currently, the rectangle class is appropriate to construct
MyBar). The middle window is the workshop. The goal is to define a vertical bar to
represent an integer n comprised between 0 and 100. The algebraic expression
defines the height of the rectangle where: hi and h2 are respectively the top left and
bottom right corners of the rectangle; pi and p2 are two constant points such that the
length of the segment [plp2] determines the height of the rectangle when n is 100; h-jy
and h2y denote the vertical coordinates of H1 and h2.

ThingLab has served as a basis for the implementation of more specialized
environments: Animus [Duisberg 86], which introduces the notion of time, and the Filter
Browser [Ege 87] for the specification of user interfaces.

80 CMU/SEI-89-TR-4

6. User Interface Management Systems (UIMS)

6.1. User Interface Runtime Kernels

6.1.1. Introduction

Toolkits provide components with which it is possible to construct a user interface.
Each component is specific to a particular information presentation or acquisition task.
A complete interface, however, must contain multiple components which act together to
convey information to and from the functional portion of the interactive system.

A user interface runtime kernel is a skeleton or a packaging of the tools in a toolkit to
provide a collection and a sequencing mechanism for the tools and a communication
mechanism for information to and from the functional portion. The issues involved in
the runtime kernel are:

1. The software structure used in the runtime kernel. In particular, the
architectural model underlying the software and the interface between
the particular components of the architectural model.

2. Threads of control.

3. The model used to describe the interactions between the end user and
the functional portion. This is usually called the dialogue model.

4. The management of multiple views of the same application data
instance.

5. Feedback issues.

These issues are discussed in the sections that follow.

6.1.2. Software Structure

There is general agreement that a complete interactive application can be partitioned
into three components [Pfaff 85]. These three components are the functional core of the
application, the user interface runtime kernel and the lower level presentation layer.
Each component can be implemented using whatever tools are available. In Chapters
4 and 5, the presentation layer has been discussed in terms of window systems and
toolboxes. In this section some of the structural issues associated with the runtime
kernel are discussed. In particular, a method for dealing with the interfaces between
the layers based on the Serpent UIMS [Bass 88] and a method for using an object-
oriented decomposition of the runtime structure based on the PAC model [Coutaz 87a,
87b] are discussed.

Figure 6.1 gives a high-level view of the components of an interactive application. The
application component consists of the functional core and a communication portion with
the user interface. The objects in this communication portion are at the level of
abstraction of the application and have no presentation components. The user

CMU/SEI-89-TR-4 81

interface has two portions: the presentation components and the dialogue controller.
The objects in the presentation component are presentation objects and have no
application knowledge within them. The behavior of these objects must convey
application semantics but the objects themselves have no application knowledge. The
dialogue controller performs the mapping between the application objects and the
presentation objects. Application domain knowledge can be embedded into the
dialogue controller to perform the mappings or can be restricted to the functional core.
These decisions depend upon the particular circumstances of the application.

Interactive Application

Application
Communication

Zone
Dialogue

Controller

Communication
Zone Presentation

Formalism of
the Application

Formalism of
the Presentation

Figure 6.1: High-level view of the components of an interactive application.

Note that the mapping between the application objects and the presentation objects is
bidirectional. End user actions will both modify the application objects and provide
commands to the application core to perform its functions. Also, the mapping is not
necessarily one to one. Suppose the display shows a fluid boiling. The application
has one object which represents temperature and another which represents pressure.
The boiling point depends upon both. The dialogue controller must combine the two
application objects into a single presentation object. This is an example of a situation
where the dialogue controller has application domain knowledge.

6.1.3. Serpent Component Interface Management
Serpent is an example of such a runtime kernel and will be used to explain the
concepts in more detail. An application using Serpent has explicitly three components.
These are: the application functional core, the runtime kernel and the presentation
level. The presentation level is composed of an X toolkit component and other
components which use different technologies for input and output (e.g. video output and
gesturing input). Serpent is designed to allow for easy integration of additional
interaction mechanisms and explicit separation between the application functional core
and the runtime kernel. The integration of additional interaction mechanisms is
accomplished by having an explicit separation between the presentation layer and the
dialogue manager. The interface between the layers allows for different presentation
layers with only a modification of the dialogue manager and no modification of the
application.

82 CMU/SEI-89-TR-4

The separation between the components is accomplished by providing an explicit
interface description. On one side of the interface is the Serpent runtime kernel. On the
other is either the functional core of the application or the presentation layer. Figure 6.2
displays this structure.

The application and the presentation layer view the Serpent runtime kernel as an active
data base manager. The application views Serpent as a manager of data of which the
end user might be interested and the presentation layer views Serpent as the manager
of data which control their presentation and interactions. In either case, there is an
explicit specification of the data which is to go through the Serpent runtime kernel. This
specification takes the form of a schema which is similar in form to a schema for a
traditional data base system.

Whenever the application modifies a data item in the data base managed by Serpent
then the runtime kernel of Serpent manages all of the implications of that. When the
end user performs an action which affects a data item in the data base which Serpent
manages for the application then the application is informed of the change.

The schema which defines the form of the data to pass over the interface is processed
prior to Serpent runtime. The processor produces a C header file (or Ada package) for
the application to include. This guarantees that both sides of the interface have the
same data description and, consequently, helps insure the integrity of the data which
crosses the interface.

application
portion.

application
portion

(media independent)

database schema

dialogue

Ada
Package

C header files

dialogue
manager

other

schema schema

other
IAD

technology

X window

Figure 6.2: Serpent architecture.

CMU/SE1-89-TR-4 83

The use of a schema to define the data that Serpent manages allows Serpent to be
reusable. Data of arbitrary complexity can be described in terms of the schema
description used in the interface and, consequently, additional interaction mechanisms
can be added and arbitrary applications can use Serpent.

6.1.4. Threads of Control

One motivation for the Rooms system (Section 4.7) is the end user's desire to move
from one task to another, whether the current task is completed. The dialogue
controller must be able to maintain the context for the interrupted task and restore it
when that task is to be resumed. This is one example of having multiple threads of
control within a dialogue. Another example is the simultaneous use of multiple input
and output devices. Some types of interaction require two handed input utilizing
different devices [Buxton 86a]. If the devices are not integrated at the presentation level
then the dialogue manager must simultaneously process the input from both devices,
coordinate it and determine the mapping into desired application actions. In the
Macintosh toolkit, for example, this type of activity must be performed in the top level
controller and cannot be pushed into the presentation level.
In either case, the requirements imposed on the dialogue manager by both the end
user task switching and the multiple simultaneous devices mean that the dialogue
manager must support parallelism.

6.1.5. The Model Used to Describe User Interactions

A number of different models have been used to describe (and hence to specify) the
user interactions. These models are:

1. Formal grammar models, in particular BNF

2. Finite state machines, usually augmented

3. Production or event models

4. Object-oriented models
Any implementation of these models has two portions. First is a language for
describing interactions in terms of the model. A program in this anguage becomes a
specification of the behavior of the runtime kernel. The second portion of the model is
the runtime interpretation of the specification. An implementation decision is whether
the specification language is compiled into a lower level description or is directly
interpreted.

6.1.5.1. Formal Grammar Models
An early system, SYNGRAPH [Olsen 83], used BNF to specify the user interactions.
Each non terminal in the BNF had an associated action routine which describes the
presentation and the actions associated with the presentation. A legal interaction is
one which can be parsed through the BNF. BNF, by its nature, has an explicit legal
sequence of ordering of events. This imposes a particular style upon the interfaces
specified using BNF. For example, suppose different parameter orderings are allowed.

8 4 CMU/SEI-89-TR-4

Different BNF rules must be used to specify each ordering. Therefore, in order to allow
the end user to choose an ordering at runtime multiple sets of BNF rules must be
specified.

Furthermore, since all actions in BNF must be explicitly stated, allowing a user to
change the current task in the middle (which, as has been described in Section 6.3 is a
desirable feature), specifying complete interactions using BNF is a formidable chore.

6.1.5.2. Transition Networks
An alternative to BNF as a specification model is to use a finite state machine. The finite
state machine is typically augmented to allow a richer description mechanism than finite
state automata. USE [Wasserman 85] is an example of such a system. Finite state
machines suffer from the same sequencing problems as BNF. An additional problem
that both specification techniques suffer from is lack of model support for levels of
abstraction.

The specification of a selection of an object (cursor over object, button click) is one level
of abstraction, the specification of the ordering of parameters to a command is a higher
level. A transition network does not distinguish between these levels of abstraction
and, consequently, a specification using a transition network becomes difficult to code
and decipher.

Some extensions to transition networks allow the nesting of transitions in an attempt to
support the different levels of abstraction [Kieras 85, Harel 87].

6.1.5.3. Production Model
Production models are collections of rules of the form if "firing rule" then "action".
Productions are data driven in the sense that the rules are fired when the firing rules are
satisfied and no particular sequencing constraints are placed on the firing rules.
Production rules [Garrett 82, Hill 87a, Hill 87b, Brownston 85] have been used recently
to attempt to specify the parallelism that end users seem to require. The CLG [Moran
81] is also a use of the concepts of production models for describing the interaction
level although not explicitly discussed.

The Serpent model for dialogue uses "view controllers" to specify the mapping between
the application objects and the presentation objects. Each view controller has a
creation condition which corresponds to the firing rule. The creation condition is a
condition on the application objects or on local objects. Local objects are maintained
for dialogue control purposes only and are not visible to either the application or the
presentation. Each view controller controls a collection of presentation objects. The
methods of these presentation objects perform the reverse mapping from the
presentation layer to the application. View controllers can be nested and the lower
levels inherit the application objects which created the parent levels. The use of
production rules solves the explicit ordering problems associated with transition
networks and BNF grammars. On the other hand, there is still no model support for
levels of abstraction. The support for levels of abstraction comes from the structural
ideas of PAC or the nested objects used in the production model of Serpent.

Systems based on production rules suffer from several problems. Since control is not
explicitly transferred within the specification of the dialogue, the system must monitor a
large data space in order to decide which rules to fire. This monitoring of a large data

CMU/SEI-89-TR-4 85

space may lead to performance problems. The appearance of more efficient production
systems [Forgy 84] has reduced the magnitude of this problem. Preliminary indications
are that performance within Serpent (which uses OPS83) is driven by the performance
of the presentation layer and not by the production manager.

A second problem associated with the use of a production rule model is, precisely, the
lack of explicit transfer of control. Programmers are taught to think of algorithms
sequentially and the data driven nature of production models requires a heavily parallel
method of thinking. This is a problem that can be overcome with training and if
production rule systems prove to be suitably useful, then programmers will be taught
earlier to think in terms of parallel solutions to problems.

6.1.5.4. Object-Oriented Model
A different approach to the specification of the mapping from application objects to
presentation objects is to use an object-oriented approach. This approach underlies
the PAC model [Coutaz 87b].

In the PAC model, an interactive application is comprised of three parts: Presentation,
Abstraction and Control.

The Presentation defines the concrete syntax of the application, i.e., the input and
output behaviour of the application as perceived by the user. The Abstraction part
corresponds to the semantics of the application. It implements the functions that the
application is able to perform. The Control part maintains the mapping and the
consistency between the abstract entities involved in the interaction and implemented
in the Abstract part, and their presentation to the user. It embodies the boundary
between semantics and syntax.

For example, the application "Clock" implements and involves two abstract entities in
the dialogue: the data structure "Time" and the function "SetTime". "Time" may be
presented as a digital or a dial clock, SetTime may be explicitly presented as a button
or implicitly presented through the direct manipulation of the needles of the dial clock.
The job of the Control part is to invoke SetTime on specific user's actions and provoke
the update of the dial clock when the application (i.e the Abstract part) makes a request.

The Presentation of an application is implemented with a set of entities, called
interactive objects, specialized for man-machine communication. As with applications,
an interactive object is organized according to the PAC model. Consider for example
the pie chart shown in the Figure 6.3.

1. The Presentation is comprised of:

• for output—a circular shape and a color for each piece of the
pie.

• for input—the mouse actions that the user can perform to
interactively change the relative size of the pieces.

2. The Abstraction is comprised of an integer value within the range of two
integer limits.

8 6 CMU/SEI-89-TR-4

The Control maintains the consistency between the Presentation and
the Abstraction. For example, if the user modifies the size of one piece,
Control provokes the update of the integer value. Conversely, if the
application or another interactive object modifies the value of the
integer, the size of the pieces is automatically adjusted.

Abstraction

M1n = 0
Max = 400 -
Value = 50

Presentation
Control

c
Figure 6.3: An elementary PAC interactive object.

Compound objects can be built from elementary interactive objects. They also adhere
to the PAC model. Consider, for example, the super pie chart shown in the Figure 6.4. It
is made from two elementary objects: the pie chart described above and a numerical
string which shows the current abstract value of the pie chart. If Control C receives a
message notifying him of the modification of the abstract value, it notifies both C1 and
C2 of the alteration. Conversely, if the user changes the size of a piece of the pie with
the mouse, C1 reflects the modification to C who, in turn notifies C2.

Abstraction Control
Min = 0

Max - 360
Value - 45

Value * 45

Min - 0
Max = 360
Value = 45

-<-

Figure 6.4: A compound PAC interactive object.

In summary, by applying PAC recursively at every level of abstraction of the user
interface, everything in an interactive application is a PAC object, from the elementary
interactive object to the whole application. As shown in the upper rectangle of Figure
6.5, the whole interactive application is a PAC entity. The Abstraction part of the
application involves three domain dependent concepts in the dialogue. The Controller
at the top of the hierarchy bridges the gap between the Abstraction and the

CMU/SEI-89-TR-4 87

Presentation. The Presentation is made of 4 interactive objects. The second lower
rectangle shows the PAC structure of the compound interactive object represented as a
black circle. This object is built from two elementary PAC objects and one compound
object which, in turn, is composed of two elementary PAC objects.

In addition, the user interface of a workstation (generally refered to as a shell) may be
modelled in a straightforward manner by adding an extra PAC layer on top of the
application level. The Abstract part of that layer may include such global data structures
as the "clipping board" or the "network status." The Presentation would present these
data structures and allow for the initial invocation of applications. Finally, the Control
part would, of course, bridge the gap between the abstract and the concrete sides. It
would as well supervise the control parts of all of the active applications. Such an
arbitrator should provide the basis for a uniform mechanism for transferring data
between applications.

Abstraction Control Presentation

Top
Controller

Abstraction

CZHHZI

Control -

Abstraction —\ Co«trnlHPr*s«nt<tiow

3E3&
Figure 6.5: The design model.

This recursive object-oriented organization presents some advantages which are
described in the following paragraph.

6.1.5.5. The Interest Aspects of the PAC Model
The PAC model has three interesting aspects:

88 CMU/SEI-89-TR-4

1. It defines a consistent framework for the construction of user interfaces
that is applicable at any level of abstraction. As a direct consequence,
the units of exchange between the application (i.e., the Abstract part)
and the UIMS (i.e., the PAC controller) are application concepts, not low-
level details semantically irrelevant to the application.

2. It cleanly distinguishes functional notions from presentation policies and
introduces the control part to bridge the gap between the abstract and
the concrete worlds. The role of the control part may be extended from
consistency maintenance between the two worlds, to the management
of local contextual information that may be useful for help, error
explanation and automatic adaptation to the user.

3. It takes full advantage of the object-oriented paradigm with the notion of
interactive object.

An interactive object is an active entity. It evolves, communicates and maintains
relationships with other objects. Such activity, parallelism and communication are
automatically performed by the Object Machine, the generic class of the interactive
objects. The Object Machine defines the general functioning that is made common to
all of the interactive objects by means of the inheritance mechanism. In particular, each
object owns a private finite state automaton for maintaining its current dialogue state.
On receipt of a message, an object is thus able to determine which actions to undertake
according to its current state. In particular, The PAC controller at the top of the
hierarchy of controllers, maintains the global state of the dialogue with the application.

Interactive objects implement the dialogue in a distributed way. This feature can serve
as a basis for the implemention of facilities related to the notion of context. It also
provides the necessary grounds for concurrent multiple I/O in the following way. The
set of automata (one automaton per interactive object) defines the global state of the
interaction between the user and the application. The control of the interaction is
therefore distributed in an evolutive network of interactive objects. Dialogue control is
not handled by a unique monolithic dialogue manager difficult to maintain, extend and
implement, in particular when one wants a pure user-driven style of interaction.
Conversely, since interactive objects are able to maintain their own state, it is easy to let
the user switch between objects in any order. Thus, an object-oriented approach
provides for free the maintenance of the user's arbitrary manipulations.

Interactive objects are easily customizable. Object-oriented programming languages
support data abstraction which makes it possible to change underlying
implementations without changing the calling programs. In the present case, this
principle allows the internal modification of an interactive object without changing its
presentation and abstract interfaces. Interestingly, it also allows the modification of one
interface without any side-effect on the other interface. For example, one can modify
the presentation of an interactive object (such as attaching a different key translation
table to an interactive object of type string) without reflecting on its abstract behaviour.
This property makes possible fine grained dynamic adjustments of the user interface
without massive modifications to the presentation of the whole application.

CMU/SEI-89-TR-4 89

6.1.6. Multiple Views of Data
One problem associated with the separation of the user interface from the functional
core of the application is the management of multiple presentations of the same
application data item. Since the application is written to be media independent it has
no knowledge of any presentation issues, in particular, how many times a particular
piece of its data is presented to the user and in what forms.

For example, suppose the pressure within a pipe is represented both by the color of the
fluid in the pipe and by a separate pressure gauge. When the pressure changes both
presentations should change. Managing these multiple views of the same data item is
the responsibility of the runtime kernel. The kernel must have a mechanism to
determine which data items determine the nature of a particular presentation.
Otherwise, the kernel cannot automatically manage the presentation. This mechanism
must allow the determination that two different presentations depend upon the same
data item.

The determination that two different presentations depend upon the same data item
depends upon the interface between the functional core and the runtime kernel and the
information presented to the runtime kernel. In Serpent, for example, two presentations
are determined to depend upon the same data item if they both depend upon a
particular element in the data base schema which describes the data. This allows the
automatic modification of an aggregate in the presentation when a component changes
if the runtime interface is in charge of maintaining the aggregate. It does not allow the
automatic modification of the aggregate if the application is in charge of maintaining the
aggregate.

6.1.7. Feedback

One of the most troublesome issues associated with the separation of the functional
portion of the application from the user interface is that of feedback [Hudson 88].

Feedback is the displaying to the user some indication of the system's understanding of
the actions being performed. For example, in the X toolkit, a widget will reverse video
when the cursor is within the widget. It is possible to change cursor shape when the
cursor goes from one window to another. These are examples of lexical feedback and
are handled at the prese itation level.

Another type of feedback comes from the runtime kernel. On the Macintosh, certain
options within a menu are displayed in gray scale to indicate that they are not currently
available. The runtime kernel knows the current context of the action and makes the
decision to display certain items in a fashion that gives feedback to the end user about
the current state of that item. This is an example of syntactic feedback (based on the
current context).

A deeper level of feedback might be changing the color of a beam in a CAD/CAM
application to represent the stress currently being placed on that beam. This is an
example of semantic feedback since the determination of the current color depends
upon knowledge that only the functional core of the application maintains.

9 0 CMU/SEI-89-TR-4

These three types of feedback represent different levels of abstraction and should be
performed in separate portions of the software. This implies that the software structure
must be available to allow that separation. The hierarchical decomposition of PAC is
explicitly designed to allow the separation of various levels of feedback.

The reason that feedback is a troubling issue is because of the performance
implications. Feedback, by its nature, should be fast. The end user should, ideally, be
given indications of the meaning of an action when that action is occurring. It is not
clear that this is always possible in the case of deep semantic feedback and the
architectural structure of a system may not always support both the performance
requirements of rapid feedback and the separation of the functional core of the
application from the user interface. In any case, the human processing model gives a
bound on required functionality. Since events occurring in less than 0.1 second are
seen to be instanteous, feedback performance requirements will be satisfied if they can
be met within that time period.

6.2. User Interface Environments

6.2.1. Introduction

The actions of the runtime kernel are determined by a language used to describe the
dialogue. The mechanism for specification of that language plays a large part in
acceptability of the user.interface runtime system. One possibility, which won't be
further discussed, is to use a standard programming language to interact directly with
the runtime kernel. MacApp [Schmucker 86], APEX [Coutaz 87a] and EZWin
[Liebermann 85] are examples. The approach is to treat the runtime kernel as an
extension of a toolkit.

More interesting are cases where specialized language or specification mechanisms
exist. The examples to be discussed are:

1. Textual language specification

2. Graphical editor specification

3. Complete environments

Figure 6.6 represents the usage of the specification. The dialogue specifier creates a
dialogue using some tool and the created specification provides the mechanism for the
runtime kernel to operate. The specification can be distinct in time from the execution of
the runtime kernel or specification time and runtime can be intertwined. The textual
language specification which is discussed first is, inherently, distinct in time from
runtime.

CMU/SEI-89-TR-4 91

User Interface Specification
or Construction

a
User Interface

Designer

I EdRer

T
Prototype Evaluation

Production
System

User Interface Use

Figure 6.6: Specification of dialogues.

6.2.2. Textual language specification

Domain [Schulert 85] is a commercial user interface nanagement system available
from Apollo. The model that Domain uses is given in Figure 6.7. This is also the model
used in Cousin [Hayes 83]. The interface between the domain dependent portion of the
program and the user interface is defined to be a group of Tasks". Each task has a
computation portion. The user interface is defined in terms of building blocks which
define the presentation in terms of the tasks. The application places values in the task
which cause the presentation to change and the building blocks place values in the
tasks which affect the application. Figure 6.8 shows the user interface for a simple
example. Figure 6.9 gives the tasks, Figure 6.10 gives the building blocks and Figure
6.11 gives the application code for this example.

92 CMU/SEI-89-TR-4

Domain-dependent
Code

fund
func2

funcq

Specifications

Taskl
Task2

Taskp

Techniquel
Technique2

Technique n

Figure 6.7: The model used by Domain.

15 false

This program determines if an integer is
even or odd. Position the cursor vith
the mouse (left button). Then type a
number between 0 and 20, and <RETURN>

Figure 6.8: The user interface of a simple example.

CMU/SEI-89-TR-4 93

nmesmranFfflBRHras example
exit-task:=NULL:

COMP => <CALL odd-or-even>
MTN=0;
MAX=20
END

true-false-task:=BOOL:
COMP =>o
END

message-task:=MSG:
VALUE=

"This program determines if an integer is even or odd."
&"Position the cursor with the mouse (left button)."
&"Then type a number between 0 and 20, and <RETURN>."

END

 Figure 5.9: The tasks for the example of Figure 5.8.

9 4 CMU/SEI-89-TR-4

USER-WTl^'A^ example

exit:=ICON:
TASK = exit-task;
BACKGROUND = GREY;
SHAPE = ROUNDED;
SIZE - (100 350) PIXELS;
STRING = "exit"
END

numben=ENT_FIELD:
TASK = number-task;
BACKGROUND = OFF
SHAPE = ROUNDED
HELP-TEXT = "you must give an integer from 0 to 20"
END

true-false:=BOOL-FIELD
TASK = true-false-task;
BACKGROUND = OFF;
SHAPE = ROUNDED;
HELP -TEXT = "true=even number" & "false = odd number"
END

row-bottom:=ROW
BACKGROUND = ON;
ORIENTATION = HORIZONTAL;
BORDER-WIDTH = 10; DrVTSION -WIDTH = 5;
OUTLINE = ON; SHAPE = ROUNDED,
CONTENTS = (exit number true-false)
END

messages DISPLAY TEXT
TASK = message-task;
SHAPE = ROUNDED
END

row-all:=ROW
BACKGROUND = ON;
ORIENTATION = VERTICAL;
BORDER-WIDTH = 10; DrVISION-WIDTH = 5;
OUTLINE = ON; SHAPE = ROUNDED,
CONTENTS = (row-bottom message)
END

std-window:
CONTENTS = row-all
END

Figure 6.10: The building blocks for the user interface for the
 example in Figure 6.8.

CMU/SEI-89-TR-4 9 5

MAIN PROGRAM
-initiate DIALOG
- set initial values and defaults to tasks

dp-$bool-set-value(true-false-task,true,status);
- activate a task or a group of tasks

dp-$task-activate (dp-$all-task-group,...);
- wait for an input event

dp-$event-wait ();
- exit Dialogue

dp-$terminate (...);

A MODULE: die procedure which checks the parity
odd-or-evenO

int value-int, value-bool;
begin

- get input data
dp-$int-get-value (number-task, value-int, status);

- check parity
if ((value-int/2) = 0) then

value-bool = true
else

value-bool = false;
- send the result to die task

dp-$bool-set-value (true-false-task, value-bool, status);
end

Figure 6.11: The application code for the example of Figure 6.7.

6.2.3. Graphical Editor Specification

Since so much of the user interface is graphical in nature, it makes sense to have
editors which are used to specify the graphical portion of the interface. Such editors
have been created such as Menulay [Buxton 83]. The editors become layout editors.
That is, the graphical editors are used to specify the appearance of a display and where
on the display various presentation objects will reside. Once the layout has been
specified then the connections between the presentation objects and the dialogue
control are established. One problem with the usage of such editors is how to
represent the dependencies upon application data. This issue goes to the heart of the
timing distinction between specification time and runtime.

6.2.3.1. Realization
The dialogue gives a mapping between application objects and presentation objects.
Implicit in this mapping is a dependency of certain attributes of the presentation object
upon application values. If there were no such dependencies then the presentation
would be totally independent of the application. When the display is presented to the
specifier it must be realized with some set of application values. In order to be totally
realistic, the values should be generated by the application and, hence, runtime and
specification time are the same. In some systems (e.g. Serpent), the specifier provides
fixed values for the attributes of the presentation objects which depend upon
application objects. These fixed values then show the specifier one possible display.
The problem of how to realize the interface leads into the idea of having a total
environment for the development of user interface. Before discussing that issue,

9 6 CMU/SEI-89-TR-4

however, some of the power possible with having a separate tool to construct the editor
will be shown.

6.2.3.2. Smart Editors
When an interface is being constructed, typically there is a particular style being used
for some of the components such as menus. Peridot [Myers 87] is a system that uses
expert system techniques to make inferences about what style is being used for
particular components. For example, the specifier would completely construct one
menu and then whenever another menu was being constructed, Peridot would propose
that it have the same style as the previous menu. This is one example of the type of
intelligence that could be put into separate dialogue construction tools.

6.2.4. Environment
Although integrated user interface development and execution environments are
desirable, they have not yet been produced. One system that comes close to an
integrated environment is HyperCard [Harvey 88]. HyperCard is a system that manages
textual and graphical objects in a multidimensional fashion. Each task that is to be
accomplished is represented by a stack of cards. Cards within a stack can be linked to
other stacks to represent associations that the specifier wishes to maintain. Cards can
be searched to locate those that have information of relevance to the implementor.

HyperCard integrates the specification and the runtime by allowing scripts tp be
developed while data resides in the stacks. These scripts can then be executed, the
results displayed and the scripts modified. This interaction between specification and
execution allows the development of applications in a very smooth and continuous
fashion.

Within HyperCard, the distinction between the application functional core and the user
interface is blurred. This makes difficult the clear separation of functionality, which is
the basis of the UIMS.

6.2.5. State of the Art

Within the field of user interfaces, today, we know how to do things which are
application independent. Menus, scroll bars, etc are methods of allowing for user input
with low-level feedback which have proven very valuable. What is not known is how to
do things which are application dependent. Semantic feedback (feedback depending
upon application semantics) is not well understood and current tools do a poor job of
supporting this type of feedback while still providing a clear separation of functionality.

CMU/SEI-89-TR-4 9 7

9 8 CMU/SEI-89-TR-4

Bibliography

[Adobe 85]

[Ahlers 86]

[Alletru 88]

[Anderson 83]

[Baecker 87]

[Barnard 81]

[Barnard 86]

[Barnard 87]

[Barth 86]

Adobe Systems, Incorporated.
Postcript Language Reference Manual.
Addison Wesley, 1985.

K.L Ahlers, A. Dwelly.
OUTILS: Towards a User Interface Management System for
Graphical Interaction.
Technical Report ECRC (European Computer-Industry Research
Centre), October 1986.

J.C. Alletru, F. Frederic, 0. Roussel, A. Vial.
IRENE, Systeme Expert d'Aide a la Configuration de R6seau XNS,
Architecture Logicielle, Specifications Extemes.
Manuel Utilisateur; Rapport de Fin d'Etude, DESS-Genie
Informatique.
University Joseph Fourier, Juin 1988.

JJR. Anderson.
The Architecture of Cognition.
Harvard University Press, Cambridge, Massachusetts, 1983.

R.M. Baecker, W.A.S. Buxton.
Readings in Human-Computer Interaction: A Multidisciplinary
Approach.
R.M. Baecker, W.A.S. Buxton (Editors).
Morgan Kaufmann Publishing, 1987.

PJ. Barnard, N.V. Hammond, J. Morton, J.B. Long, LA. Clark.
Consistency and Compatibility in Human-Computer Dialogue.
International Journal of Man-Machine Studies, 15:87-134, 1981.

P.J. Barnard.
Cognitive Resources and the Learning of Human-Computer
Dialogue.
MRC Applied Psychology Unit, 15 Chaucer Road, Cambridge,
England, March 1986.

PJ. Barnard, M. Wilson, A. Mac Lean.
Approximate Modelling of Cognitive Activity: Towards an Expert
System Design Aid.
In Proceedings of the ACM CHI+GI Conference, 21 -26, April 1987.

P. S. Barth.
An Object-Oriented Approach to Graphical Interfaces.
ACM Transactions on Graphics, 5(2), April 1986.

CMU/SEI-89-TR-4 99

[Barthet 86]

[Bass 88]

[B lesser 82]

[Bly 86]

[Bobrow 83]

[Borning 86a]

[Borning 86b]

[Brownston 85]

[Buxton 82]

[Buxton 83a]

M. F. Barthet, C. Sibertin-Blanc.
La Moderation d"Applications Interactives Adaptees aux
Utilisateurs par des Reseaux de Petri a Structure de Donnee.
Actes du Troisieme Coiloque-Exposition de G6nie Logiciel,
Versailles, 117-136, Mai 1986.

L Bass, E. Hardy, K. Hoyt, R. Little, R. Seacord.
The Serpent Runtime Architecture and Dialogue Model.
Technical Report CMU/SEI-88-TR-6, ADA 196664, Carnegie Mellon
University, Pittsburgh, PA 15213, January 1988.

T. Bleser, J.D. Foley.
Towards Specifying and Evaluating the Human Factors of User-
Computer Interfaces.
In ACM Proceedings of Human Factors in Computer Systems
Conference, March 1982.

S. Bly, J. K. Jarret
A Comparison of Tiled and Overlapping Windows.
In ACM Proceedings of the Computer Human Interaction
Conference, 101-106, 1986.

D.G. Bobrow, M. Stefik.
The Loops Manual.
Technical Report KB-VLSI-81-13, Knowledge Systems Area, Xerox,
Palo Alto Research Center, 1981.

A.H. Borning.
Graphically Defining New Building Blocks in ThingLab.
Human Computer Interaction, 2(4):269-295, 1986.

A.H. Borning.
Defining Constraints Graphically.
In ACM Proceedings of the Computer Human Interaction
Conference, 137-143,1986.

L. Brownston, R. Farrell, E. Kant, N. Martin.
Programming Expert Systems in OPS5: An Introduction to Rule-
Based Programming.
Addison Wesley, 1985.

W. Buxton.
An Informal Study of Selection Positioning Tasks.
Graphics lnterface'82, 323-328, 1982.

W. Buxton.
Lexical and Pragmatic Considerations of Input Structures.
Computer Graphics, 31-37, January 1983.

100 CMU/SEI-89-TR-4

[Buxton 83b] W. Buxton, M.R. Lamb, D. Sherman, K.C. Smith.
Towards a Comprehensive User Interface Management System.
Computer Graphics 17(3):35-42, July 1983.

[Buxton 86a] W. Buxton, B. Myers.
A Study in Two-Handed Input.
In Proceedings of SIGCHI'86: Human Factors in Computing Systems
Conference, 321-326,1986.

[Buxton 86b] W. Buxton.
There's More to Interaction Than Meets the Eye: Some Issues in
Manual Input.
In Norman and Draper (Editors), User Centered System Design:
New Perspectives on Human-Computer Interaction, 319-337.
Erlbaum, 1986.

[Cany 85] G. Cany.
Un Systeme d'Acces Poste de Travail sous UNIX.
Actes des Journees SM-90, 412-419.
Ed. Eyrolles, Decembre 1985.

[Card 83] S. Card, T. Moran, A. Newell.
The Psychology of Human-Computer Interaction.
ISBN 0-89859-243-7.
Lawrence Erlbaum Associates, 1983.

[Card 87] S. Card, A. Henderson.
A Multiple Virtual-Workspace Interface to Support User Task
Switching.
In Proceedings of the CHI+GI Conference on Human Factors in
Computing Systems and Graphics Interface, 1987.

[Cardelli 85] L. Cardelli, R. Pike.
Squeak: A Language for Communicating with Mice.
In ACM Proceedings of Computer Graphics: SIGGRAPH'85
Conference, 19(3):199-204, 1985.

[Cardelli 87] L. Cardelli.
Building User Interfaces by Direct Manipulation.
Digital Systems Research Center, Technical Report 22, October
1987.

[Carroll 83] J.M. Carroll.
Presentation and Form in User Interface Architecture.
Byte 8(12):113-122, December 1983.

[Carroll 84] J.M. Carroll, C. Carrithers.
Training Wheels in a User Interface.
Communication of the ACM, 27(8):800-807, August 1984.

CMU/SEI-89-TR-4 101

[Carroll 85a]

[Carroll 85b]

[Ciccarelli 84]

[Cohen 86]

[Conklin 87]

[Coutaz 85a]

[Coutaz 85b]

[Coutaz 86a]

[Coutaz 86b]

[Coutaz 86c]

J.M. Carroll, D.S. Kay.
Prompting, Feedback and Error Correction in the Design of a
Scenario Machine.
In Proceedings of the CHI'85 Conference, 149-153, April 1985.

J.M. Carroll, R.L Mack.
Metaphor, Computing Systems, and Active Learning. International
Journal of Man-Machine Studies, 22(1):39-57, January 1985.

E.C. Ciccarelli.
Presentation-Based User Interfaces.
Technical Report 794, Artificial Intelligence Laboratory,
Massachusetts Intelligence Laboratory, August 1984.

E.S. Cohen, E.T. Smith, LA. Iverson.
Constraint-Based Tiled Windows.
IEEE Computer Graphics and Applications, 6(5):35-45, May 1986.

J. Conklin.
Hypertext: An Introduction and Survey.
IEEE Computer, 20(9):17-41, September 1987.

J. Coutaz.
A Layout Abstraction for User System Design.
In Proceedings of ACM SIGCHI, 18-24, January 1985.
Also published as Carnegie Mellon University Technical Report,
CMU-CS-84-167, December 1984.

J. Coutaz.
Abstractions for User Interface Design.
IEEE Computer, 18(9):21-34, September 1985.

J. Coutaz.
Abstractions for User Interface Toolkits.
In Foundation for Human-Computer Communication, 335-^54, K.
Hopper and I.A. Newman (Editors), North Holland, 1986.

J. Coutaz.
Abstractions pour la Construction d'lnterfaces Homme-Machine.
TSI, 5(4):239-250, Juillet-AoOt 1986.

J. Coutaz.
La Construction d'lnterfaces Homme-Machine.
Rapport IMAG RR 635-1, Novembre 1986.

102 CMU/SEI-89-TR-4

[Coutaz 87a]

[Coutaz 87a]

[Coutaz 87b]

[Coutaz 87c]

[Coutaz 88]

[diSessa 86]

[Duce 87]

[Duisberg 86]

[Ege 87]

[Foley 84]

J. Coutaz, F. Berthier.
The Construction of User Interfaces.
In G. Bracchi and D. Tsichritzis (Editors), Office Systems: Methods
and Tools, 59-66, North Holland, 1987.

J. Coutaz.
The Construction of User Interfaces and the Object-Oriented
Paradigm.
In Proceedings of the European Conference on Object-Oriented
Programming, 135-144, Paris, Juin 1987.

J. Coutaz.
PAC: An Implemention Model for Dialog Design.
lnteracT87, 431-436, Stuttgart, Septembre 1987.

J. Coutaz.
PAC, an Object-Oriented Model for Implementing User Interfaces.
CHI+GI '87 Poster Session Papers, ACM SIGCHI Bulletin, 19(2):37-
41, October 1987.

J. Coutaz.
De L'Ergonome a L'lnformaticien: Pour une Methode de Conception
et de Realisation des Interfaces Homme-Machine.
Conference invitee.
Actes du Colloque Europe"en ERGO-IA'88, Ergonomie et Intelligence
Artificielle, Biarritz, Octobre 1988.

A.A. diSessa, H. Abelson.
Boxer: A Reconstructive Computational Medium. Communications of
the ACM, 29(9):859-868, September 1986.

D.A. Duce, F.R.A. Hopgood.
The Graphical Kernel System.
Computer-Aided Design, 19(8):396-409, October 1987.

R.A. Duisberg.
Animated Graphical Interfaces Using Temporal Constraints.
In Proceedings of the ACM Computer Human Interaction
Conference, 131-136, 1986.

R.K. Ege, D. Maier, A. Borning.
The Filter Browser Defining Interfaces Graphically.
In Proceedings of the European Conference on Object-Oriented
Programming, 155-165, Paris, Juin 1987.

J. D. Foley, A. Van Dam.
Fundamentals of Interactive Computer Graphics.
Addison Wesley, 1984.

CMU/SEI-89-TR-4 103

[Forgy 84]

[Garrett 82]

[Garrett 86]

[Goldberg 84]

[Gosling 86a]

[Gosling 86b]

[Gosling 86c]

[Green 85]

[Halasz 87]

[Harel 87]

C.L Forgy.
777e OPS83 Report.
Technical Report CMU-CS-84-113, Carnegie Mellon University,
Pittsburgh, Pennsylvania, 1984.

M.T. Garrett, J.D. Foley.
Graphics Programming Using a Data Base System with Dependency
Declarations.
ACM Transactions on Graphics, 1(2), April 1982.

LN. Garrett, K.E. Smith.
Building a Timeline Editor from Prefab Parts: The Architecture of an
Object-Oriented Application.
In Proceedings of the Object-Oriented Programming Systems
Languages and Applications Conference, 202-213, Portland,
Oregon, September 1986.
Also in Sigplan Notices, 21(11):202-213, November 1986.

A. Goldberg.
Smalltalk-80: The Interactive Programming Environment.
Addison-Wesley, 1984.

J. Gosling.
Partitioning of Functions in Window Systems.
In Hopgood (editor), Methodology of Window Management.
Springer Verlag, 101-106, 1986.

J. Gosling.
SunDew: A Distributed and Extensible Window System.
In Proceedings of the Winter 1986 USENIX Conference,
98-103, January 1986.

J. Gosling, D. Rosenthal.
A Window Manager for BitMapped Displays and UNIX.
In Hopgood (Editor), Methodology of Window Management.
Springer Verlag, 101-106, 1986.

M.W. Green.
The Design of Graphical Interfaces.
Technical Report CSRI-170, Computer Systems Research Institute,
University of Toronto, Canada, April 1985.

F.G. Halasz, T.P. Moran, R.H. Trigg.
NoteCards in a Nutshell.
In Proceedings of ACM CHI+GI Conference, 45-53,1987.

D. Harel.
Statecharts: A Visual Formalism for Complex Systems.
Science of Computer Programming, 8(3):231-274, June 1987.

104 CMU/SEI-89-TR-4

[Harvey 88]

[Hayes 83]

[Hayes 85]

[Hayes-Roth 79]

[Henderson 86]

[Hill 87a]

[Hill 87b]

[Hudson 88]

G. Harvey.
Understanding HyperCard for Version 1.1.
Sybex Book Publishers, 1988.

P.J. Hayes, P. Szekely.
Graceful Interaction Through the Cousin Command Interface.
International Journal of Man Machine Studies 19(3):285-305,
September 1983.

P.J. Hayes, P. Szekely, R. Lemer.
Design Alternatives for User Interface Management Systems Based
on Experience with Cousin.
In Proceedings of the CHI'85 Conference, 169-175,
April 1985.

B. Hayes-Roth, F. Hayes-Roth.
A Cognitive Model for Planning.
Cognitive Science, 3:275-310, 1979.

A. Henderson.
The Trillium User Interface Design Environment.
In Proceedings of SIGCHI'86: Human Factors in Computing Systems
Conference, 2Z\ -227, 1986.

R.D. Hill.
Supporting Concurrency, Communication and Synchronization in
Human-Computer Interaction.
In ACM Transactions on Graphics 5(2):179-210, April 1986.

R.D. Hill.
Event Response Systems: A Technique for Specifying Multi-Thread
Dialogues.
In Proceedings of the CHI+GI'87 Conference, 241-248, 1987.

S.E. Hudson, R. King.
Semantic Feedback in the Higgens UIMS.
TR 88-14, Department of Computer Science, University of Arizona,
Tucson, Arizona, March 1988.

[Hullot 86] J.M. Hullot.
SOS Interface: Un Generateur d'lnterfaces Homme-Machine.
Actes des Journees Afcet-lnformatique sur les Langages Orient6s
Objet, Bigre+Globule, 48, 69-78. Publ. IRISA, Campus de Beaulieu,
35042 Rennes, Janvier 1986.

[Hutchins 86] E. L Hutchins, J. D. Hollan, D. A. Norman.
Direct Manipulation Interfaces: User-Centered System Design.
Lawrence Erlbaum Associates, 1986.

CMU/SEI-89-TR-4 105

[ISO 85]

[ISO 86a]

[ISO 86b]

[Jchn85]

[John87]

[Karsenty 87]

[Kasik 82]

[Kieras 85]

[Kiger 84]

[Knuth 79]

International Organization for Standardization.
Information Processing Systems - Computer Graphics - Graphical
Kernel System (GKS) Functional Description. ISO IS 7942, July
1985.

International Organization for Standardization.
Information Processing Systems - Computer Graphics -
Programmer's Hierarchical Interface to Graphics (PHIGS) Functional
Description. ISO DP 9592, October 1986.

International Organization for Standardization.
Information Processing Systems - Computer Graphics - Techniques
for Interfacing Graphical Devices (CGI) Functional Description. ISO
DP 9636, December 1986.

B.E. John, P.S. Rosembloom.
A Theory of Stimulus-Response Compatibility Applied to Human
Computer Interaction.
In Proceedings of ACM CHI'85 Conference, 213-220, 1985.

B.E. John, A Newell.
Predicting the Time Recall Computer Command Abbreviations.
In Proceedings of CHI+GI Conference, 33-40, 1987.

S. Karsenty^
Graffiti: Un Outil Interactif et Graphique pour la Construction
d'lnterfaces Homme-Machine Adaptables.
These de Doctorat de 3eme Cycle Informatique, University de Paris-
Sud, Centre d'Orsay, Decembre 1987.

D. J. Kasik.
A User Interface Management System.
Computer Graphics, 99-106, July 1982.

D. Kieras, P.G. Poison.
An Approach to the Formal Analysis of User Complexity.
International Journal of Man-Machine Studies, 22:365-394, 1985.

J.I. Kiger.
The Depth/Breadth Trade-Off in the Design of Menu-Driven User
Interfaces.
International Journal of Man-Machine Studies, 20:201 -213, 1984.

D.E. Knuth.
TExand Metafont: New Directions in Typesetting.
Digital Press, 1979.

106 CMU/SEI-89-TR-4

[Lantz 84]

[Lantz 86]

[Lieberman 85]

[Lieberman 87]

[Lindsay 80]

[Linton 86]

[Lunati 88]

[Lynch 86]

[Meyer 87]

[Meyrowitz 86]

K.A Lantz, W.I. Nowicki.
Structured Graphics for Distributed Systems.
ACM Transactions on Graphics, 3(1), January 1984.

K.A. Lantz.
On User Interface Reference Models.
ACM SIGCHI Bulletin, 18(2):36-44, 1986.

H. Lieberman.
There's More to Menu Systems Than Meets the Screen.
SIGGRAPH'85, Computer Graphics, 19(3):181-189, 1985.

H. Lieberman.
Reversible Object-Oriented Interpreters.
In Proceedings of the European Conference on Object-Oriented
Programming, 13-22, Paris, Juin 1987.

P.H. Lindsay, D.A. Norman.
Human Information Processing: An Introduction to Psychology,
second edition.
Edition Etudes Vivantes 6700 Chemin Cote de Liesse, Saint-
Laurent, Quebec, 1980.

M. Linton, C. Dunwoody.
Partitioning User Interfaces with Interactive Views.
Computer Systems Laboratory, Stanford University, Stanford,
California 94305-2192, Private Communication, April 1986.

J.M. Lunati, V. Normand.
Un Serveur d'lnteraction Centre Objet.
Projet de Fin d'Etudes, Institut National Poiytechnique de Grenoble
E.N.S.M.A.G. Juin 1988.

G. Lynch, J. Meads.
In Search of a User Interface Reference Model: Report on the
SIGCHI Workshop on User Interface Reference Models. SIGCHI
Bulletin, 18(2):25-33, October 1986.

B. Meyer.
Reusability: The Case for Object-Oriented Design.
IEEE Software, 50-59, March 1987.

N. Meyrowitz.
Intermedia: The Architecture and Construction of an Object-Oriented
Hypermedia System and Applications Framework.
In Proceedings of the Object-Oriented Programming Systems
Languages and Applications Conference, September 1986.
Also in Sigplan Notices, 21(11):186-201, November 1986.

CMU/SEI-89-TR-4 107

[Michard 82]

[Mikelsons81]

[Miller 81]

[Miller 75]

[Moran81]

[Moran 83]

[Morcos 86]

[Myers 84]

[Myers 86]

A. Michard.
Graphical Presentation of Boolean Expressions in a Data Base
Query Language: Design Notes and an Ergonomic Evaluation.
Behaviour and Information Technology, 1(3):279-288, 1982.

M. Mikelsons.
Prettyprinting in an Interactive Programming Environment.
In Proceedings of the ACM Sigplan SIGOA Symposium on Text
Manipulation, June 1981.

D.P. Miller.
The Depth/Breadth Trade-Off in Hierarchical Computer Menus.
In Proceedings of the 25th Annual Meeting of the Human Factors
Society, 296-300, 1981.

G.A. Miller.
The Psychology of Communication, second edition.
Basic Books, New York, 1975.

T. Moran.
The Command Language Grammar: A Representation for the User
Interface of Interactive Computer Systems.
International Journal of Man-Machine Studies, 15:3-50, 1981.

T.P. Moran.
Getting into a System: External-Internal Task Mapping Analysis.
In Proceedings of the Computer Human lnteraction'83 Conference,
1983.
Also in ACM SIGCHI Bulletin special issue, 45-49, 1983.

E. Morcos-Chounet, M.J. Brossard, A. Conchon.
Affichage interactif d'Arbres Abstraits.
Troisieme Colloque-Exposition de Genie Logiciel, 137-150,
Versailles, AFCET, Mai 1986.

B.A. Myers.
The User Interface of Sapphire.
IEEE Computer Graphics and Applications 4(12):13-23, December
1984.

B.A. Myers.
Visual Programming, Programming by Example and Program
Visualization: A Taxonomy.
In Proceedings of CHI'86 Conference, Human Factors in Computing
Systems, 59-66, 1986.

108 CMU/SEI-89-TR-4

[Myers 87] B.A. Myers.
Creating Dynamic Interaction Techniques by Demonstration.
In Proceedings of ACM CHI+GI'87 Conference on Human Factors in
Computing Systems and Graphics Interface, 271-278, 1987.

[Nanard 84] J. Nanard, M. Nanard.
Manipulation Interactive de Documents.
Techniques et Science Informatiques, 3(6):443-451, 1984.

[Neal 87] L R. Neal.
Cognition-Sensitive Design and User Modelling for Syntax-Directed
Editors.
In Proceedings of ACM CHI+GI'87 Conference on Human Factors in
Computing Systems and Graphics Interface, 99-102, 1987.

G. Nelson.
Juno: A Constraint-Based Graphics System.
In Proceedings of Computer Graphics: SIGGRAPH'85 Conference,
19(3):235-243, July 1985.

A. Newell, S. Card.
Straightening Out Softening Up: Response to Carroll and Campbell.
Human Computer Interaction, 2(3):251-267,1986.

J. Nielsen.
The Spectrum of Models in Software Ergonomics.
In Proceedings of the Fifth Symposium on Empirical Foundations of
Information and Software Sciences, 1987.

J. Nievergelt, J. Weydert.
Sites, Modes, and Trails: Telling the User of an Interactive System
Where He Is, What He Can Do, and How to Get Places.
In R.A. Guedj, P. Ten Hagen, F.R. Hopgood, H. Tucker, D.A Duce
(Editors), Dans Methodology of Interaction.
North Holland, 327-338, 1980.

[Norman 86] D. A Norman, S. W. Draper.
User-Centered System Design.
Lawrence Erlbaum Associates, 1986.

[Olsen 83] D.R Olsen, E.P Dempsey.
Syngraph: A Graphical User Interface Generator.
Computer Graphics, 43-50, July 1983.

[Pfaff 85] User Interface Management Systems.
In G. E. Pfaff (Editor), Eurographics Seminars,
Springer-Verlag, 1985.

[Nelson 85]

[Newell 86]

[Nielsen 87]

[Nievergelt 80]

CMU/SEI-89-TR-4 109

[Poison 85]

[Price 83]

[Quint 87]

[Rose 86]

[Rosson 83]

[Sacerdoti 74]

[Scapin 87]

[Scheifler 86]

[Schmucker 86]

[Schulert 85]

[Shneiderman 87]

P.G. Poison, D.E. Kieras.
A Quantitative Model of the Learning and Performance of Text
Editing Knowledge.
In Proceedings of the ACM CHI'85 Conference, 207-212, 1985.

LA. Price, C.A. Cordova.
Use of Mouse Buttons.
In Proceedings of the ACM CHI'83 Conference, 263-266, 1983.

V. Quint.
Une Approche de /'Edition Structure des Documents.
These de Doctorat d'Etat, University Scientifique, Technologique et
Medicale de Grenoble, 1987.

C. Rose et al.
Inside Macintosh.
Addison Wesley, 1986.

M.B. Rosson.
Patterns of Experience in Text Editing.
In Proceedings of CHI'83 Conference on Human Factors in
Computer Systems, 177-183, 1983.

E.D. Sacerdoti.
Planning in a Hierarchy of Abstraction Spaces.
Artificial Intelligence, 5:115-135, 1974.

D.L Scapin.
Guide Ergonomique de Conception des Interfaces Homme-Machine.
Rapport INRIA 77, Octobre 1987.

R.W. Scheifler, J. Getty.
The X Window System.
ACM Transactions on Graphics 5(2):79-109, April 1986.

K. Schmucker.
MacApp: An Application Framework.
Byte 11(8):189-193, 1986.

AJ. Schulert, G.T. Rogers, J.A. Hamilton.
ADM • A Dialog Manager.
In Proceedings of the CHI'85 Conference, 177-183, April 1985.

B. Shneiderman.
Designing the User Interface: Strategies for Effective Human-
Computer Interaction.
Addison Wesley, 1987.

110 CMUSEI-89-TR-4

[Shuey 86]

[Shuey 87]

[Sibert 86]

[Simon 84]

[Sisson 86]

[Smith 82]

[Smith 87]

[Stefik 87]

[SUN 87]

[Tanner 83]

D. Shuey, D. Bailey, T.P. Morrissey.
PHIGS: A Standard, Dynamic, Interactive Graphics Interface.
IEEE Computer Graphics and Application, 50-57, August 1986.

D. Shuey.
PHIGS: A Graphics Platform for CAD Application Development.
Computer-Aided Design, 19(8):410-417, October 1987.

J.L Sibert, W.D. Hurley, T.W. Bleser.
An Object-Oriented User Interface Management System.
SIGGRAPH'86, 20(4):259-268, 1986.

H. A. Simon.
The Sciences of the Artificial, third edition.
The MIT Press, 1984.

N. Sisson.
Dialogue Management Reference Model.
ACMSIGCHI, 18(2):34-35, October 1986.

D.C. Smith, C. Irby, R. Kimball, B. Verplank.
Designing the Star User Interface.
Byte, 7(4):242-282, April 1982.

R.B. Smith.
Experiences with the Alternate Reality Kit: An Example of the
Tension Between Literalism and Magic.
In Proceedings of the ACM Computer Human Interaction
Conference, 61-67, 1987.

M. Stefik, G. Foster, D.G. Bobrow, K. Hahn, S. Lanning,
L Suchman.
Beyond the Chalkboard: Computer Support for Collaboration and
Problem Solving in Meetings.
Communications of the ACM, 30(1):32-47, January 1987.

SUN Microsystems, Inc.
NeWS Manual.
SUN Microsystems, Inc., 2250 Garcia Avenue, Mountain View,
California 94043.

P. Tanner, W. Buxton.
Some Issues in Future User Interface Management Systems (UIMS)
Development.
In Proceedings oflFIP Working Group 5.2 Workshop on User
Interface Management, November 1983.

CMU/SEI-89-TR-4 111

[Tanner 86]

fTrigg 87]

P. Tanner, S.A. Mackay, D. A. Stewart.
A Multitasking Switchboard Approach to User Interface
Management.
Computer Graphics: SIGGRAPH86 Conference Proceedings,
20(4) :241 -248, 1986.

R.H. Trigg, T.P. Moran, F.G. Halasz.
Adaptability and Tailorabiiity in NoteCards.
In H.J. Bullinger, B.Shackel (Editors), Conference Proceedings of
Human-Computer Interaction lnteract'87, 723-728, North Holland,
1987.

[Tufte 83]

Fullis 85]

[Uebbing 86]

E.R. Tufte.
The Visual Display of Quantitative Information.
Graphics Press, Box 430, Cheshire, Connecticut 06410, 1983.

T.S. Tullis.
Designing a Menu-Based Interface to an Operating System.
In Proceedings ofCHI'85 Conference, 79-84, 1985.

J. Uebbing, C. Young.
User Interface Performance Issues.
8yte11(8):176-176, 1986.

[Warnock 82]

[Wasserman 85]

[Wong 82]

J. Warnock, D.K. Wyatt.
A Device-Independent Graphics Imaging Model for Use with Raster
Devices.
Computer Graphics, 16(3):313-319, July 1982.

A. Wasserman.
Extending State Transition Diagrams for the Specification of Human-
Computer Interaction.
IEEE Transactions on Software Engineering, 11 (8), August 1985.

P.C.S. Wong, E.R. Reid.
Flair: User Interface Design Tool.
ACM Computer Graphics, 16(3):87-98, July 1982.

112 CMU/SEI-89-TR-4

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb. RESTRICTIVE MARKINGS

NONE
2a. SECURITY CLASSIFICATION AUTHORITY

N/A
7b OECLASSIFICATION/OOWNGRAOING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

«. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-89-TR-4

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-89-004
6a. NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INST.

5b. OFFICE SYMBOL
(If applicable)
SEI

7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

6c AOORESS iCity. Slat* and ZIP Cod*)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. AOORESS (City. State and ZIP Coda)

ESD/XRS1
HANSCOM AIR FORCE BASE
HANSmM. MA Qua]

a. NAME OF FUNDING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
(If applicable)

ESD/XRS1

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962885C0003
8c AOORESS (City. State and ZIP Code)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

10. SOURCE OF FUNOING NOS.

PROGRAM
ELEMENT NO.

11. TITLE (Include Security Classification)

HUMAN-MACHINE INTERACTION CONSIDERATIONS FOR

63752F

NTERACTIVE SC

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)

Len Bass. Joelle Coutaz
13a. TYPE OF REPORT

FINAI,

13b. TIME COVERED

FROM ' TO

14. OATE OF REPORT (Yr.. Mo.. Day)

February 1989
IS. PAGE COUNT

ILL
16. SUPPLEMENTARY NOTATION

17. COSATI COOES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS (Continue on

cognitive model
user interface

if necessary and identify by block number)

windowing systems

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This document introduces current concepts and techniques relevant to the design and
implementation of user interfaces- A user interface refers to those aspects of a system
that the user refers to, preceives, knows and understands. A user interface is imple-
mented by code that mediates between a user and a syste. This document covers both aspects..

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED jp SAME AS RPT. D OTIC USERS Q

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION
22a. NAME OF RESPONSIBLE INOIVIOUAL

KARL H. SHINGLER
22b. TELEPHONE NUMBER

(Include Area Code)

412 268-7630
DO FORM 1473, 83 APR

22c. OFFICE SYMBOL

SEI JPO
EDITION OF 1 JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGi

